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Preface 

This work is a cumulative dissertation consisting of 4 individual peer-reviewed papers, 2 first 

author and 2 second author, and 1 first author paper under revision for submission. The papers 

can be found in the Appendix. The formatting of the papers varies due to the style of the various 

journals. 

This document provides the framework demonstrating the links between all of the papers and 

how they are used to accomplish a larger research goal. The specific methodologies, results and 

discussions that underlie each paper can be found in the Appendix. 

Citations to this work should refer to: Moreno, A., 2016. Integration of in-situ and remotely 

sensed data to assess the state of forest resources across Europe. PhD. Dissertation. University 

of Natural Resources and Life Sciences, Vienna or by reference to the individual papers. 
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Abstract 

Climate change will affect forests globally, having varying effects across landscapes. 

Repercussions of a shifting climate on forest processes require ecosystems to be studied on 

large scales. To quantify future shifts, anomalies and trends in biophysical drivers and their 

effects on forest resources, the current state of forest structure must first be known. In European 

forests, management is also a major driver of forest productivity and structure. To assess the 

effectiveness of large scale forest management, a spatially explicit landscape level outlook must 

be taken. In Europe, data on climate and forests in a form that would allow spatial analysis, with 

local level resolution on a continental scale, is difficult to access or limited in availability. In this 

study, a pan-European spatially explicit data set of forest characteristics on a 0.133° resolution is 

derived which represent the decade 2000-2010. A daily pan-European climate data set on a 

1km2 resolution is also created, which is more accurate than previously available gridded data 

products. This data is then used to calculate improved, remotely sensed forest productivity 

estimates. The study also outlines the collation of the largest European plot-level national forest 

inventory (NFI) data set from 14 countries and quantifies an optimal resolution to link NFI and 

remotely sensed data of between 0.0664° and 0.266°. An algorithm is developed that links NFI 

and remotely sensed data to create a gridded pan-European forest structure data set. Bias in the 

data is less than 1% of NFI values and the mean absolute error is less than the standard 

deviation. Comparing against other data sources measuring similar values indicates that the new 

data has realistic values in areas where no NFI data was originally present. Preliminary analysis 

suggests that climate places limits on forest structure, which can alter future forest management 

options under a changing climate. 
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Kurzfassung 

Die Wälder der Erde werden durch den weltweiten Klimawandel auf verschiedene Weise 

beeinflusst. Um die Auswirkungen von Veränderungen in den Prozessen und Kreisläufen von 

Wälder zu untersuchen, sind großskalige und weitreichende Studien erforderlich. Hier sind 

besonders Informationen zu Anomalien und Trends in den Wachstumsprozessen von 

besonderer Wichtigkeit. In den Wäldern Europas ist zusätzlich die Waldbewirtschaftung ein 

wichtiger Faktor. Um die Effektivität von Bewirtschaftungsformen zu beurteilen, sind ebenso 

groß-skalige Studien essentiell. Da in Europe die hierfür erforderlichen Daten nicht ausreichend 

verfügbar sind, ist das Hauptziel dieser Arbeit eine räumlich explizite Datengrundlage für Europa 

zu entwickeln, die es erlaubt verschiedene Information über die Wälder Europas anzubieten. 

Dieser Datensatz repräsentiert den Zeitraum 2000 bis 2010 mit einer räumlichen Auflösung von 

0.133°. Zu diesem Zwecke wurde ein Klimadatensatz mit einer Auflösung von 1 km aus 

verfügbaren Daten durch „downscaling“ entwickelt. Damit wurde ein verbesserter Datensatz zu 

Netto Primärproduktion von Wald gerechnet, der zusätzlich räumlich explizite Satellitendaten 

nutzt. Diese Arbeit beschreibt in weiterer Folge die Sammlung und Harmonisierung terrestrischer 

Referenzdaten in Form von Waldinventurdaten aus 14 Europäischen Ländern und ermittelt jene 

räumliche Auflösung, die für die Verknüpfung mit Fernerkundungsdaten optimal ist. Ein 

Algorithmus wurde entwickelt um aus Terrestrische Inventurdaten und Fernerkundungsdaten die 

eingangs erwähnten räumlich expliziten Datengrundlage zu erstellen. Der Bias ist weniger als 1 

% im Vergleich zu den Referenzdaten und der mittlere Absolutfehler ist kleiner als die 

Standardabweichung. Ein Vergleich mit publizierten Daten anderer Studien zeigt, dass dieser 

neue Datensatz realistische Werte liefert auch für Länder, wo keine Referenzdaten verfügbar 

waren. vorläufige Ergebnisse legen nahe, dass das Klima ein limitierende Faktor in dem Aufbau 

und den Strukturen Europas Wälder sein kann. Dies kann zu einer Optimierung zukünftiger 

Waldbewirtschaftung beitragen mit dem Ziel der Abschwächung des weltweiten Klimawandels. 
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1. Introduction 
 

Climate change is projected to alter vegetation states and dynamics globally (Cramer et al. 

2001). The states and processes that regulate forest ecosystems determine the ecosystem 

services that forests provide to society and the earth system as a whole (Kremen 2005). 

Europeans are heavily dependent on the health of forests and their continued provision of 

ecosystems services into perpetuity (Daily et al. 1999). Further, European forests are estimated 

to include over 1/3 of the world’s temperate forest carbon sink, giving them global importance for 

commerce and to combat climate change (Pan et al. 2011). To assess the impact future climate 

change will have on European forests, and the resources they provide, it is imperative to first 

understand the current state of these forests and the spatial distribution of various forest 

characteristics (Cramer et al. 2001). 

Europe is made up of 23 countries with its forests spanning across political borders. The forest 

area of individual countries rarely covers more than 10% of the total forest in Europe (United 

Nation’s Food and Agriculture Organization 2015). Therefore, to fully understand forests 

throughout Europe, research must be done on the European scale. Lack of available and 

accessible forest and climate data in Europe make large scale, locally relevant studies difficult or 

impossible (Moreno and Hasenauer 2015; Moreno, Neumann, and Hasenauer 2016b). 

Climate data, necessary for any climate change related work in Europe, is restricted to 

interpolated data on a 0.25° resolution – not a fine enough resolution to see local level effects 

such as topography (Moreno and Hasenauer 2015). Individual weather stations in Europe are 

not linked via an overarching database or methodology, as can be found in the United States. 

Weather station data must be collected from individual countries and requests may be subject to 

the approval of each nation. Often national data portals are difficult to navigate and, as is the 

case for Finland, even require knowledge of programming to access. Access to an entire 

country’s data set is often limited or restricted. These regulatory hurdles make the creation of 

finer resolution interpolations, or interpolations using alternate methods difficult or statistically 

implausible in certain areas of Europe. The size of the resolution dictates which forest-climate 

interactions can be studied. For example, with a resolution of 0.25°, one cannot study orographic 

climate effects on forests or differing effects on various species groups. 

Data accessibility and availability describing the state of European forests are not much different 

than the aforementioned challenges of obtaining climate data. National Forest Inventory (NFI) 

data is also not integrated into a common database for public accessibility (Neumann, Moreno, 

Thurnher, et al. 2016). Currently, there are only 3 countries that provide plot-level data online for 

public access: France, Spain and Italy. Apart from these three countries, accessing NFI data 

online is typically limited to country-level statistics and does not provide plot-level data for 

recalculation or spatial analysis, thereby not allowing spatial assessments of forests that 

transcend political boundaries. For example, the current state of NFI data prevents assessing 

how climatic gradients limit forest structure and how forest policies spatially affect timber supply. 
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Unlike other large forested regions, e.g., The United States, Canada, Russia, and Brazil, Europe 

is made of a myriad of countries, cultures, languages, policies and hurtles to data access. This 

makes creating data sets that cover all of Europe, not only a technical and scientific challenge, 

but an inter-personal, political and logistical one as well. There have been several attempts to 

make data sets that describe the state of European forest structure (Brus et al. 2011; Gallaun et 

al. 2010; Naudts et al. 2016; Vilén et al. 2012). These data sets however, are not provided in a 

publically available repository or are completely inaccessible. Further, these datasets only focus 

on one particular aspect of forest structure and rely on varying methods and input data sets for 

their creation, making them spurious to compare or combine. There have also been efforts at 

other scales to map forest structure and dynamics, both globally (Crowther et al. 2015; Running 

et al. 2004; Simard et al. 2006), and regionally (Dong et al. 2003; Hasenauer et al. 2012; Maselli 

et al. 2014). However, scale dictates the accuracy of the data. Data produced for global analyses 

can result in lower accuracy on continental or regional scales. Data made on the regional scale 

is, of course, limited to that particular region and uses a particular method, which can vary from 

region to region, making comparison or collation of these data sets difficult.  

Pan-European, integrated, spatially explicit datasets on various aspects of forest structure and 

climate would allow for the types of assessments that are necessary to quantify European 

forests’ vulnerability to climate change and the effectiveness of different forest management 

practices across the landscape. These types of data sets could also act as a quality check 

against other global data sets that are used for policy decisions, such as the United Nations 

Food and Agriculture Organization’s Forest Resource Assessment (FAO FRA), which heavily 

influence policy decisions.  

In this study: a daily pan-European climate data set on a 1x1km resolution is created; a 

European focused MODerate resolution Imaging Spectroradiometer (MODIS) based forest 

productivity estimate is derived; the largest plot-level forest inventory data set that currently 

exists in Europe is collated; the optimal resolution on which to combine NFI and remotely sensed 

data is quantified; and a spatially explicit pan-European gridded data set of forest characteristics 

is produced. Various aspects of the interplay between forest structure, management and climate 

are then analyzed utilizing this data. 

2. Objectives and outline 
 

The goal of this study was to develop the data necessary to spatially analyze the state of forest 

resources across Europe and then to begin to analyze the interplay between forest 

management, forest productivity, forest structure, and climate. There were several steps 

necessary to accomplishing this task, each of which has contributed to the body of knowledge on 

climate, forests and data integration (Figure 1).  

The first steps were to downscale climate data and to collate national forest inventory (NFI) data 

throughout Europe (Figure 1).  The climate data and the NFI data were then used to derive and 

validate European forest focused remotely sensed net primary production (NPP) estimates. NFI 

data and remotely sensed data were then combined to create a pan-European forest 
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characteristics data set. To combine these data for analysis, the optimal resolution on which to 

link the data to maximize the confidence in the output data, was quantified. The optimal 

resolution and the NPP estimates were then used, along with several other datasets, within an 

algorithm developed in this study, to gap fill NFI data into areas where NFI data was not present. 

The result was a pan-European data set of forest characteristics representing the mean values 

for the decade 2000-2010. Using all of the data created in this study, the state of forest 

resources throughout Europe was analyzed in ways that had hitherto been infeasible. The 

individual objectives of the study are: 

1. Spatially downscale daily European climate data 

2. Collate NFI data throughout Europe 

3. Derive new forest productivity estimates for Europe 

4. Determine the most accurate resolution on which to combine NFI and remotely sensed 

data 

5. Combine NFI and remotely sensed data to produce pan-European spatially explicit data 

sets of forest characteristics 

6. Utilize new data products to analyze the state of forest resources. 

 

 

 

 

Figure 1: Flowchart of research.  (Paper # where this research is explained in greater detail) 
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3. Data 
 

Diverse spatially and temporally explicit data sets that cover content from climate to forest 

structure in Europe were used in this study (Table 1). These data sets were derived using a 

myriad of methods from different sources for varying purposes, and range in scale from 

jurisdictions to global coverage. These data include in-situ point data which were collected on 

the ground and remotely sensed, gridded, data which cover a large area. Various statistics on 

the national and sub-national level were also utilized. Some of these datasets had a temporal 

component which had to be reconciled with those data that did not. The aspects of the 

environment that were covered by these data sets include: climate, land cover-type, forest 

characteristics, biogeographical regions, vegetative productivity, and topography. 

 

Table 1: Data products used in this study. Type can be gridded, plot level (points), or stats which 
indicates aggregated statistics. Temporal indicates if time was taken into account when dealing 
with this data set. Subject describes the area of interest of the data product. Paper indicates in 
which publication throughout this study the data set was used. 

Data Set Scale Type Temporal Subject Paper 

E-OBS Europe Gridded Yes Climate 1 

WorldClim Globe Gridded No Climate 1 

Weather Stations Country Point Yes Climate 1 

Forest Inventory Country Point Yes Forest 2,3,4,5 

MODIS Land Cover Globe Gridded No Cover Type 3,4,5 

Global Land Cover 2000 Globe Gridded No Cover Type 4 

CORINE Land Cover Europe Gridded No Cover Type 4 

EFI Tree Species Europe Gridded No Cover Type 4,5 

Biogeo. Regions Europe Gridded No Biogeography 5 

MODIS % Forest Global Gridded No Forest 5 

MODIS LAI/FPAR Globe Gridded Yes Productivity 3,5 

MODIS NPP + Trend Globe Gridded Yes Productivity 3,5 

Tree Canopy height Globe Gridded No Forest 5 

GTOPO30 DEM  Globe Gridded No Topography 3,5 

Forest Area Europe Gridded No Forest 5 

FAO FRA Globe Stats No Forest 5 

EFIScen Jurisdiction Stats No Forest 5 
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4. Methods 

4.1. Workflow 

 

Each paper developed in this study was a step towards the goal of spatially analyzing European 

forest resources (Figure 1). Paper 1 describes the effort to create a daily 1km² resolution climate 

data set of precipitation and minimum and maximum temperature across Europe from 1950 to 

2012. Paper 2 begins to examine the uncertainties in carbon and biomass estimates when 

combining NFI data from various countries which use different calculation methods. Paper 3 

outlines the collation of NFI data sets throughout Europe, describing the newly derived MODIS 

forest NPP estimates - driven by the downscaled climate data - and compares these estimates 

with those derived from NFI data. Paper 4 quantifies the optimal resolution on which to combine 

NFI and remotely sensed data, outlining the benefits and drawbacks of different resolutions on 

the European scale. Paper 5 describes the algorithm used to combine the collated NFI and 

remotely sensed data to create a pan-European data set on forest characteristics, compares this 

data set with previously produced ones from other organizations, and begins to assess the state 

of European forest resources. To exemplify the benefits of this work, also included in this study 

are current research concepts that are building upon this work and example preliminary results 

of work that is yet to be published. 

4.2. Downscale Climate data 

 

The previous state of climate data in Europe was restricted to a 0.25˚ (30km2) resolution and 

came from the European Observation (E-OBS) dataset.  E-OBS was downscaled to 

0.0083˚(1km2)  using WorldClim data and a delta method algorithm designed in the study 

(Moreno and Hasenauer 2015). A monotone cubic interpolation was used, which preserves the 

large resolution mean values from E-OBS, but with the finer resolution, relative scaling of 

WorldClim. The downscaled datasets include daily precipitation and minimum and maximum 

temperature all on a 0.0083˚ resolution from 1950-2012. 

4.3. Collate and NFI data 

 

National Forest Inventory (NFI) data in Europe is collected by individual countries and is not 

housed in one common repository for public or scientific use. Therefore, to study NFI data on the 

European scale, data must be collected from individual countries. As spatially explicit data was 

needed for analysis, the publicly available data from various countries’ forest agency’s websites 

was not sufficient because this data is typically only given on country level aggregates. Plot level 

data was collated from 14 different countries including: Austria, Germany, Spain, Italy, Romania, 

Netherlands, Belgium, France, Poland, Estonia, Czech Republic, Finland, Norway and Sweden 

(Neumann, Moreno, Thurnher, et al. 2016). Data from all countries were then harmonized to the 
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most limiting country values. For example, age classes for every country were converted to 20-

year time steps, up to 140 years, which was the coarsest time step of any country. As part of this 

harmonization process, the effect different biomass functions in the different countries has on the 

total biomass estimates, was quantified (Neumann, Moreno, Mues, et al. 2016). This plot level 

NFI data set is the largest in Europe, including 238,834 plots and spanning the entire European 

latitudinal gradient. 

4.4. Improve MODIS NPP 

 

To make MODIS NPP data more accurate on the European scale, the downscaled climate data 

was used to drive the MOD17 algorithm. MOD17 takes vapor pressure deficit (VPD) and 

shortwave solar radiation (SRad) as two inputs that previously did not exist spatially for Europe 

(Neumann, Moreno, Thurnher, et al. 2016). The MtClim algorithm was used in conjunction with 

the GTOPO30 digital elevation model and the downscaled climate data to produce VPD and 

SRad. The MOD17 algorithm was then run using this new data and compared with the newly 

derived NPP data with estimates derived from NFI data.  

4.5. Determine Optimal Resolution 

 

To determine the optimal resolution on which to combine the NFI and remotely sensed data 

three factors that are affected by resolution aggregation were analyzed: loss of spatial 

information, agreement between remotely sensed and NFI data, and the standard error of the 

underlying NFI data (Moreno, Neumann, and Hasenauer 2016a). These three factors were 

assessed as data was aggregated from the native resolution of 0.0083˚ (NR) to: 2xNR, 4xNR, 

8xNR, 16xNR, 32xNR, 64xNR, and 128xNR. Loss of spatial information was assessed by 

calculating Shannon’s Equitability Index (SEI) for all of the NR cells that make up an aggregated 

cell. The lower the SEI, the higher the heterogeneity within a cell, and thus the more loss of 

information that will occur when the cells are aggregated to 1 value. Agreement between 

remotely sensed and NFI data was assessed by using a confusion matrix between the NFI data 

and 4 remotely sensed land cover datasets. Aggregation of both the remotely sensed land cover 

data and the NFI data was done using the rules for classification of the remotely sensed land 

cover data set in question. The standard error of the NFI data was calculated based on the basal 

area, height and age at each aggregation step. 

To quantify the optimal resolution, a normalized curve was produced representing the three 

factors assessed and they were summed. The optimal resolution is then the resolution at the 

point where the slope of the resultant curve flattens off. At this inflection point there is a 

diminishing benefit to aggregation. 
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4.6. Combine NFI and Remote Sensing data 

 

To analyze forests throughout all of Europe, forest characteristic data is required in both areas 

where NFI data is present and where it isn’t. Combing NFI with remotely sensed data is often 

used to produce such data on country scales. An algorithm involving clustering and nearest 

neighbors was developed to combine NFI with the remotely sensed data to create a pan-

European data set (Moreno, Neumann, and Hasenauer 2016b) (Figure 2). To gap-fill areas 

without NFI data, the algorithm first uses a combination of remotely sensed co-variates that can 

delineate forest types and structures from one another. The co-variates used were: MODIS NPP, 

MODIS NPP trend, canopy height and climate site quality (based on average decadal shortwave 

radiation, vapor pressure deficit, and growing season based on MODIS LAI). Clustering was first 

done by bioregion and cover type. Then a further clustering using a k-means process was done 

to further delineate forest types. It was upon these clusters that the nearest neighbor algorithm 

was performed. The way in which clustering was done and how many nearest neighbors were 

used and how they were combined was decided through a parameterization process which 

minimized the difference in bias and the three moments (variance, skewness and kurtosis) of the 

overall European level distribution. 
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Figure 2: Algorithm Flow-Chart. There are 6 steps in the methodology: 1) Collate Input Data, 2) 
Data aggregation, 3) Parameterization, 4) Gap-filling, 5) Final outputs. Gap filling is shown in more 
detail with steps 4a to 4g. Ovals represent data sets and rectangles represent processes. Ovals 
inside rectangles indicate that this data set was used within this process. 
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4.7. Analyze the state of forest resources across Europe 

 

Estimates on forest characteristics from this study were compared with several previously 

produced datasets and statistics. Combining carbon/hectare and volume/hectare estimates with 

forest area, country level carbon, and volume totals was carried out, which was then compared 

to FAO data. Age and height were also compared with jurisdictional-level statistics and a global 

data set, respectively. 

Utilizing all of the data produced from this work, the effects forest management, climate and 

land-use change has on forest characteristics and structure, is being analyzed. The analysis of 

the impact forest management has had on forest productivity is being done by comparing NPP 

from areas inside and outside conservation zones. Beyond quantifying the absolute difference in 

NPP, the robustness of forests to climate anomalies was also analyzed. The effect land-use 

change has on NPP will be quantified by using NPP trended by climate and then assessing the 

relative difference from before and after land-use change. The climate limits set on forest 

structure will be quantified by assessing the maximum values of forest structures by various 

climate gradients, as quantified through cross-validation. 

5. Analysis and Results 
 

Assessing the current state of forest resources throughout Europe allows one to quantify the 

limits that climate has placed on forest structure, the impact forest management has throughout 

the continent and the affect land-use change has on productivity. To conduct such analyses one 

needs spatially explicit data on forest characteristics at a resolution finer than country borders. 

The previously available data in Europe on forest structure and climate either did not cover the 

entire continent, was not on an appropriate resolution for local level analysis, unavailable, or on 

a scale that did not maximize accuracy on the European scale. Therefore, before forest 

resources throughout Europe could be analyzed, forest structure and climate data necessary to 

achieve this goal, needed to be produced. Through achieving this goal a diverse assemblage of 

point and gridded data sets describing various aspects of forest ecosystems, e.g., climate, 

productivity, forest characteristics, etc. were collated and integrated. Methods and analyses 

which contribute to the scientific body of knowledge on climate, data integration and forest 

structure in Europe were also developed.  

Climate gradients, such as orographic effects, were sought for analysis but were prohibited by 

the resolution of the previously available data sets. The downscaled climate data provides the 

ability to analyze such gradients and has increased accuracy compared to the existing European 

climate data in the three variables assessed: precipitation, minimum temperature and maximum 

temperature. After downscaling, the continental-scale distribution of precipitation and 

temperature values, and the accuracy at weather stations that were used in the derivation of the 

original E-OBS climate data, did not change. The increased accuracy in the downscaled data set 

is found primarily in the temperature variables (Figure 3) at weather stations that were not used 

in the derivation of the original E-OBS data set. Bias, mean absolute error (MAE) and root mean 



 

10 
 

squared error (RMSE) decrease for all variables when compared to the original E-OBS and 

analyzing against weather stations that were not used in the derivation of E-OBS. The most 

improvement is seen in temperature because the major benefit of the downscaling is 

incorporating elevation into the data set which has a larger impact on temperature than on 

precipitation.  

 

 

Figure 3: Validation of E-OBS and Downscaled data against weather station data from Austria. 
None of these stations were used to create E-OBS. Minimum Temperature, Maximum Temperature 
and Precipitation are shown. Left column gives daily averages for years 2000-2012 of all stations. 
Right column shows weather station data (x-axis) versus E-OBS and Downscaled data (y-axis). 
Size of downscaled points (circles) indicates the elevation of the station at that point. The color of 
the downscaled points indicates latitude of the corresponding weather station. 
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National forest inventories (NFI) provide information on forest characteristics that cannot 

currently be measured from space, e.g., age, basal area, branch biomass, etc. To spatially 

analyze forest characteristics across all of Europe such data is needed. Each country in Europe 

collects, archives, and distributes their own NFI data. To date, there has never been a data set 

that contains plot-level information for every European country. NFI data from 14 different 

countries throughout Europe was collated. The collated NFI data set spans all latitudes in 

Europe and all designated bioregions and is currently the largest plot-level NFI data set in 

Europe; though it does not cover the entire continent. To create a pan-European data set of 

forest characteristics, an algorithm was developed to gap fill areas where NFI data was not 

present. 

A combination of clustering and nearest neighbor analysis was used to develop the gap filling 

algorithm. The algorithm incorporates data that covers all of Europe to delineate similar forests 

from areas where NFI data exists in the data set with areas where NFI data does not exist. Using 

these groups of similar forests, the algorithm could then gap fill NFI data all over Europe. To 

delineate groups of similar forests, the algorithm used six pan-European gridded data sets: 

Bioregion, covertype, canopy height, site quality, MODIS net primary production (NPP) and NPP 

trend.  

Global NPP data is driven by a global climate data set that is on a 1.875° resolution 

(220x220km), which does not encapsulate local-level climate effects. To incorporate local-level 

effects into the NPP estimates, the downscaled climate data was used along with the MOD17 

algorithm to derive new NPP estimates of European forests. A regionally-focused productivity 

estimate allows for more accurate delineations of forests for the purposes of gap filling NFI data 

into areas where NFI data was not present. The global MODIS NPP data set over-estimates 

compared to the NFI derived NPP data set by 26% of the NFI NPP mean (Figure 4). After using 

the newly downscaled climate data within the MOD17 algorithm, the difference between MODIS 

NPP and NFI NPP decreased to 7%. Only in Germany and Poland did the difference increase 

after using the new climate data. 

 

Figure 4: Decadal average (2000-2010) of European net primary production of the Global MODIS 
MOD17 data set (MODIS GLOB); the newly derived European focused MODIS MOD17 product 
(MODIS EURO); and the NFI derived NPP estimates (NFI NPP) on a 1km resolution. 
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After creating new NPP estimates of European forests and collating NFI data, it was then 

possible to integrate the array of remotely sensed gridded data with the ground based point NFI 

data. However, before proceeding with data integration, one common spatial resolution needed 

to be decided upon. Using the highest resolution of the remotely sensed data (1km2) for data 

integration does not result in the maximum level of statistical confidence (Moreno, Neumann, 

and Hasenauer 2016a). The effect aggregation has on the integration of remotely sensed and 

point data was quantified to determine the appropriate resolution. Three factors were analyzed 

that determine the quality of combined NFI and gridded data at various aggregation steps: i) loss 

of spatial information; ii) agreement between remotely sensed and NFI data; and iii) the standard 

error of the underlying NFI data (Figure 5). The loss of spatial information steadily increases with 

aggregation, but asymptotes towards the large aggregation steps. The agreement between 

remotely sensed and NFI data hits a maximum at 0.0664° resolution. The standard error of the 

underlying NFI data decreases with aggregation. When these three factors are normalized and 

summed together, it is evident that the loss of spatial information is outpaced by the decrease in 

standard error and that the maxima in agreement creates an inflection point where there are 

diminishing benefits to aggregation. This gives statistical empirical justification that resolutions 

between 0.0664° and 0.266° produce the most accurate estimates on which to combine the NFI 

and remotely sensed data in Europe. For this reason, a resolution of 0.133° was chosen to 

integrate the remotely sensed and NFI data. 

 

Figure 5: Three normalized effects of aggregation: Represented Information, Cover-type 
agreement, and the Standard Error (SE) of the underlying NFI data. Aggregation Effect is the 
normalized sum of the 3 curves. Effect Slope is the Aggregation Effect value minus the preceding 
Aggregation Effect value. 
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Using the optimized resolution with the newly produced MODIS NPP data, and other remotely 

sensed data products (MODIS LAI based growing season, SRad, VPD, and canopy height), NFI 

data was gap-filled into areas where NFI data was not present. The resulting data sets on which 

this study focuses are of 4 different forest characteristics: carbon/ha, volume/ha, age, and height 

(Figure 6). The error varies by forest characteristic and through space.  Every data set has a 

bias of less than 1% from the mean NFI data value. The mean absolute errors of all 4 data sets, 

assessed through cross-validation, are smaller than the standard deviations of the NFI data, 

which means that the error associated with each cell is within the variation of the data. The high 

number of plots in lower elevations led to more accurate estimates, rather than at higher 

elevations. The pan-European data tends to underestimate at middle latitudes (48° to 58°) and 

overestimate in the south and north. The country with the highest underestimation in carbon and 

volume is the Czech Republic. Italy has the largest overestimation in height and Estonia has the 

highest overestimation in age. The newly produced data was then compared against previously 

produced datasets.  

Carbon/ha values were combined with forest area data to compare total carbon estimates 

against those from FAO data (Figure 7). This comparison shows that using a combination of 

forest area data sets and the new data on carbon/ha creates a total European carbon stock of 

11,003 million tons which is less than 10% over the FAO estimate of 10,093 million tons carbon. 

For countries where NFI data was present the difference is 5%.  

Forest characteristics were then quantified across various gradients, e.g., latitude and elevation, 

which was hitherto not possible (Figure 8). Different forest characteristics were also combined to 

assess the state of forest resources using gradients that could not be done with the previous 

state of data availability. For example, using this analysis, it can be shown that elevation has a 

sinusoidal effect on carbon/ha, and the highest carbon/ha values found in the age class 60-80 

years old, broadleaf and mixed forests, and in mid latitudes (Figure 8). 

Forest resources can be quantified using data on forest characteristics, for example, carbon 

stocks, volume, age and height, and by fluxes (such as NPP). Using the data sets developed 

during this study that describe the state of forest resources across Europe, work has begun on 

analyzing the effect that forest management has had on carbon storage and NPP. This data is 

now being used to analyze the effect that land use change and drought has on NPP in Europe. 

The limitations climate gradients put on forest management and forest structure are also being 

examined (Figure 9). Preliminary results on the climate limitations on forest structure show that 

maximum stand densities vary greatly with temperature and precipitation. Maximum stand 

densities are less affected by cold climates than they are by hot climates. Maximum stand 

densities follow an overshoot curve when graphed against precipitation, with very low stand 

densities in dry regions and a maximum of approximately 4mm of average daily precipitation. 

Volume/ha has clear climactic zones associated with high and low values within the distinct 

climactic triangle area in Europe. 
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Figure 6: Total Live Tree Carbon / ha (tons C/ha*102), Volume/ha (m3/ha*102), Height (m), Mean 
tree age (age classes in years). 0.133° resolution. The total live tree carbon and total volume result 
from multiplying the c/ha and the m3/ha by the total number of hectares of forest within each cell 
respectively. Height and mean tree age are unaffected by forest area. 
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Figure 7: Total live tree carbon by country from the FAO and this study (Moreno) 

0

200

400

600

800

1000

1200

1400

1600

G
er

m
an

y

Sw
ed

en

Fr
an

ce

P
o

la
n

d

Fi
n

la
n

d

R
o

m
an

ia

It
al

y

Sp
ai

n

A
u

st
ri

a

N
o

rw
ay

C
ze

ch
R

ep
u

b
lic

La
tv

ia

C
ro

at
ia

Sl
o

va
ki

a

B
u

lg
ar

ia

Es
to

n
ia

Se
rb

ia

Sl
o

ve
n

ia

Li
th

u
an

ia

Sw
it

ze
rl

an
d

H
u

n
ga

ry

U
n

it
ed

 K
in

gd
o

m

B
o

sn
ia

-H
er

ze
go

vi
n

a

P
o

rt
u

ga
l

G
re

ec
e

M
ac

ed
o

n
ia

B
e

lg
iu

m

A
lb

an
ia

M
o

n
te

n
eg

ro

D
en

m
ar

k

M
o

ld
o

va

N
et

h
er

la
n

d
s

Ir
el

an
d

Lu
xe

m
b

o
u

rg

Sa
n

M
ar

in
o

To
ta

l l
iv

e
 t

re
e

 c
ar

b
o

n
 (

m
ill

io
n

s 
o

f 
to

n
s)

FAO

Moreno



 

16 
 

           

 

       

Figure 8: Live tree carbon/ha by elevation, age class, land cover type, and latitude. Color indicates the number of grid cells found in the 
group. Covertypes: NF – Needle leaf Forest, BF – Broad Leaf Forest, MF – Mixed Forest, CS – Closed shrublands, OS – Open shrublands, 
WS – Woody savannah, S – Savannah, G – Grassland,  C – Crop lands. Age Classes: 1 – 1 to 20, 2 – 21 to 40, 3 – 41 to 60, 4 – 61 to 80, 5 – 81 
to 100, 6 – 101 to 120, 7 – 121 to 140, 8 - >140.
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(A) 

 
(B) 

 
(C) 

 

Figure 9: Climate limitations to forest management across Europe. A) Temperature vs. Stand 
Density Index. B) Precipitation vs. Stand Density Index. C) Precipitation and Temperature vs. 
Vol/ha.  
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6. Discussion 
 

Spatial information allows for rapid assessment of forest characteristic values across political 

boundaries. For example, upon visual inspection, it is quickly evident that the Czech Republic 

has by far the highest reported carbon/ha values of any other country in Europe (Figure 6). 

Further, there is a distinct difference in volume/ha values when crossing the border between 

France and Germany. These differences could be real or an artifact of the NFI collection and 

reporting process; but this difference is easy to see and recognize when data is spatially 

displayed. These maps also make it easy to see that the average height of trees are highest 

throughout central Europe, and that the area with the oldest average tree ages are in western 

Austria and in the northern-most latitudes. 

Comparing forest characteristics data from this study against other data sets give us the 

opportunity to identify discrepancies and possible errors. Using a combination of forest area 

maps, the carbon/ha values can come within 10% of FAO estimates (Figure 7). However, using 

just one forest area map will produce estimates of 20 - 25% greater than FAO estimates, with 

large differences from country to country. This indicates that the forest area data used has a 

large influence on derived carbon stock totals. In the FAO data, each country uses different 

information on forest area to calculate their individual totals. This makes it difficult to exactly 

replicate FAO data. However, comparing the new pan-European gridded data with FAO indicate 

that the NFI derived carbon/ha values from this study, in conjunction with the gap filling 

algorithm, can produce realistic results. 

It is now possible to compare forest characteristics across different gradients (Figure 8). This 

kind of analysis shows how forests behave over the entire continent and how forest 

management has had an impact. For example, the age distribution throughout all of Europe 

matches the common rotation lengths implemented by forest managers with the majority of 

forests being 41-60 years old. After this age class, trees are typically harvested which results in 

less forests being 61-80 years old. If rotation lengths were extended, on average, by another 10-

20 years, then Europe could store up to 12% more carbon/ha in their forests. The prevalence of 

Norway Spruce throughout Europe may be lowering the potential carbon storage of European 

forests, as needle leaf forests tend to contain less carbon/ha than broadleaf species. The high 

carbon/ha values in croplands indicate remnant forests that are preserved amongst agricultural 

systems, and reflect more of a conservation approach to forest management that can store high 

amounts of carbon/ha. The elevation effect on carbon/ha shows that there is a sinusoidal curve 

with several peaks and troughs. The cause behind this effect will require further investigation as 

it could be caused by ecology or management. Latitude appears to have a clear impact on 

carbon/ha, showing a strong ecological influence that climate and solar radiation place upon 

forest management. 

Spatial information on forest resources and climate can be used to assess the various effects 

climate and forest management has on forests. Three different aspects of forests are being 

analyzed throughout Europe: forest management’s impact on carbon stocks and fluxes, land-use 

change effect of productivity and climate’s effect on forest structure and forest management 

options. 
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Studying forest management’s impact on carbon stocks and fluxes will take advantage of all of 

the data that was created throughout this study. The gridded data on forest carbon will be used 

to estimate carbon stocks, and the new MODIS NPP values to estimate fluxes. These stocks 

and fluxes will then be detrended by the newly downscaled climate data, latitude and elevation to 

remove factors that influence carbon, but that forest management can not affect. This step 

isolates the forest management influence on carbon and carbon fluxes. Then the newly created 

pan-European data on other forest characteristics, e.g., age, diameter, and basal area, and 

locations of conserved forest areas, will be used to quantify the affect forest management has 

had on the carbon stocks and fluxes. 

Land-use change is identified as one of the globe’s primary anthropogenic carbon emission 

sources (West et al. 2004). The quantity of exactly how much carbon uptake is gained or lost in 

Europe through land-use change will be assessed. To accomplish this, the new European 

MODIS NPP will be detrended by the climate data and used along with CORINE land cover to 

assess how changes in land-use are affecting the vegetative landscapes’ ability to sequester 

carbon. 

Assessing climate’s effect on forest structure and management options will utilize the climate 

data along with the gridded data on forest characteristics (Figure 9). Forests in Europe are under 

all levels of forest management intensity. By quantifying the variability and maximums of various 

forest characteristics that management can affect in climate space, the limits to forest 

management as dictated by climate can be quantified. This can then show how a changing 

climate could affect forest management options in the future and the limit forest management 

has to change forest structure under different climate regimes. Preliminary results indicate that 

climate clearly limits the maximum stand density that can exist on the landscape (Figure 9). 

Assuming that the data on stand density reflects all levels of forest management, including a 

close-to-natural management system, by focusing on the upper whiskers of the box plots the 

effect a particular climate variable can have on forest structure becomes evident. Temperature 

has a strong effect on stand density, especially towards the higher average maximum 

temperatures. Precipitation has an even stronger effect at both high and low daily precipitations. 

Clear climactic zones exist for high vol/ha values. These zones are on the border of European 

climate space. With the shape of European climate space uncertain under future climate change, 

especially in regards to precipitation, it is possible that the high vol/ha zone could lie outside 

Europe’s future climate space. As temperature is expected to rise, Europe’s climate space will 

move towards the bottom right of the triangle (Figure 9). This area starts to show the lowest 

vol/ha values in Europe. This means that the prospect of climate change currently leaves the 

future of forest management and timber supply in Europe unknown (Figure 9). 

7. Conclusion 
 

The new data sets derived through this study allow for analyses of forest resources across 

gradients that have in the past been limited to country-level assessments. Climate data is now 

on a resolution that allows the assessment of differences in topography, covertypes and land-

uses. The climate data is also on the resolution required to improve remotely sensed estimates 
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of forest productivity, which was done by implementing the MOD17 algorithm with the 

downscaled climate data. To quantify the improvement of the NPP estimates, NFI data for 14 

different European countries was collated and used to calculate NFI based NPP estimates. To 

derive forest characteristics across all of Europe, including those areas where NFI data was not 

present, the collated NFI data and remotely sensed data were combined within a 

clustering/nearest neighbor algorithm. However, a direct link cannot be used between NFI and 

remotely sensed data, because NFIs are point data and are provided with falsified locations and 

a remotely sensed cell covers an area at least 2 orders of magnitude larger than that of an NFI 

plot. Thus, the optimal resolution was quantified on which a statistically justifiable connection can 

be made between NFI and remote sensing data. Using all of the data produced, along with some 

additional remotely sensed data, and the optimal resolution for linking this data, an algorithm 

was developed which created new data on forest characteristics across Europe. These datasets 

allow for the large scale studies of forests, forest productivity and how they relate to climate all 

throughout Europe, which was not possible with the previous state of data accessibility in 

Europe.  

The data on this resolution should be used to study landscape-scale ecosystems. That is to say, 

that with a resolution of 16x16km, the values per cell should not be interpreted in the same way 

as plot-level NFI data. Each cell represents average values for forests and should be interpreted 

with the forest area within a cell taken into account. For example, carbon/ha values may be high 

but the amount of forest per cell may result is low total carbon estimates. Also, age in this study 

indicates the average age of all trees, which leads to older age class values being found in 

savannahs and open shrub lands. Even though these cover types contain very few trees, on 

average, these trees are older than the average age of trees found in other cover types. 

Empirical data can now be used to assess forests throughout Europe. The analyses that 

implement the data derived in this study can give a more accurate spatial depiction of the effect 

forest management has on the carbon cycle, the impact land-use has on the carbon 

sequestering ability of landscapes, and how climate influences forest structure throughout 

Europe. 

Further, these data sets allow for quick and easy quality assessments of the data reported by 

different countries to larger overarching projects, such as FAO studies. The visual representation 

of the gridded data allows people to quickly see if there is reasonable justification for outlier 

values or if there is a possible error. 

This work removes political borders and policy obstacles to furthering forest research throughout 

Europe. Understanding the spatial distribution of forest structure characteristics is vital for 

inferring the future of forest ecosystems that Europeans rely upon for their recreation, economy, 

food, and cultural heritage. Ecological principles do not obey political borders and country-level 

statistics are not sufficient for discovering unknown dynamics that are occurring throughout 

Europe, such as climate change, bark beetle outbreaks, persistent nitrogen deficiencies caused 

by CO2 fertilization, reaction to landscape-level management policies, or the effect of large-scale 

nitrogen deposition. This work helps to make the hard work of these individual institutions 

relevant to topics that are larger than any one country and that affect all life in Europe and 

around the globe.  
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ABSTRACT: E-OBS(European Observations) is a gridded climate data set which contains maximum temperature, minimum
temperature, and precipitation on a daily time step. The data can be as fine as 0.25∘ in resolution and extends over the entire
European continent and parts of Africa and Asia. However, for studying regional or local climatic effects, a finer resolution
would be more appropriate. A continental data set with resolution would allow research that is large in scale and still locally
relevant. Until now, a climate data set with high spatial and temporal resolution has not existed for Europe. To fulfil this need,
we produced a downscaled version of E-OBS, applying the delta method, which uses WorldClim climate surfaces to obtain a
0.0083∘ (about 1× 1 km) resolution climate data set on a daily time step covering the European Union. The new downscaled
data set includes minimum and maximum temperature and precipitation for the years 1951–2012. It is analysed against weather
station data from six countries: Norway, Germany, France, Italy, Austria, and Spain. Our analysis of the downscaled data set
shows a reduction in the mean bias error of 3 ∘C for mean daily minimum temperature and of 4 ∘C for mean daily maximum
temperature. Daily precipitation improved by 0.15 mm on average for all weather stations in the validation. The entire data
set is freely and publically available at ftp://palantir.boku.ac.at/Public/ClimateData.
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1. Introduction

Climate data are essential for understanding and modelling
many ecological processes (VEMAP Members, 1995;
Haylock et al., 2008; Waring and Running, 2010). Gridded
climate data provide information for every point across a
landscape. These gridded data sets are essential for per-
forming climate analyses, understanding biogeochemical
processes, and for use in conjunction with satellite data and
models.

Nearly 20 years ago, the first daily large-scale,
fine-resolution climate data sets of the entire United
States became available with the development of PRISM
and Daymet with 1× 10 km and 500× 500 m resolutions
respectively; both were limited by the digital elevation
model resolution (Daly et al., 1994; Thornton et al., 1997).
The availability of high-resolution, large-scale climate
data sets has enabled more detailed studies of the climate’s
impact on epidemiology, ecology, agriculture, and genet-
ics across United States (Guo et al., 2006; Wimberly et al.,
2008; Luedeling et al., 2009; Jay et al., 2012). Large-scale,
fine-resolution climate data sets in the United States are
possible because of the easy accessibility policies to
weather station data. Researchers studying Europe have
been limited by the current state of climate data policy.

