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Abstract

The realisation of large infrastructure projects appears as a challenging venture,
not only from a technical point of view, but also in terms of methodical and effective
cost evaluation. Moreover, numerous decisions throughout the phases of planning
and construction, as well as during the project’s service life, are firmly related to
efforts to prevent, mitigate or address possible adverse events. The twofold require-
ment to quantify subjective perceptions of risks and to elaborate the resulting data
in a mathematically consistent manner, may prove to be extremely demanding.

The scope of the present study is to investigate, compare and propose methods
for efficient acquisition and utilisation of information regarding risk and cost, in
long–term and large–scale tunnelling projects. The developed methods should fa-
cilitate incorporating information, or lack thereof, into the risk analysis, in order to
effectively treat uncertainty and to support decision–making. Also, they should be
able to assist practitioners in aggregating all underlying risks and chances, so as to
to solve a complex multi–dimensional problem, such as the estimation of the total
cost.

In particular, the present work focuses on the realistic representation of risk fac-
tors as individual cost elements and, consequently, on the formulation of a transpar-
ent computational setup, wherein these elements can be efficiently combined in order
to yield reliable total cost estimates. Emphasis is drawn on quantitative decision–
making under the—commonly encountered in singular undertakings—conditions of
high uncertainty, complexity and partial information. The total cost is not viewed
as a mere sum of fixed and independent values, but rather as the outcome of a
stochastic framework, where risk fluctuations and dependencies are also considered.
The conceptual model is inspired from and applied to the risk analysis of the Bren-
ner Base Tunnel, one of the most important engineering projects being constructed
nowadays in Europe.



Zusammenfassung

Die Realisierung großer Infrastrukturprojekte ist nicht nur aus technischer Sicht,
sondern auch in Bezug auf methodische und effektive Kostenschätzungen und –
Management, eine anspruchsvolle Herausforderung. Darüber hinaus sind zahlre-
iche Entscheidungen in der Planungs- und Ausführungsphase, sowie über die ganze
Lebensdauer des Projektes hinweg, mit den Maßnahmen zur Vorbeugung, Ver-
ringerung bzw. zum Management von möglichen Risiken verbunden. Dabei können
sich einerseits die Quantifizierung der subjektiven Wahrnehmungen von Risiken und
andererseits die mathematisch konsistente Auswertung der daraus resultierenden
Daten äußerst anspruchsvoll sein.

Die vorliegende Studie soll Methoden zur effizienten Erfassung und Verwen-
dung von Informationen über Risiken und Kosten in Langzeit–Tunnelgroßprojekten
analysieren und vergleichen, sowie neue Methoden vorschlagen. Durch die Entwick-
lung dieser Methoden soll erleichtert werden, die Informationen bzw. deren Man-
gel in die Risikoanalyse einzubauen, um Ungewissheiten effektiv anzugehen und
Entscheidungsprozesse zu vereinfachen. Auf der Grundlage dieser Methoden sollen
die Fachleute in die Lage versetzt werden, alle zugrundeliegenden Risiken und Chan-
cen derart miteinander in Zusammenhang zu bringen, dass sie derart komplexe,
multidimensionale Anforderungen wie die Schätzung der Gesamtkosten, strukturi-
ert angehen können.

Insbesondere liegt das Hauptaugenmerk der vorliegenden Arbeit auf der real-
istischen Darstellung von Risikofaktoren, z.B. einzelne Kostenelemente, und fol-
glich auf der Formulierung eines transparenten rechnerischen Aufbaus; dabei kön-
nen diese Elemente effizient kombiniert werden, um eine verlässliche Schätzung der
Gesamtkosten anstellen zu können. Der Schwerpunkt liegt auf der quantitativen
Entscheidungsbildung unter unvorteilhaften Bedingungen aufgrund von Unsicher-
heit, Komplexität und mangelnden Informationen, welche sich insbesondere im Rah-
men einzigartiger Vorhaben ergeben. Die Gesamtkosten werden nicht als einfache
Summe fixer, unabhängiger Werte verstanden, sondern vielmehr als Ergebnis eines
stochastischen Prozesses, in dem auch Risikoschwankungen und Abhängigkeiten
berücksichtigt werden. Das konzeptionelle Modell inspiriert sich an der Risikoanal-
yse eines der wichtigsten Ingenieurbauprojekte, die heute in Europa in Ausführung
sind, nämlich des Brenner Basistunnels.
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Chapter 1

Introduction

1.1 Motivation and scope

The present study is motivated by the constantly increasing demand [CFR07] for
reliable cost estimations in large infrastructure projects dominated by large uncer-
tainties. In particular, the Brenner Base Tunnel1, the most important tunnelling
project under construction nowadays in Europe, serves as the basis for the theoret-
ical investigations, as well as for the computational developments throughout the
study.

The scope of the present research is to provide insight to the extent needed, with
regard to the specified objectives, into the following topics:

• The concepts of risk and uncertainty (nature, sources, propagation and effect)
in large–scale and long–term construction planning.

• The state of the art regarding the use of risk analysis tools in infrastructure
projects, with emphasis on risk and uncertainty quantification techniques.

• The particular challenges of mega–projects, and the commonly encountered
problem of cost underestimation.

• The role of experts and the importance of subjective judgement in decision–
making under uncertainty.

• The probabilistic representation of risks as individual cost and time elements.

• The effect of dependence among scheduled activities and among possible events
on economic estimates.

1A description of the project is given in Chapter 5.
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• The task of risk aggregation under the conditions outlined above.

• The effective contribution to an actual ongoing infrastructure project, namely
the Brenner Base Tunnel, through practical implementation of the exposed
ideas and methods.

1.2 Concepts and methods

The concepts of risk and uncertainty are at the very core of modern decision–making
theory and practice. The distinction and the relation between these two notions
is not evident [Elk00], [PGW08]. In the present work, risks are considered from
a neutral point of view, i.e. rather as possible events with negative or positive
impact, instead of simply unwanted hazards affecting the project. Besides, timely
and reliable information is acknowledged as a decisive factor in effectively managing
risk and uncertainty. Information is generally regarded as any element of knowledge,
able to modify a decision [Hub07], [Sav09], whereas the importance of its timeliness
and reliability attributes is mostly case–specific.

Both risk and uncertainty possess a paradox. On the one hand, revealing more
underlying risks during planning reduces the risk of the whole undertaking. This
fact not only highlights the importance of timely information, but also stresses the
need for a methodical risk analysis, especially when a considerable investment is
at stake. On the other hand, uncertainty—even if partly viewed as ignorance—
can be cognitively studied and efficiently used to supplement understanding on the
processes of concern. Furthermore, uncertainty may increase with knowledge.2

Another ambiguous, even controversial notion3 is that of probability. Since the
present work heavily relies on probabilistic methods, the fundamental matter of
probability needs to be clarified. In this respect, in practical engineering modelling
at least four interpretations can be identified [GW04], [OF05], [TBF99]:

1. The classical interpretation, where probabilities are assigned to events through
combinatorial considerations.

2. The frequentist interpretation, where probabilities are viewed as relative fre-
quencies of outcomes in controlled experiments.

2As eloquently expressed by R.W. Sockman, “The larger the island of knowledge, the longer the
shoreline of wonder”.

3Controversies regarding the theoretical foundations of probability lie beyond the scope of the
present research.
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3. The possibilistic interpretation, where probabilities are degrees of belief, sub-
jectively attributed to events.

4. The propensity interpretation, where probabilities emerge as physical necessi-
ties from underlying causal mechanisms.

All four mentioned interpretations are being considered, as appropriate, through-
out the following chapters. The possibilistic version results from subjective ex-
pert beliefs [FKH+07], while the classical conception is required for constructing
mathematically consistent models4. Furthermore, since probability—perceived as
frequency—exists as a common viewpoint [TBF99], it may serve as a transitive
mechanism in order to increase understanding, and to enable conversion among dif-
ferent probabilistic interpretations [FAZ09]. Finally, the propensity interpretation,
further discussed in Section (4.3), reflects the inherent physical and mechanical phe-
nomena, filtered by human causality awareness.

1.3 Outline of study

The present research is organised as follows:

In Chapter 2, the concept of risk and its various types encountered in large
civil engineering works are discussed. Summary findings from a conducted survey
on the state of the art concerning the use of quantitative risk analysis methods in
such enterprises are presented. Emphasis is directed to uncertainty, differentiated
from risk as hazard, and placed on a rather cognitive perspective. This shift invokes
a classification of information and confidence into levels, which are strongly linked
to expert judgement concepts, elicitation techniques, and modelling decisions.

Chapter 3 primarily focuses on the problem of evaluating individual cost el-
ements. The probabilistic route is selected, closed–end densities are compared to
open–end alternatives, whereas the vagueness of bounds is discussed. Then, a deeper
investigation among probability distributions, typically used for uncertaint cost rep-
resentation is carried out, leading to the choice of the beta density. The unimodal
beta family is studied in detail, and a method developed by the author for pa-
rameter estimation based on subjective opinions is proposed. Finally, few other
distributions, found in analogous studies, are cited, and a closing remark is reserved
for non–probabilistic approaches.

4For instance, the axiomatic requirement expressed by Equation (3.1).
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In Chapter 4, the complex problem of multivariate dependence is examined.
Firstly, the complementary concepts of causation and covariation are presented in
parallel. The removal of the independence assumption among random variables,
which can unfold in various forms (initiating from a trivial negation), gives rise
to modern sophisticated approaches for dealing with stochastic dependence. The
survey on the matter evolves in the present study mainly around the targeted appli-
cation, with due awareness of the limitations imposed by the scarcity of information.
The requirement for plausible dependence modelling receives attention, since it can
lead to feasible solutions to the problem of total cost estimation.

The Brenner Base Tunnel (bbt)—the case study of the present research—is
introduced in Chapter 5, wherein sources for further information are also provided.
Data obtained through the risk analysis of the project are presented, including
assessments from experts, classification, grouping and dependencies concerning the
identified risks. Practical aspects of the various risk quantification steps and relevant
data acquisition efforts are demonstrated. Individual risks are modelled according
to the methodology developed in Chapter 3.

The application on the multivariate problem of estimating the risk term of the
total cost, is illustrated in Chapter 6. The techniques presented in Chapters 3
and 4 are combined with the data gathered from the actual project. Estimates are
produced and evaluated on the basis of sensitivity analyses.

Finally, essential findings and generic recommendations are synopsised in the
closing Chapter 7. Moreover, conclusions are drawn and an evaluation of the
present research is attempted, in light of the numerical results.

Appendices A, B and C include the theoretical background and basic nomen-
clature for three substantial topics, namely statistical distributions, the Monte Carlo
method, and copula functions.
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Chapter 2

Risk Analysis in current practice

2.1 The concept of risk

A plethora of definitions of risk can be traced in academic studies, depending on the
context and on the scholar’s standpoint. For instance, Zou et al. [ZZW07] present
a variety of definitions gleaned from the literature, wherein risk may be referred to
as “the potential for unwanted or negative consequences of an event or activity”,
“a combination of hazard and exposure”, or “the chance of something happening
that will have a (positive or negative) impact on objectives”. Elkjaer [Elk00] simply
considers risk as “a normally unwanted event” and, in line with that perspective,
Carr and Tah [CT01] as “a disturbance leading to a system’s malfunction”. An
interestingly short, still powerful definition is that risk is “uncertainty that mat-
ters” [HMW07, p. 5]. In the present work, the following narrowed and explanatory
position is adopted:

Risks (and opportunities1) are economic items, affecting the project budget, that
cannot be deterministically known, since they are associated with events, decisions,
processes and interrelations under conditions of randomness, vagueness and ambi-
guity.

A single risk Rj is typically defined in quantitative terms as the product of
its probability of occurrence Pj and its impact Ij, as expressed in the following
well–known Equation (2.1). This rationale exhibits at least two serious limitations
[ETKV04]: it neither accounts for uncertainties of the two factors, nor it distin-
guishes between extreme rare and insignificant likely events. Moreover, Dikmen et
al. [DBH07] argue that the magnitude of a risk is determined, not only by its likeli-

1In the present study, risks have a positive value in the cost account, whereas opportunities are
uncertain quantities with negative sign, expressing possible revenue.
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hood and impact, but also by the carrier’s ability to cope with its consequences, or
to influence the underlying mechanism. In any case, Equation (2.1) stands as the
outset of risk evaluation:

Rj = Pj · Ij (2.1)

Risk quantification—the process aiming to produce reliable estimates for Pj and
Ij—is the quantitative manifestation of an overall structured process, referred to as
risk analysis [ETKV04]. Moreover, at that point, temporal attributes and possible
dependencies among risks are defined2 [CT01]. This methodological treatment of an
infrastructure project can reveal several aspects regarding latent risks and opportu-
nities. Furthermore, the resulting documentation enables the operator to develop
the appropriate measures for preventing, mitigating and managing risks. Another
advantage rests in the ability to combine the impact of all underlying risks in order
to estimate the total cost and, therefore, to evaluate the feasibility of the whole
project. The present study mainly concentrates on that aggregation.

A risk analysis process can obviously be performed in various degrees of detail,
intensity and accuracy. The reasons for performing a thorough analysis are not
limited only to the requirement for reliable total cost estimates, but additionally
include the aims to [RB04], [SMJ06]:

• Reduce the risk to project goals and objectives (safety, budget, schedule, stan-
dards).

• Evaluate and justify options and decisions.

• Clarify and streamline internal goals and priorities.

• Encourage the disclosure and sharing of useful information.

• Obtain probable ranges of both cost and time.

• Assist the development of counter–measures.

• Increase confidence and reduce reliance on third parties.

• Derive scientific, formalised and reproducible methodologies.
2The dependence problem is tackled in Chapter 4, whereas time–related issues are not covered

in the present study.
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The more general term risk management is used to include many risk–related
processes, such as3: planning, identification, qualification, quantification, elimina-
tion, mitigation, allocation, monitoring and control. Risk management can include
the treatment of uncertainties with both negative or positive results (risk and op-
portunity management). The present study focuses exclusively on the risk (and
opportunity) quantification step; particularly on data acquisition and elicitation,
representation of (direct or indirect) economic dependencies among activities, and
total cost estimation of risks.

In the case of unique, complex and lengthy projects, the schedule structure is
often changeable, and the sequence of planned activities is not absolutely definite.
While in Operations Research (or) there have been efforts to build dynamic models
that deal with variable schedules, a static sequence of activities, adopted from the
bbt official documentation [Alf09], is being considered throughout the remaining
discourse. Given a fixed schedule, possible adverse events related to the various
tasks can be assessed and placed on the project mapping during the risk analysis
process. Nevertheless, the existence of parallel activity lines, as well as partial
exchangeability of tasks within these lines, offer a significant degree of flexibility,
wherefore minor modifications and rearrangements still remain possible.

The aforesaid procedures can pave the way to more reliable economic estimations.
The total cost of a project TC can be schematically4 expressed as the sum of three
principal terms, namely the base cost B, the risk part R, and a term F encompassing
financial issues (inflation, exchange rates, present value adjustments, etc.) [PS06]:

TC = B +R + F (2.2)

The present study is devoted to the calculation of the risk term R, which includes
all individual risks and opportunities, Rj. The base cost B expresses the cost that
will occur “if all goes as expected” [RB04]. Obviously, this definition cannot account
for planned activities with variable cost; assuming a fixed value for such events
usually leads to rather optimistic estimates. As the analyst attempts to account for
variability, the borderline between base and risk cost becomes blurred, and the issue
of a structured risk policy begins to flesh out. With respect to that, a classification

3Risk analysis textbooks and a vast number of relevant research papers refer to the risk manage-
ment steps, providing different schemes. For instance, one may refer to [AM97], [CT01], [ETKV04],
[KI07], [OO10], [Sch07], [SMJ06]. Nevertheless, an agreement on a certain procedure is rather a
matter of standards.

4The plain arithmetical summation covers only the simplest case of this schematic aggregation.
In practice, the three terms can have a more complex relation in the calculation.
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can prove useful; risks can be divided into the three categories [SMJ06, p. 4]:

• Known risks: minor or significant known cost variations.

• Known unknowns: foreseeable events, whose occurrence can be assessed in
terms of likelihood and impact.

• Unknown unknowns: unforeseeable events, usually deemed as “force majeure”.

As the project advances from the conceptual and feasibility phases to those of
design and construction, uncertainty typically diminishes [Jaa01], hence the total
cost estimate approaches the real figure. This can be justified by the fact that an
increasing number of planned activities have already been completed, rendering the
associated risks irrelevant. Moreover, accumulation of knowledge and experience en-
ables more efficient management of uncertainty. Therefore, the estimation accuracy
and precision should be always considered with reference to the desired phase. This
effect is often referred to and depicted as a cost trumpet [PSP07], [Ker09, p. 671]:

Figure 2.1: Cost “trumpet” graph: cost uncertainty is diminishing with time, as the
project progresses. The description of phases is indicative.
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As mentioned above, risk quantification bears, to some degree, upon the opera-
tor’s ability to cope with the consequences of risks, or to influence the underlying
mechanism. Zhang [Zha07] asserts that a consequence–based treatment of risk may
tend to neglect vulnerability (the capacity of a system to respond to an event),
for several reasons. For instance, direct causal relations between events and con-
sequences are unsuitably presumed; moreover, human or organisational reactions
towards risks are assumed to be systematically rational. Whereas the study of vul-
nerability may contribute to understanding theoretical aspects of the risk analysis
process, and can prove beneficial in cases where the life–cycle of the project is consid-
ered in a broader socio–economic framework, the usefulness of the matter is rather
limited when estimating the cost of a well–defined set of activities. Therefore, in
the following, vulnerability is assumed to be inherently present in the given expert’s
assessments.

2.2 Types of risk

The types of risks encountered in a project, strongly depend on the application.
Factors related to the social, cultural, economic, technological and political envi-
ronment within which the project is conceived and constructed, are often referred
to as global risk factors [DBH07]. Other factors specifically pertain to underground
construction works; e.g. tunnel collapses [ETKV04], insufficient material deposits,
etc. Also, an engineering mega–project is inevitably exposed, to some extent, to
possible catastrophic risks.

In the case of large infrastructure works, one can observe at least [RB04], [Sch07],
[AM97], [PS06], [Fin07]:

• Risk related to construction, stemming from poor engineering or from unfore-
seen natural hazards.

• Legal and political risks (legislation, regulations, guidelines, approval).

• Managerial and logistics risks.

• Environmental risks.

• Risk related to human safety.

With respect to the result of risks on the project’s objectives, one can observe:
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• Risks that seriously threaten the project’s final completion (cost overruns,
unexpected delays, market turbulence, etc.)

• Risk of not meeting the required standards (design, operation, maintainability,
quality).

• Risk that the project may become technologically or operationally obsolete
within its defined life–cycle.

• Risks related to anticipated revenue operations and expected utility.

2.3 Uncertainty

Randomness and uncertainty are inseparable from nature even in the simplest per-
ceptions. The concept of handling ambiguous quantities and processes has been
diffused in the past decades in many disciplines. Towards this approach, uncertainty
models are nowadays being widely used, aiming to incorporate available information,
as well as lack thereof, regarding variables and inter–variable associations. Within
this framework, model inputs are being assumed stochastic in nature, described by
probability distributions, fuzzy sets, intervals, or other mathematical tools.

Uncertainty is often regarded by non–technical practitioners and stakeholders as
a synonym to risk, as a threat to the project’s objectives, or even as lack of quality.
On the contrary, when included in a risk analysis process, uncertainty can help the
operator, not only to relieve from possible impact, but also to increase the level
of control and awareness [ZZW07]. Moreover, the shift to an uncertainty–based
paradigm, such as the Probabilistic Cost Analysis (pca), has proven to be a step
towards more reliable estimations. Uncertainty is present today in various forms,
not only in academic research, but also in commercial software decision tools on the
market5. Indeed, uncertainty–aware and risk–informed decision making is nowa-
days increasingly considered as an indispensable factor in important infrastructure
planning.

Uncertainty is being typically classified into aleatory and epistemic [Ang10],
[DKD09]. Aleatory uncertainty describes the variability in the observed data, and
is not reducible since it reflects the randomness of the natural phenomenon of in-
terest. Epistemic uncertainty arises from lack of information, or from inability to
establish accurate predictive models; it can be controlled, albeit not always mea-
sured in absolute terms. In fact, this type of uncertainty can be reduced through an

5Any specific reference to such products in the present study has been suppressed.
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advance in relevant knowledge, e.g. through scientific and technical development, or
accumulation of experience. Allowing randomness of effects leads to stochastic out-
puts, whereas acknowledging information and model defects, places these outputs
within a possible range. The concepts of aleatory and epistemic uncertainty will
appear later in Chapter 3, as useful tools to construct probabilistic representations
of cost items.

Several researchers have attempted further classifications, e.g. by categorising
epistemic uncertainties as parameter, model, and completeness–type [VLDD+12],
[KIL+10]. In any case, knowledge on the idiosyncrasy of various uncertainties may
prove valuable, since it enables implementation of appropriate modelling principles
[Win96], [Nik04]. Accordingly, irreducible variations are accepted as such, and in-
tegrated as model inputs, whereas gaps in knowledge impel the carrier to acquire
more relevant data, or to engage more sophisticated predictive tools.

Apart from the type, a remark on the sources of uncertainty is also sensible.
General sources are [BC00, p. 87], [CLP07]: subjective judgement, linguistic im-
precision, statistical variation, inherent randomness, modelling defects, undetected
causalities, lack of information, imperfect problem formulation, spatial fluctuations,
measurement errors, etc. However, due to the diversity and multitude of uncer-
tainty types, theoretical classifications alone possess little practical value. Since the
present study is primarily concerned with the economic impact of risks which vastly
relate to underground works, the generic sources of uncertainty should be restated
on a pragmatic basis.

In underground projects, problems often result from inadequate geological data,
inappropriate interpretation of conditions, or incompetence in dealing with arising
issues [HP98]. When it comes to geomechanics, rock and soil are two materials
containing significant uncertainties regarding their properties and failure mechanism.
Soil samples are inavoidably disturbed when extracted, so the conditions applied in
laboratory experiments may fairly differ from the corresponding conditions in situ;
even worse, these conditions may not even be reproducible. Moreover, there are often
large deviations within parameter values obtained in comparative studies [OF05].
Allowing parameter variability cannot necessarily account for these uncertainties6,
since local singularities also decisively affect the rock and soil conditions, as well as
the corresponding engineering decisions.

The influence of uncertainty has proven to be even more intense in singular un-
derground projects, such as tunnels [RB04]. Large tunnelling projects usually suffer

6The postulation that a probability distribution reflecting several diverse effects can be imprac-
tical, has given ground to possibilistic and fuzzy representations, mentioned in Section (3.10).
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from lack of adequate information [DBH07], owing to the very nature of such labori-
ous engineering works, as well as to often improper mode of addressing issues related
to underlying uncertainties. Field experience with respect to engineering uncertain-
ties has been reported in several publications. For instance, Ehrbar et al. [EBNB10]
outline some typical doubts regarding earthworks, related to the trustworthiness of
geological prognoses, the influence of subsoil conditions on operation advancement
rates, and time delays due to major (hydro)geological events. Hoek and Palmieri
[HP98] manifest that, in cases of long tunnels through mountainous terrain, it is
impractical to obtain sufficiently reliable data from boreholes and exploration adits
to investigate all the rock units along the route. Estimating geotechnical parameters
through interpolation can be problematic. Therefore, the operator needs to achieve
balance between incomplete knowledge of underground conditions and exploration
or experimental costs.

