
U N R AV E L L I N G T I M E - L A G G E D T E L E C O N N E C T I O N S B E T W E E N
S E A S U R FA C E T E M P E R AT U R E A N D V E G E TAT I O N A N O M A L I E S

michael wess

Mat.-No.: 0540427

Supervisor:
Univ.Prof. Dr.rer.nat. Clement Atzberger

Institute of Surveying, Remote Sensing and Land Information
University of Natural Resources and Life Sciences, Vienna

March 2014 – Version 1.1



Michael Wess: Unravelling time-lagged teleconnections between sea surface
temperature and vegetation anomalies



Dedicated to Jaqueline Sunshine





A B S T R A C T

A lot of studies have already shown a correlation (or anti-correlation)
between the Sea Surface Temperature (SST) and the NDVI in differ-
ent parts of the world, especially in regions affected by the South-
ern Oscillation (SO), the atmospheric component of the El Niño cy-
cle. The goal of this thesis is to provide a basis for future studies
regarding short and mid-term NDVI forecasts based on SST data. We
want to try if Recurrence Quantification Analysis (RQA) is able to
to identify, characterize and quantify possible (time-lagged) relation-
ships between NDVI and SST, based on weekly world-wide data from
the years between 1985 and 2006. SST data was adopted from the
AVHRR Pathfinder 5.0 project, NDVI information was provided by the
GIMMS project. Both time series were smoothed, the NDVI series were
grouped into 1135 classes, for each class the mean NDVI series was
determined and then the anomalies of both datasets were calculated
and normalized. After that the diagonal-wise RQA indices DET, RR
and L (with lmin = 5) for diagonals with a time lag of 0 to 48 weeks
were calculated for each SST-NDVI pair, based on Cross Recurrence
Plots (CRPs) with a threshold of 0.8, a dimension of 20 and time delay
of 1.

Map plots of the resulting RQA indices clearly show no random dis-
tribution, but distinctive structures and patterns highlighting differ-
ent sea areas with potential (tele-)connections with the NDVI classes.
A detailed interpretation of these patterns however goes beyond the
scope of this thesis. Future work is necessary, preferably together with
experts in oceanography and climatology, to be able to verify and ex-
plain those structures. To us, RQA seems to be a promising approach
1) to automatically identify time-lagged relationships between climate
variables and the NDVI (and thus agricultural production), 2) to quan-
tify those relationships and 3) ultimately to develop forecast models
for crop conditions based on remotely sensed data using this method.

Z U S A M M E N FA S S U N G

Viele Studien haben bereits eine Korrelation (oder Antikorrelation)
zwischen Meeresoberflächentemperatur (Sea Surface Temperature) und
NDVI in unterschiedlichsten Teilen der Welt festgestellt, besonders in
Gebieten, die von der sogenannten Southern Oscillation (SO), der at-
mosphärischen Komponente des El Niño-Kreislaufs, betroffen sind.
Ziel dieser Arbeit ist es, eine Grundlage für weitere Studien über
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kurz- und mittelfristige NDVI-Vorhersagen auf Basis der Meeresober-
flächentemperatur zu schaffen. Wir wollen überprüfen, ob die Metho-
de Recurrence Quantification Analysis (RQA) geeignet ist, um mögli-
che zeitversetzte Zusammenhänge zwischen NDVI und Meerestempe-
ratur zu identifizieren, zu charakterisieren und zu quantifizieren, ba-
sierend auf weltweiten, wöchentlichen Messdaten der Jahre 1985 bis
2006. Quelle für die Temperaturdaten war das AVHRR Pathfinder 5.0-
Projekt, die NDVI-Daten stammen aus dem GIMMS-Projekt. Beide Zeitrei-
hen wurden zunächst geglättet, dann die NDVI-Daten in 1135 Klas-
sen unterteilt, für jede Klasse die mittlere NDVI-Signatur bestimmt
und zuletzt für alle Zeitreihen die Anomalien berechnet und norma-
lisiert. Danach wurde für jedes SST-NDVI-Paar ein Cross Recurrence
Plot (CRP) mit den einem threshold von 0.8, einer dimension von 20
und eine time delay von 1 erstellt und daraus die diagonalweisen RQA-
Indizes DET, RR und L (mit lmin = 5) für die Diagonalen mit einem
Zeitversatz von 0 bis 48 Wochen ermittelt.