The absence of a comprehensive European weather net-
work, a result of the continents administrative and cultural
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Natural Resources and Life Sciences, Vienna, Peter Jordan Straße 82,
A-1190 Vienna, Austria. E-mail: adam.moreno@boku.ac.at

heterogeneity, makes obtaining weather station data very
difficult and costly. European weather stations lack the
density needed for daily interpolations to be made at high
resolution and at regional-scales (Wijngaard et al., 2003;
Daly, 2006). Compounding the problem of data acces-
sibility for climate interpolation throughout Europe, the
quantity, quality, accessibility, and format of weather data
varies from country to country (Wijngaard et al., 2003).
Many countries or geographic regions in Europe have
their own locally produced interpolated gridded climate
data sets that were possible because of access to the local
weather station data network (Hofstra et al., 2009; Isotta
et al., 2014; Masson and Frei, 2015). These data sets how-
ever use different methods and assumptions making har-
monization difficult to obtain a single continental data set.

The ENSEMBLES group runs the European Climate
Assessment & Data set (ECA&D) project which has gath-
ered 7852 weather stations. Using this weather station
network, they developed an interpolated gridded climate
data set. This data set, referred to as European Obser-
vations (E-OBS), covers Europe on a daily time step
(Haylock et al., 2008). The resolution of the E-OBS data
set is on a 0.25∘ regular grid (approximately 30× 30 km).
The coarseness of the gridded data is a result of station
density limitations but is sufficient for studies performed
at continental scale.

For studying orographic effects on climate, performing
regional climate change analysis, and providing knowl-
edge of spatial and temporal climate dynamics to users, it
is essential to have high-resolution information (Frei and
Schaer, 1998). Climate data at continental scales in high
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resolution allow large-scale research efforts to provide
insights which are locally relevant. A 1× 1 km resolution
data set permits more accurate simulations of carbon and
water fluxes than the currently available 50× 50 km or
10× 10 km resolutions climate data sets (Turner et al.,
1996). Researchers with the ability to address fine scale
issues while maintaining a large spatial outlook may
better assist managers in decision making by providing
information about processes on both local and landscape
scales (Turner et al., 1996; Seidl et al., 2013). Further-
more, climate data at a resolution of 1× 1 km (0.0083∘ or
30 arc seconds) can be used in conjunction with remote
sensing products such as Moderate Resolution Imaging
Spectroradiometer (MODIS) gross primary production
and net primary production products that require such
data for their processing algorithms (Zhao et al., 2005).
Therefore having a climate data set at a 1× 1 km resolution
combined with other data sets or algorithms provides a
better understanding of the spatio–temporal complexities
of European landscapes at various scales.

In Europe, scientists are forced to focus either on
individual countries or regions using national data sets
(Hasenauer et al., 2003; Venäläinen et al., 2005; Maselli
et al., 2012). Another common way to study climate on
larger scales in Europe is to use point data, from weather
stations or flux towers, as representive of larger areas
(Janssens et al., 2001; Ciais et al., 2005). In addition,
research performed at larger scales with low-resolution
data lack the ability to analyse local level climate effects
(Lorenz et al., 2012; Hawkins et al., 2013). However, to
compare climate data from multiple regions of Europe,
some sort of harmonization is required. The aformentioned
data can prevent discrepancies between country boundries
that result from different methodologies and weather
station networks. A unified data set, covering the entirety
of Europe, while maintaining fine-resolution information
would reduce errors, uncertainty, and inconsistencies.

The aim of this study is to advance the current scien-
tific understanding of both local level processeses and
landscape level dynamics by developing a Pan-European
high-resolution climate data set. A lack of accessibility
to primary data collected from weather stations prevents
direct interpolation of a gridded data set with a resolution
of 1× 1 km on a European scale. This limitation makes
downscaling previously interpolated climate data the only
option to create high-resolution data for all of Europe.
The objective of this study is to downscale the E-OBS
data set using WorldClim data (Hijmans et al., 2005).
We produced a new downscaled climate data set which
covers the European continent. It includes daily mini-
mum and maximum temperature and precipitation at a
0.0083∘ (approximately 1× 1 km) resolution for the years
1950–2012. To reach our objective we

1. Create an algorithm to downscale E-OBS data using
WorldClim data.

2. Evaluate random variation and/or error resulting from
the downscaling algorithm.

3. Validate the downscaled results against weather station
data not used in the original E-OBS interpolation.

2. Data

Two data sets were used in the downscaling process:
E-OBS version 8.0 at 0.25∘ resolution (approximately
30 km) obtained on 25 April 2013 and WorldClim version
1.4 release 3 at a 0.0083∘ resolution (approximately 1 km)
obtained on 22 February 2013.

2.1. European Observations

E-OBS is an interpolated gridded daily climate data set
that covers all of Europe, including portions of Russia,
Asia, and Africa from 1950 to the present (Haylock et al.,
2008). Several parameters are included in this data set:
daily mean temperature, maximum temperature, minimum
temperature, precipitation, and sea level pressure. These
data are available on various resolutions including on a
regular grid with 0.25∘ and 0.5∘ resolutions

The E-OBS data set was created using a hybrid approach
of Kriging and a thin-plate spline (Journal and Huijbregts,
1978; Haylock et al., 2008). The authors of E-OBS first
generated monthly means using the spline technique.
Kriging was used to interpolate daily differences from the
monthly mean. This difference was then applied to the
monthly mean to obtain a daily value. E-OBS used 7852
weather stations throughout Europe for the release used
in this study. Only 61% of which were publicly available
to others outside the ENSEMBLE group. E-OBS has an
uneven underlying weather station density across Europe
which creates areas of high and low uncertainty (Haylock
et al., 2008).

2.2. WorldClim

WorldClim is a set of climate surfaces designed to provide
long-term monthly averages of several climate variables
(Hijmans et al., 2005). Every cell has 12 values for each
parameter, one value for each month. These values are the
monthly means over the entire time period that was avail-
able for interpolation. WorldClim monthly mean variables
include minimum and maximum temperature, precipita-
tion, and 19 derived bioclimatic variables, which were
not used in our study. WorldClim data are available at a
0.0083∘ resolution globally.

WorldClim is developed using ANUSPLIN
(Hutchinson, 2004), a thin-plate smoothing spline pro-
cedure as described in Hutchinson (Hutchinson, 1995).
Hijmans et al. (2005), the developers of WorldClim,
obtained input data from various sources globally consist-
ing of 47 554 weather stations. In addition to climate data,
they use two different digital elevation models (DEM) for
interpolation. The two DEMs used were the Shuttle Radar
Topography Mission (SRTM) (Farr et al., 2007) and the
GTOPO30 from the United States Geological Survey
(USGS). Several problems exist associated with the input
data sets. First, the authors of WorldClim note that there
were problems matching weather station elevation with
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DEM elevation; many times they simply did not match.
Second – and relevant to our study – the authors explic-
itly note that obtaining weather station data in Europe
was difficult. Finally, precipitation uncertainty is higher in
mountainous regions. Many studies use WorldClim data
to study ecosystems in areas with a lack of climate data
(Nekola and Brown, 2007; Peterson and Nakazawa, 2007;
Peterson et al., 2007; Hawkins, 2010). Studies have found
the accuracy of WorldClim data varies seasonally (Ezzine
et al., 2014).

3. Methods

3.1. Downscaling procedure

The conceptual framework is to use the fine-resolution
WorldClim data to adjust the course resolution E-OBS
cells to obtain our desired 1× 1 km resolution daily. We
applied a spatial delta method with a monotone cubic inter-
polation of anomalies (Mote and Salathe, 2010; Mosier
et al., 2014).

Columns 118–298 and rows 16–163 of the original
E-OBS gridded data were downscaled due to data storage
and computation limitations. The latitude and longitude of
the upper left corner are 71.33∘N, 10.833∘W and the lower
right hand corner are 34.583∘N, 34.2499∘E.

We used the delta method for downscaling, similar to
the Piecewise Cubic Hermite Interpolating Polynomials
(PCHIP) method described in Mosier et al. (Mosier et al.,
2014). This method uses climate data sets at different
spatio–temporal resolutions to derive a new data set with a
desired spatio–temporal resolution. This specific method
is essentially a monotone cubic interpolation that varies
the calculation of anomalies based on whether we are
calculating temperature or precipitation.

To begin downscaling, in step 1, we upscaled the
WorldClim data to the E-OBS resolution of 30× 30 km
(Figure 1). We averaged the WorldClim cells within each
30× 30 km area for upscaling.

In step 2, we calculated the difference between the
upscaled WorldClim cell and the E-OBS cell (Figure 1).
The calculations in our algorithm for temperature are
different than those for precipitation (Equations (1) and
(2)). The difference in calculations was to prevent neg-
ative precipitation values which can occur with a simple
subtraction:

dT = WC − E (1)

dP = E∕WC (2)

where dT is the difference for temperature, dP is the dif-
ference for precipitation, WC is the upscaled WorldClim
value, and E is the E-OBS value.

In step 3, we step through each cell of the WorldClim
gridded data, one at a time, retrieving the value of the cell
which was then be used in step 5 (Figure 1). This location
was also found on the 30× 30 km difference cells. Note
that WorldClim data are given on monthly time steps and
all calculations used the appropriate month’s data.

During step 4, we calculated the weighted difference of
the selected 30× 30 km cell and that of the three adjacent
30× 30 km cells (Figure 1). These four differences were
weighted by the distance from the downscaling point to
each 30× 30 km cell. We then summed the weighted dif-
ferences for the final difference value. If the downscal-
ing point was in the centre of an E-OBS cell, then it is
influenced only by that cell. If the downscaling point was
located in a cell corner, then it was influenced almost
equally by all four different cells. This avoided artificial
delineations when moving from one E-OBS cell to another.

In step 5, we calculated the final downscaled value using
the original WorldClim value and the summed inverse
distance-weighted difference value from step 4 (Figure 1).
The formulas for final downscaled cell values are

vT = wc − dF (3)

vP = wc × dF (4)

where vT is the final downscaled cell value for daily tem-
perature, vP is the final cell value for daily precipitation,
dF is the sum of the weighted differences, and wc is the
original 1× 1 km WorldClim value.

3.2. Evaluation method

Evaluation of the downscaled and E-OBS data was per-
formed to ensure that no added random variation or
increased error occurred from the downscaling procedure.
The evaluation compared weather station data used to cre-
ate the original E-OBS with the corresponding grid point
in our downscaled data and E-OBS data with (Table 1).

All statistics from Willmott and Matsuura (Willmott
and Matsuura, 2006) were calculated for both E-OBS
and the downscaled data sets (derived data) versus the
corresponding weather station data. We calculate the
mean (x), the minimum, and maximum values of all
three data sets. For E-OBS and the downscaled data, we
calculate the mean biased error (MBE) which equals the
mean difference between the derived data sets and the
weather stations; this value represents the overall bias in
the data set. The mean absolute error (MAE) is the mean
absolute residual between the derived and weather station
data; this value represents the mean residual – whether
above or below – between the derived and the weather
station data. The root mean square error (RMSE) is the
square root of the mean squared residual between the
weather station values and the derived values; this value
is similar to the MAE except that it is more sensitive to
outliers in the residuals. The squared Pearson’s correlation
coefficient (R2) is the measure of the linear relationship
between two data sets. In addition to the Willmott and
Matsuura (2006) statistics, we calculated the linear error
in probability space (LEPS) and the critical success index
(CSI) as calculated in Hofstra et al. (Hofstra et al., 2008).
The LEPS is calculated as such:

LEPS =
|
|Pv − 0.5|| − |Pf − Pv|

0.25
(5)
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Figure 1. Methodology flow diagram for the delta downscaling algorithm.

where Pv is the probability of occurrence of the weather
station value in the weather station data’s cumulative
distribution function (CDF). Pf is the probability of occur-
rence of the derived data value in the weather station
data’s CDF. This particular LEPS equation gives values
from −1 (no skill) to 1 (prefect skill). A 0 value is given
if the median value (probability= 0.5) of the weather
station data is given as a derived value on every data point.
The benefit of using LEPS is that calculating error in
probability space gives better scores to derived values that
come close to extreme observed values and worse scores
to derived value that do not accurately predict median
values. LEPS requires a normal distribution – because in
the precipitation (Prcp) CDF 0 is both an extreme value
and close to the median value – which is not present in
the precipitation data set, therefore we did not provide
an LEPS value for precipitation. For precipitation, we
calculated the CSI which measures the success of the

derived data sets in capturing rain days. CSI is calculated
as such:

CSI = hits
hits + misses + false alarms

(6)

where hits represent the number of days when rain was
observed in the weather station data and predicted in the
derived data. Misses are the number of days when rain
was observed but not predicted, and false alarms are the
number of days when rain was predicted but not observed.
For all variables, we also calculated the CSI for extreme
high and extreme low values. Where extreme high values
are defined as those values above the 95th percentile of
the weather station CDF and extreme low values are those
values below the 5th percentile of the weather station data.
A value of 1 means perfect skill and 0 means no skill.

We used weather station data from Norway, Italy,
Germany, France, and Spain. The weather station data
were obtained from the E-OBS website and cover the
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time period 1951–2012, the same period of time the grid-
ded data covers. We downloaded minimum temperature
(Tmin), maximum temperature (Tmax), and Prcp data for
every available station for each country. We chose these
countries because they cover a large portion of Europe and
span the continental latitudinal gradient. E-OBS current
data portal made obtaining weather station data time
consuming not allowing us to use the entire ENSEMBLE
weather station data set.

Every station was analysed individually using the mean
of each variable over the entire time period. This analy-
sis was spatially explicit but temporally averaged. We also
analysed every individual day averaged over all of the sta-
tions and years. This method is daily explicit but averaged
over space and years. Finally, we also evaluated all avail-
able stations and days averaged together (Table 1).

3.3. Validation method

We validated our downscaled data and E-OBS data with
the corresponding grid cell of weather stations in an
independent data set, from Austria, not used to create the
original E-OBS, as opposed to the evaluation that used
data that were used to create E-OBS. We performed a
validation to assess improvement in accuracy and preci-
sion as a result of downscaling using the same statistics
we described in the evaluation method section. Austrian
weather station data were obtained from the Austrian Cen-
tral Institute for Meteorology and Geodynamics (ZAMG)
and contain all of Austria’s weather stations (Hasenauer
et al., 2003). Twenty-four stations that were used to create
E-OBS were removed (ECA&D provide a list with the
location of stations included in their interpolation). There
were over 430 weather stations used to validate each
variable for the time period 2000–2012. Some of these
stations are replacements and so have identical locations
as their antecedents giving 250 independent locations. The
time period is due to data availability (Table 1). Austria is
a representative country for a European climate validation.
Austria has a heterogeneous landscape caused by the Alps
mountain range, an abundance of large water bodies, and
a location within Europe where it is influenced by Nordic,
Mediterranean, and inner-continental weather patterns. All
of these factors give Austria a very dynamic area on which
to analyse climate. We also chose Austria because of data
availability.

We analysed every weather station individually averaged
daily throughout the entire time period. We also analysed
the daily average over all stations throughout the entire
time period (Figure 6). We used a downscaling algorithm
and not an interpolation of weather stations making a
cross-validation impossible.

4. Analysis and results

Our analysis performs three steps to meet the objectives
of the study. (1) We first visually assess the spatial pat-
tern of the downscaled data compared to the original
E-OBS – to ensure overall continuity between the two

data sets (downscaled gridded data). (2) We evaluate
the downscaled and original E-OBS data versus weather
station data – which were used in the original E-OBS
interpolation – for any change due to downscaling (eval-
uation). (3) We validate the downscaled and original
E-OBS data versus weather stations that were not used in
the original E-OBS interpolation. The validation analyses
accuracy and error by quantifying any change that arose
from the downscaling process (validation).

4.1. Downscaled gridded data

We produced gridded data of minimum temperature,
maximum temperature, and precipitation of Europe at a
1× 1 km resolution on a daily time step from year 1950
until 2012. The downscaling procedure should enhance
local level climate features, such as those created by
topography, while maintaining the continental scale pat-
tern of E-OBS. We ensure continental scale continuity
between our downscaled data and the original E-OBS by
visually assessing gridded data examples for differences
and plotting the CDF of both gridded data.

As the data set contains over 54 000 daily gridded data,
we assessed a yearly average gridded data set to test the
visual differences between the original and downscaled
gridded data. No visual differences are apparent in spa-
tial pattern between the original and downscaled versions
(Figure 2(a) and (b)). Further, the value ranges of both
gridded data are similar (−9 min, 29 max). The CDFs of
both data sets indicate that the downscaling did not affect
the overall values (Figure 2(c)). The overlay of the CDFs
demonstrates that at the continental scale both gridded data
have the same distribution of values.

Next, we were interested in how our procedure affected
local scale climate features; thus we focused on the Iberian
Peninsula centred on Madrid, because of its local scale
climatic differences caused by elevation variation, to
enhance the visible effect of the downscaling (Figure 3).
Figure 3 shows that there are much finer scale temperature
features, caused by the incorporation of elevation effects,
in the downscaled version than in the original. Figures 2
and 3, therefore, indicate that we have increased local
level features while maintaining the overall continental
scale pattern.

As explained in the methods section, downscaling
precipitation uses different equations than downscaling
temperature. Thus, we sought to ensure that downscaling
precipitation had also maintained the continental scale
pattern. Visually, both the E-OBS, the downscaled map
and value ranges of precipitation are the same (Figure 4(a)
and (b)). When viewed at this continental scale, the
local level effects of downscaling are already apparent as
Figure 4(b) appears sharper than Figure 4(a). The CDF’s
of both data sets are almost identical at this scale as they
overlay one another (Figure 4(c)).

4.2. Evaluation

The evaluation examines change that occurred during the
downscaling procedure at the points used to create E-OBS.

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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(a) (b)

(c)

Figure 2. (a) Original E-OBS average daily Tmax for year 2001. (b) Downscaled average daily Tmax for year 2001. (c) Cumulative distribution function
of average daily Tmax for year 2001 (downscaled climate data, solid; original E-OBS, dotted). The lines overlay one another.

E-OBS’ spline-based spatial interpolation and weather
station density indicate that E-OBS should accurately
represent the station points. The downscaling algorithm
may modify every point on the gridded data not knowing
which points were used for the E-OBS interpolation.
The sparse density of the weather station network used
to interpolate the original E-OBS means that the cells

will have values close to that of the weather station data;
therefore, we assume high confidence in E-OBS data at
locations of weather stations used for the original E-OBS
interpolation. There is a chance that we can reduce accu-
racy through downscaling at those points because our
algorithm has no knowledge of the location of weather
stations.

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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Figure 3. Original E-OBS average daily Tmax and downscaled average daily Tmax for year 2001.

The results show that accuracy consistently remained
equal between the two data sets. For all countries, the
results show similar variation and error between the orig-
inal and downscaled data (Table 1, Figure 5). The greatest
overall difference in MBE is 0.1 ∘C in both minimum
and maximum temperature. Precipitation is underesti-
mated in both the original E-OBS and the downscaled
version by 0.1 mm per weather station per year. However,
the similarities between the two data sets are different
for individual countries. Northern countries have more
similarities than southern countries between the original
and the downscaled data sets. RMSE and bias (MBE)

for Germany and France improve or remain the same for
all measures across all variables, with the exception of
Tmax in Germany which has a higher root mean RMSE
and lower R2 value. Downscaled data set for Norway
has an increase in bias and a decrease in R2 values but
a decrease in RMSE for temperature. Although the R2

values drop, they still remain over 0.9. Precipitation for
Norway improves with downscaling (Table 1, Figure 5).

The LEPS values for all evaluation stations remain the
same after downscaling at 0.77 and 0.76 for Tmin and Tmax,
respectively. The LEPS values of the individual countries
all increase or remain the same after downscaling with the
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Figure 4. (a) Original E-OBS average daily precipitation for year 2001. (b) Downscaled average daily precipitation for year 2001. (c) Cumulative
distribution function of average daily precipitation for year 2001 (downscaled climate data, solid; original E-OBS, dotted). The lines overlay one

another.

exception of Tmin of Spain which decreases from 0.51 to
0.45. The Prcp CSI values for of all evaluation stations
remain the same after downscaling at 0.75. The CSI low
values of all evaluation stations for all variables remain
the same after downscaling. The CSI high values increase
for all variables with the largest increase in Prcp from 0.42
in the original E-OBS to 0.52 in the downscaled version.

Spain and Italy have high bias and error and low R2

values for precipitation in the original and downscaled data

sets. Minimum temperature in Spain has high RMSE and
low R2 values in both the original and downscaled data
sets. In Spain and Italy, for every variable downscaling
created higher bias and RMSE and lower R2 values than
the original data.

Seasonally E-OBS underestimates temperature in the
winters and overestimates in the summer. The tempera-
ture seasonality difference for both the original and down-
scaled data sets never exceeds 0.01 ∘C. The modelled
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Figure 5. Evaluation of E-OBS and downscaled data against weather station data from Norway, Germany, France, Spain, and Italy. All of these
stations were used to create E-OBS. Minimum temperature, maximum temperature, and precipitation are shown. Left column gives daily averages
for years 1950–2012 of all stations. Right column shows weather station data (x-axis) versus E-OBS and downscaled data (y-axis). Size of downscaled
points indicates the elevation of the station at that point. The colour of the downscaled points (circles) indicates latitude of the corresponding weather

station.
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data sets consistently underestimate precipitation season-
ally but never more that by 0.0025 mm per day. Down-
scaled daily precipitation is consistently more accurate
than E-OBS (Figure 5).

The scatter plot in Figure 5 shows that both the original
E-OBS and the downscaled version (interpolated data)
minimum temperature values best fit weather station
data between 1 and 7 ∘C. Interpolated data minimum
temperature becomes more accurate towards lower eleva-
tions and towards higher latitudes (Figure 5). Maximum
temperature is accurate for all temperatures and latitudes
however elevation greatly affects accuracy – with lower
accuracies occurring at high elevations. Precipitation data
have higher accuracy at lower values of precipitation.
Interpolated data precipitation is more accurate at higher
latitudes and underestimates at lower latitudes. Precip-
itation accuracy is higher at lower elevations. For all
variables, the fit lines for both data sets are similar and
close to the 1 to 1 line (Figure 5).

At grid points with weather stations used to produce
E-OBS, the downscaling maintains or improves upon the
error already incorporated in the original E-OBS data set
(Table 1). This evaluation confirms that our downscaling
algorithm does not increase error at grid points with which
we have high confidence in the original E-OBS.

4.3. Validation

We validated the new data set against an independent data
set of over 400 Austrian weather stations that were not
used in the original E-OBS interpolation. Downscaled
variables have R2 values of 0.77 or better, a bias of 5%
or lower, and an RMSE of 5% or less (Table 1). We
improve the bias for Tmax, Tmin, and Prcp by 89, 65, and
60% and the RMSE by 29, 11, and 2%, respectively. R2

values increase for Tmax, Tmin, and Prcp by 24, 20, and 3%
respectively. All downscaled variables improve compared
to the original E-OBS (Table 1, Figure 6).

The LEPS values of Tmin and Tmax both increased with
downscaling by 9 and 21%, respectively. The CSI low
score for Tmin did not improve much with downscaling
with a score of 0.47. The Tmin CSI high score did improve
from 0.31 to 0.41. Both CSI scores for Tmax improved from
0.39 to 0.51 for the CSI low and from 0.29 to 0.46 for the
CSI high. The CSI score for Prcp decreased from 0.54 to
0.51. The Prcp CSI low score remained constant at 0.6. The
Prcp CSI high score improved from 0.12 to 0.16.

The seasonal pattern of precipitation matches the
weather station data (Figure 6). The absolute values yield
the greatest improvement through downscaling in the
winter (Figure 6). The downscaled daily values of both
Tmin and Tmax improved over the original E-OBS values
(line graphs Figure 6). Individual station precipitation has
higher accuracy at lower absolute values. Precipitation
accuracy appears to be independent of elevation and
latitude (scatter plots Figure 6). For individual stations,
the downscaled precipitation values only slightly changed
from the E-OBS values. Although the fit line of the down-
scaled data is further from the 1 to 1 line than the E-OBS

fit line, all other metrics show a slight improvement
in precipitation values due to the increase in temporal
accuracy (Table 1, Figure 6).

Both Tmin and Tmax have a visible temporal improvement
with the downscaled curve overlaying that of the weather
stations (Figure 6). This pattern is consistent across
seasons with no seasonally dependent error (line graphs
Figure 6). When viewing individual stations (scatter plots
Figure 6), minimum temperature has increased accuracy
through downscaling, primarily, by increasing values that
were underestimated by E-OBS. Elevation and latitude do
not affect the accuracy of downscaled Tmin (scatter plot
Figure 6). The original E-OBS data set tends to underes-
timates Tmin to a greater extent relative to the downscaled
data (Table 1, Figure 6). The greatest improvement from
downscaling can be seen in Tmax. The downscaled fit
line overlays the 1 to 1 line. The downscaled Tmax values
have almost no error as compared to E-OBS values. The
magnitude temperature values, elevation, and latitude do
not affect the accuracy of the downscaled values, whereas
the E-OBS values have more error towards higher temper-
atures. The original E-OBS had a consistent bias towards
underestimating both Tmin and Tmax which is removed
through downscaling (Table 1, Figure 6).

5. Discussion

A lack of access empirical data from weather stations
makes downscaling the original E-OBS data set only
option to create a higher resolution gridded data that spans
Europe. It is only possible to download 77% of all the
weather stations’ data sets used to create E-OBS. We
were only able to obtain weather station data not used
in E-OBS from one country, Austria, which we used for
validation. The method we used for downscaling, the
delta method, is designed to integrate various data sets
with different temporal/spatial scales (Mote and Salathe,
2010; Mosier et al., 2014; Reeves et al., 2014). Although
the delta method has been used in numerous studies, its
application must be customized to cater to each study’s
unique parameters which inevitably have slightly different
temporal and spatial resolutions.

We produced a downscaled climate data set that
increases local scale accuracy while maintaining the
continental scale patterns of the E-OBS data set (Figures 2
and 4). Averaged over five countries that span Europe’s
latitudinal gradient, the new data set maintains the bias and
error at points used to create the original E-OBS (Table 1,
Figure 5). In Austria, at grid points that contain weather
stations not used in the original E-OBS derivation, the
downscaling improves all climate variables as shown in
our validation (Table 1, Figure 6).

Our downscaling algorithm utilizes the strengths of both
input data sets. E-OBS was derived by a Kriging/spline
method accounting for distance relationships and expert
knowledge. E-OBS provides daily values that are designed
for the continental scale. WorldClim’s monthly climate
surfaces use an interpolation technique with DEMs
(SRTM, GTOPO30) incorporating elevation effects on

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)



A. MORENO AND H. HASENAUER

Figure 6. Validation of E-OBS and downscaled data against weather station data from Austria. None of these stations were used to create E-OBS.
Minimum temperature, maximum temperature, and precipitation are shown. Left column gives daily averages for years 2000–2012 of all stations.
Right column shows weather station data (x-axis) versus E-OBS and downscaled data (y-axis). Size of downscaled points (circles) indicates the

elevation of the station at that point. The colour of the downscaled points indicates latitude of the corresponding weather station.

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)



SPATIAL DOWNSCALING OF EUROPEAN CLIMATE DATA

climate. The primary benefit of the downscaling method
we used is the incorporation of elevation, through World-
Clim, into the E-OBS daily climate data. Temperature is
strongly influenced by elevation (through its lapse rate)
more so than precipitation. However, one cannot apply
a single lapse rate in every location for every day of the
year. Lapse rates vary by elevation, latitude, weather type,
and season (Stone and Carlson, 1979; Blandford et al.,
2008). Lapse rates for precipitation, in particular, are not
constant through seasons, regions, or across scales (Daly
et al., 1994). Therefore, it is beneficial to incorporate
WorldClim into E-OBS because it is based on real world
observations (which capture mean local lapse rates), has
monthly values, is spatially explicit, and represents the
average weather conditions over an extended time period.
Because of the nature of the delta method, however, the
base ratios between downscaled cells – lapse rates – only
change by month and not from year to year.

Table 1 shows that the MBE, for the majority of vari-
ables and countries in the evaluation, improved or retained
its previous value through downscaling. This result was
also found by Mosier et al. (Mosier et al., 2014) when
comparing downscaled data against stations that were used
within the WorldClim interpolation. The R2 values are all
above 0.64 except for Tmin and Prcp in Spain and Prcp
in Italy. E-OBS had weather stations in these countries
that are not publicly available and thus not available for
our evaluation. During interpolation, these station values,
to which we have access, may have been smoothed by
incorporating stations to which we do not have access. It
is also important to note that across all statistical measures
aggregating all countries together improves both data
sets. This again indicates that E-OBS was designed for
continental scale studies.

The temperature LEPS values indicate that the down-
scaled version did not affect the accuracy of E-OBS in
probability space meaning that it has the same ability to
predict both median values as well as more extreme values
as the original E-OBS. The CSI high values increase for
all evaluation stations for all variables. This indicates that
downscaling has a positive effect on the data set’s ability
to match extreme high values. CSI values for all variables
for all evaluation stations indicate that the downscaled
version captures extreme values more than half of the
time. Prcp CSI values show that the downscaled version
captures rain days 75% of the time. Prcp CSI low values
are slightly higher than the Prcp CSI values, indicating
that when the downscaled data have a false alarm for a
rain-day, it is at least only a low amount of Prcp.

At weather station points not used to create E-OBS,
in Austria, the greatest improvement from downscaling
is in temperature. This is most likely because of the
large effect incorporating elevation into the climate data
has on temperature as compared to precipitation. Of all
variables, downscaled precipitation has the least improve-
ment. The original WorldClim authors’ (Hijmans et al.,
2005) explicitly state that they had difficulty in modelling
precipitation in mountainous regions. This weakness
in WorldClim can explain the lack of improvement in

precipitation from our downscaling algorithm when com-
pared against data from a mountainous country such as
Austria. Also, we do not perform any new climatological
calculations, such as convective precipitation, so we
will not capture small precipitation events that were not
captured by E-OBS.

The LEPS scores for minimum and maximum temper-
ature of Austria show a positive response to downscaling
increasing by 0.05 and 0.13, respectively. This increase in
LEPS values along with the decrease in MAE values due
to downscaling lead to the conclusion that the downscaled
version not only more accurately captures mean tempera-
ture values but also extreme values than does the original
E-OBS. The CSI score for extreme lows and highs of
temperature all improved with downscaling as well. This
is to be expected as our method increase/decreases tem-
perature from the E-OBS values which can be interpreted
as a mean of the larger area. However, the CSI values
for high and low extremes of minimum and maximum
temperatures indicate that we still only capture extreme
values from 41 to 51% of the time.

The CSI values for precipitation in Austria, on the other
hand, have a weaker response to downscaling than temper-
ature. This lack of response is again a demonstration that
our method of integrating elevation into the E-OBS data
set has more influence on temperature than precipitation.

Considering the daily graphs and the stations scatter
plots of Austria together, we show that those errors which
occur at individual stations get cancelled out when viewed
over time (Figure 6). Thus, the original E-OBS data repre-
sent data on the country scale but have much higher error
when viewed on a local level. It also shows that at both
the local and country scales the downscaled data perform
better.

Many studies have used E-OBS to examine various
aspects of European ecosystems, making it a widely used
and recognized data set (Ziello et al., 2009; Hirschi et al.,
2010; Gottfried et al., 2012). Other studies have also
examined the validity of E-OBS data itself (Hofstra et al.,
2009; Kysely and Plavcova, 2010). These studies com-
pare E-OBS with national gridded climatology or selected
weather stations. They found various biases and errors in
both temperature and precipitation. Examples of such find-
ings include low levels of precipitation, higher error of
precipitation in mountainous regions, and incorrect tem-
perature. Hofstra et al. (2009) reports RMSE of tempera-
ture of 0.7–0.9 ∘C and RMSE of 0.85–0.92 mm for Prcp
in the United Kingdom and RMSE of 5.77 mm for Prcp
in the Alps. Hofstra et al. (2009) also reports that over the
Alps both absolute error and error as a percent of abso-
lute Prcp are both higher than Prcp error in the United
Kingdom. This finding from Hofstra et al. (2009) along
with the assertion of Hijmans et al. (2005) that WordClim
does not capture all variation in mountainous precipita-
tion shows that our data will our downscaled precipita-
tion data will also have higher area in mountainous areas.
One other source of error in the precipitation data that was
not addressed in our study was that of precipitation fre-
quency. We only changed the magnitude of an existing
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rain event. We did not create rain events not included in
E-OBS.

Maselli et al. (2012) created a locally downscaled
E-OBS data set for Italy, by applying a regression function
for downscaling calibrated for their area of study. They
validated their data against ten Italian weather stations
for the time period 2000–2009. The authors do not state
whether the stations used for analysis were used to create
E-OBS or are an independent data set. Our validation
against Austrian weather stations and our evaluation of
Italian data show reduced bias (MBE) and RMSE for all
variables. The Italian downscaled data improve the bias of
only the maximum temperature values. As a comparison,
the Italian data have an MBE over all stations for minimum
temperature of 3.0 while our MBE is 0.2 for Austria and
1.3 for Italy. However, compared to the Italian data, our
RMSE values tend to be higher for precipitation and max-
imum temperature but lower for minimum temperature.

Compounding errors from both of our input data sets,
E-OBS and WorldClim, exist and are difficult to quan-
tify. We only downscale grid points that have both World-
Clim and E-OBS values. This creates data limitations,
mostly from E-OBS, primarily around the coastline mak-
ing them artificially square. Additionally, a lack of sta-
tions in mountainous regions used in our input data sets
makes our knowledge of the accuracy in Alpine regions
weaker than in other regions. Also, assumptions were
made reading ambiguous weather station data in E-OBS,
such as inconsistencies in the data collection date and
time (Haylock et al., 2008), which could result in falla-
cious local scale E-OBS outputs and gives less confidence
in the weather station data. Also, contradictory elevation
data between stations and DEM’s used to create World-
Clim further weakens confidence in Alpine areas (Hijmans
et al., 2005). The extremes of the downscaled data are
most likely too conservative as this is also true in E-OBS
(Haylock et al., 2008). Incorporating WorldClim will most
likely not increase the likelihood of capturing extreme val-
ues – which is an increasingly more important aspect of
climate data to capture – as WorldClim is itself only a
mean value over a long timeframe (Schär et al., 2004). This
downscaling method still suffers from the lack of weather
station density inherited from both input data sets.

6. Conclusion

We have used the delta method to incorporate E-OBS
data (0.25∘ × 0.25∘ resolution, daily) and WorldClim data
(0.0083∘ × 0.0083∘ resolution, monthly climate surface) to
produce a new downscaled climate data set, which covers
Europe and includes maximum temperature, minimum
temperature, and precipitation on a daily time step at
a 0.0083∘ × 0.0083∘∘ resolution (approximately 1× 1 km)
from 1950 to 2013. This data set will be updated as new
E-OBS versions are released. Scientists can use one data
set to do research in various areas of Europe at a local level
and have results be directly comparable allowing studies
of important environmental and economic issues at a local

level over a larger landscape than previously possible. We
did not increase random variation or error at points used
to make the original E-OBS as a result of the downscaling
process. The downscaled data also have a higher accuracy
and precision than the original E-OBS data at weather
stations not used in the original E-OBS interpolation. One
major benefit of the method we used for downscaling is
that because WorldClim is a global data set, this method
can be applied anywhere in the world that already has a
low-resolution gridded climate data set.

The most accurate climate data sets with fine resolutions
are most likely the national climate data sets; however,
those are often difficult, costly, or impossible to obtain and
inherently only cover the spatial extent of their particular
country. We created these data for those researchers who
desire a continental scale data set with a fine resolution and
for policy makers or land managers who need locally rel-
evant information on large scales that cross countries and
regions in Europe. A better solution would be a European
wide interpolation at this resolution such as those that have
been done in the United States for over 20 years. However,
current infrastructure, policy obstacles, and data sharing
culture make such an interpolation with a reasonable level
of accuracy unattainable. Until a more coherent, consis-
tent, and open access weather station network is available,
downscaling is the only option to create gridded data at this
resolution for Europe. This entire data set can be obtained
at ftp://palantir.boku.ac.at/Public/ClimateData.
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Europe
National and international carbon reporting systems require information on carbon stocks of forests. For
this purpose, terrestrial assessment systems such as forest inventory data in combination with carbon
estimation methods are often used. In this study we analyze and compare terrestrial carbon estimation
methods from 12 European countries. The country-specific methods are applied to five European tree
species (Fagus sylvatica L., Quercus robur L., Betula pendula Roth, Picea abies (L.) Karst. and Pinus sylvestris
L.), using a standardized theoretically-generated tree dataset. We avoid any bias due to data collection
and/or sample design by using this approach. We are then able to demonstrate the conceptual differences
in the resulting carbon estimates with regard to the applied country-specific method. In our study we
analyze (i) allometric biomass functions, (ii) biomass expansion factors in combination with volume
functions and (iii) a combination of both. The results of the analysis show discrepancies in the resulting
estimates for total tree carbon and for single tree compartments across the countries analyzed of up to
140 t carbon/ha. After grouping the country-specific approaches by European Forest regions, the devia-
tion within the results in each region is smaller but still remains. This indicates that part of the observed
differences can be attributed to varying growing conditions and tree properties throughout Europe.
However, the large remaining error is caused by differences in the conceptual approach, different tree
allometry, the sample material used for developing the biomass estimation models and the definition
of the tree compartments. These issues are currently not addressed and require consideration for reliable
and consistent carbon estimates throughout Europe.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Forests play an integral role in the global carbon cycle. Accord-
ing to the Food and Agriculture Organization (FAO, 2013), forests
cover about 31% of the land surface area. Forests store about 2.4
Pg of carbon per year (Pan et al., 2011) and sequester about 30%
of the current global CO2 emissions, thus reducing the atmospheric
CO2 concentration by almost a third (Canadell et al., 2007). In the
past the production of timber and fuel wood was the primary
objective of forest management (FOREST EUROPE, UNECE, FAO,
2011). Today non timber forest ecosystem services such as clean
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air and water, protection against natural hazards, and biodiversity
are of increasing interest (EUROSTAT, 2012). Following the Kyoto
Protocol the forest’s ability to store carbon and produce renewable
energy in the form of biomass became a focal point in natural
resource management. Within Europe (EU-27), 18.3% of the energy
is generated from renewable sources, with 67.7% of that consisting
of biomass (including renewable waste; EUROSTAT, 2012).

The increasing demand on European forests and their services
requires consistency in forest information and monitoring. The pri-
mary source of forest information is produced by National Forest
Inventories (NFIs), which often vary in terms of their conceptual
approaches, sampling designs and data collection systems
(Tomppo et al., 2010). Aside from more traditional applications
such as monitoring forest resources and the sustainability of for-
estry, NFI data are of increasing interest for assessing the role of
forests in the carbon cycle (e.g., for Kyoto reporting or future
climate-related treaties such as the REDD+ Programme; Mohren
et al., 2012).

Forest inventories record tree data which are, in turn, used for
estimating standing timber volume in m3/ha. The same tree
measures can be used to derive total biomass or carbon content
of forest ecosystems in t/ha. Biomass is the dry weight of wood
estimated for constant conditions (i.e., oven dried wood samples
until a constant weight is reached; Bartelink, 1996; Repola, 2008,
2009 or Cienciala et al., 2006). Carbon accounts for approximately
half of this oven dried biomass, which consists mainly of polysac-
charides such as cellulose, lignin and hemicellulose (Lamlom and
Savidge, 2003; McGroddy et al., 2004).

Two conceptually different approaches are used to assess carbon
stocks of forests: (i) the biogeochemical-mechanistic approach,
and (ii) the statistical empirical approach. The biogeochemical-
mechanistic approach is based on physiological principles of
carbon uptake through photosynthesis and carbon loss due to the
respiration and decomposition processes. This approach uses
energy, water, and nutrient cycles to determine the carbon fluxes
of an ecosystem. This method is implemented in large scale carbon
cycle models and requires soil data, daily climate information and
ecophysiological parameters for the given vegetation or forest
ecosystem.

Carbon related outputs include GPP (Gross Primary production),
NPP (Net Primary production) as well as stem, root or leaf carbon.
Any comparison with terrestrial data such as forest inventory data
requires a transfer function (Eastaugh et al., 2013), i.e., converting
the model output carbon into tree volume (usually biomass expan-
sion factors). These principles have been implemented in large
scale carbon cycle models to circumvent the problem of missing
terrestrial data and to provide methodologically consistent carbon
cycle information for large regions, continents or even for the
whole globe (VEMAP Members, 1995). Examples of models that
use such an approach are BIOME BGC (Thornton, 1998; Thornton
et al., 2002; Pietsch et al., 2005), CLM (Lawrence et al., 2011) and
C-FIX (Veroustraete et al., 2002). A related product, known as the
MOD17 product, implements key components of BIOME BGC with
additional use of satellite data and provides GPP and NPP estimates
on a 0.0083� � 0.0083� resolution (approx. 1 � 1 km) for the whole
globe (Running et al., 2004; Zhao and Running, 2010).

The statistical empirical approach is probably more commonly
used in forestry, since it was developed earlier than the biogeo-
chemical approach and requires terrestrial data such as forest
inventory data (Tomppo et al., 2010). With this approach, biomass
and carbon are estimated by applying (i) allometric biomass
functions and/or (ii) biomass expansion factors.

