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Abstract 
 
Simple crop growth models (CGM) integrated with Leaf Area Index (LAI) retrieved from earth 
observation (EO) data allow monitoring crop growth at regional and plot scales. The global research 
objective of this study was to develop a method based on the GRAMI and SAFY crop growth models 
to estimate maize yield in the Marchfeld region, characterized by a restricted availability of input data. 
Maize yield data were collected for the seasons 2013 and 2014. The LAI was estimated by the CLAIR 
model from Landsat and DEIMOS data with a NRMSE of 12%. The assimilation of LAI into the crop 
growth models was analyzed for four approaches. The Look up Table (LUT) and Particle Swarm 
optimization (PSO) methods were tested at plot and pixel scale. Ensemble Kalman Filter (EnKF) and 
Particle Filter (PF) were implemented at pixel scale. The sensitivity analysis of LUT and PSO showed 
that for efficient calibration of the GRAMI and SAFY models, satellite-based LAI observations should 
be available every 15 days for LUT and 20 days for PSO. The average LAI random error should be 
smaller than 20%. SAFY calibrated at plot scale by PSO achieved a better performance compared to 
GRAMI with an estimation error at plot scale (EEP) of 12.5% and at regional scale (EER) of 0.2%. The 
calibration techniques performed well in forecasting maize yield one to two months before harvesting 
with an EER of 3% and 7.1% respectively. The yield estimation accuracy was increased by using pixel 
data. The EEP was reduced to 8.3% using SAFY calibrated at pixel scale for a reduced number of free 
parameters. The updating at pixel scale showed a good performance. The EEP using EnKF was 9.7% 
and the EER 2.3%. Moreover, the time of processing was reduced by 17 times compared to the PSO 
calibration at plot scale. PF showed in average for both crop seasons better accuracy than EnKF. The 
calibration of the SAFY model at plot scale using PSO and the updating at pixel scale using PF yielded 
a suitable average accuracy both at regional (2.5%) and plot scale (10.5%). Additionally, the low 
computational demand of PF makes the updating of SAFY at pixel scale possible even for larger 
regions. 
 
Keywords: agricultural remote sensing, crop growth modeling, maize, GRAMI, SAFY, particle swarm 
optimization, ensemble Kalman filter, particle filter. 
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Zusamenfassung 
 
Die Assimilation des aus Fernerkundungsdaten abgeleiteten Blattflächenindexe (Leaf Area Index, 
LAI) in einfache Wachstumsmodelle erlaubt das Monitoring des Pflanzenwachstums auf regionaler 
Ebene als auch auf Schlagebene. Das Forschungsziel der vorliegenden Arbeit ist die Entwicklung einer 
Methode zur Schätzung des Maisertrages in der Region Marchfeld, basierend auf den 
Wachstumsmodellen GRAMI und SAFY bei einer geringen Verfügbarkeit von Eingangsdaten. Hierzu 
wurden Maisertragsdaten für die Wachstumsperioden 2013 und 2014 erhoben. Der LAI wurde mit 
dem CLAIR-Modell aus Landsat- und DEIMOS-Daten mit einem NRMSE von 12% geschätzt. Die 
Assimilation des LAI in die Wachstumsmodelle wurde für vier verschiedene Methoden untersucht. 
Look Up Tables (LUT) und Partikelschwarmoptimierung (PSO) wurden für die schlag- und 
pixelspezifische Assimilation getestet. Ensemble Kalman Filter (EnKF) und Particle Filter (PF) wurden 
hingegen nur pixelspezifisch umgesetzt. Eine Sensitivitätsanalyse von LUT und PSO zeigte, dass für 
eine optimale Kalibrierung der genannten Modelle satellitenbasierte LAI-Beobachtungen alle 15 Tage 
für LUT und alle 20 Tage für PSO verfügbar sein sollten. Der durchschnittliche LAI-Zufallsfehler 
sollte unter 20% liegen. Das auf Schlagebene kalibrierte SAFY-Modell erzielte bessere Ergebnisse im 
Vergleich zum GRAMI-Modell, mit einem Schätzungsfehler auf Schlagebene (estimation error at plot 
scale, EEP) von 12,5% und auf regionaler Skala (estimation error at regional scale, EER) von 0,2%. Die 
Kalibrierungstechniken zeigten ein bis zwei Monate vor der Ernte gute Ergebnisse in der Prognose 
des Maisertrages mit EERs von 3% bzw. 7,1%. Die Verwendung von pixelbasierten Daten erhöhte die 
Genauigkeit der Ertragsschätzung. So konnte der EEP bei der Kalibrierung von SAFY mit einer 
verringerten Anzahl von freien Parametern auf 8,3% reduziert werden. Update mit pixelspezifischen 
Daten brachte gute Ergebnisse: der EEP mittels EnKF betrug 9,7% und der EER 2,3%. Zudem konnte 
die Prozessierungszeit im Vergleich zur PSO-Kalibrierung auf Schlagebene um das 17fache verringert 
werden. Im Durchschnitt zeigte PF eine bessere Genauigkeit für beide Erntezyklen als EnKF an. Die 
Kalibrierung des SAFY-Modells auf Schalgebene mittels PSO und das Update mit pixelbasierten 
Daten mittels PF ergaben eine ausreichende durchschnittliche Genauigkeit auf regionaler Ebene 
(2,5%) und auf Schlagebene (10,5%). Eine wichtige Schlussfolgerung ist, dass aufgrund des geringeren 
Prozessierungsaufwandes ein pixelspezifisches Update von SAFY selbst für größere Gebiete 
ermöglicht wird. 
 
Schlüsselwörter: Landwirtschaftliche Fernerkundung, Wachstumsmodellierung, Mais, GRAMI, 
SAFY, Partikelschwarmoptimierung, Ensemble Kalman Filter, Partikelfilter. 
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1. Introduction 
Agricultural activities have a strong impact on natural resources and societies. Agriculture 

contributes between 5 to 32 % of the GDP (Gross Domestic Product) of urbanized and agriculture-
based countries, respectively (World Bank, 2008). Agricultural activities still represent the most 
important source of employment in emerging markets, being for example responsible for more than 
half of total employment in sub-Saharan Africa and South Asia.  

As a result of the increasing global population and changing diets, an escalation in food 
consumption has been observed over the last decades. This trend is expected to continue within the 
21st century (Gehlhar and Coyle, 2001). Alexandratos & Bruinsma (2012) predict that the global food 
consumption per capita will increase from 2411 kcal per person and day in 1969/1971 to 3130 kcal in 
2050. Cereals such as wheat, rice and maize are the main source of energy. They provide about 60% of 
the total daily kilocalories consumed in developed countries and 80% in developing countries (Awika, 
2011). Moreover, in the last decades the demand of cereals such as maize has sharply increased 
because of its use for animal feeding and energy production (Edgerton, 2009). 

The worldwide increase in food demand strongly contrasts with limited resources (water and 
land) as well as the need to protect habitats and halt deforestation (Foley et al., 2011). In this context, a 
collective action is necessary to reduce the risks of food shortages, scarcity of water resources and 
energy (Thenkabail, et al., 2012). Matching food demand and food production is a Millennium 
Development Goal (MDG) of the United Nations (UN). World leaders have committed to the goal of 
“Zero hunger” for 2030 (UN, 2016) and “it’s what humanity deserves” (WFP, 2016).  

As food demand is expected to rise in the future, it is becoming increasingly important for 
scientists and decision-makers to reliably and timely estimate yields at regional and national levels 
(Chahbi et. al., 2014; Rembold et al., 2013). Such information is for example useful to identify yield 
gaps and areas suitable for agricultural intensification (Lobell, 2013). Forecasting crop yields also 
allows planners and decision makers to understand and address markets, and reliable agricultural 
information enables governmental and international agencies to execute contingency plans (Liu, et al 
2014a). Tools, which allow estimation of crop production, help to manage the way food is produced, 
stored and distributed. An accurate monitoring of crop yield is also essential for commodity trade, 
detecting of regional crop failure and greatly supports humanitarian aid (Pino, 2001; Rizzi, 2005; 
Padilla, et al 2012; Ma et al, 2013a). Finally, objective and timely production-related information also 
provides an important input to agricultural insurances (De Leeuw et al., 2014). 

Currently, in most countries agricultural statistics are still obtained by conventional techniques 
based on information delivered by regional referents, agricultural input providers or the use of 
sampling techniques. Such methods are in most cases subjective, costly, time consuming and 
susceptible to large errors (Liu, et al 2014a; Wu et al, 2012). At the same time, the information is often 
provided with significant delays, making it less useful (Atzberger et al., 2013a). 

Mathematical models of environmental systems such as agricultural crops, formalize the 
interaction of the object of interest with its (environmental) drivers, conditions and management. The 
formalization is based on theoretical knowledge and/or empirical evidence, thereby allowing to 
understand how the system works and to predict its behavior. In the context of agricultural crop yield 
forecasting, crop growth models (CGM) describe the main physiological mechanisms which occur in 
the crop and its interaction with the environment (Delécolle et al., 1992). A crop growth model 
simulates the temporal evolution of state variables (for instance biomass and leaf area index) as a 
function of driving variables such as meteorological data and further input variables such as soil and 
crop characteristics as well as management practices (Mansouri et al, 2014). The models thereby 
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summarize and formalize current knowledge of the main processes determining crop yield, update 
model state variables in regular updating intervals (daily, weekly, monthly) and ensure a consistent 
evolution of crop development (phenology) and growth variables (Delécolle et al., 1992). 

Thanks to the capability of CGM to mimic crop growth, it is feasible to assess the effects of 
management and climatic scenarios as well as to identify possible practices increasing crop yield 
(Faivre et al., 2004; Lobell, 2013). Using available weather data as well as weather forecasts, it is for 
example possible to build different temporal scenarios. Then, based on these scenarios, different 
agricultural practices can be proposed to minimize the (negative) weather impact on crop production 
(Royce et al., 1998; Hoogenboom et al., 2000). Similar approaches can be used to assess future impacts 
of climate change (Shin, et al., 2009; Ferreyra et al., 2001). 

Crop growth models have been implemented initially as a research tool within experimental 
frameworks (Spitters, 1990, Boote, et al. 1996). In the last decades, they have been used at regional 
scale aiming to estimate crop state over larger areas. The regional application of these complex models 
is hampered by their high input requirements, which are practically impossible to obtain over large 
areas with a sufficient degree of confidence. Therefore, formally correct, CGMs typically suffer from 
inaccurate input variables (mainly related to climate, soil and management). If the models are not 
constraint by measurements, errors in CGMs accumulate over time and finally lead to erroneous crop 
growth and yield simulations.  

Remote sensing is a technique which allows acquiring spectral and temporal information from 
remote platforms (Shanahan et al, 2001). EO data provide relatively inexpensive, synoptic, objective 
and homogenous observations, which can be geographically and temporally registered. Thanks to 
these characteristics, remote sensing is considered an efficient tool for providing standard, high 
quality information on agriculture (Tsiligirides, 1998) and for constraining CGMs (Maas, 1998). The 
continuous monitoring of the Earth surface by satellites fits very well with the dynamics of 
agricultural activities. This is an importance asset for CGM calibration and, in consequence, for yield 
assessment (Ozdogan, 2010). 

Contrary to many other (natural) vegetation types and biomes, agricultural crops are relatively 
easy to assess remotely because of their (genetical) homogeneity. Indeed, for crops, the spectral 
signatures resulting from canopies of different leaf area index (LAI), with different leaf pigmentation 
and soil optical properties are relatively well modeled using various radiative transfer models 
(Jacquemoud et al., 2009). Important crop status variables such as LAI and fAPAR also correlate well 
with remotely sensed vegetation indices such as the Normalized Difference Vegetation Index (NDVI) 
(Baret & Guyot, 1991).  

Since a few years, the use of remote sensing data has been boosted by the huge amount of high-
quality data available obtained from sensors with different technical configurations, such as Landsat-
8, DMC (Disaster Monitoring Constellation) or Sentinel-2. This new generation of sensors is building 
virtual constellations, able to deliver multi-spectral images with a spatial resolution in the range of 10 
to 30 meters and a temporal revisit frequency of a few days. Hence, compared to very high spatial 
resolution (VHR) sensors such as WorldView-2/3 or Pleiades, global agricultural activities can be 
continuously monitored with reduced lag times and at lower costs. Only high revisit frequencies 
allow following the growth of agricultural crops and detecting and assessing disturbing events like 
hail damages or insect infestations. Obviously, a high revisit frequency is worth little if the data is 
expensive and/or if the spatial resolution is not able to resolve small fields (De Wit, 2012; Machwitz et 
al, 2014). In this respect, freely available data from the European Sentinel-2 mission with 10m GSD 
and a 5-daily revisit time is a long awaited game changer for agricultural applications (Immitzer et al., 
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2016). First comparative assessments also show a close spectral match between Landsat-8 and 
Sentinel-2 (Vuolo et al., 2016). 

Crop growth models and remote sensing techniques complement well each other in various 
agricultural tasks. Crop growth models provide excellent means of simulating detailed physiological 
processes taking into account weather, soil and management conditions, etc. On the downside, CGMs 
are difficult to parameterize at regional scale due to lack of sufficiently detailed information regarding 
management practices and soil conditions, etc. Obviously, any shortcoming in model 
parameterization results in erroneous simulations –summing up until the end of the growing period 
when the yield information is derived. Remote sensing, on the other hand, does provide only very 
little information on crop physiology (and only little information on crop phenology), but offers 
abundant information on crop status over large areas at high spatial resolution and with high 
temporal (revisit) frequency. For instance, remote sensing provides a detailed description of some 
important crop status variables (e.g. leaf area index), which may be used to constrain and correct 
CGM simulations (Dadhwal, 2003). The combination of remote sensing and crop models therefore 
allows taking advantage of the synergy of the two approaches (Delécolle et al., 1992). 
Aware of the close link between EO and CGM Maas and co-workers conducted successfully the early 
work to combine remote sensing data and crop models to reduce the errors and uncertainties in crop 
growth simulations at regional scale. An example of a CGM specifically designed to integrate external 
data sources aiming at calibrating model parameters is GRAMI. The model was developed by Maas 
(1992) and consists of a group of integrated equations based on the light-use efficiency (LUE) theory 
(Monteith, 1977). Duchemin et al (2008) developed the “Simple Algorithm For Yield estimate” (SAFY). 
The model was built following a logical sequence similar to GRAMI. However, unlike GRAMI, in 
SAFY the speed of the plant senescence can be parameterized and the efficiency of conversion of 
FAPAR to biomass is modified by a factor which depends on the daily air temperature.  
The combination of simplicity along with the feasibility to use remote sensing data for parameter 
calibration enables this kind of models to be implemented in regional crop monitoring programs 
(Padilla et al., 2012). 

GRAMI and SAFY models have been implemented to estimate biomass and yield of several crops 
in different regions. For instance; Ko et al (2006) tested GRAMI performance for cotton, Atzberger el 
al. (2001) and Padilla et al (2012) for wheat and Yeom et al. (2015) for rice among other examples. 
Moreover, SAFY was implemented for wheat (Duchemin et al., 2008), maize and sunflower (Claverie 
et al., 2012) and barley and wheat (Chahbi et al, 2014).  
For these examples most of the model parameters were defined from literature or were estimated 
using experimental data. Thereafter, a reduced group of parameters was calibrated, with a low inter-
correlation. 

The calibration of simple CGMs such as GRAMI and SAFY by assimilating EO data is not a trivial 
issue. One problem relates to the ill-posedness of the inverse problem. Ill-posed problems are caused 
when similar fits between measured and estimated state variable may be achieved for different 
parameter combinations. (Kabanikhin, 2008). For instance, a similar good fitting between simulated 
and observed leaf area index (retrieved from EO-data) can often be obtained by different combinations 
of model parameters. However, these combinations potentially produce different estimations of crop 
yield.  

The reduction of free parameters is the alternative mostly used to minimize the ill-posed effect in 
the calibration of (inter-) correlated parameters. This is implemented under the assumption that the 
fixed parameters are representative of the crop variability in the study area. This assumption is valid if 
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there is sufficient information about the crop/s of interest and the study area is relatively homogenous. 
Otherwise, the estimations obtained by the CGM might be inaccurate. Therefore, if the CGM is 
implemented in a heterogeneous study area and there is no possibility to carry out field experiments; 
it is mandatory using a methodology which allows obtaining accurate crop estimations with a 
minimum requirement of input data. 

Our experiment is carried out under the hypotheses that the crop growth models GRAMI and 
SAFY integrated with remote sensing observations are able to estimate maize yield with a suitable 
degree of accuracy with few inputs available. 

Focusing on the accuracy of maize yield estimation, the research questions are: 
• Which model parameters must be calibrated first and foremost? 
• Which is the best strategy to calibrate multiple (inter-)correlated parameters? 
• How does the temporal frequency and error of the remote sensing observations affect model 

calibration? 
• How early in the crop season one can accurately forecast maize yield? 
• Which of the two simple crop growth models GRAMI and SAFY has the best performance to 

estimate maize yield? 

1.1. Objetives of the research 

The global research objective is to develop an assimilation method based on a simple crop growth 
model to estimate maize yield in the Marchfeld region with a minimum input data requirement. The 
specific research objectives were:  

(1) assessing the sensitivity and correlation of the parameter of two simple crop growth 
models;  

(2) testing calibration techniques and the combination of calibration with updating to 
calibrate a maximum number of inter-correlated parameters; 

(3) establishing the critical calibration period, the suitable error level and the minimum 
number of LAI observations required for an accurate calibration of the model parameters; 

(4) assessing the ability of SAFY and GRAMI to forecast maize yield, one to two months 
before harvesting; 

(5) comparing the performance of SAFY and GRAMI models to estimate maize yield. 
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2. Retrieval of vegetation bio-physical variables using EO data 

2.1. Introduction 

The objective of the bibliographical review was to summarize the state-of-the-art of EO data 
assimilation in crop growth models. The first part of the revision presented in this chapter is focused 
on mapping/retrieval of biophysical vegetation variables. The chapter is divided in four sections; in 
sections 2.2 to 2.4 are introduced and compared techniques to retrieve bio-physical variables 
considering advantages and disadvantages of approaches ranging from simple empirical regressions 
to complex radiative transfer models. In section 2.5 an overview is presented regarding the retrieval of 
bio-physical variables. Aspects related to the assimilation of the retrieved bio-physical variables in the 
CGMs are addressed in the second part of the bibliographical revision in chapter 3. 

Being aware of the impossibility to cover all aspects associated with EO-based crop monitoring, 
valuable reviews in near-by fields are included in Table 1. 

2.1.1 Quantitative analysis of Research  

Aiming to assess the relevance of the topics discussed in chapters 2 and 3 was carried out a 
thematic research on SCOPUS and Thompson Reuters websites. The number of publications in (i) 
CGM and (ii) EO-data assimilation in CGM is depicted in Figure 1. The searching keywords used to 
assess the number of publications were “crop growth model”, “crop growth model + remote sensing”, 
“crop growth model + remote sensing/LAI + forcing”, “crop growth model + remote sensing/LAI 
+calibration”, “crop growth model + remote sensing/LAI + updating”, “crop growth model + ensemble 
Kalman filter”, “crop growth model + particle filter”. The number of publications per decade is 
expressed as a percentage with respect to the total number of publications considered. Both topics 
show a strong increase over time. However, publications dealing with assimilation of EO data in crop 
models show a sharper growth in the last decade, compared to the CGM publications. This probably 
reflects a growing demand for information about crop growth at different spatial scales which can be 
provided through EO data assimilation. At the same time, availability of high resolution (deca-metric) 
EO data strongly increased.  

 

 

Figure 1. Research publications about CGM and CGM+EO assimilation during the past four decades. Values are 
expressed as percentage with respect to the total number of publications. Data from SCOPUS and Thompson 
Reuters. 
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Table 1. Valuable review papers about bio-physical variables retrieval and assimilation in CGMs 

Topic Content Source 

Agricultural 
remote 
sensing 

Remote sensing applications in classification, monitoring 
of phenology and production estimation 

Calvao & Pessoa, 
2015 

Remote sensing in agricultural monitoring, modeling, and 
management 

Shi, et al., 2014 

Regional to global application of remote sensing in 
agriculture; overview of operational monitoring systems 

Atzberger, 2013a 

RS and yield 
forecasting 

Synergy of remote sensing and biophysical/ eco-
physiological process models 

Inoue, 2003 

Crop monitoring by low resolution remote sensing data Rembold et al., 
2013 

Retrieval of 
crop state 
variables 

Review of methods to derive canopy state variables from 
EO data 

Dorigo, et al., 2007 

Reviews of algorithms for estimating land surface 
variables using optical remote sensing 

Liang, 2007 

Review of currently available LAI estimation algorithms Baret & Buis, 2008 
Presentation of emulators models to approximate the 
functioning of RTMs and to speedup model inversion 

Rivera et al., 2015 

Evaluation of different retrieval methods on their ability 
to estimate leaf area index (LAI) using Sentinel-2 images 

Verrelst et al., 
2015a 

Assessment 
of crop area 

Review of mapping and yield forecasting of rice Mosleh et al., 2015 
Review of soft computing classification techniques for 

crop mapping 
Murmu & Biswas, 

2015 

Crop growth 
models 

Conceptual review about crop models Oteng-Darko, et 
al., 2013 

Applications of crop growth models in agricultural 
meteorology 

Rauff & Bello, 2015 

Review about crop models structure, evaluation, 
parameter estimations and model improving 

Dumont, et al., 
2012 

Fundaments and review of ‘School of de Wit’ crop growth 
models 

Bouman, et al., 
1996 

Assimilation 
techniques 

Overview of assimilation of remote sensing data in 
hydrological models 

Xu,X., 2014 

Review of multivariate and multiscale assimilation of 
observational data 

Montzka, et al., 
2012 

Overview of EO data assimilation techniques in 
agricultural crop growth models 

Delecolle et al., 
1992 

Use of filter 
techniques 

Presentation, implementation and discussion about the 
Ensemble Kalman Filter 

Evensen, 2003 

Review of Bayesian algorithms for nonlinear/non-
Gaussian focused on particle filters 

Arulampalam, et 
al., 2002 
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2.1.2. General classification of bio-physical retrieval techniques 

The most natural link between crop growth models and remote sensing (RS) is established via the 
crop’s leaf area index (LAI). LAI is often used for connecting RS and CGM as this bio-physical variable 
determines both the reflected signal captured by the remote sensor as well as the crop’s radiation 
interception capacity as modeled in crop growth models. Other bio-physical variables such as 
fractional cover (fCOVER), the fraction of photosynthetically active radiation absorbed by the canopy 
(fAPAR), plant chlorophyll concentration or phenological stage may also be used to connect EO and 
CGM, either alone or in combination with LAI (Dorigo et al., 2007).  

Crop bio-physical variables can be remotely retrieved using (1) empirical methods, (2) semi-
empirical approaches or (3) physically-based radiative transfer models, (Baret & Buis, 2008; Atzberger 
et al., 2015; Verrelst et al., 2015b). Definitions of LAI as well as methodologies for LAI retrieval are 
discussed in Zheng and Moskal (2009) and Baret & Buis (2008). 

2.2. Empirical methods 

Empirical methods consist in establishing regression equations (linear or nonlinear) between the 
biophysical variable(s) of interest and remote sensing observations (spectral signatures or vegetation 
indices) using experimental data (Liang, 2007). Two broad classes can be distinguished: 

 Mono-variate models mostly based on vegetation indices 
 Multi-variate (“chemometric”) methods using the spectral reflectance values as 

predictor variables 
The empirical approach is schematically represented in Figure 2. The procedure has been divided 

in model and variable estimation.  
 

 

Figure 2. Empirical method to estimate biophysical variable (adapted from Verrelst et al., 2015b). 

2.2.1. Mono-variate approaches 

Spectral vegetation indices (VI) have been extensively used to map LAI, fAPAR, canopy and leaf 
chlorophyll content and many other biophysical variables (Dorigo et al., 2007). VIs have also been 
found useful for quantifying the effects of various stresses on crop growth (Wiegand et al., 1986).  

One of the most widely used VI is the normalized difference vegetation index (NDVI) first 
proposed by Rouse (1973). Richardson et al. (1992) derived a logarithmic relationship to express the 
NDVI as a function of the LAI taking into account the non-linearity between NDVI and LAI. Non-



17 
 

linear relations were also established by Yang et al. (2007), who fitted NDVI and LAI using an 
exponential model. 

Numerous vegetation indices have been proposed for LAI retrieval and calibrated for different 
phenological stages and crops. Development of vegetation indices was mainly motivated by the wish 
to reduce apparent saturation effects observed for NDVI; for instance, SAVI (Huete, 1988), MSAVI (Qi 
et al., 1994), EVI (Huete, 1999), Green NDVI and Green-Blue NDVI indices (Wang et al, 2007) were 
developed in this spirit.  

Of particular interest for LAI retrieval is the red edge inflection point (REIP), as this index is 
insensitive to soil brightness variations and does not saturate with increasing canopy chlorophyll 
content (Baret & Guyot, 1991). Analyzing experimental data, Filella and Penuelas (1994) for example 
observed a high correlation between plant chlorophyll content and wavelength of the red edge peak. 
Additionally, they found a close relation between LAI and the area of the red edge peak. Thenkabail et 
al. (2000a) used ground-level hyperspectral reflectance measurements of cotton, potato, soybeans, 
corn, and sunflower to determine the optimum spectral bands for mapping crop biophysical variables. 
The bands with optimum performance were localized in the red (650 nm to 700 nm), green (500 nm to 
550 nm) and near-infrared (900 nm to 940 nm) part of the electromagnetic spectrum, together with a 
moisture sensitive band centered at 982 nm. Obviously, to estimate REIP, one needs hyperspectral 
sensors or satellites such as Sentinel-2 with dedicated bands in the red edge spectral region.  

To evaluate the performance of VIs derived from multispectral satellite sensors, Das and Seshasai 
(2015) compared hyperspectral indices such as Red Edge Normalized Difference Vegetation Index 
(RENDVI), Plant Senescence Reflectance Index (PSRI) and Normalized-Difference-Infrared-Index 
(NDII) against simple difference index (SDI), simple ratio (SR) and NDVI derived from synthetic 
AWiFS, OCM-2 and MODIS data. The results showed a close correlation between the various types of 
indices. A relatively recent review about vegetation indices and canopy variables retrieval is presented 
in Glenn, et al. (2008). 

2.2.2. Multi-variate approaches 

Instead of using only a single variable (e.g. a VI) for predicting a crop’s biophysical variable, it is 
also possible to establish multi-variate regression equations between the recorded spectral signature 
and the sought bio-physical variable(s). Such approaches have been used for a long time in laboratory 
spectroscopy for example for the analysis of food samples (Wold, S. & Sjostrom. M, 1977); hence the 
name “chemometric”, “full spectrum” or “spectroscopic” method. Sometimes these techniques are 
also coined “machine learning techniques”.  

Within the remote sensing context, a number of studies demonstrated for example the high 
potential of partial least square regression (PLSR) for estimating LAI (Li, et al., 2014a). Other widely 
used modeling techniques include multiple linear regression (MLR), principal component regression 
(PCR), random forest regression (RFF), the use of support vector machines (SVM) and neural nets 
(NN) (Caicedo, et al. 2014; Xie, et al., 2014). Compared to mono-variate approaches, the multi-variate 
methods generally achieve higher accuracies (Atzberger et al., 2010a). Care has to be taken, however, 
not to overfit the data. A good overview of different empirical techniques is given in Verrelst et al., 
(2015b). 

2.2.3. Drawbacks of empirical approaches  

The main disadvantage of the empirical approach is the poor transferability of developed models 
to other conditions (Baret and Buis; 2008). Problems arise as the relationship between remote sensing 
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data and the crop biophysical variable depends on additional factors such as soil spectral properties, 
canopy architecture, development stage, leaf optical properties, illumination and viewing geometry 
(Baret and Buis; 2008). Therefore, the model developed in a specific context (site, environment and 
observation conditions) is often only suitable for similar conditions (Danson et al., 2003). For instance, 
Serrano et al. (2000) found that LAI was overestimated when using equations obtained under nitrogen 
deficient conditions.  

The most important fundamental drawbacks of empirical approaches (and in particular of VIs) 
have been summarized below (Danson et al., 2003): 
 lack of generality and transferability: new equations may be required when the crop type or 

measurement conditions change. This makes empirical models unsuitable for multi-temporal, 
multi-site, multi-crop or multi-sensor conditions; 

 lack of consistency: the ‘best’ VI often varies with the measurement conditions; 
 reliance on experimental data: field measurements are required to define the relationship with 

the biophysical property of interest; acquisition of reference information is costly and time 
demanding; 

 little usage of prior knowledge: for example, the solar position and sensor viewing conditions 
may be calculated for any measurement but this readily available information is usually not used; 

 under usage of spectral information; VIs use solely data in two or three spectral wavebands 
instead of making use of all available spectral channels. 

2.3. Semi-empirical methods 

Semi-empirical approaches are very similar to empirical approaches with the main difference that 
either i) the empirical database is replaced by synthetic data (e.g. le Maire al., 2008), or ii) the models’ 
functional type is derived from physical knowledge such as Beer’s law (Baret & Guyot, 1991). 

2.3.1. Predictive equations  

Instead of using experimental data to calibrate empirical models, le Maire et al. (2008) argued that 
the creation of a large (synthetic) database containing reflectance spectra and their corresponding 
canopy characteristics has several advantages:  
 many canopy characteristics are represented as thousands of spectra can easily be simulated;  
 the influence of each characteristic can be totally decoupled from that of others; and  
 the effect of a particular crop characteristic on the spectra is based on physical knowledge (e.g. a 

radiative transfer model). 
Therefore, spectral models developed from such large simulated databases may potentially be 

applied to a wide range of measurement conditions; this led to the label “predictive equations” 
(Haboudane, et al., 2004). Obviously, the approach relies on the capacity to correctly simulate the 
reflectance of a wide range of canopies (e.g. the correctness of the employed radiative transfer model). 
Additionally, the representativeness of the simulated database is also critical. As noted in Atzberger et 
al. (2015), the main drawback of the approach is that if often focuses on a few spectral bands 
(combined in a VI) therefore underusing available spectral information from most current (multi-
spectral) sensors. The working principle of predictive equations is depicted in Figure 3. 