Kartendarstellungen der berechneten RQA-Indizes zeigen deutlich
keine zufällige Verteilung, sondern unterscheidbare Strukturen, die
verschiedene Meeresgebiete mit möglichen Zusammenhängen mit den
NDVI-Klassen ausweisen. Eine detaillierte Interpretation dieser Mus-
ter geht aber über den Umfang dieser Arbeit hinaus. Hier sind wei-
tere Forschungen notwendig, am besten in Zusammenarbeit mit Ex-
perten für Ozeanographie und Klimatologie, um die Ergebnisse ve-
rifizieren und interpretieren zu können. Für uns scheint RQA jedoch
ein vielversprechender Ansatz 1) zur automatisierten Identifikation
von zeitversetzten Zusammenhängen zwischen Klimavariablen und
dem NDVI (und damit der landwirtschaftlichen Produktion), 2) zur
Quantifizierung dieser Zusammenhänge und 3) letztendlich zur Ent-
wicklung von Prognosemodellen für den Zustand der Vegetation ba-
sierend auf Fernerkundungsdaten zu sein.
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There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be

replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

— Douglas Adams [1]
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Part I

I N T R O D U C T I O N





1
M O T I VAT I O N

Especially as a result of today’s growing concern about the global
climate change and its possible impacts on agricultural production
and human development in general, understanding the complex re-
lationships between climate and vegetation dynamics has become a
major task of Earth sciences [2] and thus of the remote sensing com-
munity. In large parts of the world, water limitation is the primary
factor responsible for interannual variations in performance of rain-
fed crops, and hundreds of millions of people depend upon the suc-
cess of these crops for their livelihood [3]. Consequently, a lot of
effort is devoted to the implementation of forecast systems and pre-
diction models of crop conditions. Such models can be based on
known time-lagged correlations between different climate variables
like precipitation, temperature or air pressure to estimate the future
performance of rainfed crops.

A lot of studies have already shown a correlation (or anti-correlation)
between the Sea Surface Temperature (SST) and the Normalized Dif-
ference Vegetation Index (NDVI) in different parts of the world [4, 3, 2,
5], especially in regions affected by the Southern Oscillation (SO), the
atmospheric component of the El Niño cycle. Consequently, it might
be possible to use this relationship to develop, calibrate and validate
crop condition forecast models. As SSTs are partially predictable up
to 2 years ahead of time [6], a new method of exploring its relation-
ship with world-wide vegetation dynamics might contribute to the
development of forecast models.

Recurrence Quantification Analysis (RQA), an extension of Recur-
rence Plots (RPs), is a powerful method to analyze, quantify and com-
pare the (possibly nonlinear) behavior of dynamical systems [7]. It
is well-known in various fields like earth sciences [8], chemistry [9],
sociology [10] or mechanics [11], but apart from Li et al., who used
RQA to measure determinism and predictability of NDVI series and its
spatial patterns [12], it is barely used by the remote sensing commu-
nity.

As this work uses datasets covering the whole Earth’s surface, pos-
sible correlations between SST and NDVI can occur on a smaller spatial
scale, because coastal waters and vegetation areas nearby the shore
might be affected by the same climatical processes, but also on greater
or even global scales. These existing apparent “links” between cli-
mate variables measured at places located hundreds of kilometers
apart from each other are referred to as teleconnections.

The American Meteorological Society defines teleconnections as
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4 motivation

1. “a linkage between weather changes occurring in widely separated
regions of the globe” and

2. “a significant positive or negative correlation in the fluctuations of a
field at widely separated points [...] most commonly applied to vari-
ability on monthly and longer timescales; The name refers to the fact
that such correlations suggest that information is propagating between
the distant points through the atmosphere” [13].