Allometric biomass functions use tree variables such as diame-
ter at breast height and/or tree height for estimating tree biomass.
The share of carbon is then estimated using tree carbon frac-
tion factors. In contrast, when using biomass expansion factors,
conversion factors are used to transform tree volume into biomass.
Volume functions must be used before the application of the
expansion factors.

These statistical principles in deriving terrestrial biomass and
carbon are also implemented in tree population models such as
succession or gap models and typical tree growth models.
Predicted volume or tree dimensions such as diameter or height
serve as input parameters to apply either biomass functions or
biomass expansion factors for calculating the terrestrial biomass
in t/ha. Typical examples are succession models like PICUS (Lexer
and Hoenninger, 2001; Seidl et al., 2005), LANDCARB (Mitchell
et al., 2012), the matrix model EFISCEN (Nabuurs et al., 2000) or
tree growth models such as MOSES (Hasenauer, 1994), PROGNAUS
(Sterba and Monserud, 1997), SILVA (Pretzsch et al., 2002) or
BWINPro (Nagel, 1999).

Allometric biomass and volume functions as well as biomass
expansion factors are derived empirically from tree sampling.
Destructive sampling, extensive field and lab work are needed to
obtain biomass data for the different tree compartments – stem,
branches, roots and foliage. Based on these sample data, general-
ized statistical functions for the different tree compartments or
expansion factors are developed and applied to inventory data.
Every region or country has different resulting functions and
factors (e.g. for Austria Pollanschütz, 1974; for Romania Giurgiu
et al., 1972; for Sweden Marklund, 1988; for Finland Repola,
2008, 2009 or for France Vallet et al., 2006). Examples for biomass
functions developed for larger regions are Wirth et al. (2004),
Muukkonen (2007) or Wutzler et al. (2008). The resulting biomass
and carbon estimates strongly depend on the samples, but also on
the chosen conceptual approach (i.e., whether biomass functions or
biomass expansion factors are used).

Previous studies have shown that throughout many parts of the
world, the calculation methods have a large impact on the results
for biomass and carbon, both for trees and for tree compartments
(Araújo et al., 1999 for Brazil; Westfall, 2012 and MacLean et al.,
2014 for Northeastern United States; Guo et al., 2010 for China;
Jalkanen et al., 2005 for Sweden, or Thurnher et al., 2013 for
Austria). This supports the necessity for a similar study for Europe;
however such a study was not done until now.

In Europe, National Forest Inventory data is commonly used for
country reporting for international statistics and programs such as
the Forest Resource Assessment Program for the Food and Agricul-
ture Organization (FAO), or the Land Use, Land-Use Change and
Forestry (LULUCF) report for the United Nations Framework Conven-
tion on Climate Change (UNFCCC; Tomppo et al., 2010). However,
consistent calculation methods are required to be able to integrate
and assess data from various countries for the purpose of assessing
climate change mitigation or carbon sequestration potential in
European forests (McRoberts et al., 2009; Ståhl et al., 2012).

The purpose of this study is to analyze the different carbon
estimation methods covering 12 different countries across Europe
and assess the impact of the methodological differences in deriving
biomass estimates. Five important tree species in Europe are selected
for comparison (Fagus sylvatica, Quercus robur, Betula pendula, Picea
abies and Pinus sylvestris). We are specifically interested in

(i) compiling and assessing country-specific calculation meth-
ods for deriving biomass and carbon from NFI data; and

(ii) quantifying the effect of the various calculation methods on
resulting biomass and carbon estimates using a standardized
theoretical data set.

2. Methods

Europe’s forests consist of a variety of ecological and climatic
conditions covering different tree species. For our study we select



Table 1
Summary on calculation Methods (AF = allometric biomass functions, BEF = biomass
expansion factors and volume functions, combi = combination of AF and BEF) and
used Variables in the calculations (DBH = diameter at breast height, H = tree height,
CR = crown ratio, A = tree age, V = aboveground tree volume), variables in brackets
indicate that this variable is only used in some functions.

Region Country Method Variables

North Europe Finland AF DBH, H, (CR)
Norway AF DBH, (H)

Central-West Europe Austria combi DBH, (H, CR, A)
Belgium combi DBH, (H)
France BEF DBH, (H)
Germany combi DBH, H, (V, A)
Netherlands BEF DBH, A, (H)

Central-East Europe Czech Republic combi DBH, (H)
Poland AF DBH, (H)
Romania BEF DBH, H, A

South Europe Italy AF DBH, H
Spain AF DBH, (H)
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5 species considered to be important European tree species
because they have a large distributional range and a high ecologi-
cal and economic value. The selected deciduous tree species are (i)
F. sylvatica L. (European beech), (ii) Q. robur L. (Pedunculate oak)
and (iii) B. pendula Roth (Silver birch) and the two coniferous spe-
cies, (iv) P. abies (L.) Karst. (Norway spruce) and (v) P. sylvestris L.
(Scots pine).

Q. robur also includes Quercus petraea L. and B. pendula includes
Betula pubescens Ehrh., since these species are similar in terms of
genetics, shape and properties and thus are usually not distin-
guished from one another by NFI systems or biomass studies
(e.g., Muukkonen, 2007; Repola, 2009; Giurgiu et al., 1972;
Ledermann and Neumann, 2006).

Within Europe, each country has its own statistical empirical
approach for deriving carbon estimates from National Forest
Inventory data (Tomppo et al., 2010). We obtain each of these
procedures for our comparative analysis. Below, we describe the
methods employed for the 12 countries. For a detailed presenta-
tion, by country, we refer to Appendices A–M.
2.1. General carbon calculation approach

Biomass is commonly estimated by separate tree compartments
(e.g. Wirth et al., 2004; Seidl et al., 2005; Pietsch et al., 2005;
Thurnher et al., 2013). We consider four tree compartments for
estimating biomass: (i) stem, (ii) branches, (iii) foliage, and (iv)
root (including stump). The general equation for calculating total
tree carbon can be expressed as:

Ctree ¼ CC � ðdsmþ dbmþ dfmþ drmÞ ð1Þ
where Ctree is the total carbon content of a tree [kg], CC is the carbon
fraction [kg/kg] given for each country in Appendix A, dsm is the dry
stem biomass [kg], dbm is the dry branch biomass [kg], dfm is the
dry foliage biomass [kg] and drm is the dry root biomass [kg]. For
each country the species specific carbon calculation methods are
compiled (see Appendices A–M).

2.2. Carbon calculations by country

European forests cover a wide range of environmental condi-
tions, as well as large elevation and latitudinal gradients. According
to FOREST EUROPE, UNECE, FAO (2011) suggestions to limit the
range of these environmental, elevation and latitudinal gradients,
we cluster the 12 countries which provide biomass estimation
methods for our study into four geographic regions: North Europe,
Central-West Europe, Central-East Europe, and South Europe. The
underlying assumption is that countries within each region should
have similar climatic and biophysical conditions for tree growth
and we expect that this will reduce the variation in tree allometry.
Table 1 summarizes the 12 country-specific carbon estimation
methods and the required tree variables.

All carbon calculation methods use diameter at breast height
(DBH) and tree height (H) as input variables. In five countries (Fin-
land, Austria, Germany, the Netherlands, and Romania) additional
variables are used: crown ratio (CR), aboveground volume (V),
and tree age (A). Six methods use allometric biomass functions,
three use biomass expansion factors and four use a combination
of both (see Table 1). The carbon calculation method, by country,
including the coefficients and the definitions of the tree compart-
ments are given in Appendices A–M. Below, we give a brief
summary by region.

2.2.1. Northern Europe
Two countries, Finland and Norway, belong to Northern Europe.

In Finland (also representing Estonia) the allometric biomass
functions use DBH, tree height, and crown ratio. The models devel-
oped for Finland obtain carbon from biomass with a constant
carbon fraction of 0.5 (see Appendix B). The carbon estimation
approach of Finland is also applied in Estonia since forest biomass
functions for Estonia are currently under development (Uri et al.,
2010).

The Norwegian methodology uses allometric biomass functions.
The method for Norway was developed in Sweden (Marklund,
1988; Petersson and Ståhl, 2006). The models use DBH and tree
height as variables (see Appendix C).

F. sylvatica is not native in Finland or Norway, thus it is excluded
from the analysis for Northern Europe.

2.2.2. Central-Western Europe
Five countries, Austria, Belgium, France, Germany and the

Netherlands, belong to Central-Western Europe. The biomass
calculation in Austria uses a combination of species-specific form
factor functions, biomass expansion factors, and allometric
biomass functions. The allometric biomass functions for branch
biomass use crown ratio as an additional input variable
(Ledermann and Neumann, 2006), while the functions for root
biomass use tree age (Wirth et al., 2004). The volume and branch
biomass functions use data from Austria, while the foliage and root
biomass function obtain their data from other Central European
countries (see Appendix D).

The Belgian biomass calculation method is a combination of
volume estimation, expansion factors, and allometric biomass
functions. The volume prediction (Dagnelie et al., 1985) and the
biomass functions of P. abies depend on DBH and tree height. All
other biomass functions use only DBH as input variable. The
volume calculation method and most of the biomass functions
mainly use data from Belgium. Some biomass functions are
obtained from other countries such as Austria, the Czech Republic,
Germany, France, and the Netherlands (see Appendix E).

In France, the biomass calculation method combines volume
functions with biomass expansion factors derived from samples
in France (INRA, 2004). Foliage biomass is assumed to be a constant
proportion of total biomass (see Appendix F). For all species in
France a carbon fraction of 0.475 is used (see Appendix A), which
differs from most other countries.

In Germany, a combination of volume functions, biomass
expansion factors and allometric biomass functions is applied.
The volume calculation is implemented in the program BDAT 2.0
(Kublin, 2002). The expansion factors for tree volume vary by tree
age and the expansion factors for root biomass vary by above-
ground biomass (see Appendix A). The models (except foliage
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biomass) are developed with sample material from Germany (see
Appendix G).

The method for the Netherlands uses allometric biomass func-
tions to calculate aboveground tree biomass. Aboveground bio-
mass is then separated into tree compartments with proportional
biomass fractions. The biomass fractions are derived from tree
age and are calculated based on the allometric biomass functions
of the EFISCEN project (Schelhaas et al., 1999; Vilén et al., 2005).
The biomass calculations for aboveground biomass and the fraction
coefficients come from sample material across Europe and the
European part of Russia (see Appendix H).
2.2.3. Central-Eastern Europe
Three countries, Czech Republic, Poland, and Romania, belong

to Central-Eastern Europe. The Czech Republic biomass calculation
method is similar to Austria and Belgium, using a combination of
volume functions, expansion factors, and allometric biomass
functions. The functions were developed based on sample
material from the Czech Republic or former Czechoslovakia (see
Appendix I).

In Poland, allometric biomass functions are used for above-
ground biomass and expansion factors for belowground biomass.
The functions are developed with sample data from Poland,
Finland and Central Europe (see Appendix J).

The calculation in Romania uses a combination of volume
functions, biomass expansion factors and biomass fractions similar
to the Netherlands. The volume functions based on data from
Romania (Giurgiu et al., 1972) provide tree volume. After applying
biomass expansion factors, the biomass of tree compartments is
estimated using biomass fractions from the EFISCEN project
(Schelhaas et al., 1999; Vilén et al., 2005) (see Appendix K).
2.2.4. Southern Europe
Two countries, Italy and Spain, belong to Southern Europe. Italy

uses allometric biomass functions developed with sample material
from Italy for aboveground biomass and expansion factors for root
biomass (see Appendix L).

In Spain allometric biomass functions developed with Spanish
sample data are used. Similar to France, the carbon fractions in
Spain differ from the other countries. Species-specific carbon
fractions given by Montero et al. (2005) are used (see Appendix A,
and for further details Appendix M).
3. Data

Forests across Europe vary by site conditions, age, and genetics
and usually have experienced different forest management.
Furthermore, available forest inventory data sets differ according
to (i) the sampling design (i.e., fixed area plots vs. angle count
sampling), (ii) the measurement methods (i.e., minimum diameter
threshold for recording trees) or (iii) the data collection and pro-
cessing method (i.e., measurement of tree height for every tree
vs. applying diameter–height relationships, etc.). These differences
in forest data from country to country make a theoretical compar-
ison of the different regional biomass calculation methods difficult
(Tomppo et al., 2010).

In order to circumvent this problem we produce a standardized
input dataset, which provides all necessary input data for the
country-specific models (see Appendices A–M). This ensures that
any differences in the results are a consequence of the carbon
calculation methods.
3.1. Stand data generation

For creating a standardized data set we use STANDGEN
(Kittenberger, 2003), a tool implemented in the framework of the
single tree simulation model MOSES (Hasenauer, 1994; Klopf
et al., 2011). The STANDGEN tool generates stand data including
diameter and location of single trees based on information on
diameter distribution (mean and standard deviation), spatial dis-
tribution, and aggregation of trees. For each of the five selected tree
species, three stands are generated, each with a size of 0.25 hectare
(2500 m2). The three stands differ in mean and standard deviation
of tree diameter and represent forest stands at different ages. This
takes into account that stand age affects eco-physiological pro-
cesses such as biomass allocation, stem number, or stocking den-
sity. For each species, we generate a young stand (quadratic
mean DBH 10 cm with standard deviation 1 cm), a middle-aged
stand (30 cm ± 5 cm), and an old stand (50 cm ± 10 cm). Note that
we use the quadratic mean DBH to refer to the ‘‘average or central
tree” representing the tree with the mean basal area. For conve-
nience we consider that a tree with quadratic mean DBH repre-
sents a tree with ‘‘mean tree biomass”. We follow here Eastaugh
(2014) showing that the error in this assumption is small. Tree
height and age are estimated using species-dependent relation-
ships, crown length is estimated using the DBH-, and height-
dependent functions implemented in the MOSES framework
(Sterba, 1976; Marschall, 1992; Klopf et al., 2011).
3.2. Stand variables

The generated stands are characterized by the stand variables:
mean tree height, height–diameter ratio, crown ratio, stand age,
stem number per hectare (N), and basal area per hectare (BA).
The two latter variables are calculated as follows.

BA ¼ 1=S � RðDBH2 � p=400Þ ð2Þ
N ¼ 1=S � ni ð3Þ

where BA is the basal area per hectare [m2/ha], S is equal to 0.25 ha
(the size of the generated stand), DBH is the diameter at breast
height (at 1.3 m) [cm], N is the stem number per hectare [trees/
ha], and ni is the number of trees per stand. Summary statistics of
the generated stand properties available for our study are given in
Table 2. Tree height, stand age and basal area increase with increas-
ing DBH, while the height–diameter ratio, crown ratio and stem
number decrease, meaning that these stand properties change with
age (Table 2).
4. Analysis and results

4.1. Tree carbon estimation

We start our analysis by applying the 12 country specific carbon
calculation methods as outlined in Appendices B–M to our
standardized tree data set. The data set covers five tree species:
(i) F. sylvatica L., (ii) Q. robur L., (iii) B. pendula Roth, (iv) P. abies
(L.) Karst. and (v) P. sylvestris L. (Table 2). We calculate biomass
for the tree compartments stem, branch, foliage and roots. The bio-
mass results by compartment are added and multiplied with the
carbon fraction (Appendix A) to derive total tree carbon. Since
the input data set is identical by species, we ensure that any differ-
ences in the results represent (i) differences in the calculation
approach, (ii) the statistical coefficients and/or (iii) any additional
regional biophysical differences by species. Fig. 1 provides the total
carbon in kg per tree versus diameter at breast height (DBH) by



Table 2
Properties of the generated standardized tree dataset separated by stands and species, first column properties of stand with quadratic mean diameter (DBH) of 10 cm, second for
DBH of 30 cm, third for DBH 50 cm, Stand age [year] derived from yield tables (see Method section), Stem number is number of trees per hectare [ha�1], Basal area is the area of
trees at breast height (1.3 m) per hectare [m2/ha], Mean height is Lorey’s mean height (Lorey, 1878) of all trees in stand [m], Mean H/DBH is the mean height-to-diameter ratio
[m/m], Mean CR is mean crown ratio (crown height divided by tree height) [m/m].

Stand age [year] Stem number [ha�1] Basal area [m2/ha]

10 cm 30 cm 50 cm 10 cm 30 cm 50 cm 10 cm 30 cm 50 cm

Picea abies 25 70 150 3404 740 304 27 52 65
Pinus sylvestris 35 115 >130 2776 576 240 22 41 50
Fagus sylvatica 40 85 >140 3064 496 188 24 35 37
Quercus robur 35 90 >130 2248 440 212 18 31 39
Betula pendula 17 75 >120 2148 412 160 17 29 31

Mean height [m] Mean H/DBH [m/m] Mean CR [m/m]

Picea abies 8.5 22.6 30.9 83 75 59 0.73 0.58 0.46
Pinus sylvestris 6.6 18.8 26.6 65 62 52 0.79 0.61 0.48
Fagus sylvatica 8.7 20.8 26.7 87 69 54 0.71 0.59 0.48
Quercus robur 8.4 25.2 31.5 82 84 66 0.73 0.55 0.47
Betula pendula 8.4 25.3 31.9 81 84 65 0.73 0.55 0.46

Fig. 1. Tree carbon on tree level [kg/tree] for all countries in this study and for all analyzed tree species, results are grouped by ecoregions (black – North Europe and South
Europe, dark gray – Central-West Europe, light gray – Central-East Europe).
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species and country. In Fig. 1, and in the following Figs. 2–7, we
present curves that originate from the smoothed single tree results.

Strong discrepancies with increasing DBH are evident (Fig. 1) by
country. Thus we subsequently group the country-specific results
by European forest regions following the definition of the State
of Europe’s Forests 2011 (FOREST EUROPE, UNECE, FAO, 2011) to
address regional biophysical growing conditions resulting from
the geographic location, soil and climate conditions, and genetic
differences by species across Europe. Country specific biomass esti-
mation methods (Appendices B–M) were developed and calibrated
with regional data. Thus the resulting carbon and biomass esti-
mates are expected to capture the different regional biophysical
growing conditions. We assign each tree species and country-
specific estimation method to each of the four European forest
regions. The results for tree carbon in kg per tree versus DBH are
ordered by country and grouped by European forest region as
shown in Figs. 2–5.
4.2. Tree biomass estimation by compartment

Total tree carbon (Figs. 1–5) is calculated as the sum of the
estimated biomass of each compartment (stem, branches, foliage
and roots) multiplied by the carbon fraction factor (Eq. (1) and
Appendices A–M). Next we evaluate the proportions of the com-
partment results and their respective discrepancies by species
and country across Europe. Since P. abies and F. sylvatica are the
most important coniferous and broadleaf species and cover the
vast majority of forest area in Central-East and Central-West
Europe, we focus and display here only these two species within
these two regions. Fig. 6 presents the trend in the four compart-
ments versus DBH for P. abies in Central-West Europe, and Fig. 7
for F. sylvatica for Central-East Europe, respectively. We use the
identical scaling to show (i) the effect of the different functions
by compartment applied and (ii) their contribution to the total
tree carbon.



Fig. 2. Tree carbon on tree level [kg/tree] for North Europe and for all analyzed tree species.

Fig. 3. Tree carbon on tree level [kg/tree] for Central-West Europe and for all analyzed tree species.
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4.3. Carbon and biomass of forest stands

The deviations found in the country-specific tree carbon esti-
mates by DBH (see Figs. 1–7) may differ from carbon estimates
at the forest stand-level since the number of trees by DBH class
varies. In addition, most carbon studies focus on stand level
estimates (e.g. t/ha). Therefore, we assess the methodological
implications at the forest stand level by country and the species-
specific carbon calculation method by deriving forest stand carbon
estimates for our generated forest stands. Again, we choose to
focus on P. abies and F. sylvatica and the corresponding three
reference stands with a quadratic mean DBH of 10 cm (standard
deviation (SD) of DBH distribution 1 cm), 30 cm (SD 5 cm) and
50 cm (SD 10 cm) generated with the tool STANDGEN (see Table 2).



Fig. 4. Tree carbon on tree level [kg/tree] for Central-East Europe and for all analyzed tree species.

Fig. 5. Tree carbon on tree level [kg/tree] for South Europe and for all analyzed tree species.
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For each tree, the biomass and carbon estimation methods are
applied. The results for P. abies and F. sylvatica covering the stem,
branch, foliage, root, and total tree biomass plus the tree carbon
estimates for each reference stand are given in Tables 3 and 4.
Again, we use the quadratic mean DBH representing the tree with
mean basal area and mean tree biomass (Eastaugh, 2014). Tables 3
and 4 also provide summary statistics for P. abies and F. sylvatica.
Similar tables for the other species, we provide in Supplementary
material (Tables S.1–S.3).
5. Discussion

Carbon estimates by tree species differ substantially by country
(see Fig. 1). After grouping the countries by main forest region in
Europe (FOREST EUROPE, UNECE, FAO, 2011) to address regional
differences, the deviations by species and country within the forest
region are found to be smaller, but still evident (Figs. 2–5). The
smallest deviations are detected for the North Europe and South



Fig. 6. Biomass in tree compartments on tree level [kg/tree] for Picea abies and Central-West Europe.

Fig. 7. Biomass in tree compartments on tree level [kg/tree] for Fagus sylvatica and Central-East Europe.
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Europe regions (Figs. 2 and 5), as compared to Central-West Europe
(Fig. 3) and Central-East Europe (Fig. 4). This supports the
hypothesis that part of the observed differences can be attributed
to environmental growing conditions. The remaining error is
caused by the conceptual approach. Stem biomass contributes
the largest proportion of total biomass followed by root, branch,
and foliage biomass (Figs. 6 and 7). Some unrealistic results are
detected, for example in the case of branch biomass for F. sylvatica
in Poland (Fig. 7).
The results at the stand level (Tables 3 and 4 and Tables S.1–S.3
in Supplementary material) confirm that the differences in tree car-
bon and biomass in tree compartments at the tree level (Figs. 1–7)
can be observed also on the stand level. Tables 3 and 4 further
allows quantifying the discrepancies in carbon and biomass
observed merely visually in Figs. 1–7. For both P. abies and F. sylvat-
ica, stem biomass add the largest part to the existing discrepancies
in total biomass and carbon followed by branch and root biomass.
The average range of stem biomass estimates for all countries and



Table 3
Results for biomass in tree compartments, tree biomass (sum of all compartments) and tree carbon on stand level [t/ha] for Picea abies, results arranged according to the 4 Forest regions, first column give the results for the stand with
q adratic mean diameter (DBH) of 10 cm, second column for DBH of 30 cm and third olumn for DBH of 50 cm. At the end of table selected statistics are given for each stand a each biomass and carbon estimate: Mean and Range
( aximum–Minimum) of the country estimates and variation expressed as Range d ded by Mean.

Picea abies Stem biomass [t/ha] Branch biomass [t/ha] Foliage biomass [t/ha] Root biomass [t/ha] Tree bioma [t/ha] Tree carbon [t/ha]

10 cm 30 cm 50 cm 10 cm 30 cm 50 m 10 cm 30 cm 50 cm 10 cm 30 cm 50 cm 10 cm cm 50 cm 10 cm 30 cm 50 cm

North Europe
Finland 49.6 186.3 232.0 17.1 41.7 42 12.6 18.0 12.0 29.8 85.7 118.9 109.0 1.6 405.4 48.2 155.9 197.7
Norway 48.2 217.7 316.6 40.1 80.4 80 16.3 27.1 25.0 27.4 91.9 113.0 132.1 7.1 534.6 57.9 193.8 256.1

Central-West Europe
Austria 45.8 194.3 300.9 45.4 71.4 70 11.9 14.1 13.8 13.9 75.3 125.4 117.0 5.0 510.9 52.6 169.7 249.3
Belgium 43.4 206.9 323.5 29.7 47.5 59 18.7 18.6 24.6 14.2 76.1 159.1 105.9 9.1 567.1 43.6 164.0 272.6
France 60.2 276.7 412.2 – – – 1.2 5.5 8.2 18.1 83.0 123.7 79.5 5.3 544.1 37.8 172.2 259.7
Germany 37.1 192.1 296.2 68.7 46.5 71 4.2 11.5 17.0 33.9 54.9 84.6 143.9 4.9 469.5 69.8 145.6 227.4
Netherlands 41.8 224.6 325.7 22.6 36.1 63 12.1 20.2 24.6 11.6 64.8 112.3 88.1 5.7 526.3 44.0 171.9 264.1

Central-East Europe
Czech Republic 41.1 215.2 346.9 17.5 21.6 26 3.5 5.1 6.6 26.7 83.7 133.8 88.8 5.6 513.7 44.4 161.6 258.1
Poland 73.9 278.5 311.2 14.9 32.2 53 10.3 15.5 15.5 22.8 75.0 87.3 121.9 1.2 466.9 60.9 199.5 234.6
Romania 29.9 167.0 246.3 16.2 26.8 45 8.7 15.0 18.8 8.3 48.2 81.9 63.1 7.0 392.2 31.6 127.6 197.0

South Europe
Italy 45.0 210.4 348.5 24.9 60.7 10 .6 – – – 20.3 78.6 130.8 90.2 9.7 581.9 45.1 173.4 292.4
Spain 55.1 282.8 483.7 60.3 78.9 87 4.2 12.3 19.0 34.7 66.9 83.6 154.3 0.9 674.2 77.1 218.8 338.7

Mean [t/ha] 47.6 221.0 328.6 32.5 49.4 64 9.4 14.8 16.8 21.8 73.7 112.9 107.8 3.6 515.6 51.1 171.2 254.0
Range [t/ha] 44.0 115.9 251.7 53.8 58.9 76 17.5 22.0 18.4 26.4 43.7 77.3 91.2 3.9 282.0 45.6 91.2 141.8
Range/Mean [%] 92 52 77 166 119 11 185 149 109 121 59 68 85 55 89 53 56

ble 4
sults for biomass in tree compartments, tree biomass (sum of all compartments) d tree carbon on stand level [t/ha] for Fagus sylvatica, for details on the table and the co tent please see explanations provided for Table 3.

Fagus sylvatica Stem biomass [t/ha] Branch biomass [t/ha] Foliage biomass [t/ha] Root biomass [t/ha] Tree bioma [t/ha] Tree carbon [t/ha]

10 cm 30 cm 50 cm 10 cm 30 cm 5 m 10 cm 30 cm 50 cm 10 cm 30 cm 50 cm 10 cm 0 cm 50 cm 10 cm 30 cm 50 cm

North Europe
Finland – – – – – – – – – – – – – – – – –
Norway – – – – – – – – – – – – – – – – –

Central-West Europe
Austria 55.9 185.4 241.1 36.0 87.9 11 .5 3.3 3.5 3.1 12.7 26.3 32.9 107.8 03.1 387.6 53.9 149.9 195.4
Belgium 48.0 189.8 248.0 19.1 46.9 63 3.6 6.5 8.8 21.2 47.7 61.8 91.9 90.8 382.0 45.0 141.0 188.7
France 80.8 247.6 345.6 – – – 1.6 5.0 6.9 22.6 69.3 96.8 105.1 21.9 449.2 49.9 151.1 215.2
Germany 43.5 168.9 241.8 29.7 38.7 37 3.6 6.5 8.8 31.5 49.8 67.0 108.3 63.9 354.7 54.1 130.2 179.1
Netherlands 79.2 233.1 349.7 13.2 39.7 46 5.8 5.4 6.3 34.4 58.6 82.8 132.7 36.8 485.0 66.1 166.4 244.6

Central-East Europe
Czech Republic 56.1 209.7 299.5 62.0 36.5 30 3.0 3.6 4.0 23.4 62.2 87.2 144.6 12.1 421.2 72.3 154.3 212.3
Poland 80.2 229.7 277.2 14.6 74.7 14 .1 3.4 6.4 7.7 23.6 74.6 102.7 121.8 85.3 530.7 60.9 190.4 267.7
Romania 54.1 178.9 262.0 9.0 30.5 34 4.0 4.1 4.7 23.5 45.0 62.0 90.6 58.5 363.3 45.3 127.7 183.2

South Europe
Italy 63.9 230.2 312.6 21.4 48.8 65 – – – 17.1 55.8 75.5 102.3 34.8 453.1 51.2 165.5 228.5
Spain 69.3 198.9 260.8 46.5 65.1 76 5.0 4.9 4.3 32.4 47.2 50.0 153.2 16.2 391.9 76.6 155.6 198.4

Mean [t/ha] 63.1 207.2 283.8 27.9 52.1 67 3.7 5.1 6.1 24.2 53.7 71.9 115.8 12.3 421.9 57.5 153.2 211.3
Range [t/ha] 37.3 78.7 108.6 53.0 57.4 11 .5 4.2 3.0 5.6 21.8 48.2 69.8 62.5 26.8 176.1 31.6 62.7 88.6
Range/Mean [%] 59 38 38 190 110 16 114 59 92 90 90 97 54 1 42 55 41 42
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stands is 137.2 t/ha for P. abies (branch 63.0, root 49.1, and foliage
19.3 t/ha) and 74.8 t/ha for F. sylvatica (branch 74.3, root 46.6, and
foliage 4.3 t/ha). Although the differences of the root, branch and
foliage biomass are smaller in absolute terms, the relative differ-
ences are even higher as compared to the stem biomass estimates
(Average Range/Mean for stem biomass and all stands for P. abies
74% (branch 135%, root 83%, and foliage 148%) and for F. sylvatica
45% (branch 156%, root 92%, and foliage 88%) (Tables 3 and 4).
Therefor the choice of stem biomass function contributes most to
total carbon in absolute terms, but the other compartments have
an impact as well, especially in proportion to their results.

Tables 3 and 4 further indicate that these discrepancies differ
between the different stands. In the younger forest stands (DBH
10 cm) the ratio of Range and Mean of the tree carbon estimates
for P. abies is 85% and for F. sylvatica of 54% and thus highest as
opposed to the two older stands. The same patterns are also visible
in the biomass compartments (Tables 3 and 4 and Tables S.1–S.3).
This is not detectable from the single tree results (Figs. 1–7) since
the scaling hides the results at small DBH. The results for the young
trees are very small in absolute values compared to the results of
bigger trees (Figs. 1–7). Still the total carbon results of the young
stands with DBH 10 cm amount for about a fourth of the results
of the old stands with DBH 50 cm (21% for P. abies and 28% for
F. sylvatica; Tables 3 and 4). The large amount of carbon in young
stands is caused by the large number of trees per unit area
(Table 2), which have an amplifying effect on the single tree results
and the differences on forest stand level. Comparing only the
carbon of single trees would be misleading because the stem
number decreases with age due to competition. Such effects need
to be considered if the task is to optimize carbon storage for the
purposes of climate change mitigation, such as REDD+ (Canadell
et al., 2007; Mohren et al., 2012).

Stand-level results for branch and foliage biomass do not show
the same increase based upon DBH as do stem and root biomass.
The results show that foliage and branch biomass are constant
with a modest increase with stand age. This is consistent with
the Pipe Model Theory (Shinozaki et al., 1964a,b) and other
research indicating that after canopy closure Leaf Area Index
(LAI) is a constant (Waring et al., 1982; He et al., 2012).

Our analysis confirms that the general carbon calculation
approach (biomass functions vs. conversion factors) in combina-
tion with the specific parameter estimates for deriving biomass
functions or conversion factors (Appendices A–M) influences the
country-specific results. Differences in carbon estimates across
countries are affected by regional conditions. However determin-
ing the proportion of the detected deviation that is due to the
sampling procedure and methods versus the deviation from envi-
ronmental conditions (e.g. climate, soil or genetics) or differences
in tree allometry remains a key question. Since it is very difficult
to know the true biomass amount by compartment and tree
species, plausibility checks, such as a careful assessment of the
(i) original sample material for calibrating and developing regional
biomass estimation methods and the (ii) statistical approach are
essential. The empirical sample material for the country-specific
estimation methods has large discrepancies (see Tables 5 and 6
for P. abies and F. sylvatica and Tables S.4–S.6 in the Supplementary
material for the remaining species).

Most biomass estimation methods applied in this study use
sample data mostly within a DBH range between 10 and 40 cm
and lack data from very small or very big trees. Tree heights and
ages have similar deficiencies in sample data range (Tables 5 and
6, Tables S.4–S.6 in Supplementary material). This range limitation
results in regression functions derived from sample data that may
lead to unrealistic estimates if they are extrapolated, particularly
for larger, but also smaller tree diameters. Analogously, differences
in tree allometry due to forest management or tree genetics can be
possible sources of deviation in the carbon and biomass results.
Within Europe both management practices (FOREST EUROPE,
UNECE, FAO, 2011) and tree genetics vary strongly by tree species
(Skrøppa, 2003; Mátyás et al., 2004). This may affect biomass
allocation and growth rates (Schmidt-Vogt, 1977; Gruber, 1987;
Müller-Starck et al., 1992). Since hardly any references provide
information on allometric properties such as crown length, crown
width or stem taper or even tree genetics, we cannot examine this
in more detail.

The type of estimation method has a large effect on any results
and we want to illustrate this for biomass expansion factors versus
allometric biomass functions. Biomass expansion factors convert
tree volume into biomass by applying a species-specific average
conversion factor, independent of age, tree height, etc. Forest
management strongly affects the growth rates of stands and thus
the tree ring width (Assmann, 1970). Wood density is strongly
correlated to tree ring width (MacPeak et al., 1990; Repola, 2006;
Ledermann and Neumann, 2006) but also to tree age. It is well
known that constant biomass expansion factors tend to overesti-
mate biomass for young trees and underestimate biomass for older
trees (Pietsch and Hasenauer, 2002). Allometric biomass functions
which derive tree biomass from DBH and/or height were developed
to circumvent this problem and include the effect of age in the
biomass predictions.

Biomass in tree compartments show higher differences among
countries than total biomass estimates (Figs. 6 and 7). Again part
of these discrepancies in biomass estimates may be caused by
environmental drivers while the rest is an effect of sample material
and the estimation methodology. Here it is also important to know
the definition of the various tree compartments by country as this
also affects the results (Jenkins et al., 2003). For example, the def-
inition of branch or stem biomass for F. sylvatica in Poland could be
different than in other countries, since the results for total biomass
in Poland did not show clear differences in Fig. 4. Unfortunately, in
the case of Poland (Muukkonen, 2007) we could not test this
hypothesis, since the definition of stem and branch biomass is
not given. But there is some evidence in the results of other coun-
tries. In France stem biomass includes all branches (Vallet et al.,
2006). In most other countries the definition of stem excludes
branches as well as the stump (e.g. for Austria Pollanschütz,
1974; for Norway Marklund, 1988). This explains why France has
the highest results for stem biomass for P. abies (Fig. 6) but only
average results for total tree biomass (see Fig. 3 and Table 3).

Similarly, the assignedminimum diameter for root biomass (see
Appendices B–M) influences the deviations in root biomass results
(Figs. 6 and 7, Tables 3 and 4). For Austria as well as for Norway it is
assigned 2 mm (Wirth et al., 2004; Petersson and Ståhl, 2006),
while for the Czech Republic or Belgium it is assigned 5 mm
(Drexhage and Gruber, 1999; Drexhage and Colin, 2001; Xiao
et al., 2003).

All functions in this study use tree diameter to predict the bio-
mass or volume, with many also using tree height (Table 1 and
Appendices B–M). Any additional predictor variable decreases the
remaining variation and improves the performance of the model
(e.g. Ketterings et al., 2001; Ledermann and Neumann, 2006 or
Lang et al., 2007). Some models use additional variables such as
tree age (Wirth et al., 2004) or tree crown parameters (i.e., crown
ratio or crown length; Repola, 2008, 2009; Ledermann and
Neumann, 2006). Without tree height or crown height as addi-
tional variables the models will assume a constant DBH/height
ratio or DBH/crown height ratio. This is an unrealistic assumption
since height increment culminates earlier than diameter increment
and trees in general modify their crown according to stand density
and the light availability (Assmann, 1970). A good example to
illustrate the effect of additional variables are root biomass esti-
mates of P. abies from Austria and Belgium. Both countries use



Table 5
Properties of the sample material used for volume and biomass functions for Picea abies by country and region: if multiple references are used for the compartments in one
country, each reference is covered by one row. Given for each reference is DBH (diameter at breast height) and tree height of the sample material, the Origin of the samples (the
country where the sample material was collected), the Number of samples, the Age of the sample trees in years as well as the Reference. Boxes with a endash (–) indicate that this
information is not given by the reference. For the volume functions used in Czech Republic only the maximum diameter and height of the samples is given (Petráš and Pajtík,
1991).

Forest region Country Compartments DBH
[cm]

Height
[m]

Origin No. samples Age [a] References

North Europe Finland All 1.7–41.7 2.1–35.0 Finland 613 15–164 Repola (2009)
Norway Aboveground 0.3–63.4 1.3–35.6 Sweden 551 1–223 Marklund (1988)

Roots 0.3–63.4 1.3–35.6 Sweden 342 1–223 Petersson and Stahl (2006)

Central-West
Europe

Austria Stem volume 5.0–78.0 10.0–44.0 Austria 9972 – Pollanschütz (1974)
Branches 2.4–65.9 2.8–42.6 Austria 3753 35–126 Ledermann and Neumann

(2006)
Foliage 1.8–98.2 2.1–44.8 Switzerland 189 15–270 Burger (1947, 1953)
Roots 7.6–41.2 6.8–31.7 Temperate

Europe
85 16–142 Wirth et al. (2004)

Belgium Stem volume – – Belgium 991 – Dagnelie et al. (1985)
Branches 2.4–65.9 2.8–42.6 Austria 3753 35–126 Ledermann and Neumann

(2006)
Foliage 4.0–38.0 6.7–25.9 Netherlands 23 9–39 Bartelink (1996)
Roots 7.6–41.2 6.8–31.7 Temperate

Europe
85 16–142 Wirth et al. (2004)

France Aboveground 14.3–
71.6

– France 309 – Vallet et al. (2006)

Germany Wood volume – – Germany – – Kublin (2002)
Foliage 25.0–

55.6
22.0–29.8 Germany 7 – Schwarzmeier (2000)

Netherlands Aboveground 0.5–52.0 – European Russia 222 20–155 Hamburg et al. (1997)

Central-East
Europe

Czech
Republic

Wood volume �74.0 �46.0 Czechoslovakia 2111 – Petráš and Pajtík (1991)
Foliage, twigs 4.0–92.0 4.0–48.0 Czechoslovakia 265 – Petráš et al. (1985)
Roots 5.0–25.0 15 (mean) N Germany 15 10–40 Drexhage and Gruber (1999)

Poland All 0.0–67.5 2.0–42.7 Europe �1800 – Muukkonen (2007)
Romania Aboveground – – Romania 5403 – Giurgiu et al. (1972)

South Europe Italy All 8.1–81.7 6.0–40.1 NE Italy 93 – Tabacchi et al. (2011)
Spain All (excl.

foliage)
9.0–57.5 8.0–29.0 Spain 29 (roots 10) – Ruiz-Peinado et al. (2011)

Foliage 5.3–49.2 7.1–23.8 NW Spain 125 34–44 Diéguez-Aranda et al. (2009)

Table 6
Properties of the sample material used for volume and biomass functions for Fagus sylvatica by country and region: for details on the table and the content please see explanations
provided for Table 5.

Forest region Country Compartments DBH [cm] Height [m] Origin No. Samples Age [a] References

North Europe Finland – – – – – – –
Norway – – – – – – –

Central-West Europe Austria Stem (volume) – – Austria 933 – Pollanschütz (1974)
Branches 2.0–67.1 3.6–39.0 Austria 4213 35–125 Ledermann and Neumann (2006)
Foliage 0.8–57.0 2.6–39.6 Switzerland 91 14–128 Burger (1953)
Roots 4.0–53.0 7.0–28.0 Germany 27 44–127 Bolte et al. (2004)

Belgium Stem (volume) – – Belgium – – Dagnelie et al. (1985)
Branches 5.7–62.1 9.2–33.9 Czech Republic 20 40–114 Cienciala et al. (2005)
Foliage 2.0–33.0 3.5–22.5 Netherlands 38 8–59 Bartelink (1997)
Roots 3.0–38.0 7.0–29.0 Central Europe 48 21–160 Wutzler et al. (2008)

France Aboveground 1.6–81.2 – France 1293 – Vallet et al. (2006)
Germany Wood volume – – Germany – – Kublin (2002)

Foliage 2.0–33.0 3.5–22.5 Netherlands 38 8–59 Bartelink (1997)
Netherlands Aboveground 2.0–33.0 3.5–22.5 Netherlands 38 8–59 Bartelink (1997)

Central-East Europe Czech Republic Wood volume �74.0 �38.0 Czechoslovakia 1886 – Petráš and Pajtík (1991)
Foliage, twigs 8.0–84.0 8.0–36.0 Czechoslovakia 285 – Petráš et al. (1985)
Roots 3.0–20.0 9.9 (mean) NE France 16 24–35 Le Goff and Ottorini (2001)

Poland All 2.0–64.0 3.5–29.0 Europe 68 – Muukkonen (2007)
Romania Aboveground – – Romania 7070 – Giurgiu et al. (1972)

South Europe Italy All 5.0–60.7 7.2–31.6 Italy 91 – Tabacchi et al. (2011)
Spain All (excl. foliage) 9.5–74.8 9.0–30.9 Spain 72 (roots 14) – Ruiz-Peinado et al. (2011)

Foliage 9.9–21.0 12.6–26.2 NW Spain 16 – Diéguez-Aranda et al. (2009)
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the same reference (Wirth et al., 2004), but Austria use in addition
to DBH also the tree age for root biomass prediction. The additional
variable has rather little effect for small diameters, while the
results for Austria and Belgium strongly deviate after DBH of
40 cm (Fig. 6) and the root biomass of the oldest stand is for
Belgium 33.7 t/ha (+27%) higher than for Austria. The choice of
biomass or carbon estimation method is restricted to the availabil-
ity of the input data. If a forest inventory does not provide certain
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variables (e.g. age or crown height) then more general estimation
methods must be used.