The importance of distinguishing between risk and uncertainty has been recently
highlighted in several studies [WC03], [PGW08], [Jaa01]. The shift of focus from risk
as threat to uncertainty is not confined to a merely theoretical discussion, but aims
to contribute to the development of more efficient processes. In fact, an uncertainty–
based risk management can help to:

• Encourage quantitative over qualitative considerations.

• Draw a clearer distinction between causality and covariation.

• Allow the use of more generic and widely tested computational techniques,
instead of case–by–case treatment.

• Broaden the spectrum of considered events7.

• Enhance knowledge management.

• Acknowledge the need for opportunity management.

• Remove any possible “preconceptions about what is desirable or undesirable”
[WC03].

• Follow the dynamic nature of the project’s variables, since the degree of un-
certainty depends on the time and phase.

7For instance, while highly uncertain parameters may have significant impact on the project’s
performance, they are being often left out as they don’t constitute events, in the traditional sense
[ZA97].
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• Evaluate combined effects and factors by directly tracing their impact on the
final quantities.

2.4 Levels of information

Information is closely related to uncertainty. As mentioned in Section (1.2), infor-
mation is generally regarded as any element of knowledge, able to modify a decision.
In tunnelling projects, useful data can be acquired from existent sources of geological
information: surface mapping, subsurface investigations and analogous experience
[HP98]. However, due to the limited availability of “hard” data, the analyst often
has to resort to expert opinions [CW99], discussed in the forthcoming section8. At
least the following three levels of information, with regard to risk assessment, can
be identified:

1. Ignorance, where no essential information on the likelihood of occurrence, or
the impact of a considered risk is at hand. This applies to unknown unknowns
(unforeseen events), as well as to extreme rare events.

2. Qualitative information, originating from subjective judgement. It mostly
resides in individual perceptions and is expressed in linguistic terms [CT01].

3. Quantitative information, usually in the form of probabilities, correlation co-
efficients, and empirical factors, obtained from historical data or normatively
processed data acquired from the actual project.

The requirement for quantitative methodologies is inextricably linked to the con-
cept of measurability. In Economics, quantities not easily measured, such as flex-
ibility, productivity, or value of information, are called intangibles. Omitting such
intangibles from risk analysis, or assigning numerical values of equivalent weight
to every tangible and intangible system component, represent the two opposite at-
titudes against measurability. A huge amount of available and potentially useful
information is typically ignored in traditional risk management, partly due to in-
ability or reluctance to measure intangibles.

The increasing demand for handling information has recently given ground to
the development of relevant methodologies. The term knowledge management (km)

8Knowledge elicitation, the process of interacting with an expert, is only a subset of knowledge
acquisition, the broader activity of gathering and managing information relevant to the project
[WF93].

19



is used to describe the formalised process of acquiring, evaluating, documenting and
transferring knowledge. A systematic km can contribute to risk management by
documenting and transferring experience from past projects [KGM08]. In fact, the
need to improve organisational capabilities and reduce uncertainty involved in the
planned activities is better served within a km framework [WC03]. This can be a
challenging task, since knowledge in a large–scale project is typically spread over
many individuals, in multiple organisations and levels [PH02]. In this respect, a
cost engineer is not only a specialised accountant, but also a “knowledge engineer”.

2.5 Expert judgement

An expert is an individual who possesses professional knowledge of particular mat-
ters and processes, and substantial experience in his domain at a considerable level
[BFM+06]. Experts are employed to collect, evaluate, interpret and communicate
information, predict the system’s behaviour, and assess uncertainties [ZA97]. An
expert judgement elicitation process usually involves at least a substantive expert,
mainly interested in the physical effects, and a normative expert focusing on the
quantification part.

Over the last years, subjective judgement has been recognised as an invaluable
source of information in the presence of uncertainty, and is nowadays considered as
being complementary to, or even substitute for conventional approaches. Expert
knowledge is a welcome alternative source of information on matters for which un-
certainty elaboration is desired, but on which direct measurement is infeasible or
impractical [GF00]. The acquired information can provide further insight to en-
gineering and managerial decisions, scenario development, resource identification,
experimental design, model selection, probability encoding, and numerical assess-
ment. Complex and multidisciplinary projects can largely benefit from formal and
proper elicitation, representation, and documentation of experts’ conceptions and
opinions [BM04].

For all its broadly acknowledged virtues, expert judgement in current practice
is mostly informal, implicit and undocumented [ZA97]. There are many problems
associated with a subjective opinion setup, the most important being the translation
of judgements into probabilistic information [Rei02] or, more generally, into explicit
representations [BM04]. Moreover, risk perception is influenced by people’s own
beliefs, awareness, attitude, judgements, and feelings [AM97].

A topic that has received great attention in the field of risk management is the
existence of bias in expert opinions. In theory, professionals’ opinions should be unbi-
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ased, realistic and practical; however bias, ambition and optimistic attitude interfere
in human perceptions, and expert judgement is no exception. The methodological
treatment of the matter by several researchers [WF93], [OBD+06], [Coo91], [Gig04]
has made possible to identify and reduce bias through controlled processes. Several
types of bias in expert judgements have been studied; for instance, hindsight bias is
the inability to correctly recall one’s own prior assessment, after new information is
observed (“they knew it all along” syndrome) [BW09]. Overconfidence bias, owing to
a series of factors (optimism, “impress your boss” effect, hidden incentives, market
forces), and bias due to rationalising reduction of supposedly “inflated” estimates
may also occur [KAE04].

Variability is observed, not only within experts, but also among experts. In
general, there are several consistency problems involved in experts’ assessments,
owing to different backgrounds, assumptions and interpretations [ZA97]; these issues
appear as [OV06]:

• Incoherence within experts, when the estimates by a single expert are prob-
lematic.

• Inconsistency among experts, when contradictory assessments are assigned
from different experts to the same risk.

• Incoherence among experts, when incompatible probabilities for logically re-
lated risks are assigned by different individuals.

When multiple, often conflicting, experts and beliefs are involved, the fundamen-
tal problem of concluding to a final aggregate assessment naturally arises. Clemen
and Winkler [CW99] manifest that, “if experts never disagreed, there would be no
point in consulting more than one”. It has been reported [Ada06] that weighted
aggregates of estimates are more accurate than the individual subjective estimates
that comprise the aggregates. This position is reasonable, only in analogy with the
fact that a weighted mean is better informative than the individual observations, as
long as the reliability of the gathered information is adequately controlled.9

Several behavioural and mathematical approaches have been proposed by schol-
ars (e.g. [CW93]), for aggregating multiple expert opinions. Osherson and Vardi
[OV06] used the term aggregation principle to express the method used to convert
multiple expert opinions into ultimate judgements, and to address relevant logical
challenges. Problems associated with these techniques lie in difficulties to account

9However, seeking the truth by combining or bisecting false statements, does not guarantee a
successful outcome.
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for possible dependencies among experts and to propagate individual uncertainties
in the composite assessment [ZA97].

A popular approach, dating back to 1950’s but still widely in use, is the Delphi
method [LT75], [Ada06], [PC96]. According to this method, experts involved in
the assessment of a certain risk are brought together in thematic meetings, where
they are further informed on the risk in question. Then, they develop independent
estimates about the issue and report their opinions to the central group. Based on
feedback and discussion, the reinformed experts confirm or revise their estimates
until consensus is reached. The main assumptions in all Delphi technique variations
are that (1) the individuals possess a considerable level of expertise on the matter,
and (2) they independently develop their judgements. The described methodology
was followed in the risk assessment of the case study.

2.6 State of the art

Current size and complexity of engineering undertakings often exceed the tradi-
tional management techniques. In particular, tunnelling projects often suffer from
cost overruns and schedule slips [FHB02], usually attributed to unforeseen events.
Such discrepancies may even occur in projects with proper design and construction
achievements [RB04]. These problems call for an effective treatment of risk, uncer-
tainty and variability in important engineering works. Consequently, integral risk
management practices are often nowadays employed; these processes can be notably
refined by the use of methodical techniques, throughout the project development.
Systematic risk management enables to identify potential problems and allow timely
implementation of appropriate mitigation measures [ETKV04]. To that end, risk
classification techniques are used, e.g. the hierarchical risk breakdown structure
(hrbs), or more generic work breakdown structure (wbs) [Cha01], [Gar99, p. 254],
[ZPA08].

However, formalised risk management is still absent in many construction organi-
sations [CT01]. In particular, risk assessment processes have not been widely applied
to cost estimating for large engineering projects [RB04], where focus mainly remains
on preventing hazardous events. Since singular and latent risks inevitably appear in
tunnelling works, they must be indirectly included in cost estimations; yet current
approaches tend to overlook this fact, and to design upon idealised assumptions.

Akintoye and MacLeod [AM97] provide a list of reasons for which contractors
and managers do not use risk analysis techniques. According to their survey, these
reasons include, inter alia, lack of familiarity and expertise, constraints on time and
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information, and doubt regarding the applicability and benefits. Furthermore, dif-
ferent involved parts exhibit likewise different priorities concerning the importance
of risk management. Difficulty in obtaining input estimates and probability assess-
ments is also mentioned [BS99]. Similar findings are reported in other analogous
works [ALA04], [LS04].

Despite the fact that Risk Analysis became a popular topic in academic research
in the 1990’s [TYL11], its value is still not fully appreciated in the realm of Civil
Engineering [FS03]. The construction industry has been slow to realise the potential
benefits [UT99], whereas organisations operating large construction projects usually
adopt a limited scope of risk management, by merely prescribing ab initio a fixed,
stiff response protocol [GKK10]. In fact, risk assessment is often viewed as an
distinct and static process, rather than as a component of all decisions, permeating
the project’s life–cycle [Jaa01]. Next to that, restricted focus on the management
of uncertainty is induced by the risk–oriented approach [WC03]. With regard to
dependencies among risks, there is a difficulty to detect, understand and measure
the relevant concepts [BS99].

2.7 Challenges in large construction projects

A mega–project comprises a number of sub–projects which serve the same strategic
goals in a specific sector or geographical region, although they may differ in ob-
jectives or activities [ZPA08]. The realisation of a project of such magnitude and
importance appears always as a challenging venture. There are several factors re-
garding the viability of a large construction project, with the following three being
particularly critical [Fin07], [CFR07]:

Technical feasibility

Unique and complex infrastructure undertakings require detailed studies in order
to ensure that the planned processes and the designed facilities are possible in the
given technological, physical, economic, spatial, and temporal constraints. These
studies must cover a multitude of engineering works, from design and construction
to operation and maintenance. In particular, large tunnelling projects typically
face significant—often atypical—technical and engineering challenges [ZZW07], and
require interdisciplinary expertise and scientific innovation.
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Economic viability

Economic viability is ensured when the generated profit and benefit during the
expected life of the project is anticipated to be greater than the total expense.
Such a comparison is neither restricted to technical provisions only, nor is merely
a monetary account of known quantities. It must include factors that are often
intangible or ambiguous, such as human safety, environmental risk, or quality of life
[KP09]. Even in case a project’s viability has been technically verified on a cost–
benefit basis, there are inevitable limitations regarding its funding and the amount
of debt it can raise.

Ecological sustainability

Infrastructure projects inevitably disturb the flora and fauna of the nearby location
and modify environmental aspects to some extent. Therefore, any relevant adverse
(side–)effects, generated by the project, need to be studied and managed in advance.
This requirement broadens the scope of the planned works, which can often exceed
the technical ability of the operator.

As mentioned in the preceding section, tunnelling projects frequently undergo
cost and schedule overruns. In fact, budget excesses in complex infrastructure
projects (even up to 100%) are quite frequent [PS06], [NS08, p. 290]. As seen
in Equation (2.2), the total cost is not calculated simply as the sum of expenses
that are directly linked to the project (i.e. materials, labour, equipment, etc.). Such
accounts are inevitably based on several assumptions, and are restricted by copious
physical or operational limitations. Disparities may occur due to a variety of techni-
cal, managerial, financial, social and political factors [HP98]; in particular, reasons
for cost overruns in large–scale and long–term construction projects, are [RB04],
[KAE04], [NS08, pp. 291–295], [PS06], [Ada06], [EBNB10]:

• Variability: The total cost is subject to a large number of variables, assump-
tions, conditions and requirements; these variables are not directly controllable
or absolutely quantifiable. The input variability may, in turn, generate a broad
range of probable cost. Moreover, accumulated—often neglected—minor mod-
ifications, can have a significant impact on total cost. Deterministic attitude
and disregarded or optimistically assessed uncertainties, intensify the problem,
whereas deficient treatment of cost variations (e.g. use of improper probability
distributions) has also been reported. Finally, changes in objectives, new un-
planned requirements and managerial transitions can yield unexpected costs.
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• Complexity: Several factors cannot be initially handled in terms of cost and
time; even worse, cost and time are obviously not independent10. Likewise,
interrelations among cost elements may have a significant impact. Complexity
can lead to poor project definition, posing severe threats to planned workflows.

• Applicability: Pressure to produce doable estimates, ineffective procurement
processes and inadequate allocation of budgets may encourage unrealistic low
bids. Weak management or strict policies can lead to infeasible demands
in terms of time and cost. In the engineering field, one–off technical works
may demand non–standard approaches and significant effort in Research and
Development (r&d).

• Ignorance: Large–scale tunnelling infrastructure projects constitute proto-
types, often suffering from lack of suitable comparable data. The majority of
construction risks are subjective, in the sense that their assessment is mostly
based on beliefs about the risks. Incorrect cost estimates and major delays
may appear due to insufficiently known geological and hydrogeological con-
ditions. Use of inadequate information elicitation methods is also frequently
observed.

• Opportunity: The estimation of cost also includes a number of opportuni-
ties, which are often intangible utilities, dubiously projected in future times.
The evaluation of opportunities is performed within a broad socio–economic
environment, usually not possible to simulate and control in a normative man-
ner.

• Multi–objectivity: A large project typically has multiple aims, purposes and
objectives, which can generate conflicts and incompatibilities.

10This problem has given ground to time–cost tradeoff (tct) methods [Yan11].
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Chapter 3

Evaluation of individual cost
elements

3.1 Risks as individual cost elements

The cost estimation process in a large–scale and long–term project usually follows a
combination of analytic and synthetic reasoning. Firstly, the project plan is decom-
posed and analysed (disaggregated), e.g. through an activity breakdown procedure
[Hil02]. Then, the individual cost items are identified, evaluated and documented.
Finally, the total cost is computed as the synthesis of the assessed elementary costs.
The first step is a project–specific task, typically performed during the planning
phase. The second step is the subject of the present section, while the third is the-
oretically examined in Chapter 4 and further practically investigated in Chapters 5
and 6.

In the present context, individual cost elements fall within one of the following
categories:

• Costs with figure deterministically known or, at least, believed to be so. The
sum of these items yields the base cost B.

• Planned tasks or activities with uncertain cost, hereafter referred to as variable
costs.

• Events with assessed likelihood of occurrence and economic impact (known
unknowns), in the following called for shortness singular costs.

• Cost items of any type, not present in the actual assessment (unknown un-
knowns), in the present work referred to as latent (or residual [GKK10]) costs.
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Since this study is primarily concerned with the evaluation of risks, only those
activities identified as (or associated to) risks are considered. According to the
definition in Section (2.1), “risks (and opportunities) are economic items, affecting
the project budget, that cannot be deterministically known, since they are associated
with events, decisions, processes and interrelations under conditions of randomness,
vagueness and ambiguity”. This definition applies to variable, singular and latent
costs, which can be treated as random variables or, more general, as “uncertain
quantities” [CG04].

Several approaches can be employed for the description of individual risks. In
most of these methods, the common objective is that each uncertain input be mod-
elled by a probability density function (pdf); this probabilistic cost analysis (pca)
approach is also adopted in the present study. The parameters of pdf’s (mean, vari-
ance, mode, shape, etc.) can be established upon theoretical assumptions, historical
data, expert opinions, or external evaluation of these opinions [FPR09]. Besides
that, the characteristics of the pdf’s family are dictated by (often debatable) re-
quirements, discussed in detail in the remainder chapter.

With respect to the aforesaid requirements, some general principles need firstly
to be agreed upon. In order to implement a pca approach for describing risks, a
series of modelling decisions should be justified. The selected model should [IN09],
[MOD12], [Ave11, p. 38]:

• Rely on sufficient information, while integrating the most possible thereof, for
constructing probability densities.

• Allow for treating interdependence among risks, including detection, quantifi-
cation and propagation.

• Contain sensitivity investigations to account for model, human and numerical
uncertainties.

• Exhibit flexibility to be modified, adapted or extended in the light of new
evidence.

• Be robust, in the sense that small variations of the input data or slight modi-
fication of assumptions and conditions do not produce large deviations in the
output.

• Yield clear, interpretable results through a transparent calculus with reason-
able computational means and burden.
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• Be able to undergo conceptual, experimental and operational validation.

• Constitute a basis for drawing sane conclusions and making effective decisions.

An important concept used in the evaluation process in the bbt risk analysis,
is the risk’s evaluation basis (or baseline cost). It can be defined as the part of
the project budget threatened by the individual risk of concern. Once this figure is
determined, the related risks can be assessed as fractions of the evaluation basis. A
risk’s evaluation basis can be obtained only when a preliminary form of the project
has been designed, and prior cost calculations, including scenario evaluation, has
taken place.

In the remainder section, the four most suitable and commonly used techniques to
obtain information for the construction of univariate cost distributions, are exposed.
In Section (3.2), the uncertainty pertaining to the impact bounds is discussed. Sec-
tion (3.3) is dedicated to the confidence in assessment—an often disregarded type of
uncertainty—and relevant ideas, developed during the present research. The typi-
cally proposed and employed probability distributions in analogous applications are
outlined in Section (3.4). In Section (3.5), the problem of selecting appropriate uni-
variate densities is analysed in the light of an extensive literature survey. The beta
distribution, build upon a novel concept of confidence, is studied in Section (3.6).
Other modelling approaches are briefly reviewed in the closing Section (3.10).

Single point 

 assessment

Three point

 assessment

 Quantile

assessment

Minimum/Mode/Maximum

           assessment

Figure 3.1: Outline of common techniques for individual risk assessment: single point
assessment and three possible extensions.

28



Single point assessment

In some cases, the risk impact can be estimated only as a single figure, either as
a percentage of the risk’s evaluation basis, or as an absolute economic value. This
is apparently the simplest way of quantifying an identified risk. However, a single
value cannot realistically represent a variable or singular cost, since it provides no
indication of uncertainty [CG04]. Whereas single point estimates for cost elements
are inevitably approximate, they can be further expanded in order to account for
variability. For such cases, e.g. a gaussian or a symmetrical beta density can be
used in place of the point estimate (or a skewed one if there is enough evidence
to assume a departure from symmetry). This technique, sometimes referred to as
contingency allowance, is commonly encountered in current practice [Elk00].

The point estimate can be set as the mean value of the desired density, while
the coefficient of variation CoV may be specified ad libitum, according to the level
of confidence in assessment1. At this point it is worth mentioning that, whereas
replacing a single value estimate with a probability density by assigning a CoV

value may seem as an arbitrary decision, retaining only a fixed value is equivalent to
setting CoV = 0. The latter is a specific choice, consciously unrealistic, concerning
the risk’s variability.

Eventually, a sensitivity analysis on the CoV value can be performed, in order to
investigate the influence of this uncertainty metric on the final results. In case this
influence is relatively significant, the point estimation is probably inappropriate, and
more careful assessment with respect to the risk under study is required. A method
for constructing probability densities for these cases is proposed and discussed in
Section (3.6).

Three point assessment

A single point assessment aims to determine the most likely value, which corresponds
to the most probable instance of a risk. When a number of possible outcomes of
the assessed event can be identified, it is natural to attempt an ordering based on
their expected impact. This approach is as a natural extension of the single point
assessment; it relies on the evaluation of more scenarios regarding the risk, instead
of only the average one.

In a simple form of this technique, the analyst is tempted to define three char-
acteristic values for the risk impact I (minimum, medium and maximum/downside)
and to ascribe occurrence probabilities. Since the sum of the probabilities is unity

1This concept is discussed in detail in Section (3.3).
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(as condition (3.1) requires), five values in total have to be assessed; finally, a discrete
distribution is constructed. If the ordered impact values are denoted by Ij, j = 1, 2, 3
and the probabilities by Pj, j = 1, 2, 3, then:

Pj = P (I = Ij), j = 1, 2, 3

P1 + P2 + P3 = 1 (3.1)

An immediate question is whether the assessed discrete impact distribution can
be replaced by a continuous one. In cases when the nature of the risk implies a
continuous variable, such a replacement is a reasonable choice. In other cases, the
discrete distribution may appear to be more representative; this idea has also been
supported in [Yan05]. The desired density can be constructed using the statistical
moments of the assessed discrete density (expected value, variance, or higher order)
[DKLM07]:

µ = E[I] =
∑

I · P

Var[I] = E
[
(I − µ)2

]

Standard quantile assessment

Several variations of this method are being widely used in risk assessment [LWW08],
[OO10], [ETKV04]. Here the expert is not asked to explicitly specify probabilities,
but to assess standard predefined quantiles of the impact distribution. The number
of estimated values, usually three to five, depends on the level of available infor-
mation and the importance of the particular assessment. In a simple form of the
technique, the expert is asked to answer the following questions:

Q1 : “What is the impact value that is unlikely to not be exceeded?”

Q2 : “What is the median risk impact value?”

Q3 : “What is the impact value that is unlikely to be exceeded?”

Question Q2 has received much attention in uncertainty analysis. It is well–
known in elementary statistics that the median, the most likely value (mode) and
the mean (expected/average) value are different in general. However, the distinction
in the context of expert judgement is not always evident. For instance, when an
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expert is asked to provide a modal estimate, confusion between the mode (not a
quantile) and the median (a quantile) may appear [LS95]. Research has shown
[AAG98] that the median is a quantity which people can assess reasonably well.
Moreover, the median is less sensitive to the tails of the distributions compared to
the expected value [VLDD+12]. Still, there is no clear indication in the literature
whether subjective assessments of the median are more reliable compared to the
mode. In the above formulation, the median is used mainly so that consistency
among the questions be preserved.

Another problem in this context lies in the linguistic vagueness of the term
“unlikely”. Experts asked to assess quantiles need not all have consistent quantitative
perceptions. Even if the term is used to express a certain likelihood (e.g. P =
10%), the problem does not vanish; not all experts possess the same mechanism of
transferring degrees of belief into probabilities. This diversity appears to be more
intense for small values of P [OBD+06, p. 133], [dRDT08]. Therefore, the use of
10% has been postulated as probably safer, compared to lower quantiles [Joh97]. In
this case, the answers to the three above questions are:

A1 : The 10% quantile I10 of the distribution: P (I ≤ I10) = 0.10.

A2 : The 50% quantile I50 (medium) of the distribution: P (I ≤ I50) = 0.50.

A3 : The 90% quantile I90 of the distribution: P (I ≤ I90) = 0.90.

If the questions Q1 and Q3 are formulated with the wording “impossible” instead
of “unlikely”, then two more quantiles I100 and I0 can be obtained. However, this is
not always practicable in risk assessment, due to the vagueness of bounds, discussed
in the forthcoming section. Anyway, these two new questions are:

Q′1 : “What is the risk impact value that is impossible to not be exceeded?”