A lot of the well-studied teleconnections (e. g. the emblematic link-
age between the surface-level air pressures at Darwin, Australia and
Tahiti) are related with the El Niño-Southern Oscillation (ENSO). It has
been shown, for example, that a recognizable negative correlation be-
tween the ENSO cycle (measured using positive mean SST anomalies)
and vegetation vigour (represented by the NDVI) in the south-east
USA exists [2], or that precipitation and hence the NDVI in sizeable
areas of Africa, South America and Australia were associated with
tropical Pacific SST anomalies [4]. Also other (time-lagged) telecon-
nections between ENSO and climate parameters such as precipitation,
temperature and air pressure have been documented for several re-
gions of the world [14, 15]. Consequently, one might be able to exploit
relationships like that for short and mid-term early warning systems
and forecast models.



2
O B J E C T I V E S

The goal of this thesis is to provide a basis for future studies regarding
short and mid-term NDVI forecasts based on SST data. We want to
test if RQA is a suitable method to identify, characterize and quantify
possible (time-lagged) relationships between the NDVI and the SST

based on world-wide data. Forecast or prediction models of any kind
are not part of this work, but might be the focus of future research
projects.
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Part II

M AT E R I A L





3
S S T D ATA

3.1 data source

A valuable source for the Sea Surface Temperature data was found in
the Advanced Very High Resolution Radiometer (AVHRR) Pathfinder
Version 5.0 project realized by the US National Oceanographic Data
Center (NODC) and Group for High-Resolution Sea Surface Tempera-
ture (GHRSST) available at

http://pathfinder.nodc.noaa.gov.

This data collection is described in detail by Casey et al. [16].
The NODC’s Pathfinder 5.0 project provides daily, 5-day, 7-day, 8-

day, monthly and yearly SST data from the years 1985 to 2006 down-
loadable for free on the internet; each observation is availably for
both day- (10 am or 2 pm depending on the satellite) and nighttime.
The datasets offer a ground resolution of up to approx. 4× 4 km per
pixel which leads to raster files consisting of 8192× 4096 pixels cov-
ering nearly the whole earth surface. The data is available in the
Hierarchical Data Format (HDF) in separate files. As georeferencing
is not crucial for this work, any available projection information was
neglected.

This work is based on the 7-day (weekly) SST data recorded during
daytime. Figure 1 shows an example of the Pathfinder 5.0 SST data
from summer 1985.

For each temporal resolution, the Pathfinder 5.0 project provides
(amongst others) the following parameters:

"all-pixel” sst : The all-pixel SST files contain values for each ground
pixel, including those contaminated with clouds or other sources
of error. The SST value in each pixel location is an average of
the highest quality AVHRR Global Area Coverage (GAC) obser-
vations available in each roughly 4 km bin. The SST values are
stored in a 16-bit format and can be converted to ◦C using the
formula

y = 0.075x− 3 (1)

where x is the 16-bit and y the ◦C value.

overall quality flag : The Overall Quality Flag is a relative as-
signment of SST quality based on a hierarchical suite of tests.
The Quality Flag varies from 0 to 7, with 0 being the lowest
and 7 the highest quality. A detailed description of the applied
quality tests is available by Kilpatrick et al. [17].
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3.2 matlab import 11

Additionally, a land-water mask which classifies each pixel as either
a land or water pixel is part of the Pathfinder 5.0 dataset.

As a result of leap years and a change in week numbering during
the recording period, a total of 1148 weekly SST values per pixel is
available for the years 1985 to 2006 in seperate files.

3.2 matlab import

As a first preprocessing step, the HDF files were sorted chronologi-
cally and imported into MATLAB. Because of memory limitations, a
seperate MATLAB variable file for each pixel row was created, result-
ing in a total number of 4096 files, each containing one row of 8192

pixels with 1148 SST observations, the same number of quality flags,
and the corresponding pixel row of the land-water mask.