Carbon is derived by multiplying biomass with the carbon
fraction (Eq. (1)). Research indicated that the carbon fraction in
biomass differs by ecoregion (Thomas and Martin, 2012), tree
species (Lamlom and Savidge, 2003) or by tree compartment
(Lamlom and Savidge, 2006). Besides France, Belgium and Spain,
most countries in this study use a carbon fraction of 0.5 as
suggested by IPCC (2006) (Appendix A). Considering the literature
this is a simplification of the complexity of nature, but necessary
since no comprehensive studies exist.

Carbon reporting systems such as the FAO Statistics, the Kyoto
protocol or the UNFCCC (United Nations Framework – Convention
on Climate Change) are not only concerned with carbon stocks but
mainly with changes in carbon stocks (fixation vs. emissions). The
effect of the calculation methods presented in this study might
be substantially smaller for estimating changes in carbon. Still
since the tree results in Figs. 2–5 show different inclination
across the DBH range, one can expect that the different methods
procure different carbon increment rates for the same change in
tree properties like an increase in DBH of 1 cm.
6. Conclusions

We present and compare the official biomass estimation meth-
ods from 12 different countries across Europe as they are used for
the carbon reporting duties within the Kyoto Protocol under
UNFCCC. True tree or stand biomass estimates are impossible to
obtain so we compare and assess the country-specific estimation
methods to provide a conceptual understanding of the different
estimation procedures and how these differences may affect car-
bon predictions at the European scale. After addressing regional
differences by clustering into European forest regions, deviations
of single tree carbon and biomass as well as stand-level results
decrease but remain throughout Europe (Figs. 2–5, Tables 3 and
4). These discrepancies can be explained with (i) differences in
the sample material (Tables 5 and 6), (ii) the variables used in
the biomass functions and (iii) the definition of the compartments
(Appendices B–M). No additional patterns according to the
biomass calculation methods (allometric biomass functions or
biomass expansion factors) are evident.

The quality of tree carbon calculations in Europe needs to be
improved and systematic quality checks for providing consistent
carbon estimation methods are required. These checks must
include (i) the definition of the tree compartments, (ii) additional
variables to capture differences in site conditions, management
impacts, and age effects, (iii) the performance of biomass functions
when applied beyond the range of the data set available for
Table A.1
Carbon fraction (CC) for converting biomass into carbon.

Carbon fraction [/]

Country Picea abies Pinus sylvestris

Austria 0.5 0.5
Belgium 0.5 0.5
Czech Republic 0.5 0.5
Finland 0.5 0.5
France 0.475 0.475
Germany 0.5 0.5
Italy 0.5 0.5
Netherlands 0.5 0.5
Norway 0.5 0.5
Poland 0.5 0.5
Romania 0.5 0.5
Spain 0.506 0.509
parametrization, (iv) representativeness of the functions and the
used sample material in terms of covering the tree allometry
and specific variability of trees in the region of interest and
(v) plausibility checks with local sample material, especially when
estimation systems from other regions are applied.

We strengthen the findings of the FPS COST ACTION E43 on
‘‘Harmonisation of National Inventories in Europe: Techniques
for Common Reporting” (McRoberts et al., 2009; Ståhl et al.,
2012) by quantifying the deviation caused by different carbon
calculation methods in Europe, which can lead to differences in
tree carbon up to 140 t/ha for P. abies and 90 t/ha for F. sylvatica.
We also highlight new issues discovered like the high discrepan-
cies in young stands or the effect of additional tree variables such
as crown length or tree age. Choosing and modifying the carbon
calculation methodology is the responsibility of each country
and NFI organization. However, this is a critical task that should
be coordinated across countries because it has such significant
ramifications such as its influence on climate change mitigation
policy.
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Appendix A. General details on carbon estimation

Tree carbon gets calculated according to the following general
equation.
Fagus sylvatica Quercus robur Betula pendula

0.5 0.5 0.5
0.49 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5
0.475 0.475 0.475
0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5
0.486 0.484 0.485



Table A.2
Dry wood density (wd) for converting volume into biomass.

Dry wood density [t dry biomass/m3]

Country Picea abies Pinus sylvestris Fagus sylvatica Quercus robur Betula pendula

Austria 0.362 0.450 0.561 0.579 0.551
Belgium 0.380 0.480 0.560 0.600 0.550
Czech Republic 0.380 0.430 0.570 0.550 0.520
France 0.438 0.438 0.546 0.546 0.546
Germany – branch 0.490 0.490 0.540 0.570 0.540
Germany – stem 0.360 0.360 0.490 0.540 0.490
Romania 0.370 0.420 0.585 0.560 0.525

Table A.3
Root-to-shoot ratio (RS) for deriving root biomass with aboveground biomass (BM).

Root-to-shoot ratio [/]

Country Picea abies Pinus sylvestris Fagus sylvatica Quercus robur Betula pendula

France 0.30 0.30 0.28 0.28 0.28
Germany – BM < 50 t/ha (Picea, Pinus), BM < 75 t/ha (Fagus, Betula) 0.46 0.46 0.43 0.35 0.43
Germany – BM 50–150 t/ha (Picea, Pinus), BM 75–150 t/ha (Fagus, Betula) 0.32 0.32 0.26 0.35 0.26
Germany – BM > 150 t/ha 0.23 0.23 0.24 0.35 0.24
Italy 0.29 0.36 0.20 0.20 0.24
Poland 0.23 0.23 0.24 0.24 0.24
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Ctree ¼ CC � ðdsmþ dbmþ dfmþ drmÞ ðA:1Þ
where Ctree is the total carbon content of a tree [kg], CC is the carbon
fraction [/] given for each country in Table A.1, dsm is the dry stem
biomass [kg], dbm the dry branch biomass [kg], dfm the dry foliage
biomass [kg] and drm the dry root biomass [kg].

If applicable in the country-specific methodology, dry wood
density wd to derive biomass using volume estimates are provided
in Table A.2 and root-to-shoot ratio RS for deriving root biomass in
Table A.3.

Some of the biomass calculation methods consider different
compartments than the above mentioned. To get comparable
results, the results of these sub-compartments are aggregated to
the compartments stem, branch and roots according to the follow-
ing equations:

dsm ¼ dswmþ dsbm ðA:2Þ
dbm ¼ dabmþ ddbm ðA:3Þ
drm ¼ dstmþ dcrmþ dfrm ðA:4Þ
with dsm dry stem biomass, dswm dry stem wood biomass, dsbm
dry stem bark biomass, dbm dry branch biomass, dabm dry alive
branch biomass, ddbm dry dead branch biomass, drm dry root
biomass, dstm dry stump biomass, dcrm dry coarse root biomass,
dfrm dry fine root biomass, all quantities in [kg].

The biomass functions of the Czech Republic and Spain separate
branches into different diameter classes (e.g. Spain Ruiz-Peinado
et al., 2011, 2012; Diéguez-Aranda et al., 2009 and Balboa-Murias
et al., 2006a,b; for the Czech Republic Petráš et al., 1985). As foliage
biomass is included in the branch biomass, for calculating branch
biomass solely foliage biomass get substracted, see Eq. (A.5).

dbm ¼ dbm1þ dbm2þ dbm3þ dbm4þ dbm5� dfm ðA:5Þ
With dbm1 thick branches with diameter >7 cm, dbm2 medium
branches with diameter 2–7 cm, dbm3 thin branches and twigs with
diameter <2 cm, dbm4 thin branches with diameter 0.5–2 cm, dbm5
twigs with diameter <0.5 cm, dfm foliage biomass.

In the following chapters the biomass calculations are described
for each country in detail. Often used variables are DBH diameter at
breast height, at 1.3 m above ground, H tree height from ground to
tree top, HC crown height from ground to living crown (first living
branch), CR crown ratio calculated CR = (H � HC)/H, wd dry wood
density.

Carbon fraction (CC), dry wood density (wd) and Root-to-shoot
ratios (RS) are coefficients most calculation methods use and are
therefore presented accumulated for all calculation methods here.
Appendix B. Biomass calculation in Finland

Allometric biomass functions dependent on DBH, tree height
and crown length are used for calculating biomass for tree com-
partments (stem wood, stem bark, living branches, dead branches,
foliage (leaves/needles), stump, coarse roots (diameter >1 cm))
(Repola, 2008, 2009) and fine roots (diameter <1 cm) (Härkönen
et al., 2011) (see Table B.1).

The chosen methodology is largely identical then the method
from the Finnish NIR report. It differs merely in the choice of coef-
ficients used for estimating fine root biomass (Härkönen et al.,
2011; Statistics Finland, 2013). It uses allometric biomass func-
tions developed in Finland.

Model type 1:

dswm;dsbm; . . . ¼ cf � expðc0þ c1 � dk=ðdkþ c2Þ þ c3

� lnðHÞ þ c4 � H þ cf2Þ ðB:1Þ

Model type 2:

dswm;dsbm; . . . ¼ cf � expðc0þ c1 � dk=ðdkþ c2Þ þ c3

� H=ðH þ c4Þ þ c5 � lnðCLÞ þ cf2Þ ðB:2Þ

dk ¼ 2þ 1:25 � DBH ðB:3Þ

dfrm ¼ f fr � dfm ðB:4Þ

with dk stump diameter [cm], DBH [cm], H [m], CL crown length
[m], CR crown ratio [/], coefficients ci, cf, cf2 and ffr are given below.
ffr are valid for semi-fertile sites (Härkönen et al., 2011).

For broadleaf trees and dfm CR is used instead ln(CL). For broad-
leaf trees and dabm CL instead ln(CL).

F. sylvatica is not native in Finland. Therefore Finland is
excluded from analysis for this tree species.



Table B.1
Coefficients for calculating biomass for Finland (Repola, 2008, 2009).

Coefficients for biomass by compartments for Finland

Compartment c0 c1 c2 c3 c4 c5 cf cf2 Model type

Picea abies
dswm �3.555 8.042 14 0.869 0.015 0 1 0.009 1
dsbm �4.437 10.071 18 0.261 0 0 1 0.029 1
dabm �3.023 12.017 14 �5.722 5 1.033 1 0.0425 2
dfm �0.085 15.222 4 �14.446 1 1.273 1 0.0575 2
ddbm �5.317 6.384 18 0.982 0 0 1.208 0 1
dstm �3.964 11.73 26 0 0 0 1 0.0615 1
dcrm �2.294 10.646 24 0 0 0 1 0.1095 1

Pinus sylvestris
dswm �3.721 8.103 14 5.066 12 0 1 0.0055 2
dsbm �4.695 8.727 12 0.228 0 0 1 0.0355 1
dabm �5.166 13.085 12 �5.189 8 1.11 1 0.0415 2
dfm �1.748 14.824 4 �12.684 1 1.209 1 0.0625 2
ddbm �5.318 10.771 16 0 0 0 0.913 0 1
dstm �6.753 12.681 12 0 0 0 1 0.027 1
dcrm �5.55 13.408 15 0 0 0 1 0.0395 1

Betula pendula, Quercus robur
dswm �4.879 9.651 12 1.012 0 0 1 0.004035 1
dsbm �5.433 10.121 12 2.647 20 0 1 0.02739 2
dabm �5.067 14.614 12 �5.074 12 0.092 1 0.035855 2
dfm �20.856 22.32 2 0 0 2.819 1 0.027185 2
ddbm �7.996 11.824 16 0 0 0 2.1491 0 1
dstm �3.574 11.304 26 0 0 0 1 0.03348 1
dcrm �3.223 6.497 22 1.033 0 0 1 0.07477 1

Table C.1
Coefficients for calculating biomass for Norway (Marklund, 1988; Petersson and Ståhl, 2006).

Coefficients for biomass by compartment for Norway

a0 a1 a2 a3 a4

Picea abies
dswm �2.3032 7.2309 14 0.0355 0.7030
dsbm �3.4020 8.3089 15 0.0147 0.2295
dabm �1.2063 10.9708 13 �0.0124 �0.4923
ddbm �4.6351 3.6518 18 0.0493 1.0129
dfm �1.8551 9.7809 12 0 �0.4873
drm 4.58761 10.4404 138 0 0

Pinus sylvestris
dswm �2.6864 7.6066 14 0.02 0.8658
dsbm �3.2765 7.2482 16 0 0.4487
dabm �2.5413 13.3955 10 0 �1.1955
ddbm �5.8926 7.1270 10 �0.0465 1.106
dfm �3.4781 12.1095 7 0.0413 �1.565
drm 3.4428 11.0654 113 0 0

Quercus robur, Betula pendula
dswm �3.3045 8.1184 11 0 0.9783
dsbm �4.0778 8.3019 14 0 0.7433
dabm �3.3633 10.2806 10 0 0
ddbm �6.6237 11.2872 30 �0.3081 2.6821
drm 6.1708 10.0111 225 0 0

410 M. Neumann et al. / Forest Ecology and Management 361 (2016) 397–420
Appendix C. Biomass calculation in Norway

The methodology is taken from the Norwegian NIR report
(Climate and Pollution Agency, 2013; oral communication Ras-
mus Astrup, 2013). It uses allometric biomass functions devel-
oped in Sweden. For aboveground biomass the functions from
Marklund (1988) and for belowground biomass (minimum root
diameter 2 mm) from Petersson and Ståhl (2006) are used. The
functions for alive branches for P. abies and P. sylvestris also con-
tain the biomass of needles (Marklund, 1988). To compare with
other results the foliage biomass is calculated with separate
functions.

dswm;dsbm; . . . ¼ expða0þ a1 � DBH=ðDBH þ a2Þ þ a3 � H
þ c4 � lnðHÞÞ ðC:1Þ
For the broad leaf species foliage biomass is assumed to be a con-
stant proportion of stem biomass (de Wit et al., 2006):

dfm ¼ dswm � 0:021 ðC:2Þ

DBH [cm] (for drm DBH [mm]), H [m], drm [g dry weight], coeffi-
cients a0–a4 are given in Table C.1 (Marklund, 1988; Petersson
and Ståhl, 2006).
Appendix D. Biomass calculation in Austria

The presented method corresponds widely with the method
for forest carbon calculation used in the Austrian National Inven-
tory report for the Kyoto reporting (Umweltbundesamt, 2013)
(see Tables D.1–D.3).
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Dry stem biomass (dsm) get calculated using stem volume and
species-specific wood density (Gschwantner et al., 2010).

dsm ¼ V �wd ðD:1Þ
V ¼ ðDBH=200Þ2 � p � H � FF ðD:2Þ
with DBH [cm] and H [m]

FF ¼ c1þ c2 � ln2ðDBHÞ þ c3=H þ c4=DBH þ c5=DBH2

þ c6=DBH=H þ c7=DBH2=H ðD:3Þ
with DBH and H [dm] where V stem volume [m3], FF form factor, wd
dry wood density given in Appendix A [kg dry BM/m3], which is
calculated using wood density and shrinkage factor by tree species
from Wagenführ and Scheiber (1985), ci coefficients for form factor
calculations (Pollanschütz, 1974; Schieler, 1988; Gabler and
Schadauer, 2008) are given below.

Dry branch mass (dbm) is calculated for P. abies (including
foliage biomass), F. sylvatica, B. pendula (same function as for
F. sylvatica) and Q. robur using allometric functions from Ledermann
and Neumann (2006):

dbm ¼ cf � expðaþ b � lnðDBHÞ þ c � H=DBH þ d � lnðCRÞÞ ðD:4Þ
with DBH [cm], H [m], the species-specific parameters a–d and cf
given below in the following table.

For P. abies dfm is substracted from dbm to get comparable
results.

Foliage biomass (dfm) is calculated for P. abies, F. sylvatica,
B. pendula and Q. robur using allometric functions of Burger
(1947, 1949, 1953) modified after Lexer and Hoenninger (2001).

dfm ¼ a � DBHb ðD:5Þ
dbm and dfm for P. sylvestris after Hochbichler et al. (2006):

dbm;dfm ¼ cf � expðaþ b � lnðDBHÞ þ c � lnðHÞÞ ðD:6Þ
with DBH [cm], H [m], the species-specific parameters b0, b1, cf and
a–d are given below.

Root mass (drm) get calculated for P. abies, F. sylvatica, B. pendula
and Q. robur using the biomass functions of Wirth et al. (2004),
Bolte et al. (2004) and Offenthaler and Hochbichler (2006). Only
Bolte et al. (2004) provide the minimum diameter of the samples
(2 mm).

drm ¼ cf � expðaþ b � lnðDBHÞ þ c � ln2ðDBHÞ þ d � lnðAÞ ðD:7Þ
And for P. sylvestris (Offenthaler and Hochbichler, 2006):

drm ¼ 0:038872 � DBH2:066783 ðD:8Þ
with DBH [cm], A is tree age [a], the species-specific parameters a–d
and cf are given below.

Appendix E. Biomass calculation in Belgium

The below presented methodology is the result of a literature
review. The volume calculation method is identical in the
Belgium NIR report (Flemish Environment Agency, 2013). It is a
Table D.1
Coefficients for calculating form factor for Austria (Pollanschütz, 1974; Schieler, 1988; Ga

Coefficients for form factor for Austria

c1 c2 c3

Picea abies 0.46818 �0.013919 �28.213
Pinus sylvestris 0.435949 �0.014908 5.21091
Fagus sylvatica 0.686253 �0.037151 �31.0674
Quercus robur 0.115631 0 65.9961
Betula pendula 0.42831 �0.06643 0
combination of volume functions, expansion factors and allometric
biomass functions from Belgium, Austria, the Czech Republic,
Germany, France and Netherlands (see Tables E.1 and E.2).

V ¼ b0þ b1 � c130 þ b2 � c2130 þ b3 � c3130 þ b4 � H þ b5 � c2130 � H
ðE:1Þ

dsm ¼ V �wd ðE:2Þ
with V merchantable timber volume [m3] with a minimal diameter
of 7 cm (circumference 22 cm), c130 (circumference at 1.3 m height) =
DBH� � �p, H [m], b0–b5 coefficients according to Dagnelie et al. (1985)
given below in the following table, wd dry wood density are taken
from Vande Walle et al. (2005) are given in Appendix A.

If there are no appropriate biomass functions for Belgium
available, the allometric functions from other countries are used.
The functions are selected to give realistic results across the DBH
and height range of the analysed trees.

For dbm, dfm and drm of P. sylvestris (Xiao et al., 2003 cited in
Zianis et al., 2005), for dbm of F. sylvatica, B. pendula and Q. robur
(Cienciala et al., 2005 cited in Zianis et al., 2005), for dfm
Bartelink (1997) and for drm Wutzler et al. (2008):

dbm ¼ b0 � DBHb1 ðE:3Þ
dfm ¼ f0þ f1 � DBHb2 ðE:4Þ
drm ¼ r0 � DBHr1 ðE:5Þ
The coefficients are given in the following table.

For P. abies and dbm (including needles) Ledermann and
Neumann (2006), for dfm (not added to total biomass to avoid
double counting) Bartelink (1996), for drm Wirth et al. (2004):

dbm ¼ b0 � expðb1þ b2 � lnðDBHÞ þ b3 � H=DBHÞ ðE:6Þ
dfm ¼ expðf0þ f1 � lnðDBHÞ þ f2 � lnðHÞÞ ðE:7Þ
drm ¼ r0 � expðr1þ r2 � lnðDBHÞÞ ðE:8Þ
with DBH [cm], H [m], coefficients given below.

Minimum diameter for root biomass is only provided by Xiao
et al. (2003) and is 5 mm.

Appendix F. Biomass calculation in France

The below presented methodology is selected based on avail-
able literature on biomass in forests for France (INRA, 2004). It is
largely identical then the method from the French NIR report
(CITEPA, 2013). It combines volume functions with expansion fac-
tors developed in France (see Table F.1).

FF ¼ ðaþ b � CBH þ c � CBH0:5=HÞ � ð1þ d=CBH2Þ ðF:1Þ

V ¼ FF � ðp=40000Þ � CBH2 � H ðF:2Þ
dsmþ dbm ¼ V �wd ðF:3Þ
dfm ¼ V �wd � 0:02 ðF:4Þ
drm ¼ RS � ðdsmþ dbmþ dfmÞ ðF:5Þ
bler and Schadauer, 2008).

c4 c5 c6 c7

0.37474 �0.28875 28.279 0
0 0.028702 0 0
�0.386321 0.219462 49.6163 �22.3719
1.20321 �0.930406 �215.758 168.477
0 0 8.4307 0



Table D.2
Coefficients for calculating branch and foliage biomass for Austria (Ledermann and Neumann, 2006 and Burger, 1947, 1949, 1953 modified after Lexer and Hoenninger, 2001)

Coefficients for branch biomass for Austria For foliage biomass

a b c d cf a b c cf

Picea abies �1.9576 2.0252 0.1451 0.9154 1.051 0.0956 1.56 – –
Pinus sylvestris �3.2856 2.1684 0.1473 – 1.041 �3.8876 1.5904 0.2348 1.0417
Fagus sylvatica, Betula pendula �3.3205 2.5568 �0.1092 0.6002 1.212 0.0217 1.7 – –
Quercus robur �1.2943 1.9445 0 1.2137 1.280 0.0270 1.7 – –

Table D.3
Coefficients for calculating root biomass for Austria (Wirth et al., 2004; Bolte et al., 2004; Offenthaler and Hochbichler, 2006).

Coefficients for root biomass for Austria

a b c d cf

Picea abies �8.35049 4.56828 �0.33006 0.28074 1.0406
Fagus sylvatica, Betula pendula �4 2.32 0 0 1.08
Quercus robur �3.97478 2.52317 0 0 1.0505

Table E.1
Coefficients for calculating stem volume for Belgium (Dagnelie et al., 1985).

Coefficients for stem volume for Belgium

b0 b1 b2 b3 b4 b5

Picea abies �0.01093 0.001395 �9.6E�06 �2.5E�07 �0.00279 4.9E�06
Pinus sylvestris �0.03984 0.001551 �6.2E�06 4.8E�08 7.4E�05 2.96E�06
Fagus sylvatica �0.01557 0.000923 �7.1E�06 �7.7E�08 �0.00135 4.04E�06
Quercus robur �0.00227 0.000124 1.26E�05 �5.9E�08 �0.00167 3.75E�06
Betula pendula �0.01139 �0.0001 2.83E�05 �1.9E�07 �0.0006 3.08E�06

Table E.2
Coefficients for calculating branch, foliage and root biomass for Belgium (Ledermann and Neumann, 2006; Wirth et al., 2004; Bartelink, 1997; Wutzler et al., 2008; Cienciala et al.,
2005; Xiao et al., 2003).

Coefficients for branch biomass For foliage biomass For root biomass

b0 b1 b2 b3 f0 f1 f2 r0 r1 r2

Picea abies 1.102 �1.1635 1.7459 �0.9499 �1.346 3.351 �2.201 1.0554 �5.3789 2.9211
Pinus sylvestris 0.0022 2.9122 0 0 0 0.00445 2.2371 0.3399 1.4728 0
Fagus sylvatica, Quercus robur, Betula pendula 0.021 2.471 0 0 0.375 0.0024 2.517 0.0282 2.39 0

Table F.1
Coefficients for calculating tree volume for France (Vallet et al., 2006).

Coefficients for tree volume for France

a b c d

Picea abies 0.631 �0.000946 0 0
Pinus sylvestris 0.297 0.000318 0.384 204
Quercus robur, Betula pendula 0.471 �0.000345 0.377 0
Fagus sylvatica 0.395 0.000266 0.421 45.4
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with FF Form factor for tree volume estimation, CBH = DBH � p
(circumference at 1.3 m height), H [m], V [m3] aboveground tree
volume, a–d coefficients according to Vallet et al. (2006) given in
the following table, wd wood density and RS root-to-shoot ratio
given in Appendix A. Minimum root diameter is not defined.

Foliage biomass dfm is considered to be 2% of the total above-
ground biomass.
Appendix G. Biomass calculation in Germany

The methodology presented below is identical to the method
used in the German NIR report (Federal Environmental Agency,
2012) using the same volume functions as the German Forest
Inventory (Bundeswaldinventur) (see Table G.1).
Wood volume, wood density and expansion factors are used to
calculate biomass. Raw wood volume (minimum diameter 7 cm)
(Kublin, 2002) is calculated with the functions implemented in
the program BDAT 2.0 (Kublin, 2002) depending on species, DBH,
tree height and d7 (diameter at height of 7 m). The estimation of
the variable d7 is done by the program BDAT 2.0 for trees, as these
values are not included in the dataset. Tree wood volume is calcu-
lated with raw wood volume and expansion factors (see Table G.1)
derived from Grundner and Schwappach (1952) cited in Federal
Environmental Agency (2012).

Foliage biomass is included in the estimates for coniferous spe-
cies. Its share can be estimated with respective biomass functions
for foliage, for P. abies from Schwarzmeier (2000), for P. sylvestris
from Xiao et al. (2003), for B. pendula from Hytönen et al. (1995),
for F. sylvatica from Bartelink (1997) and for Q. robur from Curiel
Yuste et al. (2005). The volume functions are from Germany, the
functions for the remaining compartments from other European
countries.

dsm ¼ VRW �wd stem ðG:1Þ
VTW ¼ aþ VRW � b ðG:2Þ
dbm ¼ ðVTW � VRWÞ �wd branch ðG:3Þ
drm ¼ RS � ðdsmþ dbmþ dfmÞ ðG:4Þ
dfm ¼ aþ b � DBHc � Hd ðG:5Þ



Table G.1
Coefficients for converting raw wood volume to tree wood volume (Federal Environmental Agency, 2012) and for calculating foliage biomass for Germany (Schwarzmeier, 2000;
Xiao et al., 2003; Hytönen et al., 1995; Bartelink, 1997; Curiel Yuste et al., 2005).

Coefficients for tree wood volume for Germany Coefficients for foliage biomass

a b a b c d

Picea abies, age <60 years 0.036697 1.148143 0 0.0026146 2.6763 0
Picea abies, age >60 years 0 1.177947 0 0.0026146 2.6763 0
Pinus sylvestris, age <60 years 0.009946 1.156659 0 0.112269 2.2371 0
Pinus sylvestris, age >60 years 0.036883 1.076103 0 0.112269 2.2371 0
Betula pendula 0.017493 1.121933 0 0.0003 2 0.9583
Fagus sylvatica, age <60 years 0.011942 1.207371 0.375 0.0024 2.517 0
Fagus sylvatica, age 61–100 years 0.008184 1.196184 0.375 0.0024 2.517 0
Fagus sylvatica, age >100 years 0.030255 1.128104 0.375 0.0024 2.517 0
Quercus robur 0.101879 1.051529 0 0.0024 2.6081 0
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with VRW rawwood volume [m3], VTW total wood volume [m3], DBH
[cm], H [m], wd_stem is wood density stem, wd_branch wood
density branch (Kollmann, 1982 cited in Federal Environmental
Agency, 2012) and RS root-to-shoot ratio are given in Appendix A,
a, b coefficients for calculating VTW (Federal Environmental
Agency, 2012) and for dfm are given in Table G.1. Minimum root
diameter is not defined.
Appendix H. Biomass calculation in the Netherlands

The chosen method is a combination of the allometric biomass
functions published in Nabuurs et al. (2005) also used in the NIR
report of the Netherlands (National Institute for Public Health
and the Environment, 2013) and biomass fractions calculated using
results from the EFISCEN project (Schelhaas et al., 1999; Vilén et al.,
Table H.2
Age-dependent fraction values for calculating biomass in tree compartments for the Neth

Biomass fractions dependent on tree age [years] for the Netherlands

Picea abies 20 30 40 50

f_stem 0.385 0.474 0.562 0.6
f_branch 0.349 0.256 0.173 0.1
f_roots 0.100 0.132 0.166 0.1
f_foliage 0.167 0.138 0.099 0.0
RS 0.111 0.152 0.199 0.2

Pinus sylvestris 30 40 50 60

f_stem 0.357 0.504 0.583 0.6
f_branch 0.368 0.258 0.195 0.1
f_roots 0.109 0.138 0.154 0.1
f_foliage 0.167 0.101 0.068 0.0
RS 0.122 0.160 0.182 0.1

Fagus sylvatica, Quercus robur, Betula pendula 40 60 80 10

f_stem 0.600 0.674 0.692 0.6
f_branch 0.100 0.108 0.118 0.1
f_roots 0.261 0.191 0.174 0.1
f_foliage 0.044 0.022 0.016 0.0
RS 0.350 0.237 0.211 0.1

Table H.1
Coefficients for calculating aboveground biomass for the Netherlands (Hochbichler,
2002; Bartelink, 1997; Johansson, 1999 and Hamburg et al., 1997 cited in Nabuurs
et al., 2005).

Coefficients for aboveground biomass for the Netherlands

a0 a1 a2

Quercus robur 0.41354 2.14 0
Fagus sylvatica 0.0798 2.601 0
Betula pendula 0.00029 2.50038 0
Pinus sylvestris 0.0217 1.9634 0.9817
Picea abies 0.0533 1.791 0.8955
2005). The allometric biomass functions published in Nabuurs et al.
(2005) use publications providing species-dependent allometric
biomass functions and conversion factors from Europe and the
European part of Russia. For Q. robur the allometric function of
Hochbichler (2002) is used, for F. sylvatica of Bartelink (1997), for
B. pendula of Johansson (1999), for P. sylvestris and P. abies of
Hamburg et al. (1997) (see Tables H.1 and H.2).

BMABG ¼ a0 � DBHa1 � Ha2 ðH:1Þ
BMtotal ¼ BMABG � ð1þ RSÞ ðH:2Þ
with DBH [cm] (for B. pendula DBH [mm], H [m], BMABG total above-
ground biomass [kg dry weight], BMtotal total tree biomass [kg dry
weight], RS age-dependent root-to-shoot ratio calculated using
biomass fractions from Vilén et al. (2005) given in the next table.
Minimum root diameter is not defined. The species-specific publica-
tions given above provide the coefficients for the aboveground
biomass (a0–a2) and are cited in Nabuurs et al. (2005).

Total above ground biomass get divided into tree compartments
by multiplying with estimates for biomass fractions.

dsm;dbm; . . . ¼ f i � BMtotal ðH:3Þ
f_i are given below.

Biomass fractions were calculated within the EFISCEN project
(Schelhaas et al., 1999; Vilén et al., 2005) and are based on the
biomass allocation functions. For P. abies based on the functions
of Wirth et al. (2004) for aboveground biomass and for coarse roots
on Lehtonen et al. (2004) for fine roots. For P. sylvestris on the
erlands.

60 70 80 90 100 110 1000

17 0.642 0.650 0.644 0.639 0.634 0.628 0.619
30 0.111 0.104 0.106 0.108 0.111 0.115 0.121
78 0.182 0.188 0.195 0.201 0.205 0.209 0.213
77 0.065 0.058 0.055 0.052 0.050 0.048 0.047
16 0.223 0.231 0.243 0.251 0.258 0.264 0.271

80 100 120 1000

24 0.661 0.679 0.688 0.691
63 0.135 0.125 0.123 0.127
63 0.169 0.171 0.168 0.165
50 0.035 0.026 0.021 0.018
95 0.204 0.206 0.203 0.197

0 120 140 1000

93 0.712 0.721 0.721
29 0.108 0.095 0.089
65 0.167 0.171 0.176
14 0.013 0.013 0.014
98 0.200 0.206 0.214
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functions of Cienciala et al. (2006) for aboveground biomass and on
Marklund (1988) for root biomass. For F. sylvatica, B. pendula and Q.
robur on Bartelink (1997) and Cienciala et al. (2005) for above-
ground biomass and Le Goff and Ottorini (2001) for root biomass.

In the EFISCEN database there are no specific biomass fractions
for the Netherlands available. Therefore the conversion factors
developed for Germany/Austria were selected as these are proba-
bly most comparable with the conditions of forests in the
Netherlands.

Appendix I. Biomass calculation in the Czech Republic

The presented method of calculating carbon is developed using
volumetric functions applied in volume tables for Czechoslovakia
(Petráš and Pajtík, 1991), density of wood and bark of tree species
(Klement et al., 2010) and published allometric biomass functions
(Drexhage and Colin, 2001; Petráš et al., 1985). It combines volume
functions, biomass expansion factors and allometric biomass func-
tions from the Czech Republic (see Tables I.1–I.3).

dswm;dsbm; . . . ¼ Vi �wd � Ii ðI:1Þ
dfm;drm; dbm5 ¼ b1 � ðDBH þ b2Þb3 � Hb4 � b5 ðI:2Þ
where Vi is the volume of a certain compartment [m3], wd is wood
density [kg/m3] given in Appendix A and Ii correction index (if
applicable) derived from Požgaj et al. (1993), Chmelař (1992) and
Miles and Smith (2009).

Minimum root diameter is 5 mm (Drexhage and Collin, 2001).
The correction indices for individual tree species and b1–b5 coeffi-
cients for biomass calculation are given below.

dsm ¼ BMwood>7cmUB þ dsbm ðI:3Þ
dbm ¼ BMwood<7cmUB þ dbm5 ðI:4Þ
where BMwood>7cmUB is the biomass of wood under bark with diam-
eter equal to or above 7 cm [kg dry BM], dsbm is biomass of bark [kg
dry BM], BMwood<7cmUB is biomass of wood under bark with diameter
below 7 cm [kg dry BM], dbm5 is biomass of green twigs [kg dry
BM] as previously described. The individual biomass parts are
calculated as follows:

BMwood>7cmUB ¼ Vwood>7cmUB �wd ðI:5Þ
BMwood<7cmUB ¼ Vwood<7cmUB �wd � Iwood<7cm ðI:6Þ
dsbm ¼ Vbark �wd � Ibark ðI:7Þ
Table I.1
Correction indices of wood density for the Czech Republic (Požgaj et al., 1993; Chmelař, 1

Correction indices of wood density for the Czech republic

Picea abies Pinus sylvestris

I bark 1.25 0.95
I wood <7 cm 1.2 1.1

Table I.2
Coefficients for calculating biomass for the Czech Republic (Drexhage and Colin, 2001; Pe

Coefficients for biomass calculations for the Czech republic

b1 b2

Picea abies Twigs 0.016 1
Picea abies Foliage 0.015 1
Picea abies Roots 0.020 0
Pinus sylvestris Twigs 0.236 1
Pinus sylvestris Foliage 0.119 1
Pinus sylvestris Roots 0.013 0
Fagus sylvatica, Quercus robur, Betula pendula Twigs 0.076 1
Fagus sylvatica, Quercus robur, Betula pendula Foliage 0.029 1
Fagus sylvatica, Betula pendula Roots 0.022 0
Quercus robur Roots 0.028 0
The volume of individual parts of the tree were calculated using
two-parameter regressions applied in volume tables for Czechoslo-
vakia and compiled or modified by Petráš and Pajtík (1991).
The volume of the different parts of tree (tree, stem, wood
with diameter equal to or above 7 cm under bark, wood with
diameter below 7 cm under bark) is calculated using volumetric
equations.

The compartment is indicated by the lower index. OB indicate
volume over bark and UB under bark. If this is not stated, the used
formula is valid for both OB and UB.

General equation for all different volumes of P. abies is:

Vi ¼ a0 � ðDBH þ a1Þa2 � Ha3 � a4 � ðDBH þ a5Þa6 � Ha7 ðI:8Þ
For F. sylvatica:

Vi ¼ FFi � p � DBH2 � H=40000 ðI:9Þ

FFstem ¼ a0þ a1 � DBH þ a2 � DBH2 þ a3 � DBH3 þ a4 � H
þ a5 � H � DBH þ a6 � DBH2 � H þ a7 � DBH3 � H ðI:10Þ

FFwood>7cm ¼ a0þ a1=DBHþ a2=DBH2 þ a3=DBH3 þ a4 �H
þ a5 �H �DBHþ a6 �DBH2 �Hþ a7 �DBH3 �H ðI:11Þ

FFtreeOB ¼ a0þ a1=H þ a2=H2 þ a3=DBH þ a4 � H=DBH
þ a5 � H2=DBH þ a6=DBH2 þ a7=DBH2=H

þ a8=DBH2=H2 þ a9=DBH3 þ a10=DBH3 � H
þ a11=DBH3 � H2 ðI:12Þ

For Q. robur:

FFstem ¼ a0þ a1=DBH þ a2=DBH2 þ a3=DBH3 þ a4 � H
þ a5 � H � DBH þ a6 � DBH2 � H þ a7 � DBH3 � H ðI:13Þ

FFwood>7cm; FFtreeOB ¼ a0þ a1=H þ a2=H2 þ a3=DBH þ a4

� H=DBH þ a5 � H2=DBH þ a6=DBH2

þ a7=DBH2=H þ a8=DBH2=H2

þ a9=DBH3 þ a10=DBH3 � H
þ a11=DBH3 � H2 ðI:14Þ
992; Miles and Smith, 2009).

Fagus sylvatica Quercus robur Betula pendula

1.2 1 1.13
1.1 1.1 1.1

tráš et al., 1985).

b3 b4 b5 Reference

1.788 0.679 0.468 Petráš et al. (1985)
1.831 0.564 0.426 Petráš et al. (1985)
2.360 0 1 Drexhage and Colin (2001)
1.842 �0.434 0.457 Petráš et al. (1985)
1.857 �0.360 0.425 Petráš et al. (1985)
2.740 0 1 Drexhage and Colin (2001)
2.245 �0.559 0.401 Petráš et al. (1985)
2.432 �0.600 0.365 Petráš et al. (1985)
2.540 0 1 Drexhage and Colin (2001)
2.440 0 1 Drexhage and Colin (2001)



Table I.3
Coefficients for volume calculation for the Czech Republic (Petráš and Pajtík, 1991).

Regression coefficients for volumetric equations for the Czech Republic

Compartment a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Fagus sylvatica stemOB 6.77E�01 �1.43E�02 2.92E�04 �2.11E�06 �3.13E�03 2.67E�04 �5.91E�06 4.19E�08
Fagus sylvatica stemUB 5.84E�01 �1.14E�02 2.49E�04 �1.88E�06 �2.77E�03 2.40E�04 �5.40E�06 3.87E�08
Fagus sylvatica wood P7cm OB 5.65E�01 �2.33E+00 3.93E+01 �2.34E+02 �1.42E�03 �1.83E�06 6.21E�07 �4.77E�09
Fagus sylvatica wood P7cmUB 5.42E�01 �3.12E+00 4.43E+01 �2.36E+02 �1.07E�03 �1.86E�05 8.81E�07 �6.00E�09
Fagus sylvatica treeOB 5.99E�01 �2.02E�01 4.49E+00 5.99E+00 �4.41E�01 6.10E�03 �2.97E+00 �1.09E+02 8.99E+01 6.66E+01 �1.09E+01 6.35E�01

Pinus sylvestris stemOB 3.03E�05 2.08E+00 �1.25E�02 9.61E�01
Pinus sylvestris stemUB 2.26E�05 2.12E+00 �1.27E�02 9.80E�01
Pinus sylvestris wood P7cmOB 7.20E�02 �2.12E+00 1.37E+00
Pinus sylvestris wood P7cmUB 6.43E�02 �2.12E+00 1.37E+00
Pinus sylvestris treeOB 3.60E+01 8.11E�01 1.38E+00 3.03E�05 2.08E+00 �1.25E�02 9.61E�01 1.00E+02

Betula pendula stemOB 0.00E+00 1.32E+00 �2.30E�04 6.43E+01 �2.04E+01 8.00E+00 �2.32E�01
Betula pendula stemUB 1.00E+00 �1.00E�02 1.73E+01 5.05E�03 1.00E�01 �2.06E+00
Betula pendula wood P7cmOB �4.50E+00 1.08E+00 �1.15E�03 3.12E+04 �2.32E+01 5.50E+00 �1.43E�01
Betula pendula wood P7cmUB 1.00E+00 �1.00E�02 1.73E+01 5.05E�03 1.00E�01 �2.06E+00
Betula pendula treeOB 0.00E+00 1.11E+00 �4.80E�04 8.30E+04 �2.60E+01 8.00E+00 �1.50E�01

Quercus robur stemOB 4.62E�01 4.31E�01 7.46E�01 �9.06E�01 9.96E�04 �6.73E�06 �9.82E�07 7.75E�09
Quercus robur stemUB 3.59E�01 �5.25E�01 3.09E+00 �3.14E+00 3.21E�03 �5.84E�05 2.66E�07 �1.96E�09
Quercus robur wood P7cmOB 4.47E�01 5.98E+00 �2.09E+00 �1.49E+01 8.70E�02 1.06E�03 �2.69E+01 1.68E+01 �2.21E�01 2.23E+02 �5.39E+01 �1.01E+00
Quercus robur wood P7cmUB 4.53E�01 2.16E+00 9.10E+00 �1.21E+01 1.81E�01 �4.01E�03 �6.83E+00 9.44E+00 �2.44E�02 3.37E+01 �9.10E+00 �2.16E+00
Quercus robur treeOB 5.24E�01 4.24E+00 �6.60E+00 �7.81E+00 2.67E�01 �7.01E�03 3.74E+01 �2.14E+00 1.15E�01 �2.95E+01 1.73E+00 �9.29E�02

Picea abies stemOB 4.01E�05 1.00E+00 1.82E+00 1.13E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Picea abies stemUB 3.20E�05 1.00E+00 1.85E+00 1.15E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Picea abies wood P7cmOB 4.01E�05 1.00E+00 1.82E+00 1.13E+00 9.29E�03 1.00E+00 �1.02E+00 8.96E�01
Picea abies wood P7cmUB 3.20E�05 1.00E+00 1.85E+00 1.15E+00 8.29E�03 1.00E+00 �1.02E+00 8.96E�01
Picea abies treeOB 4.45E�05 1.00E+00 1.81E+00 1.13E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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For B. pendula:

VOB ¼ ðH þ a0Þa1 � ða2þ a3 � expða4 � ðDBH þ a5Þa6ÞÞ ðI:15Þ
VUB ¼ VOB � ða7þ a8 � ða9 � expða10 � ðVOB þ a11Þa12ÞÞÞ ðI:16Þ
For P. sylvestris:

Vstem ¼ a0 � ðDBH þ 1Þa1þa2�logðDBHþ1Þ � Ha3 ðI:17Þ
Vwood>7cm ¼ Vstem � a4 � ðDBH þ 1Þa5 � Ha6 ðI:18Þ

VtreeOB ¼ VstemOB þ a4 � ðDBH þ 1Þa5=Ha6 � a7
� ðDBH þ 1Þa8þa9�logðDBHþ1Þ � Ha10=a11 ðI:19Þ

In case no regression equation was available, the required volume
was calculated from the available volumes following the principles
below:

percent bark ¼ maxfVwood>7cmOB � Vwood>7cmUBÞ=Vwood>7cmOB;

VstemOB � VstemUBÞ=VstemOBg ðI:20Þ
Vwood<7cmOB ¼ VtreeOB � Vwood>7cmOB ðI:21Þ
Vwood<7cmUB ¼ ð1� percent barkÞ � Vwood<7cmOB ðI:22Þ
Vbark ¼ VtreeOB � Vwood>7cmUB � Vwood<7cmUB ðI:23Þ
In the listed equations, FFi the form factor for volume estimates [/],
Vi volume of tree compartments [m3], percent_bark is proportional
content of bark [/], DBH is tree diameter at breast height in [cm],
and H is tree height in [m] and parameters a0 to a12 are regression
coefficients derived for the respective species and listed in the fol-
lowing table.