Q′3 : “What is the risk impact value that is impossible to be exceeded?”

A simplified version of the above method was chosen for the analysis in the
assumed case study. It is introduced in the remainder section, and further explained
in the course of the present chapter.

Minimum – mode – maximum assessment

In cost and time engineering applications presented in the literature, the most com-
mon technique is the assessment of the following three values:
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• The lower bound L (minimum).

• The most likely value M (mode).

• The upper bound U (maximum).

The assessment of these three values can lead to the construction of a probability
density, depending on a number of additional assumptions dictated by the targeted
application. The described technique is preferable compared to the three–point
assessment, because it is free of probabilities and all accompanying problems. In
most relevant studies, the most likely value (usually referred to as “mode”) is used
in place of other central values (median and average). In the present work, it was
selected since it represents the quantification of the most likely scenario with regard
to the risk of concern. This scenario is usually the basis of any further individual
risk assessment. In the following section, the problems pertaining to the two bounds
L and U are discussed.

3.2 The vagueness of bounds

A common practice in risk quantification, as mentioned in the earlier section, sug-
gests that, for individual cost items, a triad of quantities consisting of an optimistic,
the most likely and a pessimistic value for the anticipated cost impact can be ob-
tained through an expert elicitation process. These values, denoted as L, M and
U , can be derived as the outcome of evaluating an extremely favourable, the most
expected and an extremely unfavourable scenario, respectively. However, there is
no consensus in the literature on what the assessments L and U should correspond
to [LS95], [Rei00]. Depending on the context of the problem, the ability of the ex-
perts, or the analyst’s standpoint, they may represent either absolute endpoints or
standard percentiles.

The minimum and maximum values are often characterised as being vague. For
instance, in a reported a posteriori analysis of assessments [KAE04], 20% rather
than 2% of the actual values were found to fall outside the 0.01 to 0.99 quantiles
interval. In fact, most analogous studies indicate that the assessed bounds are
usually rather tight and biased towards confidence. A typical explanation bears
upon the appearance of anchoring effect, i.e. the tendency to assess bounds close to
the initially specified mode [OBD+06].

When the bounds cannot be assessed, or are deemed optimistically biased, the
analyst is often tempted to empirically deduce them from existent information. A
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simple technique suggests the expansion of the pdf’s initially assessed range U0−L0

to both directions by a percentage specified by a constant e:

U = U0 + e · (U0 − L0)

L = L0 − e · (U0 − L0)

However, this account may result to negative values of L. When the uncertain
quantity of concern is a risk (cost, time, or other consequence), it might be sensible
to leave L unchanged and modify only the value of U .

As an alternative approach, the two missing bounds can be estimated by:

U = f1 · U0

L = L0

f2

with f1, f2 ≥ 1. The values of f1, f2 can be either discussed with the experts in a
case–to–case basis, or assumed with a fixed value. It is worth noting that the second
technique shifts the density to the right, therefore care should be taken when the
modelled uncertainty has a positive influence on the objective quantity.

A similar approach can be taken when the initially assessed values L0,M0, U0

represent a possibly undervalued risk. Then, the conservatively modified parameters
can be introduced as:

L = f · L0

M = f ·M0

U = f · U0

where f ≥ 1 is an “inflation factor” that increments the assessed values by a certain
percentage, reflecting the confidence, a concept further discussed in the forthcoming
section. In the present study, the aformentioned techniques to deal with uncertain
bounds are only theoretically outlined, but not implemented in the computation.
Instead, the method introduced in the following sections is proposed.
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3.3 Confidence in assessment

As highlighted in Chapter 2, uncertainties involved in the risk term R of the to-
tal cost can be of aleatory and epistemic nature; hence they can be reduced to a
certain degree, yet not entirely eliminated. Identification of the origin and magni-
tude of input uncertainties is of great importance for the evaluation of any type of
system response, e.g. the total cost [Win96], [NA03]. This is also stressed by the
often postulated tendency of individuals to rarely assess uncertainty to be as large
as it should [OBD+06]. The central objective of the present section is the clarifi-
cation of two similar, yet not equivalent notions: the true uncertainty involved in
a project realisation process, and the human uncertainty expressed in the experts’
assessments.

True uncertainty results from possible adverse events, natural hazards, parame-
ter fluctuations, physical randomness, planning modifications and other sources. It
represents inherent attributes of the phenomena (aleatory), or effects of undisclosed
information lying beyond the analyst’s awareness (epistemic). In any case, true un-
certainty can be known only to a certain degree, due to various constraints. Human
uncertainty is any contingency consideration introduced in subjective judgements
and expert opinions, in order to represent the perception of physical uncertainty.

While these uncertainties are often presumed identical for the sake of computa-
tional convenience, they may significantly differ, especially under conditions of high
complexity and lack of information. On the one hand, true uncertainty is not a
subset of human uncertainty; if it were, every element of true uncertainty should
be also human. Such a claim would imply that the team of experts, engaged in the
risk analysis process, functions as a powerful predictive mechanism, capable of iden-
tifying every possible adverse event and every variation affecting the process under
study. Even given this ideal assumption, the translation of human perceptions into
explicit probabilistic statements can be neither deemed lossless, nor straightforward
[BM04]. On the other hand, human uncertainty is not a subset of true uncertainty;
if it were, every element of human uncertainty should also be true. This would
mean that every element of scepticism or apprehension in the experts’ opinions is
not unrealistic or abitrary, but genuinely corresponds to actual effects unsettling the
project.

Let T and H denote the true and the human uncertainty, respectively. The set
T − H includes unforeseen events and true uncertainties not captured by the risk
analysis process. The set H −T could simply be labelled as “fear”, since it contains
assessed uncertainties that do not really exist. The assessment of uncertainty where
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Figure 3.2: Relation between true uncertainty (left circle) and human uncertainty (right
circle). The shaded intersection represents the uncertainty captured by expert judgements.

it really does not exist is closely related to the concept of “type I” errors, or “false
positives”. Likewise, the uncaptured uncertainty is related to the concept of “type II”
errors or “false negatives”. Thus, according to the previous arguments, the relation
between these two uncertainties can be simply depicted in Figure (3.2).

Despite the difference in nature between these two distinct parts, they can be
used interchangeably, provided they produce the same effect on the quantity of
interest. In fact, this is the very rationale behind the use of expert judgement in
the risk quantification process. In order to ensure this equivalence, a one–to–one
mapping between the items of uncaptured uncertainty, which is always unknown,
and unjustifiable fear must be established. Once this achieved, the known part of
redundant human risk perception can be used to model risks not appearing in the
risk identification process. Establishing the aforesaid correspondence requires prior
knowledge available from similar previous projects or from already completed phases
of the actual project. Thus, it is essential that the steps of the realisation process be
a posteriori documented and analysed, and the obsolete assessments be reexamined
in the light of new evidence.

Apparently, as the project progresses, these two parts are diminishing, as seen in
Section (2.1) and depicted in Figure (2.1). After a certain project phase is completed,
the resulted individual cost deviations from their expected values can be compared
to the corresponding scale metrics introduced by the experts in the probabilistic
cost analysis. Next to that, a qualitative comparison between the unwanted events
that actually appeared, and the possible risks identified during planning can further
assist the mapping between true and human uncertainty. Moreover, the reasons
of any significant disparities can be analysed, providing valuable information for
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the forthcoming project steps. In simple wording, the described concept stands
as a formalised “learning from own mistakes” attitude. A study on similar ideas
alongside with an effective implementation on knowledge risk management can be
found in [KGM08].

Every risk assessment and uncertain quantity estimate is accompanied by a belief
on the imprecision of this estimate [WS97]. Obviously, the assessment of each risk
is performed under different levels of confidence. The latter may reflect the inherent
variability of the phenomenon under study, limitations of the predictive process,
the quality of available information itself, or the expert’s perception regarding the
reliability of this information. Furthermore, confidence can be distorted by psycho-
logical factors, such as bias, as seen in Section (2.5). This confidence—regarded as
a fuzzy conception describing attitude or psychological state—can be included in
the uncertainty propagation process, in order to better achieve a balance between
true and human uncertainties, and to acknowledge and express the limitations of
assessment. Since probability is an expression of the confidence that an event will
occur [BC00], the confidence in assessment can be also viewed as a second–order
probability. Within this framework, both the substantive expert, who is mainly
interested in the physical process, and the normative expert, who focuses on the
quantification of the process, can contribute to the determination of the confidence
level.

Figure 3.3: Inflated beta density with L, M, U multiplied by an “inflation factor”.
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The idea of quantifying the expert’s confidence in assessment has been imple-
mented in a few studies (e.g. [AAG98], [Hah08]), while various aspects and inter-
pretations of the uncertainty in probabilistic assessments are highlighted in [OO04].
Reid [Rei09] manifests that it is necessary to address confidence issues within un-
certainty modelling.

A frequent fallacy underlying the pca approach is that all three assessed pa-
rameters (minimum, median, maximum) are equally significant and estimated with
the same degree of trust. The importance of this assumption is implied in [vDK02].
With respect to that, two different ways are proposed in the following:

Confidence encoded in L,M,U

As discussed in Section (3.2), the lower L and upper U assessed values often prove
unreliable, and have to be expanded. Thus, increased uncertainty can be introduced,
depending on the confidence in assessment. In this case, one of the approaches men-
tioned in the aforesaid section can be used, resulted to a new uncertainty represen-
tation, such as the one in Figure (3.3).

Figure 3.4: Beta density inflated by increased dispersion.
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Confidence encoded in M

Case may be that the cost bounds L and U are determinate, but the uncertainty
mostly lies in the value of M . In this case, the degree of concern can be encoded in
the dispersion of the density. To that end, the coefficient of variation (CoV ), which
can be viewed as a measure for the lack of confidence in assessment, with regard to
the most anticipated value M , can be specified. Introducing increased uncertainty
results to “squeezed” distributions (Figure(3.4)). This technique is developed in
Section (3.6).

3.4 Candidates of univariate distributions

As stated previously, the probabilistic cost analysis (pca) route is adopted in the
present study. According to this approach, variable and singular costs are repre-
sented by probability distributions. Latent costs cannot be literally modelled, since
they correspond to unforeseeable events; however, their effect can be indirectly ac-
counted for, e.g. by calculating “safer” estimates, in a probabilistic sense. The pro-
posed procedure falls into the class of so–called “soft” probabilistic methods, since
the pdf’s represent possibilities, namely beliefs on one–off irreproducible events,
rather than frequencies. However, the possibilistic factor is not restrictive within
the mathematical formulation, but only necessary for the proper interpretation of
the results.

Typically, two approaches appear in the literature for the construction of prob-
ability distributions through subjective opinion. The first suggests that the distri-
bution can be build using assessed predefined quantiles, while the second proposes
the assessment of the distribution’s moments. Moment methods provide theoretical
advantages; however, in practice, they rely on numerical information that cannot be
elicited with accuracy, thus offering no real advantage [Rei02], [AAG98]. Moreover,
when sample data are not available, the selection of an appropriate distribution
family rests on expert opinion in a rather arbitrary manner [KLS+06].

For the stochastic representation of individual risks as cost elements, the se-
lected pdf density is generally desired to be smooth, unimodal, and able to achieve
right–skewed, left–skewed and symmetric shapes. Since the densities play a pos-
sibilistic role, they are selected from the class of “mild” distributions—as opposed
to some unusual examples found in the context of financial statistics, where hard
data are available. In the literature, either closed–end (e.g. uniform, triangular,
trapezoidal, beta) or open–end (e.g. normal, lognormal, weibull) probability distri-
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butions have been proposed2 [FPR09], [WH00], [ETKV04], [Joh97], [KI07], [Yan07],
[Yan11], [Pet12], generating a fertile debate. In the following, an inventory of these
distribution families alongside with pca considerations is presented, according to
[Gar99], [JKB00a], [JKB00b]. The x–axis is labelled as “Impact”, for the sake of
scope consistency.

Uniform

A random variable X is said to have a uniform (or rectangular) distribution when
the pdf is constant:

fX(x) = 1
U − L

,L ≤ x ≤ U

The expected value and the variance of X are given by:

E[X] = 1
2(L+ U)

Var[X] = 1
12(U − L)2

Figure 3.5: The uniform distribution.

The uniform distribution is not skewed and does not possess a mode. Therefore, it
represents cases when a most likely value cannot be determined, but the bounds are

2Also, open–end distributions can be modelled and truncated afterwards [VLDD+12].
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known [Ins08]. The coefficient of variation of the standardised (bounded in [0, 1])
uniform density can be readily shown to be CoV =

√
3/3 ≈ 0.58.

Triangular

The pdf of the standardised triangular (bounded in [0, 1]) distribution with mode
m in (0, 1) is given by:

fZ(z) =

 2z/m , 0 ≤ z ≤ m

2(1− z)/(1−m) ,m ≤ z ≤ 1

The general form of the triangular density, bounded in (L,U) after the linear trans-
formation X = L+ Z(U − L) is given by

fX(x) =


2(x−L)

(U−L)(M−L) , L ≤ x ≤M
2(U−x)

(U−L)(U−M) ,M ≤ x ≤ U

The expected value and the variance of X are given by:

E[X] = 1
3(L+M + U)

Var[X] = 1
18
{

(M − L)(M − U) + (U − L)2
}

Figure 3.6: The triangular distribution.
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The mean and the standard deviation of the triangular distribution are equally
sensitive to all three parameters [Vos97]. The triangular is necessarily unimodal and
can be symmetrical, positively or negatively skewed. It can be simply constructed
from the elicited information (minimum, mode, maximum), and easily understood.
However, it can yield excessively heavy tails whenM is distant from U or L [KIL+10],
[CGRW04]. Moreover, it includes no consideration regarding the uncertainty of the
assessed parameters; these two shortcomings of the triangular can severely distort
the desired output. The coefficient of variation of the standardised triangular density
equals to CoV =

√
6/6 ≈ 0.41.

Beta

The pdf of the beta distribution bounded in [L,U ]) with mode M is given by:

f(x;α, β, L, U) = 1
B(α, β)

(x− L)α−1(U − x)β−1

(U − L)α+β−1 , L ≤ x ≤ U

The beta family is given with more detail in Section (3.6).

Trapezoidal

The pdf of the trapezoidal distribution is given by:

fX(x) =


2(x−L)

(U+M2−M1−L)(M1−L) , L ≤ x ≤M1
2

(U+M2−M1−L) ,M1 ≤ x ≤M2
2(U−x)

(U+M2−M1−L)(U−M2) ,M2 ≤ x ≤ U

The trapezoidal distribution can be employed to represent assessments where, apart
from upper and lower bounds for X, additional upper and lower bounds M1 and
M2 for the most likely value are defined. When M1 = M2, the trapezoidal density
reduces to the triangular.

Normal

A random variable X is said to be normally distributed if its pdf is given by:

fX(x) = 1
σ
√

2π
exp

{
−(x− µ)2/2σ2

}
,−∞ < x <∞

The normal (gaussian) density is constructed from two parameters, the expected
value µ and the variance σ2. It is a non–finite density, however the probability thatX
falls within the range ±3σ is 0.9973; therefore, practically the bounds are specified.
The normal distribution is symmetrical and unimodal, and appears suitable when a
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Figure 3.7: The trapezoidal distribution.

single point assessment is at hand. In order to obtain a baseline value for CoV , for
comparison with the previous standardised densities, a gaussian with mean µ = 1/2
and range 6σ = 1 can be assumed; in this case, it can be readily shown that
CoV = 1/3 ≈ 0.33.

Log–normal

A random variable X follows a log–normal distribution if its pdf is given by:

fX(x) = 1
xσ
√

2π
exp

{
−(lnx− µ)2/2σ2

}
, x > 0

where µ and σ2 are the mean and variance of the normally distributed random
variable Y = lnX. When historical data are available, the log–normal provides a
good fit [Wal97], [Yan05], since these data are lower bounded and positively skewed.
The formulation of a log–normal distribution for modelling task durations, using a
base estimate, a contingency amount, and an overrun probability assessment has
been suggested [KI07]; for cost modelling, a similar application can be found in
[PS06]. The distribution is unimodal, has lower bound at zero, and no upper bound.
The expected value and the variance of the X are given by:

E[X] = eµ+σ2/2

42



Figure 3.8: The normal distribution.

Var[X] = (eσ2 − 1)e2µ+σ2

Since, in this context, the densities are constructed upon expert opinions, the
mean µ0 and variance σ2

0 of the target distribution are specified. Then, the log–
normal density can be defined with parameters:

µ = E[lnX] = 1
2ln

{
µ4

0
µ2

0 + σ2
0

}

σ2 = Var[lnX] = 1
2ln

{
µ2

0 + σ2
0

µ2
0

}

Weibull

The Weibull distribution is a flexible left–bounded distribution. It has seen a
widespread adoption in uncertainty modelling over the last years, as a generali-
sation of the exponential distribution, yet in cost engineering its use is rather rare
as of today.
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Figure 3.9: The log–normal distribution.

Finally, other proposed families include the following: gamma, Pareto, inverse
gaussian, exponential inverse gaussian, Burr, etc.

3.5 Selecting a univariate distribution

The problem of choosing appropriate statistical distributions for the representation
of individual uncertain costs has generated much controversies. Firstly, the selection
between bounded and unbounded densities has been at the epicenter of this debate.
A basic argument against closed–end distributions is that they may exhibit overcon-
fidence owing to their bounded form or, in other words, they do not allow extreme
“unexpected” values. However, this feature can prevent from introducing unrealistic
extreme values when the bounds are well–determined. Besides, the assessed bounds
can be conservatively revised in the presence of high uncertainty, and hence produce
safer ranges. Finally, cost overruns in construction projects are rather explained by
the occurrence of unforeseen rare events than by slightly deficient tail modelling of
the already assessed risks [Pal12], [RB04], [IN09], [HP98]. Hence, in the present
study, closed–end densities are considered as more appropriate.

With regard to the choice between the uniform, the triangular and the beta
distribution, the three more representative bounded densities, illustrating facts may
be found e.g. in the works of [Joh97], [vDK02], [Yan05], [FS03], [KLS+06]. In the
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previous section, the main characteristics of the former two have been exposed. The
triangular and the beta distributions, when fitted on symmetrical judgements, yield
likewise symmetrical densities [JZJ03].

The beta distribution was chosen in the present work for the representation of
individual risks. The beta density family indeed complies to the generic requirements
discussed in Section (3.4), as well as to the specific characteristics that have emerged
throughout the actual risk analysis described in the case study. Beta densities can
be unimodal, they have a finite range, and can be modelled from symmetric to
highly skewed, allowing a high degree of flexibility [GF00]. In the following section,
the theoretical background for the beta distribution family is exposed.

3.6 The beta distribution

The beta distribution is a closed–end distribution widely used in probabilistic mod-
elling. The pdf3 of the standard beta distribution, bounded in [0, 1] is given by the
formula:

f(z;α, β) = Γ(α + β)
Γ(α)Γ(β)z

α−1(1− z)β−1, 0 ≤ z ≤ 1 (3.2)

where α, β > 0 are the shape parameters, and Γ is the gamma function defined for
complex numbers with positive real part:

Γ(s) =
∫ ∞

0
us−1e−u du

The density can be written also as:

f(z;α, β) = 1
B(α, β)z

α−1(1− z)β−1, 0 ≤ z ≤ 1 (3.3)

where B is the beta function (also called the Euler integral of the first kind), defined
for complex arguments with positive real part:

B(s, t) =
∫ 1

0
us−1(1− u)t−1 du

For α > 1, β > 1 the pdf is unimodal, and for α = β is symmetric about the vertical
line z = 1/2. The expected value and the variance are, respectively:

E[Z] = α

α + β
(3.4)

3The cdf of the beta distribution has no closed analytical expression [Gar99].
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Var[Z] = αβ

(α + β)2(α + β + 1) (3.5)

Obtaining an upper bound for the variance in the unimodal case, is straightforward;
when α > 1 and β > 1:

(α + β)2(α + β + 1) > (2
√
αβ)2(1 + 1 + 1) = 12αβ

From Equation (3.5) it follows that Var[Z] < 1/12.
For the median, no closed form exists. In the unimodal case α > 1, β > 1, solving

df(z)/dz = 0 for z, yields the mode (global maximum) of the density m:

m[Z] = α− 1
α + β − 2 (3.6)

If the coefficient of variation is denoted by CoV = c, the following formula can be
derived from Equations (3.4), (3.5):

c2 = β

α(α + β + 1) (3.7)

When Z follows the standard beta distribution, then the random variable X defined
through the linear transformation:

X = L+ (U − L)Z (3.8)

is bounded in the interval [L,U ]. Then X is said to follow the generalised beta
distribution. After elementary calculation, the pdf of X is:

f(x;α, β, L, U) = 1
B(α, β)

(x− L)α−1(U − x)β−1

(U − L)α+β−1 , L ≤ x ≤ U (3.9)

The expected value, the variance and the mode of the (unimodal) generalised beta
are readily obtained:

E[X] = (U − L) α

α + β
+ L (3.10)

Var[X] = (U − L)2 αβ

(α + β)2(α + β + 1) (3.11)

M [X] = (U − L) α− 1
α + β − 2 + L (3.12)
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Figure 3.10: The generalised beta distribution.

3.7 Proposed implementation based on the beta
distribution

The construction of beta density requires the assessment of four parameters. In the
analysis developed for the case study in the present work, the experts were asked
to assess a triad comprising the optimistic, most likely and pessimistic estimates,
L, M and U , respectively. The “missing” fourth parameter has long been a subject
of controversy, having also given ground for interesting alternative developments.
To that end, a proposed methodology is presented in the subsequent paragraphs, in
order to make use of an—otherwise lost—additional element of information.

In particular, the estimation of the two shape parameters α, β that complete the
construction of the beta density is based on a novel view of the concept of confidence
in assessment. Firstly, one can observe that the confidence in the assessed mode is
inversely related to the density’s dispersion. Hence, the coefficient of variation, as
dimensionless measure, makes an appropriate candidate to express this concept.

In the following it is assumed that the assessed uncertainty is a risk (has a
positive impact). For an opportunity Oj (uncertainty with negative impact) the
same methodology applies to the risk Rj = −Oj, where the use of the minus is
symbolic. For the coefficient of variation of the generalised beta c1 it follows from
Equations (3.10) and (3.11) that:

c2
1 = (U − L)2αβ

(Uα + Lβ)2(α + β + 1) (3.13)

Using Equation (3.7), the ratio between the CoV of the generalised beta bounded
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Figure 3.11: The beta distribution with low confidence level (lower curve), moderate
level (middle curve) and high level (upper curve).

in [L,U ] and the CoV of the standardised beta bounded in [0, 1] can be written as:

c1

c
= Uα− Lα
Uα + Lβ

(3.14)

From Equations (3.7) and (3.13) it is clear that c1, unlike c, depends on the two
bounds L, U . Equation (3.14) implies that c1 ≤ c. When L > 0, it holds for c1:

∂c1

∂L
= −c · Uα(α + β)

(Uα + Lβ)2 < 0

Therefore c1 is decreasing in L; when L = 0, c1 attains its maximum value c1 = c, and
it is independent from the bounds. These observations indicate that the coefficient of
variation of the standardised beta can be selected to represent the lack of confidence
in assessment: it is a dimensionless dispersion measure, it does not depend on the
bounds, and it can be directly assessed, as will be shown in the remainder section.