2.3.2. Simplified canopy reflectance models based on Beer’s law  
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The second semi-empirical approach focuses on using a physically-based functional form for the 
empirical model. An appropriate functional form is for example given by Beer’s law (Baret & Guyot, 
1991). It states that the relation between LAI and reflection is exponential: 

ߩ = ஶߩ − ሺߩஶ  (௦ߩ ൈ ݇−ሺݔ݁ ൈ  (1) (ܫܣܮ

The model implies that the canopy reflectance (ߩ) equals the soil reflectance (ߩ௦) in case of 
LAI=0. For dense canopies (e.g. LAI approaching infinity), the canopy reflectance equals the infinite 
canopy reflectance (ߩஶ). The exponential factor k mimics the spectrally dependent absorption of 
leaves, respectively, the differences in leaf angle distribution (Baret & Guyot, 1991). As a consequence, 
the spectral reflectance either decreases or increases with increasing LAI, depending on whether the 
soil reflectance is higher or lower than the leaf reflectance. The “speed” of reflectance change depends 
on the absorption coefficient (k) which is for example high in the visible spectral region (chlorophyll 
absorption) and low in the near infrared. All other conditions being identical, k will be higher for 
planophile crops (e.g. soybeans) compared to erectophile crops (e.g. corn) as soil coverage decreases 
with increasing leaf angle. 

The approach was used for instance by Baret & Guyot (1991) and by Liu et al., (2012) for 
estimating LAI using vegetation indices. Vuolo et al., (2013) applied a similar semi-empirical model to 
derive time-series of LAI maps using an exponential relationship between LAI and the Weighted 
Difference Vegetation Index (Clevers, 1989) and reported a good performance. The parameters 
estimated for one site (Austria) also achieved reasonably good results in a second study site (Italy) and 
vice versa. In Atzberger et al., (2015) a comparison of empirical and semi-empirical approaches for 
estimating LAI is presented. It was concluded that none of the approaches outperforms the other.  

 

 

Figure 3. Semi-empirical “predictive equation” method to estimate biophysical variables. 

2.4. Physical methods 

Physical methods are based on the principles of radiation propagation within a canopy (Myneni 
and Ross, 1991; Goel, N.S, 1989). Radiative transfer models (RTM) describe – using physically-based 
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formulas – the relationship between canopy structure, leaf and soil optical properties and the resulting 
top-of-canopy bidirectional reflectance for a given illumination and observation geometry (Baret & 
Buis, 2008). Thanks to their foundation in physics, RTM offer the capability to be applied under 
different conditions (Dongwei et al, 2010).  

Besides being useful for the estimation of vegetation bio-physical variables, RTMs also provide 
means to understand and model the light interception by plant canopies. This enables the 
interpretation of vegetation reflectance (but also transmittance and absorbance) in terms of 
biophysical characteristics. For that reason, RTM have been widely used to define and optimize 
spectral indices, to test possible sensor configurations and inversion strategies, among other 
applications (Jacquemoud et al., 2009).  

Using RTMs, structural and biochemical variables are estimated in a process called “inversion of 
canopy RTM” (Jiang, et al, 2014b). A simple flowchart of the physical inversion approach is depicted 
in Figure 3.  

2.4.1. General conditions affecting RTM performance.  

The performance of the physical approach to retrieve biophysical variables depends on several 
factors, such as the quantity and quality of the available spectroradiometric information, the choice of 
the radiative transfer model and its suitability for a particular kind of vegetation canopy (model 
assumptions), the available a priori knowledge regarding important model parameters, and the choice 
of the inversion procedure (Weiss et al., 2000). In a recent paper, Verrelst et al. (2015a) have 
demonstrated the huge impact of the selected cost function on the retrieval accuracy, which moreover 
depends on the selected bio-physical variable. Other studies have pointed out the influence of an 
appropriate feature selection (Atzberger, 2010b; Darvishzadeh, et al., 2011; Atzberger et al., 2013b; 
Cernicharo, et al., 2013). A simple flow chart of RTM is presented in Figure 4. 

 

 

Figure 4. Physical approach to estimate biophysical variables (adapted from Verrelst et al., 2015b). 

2.4.2. Examples of RTM’s used in agricultural remote sensing.  

The most widely used RTM is the PROSAIL model (Jacquemoud et al., 2009). PROSAIL combines 
the leaf optical properties model PROSPECT (Jacquemoud & Baret, 1990) and the canopy reflectance 
model SAILH (Verhoef,. 1984). This permits to simulate the top-of-canopy spectral (bi-directional) 
signature between 400 and 2500 nm as a function of structural variables such as LAI and leaf angle 
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(ALA) as well as soil brightness and leaf pigment and water content. An important constrain of 
SAILH models is the assumption of a horizontally continuous vegetation canopy, while many crops 
are planted as row structure. Yao et al (2008) found that at least two kinds of models should be 
adopted for corn canopy at different growth stages, i.e. row structure model for early growth stage 
(before plant elongation) and homogeneous canopy model for later growth stage (after plant 
elongation). Other widely used RTM are SCOPE (Van der Tol, et al., 2009), GeoSAIL (Huemmrich, et 
al., 2001), SLC (Verhoef & Bach, 2007) and 4SAIL (Verhoef, et al., 2007). Web-based tools have been 
published by Jochem Verrelst and his co-workers to make many of these models available to a wider 
audience (so called ARTMO website –http://ipl.uv.es/artmo/). The difficulties encountered to inter-
compare competing RTMs is well documented – however with a focus on forests – in recent work of 
Widlowski and co-workers (e.g. Widlowski et al., 2013; Widlowski et al., 2015). 

2.4.3. Model inversion algorithms.  

The goal of inversion RTM algorithms is to minimize the mismatch between observed and 
simulated state variables. The most widespread algorithms are numerical optimization (Vohland, et 
al., 2010, Xiao, et al. 2009) and Look up Tables (LUT) (Dorigo et al, 2009; Locherer, et al., 2015; Hedley; 
et al., 2009). Genetic algorithms are sometimes employed to avoid being trapped in local minima 
(Fang, et. al., 2003; Mridha et al., 2014). Neural networks, on the other hand, model directly the state 
variables as a (non-linear) function of the spectral reflectances (Duveiller, et al. 2011; Verger, et al. 
2011; Fang, et. al., 2014; Mridha et al., 2015) 

Bayesian principle has been implemented in RTM inversion to incorporate information derived 
from multiple sources; the state variables are inferred from a posterior probability distribution. 
Mousivand, et al. (2015) verified the good performance of the Bayesian approach by retrieving LAI, 
fCover and leaf chlorophyll content using multi-temporal/ multi-sensor EO data. The accuracy was 
improved by using multisource data instead of using a single sensor. Other Bayesian techniques such 
as Bayesian networks have also been tested and yielded good results (Qu, et al. 2008; Zhang, et. al., 
2012). Moreover, hybrid approaches have been implemented seeking to exploit the synergies between 
different inversion techniques (Liang, et al., 2015). 

Variational approaches, implemented frequently in meteorology and hydrology, have been also 
tested in RTM inversion. The variational cost function is composed of two components; a background 
error related to model trajectory and an observational error which measures the similarity between 
observed and simulated state variable in a time window. Multiple constrains can be included in the 
variational cost function when some data is available, for instance, model parameter distributions, 
observation uncertainty or the temporal evolution of state variable(s). For instance, Lewis et al. (2012) 
tested a variational data assimilation system using a priori information, aiming to merge information 
from satellites with different sun-sensor geometries, wavebands and spatial scales. Observational, 
dynamic model and distribution state constrains were considered in the cost function. A reduction in 
state variable uncertainty was verified.  

2.4.4. Model inversion and ill-posedness.  

One of the main drawbacks of estimating biophysical variables by inverting a RTM is the 
equifinality - also called ill-posed problem - in which different sets of parameter values result in 
similar spectral signatures. The reasons for this problem are manifold (Combal et al., 2002a; Atzberger, 
2004; Duchcheim, 2008; Baret and Buis, 2008; Jacquemoud et al., 2009): 
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 the limited information content in the radiometric signal compared to the high number of 
unknown variables and parameters which influence the canopy reflectance,  

 the model-inherent simplification, and  
 the reflectance measurements uncertainties.  

Zurita-Milla et al (2015) presented an approach to visualize the ill-posed problem using self-
organizing maps (SOM), which are a type of unsupervised neural network. The approach was 
performed using SLC-based simulations (Verhoef and Bach, 2007) of synthesized Sentinel-2 data (10 
bands). Their results showed that leaf area index, canopy cover and leaf chlorophyll, water and brown 
pigment content are less confused in the inversion than the rest of variables.  

Different types of error and bounding conditions affect the estimation of biophysical variables 
independently of the approach implemented; for instance:  
 measurement errors such as calibration and atmospheric errors, cloud contamination, view-

illumination geometry effects (Liu et al., 2014b); 
 canopy architecture and leaf optical properties (Haboudane, 2004); 
 model structure and parameterization errors (Liang, 2007); 
 canopy density (e.g. effects related to and saturation of reflectance in dense canopies or soil 

brightness effects in low density canopies) (Curnel, et al. 2011); 
 temporal and spatial measurement scale (Liu et al., 2014b). 

2.4.5. Coping with the ill-posedness of the model inversion.  

The most effective way to minimize the ill-posed problem is by reducing the number of free 
variables during the inversion procedure using prior knowledge such as ancillary data measured on 
site or provided by another sensor, information about canopy architecture and canopy biophysical 
variables distribution among others (Combal et al., 2003). For instance, Danson et al., (2003) reduced 
sugar beet LAI estimation uncertainty using site- and experiment-specific soil reflectance, canopy 
architecture (ALA) and solar position information to train an artificial neural network (ANN). Combal 
et al. (2002b) create a specific Look up table (LUT) based on vegetation type map, thereby reducing the 
range of model input parameters and consequently the ill-posed problem. Atzberger (2004) presented 
an object-based approach taking into account spatial information. The improved performance of the 
object-based approach, as compared to a standard inversion, was verified by Atzberger & Richter 
(2012) using synthetic Sentinel-2 data. Another approach to reduce ill-posed inverse problem was 
suggested by Lauvernet et al. (2008) who implemented a multi-temporal patch inversion technique to 
estimate simultaneously aerosol optical thickness and canopy characteristics such as LAI, chlorophyll 
concentration and leaf inclination angle. Again using multi-temporal data, Koetz et al. (2005) exploited 
the coupled use of structure dynamics and RTM to estimation bio-physical canopy characteristics. A 
good review of the ill-posed inverse problem and possible solutions are presented in Baret & Buis 
(2008). 

2.4.6. Pros and cons of different inversion methods.  

The main disadvantage of optimization algorithms is the computational demand. To speed up 
the inversion process, most research groups favor the use of look up tables (LUT). In this approach the 
spectral signatures are pre-computed for a large range of parameters combinations, being the database 
generation the most demanding computational step (Liang, 2007). The RTM inversion then consists in 
identifying the best fitting signature(s) and its corresponding parameters. As an alternative, other 
teams favor the use of neural nets or other models linking spectral signatures (inputs) to 
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corresponding biophysical parameters (outputs) (Fang, et. al., 2014; Fang, et. al., 2003; Zhang, et. al., 
2012). 

As demonstrated recently, the inversion process can be sped up by replacing the original RTM 
models by some “emulator models”. Emulator are surrogate functions able to approximate full RTM 
retrievals with a certain degree of uncertainty (Verrelst, et al. 2015c; Gómez-Dans, et al. 2016). Rivera 
et al., 2015, for example, developed an “Emulator toolbox” which approximate a RTM with low 
demand of computational resources. The main attribute of Emulators are their computational 
efficiency and excellent accuracy and flexibility for extrapolating spectral profiles. For instances, 
Gómez-Dans et al. (2016) verified the excellent performance of a Gaussian Process emulator compared 
to the original (coupled) 6S-PROSAIL outputs. 

A few comparisons between competing inversion techniques have been performed in recent 
years. For instance, Pragnère, et al. (1999) compared three model inversion techniques to estimate four 
main biophysical variables (LAI, Cab, fcover and fPAR). The iterative optimization approach showed 
a better performance compared to artificial neural networks (ANN) and look up tables (LUT). 
Estimation errors for fPAR and fcover were lower compared to LAI and Cab estimations. Vohland, et 
al. (2010) assessed the performance of numerical optimization, LUT and ANN to estimate LAI, canopy 
chlorophyll, water and dry matter contents. The numerical optimization provided the best results for 
the three biophysical variables, followed by LUT and ANN. Vuolo, et al (2010) compared the 
suitability of empirical and RTM approaches to estimate LAI, canopy chlorophyll content (CCC) and 
leaf chlorophyll content (LCC) using RapidEye data. Two vegetation indices and two inversion 
methods (LUT and NN) were used. The best performance was achieved using LUT. However, the NN 
method had a similar performance to LUT while being much faster. Mridha et al (2015) contrasted 
look-up table, genetic algorithm and artificial neural network to retrieve soybean leaf area index, leaf 
chlorophyll content, canopy chlorophyll content, and equivalent leaf water thickness using PROSAIL 
model. The genetic algorithm and LUT had a similar performance, while artificial neural network had 
a poor performance.  

Gómez-Dans et al. (2016) tested three inversion approaches: Hamiltonian Markov Chain Monte 
Carlo (MCMC), variational data assimilation and particle filter to inverted LAI, leaf chlorophyll 
content and equivalent leaf water thickness from a time series of observations from Sentinel-2/MSI, 
Sentinel-3/SLSTR and Proba-V observations. They found that the variational and particle filter showed 
smaller uncertainties and better estimation performance than MCMC. 

2.5. Overview of retrieval of vegetation bio-physical variables using EO data 

Empirical models based on experimental data are a practical choice to retrieve bio-physical 
variables. However, the main disadvantage is its poor transferability to other conditions. This makes 
them unsuitable for multi-temporal, multi-site, multi-crop or multi-sensor conditions. Semi-empirical 
models, based on a few spectral bands combined in a VI, are more flexible but underuse available 
spectral information from most current (multi-spectral) sensors (Atzberger, et al., 2015). 

Considering the requirement of high-quality and consistency of biophysical estimations as inputs 
in crop models, radiative transfer models are probably the most suitable approach to retrieve bio-
physical variables. RTMs, unlike empirical models, are able to analyze EO data acquired with multiple 
configurations. However, they demand high computational resources due to their complexity and the 
inversion process to retrieve bio-physical variables is affected by ill-posed problem. 

In recent years, numerous strategies have been developed to overcome these drawbacks. To 
minimize the ill-posed inverse problem have been implemented model inversion algorithms which 
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use a priori information from different sensors and/or spatial neighborhood. For instance, Lewis et al. 
(2012) proved the efficiency of Bayesian inference to combine multi-spectral data acquired by different 
sensors over time. Moreover, Atzberger & Richter (2012) found that spatial context of a given pixel 
provides useful information for constraining the inverse RTM process (Atzberger & Richter, 2012). 
Regarding computational demand, emulators, which are able to approximate full RTM retrievals, 
have been proposed as a good alternative to run RTMs more efficiently. In particular, with regards to 
the operational mapping of vegetation bio-physical variables for regional and global applications, 
emulators seem very well suited (Rivera et al., 2015; Gómez-Dans et al, 2016). 
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3. Assimilating remotely retrieved biophysical variables in crop 
models. 

3.1. Introduction 

Crop growth models (CGMs) simulate the temporal evolution of state variables (for instance 
biomass, leaf area index or soil moisture) as a function of (Mansouri et al, 2014): 

 external driving variables such as meteorological data; 
 further input variables such as soil and crop characteristics;  
 management practices.  

The models thereby summarize and formalize current knowledge of the main processes 
determining crop yield, update model state variables in regular updating intervals (daily, weekly, 
monthly) and ensure a consistent evolution of crop development (phenology) and growth variables 
(Delécolle et al., 1992). Using CGMs it is for example possible:  
 to analyze and interpret current crop status and forecast crop yields (Spitters, 1990); 
 to simulate the effect of weather conditions such as El Niño/Southern Oscillation (ENSO) on crop 

production (Shin, et al., 2009; Ferreyra et al., 2001); 
 to evaluate innovative management strategies in different productive situations thereby 

achieving a sustainable production system along the years (Faivre et al., 2004); 
 to identify underperforming areas with the aim to determine and close yield gaps (Lobell, 2013).  

Historically, crop growth models were implemented as a research tool within experimental 
frameworks (Spitters, 1990, Boote, et al. 1996). Since, they have been increasingly used at regional scale 
aiming to estimate crop state (e.g. dry mass and yield) over larger areas. The use of crop models at 
regional scale (e.g. as distributed models) is however hampered by their high input requirements, 
which are practically impossible to obtain over large areas with a sufficient degree of confidence. 
Obviously, inaccurate parameterizations and drivers introduce errors and uncertainties, which limit 
the predictive accuracy of crop models (Launay and Guérif, 2005). For example, inputs like hydraulic 
soil properties or management practices such as planting, irrigation, and fertilization are in most cases 
not available with enough accuracy, detail and confidence at regional scale. Consequently, default 
inputs or mean values are used for model parameterization, causing an underrepresentation of the 
natural heterogeneity of agricultural systems and adding uncertainties in the model outputs 
(Machwitz et al, 2014; Jiang, et. al. 2014a). Simpler crop growth models have fewer parameters - and 
therefore are in principle less data demanding - but often fall short to model all processes at the 
required level of detail (Murthy, 2003).  

Earth Observation (EO) data offer several cost-efficient means to parameterize and constrain crop 
models. The mapping of crop variables provides the necessary link between remote sensing and crop 
growth models. The close link between EO and CGM results from the fact that crops are essentially 
light-harvesting entities (Jones & Vaughan, 2010). Indeed, EO data in the optical domain are related to 
the same biophysical variables that determine crop growth, such as fraction of absorbed 
photosynthetically active radiation (fAPAR) and Leaf Area Index (LAI) (Padilla et al. 2012). For the 
purpose of data assimilation at field scale, optical sensors such as Landsat-8 or Sentinel-2 generate 
freely available data with wide spatial coverage and high revisit frequency (Immitzer et al., 2016). The 
sensors deliver synoptic, objective and homogenous data that can be geographically and temporally 
registered (Tsiligirides, 1998). The potential of optical remote sensing for monitoring large scale 
vegetation dynamics, vegetation anomalies and crop growth is well documented (Rouse et al. 1974; 
Bala e Islam, 2009; De Wit, 2012; Li et. al, 2014), as is the use of EO data to characterize intra-field 
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variability, thereby becoming an information source in precision-farming applications (Thenkabail, 
2000b).  

Recognizing the close link between EO and CGM led to the early work of Maas and co-workers 
successfully combining remote sensing data and crop models to reduce the errors and uncertainties in 
crop growth simulations at regional scale (Maas, S.J., 1988; Maas, S.J. 1993; Delécolle et al., 1992). 
Combining remote sensing and crop modeling takes advantage of the synergy of the two techniques 
(Delécolle et al., 1992);  
 the capability of remote sensing imagery to provide inexpensive data of the earth’s surface at 

discrete temporal scale and high spatial resolution, and  
 the capability of growth models to provide a continuous description of crop status (including 

phenology) during the growing season.  
This chapter is divided in nine sections. In section 3.2 we describe various approaches to model 

crop growth. We thereby subjectively cluster crop growth models by degree of complexity, 
approximately proportional to the number of (unknown) parameters in the respective model. For 
completeness, we also cover approaches for biomass/yield estimation not making use of CGMs. In 
section 3.3 we briefly introduce the three main techniques to assimilate remotely retrieved bio-
physical variables in crop models: forcing, calibration and updating. The topics are covered in more 
detail in sections 3.4, 3.5 and 3.6, respectively. We put special emphasis on the most widely used 
approaches such as re-parameterization approaches, Kalman filter and particle filters. Hybrid 
assimilation approaches are described in section 3.7. In section 3.8, we discuss the main aspects related 
to the assimilated EO data. Additionally, we present a list of assimilation techniques which we believe 
are not yet sufficiently exploited in the context of crop growth modeling. Finally, in section 3.9, we 
present an overview regarding crop growth modeling and monitoring combining CGMs and EO data. 

3.2. Crop biomass and yield estimation 

In the following, we distinguish three groups of EO-based modeling approaches for estimating 
crop biomass and yield, according to the excellent review of Delécolle (1992). The models are 
presented in the following sub-chapters according to their degree of complexity, starting from simple 
empirical models to complex crop growth models. A good review is also given in Rembold et al. 
(2013), which however mainly focused on the use of coarse resolution data. It has also to be noted that 
the techniques presented in §3.2.1 and §3.2.2 are independent means to estimate crop yields/biomass 
without using assimilation techniques and crop growth models sensu stricto. They are nevertheless 
presented to give the reader a more complete view of yield prediction techniques. Readers solely 
interested in data assimilation can therefore skip these parts. 

3.2.1. Empirical models 

Empirical yield models use spectral information such as vegetation indices or accumulated 
radiometric data as independent predictor variables to estimate biomass and yield (Delécolle, 1992; 
Guérif, et al 1985). In empirical models is assumed that conditions indicating increased or reduced 
crop’s biomass production, can be captured through spectral measures (Becker-Reshef, et al. 2010). 
The models are “empirical” in the sense that the model calibration requires suitable reference data. 

Different approaches have been proposed over the past four decades using a wide range of 
vegetation indices and mathematical functions either solely based on EO data or in combination with 
other (not remotely sensed) variables. Some examples of empirical models are presented in Table 2.  
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Table 2. Examples of empirical yield models directly estimating crop yield/biomass from 
remotely sensed variables 

Approach Crop R2 Reference 
NDVI and monthly rainfall data Wheat 0.98 Manjunath et al. (2002) 

GYURI1 index Corn 0.75 Ferencz et al. (2004) 
VCI2 index Wheat 0.86/0.92 Salazar et al. (2007) 

NNSI3 index Wheat 0.815 Lin, et al. (2008) 
VCI2, TCI(4) and VHI(5)  Rice 0.61/0.62 Rahman et al. (2009) 

NDVI, LAI and FAPAR Potato 0.84 Bala and Islam (2009) 
WDRVI6  Corn 0.86 Guindin-Garcia (2010) 

WDRVI6 and crop phenological stages Corn 0.83 Sakamoto et al., (2013) 
1 General Yield Unified Reference Index, 2 Vegetation Condition Index, 3 Normalized Near-infrared Spectral 
Index, 4 Temperature Condition Index, 5 Vegetation Health Index, 6 Wide Dynamic Range Vegetation Index. 

One of the main advantages of empirical models is their simplicity and the fact that most 
(statistical) software handles the required (regression) problem. However, some constrains should be 
considered: 
 empirical models relate to specific crop cultivars, in a particular crop growth stage, and within a 

specific geographical area. As a result, transferability of empirical models to other crops and 
regions is often low (Ma et al, 2013a). In other words “established relationships are … to some 
degree, good fortune and rarely operational” (Baret et al., 1989); 

 the predictive accuracy is directly related to the size of the reference dataset (Atzberger et al., 
2015). To avoid extrapolations beyond the range of values found in the data base, the 
experimental set-up has to ensure that the dataset is well balanced, including the full range of 
biomass and yield. Often large time series are required to capture the entire range of growing 
conditions that can be experienced by a particular crop in a particular region (Padilla, 2012); 

 empirical models implicitly assume a constant relationship between yield and biomass in both 
space and time. However, it is well known that the relationship between the two variables (e.g. 
the harvest index) might vary for instance by presence of high-yielding (irrigated) crops which do 
not have a linear relationship with biomass (Meroni et al., 2013). 

 the relation between crop yield and spectral data is only indirect (Baret et al., 1989: Hayes & 
Decker, 1996) and remote sensing provides only little means to assess the harvest index (Meroni 
et al., 2013; Lobell et al., 2003). 
To test model transferability, Lyle et al. (2013) analyzed the predictive capability of a simple 

NDVI-Yield model across three farms over a period of five years and under a range of different 
rainfall conditions. The study demonstrated good model performance in years with low and high 
rainfalls, but not in years with average (medium) rainfall. The research proved that for deriving robust 
regression functions, large time series and good references samples are needed to capture the 
variability present in the study area. Sakamoto et al., (2013) obtained an accurate estimation of corn 
yield at state-level in the United States of America using the WDRVI index. However, the model 
tended to underestimate corn yield in irrigated regions while overestimating yield in the outlying 
regions of the U.S. Corn Belt. Rudorff & Bastista (1990) observed that the relationship between 
vegetation index and corn yield depends on the data acquisition time with respect to the crop 
phenology. It was demonstrated that the best correlation between spectral data and crop yield was 
obtained at the booting stage. Afterwards, the correlation decreases caused by crop maturation and 
senescence. Many other studies quoted similar restrictions. 
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3.2.2. Semi-empirical models  

EO data in the visible and near infrared part of the electromagnetic spectrum are closely related 
to the fraction of incident photosynthetically active radiation (PAR) absorbed by the canopy (fPAR) 
(Sellers, 1987). Monteith (1977) demonstrated that the total biomass production is directly 
proportional to the amount of PAR absorbed over the course of the growing season. The theory is also 
well supported by experimental data (Steinmetz, et al., 1990; Cannel, et al., 1988; Asrar, et al., 1985).  

To mimic conversion of absorbed energy into biomass, Monteith developed the so-called Light 
Use Efficiency concept (LUE); the yield is derived from accumulated biomass using a classical harvest 
index (HI) (Eq. 2): 

Yield = ∑ ሺPARt x fPARt ) x LUE x HI 
௧ୀଵ  (2)

The summation in (Eq.2) is performed over the growing season, often using a daily time step. 
PAR (t) is the incident photosynthetically active radiation at time t (often from meteorological 
stations), and fPAR (t) is the fraction of PAR absorbed by the crop canopy at time t (estimated from 
EO observations). Some examples of semi-empirical yield models based on the LUE concept are 
presented in Table 3. 

Under favorable conditions, LUE and HI can be relatively stable for a given crop, as assumed in 
Eq.2. However, in reality both LUE and HI may vary in space and time. This can be easily seen from 
the fact that different yields can be found for the same amount of aboveground biomass (Meroni et al., 
2013). The main factors which cause variations in LUE and HI are: 
 high temperatures; 
 different management practices; 
 insufficient water and nitrogen availability. 

Obviously, such variation will violate the assumed uniformity in Eq.2 and will lead to differences 
between modeled and true yield/biomass. Another problem relates to the necessity to provide 
temporal profiles of fPAR using EO observations with sometime large data gaps (Nightingale, et al., 
2009). 

Table 3. Example studies using Monteith’s semi-empirical LUE concept with remotely 
retrieved fPAR to estimate crop yield 

Crop R2 Error  Reference 
Wheat  4 % Lobell at al. (2003) 
Maize 0.72  Liu et al. (2010) 
Maize 0.89  Peng et al. (2011) 
Wheat 0.80  Meroni et al. (2013) 
Wheat  0.25-0.35t/ha Patel (2006) 

Maize and Cotton 0.82-0.98  Alganci et al. (2014) 

3.2.3. Crop simulation models 

Crop simulation models can be defined as a set of mathematical equations which simulate 
phenological development and physiological processes (light interception, carbon assimilation, 
respiration, evapotranspiration, dry matter partitioning and organogenesis) in response to 
environmental factors (soils, weather) and management (Bouman et al., 1996). Dry biomass, leaf area 
and storage biomass are important model state variables and model outputs. Depending on the 
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complexity of the CGM, other model state variables refer to the soil compartment (e.g. soil water 
content and nitrogen pool) or the plant’s phenological stage. 

The main strength of crop models are (Delécolle et al., 1992): 
 the ability to model crop growth in a continuous way by updating the model state variables in a 

computational loop (usually daily); 
 the capacity to model assimilate partition and crop organ development based on phenological 

routines; 
 the flexibility to adjust the physiological and phenological mechanisms for different plant species 

using model parameters; 
 the possibility to integrate soil properties (e.g. soil hydraulic properties), weather data (e.g. air 

temperature, precipitation, PAR) and management information (e.g. sowing date, fertilizer 
application and irrigation). 
Crop growth models mainly vary in the way they integrate and formalize the above sub-

compartments, as well as the time step in which the (computational) updating is performed. (Murthy, 
2003). For the sake of simplicity and to optimize the discussion of various models, we grouped crop 
models in simple models (few processes and parameters) and complex models (more detailed 
modeling and parameterization). 

3.2.3.1-Simple crop simulation models 

GRAMI (Maas, 1992) is an example of simple crop growth model able to mimic essential 
physiological crop process while demanding only a reduced number of parameters and input/drivers 
variables. Only two drivers, air temperature and PAR, usually available for agricultural production 
areas, are required. 

In GRAMI, the daily crop growth is simulated through four processes (1) calculation of growing 
degree days (GDD) for determining the actual phenological phase, (2) absorption of incident radiation 
energy by leaves according to actual leaf area, (3) production of new dry mass by the leaf canopy, and 
(4) partitioning of new dry mass for production of new leaves and/or grain filling according to the 
actual phenological phase (Ko et al, 2005). Leaf senescence is modeled using the concept of leaf 
lifespan (LLS). The model operates from the sowing date to the day of complete leaf senescence and 
considers three cardinal growth stages: emergency, anthesis and maturity. The leaf extension period 
lasts from emergency to anthesis and the grain filling period from anthesis to maturity. 

A simplified flowchart of GRAMI model based on the description above is presented in Figure 5. 
In each model loop, state variables such as phenological stage, biomass and LAI are updated. The two 
drivers, air temperature and incident PAR, have to be provided for each modeled spatial entity (e.g. 
individual pixel or field) and time step. 

The simplicity of this model is compensated by its capacity to easily use/assimilate remotely 
sensed data (in particular LAI observations) to adjust the values of certain model parameters (Maas, 
1992). Moreover, the model is generic and does not need to be “developed” for the region to which it 
will be applied, nor to the specific crop studied (Padilla, 2012). Soil properties do not need to be 
specified as it is assumed that processes such as water stress can be amalgamated in crop specific 
parameters – resulting in changes of the modeled LAI profile. 

Simple crop growth models such as GRAMI have been widely used due to their capability of 
integrating remote sensing data depicting - in high spatial resolution - the spatial-temporal variation 
of crop growth status as reflected in the LAI of the observed crops (Liu et al. 2010; Meng et al. 2013). A 
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number of example studies are listed in Table 4 which also includes studies conducted with a 
similarly simple CGM named SAFY (Claverie et al., 2012). 

 

Figure 5. GRAMI model flowchart (adapted from Delécolle, 1992 and Ko et al, 2005). 