Appendix J. Biomass calculation in Poland

Allometric biomass functions using tree height and/or diameter
are used for estimating aboveground biomass in Poland. For
P. sylvestris models developed with sample material from 18 Scots
pines stands in Bory Lubuskie (western Poland) are used (Zasada
et al., 2008). Due to lack of appropriate published biomass
Table J.1
Coefficients for calculating biomass for Poland (Zasada et al., 2008; Repola, 2008; Muukko

Coefficients for biomass calculation for Poland

a0 a1 a2 a3

Pinus sylvestris
dswm 0.00041 1.627725 1.390374 –
dsbm 0.000192 2.117192 – –
dabm 0.0000038 3.653659 �1.6008 –
ddbm 0.0000072 2.433082 – –
dfm 0.000212 2.30978 �0.58099 –

Picea abies
dsm �3.043 11.784 9.328 –
dbm �0.537 10.093 40.426 –
dfm �1.360 7.308 19.662 –

Fagus sylvatica, Quercus robur
dsm �0.657 10.730 17.394 –
dbm �2.128 13.295 26.095 –
dfm �2.480 9.511 26.771 –

Betula pendula
dswm �4.879 9.651 12 1.0
dsbm �5.401 10.061 12 2.6
dabm �4.152 15.874 16 �4
ddbm �8.335 12.402 16 –
dfm �29.566 33.372 2 –
functions for P. abies, F. sylvatica and Q. robur in Poland generalized
biomass functions for Europe are applied (Muukkonen, 2007). For
B. pendula height- and diameter-dependent functions developed
in Finland are used (Repola, 2008) (see Table J.1).

For P. sylvestris:

dswm; dsbm; . . . ¼ a0 � DBHa1 � Ha2 ðJ:1Þ
With DBH [mm], H [m]

For P. abies, F. sylvatica and Q. robur:

dsm;dsbm; . . . ¼ expða0þ a1 � DBH=ðDBH þ a2ÞÞ ðJ:2Þ
With DBH [cm]

For B. pendula:
Model type 1:

dswm;dsbm; . . .¼ cf �expða0þa1�dk=ðdkþa2Þþa3� lnðHÞþcf2Þ
ðJ:3Þ

Model type 2:

dswm;dsbm; . . .¼ cf �expða0þa1�dk=ðdkþa2Þþa3�H=ðHþa4Þþcf2Þ
ðJ:4Þ

dk ¼ 2þ 1:25 � DBH ðJ:5Þ
dk and DBH [cm], H [m], all parameters are given below.

Root-to-shoot ratios are the official values used in official Polish
reportings on changes in carbon stocks of the living biomass under
the Kyoto Protocol which are the weighted average of the default
coefficients proposed by IPCC (2006).

drm ¼ RS � ðdswmþ dsbmþ dfmþ dabmþ ddbmÞ ðJ:6Þ
RS is given in Appendix A. Minimum root diameter is not

defined.

Appendix K. Biomass calculation in Romania

Tree biomass is calculated using the volume functions devel-
oped in Romania by Giurgiu et al. (1972) used in the Romanian
NIR report combined with biomass expansion factors. The
nen, 2007).

a4 cf cf2 Model type

– – – –
– – – –
– – – –
– – – –
– – – –

– – – –
– – – –
– – – –

– – – –
– – – –
– – – –

12 – 1 0.004035 1
57 20 1 0.02743 2
.407 10 1 0.051975 2

– 2.0737 0 2
– 1 0.0385 2
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calculated volume includes above ground tree compartments
excluding foliage. Wood density values from the Global wood den-
sity database (Zanne et al., 2009; Chave et al., 2009) and biomass
fractions calculated using results from the EFISCEN project (Vilén
et al., 2005) (see Tables K.1 and K.2).

log10ðVabgÞ ¼ a0þ a1 � log10ðDBHÞ þ a2 � ðlog10ðDBHÞÞ2

þ a3 � log10ðHÞ þ a4 � ðlog10ðHÞÞ2 ðK:1Þ

BMABG ¼ VABG �wd ðK:2Þ
dsm;dbm; . . . ¼ f i � BMABG ðK:3Þ
where VABG aboveground tree volume [m3], BMABG aboveground tree
biomass [kg], DBH [cm], H [m], wd dry wood density [kg/m3] from
the Global wood density database (Zanne et al., 2009; Chave
et al., 2009) in Appendix A, coefficients a0–a4 and f_i age-
dependent biomass fractions are given below. Minimum root
diameter is not defined.
Appendix L. Biomass calculation in Italy

The methodology is a combination of the allometric biomass
functions developed with sample material from Italy from
Tabacchi et al. (2011) and the conversion parameters from
Federici et al. (2008). dsm includes stem and branches > 5 cm
diameter and dbm includes foliage and branches < 5 cm diameter
(Tabacchi et al., 2011). The Italian NIR report for the Italian Green-
house Gas Inventory for the period 1990–2010 (ISPRA, 2013) use
growing stock reported by the NFI (MAF-ISAFA, 1988) in combina-
tion with biomass expansion factors, wood density and root-shoot
ratios citing Federici et al. (2008). Growing stock is calculated with
allometric functions, which are developed with a subset of the
sample material used for the models used in this work (Tabacchi
et al., 2011). Since Q. robur and B. pendula are not covered in
Table K.1
Coefficients for aboveground volume calculation for Romania (Giurgiu et al., 1972).

Coefficients for aboveground volume for Romania

a0 a1 a2 a3 a4

Picea abies �4.18161 2.08131 �0.11819 0.70119 0.14818
Pinus sylvestris �3.84672 1.82103 �0.04107 0.35677 0.33491
Fagus sylvatica �4.11122 1.30216 0.23636 1.26562 �0.07966
Quercus robur �4.13329 1.88001 0.04880 0.95371 �0.06364
Betula pendula �4.16999 2.27038 �0.21540 0.30765 0.36826

Table K.2
Age-dependent biomass fractions for calculating biomass in compartments for Romania.

Biomass fractions dependent on tree age [years] for Romania

Picea abies 20 30 40 50

Stem 0.525 0.649 0.765 0.8
Branches 0.475 0.351 0.235 0.1
Roots 0.136 0.180 0.226 0.2
Foliage 0.227 0.189 0.135 0.1

Pinus sylvestris 30 40 50 60

Stem 0.493 0.661 0.749 0.7
Branches 0.507 0.339 0.251 0.2
Roots 0.150 0.181 0.198 0.2
Foliage 0.230 0.132 0.087 0.0

Fagus sylvatica, Quercus robur, Betula pendula 40 60 80 10

Stem 0.857 0.862 0.855 0.8
Branches 0.143 0.138 0.145 0.1
Roots 0.373 0.244 0.215 0.2
Foliage 0.063 0.028 0.020 0.0
Tabacchi et al. (2011), we use the models from Quercus pubescens
Willd. for the first and from ‘‘Altre latifoglie” (other broadleaves)
for the second species from the same reference (see Table L.1).

dsm ¼ s0þ s1 � DBH2 � H þ s2 � DBH ðL:1Þ
dbm ¼ b0þ b1 � DBH2 � H þ b2 � DBH ðL:2Þ
drm ¼ RS � ðdsmþ dbmÞ ðL:3Þ
with DBH [cm], H [m], s0–s2 and b0–b2 according to Tabacchi et al.
(2011) given in table below, RS according to Federici et al. (2008) in
Appendix A. Minimum root diameter is not defined.

Appendix M. Biomass calculation in Spain

Until now for international reporting, carbon stock in living bio-
mass was calculated using the method of ‘‘Change in Carbon
Stocks” described in the GPG-LULUCF (IPCC, 2006). Biomass expan-
sion factors were based on large dataset collected in the Ecological
Forest Inventory of Catalonia, Spain (Gracia et al., 2002; Mäkipää
et al., 2005). Root biomass is estimated with an expansion factor
according to IPCC methodology (IPCC, 2006) (see Table M.1).

In future for international reporting on forest biomass allomet-
ric functions are probably used. These functions are developed in
Spain and are dependent on DBH and/or tree height (Ruiz-
Peinado et al., 2011, 2012; Diéguez-Aranda et al., 2009).

For P. abies (functions from Abies alba), P. sylvestris and F. sylvat-
ica the functions from Ruiz-Peinado et al. (2011) and Ruiz-Peinado
et al. (2012) are used, for B. pendula (functions from Betula alba)
from Diéguez-Aranda et al. (2009) and for Q. robur from Balboa-
Murias et al. (2006a, 2006b). The minimum root diameter is not
given; the authors state however that fine roots are not captured
by their excavation method (Ruiz-Peinado et al., 2011, 2012).

As there are no explicit functions for foliage biomass given in
Ruiz-Peinado et al. (2011, 2012), the foliage biomass functions
from Diéguez-Aranda et al. (2009) are used. For P. abies and for P.
sylvestris the function from Pinus pinaster are used, for F. sylvatica
the function from Betula alba (Diéguez-Aranda et al., 2009).

The general equation for P. abies and P. sylvestris is:

dsm;dbm1; . . . ¼ a � DBHb � Hc þ d � H ðM:1Þ
For P. sylvestris, dbm1 = 0 for DBH <= 37.5 cm, if DBH > 37.5 cm:

dbm1¼0:54�ðDBH�37:5Þ2�0:0119�ðDBH�37:5Þ2 �H ðM:2Þ
The general equation for F. sylvatica, Q. robur and B. pendula is:

dsm;dbm1; . . . ¼ a � DBHb � Hc þ d � DBH2 þ e ðM:3Þ
60 70 80 90 100 110 1000

26 0.853 0.862 0.859 0.855 0.851 0.845 0.836
74 0.147 0.138 0.141 0.145 0.149 0.155 0.164
38 0.242 0.249 0.260 0.269 0.275 0.281 0.288
03 0.086 0.077 0.073 0.070 0.067 0.065 0.063

80 100 120 1000

93 0.830 0.845 0.848 0.845
07 0.170 0.155 0.152 0.155
08 0.213 0.213 0.208 0.201
63 0.044 0.032 0.026 0.022

0 120 140 1000

43 0.869 0.883 0.890
57 0.131 0.117 0.110
01 0.204 0.209 0.218
17 0.016 0.016 0.017



Table L.1
Coefficients for calculation biomass for Italy (Tabacchi et al., 2011).

Coefficients for biomass calculations for Italy

s0 s1 s2 b0 b1 b2

Picea abies �5.9426 0.01321 0.78369 5.9459 0.0040669 �0.21054
Pinus sylvestris 0.65786 0.017176 0 2.1336 0.0045864 0
Fagus sylvatica �0.83814 0.024865 0 2.504 0.0051283 0
Quercus robur 1.0832 0.029634 �0.49794 �8.2101 0.0030396 1.7561
Betula pendula �9.1098 0.0073484 2.3666 �3.6118 0.004319 0.74127

Table M.1
Coefficients for calculating biomass for Spain (Ruiz-Peinado et al., 2011, 2012;
Diéguez-Aranda et al., 2009; Balboa-Murias et al., 2006a, 2006b).

Coefficients for biomass calculation in Spain

Picea abies a b c d

dsm 0.0189 2 1 0
dbm1 + dbm2 0.0584 2 0 0
dbm3 0.0371 2 0 0.968
dfm 0.1081 1.51 0 0
drm 0.101 2 0 0

Pinus sylvestris
dsm 0.0154 2 1 0
dbm2 0.0295 2.742 �0.899 0
dbm3 0.53 2.199 �1.153 0
dfm 0.1081 1.51 0 0
drm 0.13 2 0 0

Fagus sylvatica a b c d e

dsm 0.0182 2 1 0.0676 0
dbm2 0.0792 2 0 0 0
dbm3 0.00226 2 1 0.093 0
dfm 0.0346 1.645 0 0 0
drm 0.106 2 0 0 0

Quercus robur
dswm 0.01823 2 1 0 �5.714
dsbm 0.00111 2 1 0.03154 �1.5
dbm1 3.427E�09 4.959 2.31 0 0
dbm2 0.00341 2 1 0 4.268
dbm4 0.03851 1.784 0 0 0
dbm5 0.00012 2 1 0 1.379
dfm 0.0101985 1.667 0.7375 0 0
drm 0.0116 1.949 0.9625 0 0

Betula pendula
dswm 0.1485 2.2223 0 0 0
dsbm 0.031 2.186 0 0 0
dbm2 0.1374 1.76 0 0 0
dbm4 0.05 1.618 0 0 0
dbm5 0.0372 1.581 0 0 0
dfm 0.0346 1.645 0 0 0
drm 1.042 1.254 0 0 0
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For F. sylvatica dbm1 = 0 for DBH <= 22.5 cm, if DBH > 22.5 cm:

dbm1 ¼ 0:83 � ðDBH � 22:5Þ2 � 0:0248 � ðDBH � 22:5Þ2 � H
ðM:4Þ

For B. pendula:

dbm1 ¼ 1:515 � expð0:0904 � DBHÞ ðM:5Þ

All functions with biomass in [kg], DBH [cm] and H [m], coefficients
a–e are given below.
Appendix N. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.foreco.2015.11.
016.
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Abstract: Net primary production (NPP) is an important ecological metric for studying forest
ecosystems and their carbon sequestration, for assessing the potential supply of food or timber
and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset
using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution.
Since coarse-resolution global climate data are used, the global dataset may contain uncertainties
for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm
to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare
MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data
(NFI) from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the
years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP
dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also
agrees with NFI NPP across scales (from continental, regional to country) and gradients (elevation,
location, tree age, dominant species, etc.). The agreement is particularly good for elevation, dominant
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species or tree height. This suggests that using improved climate data allows the MOD17 algorithm
to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and
NFI NPP can be related to differences in stand density due to forest management and the national
carbon estimation methods. With this study, we provide a consistent, temporally continuous and
spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can
be used to assess climate change impacts on ecosystems or the potential biomass supply of the
European forests for an increasing bio-based economy. MODIS EURO data are made freely available
at ftp://palantir.boku.ac.at/Public/MODIS_EURO.

Keywords: NPP; bioeconomy; forest inventory; NFI; climate; carbon; biomass; downscaling;
increment; MOD17

1. Introduction

Net primary production (NPP), the difference between Gross Primary Production (GPP) and
plant autotrophic respiration, is the net carbon or biomass fixed by vegetation through photosynthesis.
NPP represents the allocation rate of photosynthetic products into plant biomass and can be used to
measure the quantity of goods provided to society by ecosystems [1–3]. NPP of forest ecosystems is
essential to estimate the potential supply of biomass for bioenergy, fiber and timber supply. NPP is
also a key variable to assess environmental change impacts on ecosystems [4] since any variation in the
growing conditions influences the carbon cycle due to changes in carbon uptake and/or respiration.
As interest grows in utilizing forests for a “bio-based economy” [5,6], more accurate and realistic
forest productivity estimates become increasingly important. In addition, competing forest ecosystem
services, such as biodiversity or and nature conservation, need to be considered to ensure sustainable
use of our forests and to avoid unsustainable over-exploitation of renewable resources.

Within the EU-28 160.9 million ha or 37.9% of the total land area are covered with forests [7]. These
forests provide resources for the timber industry, the energy sector (24.3% of the energy in the EU-28 is
generated from renewable sources of which 64.2% consists of forest biomass and waste [8]), but also
for non-timber ecosystem services such as clean air, water, biodiversity or protection against natural
hazards. Accurate and consistent forest information is a precondition for assessing the production and
harvesting potential of forest resources in Europe.

There are conceptually different data sources and methods to assess forest productivity like:

(i) The MODIS algorithm MOD17 uses remotely sensed satellite-data and climate data to predict
spatially and temporally continuous NPP and GPP (Gross Primary Production or carbon
assimilation) based on an ecophysiological modelling approach [2]. In addition to satellite
reflectance data and climate data, it requires the biophysical properties of land cover types,
which are stored in the Biome Property Look-Up Tables (BPLUT) [9].

(ii) National forest inventory data can be used to assess the timber volume stocks as well as volume
increment and removal, if repeated observations are available [10]. This terrestrial bottom-up
approach collects forest information by measuring sample plots arranged on a systematic
grid design across larger areas. In combination with biomass expansion factors or biomass
functions, volume or tree information can be converted into biomass or carbon estimates to
account for differences in wood densities, the carbon fraction and different allocation into
compartments [11,12].

(iii) Flux towers record the gas-exchange in plant-atmosphere interactions [13], which can be used
to derive GPP from Net Ecosystem exchange (NEE). NEE is estimated using eddy covariance
data, climate measurements and other ancillary data [14].
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Net Primary Production (NPP) from (i) top-down satellite-driven MOD17 algorithm and
(ii) bottom-up NPP estimates using terrestrial forest inventory data were compared in a pilot study for
Austria on national scale [15]. Top-down and bottom-up refer to the level of scaling of the primary
recorded information (for MOD17 1-km remote sensing products and for Terrestrial NPP single tree
observations). Our definition for top-down differs from traditional carbon cycle modelling [16]. This
study wants to extend and test this concept for Europe on a continental scale.

For this purpose, we obtain two wall-to-wall spatially-explicit and consistent MODIS NPP datasets
by acquiring the global dataset using global climate driver and by creating a regional dataset MODIS
EURO using 1-km European climate data. We evaluate these two datasets by comparing with the
NPP derived from forest inventory data from 12 European countries. We assess the reliability and
potential discrepancies of the MODIS satellite-driven top-down versus the terrestrial bottom-up NPP
estimates from continental to national scale and across different gradients like location, elevation or
stand density. This will provide a better understanding of the reliability of remote sensing based NPP
estimates, which could be used also for regions, where no terrestrial measurements are available.

2. Materials and Methods

We used two conceptually different methods to estimate NPP, (i) the MODIS NPP algorithm
MOD17 and (ii) terrestrial forest inventory data and tree carbon estimation methods. Both have
their respective strengths and weaknesses. MODIS NPP has the advantage of providing spatially
continuous estimates with a consistent methodology, which is important for any large-scale studies.
It incorporates biogeochemical principles in mechanistic modelling environment and the vegetation
feedback to climate conditions through changes in Leaf Area Index and absorbed radiation [17]. It
does not distinguish between different vegetation apart from general Land Cover types, has a coarse
spatial resolution and might not be able to represent specific local conditions due to its calibration to
global conditions. In contrast, terrestrial forest inventory NPP assesses the actual carbon allocation by
trees and captures local small-scale effects (e.g., site conditions, tree age or forest management) as well
as regional differences in estimating tree carbon [12,18]. It covers only the increment of trees assessed
by the inventory system and might not capture local specifics of litter fall and fine root turnover very
well, since broad model assumptions have to be used.

2.1. MODIS NPP

Since the year 2000, the MOD17 product provides spatially and temporally continuous NPP
estimates across the globe [17]. The algorithm behind uses the reflectance data from the sensor MODIS
(MODerate resolution Imaging Spectroradiometer) of the TERRA and AQUA satellites operated
by National Aeronautics and Space Administration of the United States (NASA). MOD17 provides
GPP and NPP estimates at a 1-km resolution [2,17] and incorporates basic biogeochemical principles
adopted from Biome-BGC [19]. It integrates a light use efficiency logic using remotely sensed vegetation
information to estimate GPP (Equation (1)) with a maintenance and growth respiration module to
derive NPP (Equation (2)).

GPP “ LUEmaxˆ fTminˆ fvpdˆ 0.45ˆ SWradˆFPAR (1)

NPP “ GPP´RM´RG (2)

LUEmax is the maximum light use efficiency, which get adjusted by fTmin and fvpd to address
water stress due to low temperature (Tmin) and vapor pressure deficit (VPD). SWrad is short wave
solar radiation load, of which 45% is photosynthetically active. FPAR is the fraction of absorbed
photosynthetic active radiation. RM is the maintenance respiration and is estimated using LAI (Leaf
Area Index), climate data and biome-specific parameters. RG is the growth respiration and is estimated
to be approx. 25% of NPP. The complete algorithm is documented in [18] and more details are found
in the cited literature therein.
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The MOD17 algorithm requires climate data, FPAR and LAI (leaf area index) data as well as land
cover data, which is derived from MODIS reflectance data [20]. We obtained the global MODIS NPP
product (MOD17A3 Version 055) provided by the Numerical Terradynamic Simulation Group (NTSG)
at University of Montana available at ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/. This
data set (hereafter called MODIS GLOB) covers the period of 2000 to 2012, which is the time period
covered by our terrestrial data (see next chapter), and provides the annual NPP in gC¨m´2¨year´1.

The source of FPAR and LAI input is MODIS15 LAI/FPAR Collection 5, which was temporally
gap filled to close data gaps due to unfavorable atmospheric conditions such as cloudiness or heavy
aerosol presence [9]. For Land cover, we used the land cover product MOD12Q1 Version 4 Type 2 [21]
representing the conditions in year 2001.

Climate data are important input into the MODIS NPP algorithm and climate data have a strong
impact on the MODIS NPP results [15,22]. MODIS GLOB uses the global climate data set NCEP2 [23]
described in the following Section 2.2. In Europe, we have high quality daily climate data, the E-OBS
data set [24], which was recently downscaled to a 1-km resolution [25].

We next ran the MOD17 algorithm with the downscaled European climate data [25] and obtained
an additional MODIS NPP estimate for the period 2000–2012 (hereafter called MODIS EURO), which
differ from MODIS GLOB provided by NTSG only in the used daily climate input data. We used the
same FPAR, LAI and Land cover input, as used for the global NPP product, MODIS GLOB. MODIS
EURO covers our study region, the EU-28 including Norway, Switzerland and the Balkan states
(see Figure 1) and is made available under ftp://palantir.boku.ac.at/Public/MODIS_EURO.
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2.2. Climate Data

As outlined, the two MODIS NPP estimates, MODIS GLOB and MODIS EURO, differ only in the
daily climate data input: MODIS GLOB employs the global NCEP2 climate data set [23] and MODIS
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EURO uses European downscaled climate data [25]. We provide here a brief overview of the two
climate data sets.

The NCEP2 data set (NCEP-DOE Reanalysis 2) is a reanalyzed global daily climate data set with
a spatial resolution of 1.875˝ ˆ 1.875˝. This corresponds to approx. 220 km at the equator at latitude 0˝

(approx. 136 ˆ 220 km at latitude 50˝). To compensate the coarse spatial resolution, for MODIS GLOB
the climate data for the 1 km MODIS pixels was deduced with an bilateral interpolation method based
on the neighboring NCEP2 pixels [9].

The downscaled climate data used for MODIS EURO provide daily climate data on a
0.0083˝ ˆ 0.0083˝ resolution (approx. 1 ˆ 1 km at the equator and approx. 0.6 ˆ 1 km
at 50˝ latitude) [25]. This data set was developed out of the E-OBS gridded climate data set
(0.25˝ resolution, using data from 7852 climate stations) [24] in conjunction with the WorldClim
data set [26].

2.3. Terrestrial NFI NPP

Terrestrial forest data such as national forest inventory (NFI) data assess accumulated carbon on a
systematic grid using a permanent plot design. From repeated observations of diameter at breast height
(DBH) and/or tree height (H) in combination with biomass functions or biomass expansion factors the
carbon accumulation of trees is estimated. Since this method is based on single tree measurements
and local biomass studies, NPP derived from forest inventory data incorporates local effects such as
weather patterns, climate anomalies, stand age, differences in biomass allocation, site and soil effects
and different forest densities due to forest management [15,27].

We obtained 196,434 forest inventory plots covering 12 European countries. In Europe, each
country has its own National Forest Inventory (NFI) system, which all have different measurement
periods, sampling designs and methodologies [10] (Table S1 in the Supplementary Material). Thus, we
first had to develop a harmonized and consistent terrestrial dataset for estimating Terrestrial NPP. We
calculated NPP using the forest inventory data according to Equation (3).

NPP “ CARBINC ` FRTO ` CLF (3)

CARBINC is the carbon increment of trees (gC¨m´2¨year´1). FRTO is the carbon used for fine
root turnover [28,29]. Fine root turnover FRTO is assumed to be equal to the carbon flow into litter
CLF [27,30]. Both processes are controlled by the same factors and the assumption of similarity
between the above- and belowground turnover of short-living plant organs is supported by recently
collected European data on fine root turnover [29] and litter fall [31]. CLF is the flow of carbon into
litter (gC¨m´2¨year´1) estimated using a climate-sensitive and species-dependent model [31] and is
calculated as:

Broadleaf-dominated : CLF “ CF expp2.643 ` 0.726 LnpT ` 10q ` 0.181 LnpPqq (4)

Coniferous-dominated : CLF “ CF expp2.708 ` 0.505 LnpT ` 10q ` 0.240 LnpPqq (5)

CF is the carbon fraction of dry biomass which is set equal to 0.5 [11]. T is the mean annual
temperature from the year 2000 to 2012 (˝C). P is the mean annual precipitation 2000 to 2012 [mm]. For
temperature and precipitation we use the European climate data [25] to capture important small-scale
regional effects such as elevation or topography in a more realistic way. Equation (4) is applied for
all plots where broadleaf species contribute most to total basal area and Equation (5) is used for
coniferous-dominated plots (see Table S2 of the Supplementary Material).

We used data from nine National Forest Inventories (Austria, Czech Republic, Germany, France,
Finland, Norway, Poland, Romania, Spain), and three Regional Forest Inventories (Belgium, Estonia,
Italy). We grouped our 12 countries in four geographic regions, North Europe, Central-West Europe,
Central-East Europe and South Europe [7], to address the large environmental, elevational and climatic
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gradients in Europe. Countries within a region should have similar climatic and edaphic conditions
as well as similar tree allometries and allocation patterns [32]. The original locations of the inventory
plots were falsified to the nearest pixel of the MODIS grid to guarantee the locations of the plots remain
unknown. Temporal consistency with the MODIS data (available since year 2000) was ensured by
using only inventory data, which provide CARBINC (Equation (3)) for the time period 2000 to 2012.
Figure 1 shows our study region with the four geographic regions completely covered by MODIS
EURO, and the 12 countries, where we have NFI NPP.

Although all our terrestrial forest inventory data assess properties of trees, there are different
sampling methods and increment calculation by country in place, which may strongly affect the
resulting estimates [33,34]. Four different methods to estimate tree carbon increment CARBINC are
used in our data: (1) repeated observations of fixed area plots (used in Norway, Poland, Belgium);
(2) repeated angle count sampling (for Austria, Germany, Finland); (3) increment cores (France,
Romania, Italy); as well as increment predictions from (4) tree growth models (Czech Republic, Estonia,
Italy). Tree growth model predictions were used if no increment observations, either from repeated
observations or from increment cores, were available.

In the Supplementary Material, we provide all details for our 12 inventory data sets, the
local sampling system, the available data and the used increment method (Table S1 in the
Supplementary Material).

The tree carbon results for determining carbon increment CARBINC (Equation (3)) were estimated
using the carbon calculation method applied by the local forest inventory organization and compiled
in [32]. Local biomass functions and biomass expansion factors were used to derive tree biomass and
carbon fractions to convert biomass into carbon. In the Supplementary Material, we provide a detailed
description on processing the NFI data, the tree carbon estimates and stand variables to describe the
represented forests (e.g., mean age, basal area or stand density index).

Using this methodology, we processed the forest inventory data from the 12 countries (Table S1)
and derived harmonized carbon stocks for all inventory plots. The forest inventory data set consists of
196.434 plots, harmonized across 12 European countries. We applied the carbon increment method for
each country and calculated NPP by inventory plot (hereafter called NFI NPP) using Equations (3)–(5).

2.4. Analysis of NPP Results

We thus have three NPP sources: two using the MOD17 algorithm with different daily climate
data: (i) MODIS GLOB produced by the Numerical Terradynamic Simulation Group (NTSG) at
University of Montana and (ii) MODIS EURO by running the original MOD17 algorithm and the
latest BPLUTs parametrized by [9] with downscaled daily climate data from Europe [25] as well as
(iii) Terrestrial NFI NPP using forest inventory data from the 12 countries (Table S1) and local carbon
estimation methods [32].

We compared the three NPP datasets across Europe, by our 4 regions (Figure 1) and the
12 countries to analyze our results across different spatial scaling. We extracted for each forest inventory
plot at the corresponding MODIS cell the average NPP from MODIS GLOB and MODIS EURO for
2000 to 2012. We next computed for all plots the difference between the two MODIS NPP estimates
and the Terrestrial NFI NPP (∆NPPGLOB = MODIS GLOB minus NFI NPP and ∆NPPEURO = MODIS
EURO minus NFI NPP).

We used each NFI plot separately and did not compute average values for MODIS pixels. This
avoided smoothing effects due to different spacing between inventory grid points and the plot clusters
used in some countries (Table S1).

To analyze the effect of gradients on the NPP results, we collected potentially meaningful
meta-information such as plot location (Longitude and Latitude in WGS1984), Elevation (EU-DEM
30 m resolution), MODIS Land Cover type or forest characteristics (dominant tree species, mean
age, stand density, tree height, etc.) and analyzed patterns of ∆NPPGLOB and ∆NPPEURO across
these gradients.
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Terrestrial and remote sensing NPP estimates exhibited discrepancies in previous research [15,18]
and as explanation the authors suggested changes in stand density, which are commonly caused by
forest management and disturbances [15,18]. Since major parts of the forests in Europe are managed [7]
and affected by natural disturbances such as wind damage or forest fire [35], they should have
experienced changes in stand density as compared to unmanaged forests. Stand density directly affects
terrestrial NPP estimates by its impact on the development of DBH and H of the remaining trees after
forest management operations until canopy closure is reached. On the other hand MODIS NPP is
based on the “big leaf” concept and assumes a full coverage of forest area. We thus use Stand density
index (SDI) [36] in the analysis of our NPP estimates.

3. Results

NPP estimated using the MOD17 algorithm has the advantage of providing spatial- and
temporal-continuous NPP estimates across Europe on a 1-km resolution and Figure 2 illustrates
this by showing MODIS EURO for the years 2000 to 2012. Note that MODIS EURO also covers
not-forest land cover types such as crops, shrub- or grassland.
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Figure 2. MODIS EURO NPP on 1-km resolution representing average NPP for the period 2000–2012
using European daily climate data (available under ftp://palantir.boku.ac.at/Public/MODIS_EURO).

Terrestrial NFI NPP is driven by forest information collected by field crews. Thus it provides NPP
and the carbon accumulation by forest stands during a certain time period. Table 1 gives a summary of
the forest inventory results by country, by region and the whole dataset, with the terrestrial NFI NPP
at the right side.
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Table 1. Summary of the forest inventory results: Number of plots with data, Time period covered by NFI NPP, Mean elevation (range Minimum–Maximum) in meter
above sea level (EU-DEM 30 m resolution). For the following plot statistics we provide mean and standard deviation: Mean quadratic DBH (cm), Mean Tree height
(m), Basal area at 1.3 m height (m2¨ ha´1), Stem number (ha´1), Tree carbon per hectare (gC¨ m´2), Median age class, SDI Stand Density Index [36] (for details on this
variables see Supplementary Material), NPP is the NFI Net primary production (gC¨ m´2¨ year´1) according to Equation (3), For Czech Republic we only have country
means. Empty cells (-) indicate that this variable is not available from the NFI data set. At the end of each section, statistics of the region are given and at the bottom of
the table summary statistics for whole Europe.

Region Country Number of
Plots

Time
Period

Mean Elevation
(min–max) (m)

Mean DBH
(cm)

Mean Tree
Height (m)

Basal Area
(m2¨ ha´1)

Stem Number
(ha´1)

Tree Carbon
(gC¨ m´2)

Median
Age (Years) SDI NPP

(gC¨ m´2¨ year´1)

North Europe
Estonia 19930 2000–2010 66 (2–275) 17 ˘ 8 17 ˘ 7 19 ˘ 8 1540 ˘ 2554 5240 ˘ 2929 40–60 449 ˘ 192 509 ˘ 163
Finland 6442 2000–2008 141 (1–400) 18 ˘ 7 14 ˘ 5 18 ˘ 8 3522 ˘ 13251 4859 ˘ 3020 40–60 400 ˘ 236 446 ˘ 173
Norway 9562 2000–2009 391 (0–1253) 15 ˘ 6 9 ˘ 3 15 ˘ 12 930 ˘ 682 4003 ˘ 3691 60–80 368 ˘ 265 442 ˘ 143

all 35379 2000–2010 161 (0–1253) 16 ˘ 7 14 ˘ 7 18 ˘ 9 1736 ˘ 5983 4856 ˘ 3199 40–60 419 ˘ 224 482 ˘ 162

Central-West
Europe

Austria 9562 2000–2009 912 (113–2299) 32 ˘ 14 21 ˘ 7 32 ˘ 19 987 ˘ 1070 10364 ˘ 6973 60–80 688 ˘ 396 681 ˘ 251
Belgium 512 2009–2013 39 (2–278) 29 ˘ 12 18 ˘ 6 30 ˘ 13 660 ˘ 446 11507 ˘ 6475 40–60 648 ˘ 279 671 ˘ 195
France 33152 2001–2011 444 (0–2707) 23 ˘ 11 15 ˘ 7 23 ˘ 15 778 ˘ 602 8083 ˘ 6457 60–80 512 ˘ 298 649 ˘ 254

Germany 5894 2000–2008 344 (´5–1879) 28 ˘ 12 22 ˘ 7 31 ˘ 14 833 ˘ 814 11811 ˘ 6371 60–80 628 ˘ 302 754 ˘ 185
all 49120 2000–2013 514 (´5–2707) 25 ˘ 12 17 ˘ 8 25 ˘ 17 824 ˘ 749 9034 ˘ 6698 60–80 564 ˘ 328 667 ˘ 253

Central-East
Europe

Czech Rep. 13929 2001–2004 541 (138–1503) 25 20 33 812 17340 ˘ 10858 60–80 809 ˘ 441 643 ˘ 266
Poland 17281 2005–2013 193 (´4–1459) 23 ˘ 9 18 ˘ 5 29 ˘ 14 883 ˘ 614 10656 ˘ 6623 40–60 612 ˘ 263 720 ˘ 288

Romania 5509 2003–2011 542 (´1–1968) 24 ˘ 11 - 28 ˘ 15 878 ˘ 723 10355 ˘ 7256 40–60 582 ˘ 289 571 ˘ 164
all 36719 2001–2013 443 (´4–1968) 23 ˘ 10 18 ˘ 5 28 ˘ 15 881 ˘ 673 12376 ˘ 8793 40–60 652 ˘ 345 649 ˘ 248

South Europe
Italy 15183 2002–2009 860 (7–2891) 20 ˘ 8 12 ˘ 4 22 ˘ 13 839 ˘ 636 6315 ˘ 4897 20–40 497 ˘ 293 635 ˘ 179
Spain 60033 2000–2008 842 (1–2549) 23 ˘ 13 10 ˘ 4 13 ˘ 11 491 ˘ 516 4003 ˘ 3918 40–60 288 ˘ 246 606 ˘ 293

all 75216 2000–2009 831 (1–2891) 22 ˘ 12 10 ˘ 4 15 ˘ 12 561 ˘ 560 4469 ˘ 4237 40–60 330 ˘ 269 578 ˘ 275

All countries - 196434 – 548 (´5–2891) 22 ˘ 11 13 ˘ 7 20 ˘ 15 900 ˘ 2646 7298 ˘ 6916 40–60 469 ˘ 325 597 ˘ 252
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Our NFI dataset covers the full elevational and latitudinal range of forest conditions in Europe
including different site conditions, tree species, development stages or management practices. For
most countries we have more than 5000 inventory plots (exception: Belgium with 512 plots) and in
most cases a plot spacing of at least 4 by 4 km (Table S1). This dataset also provides information
on forest properties such as tree age, carbon stocks or stand density and Table 2 indicates that these
characteristics vary across Europe.

Table 2. NPP and ∆NPP (always using median) for the whole dataset (“All Countries”), for each country
separately and for each region (MODIS NPP using global climate data—MODIS GLOB; MODIS NPP
using local European climate data—MODIS EURO and NPP using forest inventory data—NFI NPP);
∆NPP and Rel. ∆NPP both for MODIS GLOB and MODIS EURO. Positive differences indicate that
MODIS NPP overestimates NFI NPP and vice versa.

NPP and ∆NPP (gC¨ m´2¨ year´1) MODIS MODIS ∆NPP Rel. ∆NPP [%]

GLOB EURO NFI NPP GLOB EURO GLOB EURO

All Countries 680 577 539 141 38 26% 7%

North Europe

Finland 471 399 414 57 ´15 14% ´4%
Norway 484 406 409 75 ´3 18% ´1%
Estonia 534 504 492 42 12 9% 3%

all 519 479 461 58 18 13% 4%

Central-West Europe

Austria 739 612 634 105 ´22 17% ´4%
Belgium 732 599 644 88 ´45 14% ´7%
France 787 666 604 183 62 30% 10%

Germany 692 602 716 ´24 ´114 ´3% ´16%
all 759 645 615 144 30 23% 5%

Central-East Europe

Czech
Republic 696 618 553 143 65 26% 12%

Poland 641 571 659 ´19 ´88 ´3% ´13%
Romania 713 562 565 148 ´3 26% ´1%

all 677 592 595 82 ´3 14% ´1%

South Europe
Italy 862 657 635 227 22 36% 4%
Spain 632 555 503 129 52 26% 10%

all 691 584 519 172 65 33% 13%

3.1. NPP Estimates across Different Scales

Comparing all our three NPP estimates on a European scale allowed us to explore the general
behaviour and evaluate the agreement of the two remote sensing driven NPP products, MODIS GLOB
and MODIS EURO, with the terrestrial driven NFI NPP estimates (Figure 3).

Re-running the MOD17 algorithm with local climate data reduced the remotely sensed MODIS
NPP in terms of median, mean and variation as compared to the global climate driver (Figure 3). NFI
NPP is close to MODIS EURO regarding median and mean, but show larger variation. In addition,
Figure 3 confirms that our data is clearly right-skewed (NFI NPP in particular).

Zooming in and examining the different NPP estimates by ecoregion and country allowed us to
analyze our results on a higher spatial resolution and to assess local effects such as different regional
growing conditions, the impact of local biomass allometries or tree species composition [32] as well as
the potential effect of different forest management practices in Europe [7].

We provide in Table 2 the median NPP for the three NPP sources (MODIS GLOB, MODIS EURO
and NFI NPP) and the differences between MODIS and NFI NPP (∆NPPGLOB and ∆NPPEURO), both in
absolute values in gC¨m´2¨ year´1 and normalized in relation to NFI NPP (Rel. ∆NPPi in %). Results
are given in Table 2 for Europe, by country and for the four eco-regions [7].

At the European level, the MODIS GLOB gives an NPP of 680 gC¨m´2¨ year´1, the MODIS EURO
resulted in 577 gC¨m´2¨ year´1, and the NPP from the NFI data exhibit a value of 539 gC¨m´2¨ year´1.
The differences in NPP (∆NPPGLOB) using the global dataset MODIS GLOB are larger than ∆NPPEURO

using the regional dataset MODIS EURO (+26% vs. +7%). The same pattern is evident across all four
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regions and most countries. Only for Poland and Germany ∆NPPGLOB is smaller than ∆NPPEURO.
∆NPPGLOB is positive for most countries (negative in only 2 countries), while the discrepancy of
MODIS EURO is more randomly distributed in Europe and the 4 regions (∆NPPEURO positive in
5 countries and negative for 7 countries). In addition, Table 2 shows that Rel. ∆NPPEURO is smaller
than 10% for all countries except five (France, Germany, Czech Republic, Poland and Spain).
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Figure 3. Comparison of MODIS GLOB and MODIS EURO with NFI NPP: The box represent the
Median and the 25th and 75th percentile, the diamond give the arithmetic mean, the whiskers extend
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in the boxplot.
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This suggests that the discrepancy between MODIS EURO and NFI NPP is smaller than for
MODIS GLOB and NFI NPP and we wanted to confirm this along the NPP gradient by showing the
country medians in Figure 4.