Next, the levels of lack of confidence expressed as c–values need to be numerically
specified. It was shown in Section (3.4) that the uniform distribution bounded
in [0, 1] has a CoV value of

√
3/3 ≈ 0.58; this can be viewed as the theoretical

maximum. It will be shown that the proposed method for constructing subjective
densities satisfies indeed this boundary condition, and can attain values as close to
0.58 as desired. The standardised normal, which has a CoV value of 1/3 ≈ 0.33, can
be thought of as a baseline value. When large uncertainties are involved, the density
should be flatter then the normal [JZJ03]; in other cases the dispersion expressed by
the normal density may be conservative. Therefore, the values c = 0.25, 0.33, 0.42
for the standardized beta were selected to represent respectively high, moderate and
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low confidence in assessment. A comparison of the three levels can be depicted in
Figure (3.11).

Figure 3.12: Indirect elicitation of the fourth parameter of the beta density, by the
subjective confidence percentage, according to Formula (3.15).

A more generic approach can be taken by asking the expert to provide a number
k in [0, 1] (equivalently, a percentage 100 · k% in [0, 100]) in order to express the
confidence in the assessment. This possibilistic quantity can be translated into the
coefficient of variation c according the rule:

c = 0.18(1− k)(3.2 + k) (3.15)

The relation is graphically shown in Figure (3.12). The levels k = 0%, 50%, 100%
correspond to c = 0.58, 0.33, 0 as desired with respect to the boundary and baseline
values discussed above.

In some cases, the assessment (L,M,U) can be highly skewed. When the modal
valueM is relatively very close to one of the two bounds, the probabilistic expression
of the cost element significantly departs from statistical normality, implying either
a poor assessment or large epistemic uncertainty. Such a case is inconsistent with
high confidence, and results to an overly thin distribution tail. For instance, if M
is relatively very close to L, then a beta density will have a very thin right tail, and
a significant part of the cost range on the right will be almost ignored. Therefore,
in the present study it is advised to assume an increased lack of confidence value c′,
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according to the following formula:

c′ = (
√

3c)ψ√
3

(3.16)

where ψ is a measure of skewness, given by:

ψ = 2
(
M − L
U −M

+ U −M
M − L

)−1

When M → L or M → U , it follows that ψ → 0 and c′ attains its theoretical
maximum

√
3/3 (see the following proposition). WhenM → (L+U)/2 (symmetry),

then ψ → 1 and c′ → c.
The formulation of the previous arguments is condensed in the following:4

Proposition. Suppose that the lower bound L, the upper bound U and the modal
value M of a beta density are assessed, L < M < U . Moreover, suppose that
the dispersion of the desired density (lack of confidence) is evaluated through the
assessment of the coefficient of variation c of the corresponding standardised beta,
where c <

√
3/3. Then, the two shape parameters α, β of the generalised beta

density are given by the formulas:

α = −{c
2(3m− 1) +m− 1}+

√
D

2c2 (3.17)

β = (1−m)α + 2m− 1
m

(3.18)

where m and D > 0 are given by:

m = (M − L)/(U − L) (3.19)

D = (3m− 1)2c4 + 2(3m2 − 1)c2 + (m− 1)2 (3.20)

Moreover, the shape parameters calculated through the Formulas (3.17), (3.18) al-
ways yield a unimodal density. Finally, the bound c =

√
3/3 is best possible.

Proof. From Equation (3.8), it yields that the modal values m and M of the
standardised and generalised density, respectively, are related as:

m = (M − L)/(U − L) (3.21)
4The main result of the proposition has also appeared in [Tam11] without proof.
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Once the mode m of the standardised beta is calculated as above, the relation with
the distribution parameters α, β can be written according to Formula (3.6) as:

m = α− 1
α + β − 2 (3.22)

which can be written also as:

m(α + β + 1) = α− 1 + 3m (3.23)

and

mβ = α(1−m) + (2m− 1) (3.24)

Equation (3.7) using the above two forms can be written as:

c2 = β

α(α + β + 1) = mβ

αm(α + β + 1) = α(1−m) + (2m− 1)
α(α− 1 + 3m)

which leads to a quadratic equation for α:

Q = c2α2 + {c2(3m− 1) +m− 1}α + (1− 2m) = 0

The discriminant of the equation Q = 0 is:

D = (3m− 1)2c4 + 2(3m2 − 1)c2 + (m− 1)2

which can be rewritten as:

D = {(3m+ 1)c2 + (m− 1)}2 + 4mc2(1− 3c2) (3.25)

Given that c <
√

3/3, it follows that 4mc2(1−3c2) > 0, therefore the above relation
implies that D > 0. Hence, the quadratic equation Q = 0 has two real roots. If α
denotes the larger of these roots, then:

α = −{c
2(3m− 1) +m− 1}+

√
D

2c2

Hence, the requirement α > 1, in order to obtain a unimodal density, is equivalent
to:

√
D > c2(3m+ 1) + (m− 1) (3.26)

By Equation (3.25) it follows that (3.26) is satisfied, and therefore α > 1. The
second shape parameter β can be derived from (3.24), and can be also shown to
satisfy the condition for unimodal beta:
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β = (1−m)α + 2m− 1
m

>
1−m+ 2m− 1

m
= 1

The boundary condition c0 =
√

3/3 is indicated by the fact that c0 is the max-
imum possible dispersion as the CoV of the standard uniform distribution. For
c =
√

3/3, and selecting m = 1/3, the above calculation yields α = 1, hence no uni-
modal solution. When c >

√
3/3, then there exists an ε > 0 such that c2 = 1/3 + ε.

By selecting again m = 1/3 it is obtained that D = −4ε/3 < 0, hence no solution
in terms of α and β. Therefore, c <

√
3/3, and the bound is best possible, since it

always yields a unimodal solution.
This condition is marginally restrictive within the unimodal class of the beta

distribution family, since for α ≥ 3 it holds that α(α+β+ 1) ≥ 3β+ 3(α+ 1) > 3β.
Therefore, from Formula (3.7), c2 = β/(α + β + 1) < 1/3, thus c <

√
3/3. Only

in the case when α < 3 and β > α(α + 1)/(3 − α), the coefficient of variation
c can exceed the value of

√
3/3, so this small fraction of beta densities are not

obtained by the proposed construction. If α < 3 and it is set α = 3 − δ where
0 < δ < 2 then, from Formula (3.6), it is derived that the lower undesired value
for β, β = (3 − δ)(4 − δ)/3δ yields the greater possible “problematic” m value,
m = (α− 1)/(α + β − 2) = δ/6 < 1/3, indicating particularly skewed densities.

2

The same procedure can be applied also in single point assessments. If a sym-
metrical density is desired, then α = β, therefore three parameters are required. In
order to ensure consistency with the previous approach, these values can be chosen
to be: (1) the single point estimate M , (2) the lack of confidence in assessment c,
and (3) the range Rd of the density. Then L = M −Rd/2, U = M +Rd/2; Formula
(3.19) yields:

m = M − (M −Rd)
(M +Rd)− (M −Rd)

= 1
2

Then, from Formula (3.20):

D =
(

1− c2

2

)2

From (3.17) and (3.18) the shape parameters are obtained:

α = β = 1
2

( 1
c2 − 1

)
(3.27)
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Confidence c α = β

perfect 0 ∞
high 0.25 7.5

moderate 0.33 4.0
low 0.42 2.4

infimum 0.58− 1+

Table 3.1: Beta parameters for the three selected levels of lack of confidence in assess-
ment, symmetrical case.

Condition c <
√

3/3 again directly implies that α > 1, β > 1. Table (3.1) shows the
shape parameters corresponding to the selected confidence levels.

It is worth noting that, under the assumptions of the developed methodology, the
selection of a range equal to six times the standard deviation, akin to the gaussian,
implies that c = 1/3, which is indeed the CoV of the standard normal distribution.
Thus, replacing the gaussian with a symmetrical beta density is consistent, not only
in terms of dispersion, but also with the range requirements. In order to prove that,
Equation (3.14) setting α = β yields:

c1 = sd
M

=
(
U − L
U + L

)
c

Replacing L = M −Rd/2, U = M +Rd/2, this relation is written as:

sd = cRd

2
From the above formula it is readily seen that c = 1/3 if and only if Rd = 6sd.

3.8 Criticism of beta distribution

The beta distribution, despite its wide use, has been criticised mainly because:

1. It suffers from difficulties in maximum likelihood estimation.

2. Its shape parameters do not seem to have a clear interpretation.

3. Its construction requires four numbers in contrary to the commonly assessed
three (minimum, mode, maximum).

4. The simulation is relatively slow.
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These points of criticism need to be addressed; the devised and proposed method
for constructing beta densities from expert judgements has the following character-
istics:

1. The pdf’s are not established based upon historical data, therefore the maxi-
mum likelihood estimation is not relevant.

2. The shape parameters are not directly elicited from experts, but mathemati-
cally derived from explicit meaningful judgements.

3. The fourth required parameter is utilised as an additional tool to allow for
flexibility and incorporation of information that is otherwise lost.

4. The simulation speed issue is not negligible, yet rather obsolete, considering
the power of modern computers.

3.9 Other implementations using the beta distri-
bution

The beta distribution is at the core of pert (Program Evaluation and Review Tech-
nique) approach [MRCF59]. According to the “classical” pert procedure [Wil05],
[PPR99] the mean and the variance are computed through the approximate formu-
las:

µ̂ = 1
6(L+ 4M + U)

σ̂2 =
{1

6(U − L)
}2

The shape parameters α, β can be analytically obtained, or estimated through
various methods [Yan11], [KLS+06], [Wil05], [VPvD11]. The usefulness of the above
formulas is usually stressed by the fact that the construction of the generalised beta
is possible by use of three parameters, while four of them are generally required.
However, the validity of the above procedure has been long criticised [vDK02]; for
instance, the variance is constant, conditional only on the range U −L [Hah08] and
no consideration whatsoever for confidence is contained.

Other techniques have gone beyond the pert limitation. By eliciting estimates
of a fourth point on the desired density, the two shape parameters α, β can be
calculated directly, without relying on assumption of a standard deviation equal
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to 1/6 of the range. In case the fourth element is selected to be the ninetieth
percentile value, the two shape parameters are obtained by solving a cubic equation
[GF00]. Several methods for constructing beta distribution can be found [KLS+06]
involving the endpoints and two additional statistical characteristics: (1) the mean
and the variance, (2) the mean and the mode, (3) the mode and the variance, (4)
the mode and an arbitrary quantile, and (5) two quantiles. However none of these
alternatives appears practical in the present context. Hahn [Hah08] proposed a
mixture distribution based on the beta, which additionally employs an “uncertainty
weight” parameter, in line with the ideas developed in the present work.

3.10 Alternative approaches

Several scholars have tried to go beyond the beta distribution representations. For
instance, Johnson [Joh97] provided an empirical method to approximate the beta
distribution with a triangular one. The method is based on the approximation of the
three triangular distribution parameters with linear expressions of three standard
beta distribution quantiles (two extreme quantiles and the median), derived by linear
regression from a representative sample. This approach allows for constructing a
triangular distribution directly from assessed quantiles.

Lau and Somarajan [LS95] supported the use of the four parameter Ramberg–
Schmeiser (generalised lambda) distribution in place of the beta, while van Dorp and
Kotz [vDK02] investigated the two–sided power distribution as a meaningful alter-
native to the beta for modelling uncertain time in the context of decision analysis.
Jiang et. al [JZJ03] proposed a model with unimodal density and one additional
parameter to provide flexibility. Elkjaer [Elk00] suggested the use of Erlang–k dis-
tribution.

Despite the widespread use of probabilistic methods, it has been questioned in
various studies (e.g. [TBF99]) whether the frequentistic interpretation of probabil-
ity is advantageous in the context of expert judgement over the classical one. An
often stated argument against probabilistic approaches for first–of–a–kind projects
is based on the lack of previous data [DBH07]. Next to that, it has been argued
whether standard probability theory can deal with information described in natural
language. In an attempt towards a generalised theory of uncertainty, Zadeh5 [Zad06]
argues that not only information is statistical in nature but, more generally, infor-
mation is a constraint with statistical uncertainty being a particular case. These
considerations have given ground to the fuzzy logic approach as an extension to

5Zadeh is credited with developing fuzzy set theory.
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bivalent logic. Efforts to exploit fuzzy logic within the Civil Engineering domain are
listed in [CT01]. For an overview on the use of fuzzy risk assessment methodology
one may refer to [DBH07].

Moreover, interval analysis, grey numbers and random sets [BT10] have been pro-
posed by several scholars as being practical and efficient in cost engineering. Instead
of statistical distributions, individual cost elements can be represented by intervals
[PS06]. The Dempster–Shafer Theory of evidence, also known as the theory of belief
functions, introduced by Shafer in 1976 as a generalization of the Bayesian theory of
subjective probability [VLDD+12], has seen some interesting implementations over
the recent years. Finally, artificial neural networks or multiple regression analysis
to model expert judgements resulting from multiple influence factors have also been
employed [ATKFA97].

While the aformentioned techniques can offer useful tools for dealing with un-
certainty in a variety of engineering problems, the author believes that they do not
offer real advantages over the probabilistic analysis. Firstly, handling dependence
among risks is rather complicated. Moreover, they do not constitute a transparent
framework to be used by individuals with little or no significant background on the
subject. Finally, the automation of the whole process is very demanding.
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Chapter 4

Multivariate dependence

The present chapter is organised as follows. Section (4.1) introduces the problem
of cost aggregation under dependence. In Section (4.2) independence is defined and
discussed, as the first step to address the problem. Negation of independence leads
to the concepts of causation and covariation, explained in Section (4.3). Section
(4.4) outlines the typical tools to capture pairwise dependence, while the relation to
information sources is examined in Section (4.5). Section (4.6) proceeds to the multi-
variate context, where a multitude of variables is involved. Two different dependence
structures are studied in Section (4.7). Finally, in Section (4.8) the gaussian copula
simulation technique is described.

4.1 Introduction and general formulation

As stressed in Chapter 2, the calculation of the total risk cost of a project involves
several variables, i.e. the individual cost elements Rj, j = 1, ..., n which represent
the identified risks. Once these items are modelled, e.g. by probability densities, as
described in Chapter 3, the risk term R of the total cost can be expressed as follows:

R =
n∑
j=1

Rj

There are two basic problems associated with this formulation. Firstly, since
Rj, j = 1, ..., n are random variables, the above aggregation is not straightforward
as numerical summation. The total risk R is a random variable itself which, in the
general case, does not belong to a particular statistical distribution family. There-
fore, the probability density function of R cannot be directly constructed; this is
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usually achieved through a simulation technique, e.g. a Monte Carlo method1. The
second and most important problem lies in the possible dependence among the vari-
ables Rj, j = 1, ..., n. Dependence needs to be detected, measured and integrated
into the simulation process, making the computational task highly challenging.

In particular, in a Monte Carlo approach, a sufficiently large (dictated by the
desired output precision) number m of random n–tuples ri = (ri1, ..., rin), i = 1, ...,m
are generated in order to simulate the random vector R = (R1, ..., Rn). Then, these
variates are combined in order to yield summary statistics for R. If the components
rij, j = 1, ..., n of every i–iteration are generated independently, it is implied that
the random variables Rj, j = 1, ..., n are being assumed independent. However, in
general, some kind and degree of dependence is present among the variables, hence
the above simulation has to include additional considerations, examined throughout
the remainder chapter.

In order to address these matters, the concepts of independence and dependence
among the input random variables need to be addressed. This is the purpose of
the forthcoming sections, wherein these two notions are discussed. Moreover, meth-
ods to measure, implement and propagate dependence into the simulation process
are gleaned from the literature. Focus is directed to practicability, efficiency, and
retention of the relevant calculus to a reasonable level. In this context, the strive
for scientific validity may easily lead to extremely complicated and non–appealing
techniques, while the use of overly complex dependence structures may act against
viewing, understanding, and control. On the downside, oversimplifications pose a
threat to the scope and efficiency of the developed ideas.

4.2 The concept of stochastic independence

Let two events E and F , defined on a common probability space (Ω, E ,P), with
P (E) 6= 0 and P (F ) 6= 0. The conditional probability P (E|F ) = P (E ∩ F )/P (F )
expresses the likelihood that event E occurs, given that event F has occurred, i.e.
the fact that the occurrence of F may affect the occurrence of E; in this case the
probability of E changes from P (E) to P (E|F ). Generally, these two values are
different; however case may be that P (E|F ) = P (E). Then, event E is called
independent of F . Likewise, event F is called independent of E when P (F |E) =
P (F ). By virtue of the above definition of conditional probability, both cases are
proved to be equivalent to the following condition2:

1An outline of Monte Carlo technique is given in Appendix B.
2Also referred to as the multiplication law of independence.
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Definition: A pair of events E and F is called independent if:

P (E ∩ F ) = P (E) · P (F )

When (E,F ) represents a pair of independent events, then independence also holds
for the pairs (E,F c), (Ec, F ) and (Ec, F c), where Ac denotes the complement of an
event A.

If two events are independent, it does not mean that they are disjoint. Disjoint
events are mutually exclusive, i.e. their intersection is null. In this case, P (E∩F ) =
0. Independent events can occur simultaneously, but the occurence of one event does
not influence the occurrence of the other.

It is necessary and possible to extend the above definition to an arbitrary number
of events. In fact, the n > 2 events Ej, j = 1, ..., n are called (mutually) independent
if, for any k–subset of the form {j1, ..., jk} ⊂ {1, ..., n}, the following property holds:

P (Ej1 ∩ ... ∩ Ejk) = P (Ej1) · ... · P (Ejk) (4.1)

The number of such combinations is:
 n

2

+ ...+
 n

n

 =
n∑
k=0

 n

k

−
 n

0

−
 n

1

 = 2n − n− 1

It is important to require the multiplication rule for all possible combinations;
as typically stated “pairwise independence does not imply mutual independence”
[Has03]. Furthermore, independence is not transitive: if X is independent of Y ,
and Y is independent of Z, then X and Z are not necessarily independent. Pair-
wise independence represents indeed only a small fraction of the whole dependence
structure, since the total number of pairs is n(n−1)/2, while the number 2n−n−1
of all Equations (4.1) grows exponentially with n. Therefore, elementary as it may
be to mathematically define, independence is practically difficult to check on data.

Independence for a finite set of random variables can be defined by means of the
sets of the form S = {X ≤ a}. The random variablesXj, j = 1, ..., n are independent
if and only if for every (a1, ..., an), {Xj ≤ aj}, j = 1, ..., n are independent events. In
general, independence of random variables can be defined upon the independence of
all events of the type {X ∈ S}, where S stands for any Borel set on the real line.

Independence between random variables is a very convenient property. If the
variables X and Y are independent, it can be shown that [DKLM07]:

• The expectation operator is multiplicative:
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E[X · Y ] = E[X] · E[Y ] (4.2)

• The variance operator is sum–preserving:

Var[X + Y ] = Var[X] + Var[Y ] (4.3)

• The joint cdf equals to the product of the marginal cdf’s:

FXY (x, y) = FX(x) · FY (y) (4.4)

• The joint pdf equals to the product of the marginal pdf’s:

fXY (x, y) = fX(x) · fY (y)

Similar expressions can be obtained for n > 2 random variables. Each of the last
two properties is sufficient to imply independence between X and Y . Moreover, it
is clear from those two properties that the multivariate problem of calculating joint
distributions degenerates to a mere multiplication of marginal distributions under
the independence assumption. However, the property:

E[X + Y ] = E[X] + E[Y ] (4.5)

always holds, regardless of dependence among the random variables. Therefore,
information on the expected value of the sum of random variables does not update
when additional information on the dependence among them is obtained.

Turning to the context of probabilistic cost analysis, for n > 2 risk impacts
Rj, j = 1, ..., n, linearity of expectation operator yields:

E[R] =
n∑
j=1

E[Rj] (4.6)

Since the present study primarily focuses on the estimation of “safe” (upper
quantile) values for the total cost, average values are of no particular interest, since
they possess high probability of exceedance. The “law of averages”, expressed by
Formulas (4.5) and (4.6), can falsely lead to the “flaw of averages” [Sav09], where
erroneous broader decisions within a system are being made upon individual ex-
pectations on the components. Moreover, the average value of the total cost does
not include considerations for individual cost dispersions. Finally, average values do
not account for dependence. This aspect is important, as shown in the forthcoming
section.
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4.3 From causation to covariation

The study of dependence is of paramount importance in cost engineering. Firstly,
albeit dependence considerations do not affect the average value of the total risk
cost—as shown in the previous section—they can decisively modify the “safe” eco-
nomic values used in the analysis. Besides, dependence among project activities
can alter the schedule, imposing indirect costs, mainly due to resulting delays and
increased variability [Wan02].

Several researchers have argued that dependence is even more important than
the selection of individual distributions [CYC09], [OO05], [Pet12]. Apart from the
quantitative aspect, the detailed study of already realised project phases or similar
undertakings through backwards (diagnostic) reasoning in terms of dependence, can
reveal facts and effects useful for performing direct (predictive) inference [Sha04].
Therefore, a dependence–aware approach opens the door to a more realistic, efficient
and dynamic risk management.

In a multivariate framework, uncritically omitting3 dependence can be justified
only upon the desire for computational tractability [Wan98]; the independence as-
sumption is a specific, restricting and usually unrealistic modelling choice, since it
ignores relationships between events and effects. Furthermore, it can have a signif-
icant influence on cost estimates, giving rise to serious divergences from the actual
cost [Wal97], [BM98], [ABP+06].

Typically, the first step in order to describe dependence between risks, is the
attempt to model cause–and–effect relations to represent the perceived underlying
associations. A cause can be referred to as risk factor, while the effect as risk
symptom [CT01]. This approach reflects the perspective that risk can be determin-
istically predicted once sufficient information is available. There are two critical
facts indicating the physical constraints in this treatment: (1) complete knowledge
is unreachable, therefore uncertainty cannot be eliminated [CLP07], especially for
future events [Ave11] and (2) modelling functional relations is typically impractical
[FNH+04]. The above described attitude is congruent to the propensity interpreta-
tion of randomness, introduced by C.S. Peirce and further developed by K. Popper
[Cor05], where probabilities result from underlying causal mechanisms.

The deterministic way to interpret effects, natural as it may appear within a
time sequence of activities, can often lead to the post hoc ergo propter hoc fallacy
[BK06, p. 148], or illusory correlation [GW04]. In particular, the analyst may

3As expressed by H. Putnam, all facts are fallible, but questioning them requires a counter
argument, i.e. another fact [PGW08].
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be tempted to attribute the appearance of an event entirely to the influence of
preceding events, based rather on its position in the broader time sequence, or on
personal arbitrary preconceptions, than on objectively specific evidence. Moreover,
the magnitude of dependence is typically overestimated when primarily based on
a presumed causal theory [Sch04]. In fact, the interrogation format, due to bias
interfering with frequentistic and causal perceptions of risks, can influence reasoning.
Although dependence among possible effects can sometimes be designated as either
causal or merely associative when “hard” data are available [BE09], or extracted
from frequently observed patterns [HKP05], in an expert judgement context this
distinction is hardly evident [Ave11].