3.3 smoothing , interpolation and rescaling

Because of leap years and a change in week numbering during the
recording period, the number of values per year varies between 52

and 53. Additionally, as new years usually do not start with Mondays
only, it would be difficult to compare the observations from one year
with the ones of the others because they represent a different day of
the year. Therefore, the complete SST dataset was rescaled and inter-
polated to daily values using a MATLAB implementation of a smooth-
ing and interpolating algorithm developed by Eilers [18] based on the
ideas of Whittaker [19]. This algorithm has often shown to perform
well on remotely sensed time series [20, 21]. For the smoothing pro-
cess, each value was assumed to represent Sundays during the years
1985 and 1989 and Wednesdays starting from 1990. Then, the miss-
ing (daily) values between those days were interpolated using the
above-mentioned smooting algorithm with a smoothing parameter
of λ = 104 and an order of differences of d = 2. These parameters
were selected by visually inspecting sample plots (e. g. like Figure 2).

Since part of the SST values were of lower quality, only the ones with
an Overall Quality Flag of 4 and above were used as input variables
for the interpolation, the others were treated as missing values as
well. This was achieved by assigning a weight of 1 to values with
Overall Quality Flag ≥ 4 and a weight of 0 to the others (and also the
missing days). After the applying the smoothing and interpolation
algorithm, the extended dataset consisted of 8035 daily SST values
for each pixel. Figure 2 shows an example of the smoothing and
interpolation process, where the green circles represent SST values
with a Quality Flag ≥ 4 which were therefore taken into account; all
the other values were interpolated.

To rescale the dataset back to weekly values, the SST values of the
4

th, 11
th, 18

th and 25
th day of each month were extracted, resulting in
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Figure 2: Smoothing and interpolation of the SST values

22 · 12 · 4 = 1056 SST observations per pixel for the 22 analyzed years
(1985-2006). This procedure ensures comparability because now e. g.
the 28

th observation of each year represents the same day of the year
(in this case the 25

th of July).

3.4 anomaly and z-score calculation

Naturally, the SST is subject to seasonal fluctuations. For correlation
analysis, only deviations from the “usual” values for a certain time
of the year are of interest – the so-called anomalies. To eliminate the
seasonal component, the mean values of each week (1 . . . 48) of the
year (1 . . . 22) were calculated. This resulting “average year” was
then deducted from the original values leading to a time series of
SST anomalies.

As a last step, the z-scores zt of each time series were calculated
using the formula

zt =
xt − µw

σw
w = 1 . . . 48 (2)

where µw and σw are the mean and the standard deviation of each
week of the “mean year”. Figure 3 shows the resulting values after
each processing step.

The total resulting anomaly time series of each pixel has now a
mean of µtotal = 0 and standard deviation of σtotal = 1 and can thus
be compared to other time series with different (original) value ranges
– like NDVI anomalies (after they were preprocessed in the same way).

The MATLAB function (prep_sst) used for smoothing, interpolation
and rescaling is described in Section A.1.
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3.5 sst data compression

Due to memory and processing time issues, the amount of input SST

data had to be reduced as a last step. To fasten the correlation calcu-
lation by a factor of 16, only every 4

th SST pixel (starting from the 2
nd)

was selected. This compression results in a considerable loss of data
(now 2048×1024 pixel), but was necessary to overcome difficulties
with the amount of required storage space and processing time.

To even further reduce processing times and avoid unnecessary cal-
culations, the polar regions were removed from the SST dataset (ap-
prox. starting from 70° N and 60° S). The final SST dataset now con-
sisted of 2048×700 pixels (Figure 4).
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4
N D V I D ATA

4.1 basics

The Normalized Difference Vegetation Index (NDVI) is a simple vege-
tation index which can easily be calculated using spectral reflectance
data (in most cases remotely sensed). It was designed to provide a
quick and easy overview of the spatial distribution of vegetated ar-
eas and has become one of the best-known and most-used vegetation
indices in multi- and hyperspectral remote sensing.

The history of the NDVI dates back to the 1960s when researchers
in the US were struggling with satellite-derived spectral signals con-
founded by differences in solar zenith angle across their extensive
study area. Their approach to “normalize” the effects of the chang-
ing solar zenith angle resulted in the NDVI [22].