Table 4. Examples studies using EO data and simple crop growth for yield modeling. 
Accuracy statistics are indicated and refer to the simulated yield 

Model Crop R2 Error % Reference 
GRAMI  Wheat 0.63/0.29  Atzberger el al. (2001) 
GRAMI  Cotton 0.63/0.67  Ko et al (2005) 
GRAMI Wheat  6.7 Padilla et al. (2012) 
GRAMI Rice  8.1 Yeom et al. (2015) 
SAFY Wheat 0.48  Duchemin et al (2008) 
SAFY Maize/ Sunflower 0.97/-0.81  Claverie et al. (2012) 
SAFY  Barley and wheat 0.45  Chahbi et al, (2014) 

 
Three important drawbacks of simple CGMs have to be mentioned (Duchemin et al. 2008; 

Claverie et al. 2012): 
 dry biomass is usually more accurately modeled than yield. To reduce the number of parameters 

necessary to model the (complex) grain filling process, it is often assumed that the yield can be 
calculated using a simple harvest index. This neglects the fact that the prevailing environmental 
conditions have a strong impact on this process; 

 the effects of management factors such as fertilization are mostly neglected. This reduces the 
number of required parameters and input/driving variables but oversimplifies the modeled 
processes; 

 often it is assumed that all parameters (e.g. LLS and biomass conversion factor) have a constant 
value during the crop cycle and are not impacted by phenological stage and/or environmental 
conditions. 
Self-evidently, all the above mentioned issues can in principle be addressed by adding further 

controls. Alganci et al. (2014), for example, proposed some modifications in the LUE equation to 
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mimic the effect of water stress. However, this automatically leads to more complex CGMs having 
necessarily higher requirements in terms of parameters and input fields. 

3.2.3.2 Complex crop simulation models 

Complex crop growth models are composed of subroutines which are for example able to 
simulate the (combined) effects of nitrogen shortage and soil water shortfall on photosynthesis, as well 
as pathways of carbohydrate movement in plants, among many other processes (Hoogenboom, et al. 
2000; Brisson et al., 2003). As a result of their complexity, such models are in principle suitable to 
assess the effects of management techniques and to simulate the impact/effects of different 
environmental scenarios (Faivre et al. 2004).  

Some of the most widespread (complex) crop simulation models are SUCROS (Spitters et al. 
1989), DSSAT (Jones et al. 2003), STICS (Brisson et al. 1998), CERES (Jones and Kiniry, 1986) and EPIC 
(Williams et al. 1989). A coupled HYDRUS (Šimůnek, J., 2005) - WOFOST (Diepen, et al., 1989) model 
is depicted in Figure 6 as an example of a complex crop simulation model. The coupled model is able 
to simulate the crop growth as well as the atmosphere-crop-soil water balance.  
 

 

Figure 6. Flow chart of coupled HYDRUS and WOFOST model (adapted from Zhou, et al., 2012) 

The complexity of crop models is directly related to the demand of input data in response to the 
increment of processes and state variables to be modeled. In general terms it can be stated that the 
number of required parameters increases with the complexity of a model. Detailed information can 
potentially be made available at local scale or at farm level. For large areas, however, the necessary 
data is generally not obtainable. As the accuracy of crop simulation models depends on the degree of 
uncertainties inherent in input data and parameters, the upscaling from a small support unit (a field) 
to a bigger one (region) is a challenge (Nearing, et al. 2012). Environmental drivers such as climatic 
variables (temperatures, precipitation and radiation) and model parameters such as soil properties are 
not always available at larger scales. Additionally, management data such as crop species (genetics 
parameters), sowing date and density, irrigation, fertilization and soil tillage information are 
discontinuously distributed in space and vary from year to year (Hoogenboom et al., 2000). 
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Operatively, this limitation might be reduced by using prior information or by fixing some parameters 
values. However, such strategies come at the expense of reducing the predictive model capacity 
(Wallach et al., 2002). A way to identify simplification strategies is to run tools such as PYGMALEO 
(Cournède et al. (2012). The platform permits implementing different steps along modelling process 
such as sensitivity analysis, uncertainty analysis, parameter estimation, model selection or data 
assimilation. 

3.3. Main approaches for assimilating EO data in crop growth models 

The aim of EO data assimilation is to combine knowledge incorporated in crop models with 
independently derived, multi-source (EO) information and thereby minimizing uncertainties in the 
estimation of a given system state (Zhu et al, 2013; Lahoz, et al, 2014). The feasibility to integrate 
different (direct and indirect) observational data with model simulations results in an increased 
consistency of the modeled processes in time and space, and across various bio-physical (state) 
variables (Guérif and Duke 1998). 

Assimilation of remote sensing data in crop models permits an improved description of the 
simulated state variables through space and time. Obviously, the performance of data integration 
depends strongly on the assimilation protocol, the chosen model and the number, timing and 
uncertainty of the assimilated observations (Pellenq & Boulet, 2004). Assuming that remote sensing 
observations can reflect objectively the crop status variables linking CGM and EO, assimilation 
strategies represent a valuable tool to accurately simulate the impact of management as well as of 
phenomena such as meteorological disasters and pests, achieving more realistic outputs (Zhao et al, 
2013). 

The assimilation of remote sensing data in crop models can be realized using one or several 
model state variables which can be retrieved remotely. In most cases, however, the crop’s leaf area 
index (LAI) is used as link. The LAI is the most natural variable to be assimilated in CGM as the LAI is 
directly related to crop growth factors such as water stress, nitrogen nutrition, or plant population 
density. Therefore, most assimilation strategies assume that factors which condition the crop 
production are reasonably well simulated within the model, when the estimated LAI is closely 
matching the observed LAI (Maas, 1988). For the very same reason, in the first part of our review 
(chapter 2), we specifically address EO-based mapping methods for LAI. 

Remotely sensed observations can be integrated and assimilated in CGM using:  
 forcing,  
 calibration (re-initialization /re-parameterization), and  
 updating 

The three approaches are described in more detail in sections 3.4 to 3.6 based on the concepts 
introduced by Maas (1988), Delécolle et al. (1992), Plummer (2000) and Duchemin (2008). 

In a nut-shell, forcing is a relatively simple assimilation strategy which consists in replacing 
simulated stated variables in the model using observed data (Figure 7a). After replacing the simulated 
value by its observed value, the model has a new starting point from which onwards the simulation 
continues. The forcing is repeated whenever new observations become available. 

Calibration (re-initialization and re-parameterization) uses iterative numerical optimization 
techniques to ensure (in a least-square sense) that the remotely sensed observations available at the 
time of calibration are optimally “fitted” by the CGM simulations. To achieve a good “fit”, values of 
uncertain – but important – model parameters and/or initial conditions of state variables are 
optimized by minimizing the difference between the state variable estimated by the model (mostly 
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LAI) and observed by remote sensing. After calibration, the model is re-executed to produce a new set 
of simulated values (Figure 7b).  

Updating is based on the individual integration of new observations in the crop model taking 
into account model and observation errors (Figure 7c). Unlike calibration, the updating allows to 
model state variables directly, without requiring that all remote sensing observations are taken into 
account. 

The three assimilation strategies are schematically portrayed in Figure 7. For simplicity, it is 
assumed that only one EO observation is available. Obviously, the use of multiple observations is 
recommended and common standard. In the following, the three approaches will be described in 
more detail. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7. Assimilation strategies: a) forcing, b) calibration, c) updating (adapted from Pellenq & Boulet, 
2004). 

3.4. Forcing 

The forcing approach consists in replacing simulated stated variables in the model using 
observed data whenever they become available. A list of studies using the forcing strategy is provided 
in Table 5. Clevers et al (2000), for example, estimated wheat yield by forcing LAI from SPOT data into 
the ROTASK crop growth model. Two forcing methods were implemented (1) a “reset method” in 
which the LAI was replaced by LAI-SPOT estimations when an image was available, and (2) a 
“continuous forcing method” in which an interpolated LAI-SPOT series replaced the LAI model 
estimations. The study could not demonstrate an improved grain yield simulation compared to the 
unconstrained ROTASK simulations, albeit both methods, and in particular the continuous forcing 
method, significantly reduced the RMSE between simulated and observed LAI. The authors attributed 
this finding to the fact, that the LAI estimates were well estimated at the beginning of the growing 
season, while for yield formation, the LAI values at the grain filling period are more important.  

Chaudhari et al. (2010) compared a regression model and a reset-forcing approach to estimate 
wheat yield. The EO data was forced in WOFOST capturing the spatial yield variability. However, the 
regression model showed lower estimation error compared with the official statistics at district level.  
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Tripathy et al (2013) carried out a similar experiment using WOFOST model and SPOT data. A 
unique LAI observation was forced in the model near the peak vegetative stage using a correction 
factor. The simulated growth rate, weight of leaves, stem, storage organ and total above-ground 
biomass estimated by the model after the date of forcing were reduced and the resulting wheat yield 
estimation had an error less than 5% with respect to the reference data. 

Being computational simple, a main drawback of the forcing strategy is that the model accuracy 
is strongly conditioned by the accuracy and number of remote sensing observations. Importantly, the 
intrinsic error level of the model is not reduced since all model parameters are kept at their original 
values. This also leads to internal inconsistencies between the various model state variables, as only 
the observed model state variable is modified as well as those state variables directly derived from it. 
Therefore, other assimilation strategies seem more suitable than the forcing method (Delécolle, 1992; 
Li et al., 2011).  

Table 5. Example studies using the forcing approach for assimilating EO data in crop growth models 

Crop model Crop Error % RMSE Reference 
ROTASK Wheat  0.97/0.81 t ha-1 Clevers et al. (2000) 
WOFOST Wheat 25.4-9.2  Chaudhari et al. (2010) 

STICS Wheat  2.4 t ha-1 Casa et al. (2012) 
WOFOST Wheat 5.0  Tripathy et al (2013) 
MOSICAS Sugarcane  12.2 t ha-1 Morel et al. (2014) 

3.5. Calibration: re-initialization and re-parameterization 

In the calibration approach, it is supposed that the CGM is formally correct but not well 
calibrated (Delecolle et al., 1992). Hence, one assumes that the modeling errors are only due to errors 
in the selected model parameters and initial states (Evensen, 2009). Using observed state variables as 
references, one or several model parameters and initial states can be optimized so that the newly 
calibrated model better “fits” the observations. The number of parameters that can be calibrated 
increases with the number of available observations and the number of (different) state variables 
observed (e.g. LAI and soil moisture). If successful, calibrating parameters and initial states will result 
in more reliable simulations of the entire system. 

3.5.1. Sensitivity analysis  

To identify the parameters and initial states that should be calibrated, it is recommended to first 
run a sensitive analysis (Cournède et al. 2012). In this way, it is possible to identify parameters with 
major impact on the observed state variable(s) (Wallach, et al. 2001; Wöhling, et al. 2004). A sensitivity 
analysis (SA) also provides useful information regarding the model structure and allows identifying 
parts of the model which could be further improved (Confalonieri et al. 2010). Examples of SA 
implemented in crop models can be consulted in Wöhling, et al. (2004), Confalonieri et al. (2010) and 
Richter, et al. (2010).  

Considering the sensitivity analysis and calibration of CGMs, Tremblay and Wallach (2004) 
classified CGM parameters in three groups: 
 parameters which could potentially be extracted from experiments; 
 parameters which are preferentially be calibrated as a result of their strong influence on the 

model simulations; 
 parameters which should be fixed because of their low impact on the model simulations. 
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The focus of any calibration should be on those (hopefully) few parameters having the strongest 
impact on the CGM simulations. Note that in this context, model sensitivity refers to those state 
variables which are potentially available for assimilation. For example, a model parameter could have 
a strong impact on the final yield, but without (strongly) influencing the (observed) LAI. Hence, using 
LAI observations for assimilation would in this case not be successful in retrieving a correct value of 
that parameter. 

To calibrate the best parameter combination, several algorithms have been developed and used. 
The various approaches are summarized in Table 6. A probably stronger impact on the final modeling 
accuracy can be expected from the following factors, which are below further discussed: 
 EO data availability (e.g. number and timing) 
 Errors in the remotely-retrieved state variables 
 Erroneous parameterization of fixed parameters 
 Number of (free) parameters to be calibrated 
 Ill-posedness of the calibration problem 

Table 6. Examples of calibration techniques 

Technique Abbreviation Reference 
Shuffled Complex Evolution  SCE Huang et al (2015a; Ren et al. (2009) ; 

Ma et al. (2013b); Duan et al, (1992) 
Fortran program for calibration and 
uncertainty analysis of simulation 

models  

FSEOPT Ma et al. (2013a); (Stol et al. (1992) 

Shuffled Complex Evolution 
POWELL 

SCE_AU vs 
POWELL 

Tian et al. (2013) 

Particle swarm optimization PSO Wang et al. (2014); Li et al. (2015; 
Kennedy and Eberhart, (1995) 

Levenberg–Marquardt LM Chandran et al. (2005) 
Genetic algorithm GA Soundharajan and Sudheer (2013) 

Markov Chain Monte Carlo MCMC Dzotsi et al. (2015) 
Error minimization EM Trombetta, et al. (2016) 

3.5.2. Remote sensing data availability 

Generally, the calibration improves with more EO observations being available, in particular if 
those observations are well distributed along the crop cycle. In gramineous crops, gaps at the 
beginning of heading stage and/or at the end of stems elongation have a critical impact on parameter 
calibration (Fang et al. 2008; Dente 2008). Nevertheless, compared to empirical approaches for yield 
prediction (§3.2.1), the exact timing of EO acquisitions is less important. 

3.5.3. Errors in the EO-retrieved state variables  

Obviously, the better the quality of the remotely retrieved state variables, the more efficient is the 
model calibration approach. To avoid cumulating errors along the processing chain, it is also possible 
to couple a CGM with an appropriate canopy reflectance model, thereby omitting the need for RTM 
inversion and estimation of crop state variables such as LAI. For instance, Guérif and Duke (1998) 
calibrated SUCROS parameters using reflectance data in a coupled SUCROS-SAIL model, thereby 
avoiding the error-prone LAI estimation. To further minimize the negative impact of soil reflectance 
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on canopy reflectance in large scale applications of SUCROS, Guérif and Duke (2000) later converted 
the spectral reflectance into TSAVI vegetation index. Similar approaches were implemented by 
Moulin et al. (1995), Launay and Guerif (2005), Doraiswamy et al (2003) and Atzberger (1997).  

3.5.4. Effect of fixed parameters and number of parameters to be calibrated  

When a calibration is performed, usually a group of parameters are optimized while the rest 
remain at their default values. This can potentially lead to unrealistic values of the calibrated 
parameters since the calibration tries to compensate for any possible error within the group of fixed 
parameters. Of course, calibrating all model parameters is practically impossible. Any over-
parameterization has even the potential of strongly reducing the prediction quality of the model 
(Tremblay and Wallach, 2004). Therefore, the recommended strategy is to calibrate relatively few 
parameters and to constrain their allowed parameters ranges avoiding excessively large intervals 
(Curnel, et al. 2011). 

3.5.5. Compensation between parameters and ill-posedness of the calibration  

The calibration of CGMs is often ill-posed. This holds especially for complex CGMs with many 
parameters. For instance, similar LAI time profiles can be simulated using quite different parameter 
combinations which may strongly affect other state variables in dissimilar ways. As a result, errors in 
retrieved state variables such as dry mass and yield can strongly increase (Duchcheim, 2008).  

Other factors have also a strong influence on the calibration performance under ill-posed 
conditions such as (1) the complexity of the model, (2) the criterion used to calculate the calibration 
error, (3) the algorithm used to fit the optimum parameters values (Table 6), and (4) the criteria used 
to compare different algorithms (Wallach, et al. 2001).  

It is important to highlight that re-initialization and re-parameterization techniques have some 
constrains such as the omission of uncertainties in input, output and model structure. Using these 
relatively simple techniques it is also not possible to add information from new observations without 
re-running the entire calibration procedure again. Since one assumes that the parameters are time-
invariant, a lack of flexibility has been observed (Moradkhani et al, 2005). 

3.6. Updating 

Crop growth models contain errors due to a simplified representation of complex natural 
processes as well as uncertainty in input parameters. In a similar way, remotely derived information is 
negatively affected by factors such as atmospheric distortions, geo-location errors and pixel mixing, 
among others (chapter 2). Updating is a technique in which both sources of error, from remote sensing 
and the crop growth model, are considering during the assimilation process to provide optimum 
estimations (Vazifedoust et. al. 2009).  

Important advantages of the updating strategy are: 
 it can be used without altering model structure; 
 state variables are periodically updated within the growing season using EO observations; 
 two or more model state variables or a combination of parameters and state variables can be 

assimilated (e.g. the assimilation of LAI and surface temperature) (Montzka et al. 2012) 
 model and observational errors are taken into account. 

In the context of EO, the CGM provides the forecasted state variable while remote sensing 
observations serve as external forcing (Ines et al. 2013; Dongwei et al. 2008). The (multi-variate) 
observations are sequentially updated during the assimilation procedure.  
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Updating techniques have been developed and widely used in weather and earth system models. 
Table 1 lists use cases of updating outside the agricultural application covered in the present review. 
Ruiz et al. (2013), for example, present a valuable review of ensemble technique applied in weather 
forecast. A sketch of the updating process is shown in Figure 7c. A review of methods for 
approximating filter distributions is presented in Künsch (2013). The historical evolution of filters 
described in the following sub-chapters is depicted in Figure 8. 

 

 

Figure 8. Chronology of some filters. 

3.6.1. Linear Kalman filter (LKf) 

Most techniques to update model state variables by measured data are based on the Linear 
Kalman filter (LKf) (Kalman, 1960). This filter is a sequential data assimilation method initially used in 
control engineering and space/aircraft navigation. The algorithm is able to integrate and control the 
model forward in time. Whenever measurements are available, the state variable is updated before the 
integration continues. The algorithm is based on Bayes theorem and calculates the state of a system 
based on linear equations for the time evolution of the system and noisy measurements of quantities 
related to the state variables. The error distribution is assumed as Gaussian. The result of data 
updating, where observational and model information and their errors are combined, is termed 
“analysis.” The filter algorithm can be summarized as follows (Evensen, 2003) (Eq. 3): 

Aa = A + PeHT (HPeHT + Re)-1 (D-HA) (3)

where A and Aa are the model forecast and analysis (updating) state, D the measurement, H is 
the measurement operator, Pe, Pa, and Re are the forecast, analysis and measurement covariance 
respectively. 

In Eq 3 three main components can be identified; A which is the state value at time t-1, the 
component PeHT (HPeHT + Re)-1 called Kalman gain (K) which provides information about the 
measurements and (D-HA) which represents the innovation vector. The larger Re (measurement 
covariance) the lower K, consequently, the impact of the measurement D in the Aa calculation is 
smaller. No assimilation will be performed when K value is 0. In contrast a K value equal 1 implies 
that EO observation will be directly assimilated. In this way, model and measurements are validated 
during the sequential updating (Eskes, et al, 1998). 

The Linear Kalman filter equation using a simple example is sketched in Figure 9. The 
measurement operator H is not implemented because the simulated LAI is updated using estimated 
LAI values, without transformation. This simplified equation is: 

Aa = A + (Pe /(Pe + Re)) (D-A) (4)
In Figure 9 is indicated the innovation component (D-A); the weight of the innovation is 

calculated as ratio between model uncertainty (Pe) and total uncertainty (Pe + Re). 
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Figure 9. Schematic illustration of LAI updating in a CGM. 

3.6.2. Extended Kalman filter (EKF)  

The prerequisite of linearity assumed in the LKf is violated in non-linear systems. In the case of a 
highly non-linearity, the filter diverges from optimality and may become unstable (Evensen, 1994). 
The linearity restriction and the high computational cost to run the LKf algorithm impede its 
implementation in real systems (Tippett, et al. 2003). This first drawback has been overcome by 
developing a family of filters based on the principle of LKf but which are able to use non-linear 
systems in the state prediction. 

To overcome some restrictions of the original Liner Kalman filter, a tangent linear operator is 
added in the error covariance equation to linearize the error prediction equation (Evensen, 2003). This 
approach assumes that the corrections are sufficiently small so that the model can be locally linearized 
(Aubert, et al. 2003). However, when the system is strongly non-linear, and the linear approximation 
no longer holds, a statistical approach known as the Ensemble Kalman Filter is preferred (Pellenq & 
Boulet, 2004).  

3.6.3. Ensemble Kalman filter (EnKF)  

The EnKF was proposed by Evensen in 1994 and is based on the generation of Monte Carlo 
ensembles. The main difference between EKF and EnKF is the approach to calculate the error 
covariance. The EKF uses a linearized equation to propagate the error covariance while the EnKF 
propagates a finite ensemble of model trajectories. The ensemble forecasted members are individual 
model realizations generated by mutually independent and temporally uncorrelated perturbations 
(Crow, W. T and Van Loon, E. 2006). Burgers et al. (1998) suggested an improvement of EnKF adding 
random perturbations to the observations in order to generate an ensemble of observations which will 
be used in updating the ensemble of model states avoiding filter divergence. Reichle et al. (2002a) 
compared both approaches while assimilating soil moisture data in a hydrologic model and found 
that the EnKF achieved a better accuracy than EKF. In particular, a more robust performance of the 
EnKF was demonstrated, while offering more flexibility in covariance modeling. 

The updating procedure of EnKF is presented in Figure 10. The state variable ensemble is 
forecasted by the model from tk-1 to tk. At time step tk each particle is updated based on Eq 3 and the 
ensemble observations. The mean of the updated ensemble represents the updated sate variable at 
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time Kt (bold arrow). This value is forcing the crop model which is running independently of the 
updating process. Then, the updated particles are forecasted to tk+1. 

 

Figure 10. Illustration of updating steps in Ensemble Kalman Filter (EnKF); Xik (state vector), Pk (state 
error covariance), Rk (observation error covariance) (adapted from Reichle et al., 2002a). 

The procedure to assimilate LAI in a crop model is further depicted in Figure 11. In a first step, 
the EnKF generates an ensemble of state variables for time (t). A white Gaussian noise from Monte 
Carlo simulations is added to the state variables. If an observation for time (t) is available, a Gaussian 
perturbation-ensemble with mean equal to zero and covariance equal to the observational error 
covariance matrix is added to the observation in order to create the observation ensemble. In a third 
step, the state ensemble and the observation ensemble are assimilated based on the linear equations 
used in the LKf (Eq. 3). The mean is the best estimation of the state variable. The ensemble dispersion 
is the best estimation of the error variance. This process is repeated until all the observations are 
assimilated (Ma et. al., 2013a).  

 

 

Figure 11. Assimilation of LAI in a crop model using EnKF (adapted from Ma et. al., 2013a). 
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A consistent EnKF has to fulfill the assumptions stated in the Lineal Kalman filter (LKF) (Kalman, 
1960). This includes a forecast error with Gaussian distribution as well as temporally and spatially 
uncorrelated innovations. These assumptions can be evaluated by looking at the distribution of the 
normalized innovations. An excessive spread in the distribution of normalized innovations indicates 
that the sum of the variances on observations and forecasts is under-estimated (De Wit and van 
Diepen, 2007). 

Within the EO community, the Ensemble Kalman filter has been extensively used to update crop 
growth state variables (or a combination of parameters and state variables) using EO observations. 
Some examples are presented in Table 7. 

Table 7. Example studies using the Ensemble Kalman filter (EnKF)  

CGM Assimilated  
state variable(s) 

Crop(s) Reference 

WOFOST Soil water  Wheat and Maize De Wit and van Diepen 
(2007) 

SWAP LAI+ 
Evapotranspiration 

Wheat Vazifedoust et. al (2009) 

CERES+PROSAIL LAI Wheat Li, et al. (2011) 
DSSAT LAI+Soil moisture Maize Ines et al. (2013) 

WOFOST+ACRM LAI Wheat Ma et al. (2013a) 
PyWOFOST LAI  Maize Zhao et al (2013) 

WOFOST+ACRM1 LAI+Phenology  Maize+Wheat Zhu et al. (2013) 
WOFOST+HYDRUS-1D LAI  Maize Li, et al. (2014b) 
Dynamic model+ACRM2 LAI  Grassland/Forest Liu et al. (2014a) 

1 multi-resolution data, 2 multisource data 

3.6.4. Ensemble square root filter (EnSRF) 

Although the most widespread updating technique is the Ensemble Kalman filter, other filters 
have been developed aiming to overcome some drawbacks. The use of perturbed observations to 
create an observation ensemble in EnKF increases the probability to under-estimate the analysis-error 
covariance. To solve this problem (Whitaker and Hamill, 2002) developed the ensemble square root 
filter (EnSRF). The EnSRF is a deterministic algorithm, which does not use perturbed observations. 
Instead, two Kalman gains are used; one to update the ensemble mean and a second to update the 
deviations from the ensemble mean. The latter gain only depends on the observation and background 
error variance. 

An improved performance of EnSRF with respect to EnKF was verified by Huang, et.al (2013). 
They compared both filters integrating remotely sensed information (ASD spectral, HJ-1 A/B CCD and 
Landsat-5 TM data) in the WheatGrow model. A good performance of EnSRF filter was also found by 
Wang, et al. (2014). They applied a coupling method based on a parameterization of the RiceGrow 
model at regional scale using the Particle Swarm Optimization (PSO) algorithm and EnSRF to update 
leaf area index (LAI) and leaf nitrogen accumulation (LN).  

Another aspect to consider about the EnKF is the assumption that the posterior density of the 
ensemble at every time step is Gaussian, parameterized by mean and covariance. This assumption 
hampers the application of the filter in non-linear and non-Gaussian dynamic system (Arulampalam, 
et al. 2002; Jiang et al, 2014c). Considering that crop models such as EPIC, WOFOST, and STICS 
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among others, describe the biophysical processes as a non-linear approximation of the state variables, 
a filter able to manage nonlinear and non-Gaussian effects seems more suitable (Mansouri et al. 2015). 

3.6.5. Particle Filter (PF)  

Particle Filters are based on Monte Carlo simulations to estimate state variables using a set of 
random drawn samples and their weights. PF methods approximate the posteriori probability 
ensemble distribution by a set of weighted samples, called particles. No matrix operations are 
necessary and no pre-assumptions with respect to the model characteristics (e.g. linear or nonlinear) 
as well as the noise probability distribution (Gaussian or non-Gaussian). Therefore, particle filters are 
able to handle any form of the probability distribution (Han and Li, 2008). For that reason the PF 
algorithm appears to be a better choice for crop-growth models which operate in nonlinear and non-
Gaussian systems (Arulampalam, et al. 2002; Lahoz, et al, 2014). 

A drawback of PF is the filtering divergence produced after several iterations in which very few 
particles have significant weights. Consequently, the filter efficiency is reduced demanding 
computational resources to update particles with low importance (Han and Li, 2008; Makowski et al 
2004). A possible approach to reduce this effect is to increase the number of particles or to use a 
resampling technique. A widespread resampling techniques called Sequential Importance Resampling 
(SIR; Arulampalam, 2000) consists of sampling the particles with replacement n times, being n the 
ensemble size. In this process, particles with high weight have the chance to be selected more than one 
time while particles with low weight are more likely to be dismissed (Han and Li, 2008). The main 
drawbacks of resampling are the loss of diversity and the difficulties to parallelize the data processing 
because the particles are combined along the updating process (Arulampalam et al., 2002). A possible 
solution is introducing Markov Chain Monte Carlo (MCMC) steps on each particle cancelling the 
resampling drawback and keeping the ensembles independent after resampling step (Montzka et al., 
2012). A discussion about filter divergence and resampling among other related topics are described 
in detail by Van Leeuwen (2009). 

Although, EnKF and PF are both Bayesian filters, some important differences are highlighted in 
Table 8 according to Evensen (2009) and Han and Li (2008). 

Table 8. Comparison Ensemble Kalman Filter (EnKF) and Particle Filter (PF). 

Item EnKF PF 
Model type Linear model Linear or non-linear 

Error distribution Gaussian error distribution No assumptions 
Resampling Not required Advisable to reduce filter divergence 

Computational costs High Low 
 
The main steps of the PF when an observation is assimilated are depicted in Figure 12. At T=0 the 

particles are forecasted using the crop model (no observations available). At T=10, an observation 
becomes available. The observation distribution is calculated considering the observed value and its 
error. The center of the distribution is assessed using the observation value and a random error which 
is calculated as the product between the observation error and a random number generated by a 
normally distributed random number function. The error of each particle with respect to the center of 
the observation distribution (mean) is calculated. The deviations are expressed as z values (e.g. 
standard scores). Then, the error is normalized representing the weight of each particle. The updated 
state variable at T=10 is calculated based on the state value of each particle and its weight. In the two 
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last steps the particles are resampled to reduce the filter divergence effect and a perturbing process is 
applied to keep the diversity. Finally, the particles are forecasted to T=20 where the process is 
repeated. 

The performance of PF has been extensively tested and partially improved. For instance, 
Makowski, et al. (2004) proposed the Improved Particle Filter (IPF), derived from PF, which uses the 
Kullback–Leibler distance to overcome the filtering divergence. Machwitz, et al. (2014) tested a similar 
approach but using APSIM+PROSAIL model. Chen and Cournède (2014) applied the Convolution 
Particle Filtering (CPF) method to update state and parameter of STICS and LNAS models. The filter 
showed promising predictive capacity for different test configurations (different years, experimental 
sites, cultivars, crop densities, levels of water stresses). Mansouri, et al. (2015) compared the 
performance of PF and IPF for predicting and modeling winter wheat biomass and grain protein 
content. Several experiments were conducted aiming assessing the effects of measurement noise, 
number of states and parameters updated in estimation accuracy. The simulation showed a better 
performance of IPF respect to PF. 

 

 

Figure 12. Schematic illustration of the updating steps in PF (adapted from Montzka et al., 2012). 

3.6.6. Versatility of updating techniques 

Updating technique mostly assume that the parameters are known a priori and uncertainties 
come from the state variables and corresponding observations. However, using updating approaches 
it is also possible to estimate model parameters that vary with time. These parameters are simply 
considered as state variables during the updating process. The inclusion of parameters in the state 
vector generally can cause linear systems to become nonlinear. Additionally, considering an excessive 
number of unknown model states and parameters render the estimation unstable (Pellenq & Boulet, 
2004; Trudinger, et. al. 2008). Moradkhani et al (2005) presented a dual state–parameter estimation 
approach based on the EnKF for sequential estimation of parameters and state variables of a 
hydrological model. The approach had a reliable and effective performance to forecast streamflow.  