The need to relax the deterministic assumption of strict cause–and–effect rela-
tions, yet still be able to model dependence, leads to the concept of covariation.
This transition somehow concurs with the shift from risk to uncertainty, described
in Section (2.3). Although causation and covariation are often presumed identical,
they fundamentally differ: for instance, covariation is indeterminate with respect to
direction4, while causal judgements are very sensitive to the order in which infor-
mation is presented to the expert [Sha04]. The remarkable work of Cheng [Che97]
offers a detailed theoretical review of the subject.

On the one hand, several studies [MS10], [LX03], [CYC09] have supported that a
purely statistical treatment of dependence can neither provide insight about depen-
dencies, nor enable the use of available knowledge about causal structures. On the
other hand, a purely deterministic description of association is impractical, as pre-
viously discussed. Therefore, it is important that the modeller acknowledges that a
monolithic approach of dependence can impose undesirable limitations to the scope
of the study. To that end, numerous definitions aiming to offer a normative descrip-
tion of dependence have been developed in the literature (correlation, concordance,
quadrant dependence, association, stochastic ordering, etc.) [LX03].

Especially in the risk analysis framework, classifications of association types has
been attempted [CGRW04], [KC06, p. 16]. In particular, relationship types between
activities in construction have been described in [WH00]. The range of different
types is obviously dictated by the availability of data; hence, in the present study,
such taxonomies have been considered with some care.

A typical dependence type is what is referred to as “common cause failure”,
where failure in the context of cost estimation may stand for an unexpected excess
in cost or time [FHB02]. A “common shock” to the system may lead to failure
if the system components possess a perfect positive dependence with respect to

4Still, in practice, dependencies are usually depicted by directed arcs.
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that common cause [Wil97]. In fact, the project’s idiosyncratic characteristics or
individual unwanted events are likely to affect multiple cost items [KAE04].

Costs (and durations) in construction can be indirectly correlated if the corre-
sponding activities are performed under similar supervision, site and weather con-
ditions [Yan11]. A typical example in tunnelling is the case of adverse geological
conditions, which can affect multiple engineering works of different forms. On the
downside, inserting risk factors as zero–cost risks acting as stochastic “switches”
within a risk network, requires additional manual effort, making the automation of
the process rather complicated. This matters will appear and further discussed in
Chapter 5.

4.4 Basic dependence measures

Once dependence is detected, it needs to be measured. Apparently, the simpler way
of measuring and describing dependence is by means of scalar indices. A measure5 δ

between two random variables X, Y should satisfy a number of properties [EMS01],
[DL09]; e.g. symmetry:

P1: δ(X, Y ) = δ(Y,X)

It is also desired that δ assumes values in the interval [−1, 1]:

P2: −1 ≤ δ(X, Y ) ≤ 1

The bounds ±1 should be reached when the relationship between X and Y is mono-
tonic:

P3: δ(X, Y ) = 1 if and only if (X, Y ) are comonotonic, and δ(X, Y ) = −1 if and
only if (X, Y ) are countermonotonic.

The measure δ should be invariant (up to sign) under monotonic tranformations of
the arguments:

P4: If t : R→ R is a strictly monotonic transformation, then:

δ(t(X), Y ) =

 δ(X, Y ) , if t is increasing
−δ(X, Y ) , if t is decreasing

5Different sets of required properties are set for defining measures of concordance, dependence,
or association.
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Another desired property which, interestingly, contradicts P4 [DDGK05, p. 247] is
the following:

P5: δ(X, Y ) = 0 if and only if X and Y are independent.

In the remainder chapter, the three mostly used6 scalar measures are presented and
discussed, having properties P1–P5 as a reference point.

Covariance and linear correlation

Let µX and σX denote respectively the expected value and the standard deviation
of a random variable X. The covariance of two random variables X, Y is defined as
the expected value of the variable (X − µX)(Y − µY ), namely:

cov(X, Y ) = E[(X − µX)(Y − µY )] (4.7)

It is easily shown that:

cov(X, Y ) = E[XY ]− E[X]E[Y ] (4.8)

From Equation (4.7) it is clear that cov(X, Y ) > 0 when large values of X tend to
coexist with large values of Y , and small values of X with small values of Y . The
opposite relation between X and Y is implied when cov(X, Y ) < 0. From Equations
(4.2) and (4.8) it is derived that if X and Y are independent, their covariance is
zero. However, the converse is not necessarily true. Covariance satisfies the following
property:

cov(aX + b, cY + d) = ac · cov(X, Y )

The above equation shows that covariance is not suitable to express dependence,
since it is not scale–free. The standardised form of covariance is the Pearson’s
product–moment linear correlation coefficient r, defined as:

r(X, Y ) = cov(X, Y )
σXσY

Then, r is invariant (up to sign) under linear tranforms of the variables:

r(aX + b, cY + d) = sign(ab) · r(X, Y )
6There are many other scalar measures of dependence described in the literature, e.g. in [MK01].
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Pearson’s linear correlation coefficient indicates the intensity and direction of
a linear relation between X, Y ; the case r = 1 (r = −1) describes an increasing
(decreasing) perfect linear relationship. As a scalar metric is easily calculated and
interpreted; however, it possesses several serious disadvantages, and has often been
criticised for its limited worth. For instance, independence between X and Y im-
plies zero correlation; nevertheless, the converse holds only for bivariate elliptical7

distributions [ELM03], which imposes a rather strict assumption. Likewise, small
correlations do not imply weak dependence, hence they cannot be safely ignored.
In addition, the following shortcomings of Pearson’s correlation coefficient are men-
tioned, inter alia [BE09], [EMS01], [FNH+04]:

• It detects only linear dependence.

• Feasible correlation values depend on the choice of the marginal distributions;
the attainable range can be much tighter8 than [−1, 1]

• Varying correlations in [−1, 1] does not explore possible nonlinear dependen-
cies.

• It is problematic in cases of asymmetric distributions.

• It is not invariant under arbitrary monotone transformations.

Before beginning the quest for a perfect scalar dependence measure, a common
drawback of every possible selection should be highlighted. As a single number, a
scalar measure cannot express both the type and the magnitude of dependence at
the same time. Consequently, given fixed marginal distributions and correlations,
there exist infinitely many feasible joint distributions. In fact, this can be easily
shown using copula functions. Appendix C contains further details on this matter.

Spearman’s rho

The larger the departure of the margins from normality, the more misleading the
concept of linear correlation becomes [Jäc02]. It is possible to remedy some of
its deficiencies by working with probability–transformed variates. Spearman’s rank
correlation ρ is defined as the Pearson’s correlation coefficient of the grades U =
FX(X), V = FY (Y ):

ρ(X, Y ) = r(FX(X), FY (Y ))
7Typical members of the elliptical class are the multivariate gaussian and Student distributions.
8However, it always holds that rmin < 0 and rmax > 0 [Emb09].
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Kendall’s tau

A pair of observations or independent realisations (x1, y1) and (x2, y2) of X, Y is
called concordant (discordant) if the observation with the larger value of X has the
larger (smaller) value for Y ; in other words, when the product (x1 − x2)(y1 − y2) is
grater (smaller) than zero. The population version of Kendall’s tau τ is defined as
the probability of concordance minus the probability of discordance:

τ(X, Y ) = P ((X − X̃)(Y − Ỹ ) > 0)− P ((X − X̃)(Y − Ỹ ) < 0) (4.9)

where (X̃, Ỹ ) is an independent copy of (X, Y ).

Both Kendall’s tau and Spearman’s rho lie in the interval [−1, 1] and they are
equal to ±1 if and only if X and Y are almost surely monotone functions of each
other. Therefore, they allow for measuring monotonic and not necessarily linear
dependencies between variables. Also they are equal to 0 when X, Y are indepen-
dent, with the converse not generally true. Kendall’s tau and Spearman’s rho are
distribution–free, i.e. they do not depend on the choice of the marginal distributions,
in contrary to the Pearson’s correlation. Thus, their assessment can be performed
without having necessarily assessed the marginal distributions.

example 4.1: Suppose the value of Kendall’s tau is 0.6. Then, Equation (4.9)
implies that the probability of concordance is 0.8 and the probability of discordance
is 0.2, since their sum is unity. Hence, if a large value for X is observed, then also
a large value of Y should be anticipated, with a likelihood of 80%, and not 60% as
one might infer from τ = 0.6.

In the present study, it is assumed that the subjectively elicited correlations, are
in fact Kendall’s tau values. However, the numerical differences with Pearson’s linear
correlations or Spearman’s rho are rather insignificant [FN07], given the degree of
epistemic uncertainty. The use of Kendall’s tau allows for removing the restrictive
assumption of linearity. This fact would make more sense if the subjective data were
to be replaced by hard data.

4.5 Dependence and information

Before the quantification of dependence between risks, the following related problems
have to be addressed in an expert elicitation process:
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• The nature of dependence and the different types of risk association have to
be understood by the analyst.

• A coherent and comprehensive set of well–defined questions has to be formu-
lated in order to harvest the most possible information from the experts.

• The number and complexity of questions has to be minimised without com-
promise in the obtained information.

• A transparent computational framework has to be established, to make use of
the assessed information.

Several levels of dependence information can be identified, according to the avail-
able sources. In a risk assessment context, however, such as the one described in the
case study of the present work, the only sources are the elicited expert judgements,
typically in qualitative form. In few cases, also historical descriptive data can be at
hand.

Dependence needs to be measured in order to be inserted in the analysis, there-
fore the problem reduces to converting the qualitative data into quantitative or,
in other wording, to extracting dependence measures from descriptive data. Since
this process in not definite, the onus is on the normative expert who acquires and
formalises knowledge, to select the appropriate technique for translating qualita-
tive information into useable numbers. The modelling decision may significantly
affect the output, depending on the problem formulation and scope. This model
uncertainty can be partially investigated by means of sensitivity analysis.

In linguistic terms, dependence can be categorised as non–existent, weak (low),
moderate or strong (high). Since associations between cost items are usually cap-
tured by correlation coefficients, the type of dependence measure and the three
different levels (low, moderate, high) need to be agreed upon. This constitutes an-
other arbitrary yet necessary assumption within the analysis. Technical details of
this issue are explained in Chapter 5.

The contribution of individual risk items to the overall risk as well as interactions
and associations can be studied using logic tree analysis [FS03]. With respect to
that, Fault Trees (ft), Event Trees (et), Bayesian Networks (bn) and other methods
have been developed in order to integrate the concepts of causality and covariation
into the system. Each of these approaches has certain limitations regarding the size
of projects it can represent in a practical manner.

As stated in Section (4.2), pairwise dependence information does not comprise a
full dependence assessment. Yet, this limitation has not been sufficiently emphasised
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in the literature. Even in case when pairwise dependence is specified, the number of
pairs n(n−1)/2 can be unsuitably large, for a large number n of events. In practice,
risks often form chains of events; in this case, a much smaller number of assessments
has to be performed. Moreover, chains are closely related with critical paths for
cost and time. This observation can lead to different modelling directions, further
discussed in Section (4.7).

Dependence among risks is usually overlooked for several reasons [BS99]:

• Correlations do not appear when single–point estimates are used.

• Dependence is often considered only as a time constraint within an activity
schedule.

• Dependence between risks may be present (e.g. in the form of common cause)
even if no direct causal relation is obvious.

• A erroneous tautology frequently arises between little or no evidence about
dependence, and independence.

• A large number n(n − 1)/2 of correlations are needed for specifying pairwise
dependence.

• The relevant calculus may seem rather unappealing.

It is worth highlighting that the problem of dependence in uncertainty analysis
is still under active development [CG04]. The forthcoming section aims to introduce
the dependence–aware multivariate problem of cost aggregation.

4.6 Cost aggregation in the multivariate frame-
work

As already discussed in the previous sections, the main subject of the present study
is the realistic representation of the aggregate cost, i.e. the probability distribu-
tion of the sum of the assessed risks and opportunities. Once the evaluation of
individual cost elements has been performed, a set of risks—sometimes referred to
as a portfolio9 of risks [BM98]—is defined. The set of risks comprises a random
vector R = (R1, R2, ..., Rn), where each of the n individual risks Rj, j = 1, ..., n is
a (univariate) random variable. Formula (4.6) shows that it is neither required to

9This terminology is primarily used in Financial Risk Analysis.
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construct the aggregate loss distribution, nor to consider any information regard-
ing dependence among risks, in order to calculate the expected value of the total
loss. When the dispersion of R is also desired, Formula (4.3) in the special case of
independent risks yields:

Var[R] =
∑
j

Var[Rj]

In the general case, when dependence is additionally considered, the variance of the
aggregate distribution is given by [Wan98]:

Var[R] =
∑
j

Var[Rj] + 2
∑
i<j

cov(Ri, Rj) (4.10)

The above formula explains why positive dependencies among risks results to a
greater dispersion, hence to higher uncertainty. This will be numerically shown in
Chapter 6.

Estimation of cost variance in engineering projects has been the subject of re-
cent studies [WH00]. The variance Var[R] is very important, since it measures the
deviation between average and upper quantile values. Among equivalent risks (in
the sense of Equation (2.1)), those events with low probability and high impact
should be of more concern [ETKV04]. This recommendation can be explained by
the fact that low probability risks contribute more to the variance of the total loss
distribution.

The aformensioned effect can be shown as follows: suppose the impact of two
risks R1, R2 is assessed with point estimates U1, U2, and the risks have the same
expected value: E[R1] = E[R2] = m, P [R1 = U1] = p1, P [R2 = U2] = p2. Then
for j = 1, 2, E[Rj] = pjUj , hence Uj = m/pj. Since Var[Rj] = E[R2

j ] − (E[Rj])2 =
pjU

2
j − (pjUj)2 = m2(1/pj − 1), it holds that:

Var[R1]
Var[R2] = 1/p1 − 1

1/p2 − 1
Hence, it is concluded that if p1 < p2, then Var[R1] > Var[R2].

This issue is related to the rare extreme event problem. For instance, a risk may
have an extreme impact value, but a very small probability of occurrence. In this
case, its expected impact may be equivalent to that of other “normal” risks, but this
value is not really informative since the occurrence of this risk can, in fact, invalidate
the whole project. Treatment of extreme rare events is still an open question [Tal10],
but the usual policy suggests that events evaluated under a certain low likelihood
level be altogether ignored.
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The correlation effects increase with the number of cost elements [KAE04]. This
fact can be explained, not only by the last term of Formula (4.10), but also by the
increased associations, hidden beyond the assessed pairwise correlations.

In a multivariate environment, it is possible that some variables have an insignif-
icant influence on the final output. In order to reveal which variables should be
modelled stochastically, a sensitivity analysis can be used. Special care should be
taken for cost elements and dependencies that strongly affect the total cost; on the
contrary, some other model inputs can be considered with an approximate value.
According to the “one–way” sensitivity analysis [Rei00] the swing of each variable
Xk is defined as:

S(Xk) = R(X1, ...,max(Xk), ..., Xn)−R(X1, ...,min(Xk), ..., Xn)

where all Xj, j 6= k are fixed at their modal values. Then, the percent variance
explained by Xk is defined as:

PV E(Xk) = [S(Xk)]2∑[S(Xj)]2

However the validity of this measure relies on the dependence structure of the ran-
dom vector (X1, ..., Xn). In general, a shortcoming of most sensitivity analyses is
that they ignore possible relationships among the input variables. In particular, the
main limitation is the ceteris paribus assumption (i.e. that all other things remain
the same), when changing a variable [SMJ06, p. 47].

The deviation between the average and the maximum value of the total cost
is a measure, representing the additional capital which has to be added to the
assumed mean value to yield a safe budget [DDGK05, p. 61]. In financial engineering
terms, the Value–at–Risk (VaR) is defined as the upper a–quantile of the total cost
distribution FR [YY05]:

VaRa(R) = F−1
R (a) (4.11)

Over the last years, the Value–at–Risk measure is being gradually replaced by
the Expected Shortfall, which is the conditional tail expectation (CTE) of the loss
distribution [ADEH99]. This metric was also considered for the present work.

CTEa(X) = E[X|X > F−1
R (a)] (4.12)

Instead of a single number, it is possible to calculate safe intervals for the total
anticipated impact. In general, the attempt to obtain upper and lower bounds for
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multivariate risks usually yields rather wide intervals [GGGR09], [FNH+04] and
involves different tools and techniques.

Figure 4.1: Mean value, 95% upper quantile and expected shortfall (mean value of the
right tail) of a cost probability density.

4.7 Representations of dependence structures

A multivariate model aims to integrate all available information regarding the indi-
vidual costs10 and the inter–variable associations. Therefore, apart from the generic
specifications outlined in Section (3.1), there are two basic requirements; the model
should [Yan05]:

• Allow arbitrary types for the distributions of individual cost elements.

• Integrate dependencies among cost items.

Individual cost elements have been discussed in Chapter 3. In addition, scalar
dependence measures have been outlined in Section (4.4). What remains now, is
a strategy to merge the two different objects into a mathematical model. Firstly,
it is useful to represent the assessed risks and dependencies on a unified graph.
Risks can be depicted as nodes, while risk dependencies as (not necessarily directed)
connections between nodes. In general, two main dependence structures among risks
can be identified, namely (Figure (4.2)):

10The marginal cost distributions are assumed continuous. Most results regarding dependence
rely on the continuity assumption for the margins; however, discrete data can also be used [DL05].
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1. Structures with no closed cycles. This scheme describes e.g. sequential (or
almost sequential) risks.

2. Structures with closed cycles, indicating more complicated interdependencies.

Figure 4.2: Example of dependence structures: acyclic (left) and with closed cycles
(right).

In the following, two different approaches aiming to deal with these two cases,
are described.

Sequential risks

Activities can have a serial, parallel or overlapping relationship [WH00]. It is often
the case that a group of risks can be formed as a sequence (R1, ...Rn), describing a
chain of corresponding activities (workflow) [AM97]. In these cases, the simulation
strategy can be formulated as follows: a random value for the first risk R1 is drawn,
and then a value for the second risk R2 is generated, having the specified underlying
dependence between R1, R2. The procedure follows the sequence of risks until the
last one, and then is repeated by a sufficiently large number of iterations, until
the total cost distribution is constructed with acceptable precision. The method
of sampling from a series of probability distributions is sometimes referred to as
conditional sampling [GW04, p. 204].

The above described simulation can be achieved using copula functions [Kel07]
(Appendix C). If C is the copula describing the dependence between two variables
Ri, Rj, then the conditional distribution of the second variable V , given that the
first has been observed (U = u), is:
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cu(v) = P [V ≤ v|U = u] = lim
du→0

C(u+ du, v)− C(u, v)
du = ∂C

∂u
(u, v)

The function v → cu(v) exists and it is nondecreasing almost everywhere in [0, 1]
(see Appendix C). Therefore, if the value u = u0 has been selected, and an auxiliary
uniform variate w0 is drawn independently from (0, 1), then the value v0 = c−1

u (w0)
can be calculated, and the pair (u0, v0) follows the dependence structure dictated
by the copula C. Finally, the pair (xi, xj) where xi = F−1

i (u0) and xj = F−1
j (v0) is

sampled from the random pair (Ri, Rj) by probabilistic inversion, where Fi, Fj are
the probability functions of the two variables, respectively.

In the following, the described procedure is shown for a particular copula. The
Frank copula was selected, since:

• It can capture weak and strong positive and negative dependencies.

• It describes a dependence structure which is visually reasonable.

• The conditional distribution cu can be easily inverted.

The Frank copula is defined as:

C(u, v) = −1
θ

(
1 + (e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ > 0

It readily follows that:

cu(v) = ∂C

∂u
(u, v) = e−θu(e−θv − 1)

(e−θ − 1) + (e−θu − 1)(e−θv − 1)
By setting cu(v) = w and solving by v, it follows that:

v = −1
θ

ln
(
we−θ + (1− w)e−θu
w + (1− w)e−θu

)
(4.13)

The dependence strength is encoded into the parameter θ; the Kendall’s tau is
related to θ as:

τ = 1− 4
θ

(1−D(θ)) (4.14)

where D is the Debye function of the first kind, defined as:

D(θ) = 1
θ

∫ θ

0

t

et − 1dt (4.15)

Table (4.1) shows the five characteristic dependence levels (zero, weak, moderate,
strong, perfect) and the corresponding θ values.

73



Level Kendall’s tau Parameter θ
independence 0 0

low 0.25 2.37
moderate 0.50 5.74
strong 0.75 14.14
perfect 1 ∞

Table 4.1: Theta parameter for the three selected dependence levels, and the two extreme
cases (independence and perfect dependence).

When τ = 1 then the copula C reduces to C(u, v) = uv and the calculation is still
possible.

The simulation sequence on the risk structure of the left part of Figure (4.2) is
shown in Figure (4.3). The simulation, which is not unique, follows the numbered
nodes from 1 to 7.

1

7

23

4 5 6

Figure 4.3: Example of stepwise conditional simulation of risks.

Correlation matrix

When the modelled group of risks contains too many dependencies, the correlation
matrix approach appears preferable. The n× n correlation matrix Σ of the random
vector R = (R1, ..., Rn) contains as entries σij the correlation coefficients of the pairs
(Ri, Rj), 1 ≤ i, j ≤ n. From the properties of Pearson’s correlation coefficient, it is
clear that σij = σji, σjj = 1, and |σij| ≤ 1. Therefore, the matrix Σ is symmetric,
with ones on the main diagonal, and off–diagonal entries within [−1, 1].
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Let Mn denote the class of the n× n square matrices having the three aforesaid
properties (also referred to as pseudo–correlation matrices [RM93]). The most im-
portant issue concerning the correlation matrix is the feasibility property; a matrix
Σ ∈Mn is said to be a feasible correlation matrix when there exists a random vector
X = (X1, ..., Xn), having Σ as correlation matrix.

Before mathematically examining the feasibility property, three often arising
logical problems of the class Mn need to be mentioned:

• Incoherence of the matrix entries.

• Measurability of the matrix entries.

• Incompleteness of the matrix.

Incoherence among the matrix entries may appear, since these quantities are
inavoidably collected from disparate sources. This fact cannot ensure compatibility
among the elements. For instance, if positive dependence exists between (X1, X2)
and likewise between (X2, X3), then (X1, X3) cannot be negatively correlated. Mea-
surability of the elements expresses the possibility to precisely quantify dependen-
cies, in terms of correlation coefficients. Measurability, albeit problematic in terms
of uncertainty, can prove beneficial when adjusting the matrix to a feasible one. In
fact, minor violations of the assumed correlation values are insignificant, given that
these values have been quantified in a rather arbitrary manner. Finally, incomplete-
ness results from missing entries. It is worth noting that missing elements are not
necessarily attributed to insufficient assessment. The number of required correla-
tions n(n − 1)/2 can be very large to assess, whereas many of these correlations
correspond to dependencies indirectly implied by the assessed ones.

A basic question, regarding the treatment of the missing elements, is whether
or not they should be set to zero. In fact, by setting a missing correlation value to
zero, specific information on the dependency of concern is being inserted. Since no
way to decide upon a missing correlation value really exists, it follows that too many
missing entries can result to a large degree of arbitrariness, reflected as significant
epistemic uncertainty in the output. In these cases the sequential risk approach—if
applicable—is preferable.