The NDVI is calculated using the formula

NDVI =
NIR− RED
NIR + RED

(3)

where NIR is the reflectance in the near infrared wavelength range
(typically ranging from approx. 0.7 to 1.0 mm) and RED the reflectance
in the visible red range (approx. 0.6 to 0.7 mm). As Equation 3 shows,
NDVI values can vary between -1 to 1, where higher NDVI values indi-
cate higher vegetation density, because the chlorophyll of live green
plants strongly absorbs visible solar radiation and tends to reflect
most of the near-infrared light.

The NDVI has been found to correlate significantly with annual and
monthly rainfall totals and has been used to predict crop yields sev-
eral times [23, 24, 25]. This usefulness has led to a wide-spread usage
of this index.

4.2 data source

Similar to the SST data, NDVI datasets are also available on the internet.
For this project, data provided by the Global Inventory Modeling and
Mapping Studies (GIMMS) project was used. It is available at

http://glcf.umd.edu/data/gimms/

and consists of satellite-derived NDVI data corrected for calibration,
view geometry, volcanic aerosols, and other effects not related to veg-
etation change, covering the years from 1981 to 2006. A detailed

17
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description of this dataset is available by Tucker et al. [26, 27], the
correction method is described by Pinzon et al. [28].

The Global Inventory Modeling and Mapping Studies (GIMMS) project
uses data obtained by the Advanced Very High Resolution Radiome-
ter (AVHRR) sensor and provides (amongst others) global bi-weekly
NDVI datasets availableas separate Tagged Image File Format (TIFF)
files. For each month, there are two files, one representing the days
from the 1

st to the 15
th and one from the 16

th day to the end of the
month. The dataset is provided with a ground resolution of approx-
imately 8× 8 km leading to raster files with 4950× 2091 pixels. For
each temporal resolution, the GIMMS project provides the following
parameters:

corrected gimms ndvi : The NDVI values are corrected for resid-
ual sensor degradation/intercalibration differences, distortions
caused by persistent cloud cover globally, solar zenithangle and
viewing angle effects due to satellite drift, volcanic aerosols,
missing data in the Northern Hemisphere during winter using
interpolation due to high solar zenith angles, and low signal to
noise ratios due to sub-pixel cloud contamination and water va-
por. They are scaled to range from -1000 to 1000, while water
pixels are assigned a value of -10000. To recover the original
NDVI, the formula

y =
x

1000
(4)

where x is the stored and y the original value, has to be applied
to the data.

flag : A flag value is available for every NDVI observation and ranges
from 0 to 6 with 0 and 1 meaning good values, 2 and 3 values
retrieved from interpolation, 4 and 5 values retrieved from aver-
age seasonal profile and 6 pointing out missing values.

For the complete analyzed time period, a total of 528 NDVI values
was available in separate files with corresponding flags. Figure 5

shows an example of the NDVI dataset from summer 1985.

4.3 matlab import

As a first preprocessing step, the original files were sorted chronolog-
ically and imported into MATLAB. Because of memory limitations, a
seperate MATLAB variable file for each pixel row was created, result-
ing in a total number of 2091 files, each containing one row of 4950

pixels with 528 NDVI observations and the same number of flags.



4.3 matlab import 19

50
0

1,
00

0
1,

50
0

2,
00

0
2,

50
0

3,
00

0
3,

50
0

4,
00

0
4,

50
0

20
0

40
0

60
0

80
0

1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

0

0.
2

0.
4

0.
6

0.
81

NDVI

Fi
gu

re
5
:N

D
V

I
du

ri
ng

su
m

m
er

1
9
8
5



20 ndvi data

4.4 smoothing , interpolation and rescaling

As described in Section 3.1, the final SST anomaly dataset consists
of pixels with 1056 weekly SST anomaly values, 48 per year for the
22 analyzed years. To allow correlation calculations, the bi-weekly
NDVI dataset had to be interpolated to weekly values, too. To enable
the use of the same smoothing algorithm by Eilers (see Section 3.3),
the existing NDVI values were assumed to represent the 8

th and the
23

rd day of each month. Then the time series were interpolated and
smoothed, this time using a smoothing parameter of λ = 105 and an
order of differences of d = 2. After the applying the algorithm, the
extended dataset consisted of 8035 daily NDVI values for each pixel.