 



43 
 

3.6.7. Important aspects for implementing ensemble updating filters 

Aspects of ensemble-based Kalman filtering such as ensemble size, filter divergence, treatment of 
non-Gaussianity and nonlinearity among other related topics have been addressed by Ehrendorfer 
(2007). The most important aspects will be summarized below in more detail. 

3.6.7.1. Ensemble size 

The ensemble size defines the space from which the update is computed at each time step of the 
analysis. The ensemble size choice requires a compromise between the computational costs and the 
accuracy of the covariance matrices (Trudinger, et al. 2008). An inappropriate ensemble size (e.g. a too 
small ensemble) can degrade the forecast error covariance representation, causing a filter divergence 
(Evensen, 1994; Evensen, 2009; Tippet, et al, 2003). For that reason, a preliminary study is usually 
recommended to find the minimum ensemble size, which assures an optimal performance of the 
updating data (Pellenq & Boulet, 2004). Such a preliminary study allows also adding some restrictions 
in the random perturbations process to ensure the values of the state variables to fall within their 
reasonable physical intervals (Han and Li, 2008). 

3.6.7.2. Time step 

The assimilation step size is another factor which affects the stability of the assimilated profile. 
Liu et al (2014a) assessed the effect of assimilation period testing different updating intervals (2, 4, 8 
and 16 days). It was shown that the larger the assimilation step sizes, the greater the fluctuation of the 
assimilated profile. In their study, an interval of 4 days was considered appropriate. The updating 
interval of EO data depends on technical satellite characteristics (e.g. revisit time) and atmospheric 
conditions (e.g. cloudiness). A reduction of the assimilation step size is possible by assimilating 
multisource EO data.  

3.6.7.3. Normality of the residuals 

A potential downside for the EnKF is the presence of skew in ensemble model forecasts, which 
could (negatively) affect the optimal updating of ensembles via the Kalman filter approach (Crow, W. 
T. 2003). To avoid a systematic bias, it is recommended to test the degree of non-linearity of the 
function used to forecast the state variable. 

3.7. Hybrid approaches  

In recent years, hybrid techniques have been implemented, combining variational and sequential 
approaches (Dong et al. 2013; Jiang, et al. 2014a). Prominent examples are the Four Dimensional 
Variational Data Assimilation (4DVAR), a variational algorithm extensively used in meteorology, and 
POD4VAR which combines 4DVAR algorithm and EnKF. 

The 4DVAR (Le Dimet and Talagrand, 1986) is a variational algorithm which calculates the model 
state analysis value by minimizing a cost function J (Eq. 5). The function is compound by a first term, 
Jb, which quantifies the misfit of the state variable (xo) and the background state (xb) and a second 
term, Jo, which quantifies the misfit between the model trajectory ((݇)ݔ)ܪ and the observation ݕ(݇) in 
the assimilation windows from K=1,2…, S (Lahoz, et al. 2014; Jiang, et al. 2014a). The algorithm 
searches for an optimal set of free parameters that minimizes the discrepancies between the simulated 
and observed state variable. The minimization process within the 4DVAR algorithm requires an 
estimation of the cost function which can be provided by adjoint modelling (Dong et al., 2013). 
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J(x) = Jb + Jo (5a) 

J(x) = (xo–xb)T B-1 (xo–xb) +∑  ௌ
ୀଵ (y(k)–H(x(k)))T R(k)-1 (y(k)-H(x(k))) (5b) 

xo initial condition at the beginning of the assimilation window 
xb background value 
B background error covariance matrix 
R observation error covariance matrix 
H is the nonlinear observational model 
K observational time 
The errors in the model (background) B and observational information are uncorrelated. 
 

 
(a) 

 
(b) 

Figure 13. Schematic illustration of (a) sequential and (b) variational assimilation (adapted from Lahoz, 
et al. 2014). 

The sequential updating of observations through time is depicted in Figure 13 (a), whereas (b) 
shows the variational assimilation in a temporal window. Variational procedures start by choosing a 
time interval [t0, tn]. Initially, a first-guess model trajectory is computed by running the model in the 
time window selected. The mismatches between the model and the available measurements in the 
interval are recorded. Then, a second model which translates the mismatches backwards in time is 
implemented (the "adjoint" model). The error at time t0 is used to improve the analysis at time t0. From 
this new start an improved trajectory is computed by the model. The procedure is repeated several 
times to converge to the most likely actual state variable distribution. All measurements in the interval 
[t0, tn] are taken into account in a single analysis (Eskes, et al, 1998). Consequently, variational 
algorithms have a reduced computing cost in comparison with sequential assimilation algorithms 
working as a smoother (Jiang et al., 2014a; Lahoz et al., 2014). Huang, et al. (2015b) applied 4DVAR 
algorithm to predict regional-scale winter wheat yield obtaining reliable estimations at county scale. 
He et al (2015) estimated aboveground dry biomass of grass with a satisfactory accuracy level (R2= 0.73 
and RMSE = 617.94 kg ha-1).  

Although 4DVAR often shows a good performance, a disadvantage of the algorithm is the 
requirement of using the adjoint or tangent linear model. To cope with this disadvantage, methods 
have been proposed which combine variational and sequential algorithms. POD4DVAR is such a 
hybrid approach which merges Monte Carlo and proper orthogonal decomposition technique (POD) 
into 4DVar. In POD4DVAR, the initial condition xo is perturbed at the start time of the assimilation 
window generating a four-dimensional ensemble trajectory. Then, POD technique is applied to 
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capture the spatial structure and temporal evolution of the state. The use of the adjoint or tangent 
linear model is avoided increasing the assimilation precision and reducing computational costs with 
respect to EnKF (Tian, et al., 2008) 

Jiang, et al. (2014a) compared the performance of the POD4DVar and EnKF to assimilate LAI in 
CERES-Wheat model. The POD4DVar provided improved yield predictions at plot and regional scale. 
In addition, the computing time required to run the POD4DVAR was seven times lower than the time 
required by EnKF. 

Based on the work of Dong et al., (2013), Arulampalam, et al. (2002), Lahoz, et al. (2014) and 
Reichle, et al. (2002b), Table 9 summarizes some characteristics of EnKF and variational approaches. 

Table 9. Comparison of Ensemble Kalman Filter (EnKF) and variational approaches. 

Item EnKF Variational 
Number of free parameters Single free parameter Multiple free parameters 

Observations used Only past observations  Past and future observations 
Updating procedure Sequential (real time) Batch processing 

Linearization No linearization required Linearization required 
Use of adjoints No adjoint function needed Adjoint function needed 

Assumed error type Additive, multiplicative, state 
dependent and in model structure 

Additive 

Assumed error distribution Gaussian assumption No Gaussian assumption 
Computational costs High Low 

3.8. Aspects related to the assimilated EO data 

A number of factors related to the quality of the assimilated EO data affect the accuracy of data 
assimilation in crop models. In the following we briefly discuss the most important factors. 

3.8.1. Spatial resolution  

The spatial resolution of the EO sensor does not always match the required (fine) resolution of 
the crop growth modeling and also introduces mixed pixel effects. The mixed pixel problematic 
depends on the spatial resolution of the remote sensing data, its geometric/spatial accuracy, its point 
spread function (PSD) and the degree of fragmentation of land use (Jiang, et. al. 2014b). A practical 
strategy to reduce the effect of mixed pixels is to select only those pixels that have a high fraction of a 
single crop. However, the main drawback of this approach is the requirement of a detailed crop type 
map, available early enough in the growing season (De Wit, 2012). Regarding the availability of 
remote sensing data with different spatial resolutions, Montzka et al. (2012) suggested two methods to 
minimize mixing/scale effects: 
 Using an observation operator. In this approach, an observation operator at fine scale uses the 

modeled state variables to simulate the coarse resolution observation. The simulated coarse 
signal (one single value) is then used to update the parameters of all fine-scale model pixels 
inside the large grid. Weights can be assigned to each fine model pixel according to the distance 
to the center of the (large) grid cell. In this way, pixels closer to the center of grid cell will have 
higher weight and will receive a larger update than pixels with a lower weight far(er) from the 
center cell (e.g. similar to the PSF).  

 Rescaling the observations prior to data assimilation. This approach consists in resampling all 
remote sensing data to a specific spatial resolution according with the goal of the research – in 



46 
 

most cases from coarse resolution to a finer cell size. After resampling, the assimilation procedure 
is run in the usual way. In this case, it is necessary to define a downscaling/resampling algorithm 
and to quantify the measurement uncertainty on the fine scale. This approach is very practical 
when multiple data sets at different spatial resolutions need to be assimilated. 

3.8.2. Temporal resolution and timing of observations 

The effective temporal resolution of an EO system is the product of the revisit frequency of the 
sensor and cloudiness during the growth period (Jiang, et. al. 2014b). Hadria et al. (2006) found that 
the model accuracy was directly related to the satellite revisit frequency and suggested an optimal 
satellite revisit time of 10 days. Dente et al (2008) noticed that the number of remote sensing 
observations is not the main factor responsible for the simulation accuracy; they pointed out that the 
observation timing is much more critical. Atzberger (1997) found that the timing is most critical when 
only few EO observations are available. In the study of Dente et al (2008), the error in the simulated 
yield increased significantly when no observations were available during the period of maximum 
development of the crop such as stem elongation and heading stage in case of gramineous. The 
assimilation after the heading stage of wheat was not as important as before the heading. De Wit 
(2012) found that the tuning of CGM parameters improved with increasing availability of remote 
sensing data (even with different technical configurations). A positive effect was also noted if crop 
masks were available to identify crops of interest minimizing mixed pixel problems (De Wit, 2012). 
Launay and Guérif (2005) observed that the yield estimation did not improve, and even decreased in 
performance, when late season remote sensing data were assimilated after LAI decrease.  

3.8.3. Combining data from several sensors 

Simultaneous assimilation of remotely sensed data from various sensors (optical and radar) into a 
crop model is feasible and reduces the effect of the cloud cover (Prèvot, et al. 2003). The fusion of 
remote sensing observations from different sensors is another alternative to tackle spatial and 
temporal data constrains. Algorithms such as the spatial and temporal adaptive reflectance fusion 
model (STARM; Gao et al., 2006) have been developed to combine fine and coarse resolution images 
(e.g., Landsat and MODIS) to generate high temporal resolution data at the finer spatial scale. A 
related approach was implemented by Zhu et al. (2010) labelled enhanced STARFM (ESTARFM). 
Meng et al. (2013) combined NDVI images from high resolution HJ-1 CCD and MODIS satellites to 
generate a NDVI dataset with high spatial and high temporal resolution using STAVFM (Spatial and 
Temporal Adaptive Vegetation index Fusion Model). A review of spatial and temporal remote sensing 
data fusion techniques is presented by Zhang (2015). 

3.8.4. Assimilation of reflectances instead of bio-physical variables 

The assimilation of biophysical products such as LAI and FAPAR is operatively convenient. 
Assimilation of LAI and FAPAR can also handle observations from different sensors as both variables 
are sensor independent and scale linearly. However, the assimilation of crop bio-physical variables 
also carries some disadvantages such as uncertainties related to the atmospheric correction and the 
radiative transfer model inversion (chapter 2).  

To reduce the effects of uncertainties in the (retrieved) LAI/FAPAR observations, the assimilation 
of surface reflectance in the CGM is a possible alternative (Guérif and Duke, 1998). In this case, both 
the atmospheric model and the canopy reflectance model are solely run in direct mode. No inversion 
is needed and the observed reflectances are directly assimilated into the combined CGM + canopy + 
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atmosphere model (Atzberger, 1997; Machwitz et al, 2014). As the combined model simulates the 
spectral (ToA) reflectance over the full optical domain (e.g. 400-2500 nm), potentially any sensor with 
a suitable spatial resolution can be assimilated. In a similar way, instead of assimilating spectral 
reflectances it is also possible to assimilate vegetation indices to avoid effects of errors in the 
LAI/FAPAR retrieval prior to the assimilation (Ma et al, 2013b). 

3.8.5. Identification and modeling of key phenological events 

In CGMs, many state variables such as LAI are directly related to the crop’s phenological stage. 
Therefore, phenological events must be estimated with high accuracy to achieve a realistic crop 
growth simulation (Moulin et al., 1995). Curnel et al (2011) proved the importance of crop 
phenological synchronization through an experiment in which EnKF was compared with the 
performance of the recalibration/re-initialization strategy. A “phenological shift” of the EnKF 
members was detected since the ensemble was generated by perturbation of two model parameters 
directly related with crop phenology. The performance of the EnKF was even worse compared to the 
crop model run with default parameters. 

These results proved the importance of rigorously calibrating crop growth cycles refining the 
estimation of emergence, anthesis and maturity dates (Machwitz et al, 2014). Unfortunately, RS 
contributes only very little to the observation of plants phenological stages (Delecolle et al., 1992). 
Regarding the effect of the growing season assessment, it is important to highlight that in real 
conditions (e.g. at regional scale) the uncertainties about phenological stages are large since sowing 
and emergence date never occur at the same time for all the fields and moreover vary from year to 
year due to the different climatic conditions and management decisions (Yuping et al. 2008).  

3.8.6. Developments in geophysics 

The updating approaches described in this document have been originally implemented in 
research areas such as meteorology, climatology, oceanography and hydrology. Considering that in 
geophysics new approaches are developed continuously, we encourage the remote sensing 
community testing these innovations in EO data assimilation. In Table 10 some innovative algorithms 
are presented which are potentially interesting for crop growth modeling. Aware of the influence of 
resampling in PF performance, Van Leeuwen (2009), for example, presented and discussed different 
resampling techniques in the context of geophysics.  

Table 10. Innovative assimilation approaches in geophysics. 

Approach Reference  
Ensemble smoother with multiple data assimilation (ES-MDA) Emerick (2013) 

Iterative ensemble Kalman smoother Bocquet and Sakov (2014) 
Modified Ensemble Kalman particle filter Shen and Tang (2015) 

Improvement of ensemble smoother with SVD-assisted Kang, et al. (2016) 
Efficient Kernel-Based Ensemble Gaussian Mixture Filtering Liu, et al. (2016) 

3.9. Overview of the assimilation of retrieved EO data in CGMs 

The most widespread approaches to estimate crop biomass and yield are empirical, semi-
empirical and mechanistic crop growth models. Empirical models establish a mathematical 
relationship between the EO data and the observed crop yield. They are easy to implement, however, 
have a low transferability to other crop cultivars or geographical regions (Ma et al, 2013a). On the 
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other hand, crop simulation models, based on mathematical equations, are able to simulate 
phenological development and physiological processes in response to environmental factors and 
management (Bouman et al., 1996). Therefore, they have a high transferability to crop cultivars and 
geographical regions. The main drawback of complex crop growth models is its high demand of input 
data, which hampers its use at regional scale. 

To reduce estimation uncertainties at regional scale, crop growth models have been integrated 
with EO data. The integration allow combining the capability of remote sensing imagery to provide 
data of the earth’s surface with the capability of growth models to provide a continuous description of 
crop status during the growing season (Delécolle et al., 1992). The most widespread assimilation 
techniques are: forcing, calibration and updating.  

Forcing is a relatively simple assimilation strategy. However, its accuracy is strongly conditioned 
by the error and number of remote sensing observations. Calibration uses iterative numerical 
optimization techniques to ensure that the remotely sensed observations are optimally “fitted” by the 
CGM simulations. The efficiency of calibration depends on the availability of EO data, the error of the 
retrieved state variables, the value of fixed parameters and number of parameters to be calibrated, 
among others factors. Finally, updating is based on the individual integration of new observations in 
the crop model taking into account model and observation errors. The parameters are known a priori, 
thus, the assimilation is implemented without altering model structure. Updating is a versatile 
technique which allows assimilating two or more model state variables or a combination of 
parameters and state variables (Montzka et al. 2012). 

A number of factors related to the quality of the EO data affect the accuracy of data assimilation 
in crop models. For instance, a mismatch between the spatial resolution of the EO sensor and the crop 
model requirement affect the accuracy of the estimations by the mixed pixel effect. The timing of the 
EO data is another important factor to considering in assimilation. For instance, gaps data during stem 
elongation and heading stages for gramineous affects strongly the accuracy of yield estimations 
(Dente et al., 2008). The fusion of remote sensing observations from different sensors is an alternative 
to minimize spatial and temporal data constrains (Prèvot, et al. 2003). Finally, another error source is 
related with the retrieval of bio-physical variables. A strategy implemented to reduce the error effect 
consists in assimilate the surface reflectance in the CGM. The observed reflectances are directly 
assimilated into the combined CGM + canopy + atmosphere model (Guérif and Duke, 1998; Atzberger, 
1997; Machwitz et al, 2014). 

Regarding the innovation in assimilation techniques, we highlight updating which has been 
boosted in the last years thanks to its flexibility. The Ensemble Kalman filter (EnKF) is the most widely 
used updating technique; however, new filters have been proposed aiming overcoming known EnKF 
restrictions, such as the Particle filter which operates in nonlinear and non-Gaussian systems. 
Additionally, the combination of updating with variational approach has yielded promising results. 
Moreover, high potential is also seen in the joint combination of multi-source remote sensing data 
with fusion algorithms. Such techniques allow matching the CGMs spatial and temporal scale with 
user demands. 
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4 Materials and Method 
A. Materials 

4.1 Study area 

The study area is localized in Marchfeld region, one of the most important agricultural 
production areas of Austria, located in the north-eastern (NE) of the country (Figure 14). The area is 
flat (around 900 km²) with minor variations in elevation, ranging from 143 to 178 m. The dominant 
soil types are Chernozem and Fluvisol (FAO-World Soil Classification) characterized by a humus-rich 
A horizon and a sandy C horizon, followed by fluvial gravel from the former river bed of the Danube. 
The region is influenced by a semi-arid climate; winters are usually cold with frequently strong frosts 
and few snowfalls, and summers are hot and intermittently dry (Müller 1993). The annual average 
temperature is around 9.8°C and the annual precipitation sum is 550 mm, corresponding 200–440 mm 
to the growing season (April–September). The most important summer crops are sugar beet, maize, 
soybean, sunflowers and vegetables. 

 

Figure 14. Study area and maize samples for seasons 2013 and 2014. 

4.2 Meteorological data 

The meteorological data used in GRAMI and SAFY models were daily average temperature (°C) 
and global solar radiation (MJ/m²) obtained from meteorological station Zwerndorf (Zentralanstalt für 
Meteorologie und Geodynamik-ZAMG). In Figure 15 are presented the daily average temperature 
(°C) and global solar radiation (MJ/m²) for seasons 2013 and 2014. 

4.3 Satellite Data 

The used satellite images were obtained by Landsat 5 TM, Landsat 8 OLI and DEIMOS sensors. 
DEIMOS images were provided orthorectified to sub-pixel accuracy (~10 m) using ground control 
points and the elevation model of the Shuttle Radar Topography Mission (SRTM v3). The atmospheric 
correction was carried out using ATCOR (Richter, 2004) model. A reference image from the data series 
was atmospherically corrected using the model and reference measurements of ground spectral 
reflectance collected at the acquisition date of the reference image. The rest of the images were 
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corrected by cross-checked of pseudo-invariant targets between the reference image and the image to 
be atmospherically corrected. This procedure was carried out by Vuolo et al. (2013). 

 

 

Figure 15. Meteorological data from station Zwerndorf (ZMAG) seasons 2013 and 2014. 

4.4 Field measurements 

A weekly ground data survey was carried out in twelve maize plots in the growing season of 
2013. The selected plots were bigger than 3.5 ha with a nearly squared shape to avoid the mixed pixel 
effect in LAI estimations. The measured variables were LAI, crop height, phenological stage, 
agronomic crop condition (plagues, diseases, and damages). Moreover, corn samples as well as 
measured yield components were collected in twelve plots in season 2013 and eight plots in season 
2014. The measurements were carried out one month before harvesting. The following section 
describes the different types of measurement in detail. 

The plots sampled in the season 2013 can cluster in two groups: plots to seed and to grain 
production. The management of seed production plots is sharply different from grain production. The 
plant density of seed plots is larger till anthesis, then, the masculine plants are eliminated. 
Additionally, 1/3 of the female plants are chopped. Consequently, the biomass is reduced drastically. 
The fertilization is also different between groups. We noticed a stronger fertilization with nitrogen for 
seed plots. 

4.4.1 Leaf Area Index measurements 

We used the instrument LAI-2200 to estimate LAI, which is a non-destructive method, based on 
radiation measurements obtained with a “fish eye” optical sensor. The measurements made above and 
below the canopy are used to determine canopy light interception at five angles. Then, LAI is 
computed using a model of radiative transfer for vegetative canopies (LAI-2200C Plant Canopy 
Analyser, Instruction Manual, 2016). It is important to point out some limitations of the instrument. 
Estimations of LAI by LICOR 2200 are affected, mainly, by two types of errors; underestimation 
because of the non-random positioning of canopy elements and overestimation due to the incapacity 
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of the instrument to distinguish photosynthetically active leaf tissue from other plant elements (stems, 
flowers, senescent leaves). The effect of non-random positioning of canopy elements is maximized at 
the beginning of the plant growth, specially, for crops such as maize with a relatively large row space. 

To minimize error measurements, some precautions were implemented: (a) the instrument was 
operated maximal two hours after sunrise or before sunset under diffuse radiation conditions to 
reduce multiple scattering on the measurements, (b) the sensor field of view was limited with 180◦ 
view-cap to prevent interference caused by the operator’s presence and the illumination condition, (c) 
the measurements were azimuthally oriented opposite to the sun azimuth angle. 

A sampling strategy was drawn up for each plot based on a soil map and high spatial resolution 
images available in Google Earth. Homogeneous plots had a unique sampling area along the crop 
season, while heterogeneous plots had two sampling areas, for instance low and high zone depending 
of the plot topography. In each sampling area, the LAI was calculated from the average of three 
replications of one above-canopy and nine below-canopy measurements. This procedure was repeated 
along the crop season for all the plots. 

4.4.2 Yield crop estimation in field 

The method used to forecast yield in field was based on the premise that one can estimate grain 
yield based on the measurement of crop yield components (Lauer, 2002). The yield components 
considered in the experiment were the number of ears per ha, the number of kernel per ear and the 
weight of kernel. The first and second components were measured in field while the last one was 
estimated by weighting 1000 seeds extracted from average ears. 

We applied a systematic sampling scheme with a sampling distance of 10 m, representing 
altogether at least 0.1% of the total row extension of the plot. Moreover, additional samples were 
localized in heterogeneous areas detected by visual interpretation of high resolution images from 
Google Earth to increase the representativeness of the sampling. 

In each sample, the number of ears was counted and two ears were selected to estimate the 
number of kernel per ear as well as the weight of the kernel. The samples were collected when the 
maize kernel began the phenological stage of milk grain. Details of field measurements can be 
consulted in Appendix A. 

The reference data used at regional scale was provided by Statistics Austria (Statistik Austria, 
Feldfruchternteerhebung). The methodology used is based on information from special harvest 
reporters on municipality level in combination with sample survey after harvest time at provincial 
level.  

B. Method 

We used SAFY and GRAMI crop models as well as EO data to estimate maize yield. The 
assimilation of the EO data in the crop models was done in two ways: calibration and calibration + 
updating. We introduced an innovative scenario with a maximum number of free parameters, which 
corresponds to around 80% of the total number of model parameters. Figure 16 gives an overview of 
all implemented procedures in the experiment. The following sub-sections explain the individual 
components in detail. 
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Figure 16. Flowchart of the procedures implemented in the experiment 

LUT: Look Up Table; 
PSO: Particle Swarm Optimization; 
EnKF: Ensemble Kalman filter; 
PF: Particle Filter; 
Asst: Assessment; 
FAPAR: Fraction of Absorbed Photosynthetically Active Radiation. 

4.5 GRAMI and SAFY crop simulation models 

GRAMI and SAFY models use the Monteith (1977) theory to simulate crop growth at daily time 
steps. The daily crop growth is simulated through four processes: (1) calculation of growing degree 
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days (GDD) for determining the actual phenological phase, (2) absorption of incident radiation energy 
by leaves according to actual leaf area, (3) production of new dry mass by the leaf canopy, and (4) 
partitioning of new dry mass for production of new leaves and/or grain filling according to the actual 
phenological phase (Ko et al, 2005). A representation of GRAMI model is depicted in Figure 17. 

The models operate from the sowing date to the day of complete leaf senescence and consider 
three cardinal growth stages: emergency, anthesis and maturity. The leaf extension period starts from 
emergency to anthesis and the grain-filling period from anthesis to maturity. The model conception 
considers that cereals have an initial period in which most of the aboveground dry mass consists of 
leaf tissue. Then, the percentage of non-leaf tissues (stem and reproductive organs) increases along 
growing season. Prior to flowering, the production of new leaf tissue ceases and the photoassimilates 
are routed to grain growth. The leaf senescence is modelled by assuming that leaves appearing on a 
given day have a specific lifespan expressed in degree-days. 

The data required to run these models are daily average air temperature and daily total solar 
irradiance. Input data such as soil physical properties, water content, fertility and management data 
are not required. It is assumed that the effects of these factors, related with canopy growth, are 
mimicked globally when the LAI simulation is “fit” to the observed LAI data by tuning a group of 
model parameters.  

Moreover, it is assumed that Light Use Efficiency (LUE), which represents the efficiency to 
convert absorbed PAR into biomass, captures in a simple manner a global level of all agro-
environmental crop stresses integrated together. Therefore, it could be an indicator of the performance 
of agricultural practices, such as the irrigation and fertilization. 

In the experiment, the grain yield was calculated using the total biomass estimated along the crop 
season times a constant harvest index which value was 0.48. 

The formulae of both models are presented in Appendix B. 
 

 

Figure 17. GRAMI model flowchart (adapted from Delécolle, 1992 and Ko et al, 2005). 

4.6 LAI estimation 

The Leaf Area Index was estimated based on CLAIR model (Clevers, 1989). The model states an 
exponential relationship between LAI and the soil-line based Weighted Difference Vegetation Index 
(WDVI). The equations are defined as follows: 
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WDVI = ρnir – (ρred * ρs nir/ρs red) (6) 
where ρred and ρnir represent the reflectance in the red and near infrared channels respectively. The 
ratio ρs nir/ρs red is called soil line slope, a linear relationship of red and near infrared reflectance of bare 
soils, which represents the effects of the soil background on the calculation of the vegetation index. 

ܫܣܮ =
1
ߙ

∗ ln ൬1 −
ܫܸܦܹ

∞ܫܸܦܹ
൰ (7) 

where α is the extinction and scattering coefficient which depends on canopy architecture, crop type 
and leaf angle distribution. WDVI∞ is the asymptotically limiting value for the WDVI. 
In the present study, the WDVI∞ was estimated for each image (maximum WDVI value for vegetated 
areas), while, the coefficient α assumed a constant value for all the crop coverage types along the 
season.  
The LAI estimations were obtained by processing 10 LANDSAT and DEIMOS images for season 2013 
and 12 images for season 2014. A detailed description of this methodology can be found in Vuolo et al. 
(2013). 

4.7 Sensitivity analysis 

Sensitivity analysis techniques have been developed to determine how sensitive model outputs 
are to changes in model inputs such as parameters or input variables, focusing mainly on the 
measurement and calibration of those parameters (Wöhling, et al. 2004). Additionally, this kind of 
analysis provides useful information about the model structure and allows identifying parts of the 
model which could be further improved (Confalonieri et al. 2010). Examples of sensitivity analysis for 
crop models can be consulted in Wöhling, et al. (2004), Confalonieri et al. (2010) and Richter, et al. 
(2010). 

In this study, we carried out three experiments: a univariate sensitivity analysis, a correlation 
analysis between model parameters and a test of robustness for Look up Table (LUT) and Particle 
Swarm Optimization (PSO) techniques. 

4.7.1 Generating a reference simulation 

Reference model parameter values were extracted from an initial Look up Table approach (fully 
explained in section 4.9.1). The combination of parameters which yielded the best fit between 
observed and simulated LAI values for the 8 maize plots were used to create a dispersion distribution 
for each parameter. Then, the median values of each distribution were assumed to be representative 
for the group of analyzed plots. Reference curves for each state variable were obtained using reference 
parameters and both crop models GRAMI and SAFY. 

4.7.2 Univariate sensitivity analysis 

The univariate sensitivity analysis was carried out in both models to determine which parameters 
have the most significant effect on biomass and LAI simulation. The goal was to state a priority 
calibration’s parameters list. The rate of change in respect to reference values was ± 15 %. The biomass 
and LAI differences were expressed in percentage. 

4.7.3 Parameter correlation analysis 

A correlation analysis between parameters regarding biomass estimation was carried out to 
identify possible ill-posed problems in model calibration. The two parameters analyzed assumed 
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values in a broad range of possibilities, the rest of them kept fixed values. A correlation matrix and a 
multi-parameter analysis chart were obtained. 

4.7.4 Sensitivity analysis of LUT and PSO to LAI data 

The robustness of the LUT and PSO approaches to calibrate accurately GRAMI and SAFY models 
was tested using synthetic LAI data. We tested different levels of random error, frequency and gaps 
data. The sensitivity was assessed by comparing the reference yield and phenology against the 
estimations obtained by SAFY and GRAMI calibrated by LUT and the PSO.  
The goal of the sensitivity analysis was simulate the effect of error in EO data such as presence of 
clouds, atmospheric noise or inaccuracy of the inversion algorithm to retrieve LAI in the calibration of 
the CGMs. The experiment was integrated for two steps: 

1. A “LAI observation” data series was obtained by running GRAMI and SAFY model using 
reference parameters (item 3.3.1).  
2. A set of synthetic LAI observations was generated using the reference LAI data series and 
adding noise to the reference curve by the Monte Carlo approach. The type of errors and levels 
considered are detailed in Table 11.  

Table 11. Type and level errors used along the sensitivity analysis 

Item Levels Constant value 
random error (%) 10,15,20,25 and 30 frequency 10 days 
frequency (days) 10,15,20,25 and 30 random error 20% 

gaps observation (crop stage) emergency, anthesis, senescence random error 20% 

4.8 Filtering of Leaf Area Index estimations 

LAI estimations by CLAIR model were filtered using Whittaker filter. The filter is based on the 
penalized least squares approach (Eilers; 2003). The basic algorithm integrates two components, which 
measure the fit of the smoothed series in respect to the original data series (8) and the roughness of the 
smoothed data series (9): 

S = ሺy୧ − z୧)ଶ  

୧

 (8) 

ܴ = ሺ∆z)ଶ



 (9) 

The combination of both components is defined as: 

Q = S + λ R (10) 

where y is the original data series, z the smoothed data series and λ the smoothing parameter which 
represents the influence of the roughness component in the global function (5). In the formula, R is 
expressed as a first order difference but it could be considered a second or third order. 