A necessary condition for feasibility is that the matrix should be positive semi–
definite, in other words, the eigenvalues should be non–negative. The condition can
be written as:

vTΣv ≥ 0
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for all real non–zero column vectors v of length n, where vT denotes the transpose of
v. The above condition is only necessary but not sufficient, nevertheless it imposes
a very strong constraint; as n increases, feasibility among elements of the class Mn

is highly unlikely [KC06, p. 52]. This can be intuitively understood by the growing
influence of coefficient changes on the roots of the characteristic polynomial (i.e. the
eigenvalues), as the degree increases [Jäc02, p. 59].

Any square matrix with non–zero elements can be expressed as the product of a
lower triangular matrix L and an upper triangular matrix U (LU decomposition).
The following special case is fundamental in the field of random number simulation:

Proposition (Cholesky decomposition): If Σ ∈ Mn is positive–definite, then there
exists a unique lower triangular matrix C, such that:

Σ = CCT (4.16)

The matrix C is called the Cholesky factor of Σ and its elements can be calculated
from top to bottom and left to right as:

cij =
σij −

j−1∑
s=1

ciscjs√
1−

j−1∑
s=1

c2
js

, 1 ≤ j ≤ i ≤ n

with the convention that
0∑
s=1

(·) = 0.

The Cholesky factorisation of a matrix Σ can be used for simulating random
variables having Σ as their correlation matrix. In order to apply this decomposition,
the initial matrix Σ0 which contains the assessed dependencies needs firstly to be
approximated by a positive definite matrix Σ. Therefore, the simulation algorithm,
apart from generating samples from the assumed random variates, should be able
to [Yan05]:

1. Check whether the matrix of elicited correlations Σ0 is positive definite.

2. Construct a “close” replacement Σ for Σ̂, if the condition is not satisfied.

The first is quite simple; it suffices to calculate the matrix eigenvalues and search
for negative ones. The second step has seen a number of different developments
over the last 30 years (e.g. [Rei00], [Hig02]). Rousseeuw and Molenberghs [RM93]
provided an overview of a few solutions; one of them suggests the replacement of
negative values in the eigenvalues of Σ with a small positive number. This approach
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has also been taken by several researchers [BS99], [GH03], [Yan05], [CYC09]. The
technique, also referred to as “spectral decomposition” [Jäc02], can be outlined as
follows:

1. Analyse the matrix Σ ∈Mn as Σ = PEPT (diagonalisation), where E the

2. Replace the negative eigenvalues with a small positive value (say, 0.01) and
derive a new vector E+.

3. Calculate the matrix A = PE+PT.

4. If A = (aij), set djj = 1/√ajj, else dij = 0. Set D = (dij).

5. Normalise the matrix A as Σ̂ = DAD.

An even simpler technique suggests the division of the off–diagonal entries by
a number greater than one, and check for positive–definiteness. The closest to one
is the divisor, the less the original matrix is altered. Other techiques make use of
principal component analysis, maximum likelihood estimation, or more sophisticated
methods. The hypersphere decomposition method [Jäc02] uses an optimisation tech-
nique that additionally allows for assigning different weights to each correlation. In
any case, the deviation between the original Σ = (mij) and the artificial matrix
Σ̂ = (m′ij), can be measured by means of some distance, e.g.:

Laverage =

∑
i>j
|m′ij −mij|

n(n− 1)/2

Lmax = max
i>j
|m′ij −mij|

An example of the spectral decomposition technique is shown below:

example 4.2: Suppose the following correlation matrix is given:

Σ =


1 0.9 0.7

0.9 1 0.2
0.7 0.2 1


The matrix Σ in not positive–definite; its eigenvalues are: 2.24212637, 0.80653659,
–0.04866296. Σ is analysed as Σ = PEPT, where:

P =


0.6760115 −0.0457698 0.7354683
0.5658239 −0.6071484 −0.5578657
0.4720718 0.7932691 −0.3845417


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E =


2.242126 0 0

0 0.8065366 0
0 0 −0.04866296


The third negative eigenvalue is replaced by 0.01, and the modified matrix E+ is
derived:

E+ =


2.242126 0 0

0 0.8065366 0
0 0 0.01


The matrix A is derived, as A = PE+PT:

A =


1.031732 0.8759310 0.6834090
0.875931 1.0182567 0.2125845
0.683409 0.2125845 1.0086746


The matrix A does not have ones in the main diagonal. For that, the auxiliary
matrix D is calculated:

D =


0.9845021 0 0

0 0.9909947 0
0 0 0.9956907


Finally, the matrix A is normalised by means of the auxiliary matrixD as Σ̂ = DAD:

Σ̂ =


1 0.8545902 0.6699183

0.8545902 1 0.2097623
0.6699183 0.2097623 1


Then, the matrix Σ̂ is a pseudo–correlation matrix, that can be used in simula-

tion.

4.8 Simulation of correlated variates

In the present section, the procedure of simulating correlated variates for the general
case is described. To allow for convenience and clarity, the construction of gaussian
copula—the basic tool for performing this simulation—is shown in the bivariate
case.

Let Z1, Z2 be two independent, normally distributed random variables with zero
mean values and unit variances. By applying the affine trasformation:
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(X1, X2) = (µ1 + σ11Z1 + σ12Z2, µ2 + σ21Z1 + σ22Z2)

a pair of normally distributed random variables (X1, X2) is obtained, with mean
values µ1, µ2 and variances σ2

1 = σ2
11 + σ2

12, σ2
2 = σ2

21 + σ2
22, respectively. Moreover,

the correlation coefficient between X1, X2 is:

r = σ11σ21 + σ12σ22

σ1σ2

The pdf’s of Z1, Z2 are given by:

fj(zj) = 1√
2π

exp
(
−z2

j /2
)
, j = 1, 2

For the joint pdf H of Z1, Z2, thanks to independence, the following holds:

H(z1, z2)dz1dz2 = f1(z1)dz1f2(z2)dz2 = 1
2π exp

{
−
(
z2

1 + z2
2

)
/2
}

dz1dz2

The applied transformation can be written in matrix form, as:
x1 − µ1

x2 − µ2

 =
σ11 σ12

σ21 σ22

z1

z2


If the determinant σ11σ22− σ12σ21 6= 0, the system can be solved in therms of z1, z2:

z1

z2

 =
σ11 σ12

σ21 σ22

−1x1 − µ1

x2 − µ2

 = 1
σ11σ22 − σ12σ21

 σ22 −σ12

−σ21 σ11

x1 − µ1

x2 − µ2


Substituting

σ2
1 = σ2

11 + σ2
12, σ

2
2 = σ2

21 + σ2
22, r = σ11σ21 + σ12σ22

σ1σ2

leads to the relation:

z2
1 + z2

2 = 1
1− r2

{
(x1 − µ1)2

σ2
1

− 2r(x1 − µ1)(x2 − µ2)
σ1σ2

+ (x2 − µ2)2

σ2
2

}

The Jacobian of the transformation (x1, x2)→ (z1, z2) is:

∂(z1, z2)
∂(x1, x2) =

∣∣∣∣∣∣∂z1/∂x1 ∂z1/∂x2

∂z2/∂x2 ∂z1/∂x1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ σ11/r
′ −σ12/r

′

−σ21/r
′ σ22/r

′

∣∣∣∣∣∣ = 1
r′

= 1
σ1σ2
√

1− r2
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where

r′ = σ11σ22 − σ12σ21 = σ1σ2
√

1− r2

Thus

dz1dz2 = dx1dx2

σ1σ2
√

1− r2

Therefore, the joint distribution of X1, X2 is derived as:

f(x1, x2; r) = 1
2πσ1σ2

√
1− r2

exp
{
−z2/2(1− r2)

}
where:

z2 = (x1 − µ1)2

σ2
1

− 2r(x1 − µ1)(x2 − µ2)
σ1σ2

+ (x2 − µ2)2

σ2
2

In the general case of n > 2 random variables with mean values µ ∈ Rn and
correlation matrix Σ, the multivariate normal distribution can be similarly derived
as a pdf:

fX(x1, ..., xn; Σ) = 1
(2π)n/2|Σ|1/2 exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

(4.17)

When two or more random variables are jointly normal, then it can be readily
shown that the marginal distributions are also normally distributed. This assump-
tion is very restrictive in the general case. However, using the multivariate version
of the above formula, it is possible to construct the gaussian copula, based on Sklar’s
theorem (Appendix C). The latter can be used to represent a dependence structure
that is fully determined by a correlation matrix, but the marginal distributions can
be of any desired density.

Suppose the random vector R = (R1, ..., Rn) with correlation matrix Σ. Denote
by Fj the cdf of the variable Rj, j = 1, ..., n. Moreover, suppose the dependence
structure is described by a gaussian copula:

C(u1, ...un) = ΦΣ
(
Φ−1(u1), ...,Φ−1(un)

)
where Φ is the cdf of the univariate standard normal distribution,

Φ(x) = 1
2π

∫ x

−∞
exp(−t2/2)dt

and ΦΣ is the cdf of the distribution expressed in Formula (4.17).
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Pearson’s linear correlation coefficients are directly related to Spearman’s rho
and Kendall’s tau rank correlations as follows [LMS03]:

rij = sin
(
π

2 τij
)

(4.18)

rij = 2 sin
(
π

6ρij
)

(4.19)

The simulation procedure, usually referred to as Normal–to–Anything (norta) can
be formulated as follows [Yan11], [GH03]:

1. A matrix Σ0 containing the assessed rank correlations is formed.

2. An initial correlation matrix Σ1 is calculated according to Formula (4.18).

3. The matrix Σ1 is approximated by a positive definite matrix Σ, as described
in the previous section.

4. The Cholesky factorisation of Σ is performed [Wan98], yielding a lower trian-
gular matrix C.

5. A vector w = (w1, ..., wn) of independent (uncorrelated) standard uniform
variates is drawn.

6. A vector z = (z1, ..., zn) = (Φ−1(w1), ...,Φ−1(wn)) of independent (uncorre-
lated) standard normal variates is calculated.

7. The vector z is tranformed to t = Cz, which is multinormally distributed with
correlation matrix Σ.

8. The vector u = Φ(t) is calculated.

9. The numbers uj, j = 1, ..., n are transformed to costs by inversion xj =
F−1
j (uj).

10. Steps 5–9 are iterated to generate a sufficient number of samples.

Clemen and Reilly [CR99] noted that the above method is essentially a copula–
based technique. The multivariate normal copula is constructed by means of the
multivariate normal distribution, but this does not impose any limitation with regard
to the choice of the marginal distributions. After the above simulation, the statistics
of the total cost can be calculated. The method has been further refined by other
researchers (e.g. [Sta05]).
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A different approach, dating back to the work of Iman and Conover [IC82]
suggests applying permutations on the sampled variates in order to approximately
achieve the target correlations. This distribution–free method was further explored
in several studies [CP04], [Cha06], [VN09], [Vor10] and enhanced with variance re-
duction techniques, such as Latin Hypercube Sampling (lhs). The problem of eval-
uating the uncertainty pertaining to the selected method for generating correlated
variates has also been investigated [Haa99], [KKV07], [DL09], [TSB11a], [TSB11b].

The following example showcases the above described algorithm:

example 4.3: Suppose three beta densities with the correlation matrix Σ of ex-
ample (4.2) and parameters given at Table (4.2). The Cholesky decomposition of
the correlation matrix is:

C =


1 0 0

0.8545902 0.5193030 0
0.6699183 −0.6985194 0.2515554


Next, a vector of length 3 of uncorrelated uniform variates is randomly drawn:

w = (0.5458081, 0.9797237, 0.5118450)

The vector z = (z1, z2, z3) = (Φ−1(w1),Φ−1(w2),Φ−1(w3)) of independent (uncorre-
lated) standard normal variates is calculated:

w = (0.1150773, 2.0480755, 0.0296953)

The vector z is tranformed to t = Cz:

t =


1 0 0

0.8545902 0.5193030 0
0.6699183 −0.6985194 0.2515554




0.1150773
2.0480755
0.0296953

 =


0.115077
1.161915
−1.346058


The vector u = Φ(t) is calculated:

u = Φ(0.115077, 1.161915,−1.346058) = (0.5458081, 0.8773651, 0.0891418)

Finally, the vector u is transformed by probabilistic inversion of the beta cdf’s:

(5.983221, 6.215859, 5.237399)
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Distribution L U α β

1 0 10 3.34 2.56
2 2 8 4.00 4.00
3 4 12 6.28 16.84

Table 4.2: The three beta densities of example (4.3), with their parameters.

4.9 Concluding remarks

From the exposed theoretical investigation, the following tools were adopted for the
case study in Chapters 5 and 6:

• The generalised beta distribution for the probabilistic representation of indi-
vidual risks.

• The Kendall’s tau for measuring the (not necessarily linear) association be-
tween pairs of risks.

• The gaussian copula for modelling the dependence structure of the entire set
of risks.
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Chapter 5

Case study: the Brenner Base
Tunnel

5.1 Introduction to the BBT project

The present section intends to provide a brief description of the Brenner Base Tunnel
(bbt), following the articles [Ber11a], [QBFM10] and books [Ber08], [Ber11b].

The Brenner Pass, one of the main passes of the Alps, is situated along the
border between Italy and Austria. It has been an important mountain passage since
the Roman era, and still is the most significant North–South connection in the eu.
Right after the Second World War, the possibility for a tunnel construction in the
area was conceived. The first technical feasibility study dates back to 1989. As of
2012, the tunnel is under construction upon design principles for a service lifetime
of 200 years.

The bbt is a flat trajectory railway tunnel running between Innsbruck, Austria
and Fortezza/Franzenfeste, Italy. Combined with an already existing underground
bypass in Innsbruck, it will be the world’s longest underground railway, reaching
a total length of about 64 km. The bbt is a critical part of the 2,200 km high–
speed railway axis Berlin – Munich – Verona – Bologna – Palermo. This route is
part of the Trans–European Networks eu program, which aims to contribute to the
development of European market by improving the economic and social cohesion
within the Community and the standardisation of transport system.

The tunnel is nearly horizontal with a longitudinal gradient 5.0h to 6.7h. It
consists of two parallel tubes, and is designed for a maximum speed of 250 km/h.
The crown height is 795 m above sea level, the net cross–section of the main tubes
about 43 m2, the minimum cross–section of the exploratory tunnel about 26 m2 and
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the clearance of the cross–cuts 300 m. An exploratory tunnel runs between the two
tubes and 12 m deeper than the main tunnel. This exploratory tunnel will be built
before the construction of the main tubes, primarily for exploring the rock mass;
moreover, it will serve as a drainage tunnel or as a service tunnel, if need be. The
whole project was authorised by the governments of Austria and Italy in 2009.

Figure 5.1: The two main tubes and the exploratory tube of bbt (source: The Brenner
Base Tunnel website [bbt]).

The preliminary project was developed in phase i, from 1999 to 2002. In phase
ii, from 2003 to 2008, technical and environmental compatibility planning was com-
pleted, and a large number of inspection bores were opened. From 2010 to 2011,
further financing for phase iii (building phase) was approved. With regard to the
current status (2012), the preparatory work and part of the exploratory tunnel and
the access tunnel have been completed. The beginning of construction works of the
main lots is scheduled for 2016 and the completion of the project is planned for 2025.

The tunnel is expected to reduce transportation times, to improve traffic flow
organisation and to safeguard the Alpine environment by reducing CO2 emissions.
The whole bbt project is characterised by an enormous technical complexity, requir-
ing interdisciplinary expertise, involvement of several parts and accomplishment of
a broad variety of tasks within a long–term procedure. The enterprise life–cycle
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Figure 5.2: Overview of the bbt project (source: The Brenner Base Tunnel website
[bbt]).

(conception, definition, execution) involves numerous operations from the early de-
sign phase until completion; apart from the technical requirements, decision–makers
have to deal with public procurement and managerial issues, economic challenges,
and governmental and European policies. These particular demanding conditions
call for advanced and refined processes for managing knowledge, resources, activities
and risks.

5.2 Sources of information and uncertainty

The costruction schedule prepared for the bbt project has the form of a workload
chart placed upon clearly visible time phases. The graph, shown in Figure (5.3),
also internally known as “Bergmeister Plan” [Alf12], covers the entire range of con-
struction activities. The diagram provides an excellent basis for risk analysis: every
activity can be directly pinpointed and associated with its time and location at-
tributes. From temporal, spatial and causal properties of the planned activities,
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most of the corresponding risks can be identified and placed on the diagram. This
plan also allows for classifying risks into groups, which play an important role for
risk management, as well as for the simulation process.

Figure 5.3: The Bergmeister plan (source: The Brenner Base Tunnel website [bbt]).

Since most of the risks are associated with planned activities, their assessment
is based on work path, time and location; this mostly applies to technical risks.
Information from the exploratory tunnels and other acquired geological data should
be managed and documented with particular care. The resulting reports and sum-
maries, apart from their technical significance with regard to construction, they can
provide a sound background for risk assessment. Non–technical risks can be derived
from fiscal analyses, legal reports, Value for Money and Cost–Benefit analyses, mar-
ket testing and project–specific knowledge. In the case of bbt, the corresponding
documents provide an invaluable source of information and deeper insight into the
project.

As discussed in the previous chapters, the present study is particulary interested
in the risk term R of the total cost, as expressed by Formula (2.2). The base cost B
encompasses the expenses for all realisation phases, planned activities, provisioned
material procurement, human work and market conditions. In particular, in tun-
nelling projects, B is derived from elementary costs, i.e. costs for excavation classes,
site equipment, lining, ventilation, etc. [PS06], [PSP07]. In the case of bbt, the
base cost has come as the result of a minute and exhaustive spreadsheet calculation.
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Figure 5.4: The Bergmeister plan – detail (source: The Brenner Base Tunnel website
[bbt]).

Due to significant variability and large epistemic uncertainties, the risk term R is
treated as a random variable. The pdf of this variable is constructed by individual
cost items and interdependencies. The uncertainty in the individual cost elements
is based upon expert beliefs, and modelled as described in Chapter 3. Apart from
subjective opinions based on real data, common sense can be used to deal with
large information gaps. However, it is worth noting that common sense could both
buttress and hinder knowledge discovery, and should be used with proper care.

Since uncertain quantities are not pre–formed numbers waiting to be elicited,
personal beliefs regarding these quantities are being formed within the elicitation
process; therefore they depend on the linguistic context [OBD+06]. Hence, the
elicitation process, which is formulated to address uncertainty can itself, to some
degree, generate additional uncertainty.

Finally, uncertainty is generated as the smaller parts are assembled and included
into an integrated computational model. For instance, the selection of the mul-
tivariate model plays an important role [KKV07]. Moreover, when the individual
(marginal) distributions are assessed separately from correlations, the transfer of
information from one margin to another is not possible [Seg06]. False assumptions
in the model can impair the validity of collected data, since conceptual errors are
the most devastating ones [BC00]. In any case, there is no such thing as perfect
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uncertainty modelling since uncertainty is, to a great extent, imperfect knowledge.
The need to distinguish among variability, imperfect information and conceptual
flaws highlights the importance of uncertainty classification, discussed in Section
(2.3).

5.3 Risk classification in BBT

A qualitative risk assessment usually aims to cover the following issues: (1) descrip-
tion of the risk, (2) project’s stage when it may occur, (3) elements that could be
affected, (4) influence factors, (5) dependencies with other risks, (6) likelihood, and
(7) impact of the risk [SMJ06, p. 39]. This was exactly what was followed in bbt:
the project’s risk analysis, as of 2012, is mainly based upon the work conducted
in 2008, documented by Alfreider [Alf09], and made internally available. The risks
were derived from workshops and interviews with bbt engineers and experts, as well
as with external consultants.

The following classification was applied in the risk analysis of bbt:

• Technical risks: risks related to subsoil conditions, construction and excava-
tion, execution of any type of engineering works, logistics, etc.

• Technical–administrative risks: contractual risks, planning variations, norma-
tive and legal modifications, risks related to administrative procedures, lack
of resources, etc.

• Authorisation risks: risks linked with unsuccessful agreements with interfered
bodies, delays and unforeseen issues in the authorisation procedures, additional
measures, difficulties in the process of expropriation, etc.

The above classification is very useful for risk management purposes, but only
indicative in the present context; also, it does not account for risk grouping, which
is described later in Section (5.6).

5.4 Assessment of individual cost elements

For every identified risk, the following attributes were determined:

1. The risk identity, a codename representing the risk within the analysis.

2. The group, to which the risk belongs.
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3. The baseline cost (evaluation basis), a concept discussed in Section (3.1)—
where applicable.

4. The level of confidence in assessment, defined in Section (3.3).

5. The probability of occurrence, if applicable.

6. The lower, most likely and upper risk impact, either as percentages of the
evaluation basis, or as absolute economic values. All these quantities hereafter
are measured in million EUR.

At this point, the following three assumptions should be clarified:

Minimum values

For all the 89 assessed risks, the minimum value was set to zero. This was due
to limited information at the assumed phase, and does not constitute a modelling
choice nor a computational constraint. The quantity referred to as “risk importance”
in [Alf09] was set as modal value, while the maximum value was adopted, as assessed
in the same analysis. These three quantities comprise the triad (L,M,U) used for
the construction of individual cost densities.

Probability of occurrence

At this early point, the concept of “probability of occurrence” was not considered.
Although some of the assessed risks have in fact the possibility of not appearing,
the corresponding likelihood was ignored. This assumption is apparently on the
safe side, and will be revised as soon as newer information appears. In general,
the assessment of probabilities can be problematic, especially in the presence of
large uncertainties and with untrained experts. Issues that frequently appear, for
instance, are (1) the “unpacking principle”, where more detailed descriptions of an
event increase its judged probability, and (2) the inflation of probability sums when
the number of sub–events comprising an event increases [OBD+06]. These caveats
call for a careful and methodological probability assessment process.

Confidence in assessment

The lack of confidence in assessment, the fourth parameter used to build probabil-
ity densities, was set to the high value of 0.42 for all risks. At the point of writing,
there were no particular assessments of this quantity; this is planned for future steps.
Nevertheless, a sensitivity analysis carried out and presented in Chapter 6 aims to
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investigate the influence of this parameter in the final output. With regard to the
elicitation process, several formats have been proposed. Hahn [Hah08] proposes the
simple formulation “How certain are you that the mode is truly M?”. If the ques-
tion is of the type “How confident are you about your/this assessment?” it focuses
on epistemic uncertainty, whereas a form ‘‘How certain/likely is your/this assess-
ment?” leans towards the aleatory side [OBD+06]. An interesting technique based
on the theory of “potential surprise”1 proposes that the probability of an event is
inversely related to the surprise that one would experience at the event’s occurrence
[Sha49]. When the aforesaid probability is the second–order probability describing
the confidence in assessment, this technique can also serve for the assessment of
confidence.