To rescale the dataset back to weekly values, again the NDVI val-
ues of the 4

th, 11
th, 18

th and 25
th day of each month were extracted,

resulting in 22 · 12 · 4 = 1056 NDVI observations per pixel for the 22

analyzed years (1985-2006) – just as the SST dataset.

4.5 data classification

To further reduce the amount of input data before the correlation
calculation, the complete NDVI anomaly dataset was spatially classi-
fied using MATLAB implementations of the kmeans [29, 30] and the
mean-shift [31, 32, 33] algorithms. The amount of classes was chosen
in a way that each class consists of an average of 2500 pixels. With
an input dataset of 2,810,691 land pixels (a size of 4950×2091 and ap-
prox. 30% land pixels), the classification resultes in 1135 classes and
is shown in Figure 6. After that, the mean NDVI time series was cal-
culated for each class by calculating the average NDVI value for each
week.

4.6 anomaly and z-score calculation

Similar to the SST, also the NDVI is subject to seasonal variations. To
eliminate the seasonal component, the mean values of each week
(1 . . . 48) of the year (1 . . . 22) were calculated. This calculated “av-
erage year” was then deducted from the original values leading to a
time series of SST anomalies.

As a last step, the z-score zt of the time series of each NDVI class
was calculated using Equation 2 from above.

The total resulting anomaly time series of each class has now a
mean of µtotal = 0 and standard deviation of σtotal = 1 and can thus
be compared to other time series with different (original) value ranges
– like SST anomalies.
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M E T H O D S





5
B A S I C C O N C E P T O F R E C U R R E N C E P L O T S

5.1 introduction

Recurrence Plots (RPs) are powerful tools to analyze, quantify and
compare the behavior of dynamical systems [7]. Although they are
well-known in various fields like earth sciences [8], chemistry [9], so-
ciology [10] or mechanics [11], but apart from Li et al., who used
RQA to measure determinism and predictability of NDVI series and
its spatial patterns [12], they are barely used by the remote sensing
community.

RPs are based on the formal concept of recurrences discovered by
Poincaré in 1890 [34] and were introduced in 1987 by Eckmann et al.
[35] to visualize recurrences of multidimensional dynamical systems
[7]. Eckmann et al. described recurrence plots as “. . . an array of
dots in a [. . . ] square, where a dot is placed at i, j whenever xj is
sufficiently close to xi” [35]. This statement can also be written as

RMi,j =

{
1 : xi ≈ xj,

0 : xi 6≈ xj,
i, j = 1 . . . N (5)

and results in a N × N Recurrence Matrix RM with values of 1
where the states of the system at times i and j are similar to each
other and values of 0 where they are not.1 So the basic concept of
RPs is a series of pairwise tests where each of the N observed states
xi of the system is compared to all the others (and itself) xj and the
corresponding value of the RM is set either to 1 or 0 (and filled black
or white in visual representations accordingly).

5.1.1 Example 1 – Circular Motion

Let’s assume one is observing a circular motion with constant angular
velocity and a period of T = 10 s. If its position (represented by the
angle ϕ) is measured 100 times using a sampling rate of ∆t = 1 s, the
observed values will look similar to the ones shown in Table 1.

Now Equation 5 is used to calculate the Recurrence Matrix. Table 2

displays the calculation steps for i = 1 and j = 1 . . . 21 (x1 = 0 has to
be compared to x1, x2, . . . , x21), and Figure 7 shows the correspond-
ing part of the RP.2

1 In literature (e. g. by Marwan et al. [7]), often the Heaviside step function Θ(k) is
used. It results in 0 if k < 0 and in 1 otherwise.