Figure 4 provides the results by country of the NPP estimates resulting from the NFI data
versus MODIS EURO with an R2 0.68, a residual standard error (RSE) of 52.0 gC¨m´2¨year´1 or
9.7% of median of the NFI NPP. Aside from Germany and Poland MODIS EURO and NFI NPP are
similar across the NPP gradient for the analyzed countries. The results for MODIS GLOB in the right
corner exhibit consistent overestimation of NFI NPP, smaller agreement (R2 = 0.59) and larger error
(RSE 80.6 gC¨m´2¨year´1 equal 15.0% of median NFI NPP).

We used in Figure 4 the aggregated NPP of all inventory plots of one country, since the spatial
coverage and thus the error structure of the two NPP sources are very different (one MODIS pixel
covering 1 km2 or 100 ha and the size of an NFI plot ranging from approx. 0.01 to 0.2 ha; Table S1).
A direct plot-to-pixel comparison is provided in Figure S1 in the Supplementary Material.

3.2. NPP across Elevational, Latitudinal and Longitudinal Gradients

From Figures 3 and 4 as well as Table 2, we can see that the top-down MODIS EURO NPP
estimates are consistent with the bottom-up terrestrial driven forest inventory NPP estimates at the
European, regional and country level. Next, we investigated whether any patterns across gradients
between MODIS EURO and NFI NPP may exist. For this purpose, we showed here ∆NPPEURO for
selected gradients, Elevation, Latitude and Longitude. We chose these gradients, since they have a
strong effect on environmental and climatic conditions such as growing season length or weather
patterns, but also on tree allometries and species composition, and are irrespective of country borders.

We aggregated our results into classes to increase the readability and show Figure 5 the results for
whole Europe (results on the different regions are available in Figures S2–S5 in the Supplementary
Material). Images for additional gradients like tree age, tree height, MODIS land cover and dominant
tree species are provided in Figures S6–S9 in the Supplementary Material.
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Grouping by elevation in Figure 5a does not indicate striking differences and shows, that the
agreement between MODIS EURO and NFI NPP is consistent across the elevational gradients. At
certain latitude and longitude classes however local discrepancies exist, which may correspond to the
findings in Table 2 and Figure 4.

3.3. Stand Density Effects

We analyzed ∆NPPEURO (differences in NPP between MODIS EURO versus NFI NPP) by SDI
(Stand Density Index [36] calculated with Equation (S10) in the Supplementary Material) for all of
Europe (Figure 6).

Remote Sens. 2016, 8, x 12 of 18 

 

Grouping by elevation in Figure 5a does not indicate striking differences and shows, that the 
agreement between MODIS EURO and NFI NPP is consistent across the elevational gradients. At 
certain latitude and longitude classes however local discrepancies exist, which may correspond to 
the findings in Table 2 and Figure 4. 

3.3. Stand Density Effects 

We analyzed ∆NPPEURO (differences in NPP between MODIS EURO versus NFI NPP) by SDI 
(Stand Density Index [36] calculated with Equation (S10) in the Supplementary Material) for all of 
Europe (Figure 6). 

 

Figure 6. NPP Difference (∆NPP) MODIS EURO minus NFI NPP by Stand Density Index classes 
(SDI), for details see Figure 5. 

∆NPP shows in Figure 6 a significant trend by stand density index SDI (using linear regression; 
R 0.31; ∆NPP = 103.1 − 0.247 × SDI; p < 0.001), which confirms that differences in stand density have 
an effect in our data from the 12 European countries. MODIS EURO NPP estimates are higher than 
NFI NPP at low SDI classes, while at intermediate SDI classes no discrepancies are evident (Figure 
6). At high SDI classes MODIS EURO are lower than NFI NPP. 

We analyzed the effect of SDI for each country, since SDI could be an explanation for the 
discrepancies visible in Table 2, Figures 4 and 5. Local effects of forest management intensity, 
disturbances or differences in the local inventory data design and methodology (Table S1) could lead 
to differences in SDI. We performed similar graphical analysis as shown in Figure 6 for each country 
and present here as examples two “extreme” countries: (i) France—positive ∆NPP +10%, with 
MODIS EURO overestimating NFI NPP; and (ii) Germany—negative ∆NPP −16%, where MODIS 
EURO underestimates NFI NPP. 

For France, MODIS EURO and NFI NPP results agree at high stand density and show 
discrepancies at low stand density (Figure 7a). Apparently, MODIS EURO does well in capturing the 
NPP of stands with high densities, but does not agree with NFI NPP from very open stands. The 
same patterns are also visible for other countries, where MODIS EURO overestimates NFI NPP such 
as Spain or Czech Republic (not shown). 

For Germany on the other hand, MODIS EURO and NFI NPP are similar at low stand density 
classes, but show increasing deviations with increasing stand densities (Figure 7b). We see the same 
result for other countries as well, where MODIS EURO underestimates NFI NPP such as Poland (not 
shown). This may be seen as an indication that besides stand density an additional driver might 
cause discrepancies between MODIS EURO versus terrestrial NFI NPP. 
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∆NPP shows in Figure 6 a significant trend by stand density index SDI (using linear regression;
R 0.31; ∆NPP = 103.1 ´ 0.247 ˆ SDI; p < 0.001), which confirms that differences in stand density have
an effect in our data from the 12 European countries. MODIS EURO NPP estimates are higher than
NFI NPP at low SDI classes, while at intermediate SDI classes no discrepancies are evident (Figure 6).
At high SDI classes MODIS EURO are lower than NFI NPP.

We analyzed the effect of SDI for each country, since SDI could be an explanation for the
discrepancies visible in Table 2, Figures 4 and 5. Local effects of forest management intensity,
disturbances or differences in the local inventory data design and methodology (Table S1) could
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lead to differences in SDI. We performed similar graphical analysis as shown in Figure 6 for each
country and present here as examples two “extreme” countries: (i) France—positive ∆NPP +10%, with
MODIS EURO overestimating NFI NPP; and (ii) Germany—negative ∆NPP ´16%, where MODIS
EURO underestimates NFI NPP.

For France, MODIS EURO and NFI NPP results agree at high stand density and show
discrepancies at low stand density (Figure 7a). Apparently, MODIS EURO does well in capturing the
NPP of stands with high densities, but does not agree with NFI NPP from very open stands. The same
patterns are also visible for other countries, where MODIS EURO overestimates NFI NPP such as
Spain or Czech Republic (not shown).Remote Sens. 2016, 8, x 13 of 18 
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for selected countries: France (a)—MODIS EURO overestimates NFI NPP (on average positive ∆NPP)
and Germany (b)—MODIS EURO underestimates NFI NPP (on average negative ∆NPP), for details
see Figure 5.

For Germany on the other hand, MODIS EURO and NFI NPP are similar at low stand density
classes, but show increasing deviations with increasing stand densities (Figure 7b). We see the same
result for other countries as well, where MODIS EURO underestimates NFI NPP such as Poland (not
shown). This may be seen as an indication that besides stand density an additional driver might cause
discrepancies between MODIS EURO versus terrestrial NFI NPP.
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4. Discussion

Top-down satellite driven MODIS NPP (Net Primary Production) estimates using local European
daily climate data (MODIS EURO) exhibit smaller differences from the bottom-up terrestrial forest
inventory NFI NPP estimates (Table 1) than the original MODIS GLOB estimates using global climate
data (Figure 3; Table 2). This confirms that the output from the climate sensitive MOD17 algorithm
can be substantially improved by using enhanced daily climate data [22] and supports the findings
of the pilot study in Austria [15] by extending the focus to a continental scope. The local European
daily climate data [25] used for MODIS EURO reduced across scales from continental (Figure 3)
to national scale (Figure 4) substantially the differences between NPP using the MOD17 algorithm
and terrestrial forest inventory data (Table 2). Both NPP estimates are also consistent across various
gradients (elevation, latitude and longitude in Figure 5 and tree age, tree height, MODIS Land cover
type and dominant species in Figures S6–S9).

In this study we evaluated MODIS EURO in comparison to the global MODIS NPP dataset [17]
using our terrestrial NFI NPP. The specific methodologies and differences of our forest inventory data
sets (Table S1) and missing information on fine roots and litter fall do not permit a proper validation of
NPP. Since the forest inventory data was collected with a different purpose [10], it contains a different
error structure due to the small sample plot size and large grid spacing (one or very few plots within a
MODIS pixel) as compared to the continuous 1-km MODIS grid.

The large variations and local discrepancies apparent in this study (Figure 3; Table 2) are also
reflected in a study on evaluating NPP and GPP (Gross Primary Production) from the MOD17 algorithm
for North and South America [37]. While the authors reported no general bias in the MODIS NPP
product, they found over- as well underestimation especially for certain locations and forest biomes of
more than 30%. This study shows that in Europe discrepancies between MODIS EURO and terrestrial
NFI NPP exceeds 10% in three out of twelve countries (Table 2).

This study improves the knowledge on explaining discrepancies between remote sensing and
terrestrial NPP estimates by highlighting the effect of stand density index (SDI). Forests with
stand density of 200 or lower are expected to have gaps, canopy cover below 100% and low
competition between trees. Under such conditions the NFI NPP is substantial lower than MODIS
NPP (Figures 6 and 7). This can be explained that at low stand density a substantial share of NPP is
undetected by the forest inventory system (gaps filled with young trees or shrubs below diameter
threshold), while MODIS NPP is able to capture these gaps via leaf area index provided by the
satellite [15]. Figure S10 in Supplementary Material confirms that the stand density related trend of
∆NPP in Figures 6 and 7 is mainly caused by NFI NPP, which shows a stronger increase with SDI than
MODIS NPP.

Since we tested this effect with MODIS GLOB as well, we can conclude that any MODIS
productivity estimates irrespective from the used climate input cannot detect such important effects
adequately. The relatively large pixel size of 1-km apparently does not allow MODIS NPP to capture
small scale patterns such as clear-cuts, thinning operations or disturbance events, while a forest
inventory can detect them better. This confirms the findings of the pilot study in Austria [15] and
indicates that differences in stand density needs consideration also on the much larger European scale.

MODIS EURO agrees very well with NFI NPP at average stand densities (Figure 6). This could be
explained with the calibration of the BPLUT tables used in the MOD17 algorithm [9] using large-scale
global terrestrial NPP data [27]. The calibration data most likely represents average forest conditions
and may not capture very open or very dense forests adequately. The NFI NPP on the one hand
represents the conditions of the (small) area covered by an inventory plot, while MODIS NPP provides
a smoothed average NPP of a 1-km pixel. A consistent stand density map at 1-km resolution would be
needed to test this hypothesis.

But NFI NPP estimates capture not only differences in stand density and forest management,
they are also strongly influenced by local tree allometries and local carbon estimation methods [38].
For Germany, stand density cannot explain the observed discrepancies satisfactory in Figure 7b.
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In fact the results are quite different compared to whole Europe (Figure 6), France (Figure 7a) or
our pilot study [15]. Germany is planning to modify the currently used tree biomass estimation
methodology [39] which is used in this study, for future carbon assessments. Following reanalysis of
existing data [40] and collection and analysis of new sample data [41], improved biomass functions
were developed for Germany [42]. This new updated methodology results in approx. 5% lower
aboveground biomass estimates. Thus future German NFI NPP estimates will be lower as well, which
will most likely reduce the gap between MODIS and NFI NPP observed for this country in this study.
This suggests that, interpretation of discrepancies between NPP estimates needs consideration of the
tree carbon estimation methods, since they directly affect increment estimates.

However, there might be other potential drivers leading to inconsistencies both in MODIS EURO
and NFI NPP, that could be analyzed in future studies.

Concerning NFI NPP, few countries do not consider adequately the contribution of small trees
to the NPP of a forest, either by not considering the ingrowth of small trees [33] or a particular large
diameter threshold in some countries (Table S1). This could explain, why in Spain and France MODIS
EURO is higher than NFI NPP, as we were not able to include ingrowth here and thus the French and
the Spanish NFI NPP estimates might not represent the NPP of their forests sufficiently.

The accuracy of the litter fall and fine root estimates for NFI NPP (Equations (3)–(5) need further
research as well. The litter fall models used in this study were derived in a meta-analysis using
Eurasian litter fall data [31]. They have substantial variation in the used input data and might contain
potential inaccuracy, when applied in certain regions. In addition, the estimates for litter fall and fine
roots are driven by the same climate data than MODIS EURO. Although the specific climate input
differs (periodic average climate used in Equations (4) and (5) for NFI NPP versus daily maximum,
minimum temperature and precipitation used in MOD17), it cannot be ruled out yet that the climate
source explains the better match of MODIS EURO and NFI NPP. Thus, the performance of the currently
used approach and alternative options for instance by using Foliage mass and Leaf longevity [43]
needs to be tested using European litter fall data.

Potential errors in the MODIS EURO product could involve wrong classification of forest biomes
by MODIS Land cover [44], limitations of the global parameters of the MOD17 algorithm capturing
European forest conditions (see discrepancies in NPP for evergreen broadleaf forests in Figure S3),
mismatches in LAI and FPAR by region or forest fragmentation [45].

5. Conclusions

In this study we created a regional Net Primary Production (NPP) dataset by running the MOD17
algorithm with local European climate data on 1-km resolution for the years 2000 to 2012 (MODIS
EURO). We additionally obtained the global MODIS NPP product (MODIS GLOB) and evaluated the
two MODIS NPP datasets with bottom-up forest inventory driven NPP (NFI NPP). We thus compared
two conceptually different methods for assessing forest productivity across Europe, and test whether
local climate data enhances the ability of the MOD17 algorithm to capture European forest conditions.

Running the MOD17 algorithm with local daily climate data substantially improves the quality of
MODIS satellite-driven NPP across Europe as compared to the global NPP product (MODIS GLOB).
Top-down satellite-driven MODIS EURO and bottom-up NFI NPP agree by regions and by countries,
across gradients by longitude, latitude and elevation, if potential discrepancies by stand density due to
forest management or the used carbon estimation methods are addressed.

This newly created MODIS EURO dataset is a consistent, continuous, spatial and temporal explicit
forest productivity measure of the European forest area providing realistic estimates, which compare
well with forest inventory information. This is important since reliable wall-to-wall forest productivity
estimates are increasingly important for the growing bio-economy or for increasing our knowledge on
other forest ecosystem services such as carbon sequestration.

As long as the MODIS program (based on Satellite “Terra” launched in 1999 and “Aqua” in 2002)
is operational and local climate data is available, we can obtain reliable large-scale forest productivity
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measures for European forests. Since the lifetime of the satellites carrying the MODIS sensor is
unknown, we strongly suggest the implementation and testing of this concept in the upcoming
European satellite technologies such as the Copernicus Programme to ensure consistent and realistic
productivity estimates also in the future.

MODIS EURO data are made freely available for 2000 until 2012 under ftp://palantir.boku.ac.at/
Public/MODIS_EURO.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/7/554/s1,
Table S1: Summary of the properties of the different forest inventory datasets, Table S2: Tree species groups
used in this study, description and selected tree species, Figure S1: Direct pixel-to-plot comparison of MODIS
EURO and NFI NPP, Figure S2: For North Europe ∆NPP grouped by Elevation, Latitude and Longitude, Figure S3:
For Central-West Europe ∆NPP grouped by Elevation, Latitude and Longitude, Figure S4: For Central-East Europe
∆NPP grouped by Elevation, Latitude and Longitude, Figure S5: For South Europe ∆NPP grouped by Elevation,
Latitude and Longitude, Figure S6: Difference ∆NPP grouped by age classes, Figure S7: Difference ∆NPP grouped
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Forests provide critical ecosystem services that ensure the sustainability of the environment and society. Toman-
age forests on large scales, spatially explicit gridded data that describes the characteristics of these forests over
the entire study area are required. There have been multiple efforts to create such data on regional and global
scales. This type of gridded spatially explicit data on forest characteristics are typically done by integrating terres-
trial forest inventory (NFI) and satellite-based remotely sensed data. Many studies that incorporate remotely
sensed data and forest inventory data often directly compare pixels to inventory plots. The standard resolution
of 0.0083° is typically used to integrate these two types of data sets. There is an assumption that, when producing
gridded data sets incorporating forest inventory data, the finer the resolution the better the information. This as-
sumption may seem intuitive, however at this resolution, in Europe, each 0.0083° cell has on average 1 NFI plot,
which results in a sample with 0 degrees of freedom that represents 0.02% of the cell area. In this study, we chal-
lenge this assumption and we quantify the optimal resolution with which to compare and combine remotely
sensed and NFI data from the largest collated and harmonized NFI data set in Europe including 196,434 plots.
We determined that aggregating data with an original resolution of 0.0083° to between 0.0664° and 0.266° (or
×8 to ×32) produces the best agreement between these two forest inventory and remotely sensed data sets,
and the lowest standard error in NFI data, and maintains the majority of the local-level spatial heterogeneity.

© 2016 Elsevier Inc. All rights reserved.
Keywords:
NFI
Europe
Resolution
Aggregation
Optimization
Forest inventory
Remote sensing
1. Introduction

Forests provide critical ecosystem services that ensure the sustain-
ability of the environment and society (Costanza, Fisher, Mulder, Liu,
& Christopher, 2007; Richmond, Kaufmann, & Myneni, 2007). Forests
are under threat of large scale disturbances and mortality due to a
changing climate (McDowell & Allen, 2015; Schröter et al., 2005; van
Mantgem et al., 2009). There are, however, ways that we can manage
forests that can mitigate and adapt to this change (Spittlehouse,
2005). Forest management on large scales, i.e., regional or continental,
requires spatially-explicit gridded data that describe the characteristics
of these forests. Multiple efforts have been made to create such data on
regional and global scales (Beaudoin et al., 2014; Crowther et al., 2015;
Moreno, Neumann, & Hasenauer, 2016; Simard, Pinto, Fisher, & Baccini,
2011). Such data sets require integrating terrestrial and remotely
sensed data which must be derived using one resolution to make the
data set consistent. The resolution chosen has an impact on the quality
of the output (Blackard et al., 2008; Jenkins, Birdsey, & Pan, 2001;
Wilson, Lister, & Riemann, 2012). Therefore, an optimal resolution on
which to link these two independent data sets should be quantified.
).
Gridded, spatially-explicit data on forest characteristics are derived
by integrating terrestrial national forest inventory (NFI) and satellite-
based remotely sensed data. Typically, these studies use forest proper-
ties measured by satellites to extrapolate NFI data across an entire
study area, with the assumption that an NFI plot represents a remotely
sensed data cell covering the same location. Then, a number of different
techniques, such as k-nearest neighbors, are used to match similar re-
motely sensed cells that do not have any underlying NFI data with
those that do (Beaudoin et al., 2014; Crowther et al., 2015; Simard et
al., 2011).

Additionally, remotely sensed data are used to studymany aspects of
the global biosphere (Justice et al., 2002). Such data can be used tomea-
sure productivity, cover type, and deforestation (Hansen et al., 2013;
Justice et al., 2002; Running et al., 2004). To calibrate and validate
these data sets, researchers again use terrestrial empirical observations
such as those obtained from NFIs (Hasenauer, Neumann, Moreno, &
Zhao, 2014; Hasenauer, Petritsch, Zhao, Boisvenue, & Running, 2012;
Turner et al., 2006).

There is an assumption that when producing gridded data sets that
incorporate, or are compared to, NFI data the finer the resolution the
better the resulting information. This assumption may seem intuitive,
however, to incorporate these two types of data together, they must
be comparable spatially, thematically and temporally (Tomppo et al.,
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2008). Many studies that incorporate remotely sensed data and forest
inventory data often directly compare pixels to inventory plots
(Crowther et al., 2015; Gallaun et al., 2010; Simard et al., 2011). A com-
mon resolution on which these studies are done is 1 km2 (0.0083°).
Fixed area NFI plots typically have areas of 200 m2 (Tomppo et al.,
2010). Therefore, 1 plot is 0.02% of a 1 km2 cell. One sample, that repre-
sents less than 1% of the total population, results in no confidence in the
sample's (forest inventory plot) ability to describe the population (re-
motely sensed cell). If then newdatasets are generated based on this re-
lationship, then the output may be spurious. Studies often use this one-
to-one relationship to then create national, regional or even global
datasets of forest characteristics (Beaudoin et al., 2014; Crowther et
al., 2015; Tomppo et al., 2008). Aggregated data that incorporate more
samples within a cell may lead to more accurate and realistic results.

Beyond the difference in plot size versus cell size, there are other
hurdles involved in combining these two datasets across countries
that are often overlooked. Methods to obtain NFI data differ across
countries (Tomppo et al., 2010). Some countries use fixed area plots,
which give a specific size to every sample plot. While other countries
use angle count sampling, which determines which trees are counted
in a sample using the tree diameter and the distance to the plot center
(Bitterlich, 1952). Each sampling technique will produce a different de-
scription of a forest (Motz, Sterba, & Pommerening, 2010). Also, the
country-level sampling design through space and time varies by coun-
try, from a regularly spaced grid that is the same every year, to random-
ized points that change every year (Tomppo et al., 2010). All of these
factors affect the confidence in the NFI data at different scales. The var-
iance in confidence through scales has an effect on the reliability of data
that is produced by incorporating remotely sensed andNFI data (Seidl et
al., 2013).

There are also political hurdles that hinder the use NFI data spatially.
In Europe, there is no coherent NFI database fromwhich to obtain all in-
ventory data for the entire continent (Neumann et al., 2016). Re-
searchers must, therefore, obtain data from each country, individually.
When obtaining this data, most countries will not provide the exact lo-
cation of the inventory plots out of concern for compromising the sam-
ples. These countries then provide data with a falsified locationwithin a
certain radius orwithin a certain grid cell (Moreno et al., 2016). The per-
fect link between remotely sensed data and NFI data would be to use
fine resolution remotely sensed data that covers the NFI plot and only
the NFI plot. However, because NFI data are given with falsified loca-
tions, this is not possible. The lack of an overarching and open NFI sys-
tem or database for Europe has hindered the ability of researchers to
understand how NFI data behave throughout the continent on different
scales.

Additionally, inventory sample plots are meant to be used as aggre-
gations to derive average results for a region, and not as single data
points (Tomppo et al., 2010). The minimum aggregation on which NFI
data is released by national organizations typically depends on the var-
iation of the variable of interest, the sample design grid and the desired
confidence interval and a single plot provides an undefined confidence
interval. Therefore, to improve the confidence in NFI data and the com-
parability with remotely sensed data, both datasets must be aggregated
until an acceptable error/confidence is reached. The optimal resolution
at which to compare these two types of data and the benefits and
draw-backs of aggregation are currently not quantified on the continen-
tal scale for Europe. An optimal resolution with which to combine re-
motely sensed and NFI data will justify a resolution that is not
arbitrarily chosen based on data limitations or assumptions, but on
which resolution produces the most accurate results. This will, in turn
improve our confidence in the European and global scale data on forests
that can be used to inform forest managers and policy makers on how
best to improve forest stewardship that will benefit the environment
and society, today and into the future.

In this paper, we quantify the optimal aggregation step at which to
compare NFI and remotely sensed data in Europe. We accomplish this
by assessing NFI data from 11 countries in Europe along with different
gridded data sets. The objectives of this paper are:

1. Assess the agreement of remotely sensed data at their original reso-
lution with NFI data

2. Quantify the loss of information with aggregation
3. Assess how aggregation affects agreement between remotely sensed

and NFI data sets
4. Quantify the standard error of NFI variables at various aggregation

steps
5. Determine the optimal resolution on which to combine remotely

sensed and NFI data

2. Data

We use NFI data in conjunction with 4 remotely sensed land cover
products.

2.1. Forest inventory data

Weuse national forest inventory (NFI) data from 11 European coun-
tries, Austria (Gabler and Schadauer 2008), Belgium (region Flanders)
(Wouters et al. 2008), CzechRepublic, Finland (Tomppo and Tuomainen
in Tomppo et al., 2010), France (Nikolas et al. in Tomppo et al., 2010),
Germany (Kandler, 2009), Norway (Tomppo et al., 2010), Poland, Ro-
mania (Marin et al. in Tomppo et al., 2010), Spain (Alberdi et al. in
Tomppo et al., 2010), and Regional or Provincial Forest inventory (RFI,
PFI) from5provinces in Italy (Trento, Sicily, Umbria, Piemonte and Ligu-
ria) (Neumann et al., 2016). This is currently the largest harmonized
plot level forest inventory data set of Europe and includes 196,434
plots (Neumann et al., 2016). We use only data taken between 2000–
2010 so as to match the same time period as the remotely sensed data
products we use with no resamples in our dataset. We chose these
countries because of accessibility and because they cover a latitudinal
gradient throughout the continent. Datasets have been collated andhar-
monized by Neumann et al. (2016). The plot locations were falsified by
the respective national organization responsible for the forest inventory
to avoid revealing the location of the sample plots. The plot locationwas
either altered into a randomdirection not to exceedmore than 100mor
the plot locations were re-projected onto the center of the MODIS land
cover grid (0.0083°) (Fig. 1).

Each NFI system has a different sampling density, arrangement of
the sample plots and samplingmethod (Table 1). The samplingmethod
has an effect on the uncertainty in results (Bergseng, Ørka, Næsset, &
Gobakken, 2014; Hasenauer & Eastaugh, 2012; Hasenauer et al.,
2012). Some countries in our dataset use angle count sampling (ACS)
while the majority use fixed area plots (FAP) (Table 1) (Bitterlich,
1952).

Basal area factor for ACS determines the trees sampled based on
their size and distance to the center of a plot. Both the basal area factor
for ACS and the plot area for FAP vary in ourNFI data. The size of the sub-
plots range from 250 m2 in Norway to almost 2000 m2 in Spain. Six
countries have their plots aligned in clusters, 5 countries as single
plots on each grid point. When arranged in clusters, the number of
plots varies between 2 to 18 plots in each cluster. All NFI systems use
a systematic sample plot grid with constant distance between grid
points. The grid distance varies by country and ranges from 0.5 km
(provinces Sicily and Piemonte in Italy) tomore than 10 km inNorthern
Finland. In Finland and Romania the grid distance also changes within
the country which leads to a varying number of samples within these
countries spatially (Table 1, Fig. 1).

2.2. MODIS land cover

Moderate Resolution Imaging Spectroradiometer (MODIS) land
cover-type product (MCD12Q1; Hansen et al., 2002) is a global land



Fig. 1. Coverage of terrestrial forest inventory data and number of plots per cell (0.133°
resolution).
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cover data set derived with a decision tree system using spectral infor-
mation and NDVI (normalized difference vegetation index) derived
from the MODIS sensor along with temperature data. The decision
tree algorithm executing the land cover type classification uses training
data derived from the International Geosphere Biosphere Programme's
(IGBP) University of Maryland land cover legend. We use the aggregat-
edMODIS Land Cover product with a 1 × 1 km (0.0083°) using the clas-
sification system from the University of Maryland (UMD) (Friedl et al.
2010). We use the year 2000 and 7 MODIS classes in this study: ever-
green broadleaf, evergreen needle leaf, deciduous broadleaf, deciduous
needle leaf, mixed forest, woody savanna, and non-forest. Forest type
is determined using the following rules: A cell is given a forest classifica-
tion if it has 60% forest cover or higher. If the cell is designated as forest,
then it is assigned the dominate forest type if that forest type has over
60% of the share of forest. If no forest type has over 60% of the share of
forest cover then it is given a “mixed forest” designation. If the cell has
30%–60% forest cover, then it is given the classification “woody
savanna”.

2.3. Global Land Cover 2000

The Global Land Cover 2000 (GLC2000) (Mayaux et al., 2006) made
by the Joint Research Center in Europe is based on the VEGA 2000
Table 1
Characteristics of NFI systems used for this study. Samplingmethod can be either Angle count sa
Plot area is required for the countrieswith FAP. Arrangement of sample plots indicateswhether
single plot and the number of sample plots in our dataset are given.

Country Sampling Method Basal Area Factor [m2/ha] Plot Area [m2]

Austria ACS + FAP 4 21.2
Belgium FAP – 15.9–1017.9
Czech Rep. FAP – 28.3–500
Finland ACS 2 (S) 1.5 (N) –
France FAP – 113–706
Germany ACS 4 –
Italy FAP – 50–600
Norway FAP – 250
Poland FAP – 200–500
Romania FAP – 200–500
Spain FAP – 78.5–1963.5
dataset, which is acquired by the VEGETATION sensor on board SPOT-
4 and SPOT-5. The data were then synthesized to create a consistent
global land cover data set with a 0.0083° resolution for the year 2000.
The GLC2000 utilizes the U.N. Food and Agriculture Organization's
Land Cover Classification System (LCCS) and has 22 classes (Di
Gregorio, 2005). Using this classification system as a basis, regional
groups were mandated to utilize a bottom up approach to classify the
remotely sensed data for their specific area. We used 6 classes in
GLC2000: evergreen broadleaf, evergreen needle leaf, deciduous broad-
leaf, deciduous needle leaf, mixed forest, and non-forest. The GLC2000
uses the same classification rules as MODIS, except it has a forest
cover threshold of 15% as opposed to MODIS' 60% and there is no
“woody savanna” designation.

2.4. CORINE Land Cover (CLC)

The CORINE Land Cover data set is a product of the Coordination of
Information on the Environment program initiated by the European
Commission operated by the European Environmental Agency
(Bossard, Feranec, & Otahel, 2000). The version used in this study is
CLC 2006 (Bossard et al., 2000). For CLC 2006 satellite data from SPOT-
4 and/or IRS LISS II, two dates were used in combination with a super-
vised classification scheme. The CLC 2006 is generated automatically
with expert opinion influencing the final classification (Bossard et al.,
2000). The CLC map covers Europe, Turkey and Iceland, excluding
Great Britain, Greece and Switzerland on a 0.00158° resolution. It distin-
guishes 48 different land cover types, 12 in the class “Forest and semi
natural areas”. We reduced CLC classes to 6 including: agroforestry,
broad-leaved forest, coniferous forest, mixed forest, transitional wood-
land, and non-forest. The CLC forest types are classified in the same
manner as MODIS except CLC refers to the “woody savanna” designa-
tion as “transitional woodland”. CLC uses a 30% forest cover threshold
before a cell is classified as forest after which a forest type must have
75% share of the forest to acquire a specific forest type; otherwise it is
classified as mixed forest or transitional woodland.

2.5. Tree species map for European forests (EFI)

The European Forest Institute's map of forest species is based on a
statistical interpolation of the International Co-operative Programme
on assessment and monitoring of air (ICP) forest inventories and vari-
ous remotely sensed climate and orographic variables using both
kriging and logistic regression models. It distinguishes 20 different
tree species groups on a 0.0083° resolution, provides proportional
share of each tree species in a cell and covers all of Europe (Brus et al.,
2011). For building the regression models and validation, terrestrial
data from the ICP Forest Level 1 plots and NFI data from 18 European
countries were used. The dominant tree species is derived for every
cell, irrespective of the percent forest cover within a cell. This data set
does not include a non-forest class.
mpling (ACS) or Fixed area plots (FAP). Basal area factor is required for countrieswith ACS.
the plots are arranged as single plots or within clusters. The distance between each cluster/

Arrangement of sample plots Distance between plots [km] N of Plots

Clusters of 4 plots 3.889 × 3.889 9167
Single plots 1 × 0.5 2495
Clusters of 2 plots 2 × 2 13,929
Clusters of 14–18 6–8 (S) 6–11 (N) 6232
Single Plots 2 × 2 32,107
Clusters of 4 plots 4 × 4 or 8 × 8 6153
Single plots 0.5 × 0.5 or 1 × 1 19,852
Single plots 3 × 3 9200
Cluster of 5 plots 4 × 4 13,546
Cluster of 4 plots 4 × 4 or 2 × 2 16,605
Single plots 1 × 1 69,853



Table 2
Aggregation steps and their corresponding resolution in degrees and the cell size range in
Europe in km.

Aggregation step
(N of orig. cells on a side)

Resolution
(Decimal degrees)

Cell area range
North–South (km2)

1 0.008 0.3–0.7
2 0.016 1.1–2.8
4 0.033 4.4–11.3
8 0.066 17.6–45.2
16 0.133 70.7–180.9
32 0.266 283.2–723.1
64 0.533 1140.7–2887.6
128 1.066 4624.4–11,587.7

Table 3
Land Cover classification percent agreement between remotely sensed and national forest
inventory data.

Cover type
data

Austria Czech
Republic

Germany Norway Finland Spain All

CLC 60% 40% 64% 56% 39% 31% 40%
EFI 60% 56% 69% 69% 59% 44% 50%
MODIS 45% 24% 60% 47% 37% 13% 27%
GLC2000 50% 48% 65% 50% 44% 32% 41%
Mean 47% 41% 52% 47% 40% 30% 39%
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3. Methods

3.1. Assess the agreement of remotely sensed data on their original resolu-
tion with NFI data

We analyzed NFI data from 6 countries where we have complete cov-
erage with a continuous grid and include the tree level data and species
designations required to determine dominate forest type per plot. These
countries included: Austria, Germany, Norway, Finland, Czech Republic,
and Spain. We classified the NFI forest type according to the rules of the
remote sensing data to whichwe are comparing (e.g., we use the classifi-
cation scheme for MODIS and the rules set forth for each class on the NFI
data when comparing these 2 datasets). All plots within a remote sensing
cell are used together within the rules to determine the forest type.

We used confusionmatrices to analyze the amount of agreement be-
tween the NFI and remotely sensed data for each remotely sensed
dataset (Lewis & Brown, 2001). The confusion matrices include all of
the cover type classifications used in the remote sensing dataset in
question. All matrices, except those associated with the EFI dataset, in-
clude a “non-forest” classification. The EFI dataset does not include
this classification. The percent agreement is the percentage of cells
that have the same forest type and non-forest classification in both
the remotely sensed and the NFI data.

3.2. Quantify the loss of information with aggregation

We aggregated each land cover map and the NFI data at various ag-
gregation steps. MODIS, EFI and GLC2000 all have a similar original res-
olution of 0.0083°. These datasets were aggregated by 2, 4, 8, 16, 32, 64,
and 128 times the original resolution (Table 2). For example, the first
aggregation step is 2 × 2 original resolution cells and the second is
4 × 4 original resolution cells and so forth. The accompanying NFI
dataset is aggregated by using the land cover definition rules, described
in the data section, under each cell at the aggregated resolution.We use
a constant resolution in decimal degrees which means that the surface
area a cell represents varies by latitude, increasing from north to south
(Table 2). The area of a cell is calculated as:

A ¼ R2�f sinlat1− sinlat2ð Þ� lon2−lon1ð Þ

A is the area of the cell. R is the radius of the Earth equal to 6371 km. lat1
and lon1 are the latitude and longitude of the upper left corner of the
cell and lat2 and lon2 are for the bottom right corner of the cell. The lat-
itudinal range is from 34.59° to 71.34° and our longitudinal range is
from −10.83° to 34.25°.

CLC has an original resolution of 0.00158°. Countries within our NFI
dataset have falsified plot locations within a 0.0083° cell. Therefore we
could not match CLC on its original resolution with NFI data directly.
We therefore aggregated both CLC and the NFI data from the original
resolution of 0.00158° up to 0.0079°, or 5 × 5 CLC pixels, which is similar
to the MODIS original resolution which was used for the falsification of
the NFI plot coordinates. We then aggregated CLC and the underlying
NFI data to 2, 4, 8, 16, 32, 64 and 128 times the 0.0079° resolution. We
aggregated based on the same rules as the original CLC dataset.

We then quantified the loss of local level information as we aggre-
gated. We did this by calculating the Shannon equitability index (Hill,
2015) of the original resolution cells associated with each aggregation
step. The Shannon equitability index is calculated as:

EH ¼ H
ln Sð Þ

EH is Shannon's equitability index, S is the number of classes of the orig-
inal resolution cells within an aggregated cell and H is Shannon's diver-
sity index calculated as:

H ¼ −∑
S

i¼1
pi � ln pið Þ

pi is the proportion of class i in S— the total number of classes in the cell.
The Shannon's equitability index (EH) is a normalized Shannon's diver-
sity index creating values from 0 to 1. The lower the EH is the higher the
diversity. We use this index to assess how diverse the cells are that are
aggregated together. When we are on the original resolution the EH is 1
because the output cell value perfectly reflects the input information,
which is itself the original resolution cell values. As we aggregate,
more cells from the original resolutionwill be used to determine the ag-
gregated cell's value. An aggregated cell only has 1 value but represents
multiple original resolution cells. Therefore, the lower the EH – the
higher the heterogeneity in original resolution cell value proportions
within an aggregated cell – the more loss of information there will be.
If all original resolution cell values that make up an aggregated cell are
the same then the EH will be 1 and there will be no loss of information
due to aggregation. If there are multiple species but complete evenness
in the proportions, which also produces EH equal to 1, then any classifi-
cation is as valid as any other amongst the classifications present. More
than likely, a cell such as this would be classified as woody savannah or
mixed forest which reflects the equal influence of all cells that make up
the aggregated value. A lower EHwill occur when there are uneven pro-
portions which would, if un-aggregated, result in heterogeneous indi-
vidual classifications in diverse proportions that are missed when
aggregated. Such a forest will most likely receive a specific classification
(e.g. evergreen needle leaf forest or deciduous broad leaf forest) which
dominates the landscape therebynegating any effect theminority forest
cover types has on the final aggregated value.

3.3. Assess how aggregation affects agreement of remotely sensed data sets
and NFI data

We assessed how aggregation affects the agreement between re-
motely sensed and NFI data by using the aggregated data sets we pro-
duced earlier along with confusion matrices to quantify the percent
agreement at each aggregation step. Here we compared the aggregated
NFI data with the corresponding aggregated data of each of the 4
gridded cover type data sets in our study. The percent agreement is
the percent of remotely sensed cell's that have the same land cover
type as the corresponding NFI data at each aggregation step.



Fig. 2. MODIS Land-cover data, as an example, at each aggregation step (ENF = Evergreen Needle-leaf Forest; EBF = Evergreen Broadleaf Forest; DNF = Deciduous Needle-leaf Forest;
DBF = Deciduous Broadleaf Forest; MF = Mixed Forest; CS = Closed Shrubland; OS = Open Shrubland; WS = Woody Savannah; S = Savannah; G = Grassland; C = Cropland; U =
Urban; BS = Barren/Sparse).
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3.4. Quantify the standard error of NFI variables at various aggregation
steps

To assess the impact of the aggregation on the confidence in NFI var-
iables and their ability to accurately describe forest characteristics, we
analyze 3 NFI variables: basal area, mean age and mean height. Basal
area, mean age and height are directly derived from the tree data
assessed on the plots and incorporate no model assumptions. Deriving
Fig. 3.Mean Shannon's Equitability Index of the original resolution datawithin each aggregated
(EFI) and Global Land Cover 2000 (GLC2000).
basal area, mean age and height does not require information on forest
cover percentage or species information so we could include data from
5other countries: Belgium, France, Italy, Poland andRomania. Basal area
is calculated according to the following equation.

BA ¼ Σ
Dbh2 � π � Nrep

40000

 !
cell for 4 cover type data sets:MODIS, CORINE, an European Forestry Institute speciesmap



Fig. 4. Effect of aggregation on percent agreement between remotely sensed cover type data sets:MODIS, CORINE, an European Forestry Institute speciesmap (EFI) and Global Land Cover
2000 (GLC2000) and national forest inventory forest cover type and the average number of NFI plots within each cell.
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BA is the basal area [m2/ha]. Dbh is diameter at breast height (1.3 m)
[cm]. Nrep is the represented stem number [ha−1]; for fixed area plots
Nrep = 10,000/A and Nrep = (4 ∙k)/(dbh2·π) for angle count sampling.
A is the plot area [m2] and k is the basal area factor [m2/ha] (Table 1).

We then aggregated these variables using the same aggregation
steps we used in the previous analyses and calculated the standard
error. The base resolution was 0.0083°; same as the original resolution
on the gridded data sets we analyzed earlier. Standard error for each
pixel is calculated as:

SE ¼ σffiffiffiffi
N

p

SE is the standard error, σ is the standard deviation of the NFI data in a
cell, and N is the number of plots within a cell. We calculated the SE for
each variable for each country at each aggregation step. We also calcu-
lated the SE for all of Europe at each aggregation step and the slope of
the resulting curve. The slope of the mean is calculated as:

Slope ¼ SEi−SEi−1

SEi−1 is the SE of the aggregation step before the target aggregation
step. SEi is the standard error of the target aggregation step. For exam-
ple, if we are calculating the slope for aggregation step 8 then the
Fig. 5. Standard Error of basal area for 10 countries from national fores
slope equals SE8 − SE4. We analyze 3 variables — basal area, age, and
height so that we can assess the overall effect aggregation has on NFI
SE instead of how it affects just one variable.
3.5. Determine the optimal resolution onwhich to combine remotely sensed
and NFI data

To determine the optimal resolution on which to combine remotely
sensed and NFI datawe assessed the 3 effects of aggregation thatwe an-
alyzed: Loss of information, agreement between remotely sensed and
NFI data, and the standard error of the underlying NFI data. We normal-
ized the curve of each of these effects by dividing each curve by their re-
spective maximum values. This allows us to directly compare the
proportional effects of aggregation on each curve. We used the mean
curve for each effect we analyzed. For the SE curve we inversed the
data so that a 1 refers to the lowest SE value, i.e., the least error. This cre-
ates 3 curves, one for each effect, with values from 0 to 1 at each aggre-
gation step. A 1 value would be the most desired value for each effect,
i.e., the least loss of information, the best agreement and the lowest
standard error. These 3 curves were then added together and normal-
ized once again. The resulting curve is the sum of three effects of aggre-
gation. We also calculated the slope of this curve just as we did for SE.
t inventories, the mean of all countries and the slope of the mean.