The goal of the penalized least squares approach is to find the smoothed data series which 
minimize Q. The larger is λ the stronger is the component R in the global equation. Consequently, the 
series will be smoother but less fit in respect to the original data series. 

In our study, λ was tuned considering two criteria: the visually comparing the smoothed curve 
and the LAI series (estimated by EO data) and the error between the measured LAI in the field and the 
smoothed LAI values. The λ tested were 100, 300, 1000. 
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The Whittaker filter was chosen because it is easy to implement, it is able to process large 
amounts of data and it is controlled by a unique parameter (λ) which can be calibrated visually or by a 
cross-validation approach (Atzberger and Eilers, 2011). 

4.9 Calibration of CGM parameters 

Two calibration approaches, iterative Look Up Table (iLUT) and Particle Swarm Optimization 
(PSO), were tested with the aim of calibrating 10 out of 12 parameters of the GRAMI model and 11 out 
of 16 parameters of the SAFY model. As already mentioned in chapter 1, the main goal of calibration 
was to obtain accurate yield estimation using as little input data as possible. 

4.9.1 Iterative Look up Table (iLUT) 

LUT is a simple approach in which a range of parameter combinations are executed to create a 
pre-computed table of modeled state variables. The parameter levels are selected by minimizing a cost 
function which calculates the error between the state variable estimated by EO and the modeled one 
corresponding to a LUT record. 

a) Parameters range for the first LUT 
The range of parameters considered to build the initial LUT for GRAMI and SAFY were based on 

existing agronomic data and bibliographical references (Duchemin et al., 2008; Claverie, et al., 2012). 
Table 12 details the parameter ranges and Table 13 presents values of fix parameters and size of the 
LUTs for each model. A combination of levels for each parameter represents a record in the LUT and 
hereinafter will be called treatment. 

Table 12. Initial Look up Table for GRAMI (G) and SAFY (S) models 

Parameters Model Symbol Min Max Pace N° classes 
Initial LAI G-S LAIin 0.05 0.15 0.05 3 

Efficiency light use G-S LUE 2 6 1 5 
Extinction coefficient G-S K 0.3 0.9 0.2 4 

Specific leaf area G-S SLA 0.012 0.036 0.008 4 
Leaf partition fraction G-S A 0.05 0.5 0.15 4 
Leaf partition fraction G-S B 0.0006 0.0054 0.0016 4 

Sowing date  G-S SW 100 120 5 5 
GDD emergency G-S GDDem 100 260 40 5 
GDD maturity G-S GDDmt 1180 1580 100 5 

Leaf span G LLS 700 1300 200 4 
Senescence factor A S SenA 700 1300 200 4 
Senescence factor B S SenB 3000 9000 3000 3 

Table 13. Fix parameter values and LUT size for GRAMI and SAFY models 

Item GRAMI SAFY 
Minimum temperature 8 8 
Optimal temperature  30 

Maximum temperature  40 
Power stress function  2 
Parameters calibrated 10 11 

LUT size record 1,920,000 5,760,000 
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The original names of the GRAMI and SAFY parameters have been modified with the aim of 
simplifying the comparison between models. For a detailed description of the models refer to Mass, 
1992 (GRAMI) and Duchemin et al, 2008 (SAFY). 

In Figure 18 are represented some of the parameters introduced in Table 12. The figure is 
complementary to the concepts presented in section 4.5 and the formulas detailed in Appendix B. 
As showed in the equation 11 a determined amount of biomass is synthetized by the crop every day t 
(∆DMt). The amount of biomass assimilated daily depends on the photosynthetically active radiation 
absorbed by the crop (APAR) and the efficiency of the plant to convert this energy in biomass (LUE). 
The APAR is calculated using the photosynthetically active radiation (PAR) and the Beer’s Law which 
assesses the fraction of PAR absorbed by the plant. The Beer’s Law includes the LAI and the 
coefficient K. The LAI indicates the total area of the leaves. The coefficient K represents the proportion 
of the incident light extinct through the crop canopy. The value of K is directly related with leaf 
structure and canopy architecture. The allocation of the biomass to the leaves and stem as well as the 
length of the leaf growing period depends on the parameters A and B. When the plant reaches the 
anthesis the biomass is accumulated only in the grain and the stem. The beginning of the leaf 
senescence is determined by Lls in GRAMI and Sen A in SAFY. Additionally, for SAFY the speed of 
the senescence is mimed by the parameter Sen B. The LAI at the end of the day is calculated 
considering the LAI of the day before (t-1), the new biomass accumulated in the leaves in the day t 
and the senescence in case the GDD is larger than the senesce threshold. The biomass accumulated in 
the leaves is converted to LAI using the parameter SLA. 
The brown curve represents the total cumulated biomass synthetized along the crop season. 
 

 

Figure 18. Representation of LAI and cumulative dry biomass along the crop season for GRAMI (G) 
and SAFY (S) models. 

b) Cost function 
Four cost functions were built considering factors such as phenology and LAI observation 

uncertainties. The functions tested were: “simple cost function”, “weighted cost function by 
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phenology”, “weighted cost function by LAI uncertainty” and “balanced cost function”. The 
formulation of each cost function is described in detail in Appendix C. 

c) Criteria to select LUT treatments 
Two criteria were tested: (1) maximum number of treatments and (2) threshold tolerance 

expressed in error percentage.  
(1) 100, 1000 and 1% of the best treatments. 
(2) 20, 15, 10, 5 % 

Finally, the iterative LUT (iLUT) was carried out using the best cost function and the best 
extraction criteria. The biomass was calculated as the average of the simulations obtained by the 
selected LUT records. 

d) Iterative LUT 
The iterative approach consists of a successive selection of parameters levels by analyzing the 

frequency distribution of treatments with lowest global LAI calibration error. The process was 
repeated till a minimum number of 100 LUT records were selected. The perceptual global error 
threshold to select the treatments ran from 20 % (first iteration) to 5 % (fourth iteration). The logical 
rules using to extract the parameters levels are presented in Appendix C.  
In Figure 19 is represented the iterative procedure. The LAI, retrieved from EO data, was used to 
assess the error of each LUT record in each iteration. The state variable most relevant for our 
experiment was biomass. The logical rules were used to select the levels of each parameter and 
generate a new LUT for the next iteration. 
 

 

Figure 19. Representation of iterative LUT procedure. 

4.9.2 Particle Swarm Optimization algorithm 

PSO is a stochastic optimization technique, developed in 1995 by Kennedy and Eberhart. The 
algorithm, inspired by social behaviors of bird flocking or fish schooling, simulates the flying of n 
particles in a D-dimensional search space (Wang (2014) and Bazargan, 2011). The optimization 
algorithm is initialized with a population of random solutions and a searching process is carried out 
along the updating generations. The particles change their location along the generations based on 
their own best search point in the history of the search process (personal best; pbest) and the best 
search for all the particles in the swarm (global best; gbest). The position and velocity of a particle are 
updated in each generation according to the following equations: 
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(12) 

 
(13) 

where i indicates the particle number, t is the generation number; c1 and c2 are cognitive and social 
constants which modify the velocity of particles toward the previous best position and the global best 
position respectively. Then, w is the inertia weight, rand1 and rand2 are random numbers uniformly 
distributed within the range [0-1]. Finally, vit+1 and xit+1 are the velocity and position of the particle i at 
time t+1 respectively (Kim et al, 2013). From the velocity formulation emerges that the updated 
particle velocity depends on: the previous velocity plus its inertia weight, the randomly weighted 
difference between the particle and the particle best position and the randomly weighted difference 
between the particle and the global best position. The incorporation of a randomly uniform 
component weighting the differences allows a good exploration of the state space and reduces the 
probability to get stuck at a local minimum (Trelea, 2003). 

In the PSO procedure, it is recommended to confine the particles position to a feasible search 
space, in case, there is information about the parameters available beforehand. Then, the velocity of a 
particle should be limited to a maximum to prevent its departure from the search space. A rule of 
thumb states that the initial maximum velocity is equal to 50 % of the search range for each dimension 
(Evers, 2011). With respect to the inertia weight (w), it is recommended to apply a decreasing value 
from 0.9 in the first velocity update to 0.4 in the final velocity update (Bouallègue, et al.,2012). 
Moreover, the acceleration coefficients C1 and C2 should assume similar values giving stability during 
the searching process. A high value of C1 respect to C2 can produce a more erratic flight of the 
individual particles through the problem space, while a low C1 respect to C2 produces a prematurely 
convergence toward local minima. A value of 2 for both coefficients outperforms the previous 
versions (Kennedy and Eberhart). In Figure 20 depicts the PSO algorithm for one particle in a two 
dimensional space at time t (generation). 

 

 

Figure 20. Particle Swarm Optimization; a: current motion influence, b: particle memory influence, c: 
swarm influence (adapted from Hanrahan, 2011). 
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The strength of PSO is its simplicity and capacity for optimizing a wide range of functions. The 
velocity adjustment by a combination of pbest, related with the particle “experience”, and gbest 
related with group knowledge ensures diversity of response and at the same time stability to the 
system (Kennedy and Eberhart, 1995). 

A sensitivity analysis was performed considering three important aspects of PSO algorithm: 
the value of the PSO parameters, the number of GRAMI/SAFY parameters to be optimized and the 
effect of LAI errors. 

The PSO optimization function implemented in our experiment is driven by 12 parameters. A 
sensitivity analysis was carried out considering five parameters with large impact on the function 
performance. A range of ± 50% with respect to the default values was implemented (Table 14). The 
remaining PSO parameters assumed default values. Moreover, the number of parameters to be 
optimized was tested aiming to assess the effect of the ill-posed problems in the PSO algorithm. Then, 
a fixed value, extracted from iLUT approach, was assigned to the non-optimized parameters. 

Finally, the effect of the LAI random error, gaps and frequency was tested using the same 
procedure as depicted in section 4.7.4. 

Based on the results obtained in the sensitivity analysis, a strategy was developed to estimate 
biomass using the “Simple cost function” and “Weighted cost function by LAI uncertainty”. 
Additionally, we tested the above mentioned cost functions using an emulator of 4DVAR approach. 
The main goal was assess the feasibility to incorporate restrictions in parameters optimization using 
ancillary data (Appendix D). 

The PSO algorithm was implemented in Matlab using the code developed by Evers (2011). 

Table 14. PSO parameters and range values used in the sensitivity analysis 

Item GRAMI SAFY 

N° parameters 
to be optimized 

5: LUE, K, SLA, LAIin, LLs 6: LUE, K, SLA, LAIin, SenA, SenB 
7: LUE, K, SLA, LAIin, A, B, LLs 8: LUE, K, SLA, LAIin, A, B, SenA, SenB 
10: 7 + Sw, GDDem, GDDmt 11: 8 + Sw, GDDem, GDDmt 

GRAMI/SAFY range 
parameters 

defined in Table 12 

Maximum velocity range parameter * factor (0.25-0.5-0.75) 
Max. n° iterations 500-1000-1500 

Number of particles 12-24-48 
Acceleration 1-2-3 
Final inertia 0.2-0.4-0.6 

4.10 LAI updating approach 

Updating approach takes into account model and observation errors in the assimilation process. Two 
updating techniques were tested in combination with calibration: Ensemble Kalman filter (EnKF) and 
Particle filter (PF). 

4.10.1 Ensemble Kalman filter 

The EnKF is based on the Linear Kalman filter method proposed by Kalman (1960). It was 
developed by Evensen (1994) with the objective to overcome the requirement of model linearity of 
Kalman’s algorithm. The EnKF generates an ensemble of observations and model which are used to 
update the variable of interest using the Linear Kalman filter equation: 

Aa = A + k (D-A) (14) 



61 
 

where A and Aa are the model forecast and analysis (updating) state, D the observation and K the 
Kalman gain which depends of the forecast and measurement covariance errors. 

The assimilation of LAI using EnKF was conducted in the following manner. GRAMI and 
SAFY models began running at sowing date. Gaussian noise, based on random sampling of LUE, was 
added to shift the simulated LAI. In this way, the ensemble of forecasted LAI state was generated also 
called model ensemble. The rest of model parameters remained constant during the experiment. In 
case an observation was available at time t, we added a Gaussian perturbation to generate the 
observation ensemble. The forecast and observation ensembles were assimilated using the formulae 
described above (12). Then, the updated LAI at time t was forced into the crop model. The process was 
finalized when all LAI observations were assimilated. In Figure 21 is depicted LAI updating using 
EnKF. 

 

Figure 21. Assimilation of LAI observations in GRAMI and SAFY models by EnKF. 

To generate the model ensemble, one can apply Gaussian perturbations in state variables, 
drive variables or model parameters. We decided to generate the model ensemble by adding Gaussian 
noise only in LUE parameter. Our decision was based on two reasons. First, if Gaussian noise is added 
to a correlated group of parameters, repeated particles are obtained because different parameters 
levels combinations yield same LAI values. Therefore, the efficiency of the process is reduced. Second, 
considering that it is advisable using few or only one non-correlated parameter; LUE seems more 
suitable because it is directly linked to the effect of environmental and management conditions on 
crop growing. Then, a special focus of our analysis is to test the ability of updating techniques to 
capture the spatial variability in each plot using EO data at pixel scale. 

A sensitivity analysis of EnKF was performed to test the effect of the number of particles of 
observation and model ensembles as well as model and observation error. In Table 15 are detailed the 
ranges of value used in the sensitivity analyze. 

The GRAMI and SAFY models used in the iLUT and PSO sensitivity analysis were 
implemented. A synthetic LAI data series was generated by adding a maximum random error of 20% 
in the LAI values obtained by the reference CGMs. Then, the error of the CGM was simulated by 
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replacing the LUE parameter for a value 20% larger than the reference (CGM “to update”). The rest of 
parameters kept the same values. Finally, 12 observations from the synthetic LAI data series were 
extracted to carry out the updating simulation. The model and observation errors were calculated by 
comparing the LAI values with the LAI data series from the reference CGMs. The sensitivity of EnKF 
regarding overestimation and underestimation errors in observations and the model was tested using 
a range of ± 50 % of reference error values. The observation and model uncertainties were assumed to 
be constant throughout the experiment. 

Table 15. Variables and value range tested in the sensitivity analysis of EnKF 

Observation and Model ensemble size from 50 to 500 particles 
Observation error 0.5-1.5 % of observation reference error 
Model error 0.5-1.5 % of model reference error 

4.10.2 Particle Filter 

Particle filter is an approach based on the Monte Carlo simulation, which is able to estimate 
state variables using a set of random samples (particles) and their weights (Lahoz, et al, 2014). The 
main advantages of PF are the non-pre-assumption regarding the model characteristics and the noise 
probability distribution (Han and Li, 2008). These characteristics represent a benefit respect to other 
filters considering that crop-growth models operate in nonlinear and non-Gaussian systems 
(Arulampalam, et al. 2002). However, the main drawback of PF is the filtering divergence produced 
after several iterations in which very few particles have significant weight. (Makowski et al 2004). 

For this reason, two approaches, suggested by bibliography, were implemented in this study: 
a resampling routine called Sequential Importance Resampling (SIR; Arulampalam, 2000) and a non-
resampling technique consisting of using a larger particles ensemble. In Figure 22 is depicted the PF 
procedure to updating LAI in GRAMI and SAFY. 

A sensitivity analysis of the PF was implemented to test the effect of: the size of the model 
ensemble, the model and observation errors. The ranges of values used in the sensitivity analysis were 
the same as in the EnKF. It is important to highlight that no observation ensemble is implemented in 
the PF is to update the state variable. Instead, a unique random value is introduced as observation 
considering a Gaussian distribution with a standard deviation equal to the observation error. 

Based on the results of this analysis, it is the objective to find the optimal strategy to estimate 
yield using the best updating technique in combination with the best calibration technique. 

Both methodologies EnKF and PF have been implemented in Matlab based on the work of 
Evensen (2003) and Arulampalan, et al. (2002) respectively. 
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Figure 22. Assimilation of LAI observations in GRAMI and SAFY models by PF. 

4.11 Validation of GRAMI and SAFY models 

To further validate the performance of the calibrated GRAMI and SAFY models, a base-line 
approach is applied which derives yield data independently based on a remotely sensed FAPAR 
dataset and the well-known Monteith equation (Monteith, 1977). The Monteith approach well-known 
states that the produced total biomass is directly proportional to the accumulated absorbed 
photosynthetically active radiation (APAR) and the capability of the plant to convert this energy in 
biomass (LUE). Then, the yield is calculated as a percentage of the total biomass defined by the 
harvest index (HI). In this approach no computational loop was implemented in comparison with 
SAFY and GRAMI models.  

Yield = ∑ APARt . LUE . HI 
௧ୀଵ  (15)

The performance of the estimation depends greatly on the accurate determination of the 
biomass accumulation interval defined for cardinal points. Three different cardinal points extracted 
from iLUT approach, filtering approach (Atzberger et al. 2014) and field data observations were 
tested. Moreover, two groups of LUE values for each calibration technique were evaluated; the 
regional average LUE value and the calibrated LUE values at plot scale. 
The FAPAR data series was derived from gap-free LANDSAT images series with a temporal 
resolution of 15 days provided by Vuolo, et al. (2016). The daily FAPAR resolution was obtained by 
implementing the approach suggested by Atzberger et al. 2014. 

4.12 Verification 

The calibration and updating techniques were run in a group of well spatially distributed maize plots 
identified in the field for season 2014. The resulting average modeled yield represented the average 
regional yield estimation and was compared with the official statistics for county Gänserndorf. Then, 
the yield estimations at plot scale were compared with field estimations. 
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4.13 General considerations 

The Normalized RMSE (NRMSE) is used hereafter because facilitates the comparison between 
datasets or models with different scales. The NRMSE expresses the RMSE as a percentage with respect 
to the mean value of the dependent variable. It can be interpreted in a similar way to the variation 
coefficient. 

Four goodness-of-fit parameters have been used to compare the performance of the calibration 
and updating techniques along the experiment. Three parameters have been used at plot scale: R2, 
NRMSEf and EEP and one at regional scale, EER. 
The determination coefficient (R2) indicates the proportion of yield variability explained by the 
regression model. The normalized root mean square error for the regression function (NRMSEf) 
represents the mean error expressed in percentage between the estimated yield by the regression 
function and the observed yield. Additionally, the estimation error at plot scale (EEP) between yield 
observed and estimated by the CGM is included. This error is calculated using the same equation as 
NRMSE, however, without considering the regression function. Finally, EER measures the agreement 
between regional yield estimation by the official Austrian Institute of Statistics (Statistics Austria) and 
the average yield simulated by the CGM. 

Finally, the maize yield is expressed, hereafter, in quintals per hectare (q/ha) with 0 % of grain 
humidity (1q = 0.1 tons). The commercial humidity of the maize is 14%. 
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5 Results and Discussion 
The chapter is divided in three parts. In the first part, the results of calibration and updating of 

GRAMI and SAFY models regarding yield observations of the season 2013 are presented and 
discussed (§ 5.1 to § 5.8). Then, we introduce in section 5.9 the results of the verification of the 
techniques using yield observations of the season 2014. Finally, we present an overview discussion 
about the most relevant points of our experiment and a comparison the results obtained for both 
seasons with findings from similar previous research (§ 5.10). 

5.1 Yield estimation by field sampling 

The fitting function between yield informed by farmers and estimated in field using the 
procedure described in Appendix A is presented in Figure 23. The black bars indicate the variability of 
yield estimations (mean ± standard deviation).  

 

Figure 23. Regression function between yields reported by farmer and estimated in field by sampling 
for season 2013. 

The function shows a good fit between the average yield estimated by sampling and the yield 
reported by the farmers. However, the variability of the estimations for some samples is markedly 
large. The main sources of spatial variability observed in field were the size of the maize cob and the 
number of ears per 10 meters (Appendix A).  

The sampling covered a broad range of maize yield. As introduced in section 4.4, a sub-group of 
samples with a special management corresponds to seed production. In Figure 23, these observations 
are localized on the left side of the chart. If the analysis only considers the plots for grain production 
the R2 is reduced to 0.54. 

The official average yield estimation by Statistics Austria for the county of Gänszendorf 
expressed as dry grain (0% humidity) was 75 q/ha and 90 q/ha for seasons 2013 and 2014 respectively. 
Then, the yield estimation error at regional scale, calculated as the average of the measurements in 
field, was 2.2 % for season 2013 and 10.7 % for season 2014. 
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5.2 LAI estimation using EO data 

The fitting between LAI measured in the field for season 2013 and LAI estimated by the semi-
empirical model described in section 4.6 is depicted in Figure 24. A total of 71 LAI observations were 
compared with the estimations by the CLAIR model based on Landsat 5TM and DEIMOS 
observations. The regression function shows the underestimation of LAI with respect to the field 
measurements. This mismatch is expressed by the slope of 1.2.  

In a more detailed analysis of the scatter plot it is possible to identify a range between 0.75 and 
1.5 (m2/m2) in the Y axis with larger variability with respect to the rest of the distribution. This 
mismatch between LAI observations and estimations could be explained by the overestimation of field 
measurements by LICOR 2200. This type of error is maximum during senescence due to the fact that 
the instrument is not able to discriminate green tissues from senescence vegetation. 

 

 

Figure 24. Scatter plot between LAI measured in field and estimated by the CLAIR model using 
Landsat 5TM and DEIMOS imagery. 

5.3 Sensitivity analyses of crop growth modelss 

5.3.1 Univariate sensitivity analysis 

The effect of parameters variation on biomass and LAI simulation for GRAMI and SAFY models 
is represented in Figure 25. The bars indicate the percentage of change of biomass (a) and LAI (b) for a 
variation range of ±15 % of reference parameters. This percentage of variation was chosen to keep the 
parameter in a realist range of values. 

The parameter with the largest effect on the simulated biomass for both models is Light Use 
Efficiency (LUE). Then, parameters such as SW and GDDmt showed an unbalanced effect in biomass 
simulation because they are affected by daily mean temperature. For instance, a very early sowing 
date could produce no modification in biomass simulation, because the temperature is lower than the 
optimum growth temperature. On the other hand, the biomass simulation is affected notably if a late 
sowing date is set because of the reduction of the crop season. 

An important difference between the models is observed in senescence parameters. Senescence 
has a higher impact on biomass simulation for GRAMI. This can be explained by differences in the 
formulas of the models (Appendix B). In GRAMI the age of the biomass produced at time t is 
calculated along the crop season in each loop step. Consequently, this specific amount of biomass dies 
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when the lifespan threshold is reached. There is a link between senescence and the biomass produced 
in the period between emergency and anthesis. In SAFY the leaf daily senescence is calculated as a 
percentage of the biomass synthetized the day before the current loop. Therefore, the senescence is 
decoupled from the leaf growing period. 

 

 
(a) 

 
(b) 

References: LAIin: LAI initial LUE: Light Use Efficency  
Sw: sowing date  K: extinction coefficient SLA: Specific Leaf Area 
GDDem: cumulative degree days to emergency A: Leaf partition factor B: Leaf partition factor 
GDDmt: cumulative degree days to maturity Lls: Leaf lifespan  SenA and B: Senescence factors 

Figure 25. Univariate sensitivity analysis, a) biomass and b) LAI. The black bars correspond to the 
GRAMI model and the blue to the SAFY model. 
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Regarding LAI simulation, the parameters with a higher impact are SLA, A and B. These last two 
parameters are related with the slope and maximum value of the LAI curve (Figure 18). Then, 
phenological parameters such as SW, GDDem, GDDmt showed proportionally more influence on LAI 
simulation than on biomass simulation. This is due to phenological cardinal points define the crop 
season. Consequently, an inaccurate estimation of these parameters shifts the simulated LAI curve in 
relation with the reference. We observed also that the differences for senescence between the CGMs 
are similar to the behavior noticed for biomass simulation. The chart gives a good overview of the 
complexity of parameters calibration by using LAI data series. 

The influence of the fixed parameters on the sensitivity analysis was verified. To define proper 
parameter values a bibliographical review and an exploratory analysis was carried out.  

5.3.2 Parameter correlation analysis 

The correlation between CGMs parameters regarding the biomass estimation for a group of LUT 
records is presented in Figure 26. The records were selected considering a maximum total error 
between reference and simulated LAI of 20%. For each parameter analyzed, the first column refers to 
GRAMI and the second one to SAFY. The correlation values in references are expressed in absolute 
values. The inverse correlation between parameters is identified with (-). 

 

 

 

Figure 26. Level of correlation between CGM parameters: first column (GRAMI), second column 
(SAFY). The inverse correlation between parameters is identified with (-). 

The parameters with higher correlation are LUE, LAIin, K, SLA, A and B. These high correlation 
values indicate restrictions to calibrate them jointly due to similar biomass simulations. Hence, similar 
estimations might be obtained by different combinations of parameter levels (ill-posed problem). On 
the other hand, parameters related to senescence and GDDmt have low correlation with the rest of 
parameters. Sw and GDDem have an intermediate inverse correlation in both models. For instance, a 
very early Sw could be compensated by a larger GDDem and vice versa. 

0-0.2
0.2-0.4
0.4-0.6
0.6-0.8
0.8-1
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A complementary plot based on stepwise analysis is presented in Appendix E. 

5.4. Yield estimation using calibrated GRAMI and SAFY models by the iterative LUT technique (iLUT) 

5.4.1. First step of iterative LUT calibration 

In this section we discussed aspects related with the cost function and the criterion used to extract 
LUT records in the iterative procedure. Additionally, we present some findings about the effect of LAI 
filtering in parameters calibration. 

5.4.1.1 Cost function 

As introduced in section 4.9.1 and extensively described in Appendix C, four cost functions were 
compared: simple, balanced, weighted by phenology and weighted by LAI uncertainty. 
The cost function weighted by LAI uncertainty showed the worst performance. Different tolerance 
thresholds were tested. However, in all the cases the treatments selected yielded simulated LAI curves 
with little resemblance to the observed LAI series. Therefore, biomass was estimated with low 
accuracy. The effect of incrementing error tolerance at the beginning of crop season, in a context of 
large number of free parameters, boosted the selection of a broad range of GDD to emergency and 
initial LAI parameter levels with the consequently dispersion of biomass estimations. 

On the other hand, the weighted cost function by phenology showed the best performance 
provided the weight for anthesis range was not larger than 50% of the total function weight; otherwise 
unsuitable combinations of parameters levels are extracted reducing the biomass estimation accuracy.  

The calculation of the above mentioned cost functions require additional data to identify the 
phenological crop stage or to set the LAI uncertainty threshold. The simple cost function showed an 
acceptable performance without requiring ancillary information. Therefore, aware of the restrictions 
of data availability at regional scale; the simple cost function was implemented in the iterative LUT 
technique. 

In Table 16 are represented the average biomass estimation error and variation coefficient (CV) 
for each cost function.  

Table 16. Comparison accuracy and CV of four cost functions 

Cost function Average error (%) CV (%) 
Simple 6.7 5.6 
Balanced 10.1 3.6 
Weighted by phenology 2.6 6.4 
Weighted by LAI uncertainty 20.6 15.1 

5.4.1.2 Criteria to extract LUT records 

We compared two types of threshold criteria: a maximum number of LUT records and a 
maximum global error expressed as percentage. The threshold expressed as percentage had better 
performance because allows selecting a representative number of LUT records for each plot. 
Additionally, this criterion enabled us to compare the global error between plots along the iterative 
procedure.  
The thresholds implemented from the initial iteration to the fourth one were 20, 15, 10 and 5% 
respectively. 

5.4.1.3 LAI filtering 
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Finally in this first step of iLUT calibration was tested the effect of filtering the LAI observations 
before calibrating the CGMs parameters. As depicted in section 4.8, it was used the Whittaker filter 
and were tested three levels of λ smoothing parameter; 100, 300, 1000. The better performance was 
obtained with λ equal 300. The correlation between LAI measured in field and LAI retrieved from EO 
data was optimized with a reduction of RMSE of 5.5 %. However, the most important improvement 
was observed in LUT approach. The error of the yield estimation was reduced due to new parameter 
levels were selected. The smoothed LAI observations data series had a better fitting with the LAI 
simulations obtained by the calibrated SAFY and GRAMI models. We verified that a λ smoothing 
parameter equal 1000 does not improved the results incrementing the dispersion of biomass 
estimations. 

5.4.2. Iterative LUT approach at plot scale 

The main goal of the iterative iLUT was to select a reduced group of parameter levels which 
minimize LAI error during calibration. 
An example of iterative LUT inversion for GRAMI and SAFY models is presented in Figure 27. The 
comparison was done for the same maize sample and iteration level. The black lines represent the 
simulated LAI curves generated by the combination of parameter levels selected in the iLUT process. 
The LAI values estimated by the CLAIR model are indicated with red points (a-c). The simulation of 
the cumulative biomass along the crop season is presented in figures (b) and (d). 

 
GRAMI SAFY 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 27. Simulated LAI and cumulative biomass for GRAMI (a, b) and SAFY (c, d) respectively. 

The LAI curves simulated by GRAMI (a) and SAFY (c) were extracted from LUT records with a 
global LAI calibration error lower than 10% (third iteration). GRAMI showed a larger variability of 
selected LAI curves for the same global error tolerance. The number of LUT records extracted for 
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GRAMI was 40% larger than for SAFY. The parameters with larger variability were LAIin, LUE, K, 
SLA and B. On the other hand, phenological parameters were similar in both models. Finally, the 
maize yield was 5 % underestimated for SAFY and 15 % overestimated for GRAMI. This trend was 
observed in all the samples analyzed. 

The lower number of selected LAI records in SAFY (Figure 27 b) compared to GRAMI (Figure 27 
a) could be related with the temperature stress function (Appendix B). This function implemented in 
SAFY might work as a constraint, reducing the number of simulated LAI curves for a given global 
calibration error threshold. 

Through the iterations the LAI calibration error and parameter variability were reduced for most 
of the samples. The global LAI calibration error diminished 50% on average for all the plots. 
Additionally, parameter variability was reduced in a range from 40% to 100% depending on the type 
of parameter. 

The scatter plots between yield simulated and observed for the first and best iteration of LUT for 
GRAMI (a, b) and SAFY (d, e) are sketched in Figure 28. In this analysis, the best iteration was chosen 
based on the lowest maximum global error for a given plot. The black bars in Figure 28 depict the 
variability of the yield estimations considering ±one standard deviation from the mean yield 
estimation.  