Table (5.1) summarises the collected data to be utilised in the further computa-
tion. T stands for technical, V for technical–administrative, and A for authorisation
risks. The numbering of risks (labelled as “name”) is adopted from the bbt official
documentation [Alf09].

name minimum mode maximum c

T–1 0 1.5 3.0 0.42
T–2 0 1.0 5.0 0.42
T–3 0 1.2 2.0 0.42
T–4 0 3.0 5.0 0.42
T–5 0 4.0 20.0 0.42
T–6 0 0.4 2.0 0.42
T–7 0 0.8 4.0 0.42
T–56 0 5.0 10.0 0.42
T–57 0 10.0 20.0 0.42
T–8 0 28.0 40.0 0.42
T–9 0 35.0 50.0 0.42
T–10 0 24.0 30.0 0.42
T–11 0 40.0 50.0 0.42
T–12 0 0.8 1.0 0.42
T–13 0 1.6 2.0 0.42
T–14 0 0.4 1.0 0.42

continued on next page...
1Found also as “principle of least astonishment” in other scientific fields [CMD02].
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Table 5.1 – ...continued from previous page
name minimum mode maximum c

T–53 0 0.8 2.0 0.42
T–15 0 20.0 50.0 0.42
T–51 0 2.9 7.3 0.42
T–52 0 4.3 10.7 0.42
T–58 0 16.0 20.0 0.42
T–59 0 32.0 40.0 0.42
T–16 0 21.0 30.0 0.42
T–17 0 14.0 20.0 0.42
T–18 0 9.0 30.0 0.42
T–19c -40.0 -8.0 0 0.42
T–20 0 24.0 30.0 0.42
T–21 0 32.0 40.0 0.42
T–60 0 1.5 5.0 0.42
T–61 0 8.0 20.0 0.42
T–22 0 3.0 10.0 0.42
T–23 0 6.0 20.0 0.42
T–24 0 6.0 20.0 0.42
T–25c -49.0 -4.9 0 0.42
T–26 0 24.0 80.0 0.42
T–27 0 0.3 1.0 0.42
T–28 0 2.5 5.0 0.42
T–29 0 3.0 10.0 0.42
T–30 0 4.0 10.0 0.42
T–31 0 0.6 2.0 0.42
T–32 0 3.0 10.0 0.42
T–33c -6.1 -1.2 0 0.42
T–54 0 3.7 12.3 0.42
T–34 0 0.6 2.0 0.42
T–35 0 1.5 5.0 0.42
T–36 0 3.0 10.0 0.42
T–37 0 1.5 5.0 0.42
T–38 0 3.0 10.0 0.42
T–39 0 8.0 20.0 0.42
T–55 0 16.0 40.0 0.42

continued on next page...
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Table 5.1 – ...continued from previous page
name minimum mode maximum c

T–40 0 9.0 30.0 0.42
T–41 0 4.9 49.0 0.42
T–42 0 1.8 18.4 0.42
T–43 0 4.2 42.4 0.42
T–44 0 7.2 18.0 0.42
T–45c -49.0 -4.9 0 0.42
T–46c -15.2 -7.6 0 0.42
T–47 0 15.5 51.8 0.42
T–48 0 3.3 11.0 0.42
T–50 0 9.6 24.0 0.42
V–1 0 0.0 0.0 NA
V–2 0 28.1 56.3 0.42
V–3 0 0.6 5.7 0.42
V–4 0 0.6 1.2 0.42
V–6 0 7.5 37.7 0.42
V–7 0 8.0 16.0 0.42
V–8 0 3.2 10.5 0.42
V–9 0 27.0 54.0 0.42
V–10c -37.7 -7.5 0 0.42
V–11 0 6.4 16.0 0.42
V–12 0 15.1 37.7 0.42
V–13 0 3.2 8.0 0.42
V–14 0 3.8 37.7 0.42
V–15 0 8.0 40.0 0.42
V–16c -37.7 -4.0 0 0.42
V–17c -8.0 -2.0 0 0.42
V–18 0 0.0 0.0 NA
V–19 0 0.3 1.7 0.42
V–20 0 1.0 5.1 0.42
V–21 0 0.3 1.7 0.42
V–28 0 15.1 37.7 0.42
V–29 0 4.4 11.0 0.42
V–30 0 5.4 27.0 0.42
V–31 0 6.4 12.8 0.42

continued on next page...
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Table 5.1 – ...continued from previous page
name minimum mode maximum c

A–1a 0 1.7 8.5 0.42
A–1b 0 6.6 33.0 0.42
A–2 0 10.0 20.0 0.42
A–3 0 20.0 100.0 0.42
A–4 0 8.0 20.0 0.42

Table 5.1: List of the risks and opportunities with assessed minimum, mode, maximum
and lack of confidence values.

In the following section, the two most widely used methods to present a collection
of risks, along with a new proposed one, are exposed.

5.5 Risks schemes and presentation

After the identification, assessment and quantification process, risks should be vi-
sually represented to provide a risk overview. This needs to be done in a clear and
comprehensive manner, in order to deliver the basic ideas quickly. Moreover, the
picture has to be representative, so that it reflects the true situation.

The first task of the analyst is to define the risk importance. As discussed in
Section (2.1), risks are evaluated by means of Formula (2.1)2. This methodology
applies to risks, which are expressed as single–point assessments, and possess a
likelihood of occurrence. In the preceding section, the role of the probability concept
in the current state of the analysis was explained. Moreover, in Section (3.1) it was
described how the individual assessments go beyond single–point quantities. Still, it
is possible to follow the techniques built upon the “traditional” treatment of risks,
according to Formula (2.1). In particular, when a risk is assessed as E = P · U ,
three facts regarding the risk are disclosed:

1. The average/expected risk value is E.

2. The maximum value of the risk is U .

3. The maximum value occurs with probability P and zero value occurs with
probability 1− P .

2Another way to compare risks is by their “risk factor”, defined as RF = P +C − P ·C where
P the probability and C the risk consequence, scaled in (0, 1) [CGRW04].
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When the risk is assessed as a probability beta density with parameters L, M ,
U , c, similar information is at hand:

1. The modal risk value is M .

2. The maximum value of the risk is U .

3. Any desired probabilities are expressed by the risk’s pdf.

In the risk analysis conducted for bbt [Alf09], the “probability” of a risk was
defined as the ratio E/U . It can be shown that this assumption is indeed consistent
with the transition from single–point assessments to probability densities. Firstly, it
is noted that the quantity P/(1−P ) expresses the likelihood of occurrence, devided
by the likelihood of non–occurrence. Then:

P

1− P =


0 , P → 0
1 , P = 1/2
∞ , P → 1

The three cases P → 0, P = 1/2, P → 1 express the situations of positive
(right–hand) skewness, symmetry, and negative (left–hand) skewness. The same
conditions can be expressed in terms of the pdf’s parameters as follows:

M − L
U −M

=


0 ,M → L

1 ,M = (L+ U)/2
∞ ,M → U

By setting:

P

1− P = M − L
U −M

and solving for P , it yields that:

P = M − L
U − L

Finally, for L = 0 (which is the case for the current assessments):

P = M

U
≈ E

U

The above approximation relies on the assumption that the modal and the aver-
age values are acceptably close. The absolute difference between these two quantites,
by means of Equations (3.10) and (3.11) is:
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|E −M | = (U − L)
∣∣∣∣∣ α

α + β
− α− 1
α + β − 2

∣∣∣∣∣ = (U − L)|β − α|
(α + β)(α + β − 2)

Using Formula (3.22) to eliminate β, it yields that:

|E −M | = (U − L)|1− 2m|
(α− 1)/m+ 2

Substituting α by the expression of Formula (3.17) and noting that (U−L)|1−2m| =
|U + L− 2M |, it is derived that:

|E −M | = |U + L− 2M |
(1− 3c2) + (1− c2 +

√
D)/m

By Inequality (3.26) it follows that:

|E −M | ≤ |U + L− 2M |
2

The deviation between the “pseudo–probabilities” P ∗ = E/U and P = M/U is:

|P ∗ − P | ≤
∣∣∣∣EU − M

U

∣∣∣∣ ≤ |U + L− 2M |
2U < 0.50

The above formula produces rather conservative bounds. For the 89 assessed
risks, in 70 cases the real error |P ∗−P | is lower than 10%, while the maximum error is
37% in some very skewed assessments (i.e. T–25c). It is concluded that the choice of
defining the ratio between the average and the downside risk value, is justified, given
that the assumption does not serve computational but only visualisation needs. Also,
the emerging large deviations highlight the importance of distinguishing between the
most likely and the average cost during the assessment process.

The remainder section aims to provide an overview of the common methods used
to depict the whole set of risks, so as to give a quick picture of the risk assessment
to the analysts [Ker09, p. 744], [PS06]. The modal and average risk value are both
denoted by M.

The Expected impact – Probability graph

This graph shows the expected impact of the risks and their probability of occurrence
(or M/U) as x–y coordinates (5.5).

Suppose a risk at the point Q = (M,P ). When moving to the right on the
horizontal line y = P one finds risks with the same probability of occurrence P ′ = P ,
and greater modal value M ′ > M . If Q′ = (M ′, P ′) is one such new point, then its
maximum impact is U ′ = M ′/P ′ > M/P = U . Therefore, the risk Q′ = (M ′, P ′)
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Figure 5.5: The Expected impact – Probability graph.

is more unfavourable (as discussed in Section (4.6)). Suppose now a risk Q′′ =
(M ′′, P ′′) higher than Q = (M,P ) on the vertical line x = M . Then the two
risks Q,Q′′ possess the same expected impact3 M ′′ = M , but P ′′ > P . Therefore
U ′′ = M ′′/P ′′ < M/P = U , so the risk Q′′ = (M ′′, P ′′) is less unfavourable.
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Figure 5.6: The Expected impact – Probability graph divided into areas, according to
the risk’s severity (maximum impact).

This scheme is easy to produce, yet it may give a misleading picture of the risk
importance, the same way that expected value decision–making can be misleading
for extreme rare events [Ave11]. Moreover, it offers a way to directly compare any
two risks in terms of expected impact (x–coordinate), but not in terms of maximum
impact.

3With due reservation for small deviations between modal and average values, as explained
earlier which, in any case, do not affect the essence of the argument.
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The Maximum impact – Probability graph

This graph shows the maximum possible impact U (which is always larger than the
expected, and expressed in the same monetary unit) of the risks and their probability
of occurrence (or M/U) as x–y coordinates (Figure (5.7)):

risksopportunities

Figure 5.7: The Maximum impact – Probability graph divided into areas, according to
the risk’s expected impact.

Suppose a risk at the point Q = (U, P ). Then x = U and y = P , therefore
y · x = P · U = M . Therefore, all events with equal expected value M lie on the
same hyperbola y = M/x. When moving to the right of one such hyperbola, one
meets risks with greater maximum value, hence more unfavourable. This graph
makes it easier to directly compare any two risks in terms of maximum impact
(x–coordinate) but less obvious in terms of expected impact.

The relation between maximum impact and probability can also be represented
in logarithmic coordinates [Tod06, p. 61]. The basic formula M = P · U can be
written also as:

logM = logP + logU

Therefore, equivalent risks belong on the same straight line. The latter expression
carries the limitations that exist in formula M = P · U ; linearity in the log space
can be affected e.g. by risk aversion factors.

The Inverse Probability graph — Maximum impact

This graph shows the inverse probability (rarity) in the x–axis and the maximum
impact in the y–axis (Figure (5.8)).
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Figure 5.8: The Inverse Probability – Maximum impact graph divided into 6 areas.
Areas I, II and III denote risks with increasing severity, while the areas labelled as “rare”,
“extreme” and “extreme rare” are self–explaining.

Suppose a risk at the point Q = (1/P, U). Then x = 1/P and y = U , therefore
y/x = P · U = M . Therefore, all events with equal expected value M lie on the
same straight line y = M ·x. When moving on one such line to the right, one meets
risks with greater maximum value, hence more unfavourable.

This graph makes it even easier to directly compare any two risks in terms of
maximum impact (y–coordinate) as well as in terms of expected impact (slope of the
straight line drown from the origin). Furthermore, the analyst can clearly distinguish
among extreme, rare, and extreme rare events, by defining project–specific relevant
bounds. For infrastructure projects based on scientifically and practically obtained
design facts, only the areas i, ii, iii can be considered. The field of extreme rare
event modelling is still at its infancy.

5.6 Risk grouping and dependence

Even in case the groups are not fully independent, it is be helpful to eliminate, at
least, any functional relation among risks of distinct groups. The risks belonging
to the same class have some common attributes; such attributes may be a common
stimulus, underlying influence mechanism, source, expected time of occurrence, or
common spatial properties.

As discussed in Chapter 4, there are three major issues regarding dependence; the
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analysts needs to assess, efficiently measure, and integrate dependence in the com-
putational model. The first step in order to model dependence is the classification
of risks into (mostly) independent groups. This can significantly reduce the amount
of required calculations, e.g. reduce the dimension of the correlation matrix. Each
group includes risks associated with tasks which, in turn, form parallel and mostly
independent activity lines. In particular, risks identified within a certain workflow
planned to take place in the same location and time phase are likely to possess a
common cause, or even a direct influence on each other. For instance, adverse ge-
ological conditions will probably affect the advancement of two vicinal excavations,
whereas a time delay within a sequence may affect more than one activity.

Risk dependencies can be identified by either diagnostic (“Why did risk Rj oc-
cur?”) or predictive (“What happens if risk Rj occurs?”) inference. The starting
point should be at the risks that appear earlier in time. Usually, this questions gen-
erate a discussion which can lead, not only to the determination of dependencies,
but also to the disclosure of new risks. For instance, a risk can “stimulate” the
occurrence of another risk, otherwise considered dormant, or highly unlikely. When
a risk is believed to have an effect, impact, or influence on another, then a possible
dependency is identified. An investigation on common risk backround, mechanism,
environment, or underlying process between two risks can reveal connections and
associations. Dependencies can also be detected through common sense, or past
experience.

The quantification process has also seen interesting developments. The following
elicitation technique, due to vad Dorp and Duffey [vDD99], offers a methodology
to quantify dependence: “Suppose you were to know the exact value of the risk
factor/cause Rj, what percentage of your original uncertainty in the assessment of
the risk symptom Rk is explained?”. Then, 0% indicates independence and 100%
perfect dependence.

Several techniques have also been proposed for subjectively assessing correlation
values. The direct assessment method of simply asking for the correlation value
has been found to be the best one [Rei00]. Next to that, various values have been
proposed to express weak, moderate and strong correlation [BS99], [Ran00].

A detailed project plan, showing the risks in their proper location and time
can provide a sound basis for grouping. Typically, risks are depicted as nodes and
dependencies as edges or directed arcs. From the bbt risk assessment, a preliminary
analysis resulted to 7 main groups, presented in Table (5.2).

The assessed dependencies for the groups “Arhental”, “Aica”, “Ampass”, “Inns-
bruck” and “Mules” are depicted respectively in Figures (5.9), (5.10), (5.12), (5.13).
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Risk group Number of risks
Ampass 3
Innsbruck 2
Ahrental 7
Wolf 19
Mules 10
Aica 3

Fortezza 1
Overall risks 15
Ungrouped 29

sum 89

Table 5.2: The 7 identified risk groups in bbt.

The group “Fortezza” contains a single element, while the visualisation of “Wolf” is
omitted, as having a quite complicated dependence structure.

Figure 5.9: Dependencies within the Arhental group.
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Figure 5.10: Dependencies within the Aica group.

Figure 5.11: Dependencies within the Ampass group.

Figure 5.12: Dependencies within the Innsbruck group.
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Figure 5.13: Dependencies within the Mules group.
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Chapter 6

Application on the BBT project

6.1 Input data

The input marginal distributions are the beta densities, as presented in Section
(5.4). The risk groups were given in Section (5.6), as well as the dependencies
within groups (with one exception) in the form of graphs. In the present section
the correlation matrices for each group are given; these matrices contain the rank
correlations, as initially elicited. The interpretation of these values was described in
Table (4.1). What follows directly is the tranformation of these matrices into usable
correlation matrices in order to obtain model inputs, as described in Sections (4.7)
and (4.8).

1. Ampass group

Risks: T1,T27,T34.

Σ1 =


T1 T27

T1 1 0.25
T27 1


2. Innsbruck group

Risks: T2,T46c (independent).

3. Ahrental group

Risks: T3,T4,T5,T22,T28,T29,T35.

104



Σ3 =



T3 T4 T5 T22 T28 T29

T3 1 0.75 0.75 0.25 0.25 0.25
T4 1 0.75 0 0 0
T5 1 0 0 0
T22 1 0 0
T28 1 0.75
T29 1


4. Wolf group

Risks: T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T23,T30,T36,T51,T52,T56,

T57,T58.

Σ4 =



T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T23 T30 T36 T51 T52 T56 T57 T58

T6 1 0.75 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0
T7 1 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0
T8 1 0.75 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0
T9 1 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0
T10 1 0.75 0 0 0 0 0.5 0.5 0 0 0 0 0 0
T11 1 0 0 0 0 0.5 0.5 0 0 0 0 0 0
T12 1 0.75 0 0 0.5 0.5 0 0 0 0 0 0
T13 1 0 0 0.5 0.5 0 0 0 0 0 0
T14 1 0.75 0.5 0.5 0 0 0 0 0 0
T15 1 0.5 0.5 0 0 0 0 0 0
T23 1 0 0 0.5 0.5 0.5 0.5 0
T30 1 0.5 0.5 0.5 0.5 0.5 0
T36 1 0 0 0 0 0
T51 1 0.75 0 0 0
T52 1 0 0 0
T56 1 0.75 0
T57 1 0
T58 1


5. Mules group

T16,T17,T18,T20,T21,T24,T31,T19c,T37,T53,T59

Σ5 =



T16 T17 T18 T20 T21 T24 T31

T16 1 0.75 0.50 0 0 0.25 0.25
T17 1 0.50 0 0 0.25 0.25
T18 1 0 0 0.25 0.25
T20 1 0.75 0.50 0.25
T21 1 0.50 0.25
T24 1 0.25
T31 1


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6. Aica group

Risks: T32,T38,T60.

Σ2 =


T32 T60

T32 1 0.25
T60 1


7. Fortezza group

Risks: T61.

8. Overall and ungrouped

Risks: T2,T53,T59,T19c,T61,T25c,T26,T33c,T54,T34,T35,T37,T38,T39,T55,T40,

T41,T42,T43,T44,T45c,T46c,T47,T48,T50,V1,V2,V3,V4,V6,V7,V8,V9,

V10c,V11,V12,V13,V14,V15,V16c,V17c,V18,V19,V20,V21,V28,V29,V30,V31,

A1a,A1b,A2,A3,A4

6.2 Computational setup

In the following, the steps for processing the given information is outlined.

Step 1

The data for individual cost elements, summarised at Table (5.1) are preprocessed.
The last two columns containing the α and β parameters of the beta densities, are
calculated according to Formulas (3.17) and (3.18).

Name minimum mode maximum confidence
corrected
confidence

α β

T–1 0 1.5 3.0 0.42 0.42 2.3 2.3
T–2 0 1.0 5.0 0.42 0.50 2.8 8.0
T–3 0 1.2 2.0 0.42 0.43 1.9 1.6
T–4 0 3.0 5.0 0.42 0.43 1.9 1.6

continued on next page...
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Table 6.1 – ...continued from previous page

Name minimum mode maximum confidence
corrected
confidence

α β

T–5 0 4.0 20.0 0.42 0.50 2.8 8.0
T–6 0 0.4 2.0 0.42 0.50 2.8 8.0
T–7 0 0.8 4.0 0.42 0.50 2.8 8.0
T–56 0 5.0 10.0 0.42 0.42 2.3 2.3
T–57 0 10.0 20.0 0.42 0.42 2.3 2.3
T–8 0 28.0 40.0 0.42 0.46 1.6 1.2
T–9 0 35.0 50.0 0.42 0.46 1.6 1.2
T–10 0 24.0 30.0 0.42 0.50 1.3 1.1
T–11 0 40.0 50.0 0.42 0.50 1.3 1.1
T–12 0 0.8 1.0 0.42 0.50 1.3 1.1
T–13 0 1.6 2.0 0.42 0.50 1.3 1.1
T–14 0 0.4 1.0 0.42 0.43 2.6 3.5
T–53 0 0.8 2.0 0.42 0.43 2.6 3.5
T–15 0 20.0 50.0 0.42 0.43 2.6 3.5
T–51 0 2.9 7.3 0.42 0.43 2.6 3.5
T–52 0 4.3 10.7 0.42 0.43 2.6 3.4
T–58 0 16.0 20.0 0.42 0.50 1.3 1.1
T–59 0 32.0 40.0 0.42 0.50 1.3 1.1
T–16 0 21.0 30.0 0.42 0.46 1.6 1.2
T–17 0 14.0 20.0 0.42 0.46 1.6 1.2
T–18 0 9.0 30.0 0.42 0.46 2.7 5.0
T–19c -40.0 -8.0 0 0.42 0.50 1.3 1.1
T–20 0 24.0 30.0 0.42 0.50 1.3 1.1
T–21 0 32.0 40.0 0.42 0.50 1.3 1.1
T–60 0 1.5 5.0 0.42 0.46 2.7 5.0
T–61 0 8.0 20.0 0.42 0.43 2.6 3.5
T–22 0 3.0 10.0 0.42 0.46 2.7 5.0
T–23 0 6.0 20.0 0.42 0.46 2.7 5.0
T–24 0 6.0 20.0 0.42 0.46 2.7 5.0
T–25c -49.0 -4.9 0 0.42 0.54 1.1 1.0+

T–26 0 24.0 80.0 0.42 0.46 2.7 5.0
T–27 0 0.3 1.0 0.42 0.46 2.7 5.0
T–28 0 2.5 5.0 0.42 0.42 2.3 2.3

continued on next page...
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Table 6.1 – ...continued from previous page

Name minimum mode maximum confidence
corrected
confidence

α β

T–29 0 3.0 10.0 0.42 0.46 2.7 5.0
T–30 0 4.0 10.0 0.42 0.43 2.6 3.5
T–31 0 0.6 2.0 0.42 0.46 2.7 5.0
T–32 0 3.0 10.0 0.42 0.46 2.7 5.0
T–33c -6.1 -1.2 0 0.42 0.50 1.3 1.1
T–54 0 3.7 12.3 0.42 0.46 2.7 5.0
T–34 0 0.6 2.0 0.42 0.46 2.7 5.0
T–35 0 1.5 5.0 0.42 0.46 2.7 5.0
T–36 0 3.0 10.0 0.42 0.46 2.7 5.0
T–37 0 1.5 5.0 0.42 0.46 2.7 5.0
T–38 0 3.0 10.0 0.42 0.46 2.7 5.0
T–39 0 8.0 20.0 0.42 0.43 2.6 3.5
T–55 0 16.0 40.0 0.42 0.43 2.6 3.5
T–40 0 9.0 30.0 0.42 0.46 2.7 5.0
T–41 0 4.9 49.0 0.42 0.54 2.8 17.5
T–42 0 1.8 18.4 0.42 0.54 2.8 17.9
T–43 0 4.2 42.4 0.42 0.54 2.8 17.6
T–44 0 7.2 18.0 0.42 0.43 2.6 3.5
T–45c -49.0 -4.9 0 0.42 0.54 1.1 1.0+

T–46c -15.2 -7.6 0 0.42 0.42 2.3 2.3
T–47 0 15.5 51.8 0.42 0.46 2.7 5.1
T–48 0 3.3 11.0 0.42 0.46 2.7 5.0
T–50 0 9.6 24.0 0.42 0.43 2.6 3.5
V–1 0 0.0 0.0 NA NA NA NA
V–2 0 28.1 56.3 0.42 0.42 2.3 2.3
V–3 0 0.6 5.7 0.42 0.54 2.8 16.5
V–4 0 0.6 1.2 0.42 0.42 2.3 2.3
V–6 0 7.5 37.7 0.42 0.50 2.8 8.1
V–7 0 8.0 16.0 0.42 0.42 2.3 2.3
V–8 0 3.2 10.5 0.42 0.46 2.7 5.0
V–9 0 27.0 54.0 0.42 0.42 2.3 2.3
V–10c -37.7 -7.5 0 0.42 0.50 1.3 1.1
V–11 0 6.4 16.0 0.42 0.43 2.6 3.5

continued on next page...
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Table 6.1 – ...continued from previous page

Name minimum mode maximum confidence
corrected
confidence

α β

V–12 0 15.1 37.7 0.42 0.43 2.6 3.4
V–13 0 3.2 8.0 0.42 0.43 2.6 3.5
V–14 0 3.8 37.7 0.42 0.54 2.8 17.3
V–15 0 8.0 40.0 0.42 0.50 2.8 8.0
V–16c -37.7 -4.0 0 0.42 0.54 1.1 1.0+

V–17c -8.0 -2.0 0 0.42 0.48 1.4 1.1
V–18 0 0.0 0.0 NA NA NA NA
V–19 0 0.3 1.7 0.42 0.51 2.8 9.3
V–20 0 1.0 5.1 0.42 0.50 2.8 8.2
V–21 0 0.3 1.7 0.42 0.51 2.8 9.3
V–28 0 15.1 37.7 0.42 0.43 2.6 3.4
V–29 0 4.4 11.0 0.42 0.43 2.6 3.5
V–30 0 5.4 27.0 0.42 0.50 2.8 8.0
V–31 0 6.4 12.8 0.42 0.42 2.3 2.3
A–1a 0 1.7 8.5 0.42 0.50 2.8 8.0
A–1b 0 6.6 33.0 0.42 0.50 2.8 8.0
A–2 0 10.0 20.0 0.42 0.42 2.3 2.3
A–3 0 20.0 100.0 0.42 0.50 2.8 8.0
A–4 0 8.0 20.0 0.42 0.43 2.6 3.5

Table 6.1: List of the risks and opportunities with assessed minimum, mode, maximum
and confidence values. The last two columns include the calculated α and β parameters
of the beta densities. The parameters denoted as 1.0+ are greater than 1 but rounded to
the first digit in the table.