Fig. 6. Standard Error of mean forest age for 8 countries from national forest inventories, the mean of all countries and the slope of the mean.
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4. Results

4.1. Assess the agreement of land cover remotely sensed data on their orig-
inal resolution with NFI data

We compared land cover classification from NFI data for the original
MODIS, EFI and GLC2000 datasets to assess how well currently used
gridded data products agree with NFI data at a 0.0083° resolution – at
or near native resolution. We also compared NFI data with the CLC
dataset at a 0.0079° resolution (5 × 5 the original cell resolution). Re-
sults of the confusion matrices show a mean agreement percentage of
39% for all land cover datasets and for all 6 countries (Table 3). The
mean accuracy of the datasets varies by country ranging from 30% in
Spain to 52% in Germany.

The results for the individual land cover datasets show that EFI has
the highest country-level percent agreement including 69% agreement
in Germany and Norway. The land cover dataset with the lowest agree-
ment is the MODIS data with 27% agreement. The lowest country-level
accuracy is Spain in the MODIS dataset. CLC, which is the finest resolu-
tion European focused dataset in our study, has an agreement percent-
age of 40% which is 1% lower than GLC2000, a global dataset – though
produced in Europe.

4.2. Quantify the loss of information with aggregation

We assessed how much information is lost due to aggregation, by
aggregating land cover datasets at various aggregation steps using the
Fig. 7. Standard Error of forest height for 8 countries from national fore
rules set in the original dataset (Fig. 2). The gridded data visually
shows that on the continental scale there is little effect for the first
few aggregation steps. At aggregation step 32 there is then a clear differ-
ence from the original resolution (Fig. 2). Qualitatively it is clear from
the images that there is loss of information as we aggregated, however,
we also quantified this loss of information (Fig. 3). The Shannon's Equi-
tability Index (EH) curves show that, on themean, aswe suspected qual-
itatively, there is not much loss of information on the first few
aggregation steps (Fig. 3). Each dataset loses information at different
rates. MODIS loses the most information with aggregation whereas
GLC loses the least information.

4.3. Assess how aggregation affects agreement of remotely sensed data sets
and NFI data

We assessed how aggregation effects the agreement between re-
motely sensed and NFI data by aggregating at different aggregation
steps and quantifying the agreement. Aggregating from the original res-
olution increases agreement between the remotely sensed and NFI data
sets in every data set in our study (Fig. 4). The average number of plots
within a cell increases almost linearly on a logarithmic scale with aggre-
gation. The dataset that receives that greatest increase in agreement is
the CLC data set with an increase of 23% from its original resolution at
aggregation step 64. The EFI dataset has the highest agreement at
every aggregation step. MODIS has the lowest agreement at every ag-
gregation step and begins to merge with GLC2000 by the last aggrega-
tion step. MODIS' highest agreement is only 4% higher than CLC at its
st inventories, the mean of all countries and the slope of the mean.
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original resolution. Neither MODIS nor GLC2000 ever reach the level of
agreement seen in the EFI data at its lowest agreement percentage. The
two global datasets have similar patterns in agreement through the ag-
gregation steps, as do the two European datasets. The two global
datasets, GLC2000 and MODIS, have an agreement peak at aggregation
step 8 then decline ending with approximately the same agreement in
the last aggregation step. The European datasets continue to increase
in agreement, until just before our last aggregation step, endingwith ap-
proximately the same percent agreement (Fig. 4).

4.4. Quantify the standard error of NFI variables at various aggregation
steps

We assessed how well the underlying NFI data are able to describe
the real world forest within a cell by quantifying the standard error at
various aggregation steps. We chose 3 variables that do not require
model assumptions, such as volume or carbon, so that there should
not be variation in calculationmethods fromcountry to country.We cal-
culated the standard error of the NFI data at every aggregation step for:
basal area, mean height and mean age for each individual country. We
also did this for all countries together to find the mean European pat-
tern. The base resolution of 0.0083° for basal area has the largest varia-
tion in country-level standard error values (Fig. 5). As we aggregated
data, the variation in the standard error decreased. The country with
the lowest standard error in the base resolution is Belgium. By the 4th
aggregation step, Spain has the lowest standard error. Austria has the
highest standard error, until Germany surpasses it after aggregation
step 4. Some countries have similar patterns in the standard error in
basal error through the aggregation steps. For example, Spain and Italy
as well as Poland and Romania have similar patterns. The basal area
standard error is affected differently for different countries. Spain and
Italy have an immediate decline in standard error on the first aggrega-
tion step. Most countries have a gradual decrease in the first few aggre-
gation steps, followed by a steeper decline, then a leveling off in thefinal
steps. The European standard error follows this same pattern with a
basal area standard error in the base resolution of 5.8. The slope of the
European standard error shows the aggregation steps that produce
the greatest improvement are 16 and 32. After this inflection point,
the effect of aggregation on the standard error begins to diminish (Fig.
5).

The aggregation effect on the standard error of age has the same
properties as that of basal error (Fig. 6). The age standard error shows
decreasing variation with aggregation and the same concave down de-
creasing curves. With respect to age, however, the European standard
error increases with the first 2 aggregation steps and then decreases.
Again, the inflection point is at aggregation step 16. For individual
Fig. 8. Three normalized effects of aggregation: Represented Information, Cover-type agree
normalized sum of the 3 curves. Effect Slope is the Aggregation Effect value minus the precedi
countries, Norway has the highest standard error, and Romania has
the lowest.

The standard error with respect to tree height varies by more than
100% from the lowest country value to the highest in the base resolution
(Fig. 7). Austria has the highest standard error with 3.3 m and Italy has
the lowest with 1.44m. Again, there are groupings of countries that be-
have in the sameway. Austria andGermanyboth have high standard er-
rors compared to the other countries and have similar curves. Belgium
and Poland also have similar curves. Italy and Spain show different
curves compared to all of the other countries. The European standard
error has an almost linear downward trend, with the slope varying by
0.25m from the aggregation step that shows the greatest improvement,
to the step with the least. The inflection point is at aggregation step 32.
The end of the curve indicates that the benefit of aggregation begins to
flatten out towards the end.

4.5. Determine the optimal resolution onwhich to combine remotely sensed
and NFI data

Wequantified theoptimal resolution onwhich to integrate remotely
sensed andNFI data by combining the 3 previous aggregation effects an-
alyzed in this study: information loss, agreement and standard error of
NFI data.We took themean curves of each effect of aggregation andnor-
malized them (Fig. 8). This shows that the greatest effect that aggrega-
tion has is on the SE of the NFI dataset with an 80% improvement from
its original resolution to the largest aggregation step. The information
represented at each aggregation step, as calculated by the EH, declines
by nearly 50% from the original resolution data. The cover-type agree-
ment has the best agreement at aggregation step 8which is 25% greater
than the agreement on the original resolution. We then summed up all
of these effects and normalized the resultant curve to understand how
they interact. This weights each effect equally. The slope of this curve
shows that there is a negative benefit from aggregation until aggrega-
tion step 8. The results also show that the inflection point is between ag-
gregation steps 8 and 32 (Fig. 8). The slope curve demonstrates the
benefit from aggregation. Before the 8th aggregation step aggregation
has slightly negative benefits. After aggregation step 32, aggregation
has diminishing benefits.

5. Discussion

We analyzed the effect aggregation has on the information (hetero-
geneity) represented by the gridded data, the agreement between NFI
and remotely sensed data derived products, and the accuracy of the un-
derlying NFI data when linking these two types of data sets. At a resolu-
tion of 0.0083°, the original resolution for the gridded datasets we
ment, and the Standard Error (SE) of the underlying NFI data. Aggregation Effect is the
ng Aggregation Effect value.
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analyzed, on average there is approximately 1 corresponding NFI plot
within a grid cell (Fig. 4). The average area of 1 NFI plot represents
0.02% of the total area of a grid cell at this resolution, with zero degrees
of freedom. This constitutes an undefinable confidence in the compara-
bility of these two types of datasets essentially making the NFI point 1
single random sample that represents 1/5,000ths of the population.
Therefore, at this resolution the two datasets are not directly compara-
ble, and so the results in this study are not a validation of the remotely
sensed datasets we used, and should not be taken as an error analysis
but rather as an agreement/comparability analysis. This result alone
demonstrates why linking remotely sensed and NFI data at a 0.0083°
(1 km2) resolution should be avoided.

The amount of information represented by each cell as we aggregat-
ed diminished (Fig. 2, Fig. 3). This is because at every aggregation step
each cell can only represent 1 cover-type class. As we aggregated,
each aggregated cell will encompass more cells from the original data.
As we combine more cells from the original data the likelihood that
these cells are heterogeneous increases. The more heterogeneous the
cells are that are aggregated together the more information is lost be-
cause in the end all of these cells are represented by one value in the ag-
gregated data set. At the larger aggregation steps the information curve
flattens out because at this point spatial heterogeneity is already low
and there is not much more information to lose.

We chose to analyze agreement of cover type because there aremul-
tiple independently produced gridded data sets that cover all of Europe.
Other variables on forest characteristics have very limited data available
for continental analysis. By analyzing multiple datasets we can isolate
the effect of aggregation instead of assessing the accuracy of one
gridded data product. On the original resolution (0.0083°), the EFI
dataset has the highest agreement with NFI data (Table 3). This is pri-
marily because the EFI dataset does not include a non-forest designation
which removes a step in the classification method used by the other
datasets. The other datasets first get a designation of forest or non-for-
est, where disagreement can occur, and then if it is designated as forest,
it will be assigned a forest type, where further disagreement can follow.
MODIS has themost disagreement between the two datasets. To exem-
plify why comparison at this resolution should be avoided let us exam-
ine the MODIS agreement at the original resolution in further detail.

The majority of the disagreements using MODIS occur in the ever-
green needle-leaf forest (ENF) class in the NFI data, even though this
category also has the most cells that also agree. NFI data indicates that
ENF is the largest forest type, and 30% of the time, MODIS classifies the
same cells as ENF. However, more often than not, ENF in the NFI data
are classified as mixed forest or woody savannah in the MODIS data.
Even though the NFI plot associated with a MODIS cell gives a forest
classification, there are no other plots within the same cell to define
the density of the forest cover and therefore cannot distinguish between
an ENF and a woody savannah. Additionally, even if the majority of the
trees within a NFI plot area are ENF, as explained earlier, this is not rep-
resentative of the entire MODIS cell. Just outside of that plot the rest of
the cell could contain agriculture or another tree species type. Therefore,
MODISwould not be incorrect if it had a different classification than the
NFI data. So in this case, we cannot saywhether either dataset is correct
at this resolution, we can only say that we cannot compare these two
datasets at this resolution for processing or analysis. This confirms
that, at this resolution, these two datasets should not be combined.

As we aggregated cells, both regional European datasets (EFI and
CLC) as well as both Global datasets (MODIS and GLC2000) behave in
two distinct patterns (Fig. 4). The European datasets tend to increase
more gradually and see agreement improvement into the larger aggre-
gation steps. The global datasets increase more rapidly in agreement,
followed by a steep decline after aggregation step 8. This indicates
that the overall distribution of forest classes in the remotely sensed
data for Europe are more representative of the overall distribution of
classes in the NFI data than the global datasets. This can be demonstrat-
ed if we examine an extreme case, by aggregating all European cells to 1
single cell. This would require assessing the distribution and propor-
tions of all cells at the original resolution and all NFI plots together. If
the proportions of cover types in the remotely sensed data aligned
with the proportions in the NFI data, and the rules for classification
are properly implemented, then the extreme single cell aggregation
would have the same value in both datasets. That does not guarantee
that at a finer resolution they would agree. It is possible that at the
finer 0.0083° resolution, every cell disagrees with the underlying NFI
data. However, if the total European distribution of classes is the same,
then the data will improve with aggregation. The more agreement the
remotely sensed data and the NFI data have spatially, the earlier we
will see a benefit from aggregation. However, if the overall distribution
of classes on larger scales is not aligned, then as aggregation continues
towards this single cell, the datasets will diverge; as can be seen in the
global datasets. The benefit we get from the first few aggregation
steps is that we eliminate any location disagreement between the in-
situ data and the remotely sensed data, as well as getting a more repre-
sentative sample within each cell from the NFI data. At middle resolu-
tions, the agreement is on the forest or watershed level (Fig. 2, Fig. 4).
The global datasets agree with NFI data most at this forest/watershed
level. The European datasets have higher agreement at that level, but
the highest agreement is seen at aggregation step 64 (Fig. 2, Fig. 4).
This indicates that the regional Europeandatasets havemore agreement
in the distribution of classes at every scale than the global datasets but
with the most distribution agreement at the landscape level.

The effect that aggregation has on the SE reflects the limitations of
the NFI dataset for spatial use and exemplifies why NFIs were designed
for use in aggregates and not as individual values. The number of under-
lying NFI plots in each cell increases exponentially in accordance with
the exponential increase in cell size as we aggregated (Fig. 4). More
NFI plots within a cell will yield a lower standard error (SE), given
that the standard deviation does not increase exponentially as well.
Lower SE gives higher confidence in thedata's ability to represent a pop-
ulation, in this case a grid cell. The SE in all three forest characteristics
studied – basal area, age and height – have high inter-country variation,
which declines with aggregation (Fig. 5, Fig. 7). This indicates that the
standard deviation does not increase at the same rate as the increase
in NFI sample plots per cell. The standard error varies by country be-
cause of the different sampling techniques at the plot and country-
level (such as sampling grid size), heterogeneity of the landscape, and
forest management practices. These factors influence the number of
samples that will be combined at each aggregation step and the stan-
dard deviation from plot to plot within a cell. For example, Austria has
a high standard error in basal area and height because Austria has
high variation in elevation andmany small scale forest ownerswhich af-
fect the height and basal area of a forest, increasing the standard devia-
tion of these variables. Countries that have similar SE patterns with
aggregation reflect that they have similar country-wide sampling grids
and landscapes. Basal area and age behave similarly with inflection
points at aggregation step 32 (Fig. 5, Fig. 6). At this point the benefits
of aggregation diminish and we quickly loose spatial variability (Fig.
2). It should also be noted that because most countries have permanent
sample grids and the area a remotely sensed cell represents varies with
a constant degree resolution by latitude that aggregation will improve
agreement and SE in the south earlier with aggregation than in the
north. Projections with a constant area, as opposed to constant degrees,
would show similar results but with cells in the north being affected at
the same rate as in the south.

Considering the loss of spatial information, agreement between re-
motely sensed andNFI data, and the standard error of NFIwith aggrega-
tion, we conclude that the best resolution to compare these two
datasets is between aggregation step 8 and 32 or 0.0664° and 0.266° re-
spectively which provides 9 to 92 plots per cell respectively (Table 2,
Fig. 4, Fig. 8). We must consider that with every aggregation step we
are losing information on local scales that are valuable to forest man-
agers and researchers (Fig. 2, Fig. 3). However, the agreement between
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remote sensing andNFI data are the lowest and the standard error is the
highest at the finest resolution (Fig. 8). Therefore we recommend using
an aggregated dataset (greater than 0.0083°)when combining remotely
sensed and NFI data. The inflection points in the standard error curves
indicate that aggregation step 16 or 32 has themost benefit whilemain-
taining the most local level information (Fig. 5, Fig. 7). Whether a re-
searcher prefers to combine these datasets on the finer or coarser end
of our recommendation depends on the trade-offs they are willing to
make. At finer resolutions within our recommendation the remotely
sensed data will depict more heterogeneity with higher agreement be-
tween the remotely sensed and NFI data. However, the SE of the NFI
data will be lower than at larger aggregation steps giving less confi-
dence in the underlying NFI data's ability to accurately depict the real
world situation. At the coarser end of the recommendation the SE will
be low giving high confidence in the underlying NFI data with approxi-
mately the same level of agreement between the remotely sensed and
NFI data. However, the heterogeneity in the data will decrease. The
trade-offs that are acceptable should depend on which scale the re-
search is focused. At smaller scales, a finer resolution may be more ap-
propriate because heterogeneity in data might be important. However,
at the continental scale local level heterogeneity may not be the most
important factor and so a coarse scale could be the better option. On
any scale, we recommend using a resolution no lower than 0.0664°.

Our recommendation agrees with studies from the U.S. that have
shown that based on their forest sampling method, the minimum ag-
gregation for combining forest inventory data with gridded data is be-
tween approximately 0.133° (approx. aggregation step 16) to 0.5°
(approx. aggregation step 64) (Blackard et al., 2008; Jenkins et al.,
2001). Further, other research in theU.S. has shown that using forest in-
ventory plots do not accurately describe a 0.0083° resolution cell and
that to perform a nearest neighbor method – used in many studies
that combine this type of data – the data must be aggregated to at
least 0.075° resolution – coarser than our aggregation step 8 (Wilson
et al., 2012). These studies, however, did not quantify the benefits and
drawbacks of aggregation to find an optimal resolution as we did in
this study.

6. Conclusion

Harmonizing NFI data across countries into a gridded dataset to be
used in conjunction with remotely sensed data requires the use of one
consistent resolution. The resolution chosen has a large effect on the
quality of, and the confidence in the output data. Studies that link in-
situ and remotely sensed data often do so on a 0.0083° resolution pri-
marily because it is commonly used and because this is the finest reso-
lution of many remote sensing products. It is assumed that the finer the
resolution is, the better the information produced will be. This study
challenges that assumption by quantifying various effects aggregation
has on the confidence and accuracy of the combination of remotely
sensed and NFI data in Europe. It might seem intuitive that the finest
resolution should lead to more accurate results; however our study
shows that, based on our current data availability and remote sensing
abilities in Europe, aggregating to larger resolutions produces more
agreement between these two datasets and less error in the underlying
NFI data at a higher rate than the loss of local level spatial heterogeneity.
Though we focused on Europe, this study is applicable to other conti-
nents and to global studies that link inventory and remote sensing data.

Larger resolutions will change the conceptual meaning of the
resulting data. This difference requires a landscape level outlook as op-
posed to a stand or forest level outlook that finer resolutions provide. If
forest managers and policymakers are not able tomake decisions using
a resolution that produces the most accurate and realistic results, then
policies for data accessibility must change. NFI data that provide the
exact location of plotswould allow researchers to use themost high res-
olution satellite data, such as Landsat (30 m2 resolution), Sentinel
(10 m2 resolution), Spot data (1.5 m2 resolution) or LiDAR (b1 m
resolution), to create gridded data on forest ecosystems on the order
of meters instead of kilometers. This would permit researchers to
match the exact plot area with remotely sensed data allowing direct
comparisons which we showed, given our current state of data accessi-
bility, cannot be done. Such data would give us a better understanding
of the state of forests and forest resources throughout Europe across po-
litical boundaries. As an example, this better understanding of European
forests would allow researchers to quantify the affect that different for-
est management practices have on the landscape compared with one
another or target vulnerable or underperforming forests in regards to
ecosystem services. Harmonization and linking of NFI and remotely
sensed data could be done by a committee of scientists or by national
centers then collated before public release, thus preserving the secrecy
of exact plot locations to the general public.
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The State of Forest Resources across Europe 

 

Abstract 

A consistent pan-European gridded data set on the state of forest resources would allow 

researchers, policy makers and conservationists to study and understand European forests 

independent of political boundaries and along different gradients such as elevation, latitude, 

and climate. Although National Forest Inventory (NFI) data provide information on the 

characteristics of forests including carbon content, volume, height, and age such data does not 

exist across Europe. The creation of pan-European gridded data sets on forest resources have 

been hindered by varying NFI systems, spatial and temporal discrepancies in data collection, 

data accessibility and countries without NFIs. The purpose of this study is to use existing 

European data to develop a consistent pan-European data set for total live tree carbon, 

volume, mean tree height and mean tree age by integrating remotely sensed along with 

harmonized NFI data from 12 different European countries. We produce a pan-European map 

for each of the four key variables on a 0.133° grid representing the time period 2000-2010. We 

used this data to assess the state of forest resources across Europe showing that mountainous 

regions have the highest levels of carbon and volume, central Europe has the tallest mean tree 

heights and Austria and Northern Scandinavia have the oldest mean tree ages. Cross-validation 

of the data indicates that the error varies by forest characteristic but shows negligible biases for 

all. We compared our carbon and volume data with that of the UN Food and Agriculture 

Organization’s Forest Resources Report which indicate similar results. We also compared our 

height and age data with global height and European age datasets and found that these forest 

characteristics are more difficult to compare because of differences in the definitions used for 

age and height and the underlying datasets. Our gridded datasets provide consistent 

information on the state of forest resources across Europe and can be obtained at 

ftp://palantir.boku.ac.at/Public/ForestResources. 

 

Key words: Carbon, volume, forest resources, gridded data, Europe, age, height  
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1. Introduction 

European forests contain approximately a third of the world’s temperate forest biomass (Pan et 

al., 2011). The state of forest resources in Europe are measured using forest inventories. There 

are 28 member countries in the European Union and even more forest inventories (Daamen et 

al., 2010; Tomppo et al., 2008). Each forest inventory is conducted independently from one 

another with some countries (e.g. Italy) applying different inventory systems for each province. 

European NFI data is not collected and distributed from one freely accessible database. Users 

must obtain each forest inventory dataset individually from the responsible organization. Some 

NFI’s require legally binding written contracts, while some data portals are only provided in the 

native language of individual countries. Thus, collecting and analyzing NFI data across different 

European countries is challenging. Additionally, individual country reporting without centralized 

oversight has been shown to hinder the effectiveness of multi-country climate mitigation and 

monitoring schemes which is currently done because of no centralized dataset on forest 

resources (Kollmuss et al., 2015). 

Approximately every 5 years, the United Nations Food and Agricultural Organization (FAO) 

publish the Global Forest Resource Assessment (FRA) report to collate National Forest 

Inventory data (NFI). This report gives country-level information on forest characteristics such 

as volume and live tree carbon (FAO 2010). Several sampling and calculation methods are 

permitted for reporting to the FAO that are outlined within the guidelines set forth in the 

Intergovernmental Panel on Climate Change’s National Green House Gas Inventory reporting 

(IPCC et al., 2006). This makes comparing data across countries using FAO FRA data ambiguous 

because different carbon calculation methods used by various European countries may produce 

different carbon estimates (Neumann et al., 2016b).  

Researchers have attempted to create a harmonized NFI dataset for Europe (Schelhaas et al., 

2006). The European Forest Information Scenario Model (EFIScen) project gathered data from 

several different European countries and created a freely available database. EFIScen is a matrix 

model and predicts the probability of key forest characteristics (e.g. Volume/ha, stem number, 

etc.) over time within a given jurisdiction. Thus the EFIScen data, which originate from NFI data, 

is grouped into jurisdictions, or site types, giving limited flexibility in spatial analysis (i.e., by 



99 
 

elevation, latitude, climate, or proximity to human development). A precondition for each 

grouped jurisdiction is a minimum number of inventory plots so that the accumulated data 

provided are statistically sound. Within the EFIScen project, this data was then used to create 

various gridded datasets (Brus et al., 2011; Gallaun et al., 2010; Vilén et al., 2012). These 

gridded datasets, however, have limited accessibility due to restrictions upon data sharing or 

not being provided on a public data portal. 

On the global scale, Simard et al. (2011) created a map of canopy height and Crowther et al. 

(2015) mapped tree density. The local applicability of global datasets is diminished by a lack of 

enough data to accurately represent small areas. The European forests in the global tree 

density map are represented by research plots operated by members of The International Co-

operative Programme’s forest inventories on Assessment and Monitoring of Air Pollution 

Effects on Forest (ICP Forests) (http://icp-forests.net/) along with various remotely sensed 

products to create a gap-filled dataset at a 1x1 km resolution (Crowther et al., 2015). The ICP 

Forests plot data is scattered throughout Europe with only 6,000 plots with each plot covering 

only a very small part of a 1x1 km pixel. Crowther et al. (2015) admit that there is high 

confidence in tree density on the global scale and low confidence at smaller scales. Instead of 

NFI data, Simard et al. (2011) use previously produced space based LiDAR data and topographic 

maps (Lefsky et al., 2005) to create a 1x1km map of canopy height. Global datasets are 

designed to be used on global scales. At finer scales the accuracy of these datasets diminishes. 

There have also been attempts to create country or regional level maps of forest data (Maselli 

et al., 2014; Ruiz-Labourdette et al., 2012). Datasets that are focused on local scales tend to be 

more accurate at that scale. However, this data may not be directly comparable to 

similar/related datasets from nearby areas as methodology may differ. Herein lays the tradeoff 

between scale and accuracy. Today, no pan-European gridded data set exists based off of 

consistently applied datasets and one methodology for various forest characteristics that is also 

accurate at local scales. 

The purpose of this study is to create a pan-European gridded dataset of total live tree carbon, 

volume, mean tree height, and mean tree age to allow a consistent assessment of forest 

resources in Europe. Such data, hitherto unavailable, will support sustainable forest 
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management decisions across countries by assessing the role of forests for a growing bio-

economy sector, quantifying the mitigation potential of European forests, and for analyzing the 

ecosystem services provided by European forests. We collate NFI data from 196,434 inventory 

plots from 12 different European countries and several remote sensing and other gridded data 

products representing the time period 2000 to 2010.  

The objectives of our study are: 

1. Develop an algorithm to combine NFI and remotely sensed gridded data to produce a 

gridded wall to wall cross European data set for total tree live carbon, volume, height 

and mean tree age. 

2. Cross-validate the pan-European gridded data sets. 

3. Compare and evaluate the newly created pan European gridded datasets with other 

previously produced data. 
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2. Data 

For our study we obtained terrestrial bottom up observations (NFI data, Biogeographic Regions 

Forested area, FAO FRA, EFIscen) and remotely sensed top down data (MODIS Land Cover, 

MODIS NPP, MODIS NPP Trend, Tree Canopy Height, and Site Quality). We use these data sets 

for three distinct purposes: algorithm development, cross-validation, and comparison. The data 

consists of point data, gridded data and regional statistics (Table 1). 

 

Table 1: Description of datasets used in this study. Data refers to the different data sets as 
outlined in the data section, Point refers to single inventory points, Gridded indicates raster 
data, Country Stats is the country level statistics, Jurisdiction Stats are data given for different 
jurisdictions on the sub-country level; x indicates that this data set is used to create, validate or 
compare against this output variable. Alg – this data set was used within the algorithm to 
create the output variables, Val – this data set was used to cross validate the output data, and 
Com – this data set was used to compare versus output variable(s). 

 

Data Type Carbon Volume Height Age Use 

NFI Point x X x x Alg/Val 

MODIS Land Cover Gridded  x X x x Alg 

Biogeographical Regions Gridded  x X x x Alg 

MODIS NPP Gridded  x X x x Alg 

MODIS NPP Trend Gridded  x X x x Alg 

Tree Canopy Height Gridded  x X x x Alg/Com 

Site Quality  Gridded  x X x x Alg 

Forested Area Gridded  x X 

  

Alg 

FAO FRA Country Stats x X 

  

Com 

EFIScen Jurisdiction Stats       x Com 

 

 

2.1 NFI  

The NFI (National Forest Inventory) data used for this study come from 12 countries in Europe: 

Austria, Belgium, the Czech Republic, Estonia, France, Finland, Germany, Italy, Norway, Poland, 

Romania, and Spain. Each of these countries have a different sampling grid design and have 

implemented either a fixed area or angle count sampling plot system (Table 2). The data 
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originates from forest inventory data collected during the time period 2000-2010 by Neumann 

et al. (2015). Each country has different measurement times so as to create a harmonized data 

set our data represents the mean forest conditions during this 10 year time period. The data 

consists of 196,434 plots with locations falsification on a .0083° grid. 

 

Table 2: Summary of the NFI characteristics by country. The sampling method can be either 
Angle Count Sampling (ACS) or a Fixed Area Plots (FAP). A basal area factor is required for 
countries with ACS. Plot area is required for the countries with FAP. The arrangement of 
sample plots indicates whether the plots are arranged as single plots or within clusters. Some 
countries have varying distances between plots/clusters depending on location. 

Country 
Sampling 
Method 

Basal Area 
Factor [m

2
/ha] 

Plot Area 
[m

2
] 

Arrangement of 
Sample Plots 

Distance 
between plots 

[km]  

N of 
Plots 

Austria ACS+FAP 4 21.2 Clusters of 4 plots 3.889 x 3.889 9167 

Belgium FAP - 15.9 - 1017.9 Single plots 1x0.5 2495 

Czech Rep. FAP - 28.3 - 500 Clusters of 2 plots 2x2 13929 

Estonia Taxation - Undefined Random - 19930 

Finland ACS 2 (S) 1.5 (N) - Clusters of 14 – 18  6-8 (S) 6-11 (N) 6232 

France FAP - 113 - 706 Single Plots 2x2 32107 

Germany ACS 4 - Clusters of 4 plots 4x4 or 8x8 6153 

Italy FAP - 50-600 Single Plots 0.5x0.5 or 1x1 19852 

Norway FAP - 250 Single Plots 3x3 9200 

Poland FAP - 200 - 500 Cluster of 5 Plots 4x4 13546 

Romania FAP - 200 - 500 Cluster of 4 Plots 4x4 or 2x2 16605 

Spain FAP - 78.5 - 1963.5 Single Plots 1x1 69853 

 

We aggregated the plot level forest variables (live tree carbon, volume, mean tree height, and 

mean tree age) to a 0.133° resolution (area range: 75 – 175km2) by averaging the plot variables 

to make gridded terrestrial data to reach an acceptable level of confidence in the gridded 

terrestrial data (Figure 1, methods section) (Moreno et al., 2016). The size of the grid cells 

varies according to latitude due to the curvature of the earth and map projection. Carbon data 

is given as tons of live tree carbon per hectare including carbon in the stem, branches, foliage, 

coarse roots, foliage and fine roots but does not include soil or dead-wood carbon. 

Volume is given as m3 per hectare and has different definitions from country to country. Some 

countries define volume as the merchantable timber or growing stock while others define it as 
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the total tree volume including branches (Neumann et al 2016). These differences in the 

definitions make a complete harmonization of volume difficult as we cannot parse apart the 

various components that make the volume estimates. We used the individual countries’ 

definitions of volume within our data set. 

Age is given as age classes. Each country has different age classes. Fortunately, it was possible 

to harmonize the age classes into 1 standard set.  These age classes are: 0-20, 21-40, 41-60, 61-

80, 81-100, 101-120, and >120 in years. Height is given as the mean height of all trees within a 

plot. 
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Figure 1: Gridded terrestrial data based off of NFI data. The color indicates the number of NFI 
plots within a given gridded terrestrial cell (0.133° resolution, 75–175km2). Note: Estonia is 
the only country in our data where the NFI is based on a non-systematic inventory grid 
design. Thus the number of plots per grid cell is disproportionally high. 
 

2.2 MODIS Land cover 

The Moderate resolution Imaging Spectroradiometer (MODIS) is a sensor on the Terra and 

Aqua satellites. MOD12 land cover is given at a 0.0083° resolution (in Europe cell area range: 

0.27 – 0.71 km2, approximately 1km2 at the equator) globally and includes 11 vegetative cover 

types: evergreen broad leaf, deciduous broad leaf, evergreen needle leaf, deciduous needle 

leaf, woody savanna, savanna, crops, open shrub lands, closed shrub lands, grassland, and 
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mixed forest (Friedl et al., 2002). The land cover data is produced by implementing the MODIS 

12 Q1 collection 4 land cover classification algorithm. This algorithm is a supervised 

classification that gap fills the International Geosphere-Biosphere Program Data and 

Information System (IGBP) using annual data from the MODIS sensor for classification. 

 

2.3 Biogeographical Regions  

Biogeographical regions were collated from individual EU member countries’ reports and are 

given on a 1x1 km resolution. Biogeographical regions include: Alpine, Arctic, Black Sea, 

Continental, Mediterranean, Pannonian, Steppic, Atlantic, and Boreal (European Environment 

Agency, 2012). We aggregated bioregions to produce 3 different bioregion maps, thereby 

creating clustering options for our parameterization process described in the methods section. 

One map has 6 regions: Alpine, Continental, Mediterranean, Pannonian, Boreal (includes: 

Norwegian Alpine, and Arctic regions), and Atlantic. Another map includes 3 regions: Northern 

Europe (includes: Arctic, Norwegian Alpine, and Boreal regions), Central Europe (includes: 

Atlantic, Continental, Pannonian, and Steppic regions) and Southern Europe (includes: 

Mediterranean region). The third map has no bioregion designations and is only a mask of 

Europe. See the methods section for further explanation into why we created 3 different 

bioregion options. 

 

2.4 MODIS NPP and MODIS NPP Trend 

Net Primary Production (NPP) is derived using the MOD17 algorithm. This algorithm, using 

MODIS fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), land cover, 

climate data and a biome-property lookup table, calculates global NPP data every 8 days 

(Running et al., 2004). The MODIS NPP dataset we use in this study is an improved NPP dataset 

focusing on and producing values of NPP for European Forests (Neumann et al., 2016a). This 

NPP data is derived using the original MOD17 algorithm and a European regional climate 

dataset (Moreno and Hasenauer, 2015) covering daily weather data for minimum and 

maximum temperatures as well as daily precipitation data across Europe. This NPP data set is 

freely available at ftp://palantir.boku.ac.at/Public/EuroNPP 
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The NPP trend data result from a linear regression fit line for annual values by cell for the 

original 0.00833° resolution from 2000–2010. The trend is then given as the slope of the linear 

regression line. We then aggregate to the 0.133° resolution by finding the average trend within 

the larger cell area. 

 

2.5 Tree Canopy Height  

Tree canopy height data is produced by gap-filling Geoscience Laser Altimeter System (GLAS) 

data from the Ice, Cloud, and Land Elevation Satellite (ICESat) that covers the globe with 65m 

footprint vertical profiles on north-south transects ( Simard et al. 2011). This data has large 

areas without empirical observations. Simard et al. (2011) gap-filled GLAS data using annual 

mean precipitation, precipitation seasonality, annual mean temperature, temperature 

seasonality, elevation, tree cover percentage, and protection status as co-variates. They define 

canopy height as the height of the tallest tree or the average height of the three tallest trees 

which may be seen as similar to dominate height definitions commonly used for forest 

inventories. In practicality the canopy height in this data set is the distance in elevation 

between the lowest ground and highest canopy points within a cell. The result is a global 

gridded data set at 0.0083° resolution. This data was both calibrated and validated using 98 plot 

points in Uganda, Africa and 120 flux tower sites scattered globally. 

 

2.6 Site Quality  

We define site quality as the product of 3 normalized gridded datasets: average growing season 

length, average annual short wave solar radiation (SWRad), and average annual vapor pressure 

deficit (VPD). Average growing season length is defined as the average time between the onset 

of increasing MODIS Leaf Area Index (LAI) in the spring and the end of decreasing autumn LAI 

beginning the winter steady state LAI (Myneni et al., 2002). LAI was chosen because it has clear 

seasonality for all tree species that can be encountered throughout Europe (Tian, 2004). The 

result is the relative growing season length in a cell compared to other locations in Europe. 

SWRad and VPD are both calculated using the MtClim algorithm with newly downscaled 

gridded climate data and the GTOPO30 DEM (data available from the U.S. Geological Survey) as 
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inputs (Moreno & Hasenauer, 2015; Thornton & Running, 1999). This algorithm uses the DEM 

to derive east and west horizons, aspect and slope and uses these variables along with 

precipitation and day length to calculate the SWRad. VPD is a function of the difference 

between minimum and maximum temperatures which is also calculated in MtClim. These maps 

are then normalized by dividing all values by the maximum value in the dataset to get 

normalized values between 0 and 1. Site quality is then the product of these normalized maps. 

This data can be obtained at ftp://palantir.boku.ac.at/Public/ForestCharacteristics 

 

2.7 Forested Area 

Brus et al. (2011) developed a tree species composition map of Europe. This data is based on 

both the ICP level II plot data (www.icp-forests.org) and the European Forest Information 

Scenario Model database (EFIScen). They then used two types of methods to create gridded 

data. For those countries in which they had NFI data they performed ordinary kriging. In 

countries without NFI data the researchers gap-filled using a linear regression between species 

composition in known areas and various co-variates such as climate, topography and soil data. 

We obtained this map and masked them to create a map of forested versus non-forested areas. 

Using this forest/non-forest data on a 0.0083° resolution we can produce a percent forest cover 

map at our 0.133° resolution.  

Forested area per cell is derived by multiplying the total surface area of a cell with the fraction 

of forest cover within that cell. The area of a cell varies by latitude and is calculated as: 

 

𝐴𝑟𝑒𝑎 = 𝑅2 ∗ (sin(𝑁𝐿𝑎𝑡) − sin(𝑆𝐿𝑎𝑡)) ∗ (𝐸𝐿𝑜𝑛 − 𝑊𝐿𝑜𝑛) (1) 

 

Where R = 6371 (the radius of the Earth in km), NLat and SLat are the northern and southern 

latitudes of the cell in degrees, respectively. Elon and WLon are the east and west longitudes in 

degrees of the cell, respectively. Different forest area data sets give different forest areas by 

country throughout Europe which can have a large impact on country level totals of forest 

characteristics (Table A1). 

 



108 
 

2.8 FAO FRA 

The United Nations Food and Agriculture Organization (FAO) publish the Global Forest 

Resources Assessment (FRA) aggregating NFI data from most countries in the world and 

reporting variables such as live tree carbon and volume. We used the FRA 2010 report. 

Methods used for reporting to the FAO are outlined in the Good Practice Guidance for Land 

Use, Land-Use Change and Forestry (GPG-LULUCF) and the 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories reports (IPCC, 2003; IPCC et al., 2006). These guidelines give 

several options as to the methodologies, in both calculation and sample design, which may be 

used to derive values that are then reported to the FAO for use in the FRA. For example, some 

countries use biomass expansion factors while others use biomass equations. Some reports are 

produced using a complete NFI data set measured by the country itself while other reports are 

produced using historical data or modeled data. In some instances FAO derives the data that 

they report themselves based off of historic data and that of similar countries without the use 

of direct current forest inventory data(FAO, 2010a). 

 

2.9 EFIScen  

The European Forest Information Scenario (EFIScen) Model database is a publically available 

collection of aggregated NFI data from 32 European countries (Schelhaas, et al. 2006). The data 

are derived from NFI data grouped into jurisdictions or site types. This database was created to 

work within the framework of a matrix model that predicts the probability of changes in forest 

characteristics (e.g., volume) over time given a specific jurisdiction. The data are categorized 

into age class, cover types, regions, and/or ownership by each individual country. These 

groupings where given to the researchers by individual countries preventing access to the 

original tree or plot level data. Each combination of species and other distinguishing 

characteristics, such as owner, forest type or site quality, has their own distribution of area per 

age class. The age classes as well as the other distinguishing characteristics are different for 

each country. For example, France provides the area covered by 20 different age classes 

categorized by State/Other public/Private grouped by 9 different tree species. Hungary, 

however, has 12 age classes categorized by Good/Medium/Poor site qualities for 6 tree species. 
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In these two examples France groups forests by ownership while Hungary groups by site 

quality. 

EFIScen data has been mapped but is not spatially explicit beyond these grouping boundaries 

nor are the spatially explicit data sets publically available (Vilén et al., 2012). We converted age 

classes into the classes that fit our harmonized gridded terrestrial data. The age classes to 

which we converted EFIScen data are 0-20, 21-40, 41-60, 61-80, 81-100, 101-120, and >120.  

 

3. Methods 

Several methodological challenges existed in combining previously produced data to create a 

pan-European, wall-to-wall data set on forest resources. The previously existing data sets were 

developed for different purposes and the type of data (point versus gridded information) as 

well as the data collection method (terrestrial versus remotely sensed data) differs (Table 1). 

For example, the NFI data provide values for forest characteristics; however, publically available 

data are not spatially explicit below the country level and are not consistently available all over 

Europe. Further, countries who maintain NFI data have differing grid design and data collection 

system methods (Angle count sampling, Fixed area plot, surveying) (Table 2). Conversely, 

Simrad et al. (2011) tree canopy height data gives a spatially explicit data set on forest height 

but is not focused on Europe which decreases the reliability in European forests. Further, their 

method derives height estimates by calculating the difference between the lowest ground point 

and highest point in the canopy within a 0.00833° cell which can decrease accuracy on slopes. 

Other data such as the MODIS data provide consistent information for the NPP of European 

forests but are challenging to compare with NFI derived values (Moreno et al., 2016; Neumann 

et al., 2016a). 

This disparate group of data derived for various purposes needs an algorithm to integrate them 

to derive consistent forest characteristics for live tree carbon, volume, mean tree height, and 

mean tree age across Europe akin to those values that come from NFI data, even for areas 

where NFI data are unavailable. For this study, we developed a gap-filling algorithm based on a 

two-step process: cluster analyses and kNN nearest neighbor (Figure 2).  
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Clustering is the process in which cells are grouped together based on similarity defined by the 

user. Clustering is often done using a k-means machine learning principle in which n number of 

centroids of each cluster is determined by minimizing the within cluster sum of squares from 

points in an n-dimensional space, based on co-variates, to the centroids (J.A. Hartigan and 

Wong, 1979). Cells are then clustered by the nearest centroid. 

The k nearest neighbors algorithm (kNN) is a nearest neighbor machine learning algorithm 

method that finds the n closest points amongst a data set for every point within said data set 

within an n-dimensional space, based on co-variates (Manning and Schutze, 1999). 