2 The initial state of the system is at t = 0, but the indices i and j start with 1.

25
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After applying Equation 5 to the whole data set, the resulting RP

of this process looks like the one shown in Figure 8. Per convention,
the two axes of a RP are faced rightwards and upwards [7] and are
both time axes. As Equation 5 already states, the middle diagonal is
always black in RPs because for i = j, each value is compared to itself,
which always results in a black dot. The other diagonal lines parallel
to the main diagonal reach from the lower left to the upper right
side of the RP and appear every ten steps (i. e. every ten seconds).
They show that after that time, the motion’s evolvement in time is
completely the same as it was 10 seconds before. In other words, the
process has a recurrence period of Trec= 10 s.3

Table 1: Angles ϕ of a circular motion with T = 10 s for t = 0 . . . 13 and
∆t = 1 s

t (s) 0 1 2 3 4 5 6

ϕ (rad) 0 0.2π 0.4π 0.6π 0.8π π 1.2π

t (s) 7 8 9 10 11 12 13

ϕ (rad) 1.4π 1.6π 1.8π 2π = 0 0.2π 0.4π 0.6π
...

...

Table 2: Calculation of the RM at i = 1 and j = 1 . . . 21

j calculation RM1,j j calculation RM1,j

1 0 ≈ 0 1 12 0 6≈ 0.2π 0

2 0 6≈ 0.2π 0 12 0 6≈ 0.4π 0

3 0 6≈ 0.4π 0 14 0 6≈ 0.6π 0

4 0 6≈ 0.6π 0 15 0 6≈ 0.8π 0

5 0 6≈ 0.8π 0 16 0 6≈ π 0

6 0 6≈ π 0 17 0 6≈ 1.2π 0

7 0 6≈ 1.2π 0 18 0 6≈ 1.4π 0

8 0 6≈ 1.4π 0 19 0 6≈ 1.6π 0

9 0 6≈ 1.6π 0 20 0 6≈ 1.8π 0

10 0 6≈ 1.8π 0 21 0 ≈ 2π ≈ 0 1

11 0 ≈ 2π ≈ 0 1
.
.
.

.

.

.

5.2 threshold ε

Unlike the example in Section 5.1.1, natural processes rarely return
exactly to one of their former states. Eckmann et al. defined that “. . . a

3 Trec equals the offset between the diagonals in the RP in Figure 8.
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Figure 7: Part of the RP (i = 1 and j = 1 . . . 21) of a circular motion with
T = 10 s and ∆t = 1 s
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Figure 8: RP of a circular motion with T = 10 s and ∆t = 1 s

dot is placed at i , j whenever x j is sufficiently close to x i” [35], but
as sufficiently close is not a very exact definition, at this point the first
crucial parameter of RPs is introduced: The threshold ε. Including this
parameter, Equation 5 changes to

RMi,j =

{
1 : ε ≥ |xi − xj|,
0 : ε < |xi − xj|,

i, j = 1 . . . N. (6)

This equation states that the value of the RM at position i, j is set
to 1 if xj and xi are closer to each other than ε, otherwise to 0.
It is obvious that the parameter ε is crucial when working with RPs:
A high threshold results in more black points and might render the
RP useless, while a RP with a threshold chosen too low might reveal
no information at all, because no values are to be found sufficiently
close to any others.4 Additionally, a threshold chosen too high might
include points into the neighborhood which are simply consecutive
points in the original time series or the reconstructed trajectory (for

4 For an example, see Figure 11.
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trajectory reconstruction, see Section 5.6). This effect is called tangen-
tial motion and can greatly affect the appearance of a RP [7].

For the definition of ε, value range and scale of the analyzed time
series need to be considered. Several ideas have been proposed in
literature for the selection of ε [7]:

• a few percent of the maximum phase space diameter [36]5

• not more than 10 % of the mean or maximum phase space di-
ameter [37, 38]

• in a way that approx. 1 % of the total points are recurrence
points [39]

• five times larger than the standard deviation of the observa-
tional noise [40]

Still, the appropriate choice of ε depends strongly on the nature of
the studied system [7].

It is recommended to normalize the dataset before calculating RPs –
in this case, the unit of ε is standard deviations σ. Normalization is
especially important when comparing different parameters or when
working with Cross Recurrence Plots (CRPs) – see Section 6.1. Gen-
erally, the threshold has to be chosen with caution in respect to the
dynamics of the analyzed dataset.

5.2.1 Example 2 – Sine Function

In this example, we assume a dynamical process or system whose
evolution in time can be described by the function yt = sin t. For
∆t = 1 s, some observations are shown in Table 3 and Figure 9.