A significant improvement is observed by comparing GRAMI performance from the first 
iteration (a) in relation to the best iteration (b). All the parameters of goodness-of-fit improved. The 
regional estimation error was reduced by 38% while for EEP the reduction was 16.7 % regarding the 
first LUT iteration. Moreover, the R2 was increased and the NRMSEf decreased by 11 %. Additionally, 
the variability of yield estimations was sharply reduced in response to the reduction of parameter 
variability. On the other hand, a partial improvement is observed in SAFY. The regression function 
was enhanced in the best iteration, evidenced by the increase of R2 and the reduction of NRMSEf by 
10%. However, EEP increased and the EER went from 0.6 % (first iteration) to 10.4 % (best iteration). 
The regional yield was underestimated by SAFY and overestimated by GRAMI.  

A complete summary with the goodness-of-fit parameters for both models is presented in 
Appendix F. 

The efficiency of the iLUT approach to calibrate phenological parameters was also analyzed. The 
variability of phenological parameters such as sowing date, GDDem and GDDmt was reduced, in 
average, 80% with respect to the first LUT iteration. Moreover, both models showed good accuracy to 
estimate sowing date and anthesis in relation to field observations collected for season 2013. The 
average error for sowing date was 3.75 and 3.5 days, whilst for anthesis was 4.63 and 3.27 days for 
GRAMI and SAFY, respectively.  

A lower accuracy was observed for GDDmt estimation. The main reason of these discrepancies is 
related to the physiology of maize crop. It was verified that after grain maturity LAI can reach values 
around 1.4 to 1 m2/m2 depending on hybrid, stress conditions and agricultural management. Then, 
there is a time frame of around one month between grain maturity and total plant senescence. 
Therefore, the estimation of GDDmt by fitting LAI series showed a shift regarding physiological 
maize grain maturity. Proof of this was the identification of a systematic offset in the estimation of 
GDDmt regarding field measurements in a range of 20 to 40 days for all the plots. This mismatch 
between grain maturity and plant senescence has no impact in our estimations because yield is 
calculated considering the total above biomass, from emergency to senescence, times the harvest 
index. 
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The high accuracy of calibrated GRAMI and SAFY phenological sub-models by iLUT is 
promising since phenology is directly related to partition of photoassimilates among other 
physiological processes.  

It is important to emphasize that the accuracy of phenological estimations depends on the 
availability of LAI observations during crop season. 
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Figure 28 Scatter plots between observed and estimated yield by GRAMI (a,b,c) and SAFY (d,e,f) 
calibrated by the first iLUT iteration, the best iLUT iteration and LUT at pixel scale respectively. 

 

 



73 
 

5.4.3. LUT approach at pixel scale 

To further improve yield estimation, a routine was tested using reference plot parameters from 
iLUT and LAI data of each pixel. We evaluated different combinations of fixed and free parameters as 
well as ranges of maximum and minimum values for each free parameter in the LUT.  

In a first step, the free parameters were reduced from 10 and 11 to 7 and 8 for GRAMI and SAFY, 
respectively, keeping constant Sw, GDDem, GDDmt. The assumption was that these phenological 
parameters are constant for each plot depending on the maize hybrid. However, results were not 
satisfying.  

In a second step, we included A and B in the group of fixed parameters. These parameters drive 
biomass partition from emergency to anthesis (Figure 18). Therefore, the four phenological cardinal 
points (sowing date, emergency, anthesis and maturity) assumed to be constant for each pixel. In 
Table 17 are detailed the fixed and free parameters for the first and second step of GRAMI and SAFY 
calibration at pixel scale. 

Table 17. Fixed and free parameters in the first and the second step of GRAMI and SAFY calibration at 
pixel scale. 

  GRAMI SAFY 

1° step 
fixed Sw, GDDem, GDDmt  Sw, GDDem, GDDmt 
free LAIin, LUE, K, SLA, A, B, LlS  LAIin, LUE, K, SLA, A, B, SenA, SenB. 

2° step 
fixed Sw, GDDem, GDDmt,A, B Sw, GDDem, GDDmt,A, B 
free LAIin, LUE, K, SLA, LlS LAIin, LUE, K, SLA, SenA, SenB. 

 
The scatter plots for LUT approach at pixel scale for GRAMI and SAFY are depicted in Figure 28 

(c) and (f) respectively. In both cases, strong biases are observed. The underestimation observed in 
SAFY might be related to the temperature stress function. In this function, the LUE is modified 
according to the daily temperature (Appendix B). On the other hand, in GRAMI, the LUE does not 
depend on the daily temperature. This could be a reason of the overestimation observed. 

The charts also show the strong increase of R2 for the GRAMI model compared to the first and 
best LUT iteration. Additionally, the EEP was reduced. However, EER increased from 1.4% to 10% 
reaching a similar value to the first iLUT. In SAFY, the EEP improved with respect to the best 
iteration, however, with values higher compared to the first iLUT. The regression function was also 
improved by the same magnitude as in GRAMI. 

Finally, the variability of yield estimations increased for all the samples in both models. This can 
be explained by introducing intra-plot variability and by the fact that correlated parameters such as 
LAIin, LUE, K, SLA had to be calibrated. 

5.5. Yield estimation using calibrated GRAMI and SAFY models by the Particle Swarm Optimization (PSO) 

5.5.1. PSO parameters sensitivity 

The PSO algorithm is able to select a combination of parameter levels which minimize the error 
of a given cost function in an iterative process. A sensitivity analysis was carried out to assess the 
influence of the PSO parameter levels in the performance of the optimization process. Five parameters 
were analyzed: maximum particle velocity (MPV), population size (n° particles) (PS), maximum 
number of iterations (MNI), acceleration (Acc) and final inertia weight (FIW). The influence of each 
parameter was measured as a percentage of variation of the optimized values in relation to the mean 
value considering all parameter/levels included in the sensitivity analysis. 
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The range for each parameter is detailed in section 4.9.2. The percentage of variation of PSO 
optimization value for the five parameters is represented in Figure 29. 

 

Figure 29. Sensitivity of PSO to MPV, PS, MNI, Acc and FIW implemented in (a) GRAMI and (b) SAFY. 

The sensitivity of PSO parameters between both models is markedly different. Overall, SAFY 
seems more sensitive to PSO parameters. The maximum percentage of variation is around three times 
higher than for GRAMI. Acceleration has in both models an important influence. For SAFY, the 
reduction of maximum particle velocity, from 0.5 to 0.25, has a sharp effect on optimization with an 
error reduction of 80%. Moreover, the optimization value diminished when the maximum number of 
iterations increased from 1000 to 1500. 

These findings express the importance of setting suitable PSO parameters instead of using default 
values. The procedure used to define suitable PSO parameter levels for the SAFY and GRAMI models 
is described in the following sub-chapters. 

5.5.2. Optimum PSO parameter value 

A LUT of PSO parameters was tested emphasizing the three parameters with larger influence in 
the performance of PSO: maximum particle velocity, maximum number of iterations and acceleration.  

The combination of parameter levels 0.25 (MPV), 25 (PS), 2000 (MNI), 2 (Acc) and 0.4 (FIW) 
yielded the lowest EEP for PSO-GRAMI. The average variation coefficients (CV) for all the 
combinations tested were about 22 %. The best parameters combination for PSO-SAFY was similar, 
only the optimal level for MNI was 1000 instead 2000. The CVs were higher than in PSO-GRAMI with 
an average value of 35 %. 

5.5.3. Number of PSO repetitions 

The PSO approach includes two random components as described in section 4.9.2. Therefore, 
when PSO is run more than one time, using same input data, different parameter levels could be 
selected. This effect is maximized in our experiment since the parameters optimized are ill-posed. 

To increase the reliability of the optimization procedure, we assessed the effect of the number of 
PSO repetitions in the selection of CGM parameter levels and consequently in the variability of 
biomass estimations by GRAMI and SAFY. The number of repetitions tested was 10, 30 and 60.  
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The variability of yield estimations was reduced by 10% when the number of repetitions 
increased from 10 to 30. At the same time, the error reduction from 30 to 60 repetitions was lower (5 
%), however, the computational time demand increased significantly. Therefore, PSO was set 30 
repetitions for each sample as a good balance between reliability and computational processing time. 
Moreover, the implementation of repetitions has the additional advantage of allowing calculating 
biomass estimation variability. 

5.5.4. Number of optimized parameters 

We tested the performance of PSO according to the number of parameters optimized. The fixed 
parameter values were extracted from iLUT approach. The NRMSEf, EEP and EER for 5, 7 and 10 
optimized parameters in GRAMI (a) and 6, 8 and 11 parameters in SAFY (b) are represented in Figure 
30. The upper part of the chart specifies which parameters have been optimized in each case. 

A constant reduction of EEP from 5 to 10 optimized parameters is observed in Figure 30 (a). In 
SAFY (b) the minimum EEP is reached with 8 optimized parameters. After 8 parameters, the error 
increases sharply by 72%. This increase is due to the inclusion of phenological parameters such as Sw, 
GDDem, GDDmt in the optimization routine. 

Regarding EER, the values for SAFY are lower than 10% for the three cases analyzed. A 
minimum is obtained for 8 optimized parameters. On the other hand, for GRAMI the maximum is 
around 14%, then, a strong reduction of 76% is achieved with a 10-parameter optimized model. 

Finally, the minimum NRMSEf error is achieved when 7 (GRAMI) and 8 (SAFY) parameters are 
optimized.  

Considering the negative effect of including phenological parameters in PSO-SAFY, it was 
decided to optimize 7 and 8 parameters from GRAMI and SAFY, respectively. The phenological data 
were extracted from iLUT approach. 

 

 
(a) 

 
(b) 

Figure 30. Variation of EEP, EER and NRMSEf according to the number of variables optimized for (a) 
PSO + GRAMI and (b) PSO + SAFY.  

5.5.5. Cost function 

The simple cost function and the weighted cost function (Appendix C) were tested in PSO. The 
weighted cost function showed a low performance with an EEP 90% higher than the simple cost 
function. A higher error was also registered in regional yield estimation (EER) with an overestimation 
of 26 % as compared to 3.1 % obtained using the simple cost function. 
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Additionally, we tested both cost functions using 4DVAR formulation (Appendix D). The 
background parameter values and standard deviations were extracted from iLUT technique. 

The modified cost functions did not overcome the performance of the simple cost function. We 
observed that PSO was strongly constrained if background parameters, with low standard deviation, 
are included in the optimization function. The algorithm is “forced” to select a combination of 
parameter levels, practically, equal to the background parameter values set in the cost function. 
Therefore, it is recommended to implement this kind of cost function only if there is enough 
knowledge about the variability of the parameters in the study area. 

Acceptable results were obtained when background phenological parameters were included in 
the cost function. This could be a suitable option if the CGM is implemented in “forward” mode 
before the crop season is finished. In this way the impact of gaps data on the calibration of parameters 
related with plant senescence and grain maturity might be minimized. 

An alternative of using a cost function based on 4DVAR is to define a more restricted searching 
range for some parameters based on ancillary data or field observations. Then, the cost function is not 
altered and only the searching range is modified. 

5.5.6. Application of PSO at plot and pixel scale 

Based on the results presented, the PSO algorithm was implemented for each sample plot. The 
number of parameters calibrated were 7 and 8 from GRAMI and SAFY, respectively. The phenological 
parameters were extracted from the iLUT approach. The PSO parameters set are specified in Table 18.  

Table 18. PSO parameters for the GRAMI and SAFY models 

Model MPV PS MNI Acc FIW n° of P. calibrated n° repetitions 
GRAMI 0.25 25 2000 2 0.4 7 30 
SAFY 0.25 25 1000 2 0.4 8 30 
 

The scatter plots between reference and simulated maize yield using the PSO approach are 
sketched in Figure 31. At plot scale, the goodness-of-fit parameters of calibrated GRAMI (a) and SAFY 
(d) are similar. However, for GRAMI a number of observations are overestimated. As a consequence, 
the average simulated yield has an overestimation error of 14.4% in relation to the official statistics. 
This error is lower for SAFY model with only 0.2%. The EEP value is also better for SAFY model. The 
overestimation in GRAMI and underestimation in SAFY confirm the trend already observed and 
discussed in the iLUT approach. 

In a second step, a calibration of a reduced group of parameters using LAI pixel data was 
implemented. The Sw, GDDem, GDDmt, A and B parameters were fixed to values obtained by PSO 
calibration at plot scale. We assumed that these parameters, which drive crop phenology, are constant 
at plot scale. 

Two scenarios were tested for each CGM: the calibration of parameters with low inter-correlation 
and parameters with high correlation to the LUE. In Table 19 the parameters for each scenario and 
CGM are introduced. 

Table 19. Parameters calibrated in PSO pixel approach 

CGM GRAMI SAFY  

Parameters low correlated  LUE, Lls LUE, SenA, SenB 

Parameters high correlated with LUE LUE, Lls + 
LAIin, SLA, K. 

LUE, SenA, SenB + 
LAIin, SLA, K. 
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Figure 31 (b) and (e) shows the scatter plots for GRAMI estimations with two calibrated 
parameters (LUE and Ls) and SAFY with three calibrated parameters (LUE, SenA, SenB). 

A significant reduction in the variability of yield estimation is observed in most of the plots (black 
bars) for both models. The correlation between simulated and observed yield for the SAFY model 
improved as shown by a slope close to one (1.03) and a low offset. Moreover, the EEP value is reduced 
for both models; 23% for GRAMI and 7.2% for SAFY compared with the estimations obtained by the 
models calibrated using only plot data. Again compared to the plot data results, the Regional error 
estimation (EER) decreased for GRAMI, while an increase for SAFY was noted. However, the EER for 
SAFY is still much lower compared to GRAMI. 
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Figure 31. Scatter plots between observed and estimated yield by GRAMI (a,b,c) and SAFY (d,e,f) 
calibrated by PSO at plot scale and pixel scale respectively (FP: free parameters). 
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Finally, yield estimations obtained by GRAMI with five calibrated parameters and SAFY with six 
calibrated parameters are presented in Figure 31 (c) and (f) respectively. The increased number of free 
parameters has a clear effect on the variability of yield estimations (black bars). This can be explained 
by the fact that LAIin, SLA and K were included in the calibration. These parameters have a strong 
influence on the biomass estimation and high correlation with LUE. The average yield variability 
increased 58% for GRAMI and 90% for SAFY regarding estimations obtained by the PSO with two 
(GRAMI) and three free-parameters (SAFY). Additionally, the average computational processing time 
for both models was raised by 50%. The regression functions, in both cases, were improved with 
higher R2 and a reduction in NRMSEf of 35% for GRAMI and 38% for SAFY with respect to the 
calibration at plot scale. The overestimation trend in GRAMI is confirmed by a high negative offset in 
the regression function. SAFY shows a better performance than GRAMI with lower EEP and EER. 

A complete summary with the goodness-of-fit parameters for both models is presented in 
Appendix F. 

5.6 Comparison between calibration approaches regarding yield crop estimation 

5.6.1. Sensitivity analysis of LUT and PSO to LAI data 

The robustness of LUT and PSO to calibrate GRAMI and SAFY was assessed using synthetic LAI 
data. We tested different levels of: random error, temporal frequency and data gaps (§ 4.7.4). The 
sensitivity of both techniques was assessed by calculating the yield estimation error (Figure 32) and 
the phenological estimation error (Figure 33). These parameters were calculated by comparing 
reference data with the estimations obtained by the calibrated GRAMI and SAFY models.  

In Figure 32, we combined two types of plots: the violin plot which represents the kernel 
probability density of the data (Hoffmann, 2015) and the box plot which describes the distribution of 
the data through their quartiles. In each plot, the distribution of the yield error is identified with a 
black contour line: complete for GRAMI and dashed for SAFY. 

In Figure 32 (a) is depicted the effect of LAI frequency in the performance of the LUT technique 
for a constant random error of 20%. The reduction of the number of LAI observations from 12 
(frequency of 10 days) to 5 (frequency of 25 days) showed a steadily increase of the variability of the 
yield estimation error. This trend was stronger in GRAMI than in SAFY. The increase of the standard 
deviation of the yield estimation error between the LAI frequency of 10 days and 30 days was 45% for 
GRAMI and 33% for SAFY. 

As mentioned above, SAFY showed less sensitivity to LAI frequency than GRAMI. This behavior 
was also observed for PSO technique (Figure 32 d). The variability of the yield estimation error for 
SAFY was, practically, not modified along the first four LAI frequencies tested. On the other hand, for 
GRAMI the trend of yield error is similar to LUT approach. We observed, in most of the cases, an error 
distribution more compact for SAFY than GRAMI.  

Based on the sensitivity analysis we can state that a LAI frequency no larger than 15 days is 
suitable to calibrate GRAMI and SAFY by using LUT approach. For PSO the LAI frequency should be 
no larger than 20 days. The frequencies above suggested are valid as long as the LAI observations are 
well distributed along the crop season. 

The effect of LAI gaps in the calibration of GRAMI and SAFY models is presented in Figure 32 (b) 
and (e). The largest variability of the yield estimation error was obtained when SAFY and GRAMI 
were calibrated using a LAI data series with gaps in crop emergency. The lack of LAI observations in 
the growing period had direct impact in the accuracy of calibration of phenological parameters such 
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as GDDem and growth parameters such as LUE, A and B. Consequently, the synthesis of biomass 
from emergency to anthesis was incorrectly simulated. 
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Figure 32. Yield estimation error by GRAMI and SAFY models calibrated using iLUT (a, b, c) and PSO 
(d, e, f) techniques and LAI with different levels of temporal frequency, data gaps and random error 
respectively. 

The effect of LAI gaps in anthesis and maturity had less impact in yield crop estimation. This 
trend was observed for LUT and PSO. 
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Comparing the calibration techniques, we observed that the yield error estimation showed a 
distribution more symmetric in PSO than in LUT approach. However, a larger number of outliers 
were noticed in PSO. This difference is related with the calibration technique. In LUT the levels of each 
parameter are set before the calibration in order to generate a table of simulated LAI data. On the 
other hand, in PSO the parameter levels are not set beforehand. The combination of parameter levels 
is only constrained by the maximum and minimum thresholds set for each parameter. This greater 
degree of freedom might explain the larger number of outliers observed. 

Finally, in Figure 32 (c) and (f) is depicted the sensitivity of LUT and PSO to random error of the 
LAI data. The figure shows a direct relationship between the random error of the LAI data series and 
the yield estimation error. 
A larger variability was noticed for GRAMI model. The mean error showed a tendency to 
overestimate maize yield for both calibration techniques. On the other, for SAFY the overestimation 
was only observed in PSO technique. For LUT, the error had a mean value close to 0. 

Finally, in Figure 32 (c) and (f) is depicted the sensitivity of LUT and PSO to random error of the 
LAI data. The figures show a direct relationship between the level of random error and yield 
estimation error.  
A larger variability was noticed for GRAMI model. The mean error indicates the tendency to 
overestimate maize yield for both calibration techniques. On the other hand, in SAFY the 
overestimation was only observed in PSO technique. For LUT, the mean of the yield estimation error 
was close to 0. 
Based on the results of our experiment, we suggest as rule of thumb a tolerance of the LAI random 
error of 20%. This threshold is more relevant when the crop yield is estimated using GRAMI and the 
model parameters are calibrated by LUT approach. 

The robustness of LUT and PSO assessed as phenological estimation error is presented in Figure 
33. The phenological error was calculated by comparing the reference value of GDD to anthesis with 
the estimation obtained by the calibrated SAFY model. This error estimator allowed us to evaluate 
directly the accuracy of GDD to anthesis estimation and indirectly the accuracy of other parameters 
such as GDD to emergency and parameters related with biomass partition such as A and B which are 
directly related with crop phenology. 

As showed in Figure 33 some outliers have been registered in our experiment. The value -100% 
indicates that the estimation of the GDD to anthesis by the calibrated CGM is equal to 0. Then, based 
on this simulation the crop had only a growing period and did not reach anthesis. On the other hand, 
a value larger than 100 indicates a strong overestimation of the GDD to anthesis in relation to the 
reference value. In these cases the calibrated CGM simulates a long growing period followed by an 
extremely short period of anthesis + senescence which is constrained by the daily temperature at the 
end of the crop season. 

In Figure 33 (a) and (c) is presented the effect of LAI gaps in the calibration of GRAMI and SAFY 
models. The data series LAI used had a constant random error of 20%.  
The maximum variability of the phenological estimation error was reached when SAFY model was 
calibrated using a LAI data series with gaps in crop anthesis. This trend was observed in LUT and 
PSO techniques. The number of outliers in LUT technique represented only 8% of the total cases 
analyzed. On the other hand, in PSO the percentage of outliers reached 14%. This is explained by the 
greater degree of freedom of PSO technique during the optimization procedure as explained above. 
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Moreover, regarding the mean phenological error, we verified that for LUT the mean value for the 
three cases considered was 0, while for PSO a tendency to overestimation of the GDD to anthesis was 
observed. Overall, PSO showed more sensitivity to LAI gaps regarding GDD to anthesis estimation. 

The robustness of LUT and PSO regarding the LAI random error is depicted in Figure 33 (b) and 
(d). The effect of the random error in the estimation of GDD to anthesis is similar for both calibration 
techniques. The variability of the error increase gradually along the five levels tested. For LUT the 
mean of the phenological error estimation is close to 0 for all the cases analyzed. 
Regarding PSO technique, we detected a larger number of outliers in relation to LUT. Moreover, the 
mean of the error has a tendency to overestimate the GDD to anthesis as was observed in Figure 33 (c). 
The number of outliers increased together with the LAI random error. However, they represent less 
than 15% of the total of cases analyzed for a LAI random error of 30 %. 
Based on the results obtained and aiming to estimate accurately crop phenology, we recommend the 
calibration of GRAMI and SAFY parameters by using LAI data series with an average random error 
lower than 20%. 
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Figure 33. Phenological estimation error by SAFY model calibrated using iLUT (a, b) and PSO (c, d) 
techniques and LAI with data gaps and different levels of random error respectively. 

5.6.2. Crop yield estimation 

A summary of the best calibration strategy for each CGM is presented in Table 20. The goodness-
of-fit parameters considered for the selection were EEP, EER and NRMSEf (in order of relevance). 
The best yield accuracy for GRAMI model was achieved using the iLUT approach at pixel scale with 5 
free parameters (Figure 28c). In Table 20 is verified that EEP and NRMSEf values are lower than the 



82 
 

values obtained by the GRAMI calibrated by PSO. On the other hand, the best yield accuracy for SAFY 
was reached by using PSO at pixel scale with 6 free parameters (Figure 31f). 

SAFY + PSO was the best of the four strategies presented in Table 20 with a reduction by 32% of 
EEP and 46% of EER in relation to GRAMI + iLUT. The regression function was also improved with a 
reduction of NRMSEf. However, the average time required for running the routine SAFY + PSO is 8 
times larger than GRAMI + iLUT. This computational demand might hamper the use of this strategy 
at regional scale. 

Table 20. Goodness-of-fit parameters for the best iLUT and PSO strategy for GRAMI and SAFY models 

CGM GRAMI SAFY 

Calibration iLUT PSO iLUT PSO 

Scale plot + pixel plot + pixel plot plot + pixel 

N° FP plot 10 7 11 8 

N° FP pixel 5 2 - 6 

Slope 1.09 1.23 0.81 1.03 
Offset -13.7 -20 15.9 -5.6 
R2 0.86 0.72 0.61 0.9 
NRMSEf 10.2 14.5 17.2 8.5 
EER 10.3 4.5 0.6 5.6 
EEP 12.3 13.4 15.7 8.3 

FP: free parameters 

5.6.3 Crop yield forecasting 

Crop yield forecasting is of high relevance in the agricultural sector. For this reason, the 
performance of calibrated CGMs by iLUT and PSO techniques was tested to estimate crop yield in two 
scenarios: two and one month before harvesting. Historical meteorological data (HD) was used to 
simulate meteorological conditions for both scenarios. Regarding the iLUT technique, the effect of 
using a complete LUT was assessed (in which all the parameters were free) compared to a reduced 
LUT in which GDDmt and senescence parameters were fixed to regional average values. This last 
approach had the goal of assessing the effect of uncertainty in parameter calibration in a scenario 
without LAI observations at the end of the crop season. In Table 21 the forecasting accuracy of both 
CGMs calibrated by iLUT and PSO are compared. The lowest EER and EEP values for each category 
are highlighted.  

Table 21. Comparison iLUT and PSO yield estimation accuracy two and one month before harvesting 

 EER (%) EEP (%) 
 GRAMI SAFY GRAMI SAFY 
 2 months before harvesting 
iLUT 6 17.4 21 29.8 
PSO 19 7.13 25 16.4 
 1 month before harvesting 
iLUT 10.1 4.5 21.5 19.3 
PSO 17 3.03 23 15.2 

 
SAFY shows a good performance in both scenarios when calibrated by PSO approach. The 

regional yield was estimated more accurately than at plot scale thanks to the errors compensation. For 
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GRAMI the best performance was obtained using a reduced LUT in which GDDmt and senescence 
parameters were fixed. 

5.7 Yield estimations using updated GRAMI and SAFY models 

Updating was implemented using pixel LAI data and the calibrated GRAMI and SAFY models. 
The updating approaches tested were ensemble Kalman filter (EnKF) and particle filter (PF). The 
models were calibrated previously using iLUT and PSO techniques as described above.  
This section introduces first the sensitivity analysis for both filters. Then, the yield estimations 
obtained by updating techniques are presented and discussed. 

As discussed in chapter 3 (§3.6.7), aspects related to ensemble size, model and observations 
errors, among others factors have high influence in the performance of updating techniques. We 
developed an innovative experiment to assess the effect of the above mentioned factors on the 
updating of LAI in GRAMI and SAFY models. 

5.7.1 Parameter sensitivity 

The effect of the ensemble size as well as the overestimation and underestimation of model and 
observation errors were tested in EnKF and PF. Being aware of the filtering divergence drawback, two 
approaches of PF were implemented: a resampling and a non-resampling technique (§4.10.2). 

The influence of ensemble size was measured by assessing the variability of the updated LAI 
values for different ensemble sizes. The filters were run 100 times for each ensemble size, then, the 
global variability of the updated data was calculated.  
The variability of updated LAI for EnKF according to ensemble size is depicted in Figure 34 (a). A 
strong reduction in the variability is achieved with an ensemble size of 200 particles. For this ensemble 
size, the LAI updating becomes more stable for a given model and observation error. On the contrary, 
a larger ensemble size reduces the updating variability in a lower rate, however, increases 
unnecessarily the demand of computational resources. 

The effect of ensemble size is more erratic for PF (Figure 34 b). The reduction of the global 
variability for the updated data did not show a relation to the ensemble size. This could be related to 
the working principle of PF in which only a model ensemble is included. In PF, the observation is 
represented by a unique random value instead of an ensemble of observations as in EnKF. 

 

(a) (b) 

Figure 34. Variability of updated LAI according to the ensemble size of EnKF (a) and PF (b). 

The error levels of model and observations are essential parameters in the updating process. 
Therefore, they must be correctly set before running EnKF and PF. As described in section 4.10.1, a 
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reference CGM was used to generate a synthetic LAI data series. A non-calibrated CGM (“CGM to 
update”) was simulated by modifying the reference LUE value. The model and observation errors 
were calculated by comparing synthetic LAI observations and simulations by the “CGM to update” 
with the reference LAI data series. The effect of overestimation and underestimation were simulated 
for a range of ± 50% of the reference errors for the model and the observations. 

The percentage of variation of LAI error between updated CGM and reference CGM for EnKF 
and PF with overestimated or underestimated model and observation errors is sketched in Figure 35: 
(a) observation error and (b) model error. 

The effect of underestimation of the observation error is similar for EnKF and PF, with an error 
increase of 20 %. The underestimation error has a direct consequence in the misrepresentation of 
observation variability during the updating process. On the other hand, a sharply different trend is 
observed for an overestimation of the observation error; while for EnKF the overestimation reduces 
the error of the updated LAI, for PF the error increases. This difference is related to the principle of 
each filter. In EnKF the updating is carried out using two ensembles, observation and model. Hence, 
increasing the observation error allows a better representation of its variability. However, it is 
important to highlight that the increase of the observation error requires the increment of the 
ensemble size to achieve a good representation of observation’s variability. Therefore, the demand of 
computational resources is also increasing. 

 

 
(a) 

 
(b) 

Figure 35. LAI updating error according to observation (a) and model (b) overestimation and 
underestimation error. 

On the other hand, for PF, the LAI observation is simulated using a unique value. The “simulated 
observation” is calculated using the retrieved LAI from EO-data, its estimation error, and a Gaussian 
noise. Therefore, an excessively large error could generate a non-expected simulation of the LAI 
observation. Then, the raise of the observation error, does not necessarily improve the performance of 
PF, although the observation error has a lower impact in the updating process compared to the 
underestimation error. 

Regarding the effects of model errors, Figure 35 (b) shows a similar behavior for both filters. An 
underestimation has a negative impact due to the underrepresentation of the model's error. The 
impact is stronger for PF with a reduction of the LAI updating accuracy of around 60%. Any model 
error overestimation has for both filters a positive effect reducing the error 12% for EnKF and 21% for 
PF. It is important to highlight the different slopes between overestimation and underestimation 
sections. The underestimation of the model error has a stronger effect in the updating performance, 
thus, it is crucial to implement an accurate model error. 
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A representation of updating techniques by EnKF and PF is shown in Figure 36. The LAI curve 
corresponding to the CGM “to update” (gray line) is clearly shifted towards the reference LAI curve 
as a response of the strong influence of LUE in the LAI simulation. The LAI observations show a 
larger variability from the second half of the growing period to anthesis. The red-dashed curve 
corresponds to the LAI data series simulated by the updated CGM. 

The main difference between filters shown in Figure 36 is the degree of fitting between the 
updated curves and the LAI observations. The CGM updated by EnKF follows tightly the LAI 
observations. On the other hand, the LAI updated by PF are smoother with a larger mismatch 
between simulated and LAI observations. The global error is 20% lower than the CGM updated by 
EnKF. 

 

 
(a) 

 
(b) 

Figure 36. Comparison of updating techniques; (a) EnKF, (b) PF. 

Regarding the yield estimation error, the best fit was obtained by EnKF. As the LAI reference is 
overestimated and underestimated in different ranges along the crop season, the impact of the error in 
the yield estimation is reduced. This direct relationship between LAI and yield estimation is 
applicable only in this case because the CGM parameters are constant in both examples.  