Our approach using clustering and nearest neighbors assumes that forest cells that share 

similar values, in our co-variates space, will have similar forest structure. The similarity of the 

forest cells is assessed by the following set of co variates: NPP, NPP trend, canopy height, and 

site quality. In our algorithm we use forest cells where we have gridded terrestrial data to gap 

fill similar forest cells where we do not have gridded terrestrial data (Figure 2).  
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Figure 2: Methodology Flow-Chart. There are 6 steps in our methodology: 1) Collate and 
Harmonize Input Data, 2) Data aggregation, 3) Parameterization, 4) Gap-filling, 5) Final 
outputs. The gap filling algorithm is shown in more detail with steps 4a to 4g. Ovals represent 
data sets and rectangles represent processes. Ovals inside rectangles indicate that this data 
set was used within this process.  
 
 

3.1 Collate and Harmonize Input Data and Data aggregation (Figure 2: step 1 and 2) 

Our input gridded and remotely sensed data products were clipped and snapped to the extent 

and grid of the 0.0083° resolution European MODIS data, which was the limiting factor in 
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spatial extent (Figure 2: step 1).  The NFI data was also processed to produce a corresponding 

gridded terrestrial data set with plots being averaged under mutual grid cells (Figure 2: step 1, 

Figure 1).  

All datasets were then aggregated to a 0.133° resolution (approximately 75 – 175km2) (Figure 

2: step 2, table 2).  Aggregation is necessary because a minimum number of NFI plots within a 

gridded terrestrial cell are needed to have sufficient statistical confidence in the derived cell 

value (Moreno et al., 2016). The required amount of NFI points per cell were dictated by the 

need of a confidence interval within 25% of the mean value on the European scale. At 0.0083° 

resolution (in Europe cell area range: 0.27 – 0.71 km2) there is typically only 1 plot within a cell 

in Europe which gives an undefined confidence interval. At 0.133° resolution (in Europe cell 

area range: 75 – 175km2) the confidence interval decreases to approximately 10% on average 

for the forest characteristics on which we focus (carbon, volume, height, age), with an average 

number of NFI plots per grid cell of 27 throughout Europe (Figure 1) (Moreno et al., 2016).   

For non-categorical results derived from NFI data (carbon, volume, height) the aggregated cell 

value is an arithmetic mean of the plots within the cell. Carbon is the total live tree carbon 

including stem, branches, foliage and roots. We aimed to harmonize every variable as much as 

possible, however for volume, because of varying measurement techniques and volume 

definitions countries provided either stem volume over bark, total wood volume or total 

merchantable timber.  

Height refers to the mean height of all trees within a cell. Categorical data such as mean age 

was assigned using the most frequent plot age class within a cell. Fraction of age class is given 

as the number of each age class divided by the number of plots within a cell. Harmonized 

volume and carbon estimations as well as age classes were obtained from Neumann et al., 

(2016). 

 

3.2 Parameterization (Figure 2: step 3) 

Parameterization was performed using an iterative algorithm that allowed assessment of 

hundreds of combinations of parameters to find the best combination for each forest 

characteristic in question defined by various statistical measures: Mean Bias Error (MBE), Mean 
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Absolute Error (MAE), Root Mean Squared Error (RMSE), Shift, Kurtosis, and Variance (Willmott 

and Matsuura, 2006). This was done by using a “leave one out” cross validation approach to 

test the gap-filling algorithm estimate versus the gridded terrestrial data (which is based off of 

NFI data) for each combination of parameter values (Kohavi, 1995). We evaluated the cell level 

error, indicated by the MBE, MAE and RMSE.  We also evaluated the overall distribution error, 

given by its 3 moments: variance, skew and kurtosis. Analyzing both the overall distribution and 

cell level error informs us on the bias – variance trade off inherent to a kNN algorithm. We can 

either match the overall distribution or we can minimize the cell level error, but not both as 

they are mutually exclusive (Hero et al., 1996). The result of the parameterization is different 

for each forest characteristic (i.e., carbon, volume, height, age) based on which scale accuracy is 

maximized (i.e., whether we preferred larger scale distribution accuracy or finer scale cell level 

accuracy).  

Our gap-filling algorithm has 5 parameters that must be optimized to achieve the desired 

output: number of bioregions, covertypes, k-means clusters, nearest neighbors and the 

strength of the inverse distance weighting. The number of bioregions refers to the number of 

regions we used for clustering cells. Our parameterization process determined whether 6, 3 or 

no bioregions produced the most accurate results. Covertypes could consist of 11 cover types 

or no covertypes, again the parameterization process determined the values that produced the 

most accurate results. We also determined how many k-means clusters to use within each 

bioregion/covertype group via parameterization, i.e. e.g., we may have a group of cells within 

the boreal bioregion that are evergreen needle leaf forests, and then via k-means we can 

further cluster this group of cells by as many clusters as the parameterization process 

determines produces the most accurate results. We also determined the number of nearest 

neighbors we used which defines the number of gridded terrestrial cells that will be used to 

calculate the gap-filling estimation. Finally, the strength of the inverse distance weighting 

determines how the “distance” in co-variate space affects the weighting of each nearest 

neighbor on the gap-filling estimate. 

 

3.3 Gap-filling (Figure 2: step 4) 
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We create a pan-European gridded data set of total tree carbon, total volume, mean tree age 

and mean tree height on a 0.133° resolution by gap filling areas for which we have no gridded 

terrestrial data. The method for our gap-filling algorithm first clustered similar forests and then 

performed a nearest neighbor algorithm (kNN) on cells without gridded terrestrial data with 

cells that have gridded terrestrial data. The cells are first clustered by cover type, bioregion and 

k-means clustering (Figure 2: step 4a and 4b).  

K-means clustering groups sub-clusters of cells so that the within-cluster sum of squares is 

minimized (John A Hartigan and Wong, 1979). This clustering is done to group forests with the 

same biophysical and site properties. The kNN was then performed on each cluster (Figure 2: 

step 4c). The kNN is based on a 4 dimensional “site characteristic” or covariate space with NPP, 

NPP trend, canopy height and site quality as the co-variates (Table 2). kNN finds the nearest 

cells within our co-variate space to our target cell. For every 0.133° cell without gridded 

terrestrial data within a cluster we performed a kNN algorithm.  

The number of nearest neighbors used varies depending on the forest characteristic in question 

(carbon, volume, height, age). There is no “distance” limitation for the nearest neighbors in our 

co-variate space. The nearest neighbors are the closest cells that have gridded terrestrial data 

based on the Euclidian distance (Figure 2: step 4d). The values for the variable in question are 

then combined using an inverse distance weighting formula (Figure 2: step 4e). The strength of 

the weighting varies by variable. A value of 0 is no weighting, 1 means weighting by the 

distance, 2 means weighting by the distance squared, and so on. The strength of the weighting 

has no limit and is determined through our parameterization procedure.  

We produce gridded gap filled data sets that have the same units as the original gridded 

terrestrial data, i.e., tons carbon/ha,  m3/ha, meters , and age-class (Figure 2: step 4f). Carbon 

and volume values in the gridded terrestrial are given as tons C/ha and m3/ha. After a pan-

European gridded data set was produced, carbon/ha and volume/ha were multiplied by the 

number of hectares of forest within in 0.133° cell using our forest/non-forest data set (Figure 2: 

step 4g). This results in total carbon per cell, and total volume per cell which reflects the total 

forest area per cell as the forested area is different for every cell. Height and age are unaffected 
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by the forest area as the size of a forest has no bearing on empirical measurements of these 

two forest characteristics. 

 

4. Analysis and Results 

 

4.1 Algorithm and Gridded Data 

4.1.1 Algorithm Development and Parameterization 

The resolution on which our output data were created (0.133° or approximately 16x16km) was 

chosen to maximize the confidence we have in the input gridded terrestrial data’s ability to 

accurately portray the real world and agreement between the remotely sensed co-variates and 

the training gridded terrestrial data, while minimizing the spatial information lost through 

aggregation (Moreno et al., 2016). At a 0.0083° resolution (1km2) there is, on average 1 plot per 

cell, with an average plot size of 200m2 representing    2% of a cell’s area  One sample (NFI 

plot) that represents 0.02% of a population (a remotely sensed cell) with 0 degrees of freedom 

is not statistically meaningful. Therefore any data produced based on this relationship will be 

spurious. To avoid this problem we increased the number of samples within a cell through 

aggregation leading to 27 NFI plots per gridded terrestrial data cell on average (Figure 1).  

The resolution is not limited by the remote sensing data but by the NFI data as NFI data was 

provided to us with falsified locations within 1km, and the need to have sufficient plots within a 

cell to reach our desired confidence levels. Our output data on a 0.133° resolution is designed 

to understand landscape level information and the spatial variability of forest characteristics. 

They are not designed to represent local level heterogeneity. 

After already clustering by bioregion and covertype we then use the co-variates for k-means 

clustering and k-NN. The co-variates were chosen to represent different aspects of a given 

forest area. Input co-variates must delineate forest structure logically and correlate as little as 

possible otherwise inaccurate and biased outputs may result.  

Site quality determines the temporal productivity curve and maximum possible rates of 

production and growing stock of a forest. We therefore use site quality to match forests with 

similar productivity curves. The NPP data is then a point on the productivity curve. The NPP 
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data in conjunction with the height data gives us an indication as to how much living biomass 

we can expect in this forest relative to other forests and where along the productivity curve a 

forest may lie in relation to other similar forests in its group. An absolute NPP value is not 

sufficient to determine placement on the productivity curve because NPP has a maxima 

followed by a decrease and eventual plateau. This results in multiple forest development stages 

having the same absolute NPP value. Height in this instance acts as a proxy for forest 

development.  

NPP trend gives us 2 relevant pieces of information. First, it tells us if the forest is reaching a 

plateau or if it is increasing or decreasing in productivity rate and it also giving us an indication 

of management. Forests with similar ages and NPPs can have different forest structures based 

on previous management practices. In the absence of management one stand may be reaching 

a plateau or steady state NPP whereas another stand that has been managed and has a similar 

absolute NPP value may continue to have increasing productivity. Therefore the NPP trend map 

is an attempt to delineate forest structures that occur under the forest canopy and thus not 

captured by remote sensing data directly. Elevation alone was not used as a co-variate because 

it is yet another variable to predict site quality and we did not want to over represent this 

aspect of forest properties in our co-variate ensemble.  

The algorithm requires parameterization for each forest characteristic. Each forest 

characteristic was parameterized individually as each characteristic behaves different spatially. 

The parameters used within our algorithm for each forest characteristic (carbon, volume, 

height, age) are a result of an automated parameterization algorithm to maximize accuracy at 

the scale we specified: cell, country or continental scale (Table 3). 
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Table 3: Parameters of the gap-filling algorithm: N of Bioregions = number of bio-regions 
used, N of Cover types = number of cover types used, N of clusters = number of k-means 
clusters used, N of NN = Number nearest neighbors, I.D.W. = strength of inverse distance 
weighting (0 indicates normal averaging). 
 

Variable 
N of 
Bioregions 

N of 
Covertypes 

N of 
clusters 

N of 
NN’s 

I.D.W. 

Volume 6 1 4 1 NA 

Carbon 6 9 3 1 NA 

Height 6 9 0 4 0 

Age 6 9 0 4 0 

 

Volume and carbon were parameterized to maximize accuracy at the regional to continental 

scale because we were interested in country-level and European statistics. Height and age, 

which can help estimate site quality and in biomass calculations, were maximized for more 

country to local scale accuracy.  

Volume and carbon both used only 1 nearest neighbor (Table 3). These variables where 

clustered by bio regions and carbon was further clustered by cover type. Both variables were 

also further clustered by k-means indicating that there were groupings that were not covered 

by bioregion or cover type. Height and age parameters included 4 nearest neighbors. For 

clustering, both variables used 6 bio-regions and 9 covertypes with no k-means clusters 

indicating that bio-region and cover type sufficiently delineate groups according for forest age 

and height. No inverse distance weighting was used but instead values are simply averaged 

(Table 3).  

 

4.1.2 Gridded Data  

Next we were interested in understanding the spatial distribution of forest resources across 

Europe by producing gridded datasets of total live tree carbon, total volume, mean tree height 

and mean tree age. The gridded data, which show the state of forest resources across Europe, 

were derived using our parameterized algorithm (Figure 2,Table 3), with 4 co-variates - NPP, 

NPP trend, canopy height, site quality - along with input data from the available data sources 

(Table 1). The resulting output data are on a 0.133° resolution and represent the time period 
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2000-2010. The data sets give the landscape level spatial pattern of forest resources 

throughout Europe giving comparable cross-border values allowing not only country level 

assessments (Table A2) but also by latitude, elevation or any other spatial divisions. Using our 

available data we can analyze the spatial differences in forest resources across countries 

throughout Europe.  

Carbon and volume values are provided as totals as opposed to per unit area values. This was 

done to allow comparison of country totals with other data sets and for determine high and low 

values of absolute carbon and volume values across Europe. 

We created a mean tree height data set as opposed to the traditional dominant tree or tallest 

tree height because at a 0.133° resolution there will always be at least 3 tall trees. 

Consequently dominant tree height, which is meaningful at the plot level, gives little insight into 

the forest on such a large resolution. The mean tree height, however, informs us as to how tall 

the forest is on average within this cell and about the average site quality, forest management, 

and stand structure.  

The mean tree age data gives a landscape level age profile of a forest. It provides information as 

to how old a forest is on the landscape level which is different than how age is traditionally 

thought of on the plot level. This allows us to understand forest age structure over large areas 

without focusing on plot level variance. This information can be useful for regional level 

planning and understanding how larger scale policies and management have affected the forest 

age structure across counties, states and countries. 
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Figure 3: Total Live Tree Carbon (tons*102), Total Volume (m3*102), Height (m), Mean tree age 
(age classes in years). 0.133° resolution. The total live tree carbon and total volume result 
from multiplying the c/ha and the m3/ha by the total number of hectares of forest within 
each cell respectively. Height and mean tree age are unaffected by forest area. 
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4.3 Cross-validation  

One crucial piece of information needed for any gridded forest data set (Figure 3) is the 

reliability and/or spatial accuracy and error of the information. Thus we next performed a 

“leave one out” cross validation for carbon, volume, height, age. 

We first compared estimated grid cell values versus the corresponding gridded terrestrial cell 

data derived from the NFI values regardless to which country the cells belong. The accumulated 

results then give a European-wide validation estimate for the “leave one out” cross-validation.  

This type of cross validation gives a more accurate and unbiased assessment of accuracy given 

large and non-random data as compared to sectional cross-validation, i.e. cross-validation by 

country or region (Kohavi, 1995). The statistics for validation are defined by Willmott and 

Matsuura (2006).  

To place our error in the context of random error associated with our input gridded terrestrial 

data we evaluated the confidence interval of the NFI data within each gridded terrestrial data 

cell. Confidence interval is defined as: 

𝐶𝐼 = 1.96 ∗
𝜎

√𝑁
 

Where σ is the standard deviation of a cell and N is the number of plots within a cell  Given an α 

of 0.05 or we use a critical value of 1.96 as our constant. We can use the confidence interval at 

the European scale because each country samples at different distances, some including 

clusters or actual random samples, fulfilling the assumption of randomness. 

The cross validation demonstrates the tradeoff decisions made in the parameterization process 

by showing the error at differing scales (Table 4). We provide the mean values for the original 

gridded terrestrial data and the cross-validated data as well as the corresponding standard 

deviations. We measure the bias via a mean bias error (MBE) and the accuracy with the mean 

absolute error (MAE) and the root mean squared error (RMSE). The difference between the 

MBE and the RMSE also provided information on the variation in the error. An equal MAE and 

RMSE mean that every cell has the same error. We also calculated the mean confidence interval 
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of the underlying NFI data. This puts our results and error in context with our confidence in the 

ability of the original NFI data to depict real world values. 

Table 4: Results of leave one out cross-validation. GTD is the result of all gridded terrestrial 
data based on NFI data. CV is the cross-validation results. Standard deviation (SD), Mean bias 
error (MBE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE). CI is the average 
confidence interval of the NFI data that makes each gridded terrestrial data cell. N is the 
number of 0.133° cells evaluated. 

Variable (units) 
Mean 
GTD 

Mean 
CV 

SD 
GTD 

SD 
CV 

MBE MAE RMSE 
CI-
NFI 

N 

Carbon (tons/ha) 78 77.8 47 47.6 0.24 30.2 43.5 7.08 16430 

Volume (m3/ha) 221.2 221.1 188.2 191.1 0.03 110.5 188.1 22.7 16430 

Height (m) 14.6 14.6 5.6 4.8 0.02 2.7 3.7 3.28 14601 

Mean Age Class (class) 3.6 3.7 1.4 0.93 -0.1 1 1.4 NA 13854 

 

We also analy ed the “leave-one-out” error spatially to further quantify the error behavior in 

our algorithm. We parsed the data spatially by country, latitude, and elevation. This allows us to 

understand how well we can capture forest structure spatially and the effects of moving up 

scales from individual cells to countries and to the continental scale. Some countries did not 

provide age or height which is reflected in the number of cell used in our analysis. Figures 4 to 7 

provide the mean differences between estimated versus gridded data for carbon, volume, 

height and age by latitude (A), country (B) and elevation(C). 
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Figure 4: Tons C/ha Difference (gridded terrestrial data - Estimated): Values annotated on map are 
country averages. A) By Latitude; B) Spatial Distribution, annotated numbers indicate country average 
differences; C) By Elevation (colors indicate number of cells in partition). 
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Figure 5: Volume/ha Difference (gridded terrestrial data - Estimated): Values annotated on map are 
country averages. A) By Latitude; B) Spatial Distribution, annotated numbers indicate country average 
differences; C) By Elevation (colors indicate number of cells in partition). 
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Figure 6: Mean tree height Difference (gridded terrestrial data - Estimated): Values annotated on map 
are country averages. A) By Latitude; B) Spatial Distribution, annotated numbers indicate country 
average differences; C) By Elevation (colors indicate number of cells in partition). 
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Figure 7: Mean tree age Class Difference (gridded terrestrial data - Estimated): Values annotated on 
map are country averages. A) By Latitude; B) Spatial Distribution, annotated numbers indicate country 
average differences; C) By Elevation (colors indicate number of cells in partition).  
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Next we tested the robustness of the input data, by performing a “country-wise” cross-validation where 

we estimated every cell with gridded terrestrial data using nearest neighbors that are not within the 

target cell’s country  In other words  each grid cell is estimated using only other countries’ data making 

each country an independent validation data set. This is again done for every gridded terrestrial data 

cell. This analysis shows how affected the results become once a section of data is removed (Table 5). If 

the input data is robust then there would be little difference between the leave one out cross validation 

and the country wise cross validation (Table 4 and 5).  Large differences do occur between these two 

types of cross validations indicating that removing an entire country from our input data would greatly 

affect our ability to perform this analysis and that there is large variation between countries NFI values 

for the same forest characteristic (Table 4 and 5). 

Table 5: Results of country wise cross-validation. GTDindicates the result of all gridded 
terrestrial data based on NFI data. CV indicates cross-validation results. Standard deviation 
(SD), Mean bias error (MBE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE). 
CI is the average confidence interval of the NFI data that makes up each cell. N is the number 
of 0.133° cells evaluated. 

Variable (units) 
Mean 
GTD 

Mean 
CV 

SD 
GTD 

SD 
CV 

MBE MAE RMSE 
CI-
NFI 

N 

Volume (m3/ha)  203.1 185.2 179.3 186.1 -17.9 130.3 203.4 22.7 14799 

Carbon (tons of 
carbon/ha) 

77.1 66.2 48.6 58.6 -11.0 42.8 56.6 7.08 15518 

Height (m) 14.3 10.0 5.7 8.1 -4.5 6.6 8.3 3.28 13689 

Mean Age Class (class) 3.5 2.6 1.4 1.7 -1.4 1.7 2.3 N.A. 13080 

 

4.4 Comparison with other datasets 

To put our results into context we compared our data versus similar data sets that exist throughout 

Europe. 

4.4.1 Carbon and Volume  

Carbon sequestration of European forests helps to mitigate climate change effects and accurate forest 

carbon estimates give researchers and politicians the ability to assess the role of European forest within 

the global carbon cycle. Volume is an important forest characteristic for the economic sector. Volume, 

along with increment and age, is an important measure for maintaining sustainable harvests. No current 

spatially explicit gridded data set of forest carbon and volume specifically for Europe is publicly and 
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freely available for comparison with our work. For this reason, we obtained the FAO FRA data which is 

widely used to assess the carbon and volume storage by country across Europe and globally to compare 

with our data (Figure 8). FAO FRA data is given as country totals so to make data comparable we 

analyzed their data with country totals of our data. 
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  Figure 8: Total carbon and volume by country for the United Nation’s Food and Agriculture Organization (FAO) and this study (Pan-European)
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4.4.2. Height 

Height is needed for calculating volume and biomass, is considered as a biodiversity indicator and in 

conjunction with age, is a measure of site quality (Chirici et al., 2012; McDill and Amateis, 1992). The 

latest wall-to-wall dataset similar to forest height for Europe is the tree canopy height data set 

developed by Simard et al. (2011) which is a global data set calculated from space based LiDAR data.  

We compare European distributions of Simard (2011) tree canopy height predictions versus our mean 

tree height cross-validation and the original gridded terrestrial data (Figure 9). The original gridded 

terrestrial data acts as an empirical independent estimation   his allows us to assess our algorithm’s 

estimated results versus the Simard method and the ground truth data. This comparison aims to show 

how different definitions of height make a difference and to put the error of our algorithm into context 

on the continental scale.  

 

Figure 9: Distribution of cell forest height for our pan-European cross validated data in this study 
(CrossVal), the gridded terrestrial data (GTD) and the Tree Canopy Height data from Simard (2011) 
aggregated to 0.13°. 
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4.4.3. Age 

Age is one of the most important and most difficult forest characteristics to measure and quantify. 

Forest age is used in productivity, mortality, biodiversity and biomass estimation methods. EFIScen is 

another European project that has attempted to quantify forest age throughout Europe. Original 

EFIScen data however, is not spatially explicit or harmonized across countries. We aggregated EFIScen 

data to create country-wide harmonized age class distributions that are comparable across countries 

(Data section). We compare this aggregated and harmonized EFIScen data to our age data for five 

countries (Figure 10). Three of these countries are completely gap-filled; one each from Northern, 

Central and Southern Europe: Sweden, Lithuania, and Croatia, respectively. The Austrian estimate is 

derived completely from gridded terrestrial data (based off of the original NFI data). The remaining 

country, Switzerland, is also completely gap-filled. To further investigate the comparison of age we also 

included the Swiss NFI data from their online data portal (Swiss Federal Institute for Forest Snow and 

Landscape Research, 2015). These particular countries are highlighted because they all show different 

aspects of the difficulty in quantifying forest age using different datasets (Figure 10). 
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Figure 10: Area (ha) of age class by country for EFIScen and this study’s data (Pan-European). Pan-
European data for Lithuania, Sweden, Croatia, and Switzerland were completely derived through gap-
filling. Pan-European Austrian data was completely given by the official NFI data. Swiss NFI data is 
from their publicly available data portal and includes uneven-aged forests which is not included in this 
graph and equals 308,200 ha. 
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5. Discussion 

Using our newly created gridded pan-European data sets - total live tree carbon, volume, mean tree 

height and mean tree age - we assess the state of forest resources across Europe. The accumulated 

amount of carbon, and volume stored within European forest are 12238.0*106tons and 32541.5*106 m3 

respectively (Table A2 and Figure 3). The average height and age are 14.22m and age class 3.71 

respectively (Table A2 and Figure 3). Our numbers are based on a combination of 8 different data sets 

including bottom up terrestrial information from national forest inventories and forest area as well top 

down remote sensing information across Europe (Table 1). The algorithm we developed combines our 

available data sources allowing us to estimate the state of forest resources in areas with no or missing 

terrestrial information (Figure 2). This procedure provides continuous harmonized data that depicts 

forest resources beyond national level statistics (Table A2). For our study we had access to 12 national 

forest inventory data sets including over 196,000 plot level information data points (currently the largest 

plot level forest inventory data set in Europe) however the algorithm allows for the easy integration of 

additional countries that would increase the accuracy of final output data (Figure 2) . 

 Areas with the highest amount of carbon and volume tend to be located in mountainous areas (Figure 

3). Countries with high volume per hectare are Germany, Austria and the Czech Republic which are 

major timber producers. Large plantations in low elevations also have high totals of carbon and volume 

such as the Forêt des Landes in south-western France, plantations throughout Portugal and the 

managed forests of Germany (Figure 3). The lowest carbon and volume are found in areas that are 

dominated by agriculture, such as Spain and France or dominated by rangelands such as in Norway. In 

Scandinavia there are higher carbon to volume ratios  caused by high wood densities and root to shoot 

ratios found in this region (Neumann, et al., 2016).  

Central Europe has the largest proportion of tall tree values due to the high site quality in this region 

(Figure 3). Norway has a particularly high proportion of short trees as compared to the rest of Europe, 

corresponding to the fact that Norway has predominately open shrub land savanna landscapes. A 

distinct difference in tree height exists between central Europe and southern Europe as one crosses the 

Alps and enters the Mediterranean bioregion. The gridded data of forest height does not follow the 

pattern of any other forest characteristic (Figure 3). With low stand densities, a forest may be very tall 

but have low carbon and volume. Researchers use forest height as a proxy for age when necessary; 

however height is highly dependent on site quality and forest management (Wang and Klinka, 1995). In 

high elevation alpine forests, old trees do not have the ability to grow tall whereas in plantations young 

trees may be very tall.  
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The area in central Europe with the oldest mean tree age is in the state of Vorarlberg in Austria. This 

area is very steep and wet with many scattered human settlements hindering the harvesting of forests 

while providing a hospitable environment for tree growth. Other areas with continuous cover of older 

mean tree ages are northern Finland and Norway. These areas consist of sparse, slow growing forests 

that do not encourage forest harvesting which has led to older forests. Agricultural areas do not drive 

down the age of forest because these trees are typically not under rotation (Figure 3). 

 he “leave-one-out” biases for volume and carbon are less than     % of the mean values   able 4   

These two variables - volume and carbon - show a similar standard deviation in the cross validation and 

the original gridded terrestrial data as of our parameterization choice in maximizing country to 

continental scale accuracy. The MAE and the RMSE are within a standard deviation demonstrating that 

the error is within the variability of the dataset.  

Our algorithm is more accurate at lower elevations (Figures 4-7). This is caused by a higher number of 

points at lower elevations which lead to more accurate gap filling estimations. Spatially, for carbon, 

most countries show scattered areas that are both over and under estimated, with the exception of the 

Czech Republic (Figure 5). We underestimate the Czech Republic by an average of 36.9 tons C/ha. This is 

because the   ech Republic’s gridded terrestrial data shows an exceptionally high carbon/ha and 

volume/ha which then leads to an underestimation when using other country values for estimates in the 

kNN. Variation in the error is higher when parsed by latitude than elevation because latitude creates 

more diverse strata than does elevation.  he “country-wise” biases for volume and carbon show an 

underestimation of 18% and 21%, respectively (Table 4). The differences in bias and error between the 

“leave-one-out” and “country-wise” validations indicate the robustness of the input data. Some 

countries represent large portions of a bioregion, therefore not many points remain to choose from for 

gap-filling when a country is removed resulting in higher error. For example, Spain is in the 

Mediterranean bioregion and when removed in the “country-wise” validation the only data we can use 

to fill Spain with is from coastal Mediterranean France and portions of Italy. 

All countries besides Italy and Austria have average height errors of less than 1 meter (Figure 6). The 

latitude with the largest overestimation is in the mid 40°s. Here we can see that the majority of this 

overestimation is due to northwestern Italy and southeastern France. This area contains high elevation 

mountains and our estimates tend to have higher error in higher elevations.  

 he standard deviation for age of the “leave-one-out" cross validation data decreased from the original 

NFI standard deviation because we used an average of 4 neighbors (Table 4). The MAE lies within the 

bounds of the normal variation of the dataset as it is smaller than the standard deviation. Spatially, over 
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and underestimations in mean age are scattered throughout Europe (Figure 7). We overestimate by 

under a half an age class at most latitudes with scattered latitudes having underestimations. We 

estimated age better with increasing elevation because the variation of observation decreases with 

elevation.   

Volume and carbon estimations in this study are 21% higher than the FAO FRA estimates (Figure 8). We 

do not have spatially explicit datasets used for FAO reporting nor the access needed to compare 

calculation steps. Thus we cannot know for certain the cause behind this discrepancy. However, 

literature, understanding of the data and knowledge as to how carbon and volume are calculated in 

countries throughout Europe dictates that this discrepancy is driven by 4 factors: differences in 

calculation methods, the wall-to-wall nature of our gridded data, forest area designation and 

quality/variation of NFI data.  

Our dataset and the FOA FRA are in agreement with respect to the top 8 countries with the most forest 

carbon stock (Figure 8). The top 3 countries with the smallest relative difference to FAO values - 

Lithuania, Slovenia, and Slovakia - are entirely gap-filled with a discrepancy from FAO FRA of 0.0%, 2.8%, 

and 4.8% respectively. Considering only countries for which we have gridded terrestrial data, there is an 

average estimation of 20% over the FAO estimate. However, Austria, which is entirely covered with 

gridded terrestrial data, has almost identical values in both our estimate and the FAO estimates. 

Two countries that are completely gap-filled and have large discrepancies in volume between our data 

and FAO data are Serbia, and Bosnia-Herzegovina. We attribute these discrepancies to the quality of the 

FAO FRA data. FAO data for Serbia is based on incomplete NFI data (FAO, 2010b). and FAO data for 

Bosnia and Herzegovina is produced by the FAO themselves using historical datasets and no NFI data 

from Bosnia and Herzegovina (FAO, 2010a).  The uncertainty information on the FAO data are 

unavailable in the FAO FRA reports not allowing further investigation into the cause of these 

discrepancies. 

The largest difference in volume is in Germany (Figure 8). We have original NFI data for Germany and we 

use the same methodology used to produce volume estimates as those reported to the FAO. We 

attribute this discrepancy in volume estimates to the wall-to-wall nature of our data, forest area 

designation and high Czech NFI volume/ha values (Figure 3, 5). The German NFI data does not cover 

large portions of the country whereas our data covers all of Germany leading to the inclusion of sparsely 

forested areas not included in the NFI dataset, such as agricultural lands, which can add up to a 

noticeable amount of volume and carbon. These areas were gap-filled using our algorithm. When Czech 
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values were used to gap fill these areas, this led to higher than average volume estimates. Volume in 

countries that are similar to the Czech Republic according to our co-variates tended to be 

overestimated. Further, forest area again contributes to this discrepancy as data giving spatially explicit 

or country statistics on forest area differs greatly (Kempeneers et al., 2013; Seebach et al., 2011) (Table 

A1). The FAO FRA does not provide forest area maps which would allow us to further analyze the affect 

forest area designation has on the discrepancies in these estimates. 

Carbon estimations are primarily driven by volume estimations, as calculating carbon first requires a 

volume estimate. Spain has the biggest carbon difference of any country between our data and FAO at 

nearly 50%. We have the original NFI data from Spain. Carbon (which includes above and below ground 

biomass) is derived from volume (which only includes above ground biomass) using root to shoot ratios. 

The Spanish root-to-shoot ratio is approximately 0.56 on average(Neumann et al., 2016b). Our data and 

FAO data show similar Spanish volume values. Therefore, FAO FRA for Spain must only represent above 

ground biomass further supporting our assumption that calculation method contributes to the 

discrepancies between our and the FAO FRA data. Without spatially explicit information on the 

uncertainty of FAO data it is not possible for us to analyze if our data or FAO data is more accurate to 

real world values; we can only analyze the discrepancies between the two data sets. 

The height results show that that  imard’s tree canopy height data is skewed toward taller heights. In 

the gridded terrestrial data and our cross-validated data there are two peaks in the distribution, at 12-

16m and at 20-24m. The cross-validated data, however, is higher in the latter peak. Our data represents 

the average height of all trees within a cell. This data then gives an indication of the height profile of a 

forest on the landscape level   imard’s height data is the height from the lowest point on the ground to 

the highest point in the canopy. To exemplify how this definition difference affects results, let us 

consider a forest with 99% of forest cover as small trees with only 1% being tall trees. Our cell value will 

reflect a short height, whereas Simard will indicate a tall height. This difference in definition is 

exemplified in the skewness in Simard’s tree canopy height data towards taller trees (Simard et al., 

2011; Figure 3). 

The age of a forest has many definitions (Cohen et al., 1995). Our study defines age as the average age 

of all trees within a cell. The EFIScen database is a collection of forest inventories that were compiled by 

separate countries to produce age class distributions, making its definition of age country-dependent. 

EFIScen age classes were not harmonized across countries and are given as area per age class per forest 

type. Further, the EFIScen data, aggregated to total forest area per country, includes values of forest 
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area that are up to 2 orders of magnitude different compared to our and FAO estimates (Table A1). This 

indicates that either the EFIScen data has different definitions of what constitutes a forest or the 

publicly available data set is incomplete. 

In central Europe, Lithuania, which is completely gap-filled, shows a close agreement in the age class 

distribution between the EFIScen and data from this study (Figure 10). Sweden, however, has different 

distributions between the datasets with EFIScen having a continuously decreasing distribution and our 

data having a peak in the middle age classes. Croatia has a similar distribution between the two 

datasets, but there is a different total forest area (Table A1). The Croatian forestry company website 

states that there is 2,688,687 ha of total forest area  Hrvatske šume  2  5  which is larger than both the 

estimates from the datasets we analyzed (Table A1).  Our dataset for Austria is derived completely from 

NFI data with no gap-filling; however, there is a large discrepancy between the two datasets. The reason 

behind all of these discrepancies is the differing definitions of age. Additionally, we do not include an 

uneven aged designation. This can lead to the discrepancy such as that which we find in the middle age 

classes in countries such as Austria (Figure 10). To further exemplify the difference age definition makes, 

we included Swiss NFI data into our analysis (Figure 10). Here the uneven aged stands, which comprise 

308,200 ha of the Swiss NFI data, were not included in the distribution making a distinct difference in 

the age class distribution curve. In the Swiss data we see that 3 independently derived distributions of 

age have resulted in 3 distinctly different outcomes, exemplifying the difficulty in comparing age across 

data sets. 

Our definition for age allows us to use our values as an indication of rotation length as it measures the 

average age of all trees which is rotation length dependent. To further examine our age estimate we 

compared our distributions with country statistics on management. The age pattern in Lithuania in our 

data indicates a common rotation length of 41-60 years and only a small portion of conservation area, 

indicated by the graph as a peak at age class 41-60, followed by a decreasing distribution and the lack of 

an increase in age class 8 (Figure 10). This agrees with Lithuanian forest statistics, which state that less 

than 1.2% of total forest area is in reserves in Lithuania (Fahy, 1999) and match the official pine age class 

distribution and optimal rotation lengths (Brukas et al., 2001; Hjortsø et al., 2006).  In Sweden, 25% of 

forests are under conservation and the most common rotation length is 65-110 years (Swedish Forest 

Industries Federation, 2012). This can be seen in our Swedish distribution with an increase in age 

distribution until the 41-60 year age class, followed by a steep decline.  There is then a large increase in 

the oldest age class which supports the fact that 25% of the area is under conservation.  The South-East 
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European Forestry group says that 46% of Croatian forest is 40 – 80 years old   ovrić et al   2    . Both 

the EFIScen and our datasets agree with this statement by both showing a peak at this age class. Our 

data, however, shows a slight increase in the oldest age class, which also indicates a small percentage of 

protected area. That agrees with the 6% estimate by the Croatia Federal Forests  Hrvatske šume  2  5 .   

6. Conclusions 

We developed a snap shot of the state of European forests across Europe based on variables common in 

forest inventories. We can produce any NFI variable, however in this study we focused on 4 

characteristics: total live tree carbon, volume, mean tree height, and mean tree age. This data provides 

pan-European spatially explicit harmonized datasets of various forest characteristics using one 

methodology. It can be used to further our understanding of landscape-level forest dynamics as well as 

allow us to study the difference in forests across political boundaries. Further, the methodology and 

data developed here can be used as a check for international reporting such as that for the FAO. Data 

can be quickly checked and analyzed to find discrepancies that would then require further investigation. 

This data can also be used to fill in areas that have no data or decline to participate in such programs.  

The data sets that we produced in this analysis are derived by combining available “bottom up” 

terrestrial data sources with “top down” satellite data records   able     We grouped forests by cover 

type and bioregion as well as used 4 co-variates (i) site quality, (ii) NPP, (iii) NPP trend, and (iv) height to 

perform k-means clustering and k-nearest neighbor analysis (Figure 2). The information is provided as 

wall-to-wall data for live tree carbon, volume, mean tree height, and mean tree age class across 

European forests at a 0.133° (approximately 75 – 175km2) resolution (Figure 2). Note that the algorithm 

developed can be used for any other forest characteristics and/or forest region (Figure 2). The code is 

freely available from the authors. 

Our data will allow people interested in knowing the state of forest resources across Europe on the 

landscape scale to easily access information. Beyond Europe, this methodology can also be used in areas 

that have no accessible NFI data, whether due to financial, practical or political limitations. As long as 

there are similar forests that have NFI data one can use this methodology to fill in other areas. If this 

methodology is used internationally then it can also act as a way to check reporting errors and quantify 

forest characteristics for the purposes of global carbon mitigation schemes and negotiations. Our 

methodology shown here could be used by countries that do not have the means to produce their own 

NFI datasets, to partner with nations with similar forests and accompanying NFI data, to generate 
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information on the state of their forest resources.  This could provide those countries without empirical 

NFI estimates more information to better negotiate at international meetings including the United 

Nations Framework Convention on Climate Change. All output data and the source code used to create 

it are freely and publicly available at ftp://palantir.boku.ac.at/Public/ForestResources. 
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Appendix 

Table A1: Total forested area from EFIScen, this study (Pan-European) and FAO 

Country Total Forested Area (ha)     

 EFIScen  Pan-European  FAO 

Austria 2,978,000 3,628,773 3,897,000 
Belgium 146,259 703,669.8 679,880 
Bosnia 22,750 2,425,217 2,185,000 
Croatia 836,201 1,648,052 1,926,800 
Czech 753,544.2 2,270,572 2,661,000 
Denmark 442,309 421,174.5 548,000 
Estonia 2,047,912 1,951,751 2,196,000 
Finland 19,752,610 21,249,613 22,157,000 
France 1,237,034 15,934,988 16,050,000 
Germany 9,985,069 11,223,452 11,076,000 
Hungary 1,860,640 1,598,186 2,047,400 
Ireland 328,902 621,680.1 756,600 
Italy 3,832,048 8,480,119 9,305,000 
Latvia 2,621,752 2,977,663 3,376,800 
Lithuania 1,908,979 2,022,840 2,175,600 
Netherlands 306,029 344,775.2 365,000 
Norway 5,946,577 8,975,334 10,217,800 
Poland 8,814,881 9,348,988 9,391,800 
Portugal 1,109,229 3,196,523 3,463,600 
Romania 5,642,700 6,504,288 6,645,800 
Slovakia 1,909,089 1,866,770 1,933,400 
Slovenia 1,151,999 1,281,579 1,257,000 
Sweden 20,966,537 27,370,952 28,203,000 
Switzerland 1,139,901 1,116,430 1,249,200 
United Kingdom 2,142,939 2,339,870 2,895,400  

European Total  97,883,890 139,503,260 146,660,080 
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Table A2: Country Totals for carbon and volume and country averages for age class and height. Age 
class definitions in years: 1 = 0-20, 2 = 21-40, 3 = 41-60, 4 = 61-80, 5 = 81-100, 6 = 101-120, and 7 >120. 

      
Country Total Carbon Total Volume Age Class Height  
  (millions of Tons)  (millions of m3)   (m)  
Albania 51.64 118.18 3.50 10.59 
Austria 398.40 1143.85 4.18 20.47 
Belgium 84.69 228.10 3.97 18.37 
Bosnia-Herzegovina 293.49 792.96 3.40 15.09 
Bulgaria 408.81 1287.75 3.46 18.01 
Croatia 171.44 460.45 3.28 15.21 
CzechRepublic 373.06 978.11 4.09 19.65 
Denmark 42.58 120.26 3.69 17.42 
Estonia 101.29 249.14 3.20 16.40 
Finland 979.23 2702.38 4.01 13.38 
France 1299.62 2688.68 3.76 14.64 
Germany 1302.26 4771.09 3.98 20.39 
Greece 137.21 237.13 3.28 8.96 
Hungary 157.67 470.96 2.87 17.99 
Ireland 46.87 100.61 3.51 14.81 
Italy 576.17 1433.58 3.21 12.17 
Latvia 160.23 428.87 3.54 15.82 
Lithuania 145.97 474.11 3.73 16.73 
Macedonia 99.60 262.12 3.60 14.82 
Montenegro 46.81 139.37 3.34 11.51 
Netherlands 42.68 109.86 3.71 17.96 
Norway 365.37 891.32 4.54 8.51 
Poland 1012.93 2604.55 3.19 17.85 
Portugal 132.74 198.43 3.83 8.64 
Romania 718.52 2143.65 2.71 18.67 
Serbia 312.70 1026.69 3.57 18.81 
Slovakia 200.68 637.16 3.38 17.75 
Slovenia 152.60 480.31 3.68 18.93 
Spain 763.99 1107.65 3.03 9.10 
Sweden 1318.34 3441.41 4.17 11.84 
Switzerland 123.95 348.52 4.46 17.68 
United Kingdom 216.48 464.22 3.73 14.89 
Europe (per cell) 12238.0 32541.5 3.71 14.22 