Step 2

The mean (average) values for the individual cost elements, as well as the proba-
bilities P and P ∗ (as described in Section (5.5)) are calculated. The generated risk
matrices are presented at the end of the section in Figures (6.15) to (6.20). The
matrices are given for both the cases where E or M is assumed.
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Step 3

The assessed correlation matrices given in Section (6.1) are trasnformed to feasi-
ble ones, according to the process described in Section (4.7) and demonstrated in
example (4.2). Firstly, the matrix entries are tranformed from rank into linear
correlations, according to Formula (4.18). The derived matrices are tranformed us-
ing the spectral decomposition technique into feasible (positive–definite) correlation
matrices, to be used as simulation inputs.

Step 4

The Cholesky decomposition of input matrices is performed. A large number of
variates is simulated from the correlated beta densities, according to the gaussian
copula procedure described in Section (4.8) and demonstrated in example (4.3).

Step 5

The results are processed to yield summary statistics for the total cost.

6.3 Total cost estimation

The procedure described in the preceding section yields the following results:

• Sum of modal values: 638.0

• Sum of maximum values: 1666.2

It is clear that the maximum value is extremely conservative as a design value.

Independence case

For comparison, the total cost probability density is also calculated for the case
where all risks are assumed independent. Under this assumption, the values are:

• Mean (average) value: 540.0

• Standard deviation: 54.2

• 95% Quantile: 629.3

• Expected Shortfall: 651.0
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Dependence case

The total cost density is calculated for the general case where correlations are con-
sidered:

• Mean (average) value: 540.0

• Standard deviation: 65.5

• 95% Quantile: 646.8

• Expected Shortfall: 673.6

The latter result (673.6) is the final proposed figure. This value is not signifi-
cantly larger than the mean (540.0) or the sum of modal values (638.0). This can
be explained mainly by three reasons:

1. The minimum values were all set to zero, since no assessment was at hand.
Unrealistically low impacts tend to pull the estimates to lower levels.

2. Many of the input distributions are highly skewed, due to large epistemic
uncertainty. Hence, a large area near the tail is assigned to low probabilities.

3. A large number of dependencies remains unassessed in the current preliminary
phase.

The graphs (6.1), (6.2) show the pdf’s for the two simulated cases (independence
and dependence).
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Figure 6.1: Probability density of the total risk cost for the independence case.

Figure 6.2: Probability density of the total risk cost for the dependence case.
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6.4 Sensitivity analysis

The influence of epistemic uncertainty, which is described by the coefficient c (lack
of confidence on the assessment) is shown in the following graphs. Figures (6.3) and
(6.4) depict the probability density for the three levels of c (0.25, 0.33, 0.42) in the
independence and the dependence case, respectively. Figures (6.5) to (6.12) show
how the mean value, the 95% quantile and the expected shortfall of the estimated
total cost density are influenced as the parameter c covers the feasible range. In
particular, Figures (6.7), (6.8), (6.11) and (6.12) show that the dispersion of the
total cost density incereases in a linear manner with the parameter c, justifying the
selection of this factor.

Figures (6.5), (6.6), (6.9) and (6.10) show that when the lack of confidence is not
corrected, the 95% and the expected shortfall remain constant within the interval
[0.25, 0.42] while the mean value is dropping. This behaviour is not realistic. On
the contrary, when the lack of confidence is corrected as explained in Section (3.7),
the 95% and the expected shortfall increase within the interval [0.25, 0.42] while the
mean value remains constant, as desired. Moreover, Figures (6.6) and (6.10) show
that the selection of the interval [0.25, 0.42] is justified, since the three aformentioned
metrics have a consistent behaviour within this range.

Figures (6.13) and (6.14) depict the probability density of the total risk cost for
the independence case, for both corrected and uncorrected lack of confidence, when
the latter value is fixed at c = 0.42. The corrected case appears to be slightly less
conservative, however when the expected shortfall is calculated, the results show
unnoticeable deviation.

A sensitivity analysis on the uncertainty of the selected dependence values is
not carried out since, as it appears in the results given in the previous section, the
inclusion of dependence does not show a large influence at the current state of the
analysis. However, if the assessment of dependence were complete, this investigation
should be part of the sensitivity analysis.
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Figure 6.3: Probability density of the total risk cost for the independence case, and the
three levels for the lack of confidence.

Figure 6.4: Probability density of the total risk cost for the dependence case, and the
three levels for the lack of confidence.
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Figure 6.5: Influence of the selection of parameter c on the three metrics: mean value,
95% quantile and expected shortfall (independence case). Confidence was not corrected.

Figure 6.6: Influence of the selection of parameter c on the three metrics: mean value,
95% quantile and expected shortfall (independence case). Confidence was corrected as
explained in Section (3.7).

115



Figure 6.7: Influence of the selection of parameter c on the standard deviation (inde-
pendence case). Confidence was not corrected.

Figure 6.8: Influence of the selection of parameter c on the standard deviation (inde-
pendence case). Confidence was corrected as explained in Section (3.7).
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Figure 6.9: Influence of the selection of parameter c on the three metrics: mean value,
95% quantile and expected shortfall (dependence case). Confidence was not corrected.

Figure 6.10: Influence of the selection of parameter c on the three metrics: mean value,
95% quantile and expected shortfall (dependence case). Confidence was corrected as ex-
plained in Section (3.7).
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Figure 6.11: Influence of the selection of parameter c on the standard deviation (depen-
dence case). Confidence was not corrected.

Figure 6.12: Influence of the selection of parameter c on the standard deviation (depen-
dence case). Confidence was corrected as explained in Section (3.7).
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Figure 6.13: Probability density of the total risk cost for the independence case, for both
corrected and uncorrected lack of confidence (fixed at c = 0.42).

Figure 6.14: Probability density of the total risk cost for the dependence case, for both
corrected and uncorrected lack of confidence (fixed at c = 0.42).
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6.5 Risk matrices

Figures (6.15) to (6.20) depict the assessed risks, using the three schemes described
in Section (5.5). The three approaches provide the same visual information, but in
different ways.

Figure 6.15: Expected Impact – Probability graph.

Figure 6.16: Most likely Impact – Probability graph.
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Figure 6.17: Maximum Impact – Probability graph. The probabilities are calculated as
U/E.

Figure 6.18: Maximum Impact – Probability graph. The probabilities are calculated as
U/M .
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Figure 6.19: Inverse Probability – Maximum Impact graph. The probabilities are cal-
culated as U/E.

Figure 6.20: Inverse Probability – Maximum Impact graph. The probabilities are cal-
culated as U/M .
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Chapter 7

Synopsis

7.1 Overview

Complex, unique and demanding tunnelling projects depend on largely unknown
geological conditions [PS06], and on political and managerial decisions made within
a volatile economic environment. Moreover, the measures used to evaluate the
performance and success of such projects relate to several different factors, such as
quality, safety, functionality, duration, and cost [OO10]. This enormous complexity
of mega–projects often results to interdependent, overlapping, or even conflicting
tasks and processes. For instance, project schedules dictate resource requirements,
while constraints on resources dictate project schedules [NS08, p. 289]. Mutual
influence exists likewise between schedules and risks. Therefore, there is a need
to formalise risk assessment processes, which naturally leads to risk quantification
techniques.

Several methods have been developed for performing quantitative risk analy-
sis in construction [CYC09]. In the present work, the probabilistic cost analysis
(pca) approach was taken for the estimation of total construction cost owing to
risks. This methodology can offer significant advantages over traditional empirical
approaches, which often yield severe cost underestimations in large infrastructure
projects [FHB02]. Producing estimates by scaling an analogy project [NS08, p. 300]
does not usually suffice, due to the uniqueness of the undertaking and the singularity
of conditions. Still, there is no consensus on whether this excesses can be attributed
to poor engineering and flawed risk management, or to unforeseen events of large
scale.

Cost underestimations cannot be justified only upon the natural inability to
foresee and capture every possible cost element. Once the limitations in the pre-

123



dictive process be acknowledged, realistic yet safer economic values, larger than the
expected one, can be estimated. The limitations can be indeed translated into and
treated as uncertainties within consistent computational models. This is the main
purpose of the present research.

The proposed method comprises three steps. The first step, discussed in Chap-
ter 3, is the representation of identified risks as individual cost elements, by util-
ising quantitative and qualitative information from expert judgements. Since the
marginal distributions alone can give no information about the joint behaviour, de-
pendencies among risks need also be considered. This is the subject of Chapter 4,
where dependence is handled by means of Kendall’s concordance coefficients. The
significant effect of dependence on cost estimates, postulated by many sereaschers,
is indeed shown in Chapter 6. The third step in the proposed approach is the
integration of cost elements and correlations into a computational framework.

7.2 Uncertainties in the studied process

There are different types of uncertainties interfering in the described probabilistic
setup. Uncertainties need to not only be measured but also be propagated through
the process. Firstly, there are variable risks for which a quantitative assessment in
terms of a single figure is largely arbitrary, but variability can be estimated (known
unknowns). Moreover, there may be risks that are not identified (unknown un-
knowns). For the identified risks, the assessment of parameters (minimum, most
likely, maximum value) is based on expert opinions, inavoidably hindered by igno-
rance and distorted by bias.

The reliability of information sources is related to uncertainty; an input value
may ignore existing, or induce non–existing information. When elicited, subjective
(judgemental, personal, or knowledge–based) probabilities are prone to inconsisten-
cies, due to arbitrariness in judgement quantifications. Although probabilities can
be intuitively attributed to even highly uncertain events [OO05], this alone does
not provide to these assessed data any real predictive value. Finally, the veracity
of an assessed probability of one–off events cannot be determined from subsequent
observations [OBD+06].

In general, increased knowledge does not directly or necessarily lead to assess-
ment improvements [AP98]. Data in historical records can become obsolete in the
light of newer technologies and materials [Yan05]. Likewise, experience from similar
undertakings can prove insufficient in terms of predictive potetial. For instance,
technical problems in tunnelling trivially addressed at shallow depth, can prove
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disastrous at significal depth depending on hydrogeological conditions [Wag12].
Uncertainty models can yield huge deviations from reality. Limitations in the

analyst’s knowledge and deliberate introduced simplifications can affect the calcu-
lated quantities [NA03]. Oversimplifications in pca (use of triangular distributions,
omission of dependencies, no providence for confidence levels) are frequent [KAE04].
On the downside, adherence to strict mathematical methods (such as the maximum
entropy principle) for translating assessments into model inputs, can turn out to be
problematic [dRDT08], especially under large epistemic uncertainty. Next to that,
the assessor may “over–determine” the model by assessing more aspects than are
mathematically required [Dic80].

Multivariate risk assessment often suffers by a partial or complete lack of infor-
mation on the nature and the magnitude of the interaction between several variables
[GGGR09]. There is a general tendency to overlook correlations, due to the difficulty
to detect, measure and integrate this type of information. Moreover, dependencies
are not relevant when single point estimates are used [BS99], which is frequently the
case.

7.3 Conclusions

A probabilistic cost analysis setup is a complex simulation process consisting of the
following steps [CYC09]: (1) identification of random variables, (2) quantification of
dependencies, (3) generation of random variates, (4) calculation of the desired out-
put, (5) calculation of useful statistics and generation of graphs. The credibility of
a computational model, demonstrated through verification and validation, measures
the extent to which simulation results can be analysed with confidence to represent
the phenomenon of interest with a degree of accuracy consistent with the intended
use of the model [HH04]. Hence, in cases such as a cost estimation of a complex
one–off project, prediction credibility is a highly challenging task.

Ignorance is rather an attitude than a fact; there is much information confined
in expertise and experience. The aim of an analysis is to utilise all the relevant
information in an unbiased way [OBD+06]. In the present analysis, an integrated
method is demostrated that uses existent information in order to produce economic
estimates. Moreover, it is attempted to explore the nature and the influence of
aleatory and epistemic uncertainties on the final output, so as to evaluate the cred-
ibility of those estimates. Also, the developed model is flexible, and can be adapted
in the light of new information with regard to the individual cost elements, as well
as to the dependences among these elements.
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Appendix A

Statistical distributions

All random variables mentioned in the present study are defined on a common
probability space (Ω,A,P) and assume real values. The present Appendix follows
the notation, as given in [DKLM07].

Let R denote the ordinary real line (−∞,+∞) and R the extended real line
[−∞,+∞]. A distribution function is a nondecreasing function F with domain R
such that F (−∞) = 0 and F (+∞) = 1. Once a random variable X has been
defined, the (cumulative) distribution function, abreviated as cdf, of X, is the
function FX : R→ [0, 1] defined by:

FX(x) = P (X ≤ x)

Any function defined as above can be shown to be a distribution function. A random
variable X is continuous if for some function fX : R→ [0, 1] and for any numbers a
and b with a ≤ b,

P (a ≤ x ≤ b) =
∫ b

a
fX(x)dx

The function fX has to satisfy fX(x) ≥ 0 for all x and
∫+∞
−∞ fX(x)dx = 1. Then fX

is called the probability density function, abbreviated as pdf, of X. The cdf and
the pdf are related according to the following formulas:

FX(x) =
∫ x

−∞
fX(t)dt

fX(x) = d
dxFX(x).

The expectation (expected value, mean or first moment of X) of a continuous
random variable X with probability density function f is the quantity:
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E[X] =
∫ ∞
−∞

xf(x)dx

The variance of a continuous random variable X with expectation E[X] is the
quantity:

Var[X] = E[(X − E[X])2]

The variance is a measure of dispersion for the distribution of X. A scale–free
dispersion measure is the coefficient of variation CoV , defined through:

CoV 2 = Var[X]
(E[X])2

Let R2 denote the extended real plane R × R. A 2–place real function H is
a function whose domain DomH is a subset of R2 and whose range RanH is a
subset of R. A rectangle R in R2 is the cartesian product of two closed intervals,
R = [x1, x2] × [y1, y2]. Then, the vertices of the rectangle R are the four points
(xi, yj), i, j = 1, 2. The unit square I2 is the product I × I where I is the unit
interval I = [0, 1]. A 2–place real function H is called 2–increasing when for all
rectangles R = [x1, x2]× [y1, y2] whose vertices lie in DomH, VH(R) = H(x2, y2)−
H(x2, y1) − H(x1, y2) + H(x1, y1) ≥ 0. A joint probability distribution function is
defined as a 2–increasing function H with domain R2 such that H(x,−∞) = 0,
H(−∞, y) = 0 and H(+∞,+∞) = 1. The margins of a joint distribution function
H are the functions FX(x) = H(x,+∞) and FY (y) = H(+∞, y).

127



Appendix B

Monte Carlo methods

Monte Carlo methods are families of computational algorithms relying on repeated
random sampling. These methods are used when deterministic calculus is not pos-
sible or practicable. A Monte Carlo simulation (mcs) aims to create samples of the
input’s pdf’s. These samples need to represent the full range of the pdf’s, with
emphasing high probability areas more than low ones. The most common technique
to achieve these requirements is to transform a set of pseudo–random numbers of
(0, 1) through the inverted cdf’s. In short:

1. A random number ui is drawn from (0, 1).

2. The number ui is transformed through probabilistic inversion, by means of the
inverse cdf F−1

i .

Figure B.1: The probabilistic inversion for simulating a random variable X.
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In order to achieve the desired approximation with less iterations, stratified sam-
pling methods can be used. For instance, in Latin Hypercube Sampling (lhs) the
range of uncertain inputs is divided into equiprobable non–overlapping intervals;
then, a random number (e.g. the midpoint) is drawn from each interval. lhs has
recently appeared also in the field of cost engineering in construction [CYC09],
[FPR09]. Instead of stratified sampling, the quasi–Monte Carlo methods can be
used.

The Monte Carlo approach offers several benefits [KI07]: flexibility in incorpo-
rating uncertainty, computational simplification, software implementations that can
be used by non–experts, handling of extreme cases, and improved accuracy with the
technical advancement of computers. The major limitation of Monte Carlo is the
tendency to blindly trust the output of an obscure computer process without check-
ing possibly erroneous input (the so–called “Garbage In, Gospel Out” syndrom),
which is obviously true for any complex model relying on “black box” numerical
process.
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Appendix C

Copulas

Copulas are special type of functions, introduced in 1959 by Abe Sklar. They were
firstly used in the development of probabilistic metric spaces, and later in defining
non–parametric dependence in applied statistics and uncertainty modelling. They
are widely used today in several disciplines and applications, thanks to their ability
to deal with arbitrary dependence. The main reason for the widespread use of
copulas, is the usefulness in financial applications [Emb09]. The present section
follows the classical monograph of Nelsen [Nel06].

Let a pair of random variables X and Y , with distribution functions F and G

respectively, and a joint distribution function H. Each pair of real numbers (x, y) is
associated with three numbers, F (x), G(y) and H(x, y) which all lie in the interval
[0, 1]. This way, each pair (x, y) of real numbers leads to a point (F (x), G(y)) in
the unit square [0, 1]× [0, 1], and this ordered pair in turn corresponds to a number
H(x, y) in [0, 1]. This correspondence, which assigns the value of the joint distri-
bution function H(x, y) to each ordered pair of values of the individual distribution
functions (F (x), G(y)), is a function, called copula of X and Y . In short, a copula is
a distribution function of a random vector whose margins are uniformly distributed.

Formally, a copula is a function C : [0, 1]2 → [0, 1] satisfying the properties:

1. C(0, v) = C(u, 0) = 0, C(1, v) = v, C(u, 1) = u.

2. C(u, v) is increasing in u, v.

3. C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 in [0, 1]

(monotonicity condition).

Let C be a copula. For any v ∈ [0, 1], the partial derivative ∂C(u, v)/∂u exists for
almost all u, and for such v and u it holds that 0 ≤ ∂C(u, v)/∂u ≤ 1. Furtheremore,
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the function u→ ∂C(u, v)/∂u is defined and is nondecreasing almost everywhere on
[0, 1]. The term “almost” is used in the sense of Lebesgue measure.

The cental result in the theory of copula functions is the following proposition:

Sklar’s theorem. Let H be a joint cumulative distribution function with margins
F , G. Then, there exists a copula C such that for all x, y:

H(x, y) = C(F (x), G(y)) (C.1)

If F , G are continuous, then C is unique; otherwise C is uniquely determined on the
range of F × G. Conversely, if F , G are cdf’s and C is a copula, then H(x, y) =
C(F (x), G(y)) defines a joint cdf with margins F , G.

Equation (C.1) gives an expression for a joint distribution functions in terms of
a copula and two univariate distribution functions. The equation can be inverted
to express copulas in terms of a joint distribution function and the inverses1 of the
two margins:

C(u, v) = H(F−1(u), G−1(v))

When F and G are continuous, the latter formula provides a method of constructing
copulas from joint distribution functions.

A few characteristic copula families can be mentioned:

Product copula

It describes the dependence structure between independent variables, as expressed
with different notation by Equation (4.4):

C(u, v) = u · v

Frank’s copula

It is defined as:

C(u, v) = −1
θ

(
1 + (e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ 6= 0

For θ < 0 the Frank copula describes negative dependence; for θ > 0 positive
dependence. For θ → −∞ and θ → +∞ Frank’s copula describes perfect negative

1If a margin is not strictly increasing, then it does not possess an inverse in the usual sense and
so the generalised inverse is used instead.
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and perfect positive dependence, respectively. It is a flexible one–parameter family,
but the extension to higher dimensions is not straightforward.

Gaussian copula

It is defined as:

C(u, v) = Φr(Φ−1(u),Φ−1(v))

where Φr is the cdf of the bivariate standard normal distribution with Pearson’s
correlation coefficient r. The simulation and practical use of this family in arbitrary
dimensions is demonstrated in Section (4.8). The Gaussian copula does not have a
closed form, but is calculated through double integration:

Cr(u, v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1
2π
√

1− r2
exp

{
−(s2 − 2rst+ t2)

2(1− r2)

}
dsdt, r 6= −1, 0, 1

An extension of the Gaussian copula, with fast growing usage, is the t–copula, which
contains an additional parameter, the degrees of freedom. This parameter allows
for modelling tail dependence [DM05].

If X and Y are continuous random variables with copula CXY and f, g are two
strictly increasing functions defined on the range of F×G, then it can be proved that
Cf(X)g(Y ) = CXY . The following two relations reveal why Kendall’s tau and Spear-
man’s rho remain invariant (up to sign) under strictly monotone transformations of
the margins, which is not true for Pearson’s correlation coefficient.

τ = 4
x

[0,1]2
C(u, v)dC(u, v)− 1

ρ = 12
x

[0,1]2
C(u, v)dudv − 3

The process of applying a copula methodology for simulating the response of a
model relying on dependent variables can be outlined as follows:

1. The marginal distributions are specified.

2. The dependence structure is identified.

3. An appropriate copula family is selected.

4. A Monte Carlo simulation procedure is applied.
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5. Realisations of the random vector are generated by probabilistic inversion.

6. The probability distribution of the desired stochastic model is constructed.

Several advantages of copula functions can be pronounced: they can capture
non–linear dependence, they are very flexible (parametric, semi–parametric or non–
parametric), any marginal distributions can be specified, the parametric families
allow for sensitivity analysis. A few limitations2 include the fact that extensions of
bivariate to multivariate copulas is not straightforward, and that there is no obvious
way to select the proper copula [Emb09].

2The uncritical use of copulas over classical stochastic calculus methods has been criticised
[Mik06].
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