The improvement of yield estimation by updating is significant for both models. The yield 
estimated by the CGM “to update” was modified from 122 (q/ha) to 94 (q/ha) for the model updated 
by EnKF and 98 (q/ha) for the model updated by PF. This represents a reduction of yield estimation 
error in relation to the reference value of 50% and 39%, respectively. 

5.7.2-Yield estimation 

The EnKF and PF were implemented in the GRAMI and SAFY models calibrated by the iLUT and 
PSO techniques. An ensemble size of 200 particles was used for EnKF and PF resampling (PF r) and 
500 particles for the PF non-resampling (PF nr).  

The RMSE calculated between the LAI field measurements and the LAI estimations by the CLAIR 
model (§ 5.2) was used as observation error in the updating process. The model error was estimated 
using pixel data. First, the NRMSE between LAI observations from each pixel and LAI simulated by 
the calibrated CGM at plot scale was calculated. Then, the maximum NRMSE value was selected as 
model error. The goal of calculating the error at pixel scale was to incorporate the intra-plot variability 
in the updating process considering that for the parameter calibration an average LAI data series was 
used as representative for the plot. 

The results obtained for each filter in combination with CGM and calibration technique are 
presented in Table 22. The best result was achieved by SAFY + PSO + EnKF (highlighted in italic-bold). 
A similar regional and plot accuracy was obtained by SAFY + PSO in combination with PF nr and PF 
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r. These three techniques, using SAFY model, outperformed all the calibration and updating 
combinations tested for GRAMI. Additionally, low EEP and EER errors were obtained by using the 
iLUT calibration (SAFY + iLUT + EnKF). Together, this proves the strong influence of the CGM on the 
yield estimation accuracy independently of the calibration technique. 

Regarding the effect of resampling in PF, we found that using a large ensemble (PF nr) or a 
resampling (PFr) technique had low impact on PF performance.  

The effect of updating on the yield estimation accuracy is compared in Table 23. The calibration 
techniques implemented at plot scale for each CGM are contrasted with the combination CGM + 
calibration + updating at pixel scale.  

Table 22. Goodness-of-fit parameters for combinations CGM + calibration + updating 

CGM GRAMI SAFY 

Calibration ILUT PSO ILUT PSO 

Filter EnKF PF nr PF r EnKF PF nr PF r EnKF PF nr PF r EnKF PF nr PF r 

Slope 1.23 1.19 1.12 0.95 1.01 1.03 1.04 1.02 1.03 1.04 1.03 1.03 

Offset -17.3 -14 -10.2 -10.1 -13.8 -16 -4.6 0.75 1.8 -3.7 -3.5 -3.6 

R2 0.73 0.69 0.65 0.79 0.8 0.80 0.77 0.73 0.69 0.84 0.8 0.81 

NRMSEf 14.3 15.3 16.3 12.5 12.6 12.3 13.4 14 15.9 11.2 12.2 11.9 

EER 2.9 0.9 3.4 21.1 18.3 19.5 3.6 1.4 4.3 2.3 2.7 3.3 

EEP 13.0 13.7 14.4 21.9 19.5 20.4 11.7 12.8 14.6 9.7 10.7 10.5 

 
The performance of the GRAMI + iLUT was not improved by updating. The goodness-of-fit 
parameters between calibrated and calibrated + updated CGM are similar. Regarding GRAMI + PSO, 
updating increased the correlation between estimated and simulated yield by 7 %. However, the error 
at plot and pixel scale (EEP and EER) was raised. Overall, updating was not able to improve the 
performance of the calibrated GRAMI model. 
On the other hand, for SAFY + iLUT the updating at pixel scale allowed improving the correlation 
between simulated and observed yield. The NRMSEf was reduced by 16 % and the EEP by 17 % in 
relation to the SAFY calibrated at plot scale. In the same direction and with similar proportion was 
improved the accuracy of the SAFY model calibrated by PSO with reduction by 15% and 18% for 
NRMSEf and EEP respectively. 

Table 23. Comparison of calibration techniques at plot scale with the combination CGM + calibration + 
updating at pixel scale for each CGM.  

 GRAMI SAFY 

Calibration iLUT PSO iLUT PSO 

Updating - EnKF - PF r - EnKF - EnKF 

Slope 1.07 1.23 0.88 1.03 0.81 1.04 0.86 1.04 

Offset -5 -17.3 0.67 -16 15.9 -4.06 11.6 -3.7 

R2 0.73 0.73 0.76 0.80 0.61 0.77 0.75 0.84 

NRMSEf 14.3 14.3 13.5 12.3 17.2 13.4 13.8 11.2 

EER 3.2 2.9 14.4 19.5 0.6 3.6 0.2 2.3 

EEP 12.9 13 17.4 20.4 15.7 11.7 12.5 9.7 
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Based on Table 23, we can state that updating could improve the yield estimation, however, the 
reached accuracy depends largely on the ability of the CGM to simulate the real crop conditions, as 
well as the values of the fixed and calibrated parameters and the driving variables used in the 
estimation. In our experiment, the filters acted as a fine tuning which allowed adding extra 
information from pixel data. 

The scatter plots of the combination SAFY + PSO + EnKF and SAFY calibrated at pixel scale by 
PSO with three free parameters are compared in Figure 37. This strategy was preferred instead PSO 
with six free parameters, because, non-correlated parameters are calibrated at pixel scale. Therefore, 
this technique is comparable with updating in which a Gaussian error and calibrated LUE value were 
used to generate the model ensemble. 

The main difference between the techniques is the variability of the yield estimations. Calibration 
+ updating showed a lower variability because, in contrast to PSO, the model parameters have not 
been calibrated as only the LAI was updated. 

The combination SAFY + PSO + EnKF improved NRMSEf and EEP by 16% in relation to SAFY + 
PSO with 3 free parameters. Additionally, the computational demand for updating was markedly 
lower in relation to the PSO routine: 2 hours for PSO against 7 minutes for updating. 

SAFY + PSO SAFY + PSO + EnKF 
Free parameters: LUE, SenA, SenB Parameter to generate model ensemble: LUE 

 
(a) 

 
(b) 

Figure 37. Comparison of calibration and updating between (a) SAFY + PSO at pixel scale 
using three free parameters and (b) SAFY + PSO + EnKF. 

5.8 Validation of GRAMI and SAFY parameters 

As introduced in section 4.11, we validated the performance of the calibrated GRAMI and SAFY 
models using an independent remotely sensed FAPAR dataset and the Monteith equation (Monteith, 
1977). The CGM parameters used in the Monteith equation were LUE and the phenological 
parameters: crop emergency and maturity. Three sources of phenological data, to define the FAPAR 
integration period, and two type of LUE, to convert FAPAR in biomass, were compared in all their 
combinations. In Table 24 is presented a detail of the parameters used in the Monteith equation. 

Table 24. Phenological data source and LUE used in the Monteith equation  

Source of Phenological data LUE (calibration scale) 
Derived by filtering Regional 
Field observations Plot  
Calibrated in CGM  
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The effect of the source of phenological data and LUE on the yield error estimation at plot scale 
(EEP) by Monteith equation is depicted in Figure 38. The error trend is similar for the estimation using 
the LUE calibrated at regional and plot scale. The variability of EEP is larger between different sources 
of phenological data. Therefore, in our experiment the correct estimation of the FAPAR accumulation 
period (emergency to maturity) had higher influence in the accuracy of the yield estimation than the 
type of LUE implemented. 

The most accurate yield estimation was obtained using LUE and phenological cardinal points 
extracted from the calibrated SAFY model. The goodness-of-fit parameters between reference yield 
and the estimations by Monteith equation are similar to SAFY + PSO + EnKF introduced above. 
Therefore, we verified that LUE and the phenological parameters calibrated in SAFY model are valid 
to estimate maize yield using independent EO data. 
The scatter plot of most accurate yield estimation by integrating FAPAR data series is represented in 
Figure 39. In Appendix G are presented the goodness-of-fit parameters for the complete experiment. 

 

 

Figure 38. Effect of the phenology extraction method and LUE on the yield estimation error at 
plot scale (EEP) using Monteith equation. 

LUE calibrated at regional scale LUE calibrated at plot scale 

 
(a) 

 
(b) 

Figure 39. Comparison between observed and estimated yield by Monteith equation and 
FAPAR data using a) LUE calibrated at regional scale and b) LUE calibrated at plot scale. 

5.9 Verification 

The calibration and updating techniques were verified using a group of eight maize plots for the 
season 2014. The official average yield estimation for the county of Gänszendorf by Statistics Austria 
was 90 q/ha (0 % humidity). This represents an increase of 16.6 % in relation to the season 2013. 
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One of the most important differences between the seasons 2013 and 2014 was the phenology of 
maize crop. In 2014 the crop emergency had an average delay of 15 days with respect to the previous 
season (2013). Therefore, the sowing date in LUT was modified to a range from 100 to 140 DOY. 
Moreover, LAI observations pointed a longer growing season for 2014 with relatively high LAI values 
till end October. Being aware of this seasonal difference, the maximum GDD to maturity was 
increased in the LUT from 1580 to 1780 GDD. These two modifications allowed improving the yield 
estimations markedly, proving the relevance of defining a broad range of phenological parameters for 
CGM calibration. 

The delay in maize emergency might be related to meteorological conditions. In 2013, a larger 
cumulative precipitation from January to May is observed (Figure 15). Therefore, the soil humidity 
conditions at the early season were more favorable for plant emergency in 2013 than in 2014. The 
mean temperatures for the emergency period (April-May) were similar in both seasons. The total 
precipitation from May to October was 22 % larger in season 2013 compared to 2014. However, it is 
worth mentioning that most of the maize fields in the study area are irrigated. 

The extended maize cycle in 2014 might be the result of an higher monthly average temperature 
in June, July, September and October compared to 2013 (Figure 15). The cumulative GDD for maize 
season was 7 % larger in 2014 compared to the previous year.  

The best calibration technique as well as combination calibration + updating for each CGM are 
depicted in Table 25. The goodness-of-fit parameters for the complete experiment are presented in 
Appendix H. 
Some differences and similarities were observed compared to 2013. For instance, for the GRAMI 
model, the best iLUT performance was obtained by using the first iteration instead of the best iteration 
as in season 2013. However, most of the findings of 2013 matched with season 2014. The best 
calibration technique for GRAMI was iLUT while for SAFY, the PSO proved more efficient. Overall, 
SAFY showed again a better performance than GRAMI. 

Table 25. Best calibration and calibration+ updating approaches for GRAMI and SAFY models for 
season 2014. 

CGM GRAMI SAFY 

Calibration iLUT PSO 

Updating - EnKF - PF 

N° FP plot 10 10 8 8 

N° FP pixel 2 - 3 - 

Slope 1.16 0.69 0.59 0.62 
Offset -4.5 32.3 34.8 28.9 
R2 0.5 0.5 0.68 0.73 
NRMSEf 10.2 9.9 8.1 7.45 
EER 15.9 18.6 7.9 1.63 
EEP 12.8 15.4 10.1 11.1 

 FP: free parameters 
 

The combination SAFY + PSO yielded the best accuracies at regional and plot scales. The EEP and 
EER values were similar in both seasons. 
The accuracy of SAFY + PSO + the three filters was similar, however, a slight improvement in the 
regression function was obtained by using PF (Appendix H). On the other hand, for 2013, the best 
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performance was achieved by coupling SAFY + PSO + EnKF. Additionally, the combination SAFY + 
iLUT + PF yielded also good results, though, with lower R2 and higher NRMSEf compared to the 
combination using PSO. Nevertheless, this alternative, in which PSO is replaced by iLUT, has a low 
demand of computational resources, thus, it is more suitable for regional applications. 

In Figure 40 are shown the scatter plots for (a) the SAFY + PSO + PF approach for season 2014, (b) 
SAFY + PSO + EnKF for 2013 for grain and seeds production, and (c) for only the grain production in 
2013. 
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Figure 40. Scatter plot of technique SAFY + PSO + PF for season 2014 (a), SAFY + PSO + EnKF 
for season 2013 for grain and seed production (b) and grain production (c). 

Figure 40 shows a good fitting between observed and estimated yield for season 2014 (a). A 
higher disagreement is observed for samples with yields larger than 80 (q/ha). For this group of 
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samples, the yield was overestimated. Additionally, the chart shows a larger variability of the yield 
estimations with respect to 2013; the average CV was increased by 22%. 

Compared to 2013, the regression functions obtained in 2014 have a lower slope and larger 
offset. The R2 is also lower (0.6 to 0.7) compared to 2013. However, if one only considers the maize 
plots for grain production, the regression functions between seasons are similar (Figure 40 c). The best 
fit between observed and estimated yield was found for a larger range of maize yield, from seed to 
grain production as observed in season 2013 (40 q/ha to 100 q/ha; 0 % humidity). 

5.10 Discussion 

5.10.1. Reference data of maize yield 

The correct assessment of the yield estimation error is conditioned by the reliability of the 
reference data. We detected some error sources in the yield reported by the farmer and in the 
estimations by field sampling. 

The main source of uncertainty of the maize yield informed by the farmers was the percentage of 
humidity of the harvested grain. When this datum was not reported by the farmer, we used a 
reference value of 14% (commercialization humidity of maize). Additionally, in some cases, the yield 
was reported as complete maize cob. Therefore, we used an empirical factor to express yield as maize 
grains. These sources of uncertainties can modify noticeably the value of maize yield. 

Regarding the yield estimation by sampling in field, the main source of uncertainty was the 
identification of a representative cob for each sample point (Appendix A). We observed a large 
variability of the cob size in a short distance. Consequently, the yield was estimated with a large 
variability (Figure 23). The main advantages of field sampling were the possibility to calculate the 
yield variability and its spatial autocorrelation (Appendix A). The main disadvantage is the demand 
of human resources. This hampers its application in large regions. 

5.10.2. LAI observations 

As introduced in chapter 3, the assimilation of EO data in crop models is affected by factors such 
as the spatial resolution and the timing of the EO data and the error of the retrieved state variable, 
among others. 

In our experiment the timing of the estimated LAI was well synchronized with maize crop 
phenology. The average frequency of LAI was 15 days; 10 observations in 2013 and 12 observations in 
season 2014. Therefore, an average frequency of EO data between 10 and 15 days seems suitable for 
maize crop monitoring. 
No gaps were identified along the season. This was achieved using Landsat 5TM and DEIMOS data 
for season 2013 and Landsat 5TM, Landsat 8OLI and DEIMOS data for season 2014. The availability of 
enough LAI observations along the crop season allowed estimating accurately phenological stages 
such as sowing, emergency and maturity. This finding reinforces the promising results obtained by 
the integration of multi-source EO data in CGMs (Dente et al., 2008; Liu et al., 2014b). 

Regarding the spatial resolution of the EO-data, we noticed that the pixel size of 30 m (Landsat) 
and 22 m (DEIMOS) was not suitable for some small plots in the study area. Therefore, to avoid the 
effect of mixed pixels, we discarded the plots smaller than 3.5 ha or with strip shape.  
A strategy to reduce the effect of temporal and spatial resolution in EO data assimilation might be the 
fusion of multi-source data. The fusion algorithms allow combining fine and coarse resolution images 
to generate high temporal resolution data at the finer spatial scale (Gao et al., 2006; Meng et al., 2013; 
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Zhu et al., 2010). Moreover, a new perspective to overcome this problem is the free availability of 
imagery from Sentinel 2 with 10 m spatial resolution (Immitzer et al., 2016). 

Finally, the error of the retrieved LAI by CLAIR model (Vuolo, et al. 2013) was calculated using 
field measurements for a broad range of maize samples (Figure 23). The RMSE level obtained is 
comparable with other research findings (Nguy-Robertson et al., 2012; Casa et al., 2010; Duan et al., 
2014).  

5.10.3. Reference GRAMI and SAFY parameter values 

The range of GRAMI and SAFY parameters used in LUT and PSO were suitable to simulate the 
variability of the maize plot in the study area (Table 12). The reference ranges can be modified using 
ancillary data from field measurements or from parameter calibrations in previous crop seasons. The 
narrower fit of parameter ranges allows increasing the calibration accuracy and reducing the burden 
of data processing. That is valuable when the CGMs are applied in large regions. 

Regarding phenological parameters, we set a range of sowing date, GDDem and GDDmt based 
on field observations of season 2013. However, these ranges were not suitable for season 2014 (§5.9). 
Therefore, we recommend defining beforehand a broad range of phenological parameters to capture 
better the crop variability along different seasons. 

Crop yield was estimated by using total biomass and the harvest index. The value used was 0.48 
and was fixed for both crop seasons. However, the harvest index value is affected by environmental 
factors (climate and soil) and management factors such as plant density, hybrid, fertilization and 
irrigation among others (Hay, 1995; Payero, et al., 2009). 
The possible sources of the harvest index variability in our experiment were related, mainly, with 
management factors such as fertilization, irrigation and destination of the production, grain or seeds, 
as mentioned in section 4.4.  
Although, we noted differences in management practices between plots, the possible variation of the 
harvest index had low impact in yield accuracy estimations. We consider that the effect of harvest 
index variability was compensated by the calibration of the CGM parameters, specifically SLA 
(specific leaf area, g/m2). Proof of that is the average difference of 20 % between the SLA calibrated for 
grain plots and seed plots. 

5.10.4. Sensitivity of biomass and LAI to parameters variation 

As presented in section 5.3.1, biomass estimation is influenced in a higher proportion by LUE. 
This parameter has main relevance because in simple CGMs such as SAFY and GRAMI is assumed 
that LUE captures the variability inter- and intra-plot related with management and environmental 
conditions (Duchemin et al., 2008; Claverie et al., 2012). 

Regarding LAI, the parameters with most influence are SLA, A and B.  The specific leaf area 
(SLA) changes with crop age. However, for operational purpose SLA is constant along the crop 
season. The coefficients A and B drive the partition of biomass to the leaves in the period from 
emergency to anthesis. They change depending of the type of cultivar and in less proportion on 
management (Penning, et al. 1989). Aware of it, Padilla et al. (2012) clustered wheat samples based on 
its phenological similarity and carried out an independent calibration for each group. To reduce the 
effect of the uncertainty of phenological parameters in the yield estimation accuracy, we decided to 
implement a calibration strategy at plot scale.  
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5.10.5. Calibration of GRAMI and SAFY parameters 

Iterative Look up Table 
The sensitivity analysis carried out for LUT allows defining an optimal combination of cost 

function and threshold to select the best combination of parameter levels (§5.4.1). The simple cost 
function showed an acceptable performance without requiring ancillary data. Moreover, the threshold 
expressed as global error allows selecting a representative number of LUT records for each plot.  

Additionally, we proved the effect of filtering the retrieved LAI data series. The smoothed LAI 
data had a better fitting with the LAI simulations generated by the calibrated SAFY and GRAMI 
models. Then, the error of the yield estimation was reduced due to the new parameter levels selected. 
The combination filtering + cost function + threshold criterion was consistent with comparable level of 
error yield estimation for both seasons. 

The iterative LUT (iLUT) technique showed different performance for the CGMs in each crop 
season. For season 2013 the best accuracy for GRAMI model was obtained by calibrating the 
parameters using the iLUT. However, for season 2014 the iLUT showed a low performance. The best 
accuracy was obtained using the initial LUT (Table 12). On the other hand, for SAFY the initial LUT 
yielded the best results in both seasons. 

Aware of the burden of data processing and the meager results obtained by iLUT, we 
recommend testing a new strategy considering an iterative procedure for a group of samples instead 
of individual plots. We verified that the maximum LAI and the cumulated GDD from emergency to 
anthesis were useful to cluster the samples in two groups; plots for seed production and plots for 
grain production. These parameters could be calculated using the initial LUT. Then, the samples are 
clustered and the iterative LUT runs independently for each group of samples. This approach can be 
compared with a global iterative LUT in which all the samples are included in a unique group. We 
recommend assessing the effect of the parameters dispersion in the accuracy of CGM considering the 
calibration of multi (inter-) correlated parameters (ill-posed problem). 

Particle Swarm Optimization (PSO) 
The sensitivity analysis of PSO parameters allowed us to improve the efficiency of the algorithm 

by modifying some default values, for instance, the maximum velocity particle (MPV) and the 
maximum number of iterations (MNI). The reduction of MNI for PSO + SAFY from 2000 to 1000 
allowed diminishing the time processing by 58% in relation to PSO + GRAMI (MNI=2000).  
Moreover, we defined a minimum number of PSO repetitions per plot to reduce the effect of the ill-
posed problem in a context of calibration of multiple parameters inter-correlated. This value should be 
modified if the number of free parameters is lower. For instance, we define a unique PSO repetition 
when the algorithm was implemented at pixel scale. 

The combination PSO + SAFY showed a relatively better performance in relation to PSO + 
GRAMI, with a lower errors at plot and region scales. This trend was also observed when the 
algorithm was implemented at pixel scale with a reduced number of free parameters. However, the 
main drawback of PSO + SAFY was the increase of the error yield estimation at plot scale when a total 
of 11 parameters were calibrated (§5.5.4). The increase was due to the inclusion of phenological 
parameters such as Sw, GDDem, GDDmt in the optimization routine. In this scenario, it is 
recommended reducing the uncertainty along the optimization by using narrow searching intervals 
for the free phenological parameters. These ranges can be set using field observations or data collected 
in previous crop seasons. 
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Comparison between iLUT and PSO 
 Sensitivity of calibration techniques to frequency and error level of LAI retrieved values 

Based on the sensitivity experiment, we proved that the calibration techniques and the CGMs 
have different degree of sensitivity regarding the random error, the frequency and the gaps of the LAI 
data. In most of cases, the GRAMI model showed larger dispersion of the yield estimation in relation 
with SAFY. Moreover, the larger sensitivity of SAFY and GRAMI to the LAI error and temporal 
frequency was verified when the models were calibrated by LUT technique. A lower variability of the 
yield estimation was obtained by calibrating the CGM parameters using PSO. However, a larger 
number of outliers were registered because of the greater flexibility of the optimization algorithm in 
respect to LUT. 

 Comparison of calibrated parameters. 
We compared GRAMI and SAFY parameters calibrated by LUT and PSO. The largest difference 

between model parameters was for: the specific leaf area (SLA), the extinction light coefficient (K) and 
the light use efficiency (LUE). This difference might be directly related with the temperature stress 
function implemented in SAFY. Although, the temperature stress function adjusts only LUE according 
to the daily temperature, K and SLA were also affected during the calibration because they are 
strongly inter-correlated with LUE. On the other hand, the lower differences were noticed for 
phenological parameters such as GDD to emergency, sowing date and GDD to maturity. 

Moreover, we compared the calibrated values of SLA, K and LUE with bibliographical references 
values: K=0.6, SLA=0.0022 m2 / g (Penning, et al. 1989) and LUE=3.3-3.8 g/MJ (Lindquist et al., 2005; 
Singer, et al., 2011). We found that the SLA and K were underestimated. The ranges of values obtained 
by calibration were 0.45-0.55 and 0.15-0.20 respectively. A stronger underestimation of SLA was 
observed by PSO. However, in compensation, the coefficient K was better calibrated than by the LUT 
approach. A higher difference between CGMs was observed for LUE. The average value for GRAMI 
was 2.7 while for SAFY 3.3. The good calibration of the LUE in SAFY was already verified using 
Monteith equation and FAPAR data (§ 5.8). This good performance is related with the efficiency of 
SAFY to simulate the effect of temperature in the plant use radiation. 

 Yield estimation 
The combination SAFY + PSO showed the best performance with a clear reduction of EEP and 

EER errors in relation with GRAMI model (Table 18). This trend was also confirmed in season 2014 
(Table 22). However, the main drawback of PSO approach at pixel scale is the demand of 
computational resources. For instance, the time required to calibrate 3 parameters at pixel scale (84 
series of LAI data) was three times larger than the time required to calibrate 8 parameters at plot scale 
(1 series of LAI data). The sharp increase of the computational processing time depends on the 
number of pixels per plot. Therefore, one alternative might be to cluster automatically the pixels in 
homogeneous units. This option is viable if there is a suitable relationship between pixel size and plot 
size and the clustering technique has low computational demand. 

 Yield forecasting 
The calibration techniques showed a good performance to forecast maize yield one and two 

months before harvesting. A clear trend in yield estimation accuracy was noticed. The error was lower 
at regional scale than plot scale. Moreover, a better accuracy was achieved one month before crop 
harvesting in relation to two months before. These trends are explained by the compensation of errors 
at regional scale and the reduction of the meteorological data uncertainty. 

The good performance of yield forecasting can be explained by two main reasons:  
 the total crop biomass was simulated accurately till anthesis by the calibrated CGMs; 
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 there were no extreme meteorological phenomena such as pests, frosts and flooding which 
affected the maize production between the yield forecasting and the end of the crop season. 

5.10.6. Updating of LAI in GRAMI and SAFY models 

The novel experiment implemented in section 5.7.1 allowed us to estimate a suitable ensemble 
size. Furthermore, we assessed the effect of underestimation and overestimation of observation and 
model errors in EnKF and PF performance. 
The ensemble size chosen by the sensitivity analyses was higher than the values used in other research 
(De Wit and van Diepen, 2007; Ines et al., 2013; Zhao et al., 2013). This size did not affect significantly 
the speed of the updating process. However, for a large burden of processing data, the number of 
particles could be reduced to 100 or even 50 particles. 

Concerning the model and observation errors, the experiment demonstrated relevant differences 
between filters. The effect of the overestimation of the observation error showed a negative impact in 
PF accuracy while in EnKF the updating accuracy was improved. The effect of the underestimation 
and overestimation of the model error is comparable in both filters. However, the PF showed a larger 
sensitivity to error underestimation.  
Aware of the sensitivity to the model error estimation, we implemented an innovative technique 
suitable for both filters. The pixel approach allowed assessing a more representative model error in 
relation with the approach based on plot data. Moreover, the code has the benefit of being directly 
coupled with the updating routine. 

Regarding maize yield estimation, the combination calibration + updating showed good results. 
EnKF and PF, coupled with calibrated GRAMI and SAFY models, improved the maize yield 
estimation. The performance of the three filters tested was similar. The best accuracy for season 2013 
was achieved using SAFY + PSO + EnKF, while in 2014 the combination SAFY + PSO + PF yielded the 
best accuracy. We noted that the efficiency of updating was constrained by the CGM and the 
calibration technique implemented. The filters acted as a fine tuning which allowed adding extra 
information from pixel data. 

5.10.7. Model performance for simulating crop yield 

The main difference between previous research using GRAMI and SAFY models with our 
experiment is the strategy carried out to calibrate the model parameters. For instance, Claverie et al., 
(2012) and Duchemin et al (2008) calibrated, at first, a group of parameters constant for each crop type 
such as biomass partition (A and B) and senescence (SenA and SenB). Then, the parameters related 
with agro-environmental conditions such as emergence date and LUE were calibrated at plot scale. 
Moreover, Chahbi et. al. (2014), Padilla et al. (2012) and Ko et al. (2005) calibrated a reduced 
combination of the model parameters at plot scale. Parameters such as K and SLA were no calibrated. 
They were, in most of the cases, measured in field. On the other hand, we assessed the calibration of 
10 parameters for GRAMI and 11 for SAFY. The phenological parameters sowing date, emergency and 
maturity were also included in the group. In most of the previous researches, sowing date was fixed 
and GDD to emergency was calibrated. Then, maturity (total plant senescence) was defined by a 
minimum LAI threshold.  

Table 23 presents the accuracy obtained for biomass and yield estimation for different crops. The 
biomass estimations were generally more accurate than yield. This is probably related to the fact that 
the yield assessment in GRAMI and SAFY models is too much simplified compared to reality 
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(Duchemin et al, 2008). Moreover, some factors mentioned in previous research as sources of 
uncertainty in CGMs estimations are: 

 using a unique planting date and phenological parameters for all the fields in a given 
year (Padilla, et al., 2012); 

 inefficiency to capture differences in crop management between the plots by LUE 
(Duchemin, et al. 2008); 

 keeping a constant LUE value along the crop season (Lecoeur et al. 2011, Claverie 2012); 
Aware of these drawbacks, we carried out an innovative approach. To avoid the effect of 

unrepresentative phenological data, we calibrate the CGMs parameters independently for each plot. 
Moreover, to capture better the effect of crop management, we tested the calibration at plot and pixel 
scales and the combination between calibration (plot scale) with the updating (pixel scale). 

As presented in Table 26, the results of our experiment are promising considering the minimum 
input data required and the high accuracy obtained at regional and plot scale. We have achieved a 
good performance in both seasons. The regional estimation copied accurately the inter-season 
variation of the maize yield. Furthermore, our results are comparable whit the accuracy obtained by 
complex crop growth models such as EPIC, CERES or STICS. For instance, Fang et al (2011) obtained a 
regional accuracy of 3.5% for maize by assimilating EO-data in CERES model. Ren, et al (2009) 
estimated maize yield with an error of 6.4% by assimilating LAI into EPIC. Jégo et al (2012) achieved a 
NRMSE of 10.4% for maize estimation by assimilating retrieved LAI in STICS model.  

Table 26. Examples of crop yield estimation by assimilating EO-data in GRAMI and SAFY. 

Reference Model Crop R2 
NRMSE 

Region Plot 
Atzberger el al. (2001) GRAMI Wheat 0.29  25.9 
Ko et al (2005) GRAMI Cotton 0.67   
Padilla et al. (2012) GRAMI Wheat  6.8 21 
Duchemin et al (2008) SAFY Wheat 0.48 25  
Claverie et al. (2012)* SAFY Maize 0.86  26 
Chahbi et al, (2014) SAFY Wheat 0.45   
SAFY + PSO + EnKF - 2013 

SAFY Maize 
0.84 2.3 11.2 

SAFY + PSO + PF - 2014 0.73 1.6 7.45 
*biomass estimation 
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6. Conclusions and recommendations 
This chapter is divided in five sections. General conclusions about crop monitoring are presented 

in item 6.1. Aspects related with retrieval of biophysical variables (chapter 2) and assimilation of EO-
data in crop growth models (chapter 3) are introduced in section 6.2 and 6.3 respectively. The findings 
about maize yield estimation using GRAMI and SAFY models calibrated and updated by EO data are 
presented in section 6.4. Finally, in section 6.5 are introduced recommendations and further research 
regarding crop yield monitoring at regional and plot scale. 

6.1. General overview about crop monitoring 

The demand for reliable crop intelligence at suitable scales and within a short lag-time is 
constantly increasing. Crop growth models are valuable tools to deliver useful information to planners 
and decision makers for optimizing agricultural activities and for increasing the efficiency in the 
production process. The integration of EO data in CGM allows spatializing model application and 
minimizing model uncertainties. The added value of integration results from the combination of the 
synoptic and repetitive data from EO systems with the continuous – and knowledge-based – 
description of crop status derived by crop models. 

Operational system for regional crop growth modeling has to address several issues of 
uncertainty related to model formulation, model inputs, data assimilation algorithm, and assimilated 
observations. Simple crop models have generally low(er) data requirements compared to complex 
models and therefore might be more easily transferable to other regions. Simple crop growth models 
can therefore outperform complex models in which most parameters are set to standard values. 
However, simple CGM usually estimate only few state variables compared to complex models, which 
can simulate variables related to crop water balance, nitrogen balance among others in addition to 
yield and biomass. Hence, the challenge of implementing complex model at regional scale is the 
feasibility of fine-tuning parameters and providing the necessary input and driving variables to 
represent the spatial variability in an appropriate manner.  

6.2 Retrieval of vegetation bio-physical variables 

Numerous techniques have been implemented to retrieve biophysical variables. In the last years, 
the challenge of retrieval techniques is focused on developing routines able to quantify the uncertainty 
of the retrieved vegetation bio-physical variables. This has a paramount importance regarding the 
quality level and consistency required to assimilate EO-data in CGM. 

Based on the review of vegetation bio-physical data retrieval techniques, we recommend to focus 
the research on the development of flexible and robust routines able to select and apply context-
dependent algorithms, to make use of a priori constraints. In this way, it could provide realistic ranges 
of uncertainties together with the retrieved vegetation bio-physical variables. At the same time, 
computational requirements have to be considered in particular with regards to an operational 
mapping of biophysical variables at regional and global scales at deca-metric spatial resolution. 

6.3 Assimilating remotely retrieved biophysical variables in crop models 

Aiming to reduce uncertainties at regional scale, EO data have been integrated with crop models 
using different assimilation techniques. In the last years, updating technique has been widely used 
thanks to its flexibility. This sequential approach allows assimilating state variables or combination of 
parameters and state variables while taking into account model and observation errors. In new 
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studies, updating has been integrated with variational techniques. The hybrids approaches have 
shown good performance because take advantage of strength of both techniques. 

As a matter of fact, EO data availability will steadily increase in the future. Data will be delivered 
from sensors with diverse technical characteristics. In this scenario more research is needed with 
respect to:  

 multisource EO data assimilation techniques (optical and microwave data) testing new filter 
and hybrid approaches;  

 fusion of EO data to match the CGMs spatial and temporal scale with user demands; 
 coupled CGM, atmosphere and radiative transfer models (RTM), aiming to further reducing 

uncertainties. 

6.4 Maize yield estimation by using GRAMI and SAFY models 

6.4.1 Sensitivity analyze of GRAMI and SAFY parameters 

The present work proves that crop biomass estimation is highly influenced by Light Use 
Efficiency. The effect of parameters such as sowing date, GDD to emergence and GDD to maturity is 
conditioned by the daily temperature. The role of senescence in biomass estimation is stronger in the 
GRAMI model because there is a direct connection between biomass synthetized and senescence. In 
the SAFY formulae these two processes are decoupled. 

The parameters with a stronger influence in the calibration of the LAI are SLA, A, B and LUE for 
both models. Moreover, the study shows that these parameters together with K and LAI at emergency 
(LAIin) are highly correlated. This high correlation explains the ill-posed problem when they are 
calibrated together. On the other hand, parameters related with senescence and GDD to maturity had 
a low correlation with the rest of the parameters. 

6.4.2 Sensitivity of LUT and PSO to the error level, frequency and gaps of LAI data 

The experiment shows that a minimum LAI frequency suitable to calibrate GRAMI and SAFY 
models is 15 days for LUT and 20 days for PSO.  
The calibration techniques are strongly sensitive to LAI data gaps. The yield estimation error increases 
sharply if the LAI data series used in CGMs calibration has gaps during crop emergency. Therefore, 
the LAI observations should be well distributed in the crop season.  
Finally, the average LAI random error should be no larger than 20%. This threshold has more 
relevance when the crop yield is estimated using GRAMI and the model parameters are calibrated by 
LUT approach. 

6.4.3 Yield estimation using calibrated GRAMI and SAFY models by iLUT and PSO techniques 

We could further prove that the filtering of the retrieved LAI using the Whittaker filter with 
smoothing parameter λ equal 300 improves the parameter calibration. The smoothed LAI observations 
have a better fitting with the LAI simulations obtained by SAFY and GRAMI models. Consequently, 
the biomass estimation is improved. The simple cost function shows an acceptable performance for 
the LUT and PSO techniques without requiring ancillary data. 

Regarding iLUT technique, the regional yield is underestimated by SAFY and overestimated by 
GRAMI. This trend was verified in the seasons 2013 and 2014. The dispersion of parameter levels and 
yield as well as the global LAI error is reduced along the LUT iterations.  
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SAFY calibrated by PSO at plot scale achieves the best performance with a lower error at plot and 
regional scales in relation with GRAMI estimations. However, the error yield estimation increases 
when phenological parameters such as Sw, GDDem, GDDmt are included in the optimization routine.  

The present work proves the increase of the yield estimation accuracy by using pixel data. The 
best results are observed using PSO for a reduced number of free parameters with low inter-
correlation. The yield variability and the error at plot and regional scale is reduced, in most of the 
cases, in relation with the plot approach. 

The calibration techniques perform well in forecasting maize yield one and two months before 
harvesting. A clear trend in yield estimation accuracy is noticed. The error is lower at regional scale 
than plot scale. Moreover, a better accuracy is achieved one month than two months before crop 
harvesting. These trends are explained by the compensation of errors at regional scale and the 
reduction in the uncertainty of the meteorological data. 

6.4.4 Updating of GRAMI and SAFY models using EnKF and PF 

The sensitivity analysis implemented for EnKF and PF shows us the effect of the model and 
observation error in the filter performance. The underestimation of the model error has a strong effect 
on updating performance. Therefore, this study applies an innovative technique, using pixel-based 
data, to calculate a representative model error. 

Regarding the maize yield estimation, the combination calibration + updating shows a good 
performance. For 2013 SAFY + PSO + EnKF achieve the best accuracy. While in 2014 the combination 
SAFY + PSO + PF yields the best results. This confirms the better performance of SAFY compared with 
GRAMI in our study. We further note that the efficiency of updating is constrained by the accuracy of 
the CGM calibration. The study shows that the filter acts as a fine tuning which allows adding extra 
information from pixel scale. 

Considering the good performance of PF in seasons 2013 and 2014, we recommend the calibration 
of the SAFY model at plot scale using PSO and the updating at pixel scale using PF. This combination 
between techniques results in a suitable accuracy both at regional and plot scale. Additionally, the low 
computational demand of PF makes possible the updating of SAFY at pixel scale in large regions. 

As a whole, the study confirms the robustness of simple crop growth models. The main 
assumption of the GRAMI and SAFY models is verified. The LUE calibrated by LAI observations is 
able to model the agro-environmental conditions of maize. The approach achieves a good accuracy at 
regional and plot scale with a minimum demand of input data. The strategy of parameter calibration 
at plot scale and updating at pixel scale is suitable to estimate accurately maize yield in Marchfeld. 

Finally, based on the results, we state that the SAFY model calibrated and updated by remote 
sensing is able to monitor the dynamics of vegetation, to detect anomalies in crop phenology and to 
predict accurately above-ground biomass at regional and plot scales. 

6.5 Recommendations and further research 

Being aware of the computational demand of applying CGM in large regions, we recommend 
testing a strategy to calibrate cluster of samples instead of individual plots. Then an iterative LUT 
could run independently for each group of samples. We suggest assessing the effect of the parameter 
dispersion on the accuracy of CGM estimations. This is relevant when calibrated multi (inter-) 
correlated parameters (ill-posed problem). 

Considering the availability of multi-source remote sensing data and the impact of the LAI 
accuracy in the calibration of CGMs, further research should focus on testing a routine to assimilate 
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the surface reflectance collected by remote sensors directly in SAFY model. Then, SAFY would be 
coupled with a radiative transfer model and atmosphere model. The main advantage of this strategy 
would be to avoid the error of the LAI retrieval and the possibility to assimilate multi-source remote 
sensing data. 

We recommend validating our assimilation routine (calibration + updating) in rain feed regions 
aware of the sensitivity of the crops to the spatial distribution of rainfall and to the soil water content. 
In this way, the following assumptions can be validated: 

 the LUE is an efficient indicator of the global agro-environmental stress; 
 the crop yield can be calculated accurately using the total above biomass and a 
constant harvest index; 

Moreover, one can compare the efficiency of senescence simulation using GRAMI and SAFY 
approaches. 

Finally, we encourage implementing the SAFY model calibrated at plot scale and updated at pixel 
scale to estimate yield of other crops with importance in the commodities world market such as winter 
cereals and soybean. 
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EER  Estimation error at regional scale 
EKF  Extended Kalman filter 
EnKF  Ensemble Kalman filter 
EnSRF  Ensemble square root filter 
fCOVER  Fractional cover 
fPAR  Fraction of photosynthetically active radiation absorbed by the canopy 
GDD  Growing degree days 
GDDem  GDD emergency 
GDDmt  GDD maturity 
GDP  Gross domestic product 
HI  Harvest index 
iLUT  iterative Look Up Table  
IPF  Improved Particle Filter 
K  Extinction coefficient 
LAI  Leaf area index 
LAIin  Initial LAI 
LCC  Leaf chlorophyll content 
LKf  Linear Kalman filter 
LLS  Leaf span 
LUE  Efficiency light use 
LUT  Look up table  
MCMC  Hamiltonian Markov Chain Monte Carlo 
MLR  Multiple linear regression 
NDII  Normalized-Difference-Infrared-Index  
NDVI  Normalized difference vegetation index 
NN  Neural nets 
NRMSE  Normalized RMSE 
NRMSEf  Mean square error for the regression function  
PAR  Photosynthetically active radiation 
PCR  Principal component regression 
PF  Particle filter 
PLSR  Partial least square regression 
PSO  Particle Swarm Optimization 
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PSRI  Plant Senescence Reflectance Index  
R2  Determination coefficient  
REIP  Red edge inflection point 
RENDVI  Red Edge Normalized Difference Vegetation Index  
RFF  Random forest regression  
RS  Remote sensing 
RTM  Radiative transfer models  
SAFY  Simple Algorithm For Yield estimate 
SDI  Simple difference index 
SenA  Senescence factor A 
SenB  Senescence factor B 
SLA  Specific leaf area 
SR  Simple ratio 
SRTM  Shuttle Radar Topography Mission 
SVM  Support vector machines 
SW  Sowing date 
UN  United Nations 
VI  Vegetation indices 
WDVI  Weighted Difference Vegetation Index 
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11. Appendices 
Appendix A-Estimating maize yield prior to harvest using the “Yield Component Method” 
 

The method used to estimate maize yield was originally described in the University of Illinois. It 
is based on the premise that one can estimate grain yield from estimates of the yield components that 
constitute grain yield (http://www.agry.purdue.edu/ext/corn/news/timeless/YldEstMethod.html).  

The yield components measured were: 
1) number of ears per ha 
2) number of kernel’s rows per ear 
3) number of kernels per row 
4) kernel weight 

The first three components were measured in field. The last component was estimated using 1000 
seeds extracted from some average ears. The samples were dried at 100°c during two days and then 
they were weighted. 

 
Yield (kg/ha) = ears/ha * average rows per ear * average kernels per row * weight of 1000 kernel 
 
In the “yield component method” is suggested to sample several sites in the field and at each site, 

measure off a length of row equal to 1/1000th acre. In the sample site must be counted the number of 
harvestable ears and every fifth ear must be counted the number of rows per ear and the number of 
kernel per row. Then, it is calculated for this sample the average number of kernel per ear. This 
procedure must be repeated for at least four additional sites across the field. 

Regarding the feasibility to take ear’s samples and considering the size of the plots some changes 
were considered in the methodology suggested above. If we consider that the plot’s row spacing is, in 
most of the cases 0.7m, the 1/1000th of length row is 14 m. To better represent the spatial variability of 
the plot, we defined a shorter row of 10 m and increased the number of samples in comparison with 
the original method. In each sample were selected two ears and the average number of kernel per ear 
were calculated. The samples were taken when the maize kernel began the milk stage (R3). 
 
E. g. 
Plot n° 2 
Width: 54 m 
Length: 840 m 
N° of rows: 77 (54/0.7) 
Total length row: 64680 m (77 * 840) 
N° of samples: 6-7 ((64680 * 0.001)/10*) 
*each sample is 10 m long. 
 

The sampling method was systematic. For each elemental sampling unit (ESU) were taken 3 
observations such as is delineated in the Figure A1. The aim of this sampling diagram was diminished 
the effect of the positional error in order to obtain a more precise spatial interpolation of the field data. 
The three yield components were measured in each ESU. The individual observations were used to 
estimate the average yield and the compounded samples to obtain a yield map. 

In Table A1 is presented the basic data used during the maize sampling in field for the season 
2013. 
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The autocorrelation spatial of the yield components was analized using ordinary Kriging 
technique. The best kriging model, nugget, sill and range were adjusted for each plot. To verified the 
kriging parameters, the values obtained were compared with the kriging of the same data but 
randomly distributed. We verified a low spatial autocorrelation of the data. The nugget values were 
high and the range values were similar to the distance between the samples. Therefore, the kriging 
functions had an important component of random error (high nugget) and the influence of the 
neighbor observations was low. 

The low spatial autocorrelation might be related with the sampling method used, the 
homogeneity of the plot and the agricultural management. We believe that probably a more intensive 
sampling could capture the spatial autocorrelation of the maize. However, the influence of the factor 
with more relevance in the spatial pattern of the yield, the soil, was minimized by the influence of the 
irrigation. Spatial patterns of crop yield associated with soil conditions might be better detected in 
rain-feed regions. 

 
Figure A1- Sampling procedure to measure yield components and extract maize samples in field. 

Table A1.  Basic data for maize sampling in the season 2013  

Sampling rate = 0,1% of the total meters of maize in one hectare. 

Plot 
Width 

(m) 
Lenght 

(m) n° rows 
Total 

lenght 
Number of 

samples 
Samples 

x line 
Number 
of lines 

Row 
interval 

Dist x 
sampl (m) 

2 54 840 77 64680 6 3 2 25 210 

3 153 344 219 75336 8 4 2 70 70 

4 45 755 64 48320 6 3 2 20 200 

5 213 350 304 106400 12 4 3 80 70 

7 74 533 106 56498 6 3 2 35 130 

8 172 409 247 101023 10 5 2 80 80 

9 70 500 100 50000 6 3 2 23 125 

11 220 264 314 82896 9 3 3 80 70 

12 49,7 640 71 45440 6 3 2 24 160 

14 270 287 386 110782 12 4 3 100 60 

16 150 280 214 59920 6 3 2 70 70 

17 154 418 220 91960 9 4+1 2 70 80 
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Appendix B-Mathemathical description of GRAMI and SAFY models 

B1. GRAMI  

1.1. Calculation of the cumulative degree days  

∆GDDt = GDDt-1 + (Tt-Tb) 

1.2. Fraction of the incident radiation energy absorbed by the canopy  

FAPARt = 1 - e- K * LAI(t-1)  

1.3. Production of new dry mass 

∆DMt=LUE * PARt * FAPARt 

1.4. Partitioning of new dry mass 
 From Emergence to Anthesis 

-New biomass to Leaf 
LPFt = 1-SPFt 

∆LAIt = ∆DMt * LPFt * SLA 
Sent= (∑LAI > LLs) - Sent-1 

When the age of the leaves exceeds LLs is assumed that they have senesced 
LAIt = LAIt-1 + (∆LAIt – Sent) 

-New biomass to Stem 
SPFt = A * eB * GDDt 

∆Stemt = ∆DMt * SPFt 

Steamt = Stemt-1 + ∆Stemt 

 From Anthesis to maturity (The biomass is not partitioned to the Leaf) 
-Leaf biomass 
Sent= ∑LAI > LLs -Sent-1 
LAIt = LAIt-1 –Sent 

-New biomass to Stem 
SPFt = A * eB * GDDt 

∆Stemt = ∆DMt * SPFt 

Steamt = Stemt-1 + ∆Stemt 

-New biomass to Grain 
YPFt= 1-SPFt  
∆Graint = ∆DMt * YPFt 

Graint = Graint-1 + ∆Graint 

t: loop step 
T: Average daily air temperature (ºC) 
Tb: Base temperature specific to a crop species (ºC) 
GDD: Growing degree days (ºC) 
PAR: Photosynthetically Active Radiation (MJ/m2) 
LAI: Leaf Area Index 
∆DM: Dry matter produced at day t 
Grain: yield production (g/m2) 
LUE: Light Use Efficiency (g/MJ). It represents the efficiency to convert absorbed PAR into biomass. 
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SLA: Specific leaf area (m2/g). It determines the square meters of leaf that can be created per kg of leaf 
biomass. 
K: Light extinction coefficient. It is directly related with leaf structure and canopy architecture 
assuming a specific value for a given crop. 
SPF: fraction of ∆DM partitioned to Stem 
LPF: fraction of ∆DM partitioned to Leaf 
YPF: fraction of ∆DM partitioned to Grain 
A: Coefficient  
B: Coefficient  
SPF increases from zero in an exponential manner as a function of the GDDs. The curvature of the SPF 
function is controlled by the parameters A (define the maximum value of SPF curve) and B (define the 
slope of SPF curve). 
Sen: senescence biomass  
LLs: Leaf Lifespan 
 
B2. SAFY 
The SAFY model is defined by similar formulas to GRAMI; however, there are some differences 
detailed as follows: 
 
2.1. Effect of temperature stress in dry mass production: 
In SAFY the calculation of dry matter increment (∆DM) is modified by a factor which depends of the 
air temperature (Tps). The coefficient is defined by a range of optimum temperature and a function 
which can take the power 1 to 3. The following logic rule is applied: 
 

if T < Tmin or T > Tmax Tps = 0 
if Tmax > T > Topt Tps = 1 – ((Topt-T)/(Topt-Tmax))ß 
if Tmin < T < Topt Tps = 1 – ((Topt-T)/(Topt-Tmin))ß 

 
Tmax: maximum temperature; 
Tmin: minimum temperature; 
Top: optimum temperature. 
 
For maize the range of temperatures suggested by Claverie, et al. (2012) was: 
Tmax: 45°C; 
Tmin: 8°C; 
Top: 30°C. 
 
For instance, if T= 18°C and ß=2 
Tps = 0.45 
then ∆DMt=LUE * APAR *. 0.45 
 
2.2. Calculation of senescence: 
Unlike GRAMI in SAFY senescence is driven by two parameters; Sum of Temperature for Senescence 
(Sen A) express in °C, which indicate the beginning of senescence and the Rate of Senescence (Sen B) 
express in °C day-1, which mimic the velocity of the senescence process. 
Sent=LAI (t-1)*((∑GDD-Sen A)/Sen B) 
 
2.3. Partition to grain 
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The grain biomass is calculated based in the partition yield coefficient (Py) which represents a 
percentage of the total biomass partitioned to the grain every day along the period from flowering to 
maturity, instead of GRAMI, which is considered a percentage (YPF) of the daily biomass produced. 
 
GMt=GM(t-1)+Py*∆DMt  
 
GM: grain dray matter; 
DM: dry matter; 
Py: Partition yield. 
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Appendix C-Cost functions and logical rules of iterative LUT 

C1. Cost functions 

Before introducing the cost functions tested in LUT experiment, it is important to define the 
meaning of individual error used hereinafter. Individual error is defined as the error between LAI 
observed and LAI estimated in a time t (LAIobst - LAIestt). The term “total error” refers to the sum of 
individual errors along the crop season. The error was, in all the cases, expressed as percentage with 
respect to the total sum of LAI observations.  

C1.1. Simple cost function 
The function considers the same weight for each individual errors.  

Error = (∑ ඥሺLAIobs୲ − LAIest୲)ଶ
 

௧ୀଵ / ∑ ሺLAIobs୲) 
௧ୀଵ ) * 100 (1) 

C1.2. Weighted cost function by phenology 
A correct identification of anthesis period has a direct impact on the yield estimation because in 

both models the partition of biomass to the grain starts at anthesis. Therefore, if the anthesis 
identification is not precise enough, the period of grain filling could be shorter or longer compared to 
real conditions. Being aware of this situation, a cost function has been tested in which the weight of 
each individual error is defined depending on the related crop phenology. Assuming that maize 
anthesis matches with the maximum LAI value, 50% of the weight of the cost function was assigned to 
the three individual errors centered in the date of maximum LAI. The rest of weight was distributed 
proportionally to the rest of individual errors. 

Errorwphen = ( ∑ ௧ඥሺLAIobs୲ݓ − LAIest୲)ଶ
௧ୀଵ / ∑ ሺLAIobs୲) 

௧ୀଵ ) * 100 (2) 

C1.3. Weighted cost function by LAI uncertainty 
As mentioned in section 4.9.1, the estimation of LAI is affected by uncertainties such as non-

random distribution of the canopy elements. This effect is maximized at the beginning of the crop 
cycle, mainly, in row crops such as maize. The evolution of LAI error measured in the field with 
LICOR 2200 was analyzed verifying that the initial estimations had a perceptual error between 30 and 
40%. Then, along the crop season the measurement error sank to around 5 %. A logical rule was 
defined to state a threshold tolerance error depending on the LAI observation values which is 
described below: 

 
LAI_diffet = (ǀLAIobst-LAIesttǀ/LAIobst)*100 
If LAIobst < 1 and LAI_diffet < 30 %; Bvalt = 1 else Bvalt = 0 
If LAIobst > 1 and LAI_diffet < 10 %; Bvalt = 1 else Bvalt = 0 
 
The error is expressed as percentage considering the number of individual errors, which fulfill the 
logical rule above with respect to the total number of LAI observations. 

Errorw_uncer = (∑ Bval୲/

௧ୀଵ n° total of observations) ∗ 100 (3) 

C1.4. Balanced cost function 
The weight of each individual error in a simple cost function (1) would be 0.1. However, an 

uneven temporal distribution of LAI observations can produce an unbalanced objective function 
calculation because observations in one part of the crop season receive much more weight than in 
other parts. To minimize this effect, a balanced cost function was tested that introduces weights to two 
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crop periods: emergence to anthesis and anthesis to maturity. The weights are defined inversely 
proportional to the number of observations registered in the corresponding growth period. For 
instance, if there are three LAI observations from emergence to flowering period and seven 
observations from flowering to maturity, the weights are calculated as follows: 
weightP1=0.5*(1/3) = 0.16 weight of observation in the first phenological period 
weightP2=0.5*(1/7) = 0.071 weight of observation in the second phenological period 

C2. Logical rule for the iterative LUT 

A group of logical rules, detailed as follow, were implemented to select parameter levels along 
the iterative LUT. 

1. The sum of frequencies of the parameter levels selected must represent, together, at least 50% of 
the total number of treatments;  

2. If the second and third parameter level, sorted by frequency, had the same frequency, the 
parameter level with the largest difference respect to the most frequent parameter level is 
selected; 

3. If a parameter level had a frequency larger than 75% it is assumed to be constant in the next 
iteration.  
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Appendix D-4DVAR cost function 

The 4DVAR cost function is composed of two error terms; a first one which measures the distance 
between the reinitialized parameter and a background parameter and a second term which represents 
the summation of disagreement between LAI observations and simulations in the time-frame 
considered.  

In our experiment parameter values extracted from iLUT were considered as background 
parameters while the reinitialized parameters were calculated along the optimization process by PSO. 
The standard deviation calculated in iLUT approach represented the background error for each 
parameter. The equation of 4DVAR function is detailed as follows: 

J(x) = (xo–xb)T B-1 (xo–xb) +∑  ௌ
ୀଵ (y(k)–H(x(k)))T R(k)-1 (y(k)-H(x(k))) (1) 

xo initial condition at the beginning of the assimilation window 
xb background value 
B background error covariance matrix 
R observation error covariance matrix 
H is the nonlinear observational model 
K observational time 
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Appendix E-Representation of the correlation of GRAMI and SAFY parameters 

A complementary visual representation of the correlation analysis for both CGMs (§5.3.2) based 
on stepwise technique are presented in Figures E1 (GRAMI) and E2 (SAFY). 

In this stepwise analysis the parameters are considered as variables. Then, in each dispersion 
diagram is represented the trend between the residual of the dependent variable and a new 
independent variable. The rest of variables are included in the model as independent. The stepwise 
technique allows analyzing the marginal effect of the inclusion of a new independent variable in the 
model. For instance, the row LUE and column K indicates the relation between the residuals of K and 
the incorporation of LUE as new explanatory variable; the rest of parameters are already included in 
the model. The variable K is strongly related with LUE demonstrated by the sharp correlation 
between LUE and K residuals. The parameters A and B are another example of strong correlation. This 
additional analysis permits scaling the complexity of correlation between parameters. 
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Figure E1- GRAMI parameters dispersion matrix 
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Figure E2- SAFY parameters dispersion matrix 
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Appendix F-Goodness-of-fit parameters for iLUT and PSO approaches for season 2013 

Table F1. Goodness-of-fit parameters for iLUT approach for season 2013  

CGM GRAMI SAFY 
 1° it Best it x Pixel 1° it Best it x Pixel 

Slope 1.05 1.07 1.09 0.81 1.03 1.3 
Offset 1.76 -5 -13.7 15.9 8.1 -8.7 
R2 0,66 0.73 0.86 0.61 0.65 0.85 
NRMSEf 16 14.3 10.2 17.2 15.4 10.8 
REE 5.2 3.2 10.3 0.6 10.4 12.2 
PEE 15,5 12.9 12.3 15.7 18.5 17.3 

Best it: best iteration 

Table F2. Goodness-of-fit parameters for PSO approach for season 2013  

CGM GRAMI SAFY 
 Plot pixel-2 free 

parameters 
pixel-5 free 
parameters 

Plot pixel-3 free 
parameters 

pixel 6 free 
parameters 

Slope 0.88 1.23 1.14 0.86 1.03 1.03 
Offset 0.67 -20 -23 11.6 -2 -5.6 

R2 0.76 0.72 0.89 0.75 0.77 0.90 
NRMSEf 13.5 14.5 8.8 13.8 13.4 8.5 

REE 14.4 4.5 16.5 0.2 1.4 5.6 
PEE 17.4 13.4 12.6 12.5 11.6 8.3 
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Appendix G-Goodness-of-fit parameters for yield estimation by FAPAR 

Table G1. Goodness-of-fit parameters for yield estimation by FAPAR accumulation-Regional LUE. 

CGM GRAMI SAFY 
Phenology Filtering Field CGM Filtering Field CGM 
Slope 1.28 1.38 1.28 1.17 1.25 1.16 
Offset -23.1 -12.3 -8.2 -23.15 -12.3 -8.2 
R2 0.35 0.62 0.60 0.35 0.62 0.6 
NRMSEf 22.3 17 17.5 22.3 17 17.5 
REE 3 14.7 12.1 13.5 6.1 3.1 
PEE 19.2 22.5 20.8 22.6 17.1 16.1 

 

Table G2. Goodness-of-fit parameters for yield estimation by FAPAR accumulation-Plot LUE. 

CGM GRAMI SAFY 
Phenology Filtering Field CGM Filtering Field CGM 

Slope 0.86 0.97 0.92 0.95 0.94 0.97 
Offset 9.12 13.3 14.7 -4.65 9.7 5.22 

R2 0.42 0.59 0.59 0.65 0.75 0.80 
NRMSEf 21.1 17.5 17.6 16.3 13.8 12.4 

REE 3.6 13.9 11.3 14.1 5.1 2.3 
PEE 18.5 21.6 20 18.6 13.8 11.5 
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Appendix H Goodness-of-fit parameters for season 2014  

Table H1. Goodness-of-fit parameters for iLUT approach for season 2014  

CGM GRAMI SAFY 
 1° it Best it x Pixel 1° it Best it x Pixel 

Slope 0.67 0.57 1.16 0.62 0.40 0.79 
Offset 21.83 43.47 -4.50 32.87 52.98 28.13 

R2 0.42 0.63 0.50 0.38 0.46 0.57 
NRMSEf 10.99 8.80 10.18 11.37 10.57 9.49 

REE 2.50 21.86 15.87 9.14 16.13 22.70 
PEE 14.77 19.00 12.84 11.10 18.19 18.70 

Best it: best iteration 

Table H2. Goodness-of-fit parameters for PSO approach for season 2014  

CGM GRAMI SAFY 
 Plot pixel-2 free 

parameters 
pixel-5 free 
parameters 

1° it pixel-3 free 
parameters 

pixel 6 free 
parameters 

Slope 0.35 0.46 0.35 0.43 0.59 0.61 
Offset 50.81 41.70 50.78 45.73 34.78 31.94 

R2 0.42 0.41 0.35 0.76 0.68 0.69 
NRMSEf 10.99 11.07 11.59 7.10 8.09 7.98 

REE 2.13 0.58 2.69 3.66 7.92 5.45 
PEE 20.19 15.83 19.98 15.87 10.10 9.87 

 

Table H3. Goodness-of-fit parameters for Updating approach for season 2014. 

CGM GRAMI SAFY 

Calibration ILUT PSO ILUT PSO 

Filter EnKF PF nr PF r EnKF PF 
nr 

PF r EnKF PF 
nr 

PF r EnKF PF 
nr 

PF r 

Slope 0.69 0.71 0.68 0.35 0.38 0.39 0.86 0.89 0.86 0.60 0.61 0.62 
Offset 32.82 33.06 35.16 47.27 46.94 46.13 5.82 6.98 9.51 30.22 29.30 28.92 
R2 0.53 0.48 0.47 0.33 0.31 0.32 0.48 0.49 0.48 0.72 0.72 0.73 
NRMSEf 9.89 10.39 10.50 11.77 11.92 11.87 10.35 10.31 10.35 7.59 7.61 7.45 
REE 18.58 21.62 20.81 14.11 6.98 7.12 0.62 4.33 4.61 1.75 2.14 1.63 
PEE 15.43 18.21 17.66 28.48 21.78 21.72 12.46 9.54 9.53 11.32 10.88 11.10 
 

 

 