Table 3: Values of yt = sin t for t = 0 . . . 11 and ∆t = 1 s

t 0 1 2 3 4 5

yt 0.0000 0.8415 0.9093 0.1411 −0.7568 −0.9589

t 6 7 8 9 10 11

yt −0.2794 0.6570 0.9894 0.4121 −0.5440 −1.0000
...

...

For obtaining the RM for these observations, again each value has
to be compare to all the other ones (and itself). With an assumed
threshold of ε = 0.3, we calculate the first row (i = 1, j = 1 . . . 21) of
the RM as shown in Table 4. This calculation is applied to the rest of

5 The phase space is a space which contains all possible states of a system – see Sec-
tion 5.5
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Figure 9: Plot of yt = sin t for t = 1 . . . 100 and ∆t = 1 s

the observations too to completely fill the RM. If we want to display
the RP, we just plot the RM and fill each position where RMi,j = 1
black and RMi,j = 0 white.

Figure 10 shows what the resulting Recurrence Plot looks like.

Table 4: Calculation of the RM at i = 1

j calculation RM1,j j calculation RM1,j

1 |0.000− 0.000| ≤ 0.3 1 12 |0.000 + 1.000| > 0.3 0

2 |0.000− 0.842| > 0.3 0 13 |0.000 + 0.537| > 0.3 0

3 |0.000− 0.909| > 0.3 0 14 |0.000− 0.420| > 0.3 0

4 |0.000− 0.141| ≤ 0.3 1 15 |0.000− 0.991| > 0.3 0

5 |0.000 + 0.757| > 0.3 0 16 |0.000− 0.650| > 0.3 0

6 |0.000 + 0.959| > 0.3 0 17 |0.000 + 0.288| ≤ 0.3 1

7 |0.000 + 0.279| ≤ 0.3 1 18 |0.000 + 0.961| > 0.3 0

8 |0.000− 0.657| > 0.3 0 19 |0.000 + 0.751| > 0.3 0

9 |0.000− 0.989| > 0.3 0 20 |0.000− 0.150| ≤ 0.3 1

10 |0.000− 0.412| > 0.3 0 21 |0.000− 0.913| > 0.3 0

11 |0.000 + 0.544| > 0.3 0
...

...

A pattern is clearly visible also in this RP, but unlike the one in
Figure 8, the diagonals are not only faced from the lower left to the
upper right, but also from the upper left to the lower right. This effect
is a result of the characteristics of the sine function where a state
sufficiently close recurs during both the decreasing and the increasing
value range, thus the diagonals are faced in both directions.6

To visualize the influence of the threshold, Figure 11 shows RPs of
this sample function calculated with different thresholds.

6 On the contrary, in the example in Section 5.1.1 the underlying function has only
increasing ranges, so the diagonal lines are only faced in one direction.



30 basic concept of recurrence plots

0 20 40 60 80 100
0

20

40

60

80

100

j

i

Figure 10: RP of yt = sin t with ε = 0.3

5.3 basic characteristics of recurrence plots

In Figure 8, Figure 10 and Figure 11, some fundamental characteris-
tics of RPs can be identified:

• RPs do always have a black main diagonal, the so-called Line Of
Identity (LOI), because along this line i = j and thus each value
is compared to itself.

• RPs are always symmetrical with respect to the LOI (RMi,j ≡RMj,i).
It makes no difference which of the axes is plotted rightwards
and which upwards.

• Diagonal lines are of particular interest in RPs, as they reveal
time periods where the process evolves similar to a former/fu-
ture period over more than one time step.

• The normal distance between diagonal lines can provide infor-
mation about a possible recurrence period Trec of the analyzed
system.

• The selection of a suitable treshold ε is crucial when working
with RPs, as it heavily influences their looks.

Having these characteristics in mind, a visual interpretation of a RP

might lead to a considerable amount of information about the dy-
namics of the studied process or system. However, not only visual
interpretation is possible, but a variety of possibilities to quantify
recurrence characteristics of the underlying system based on RPs was
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(d) ε = 0.9

Figure 11: RPs of yt = sin t with different thresholds

developed – the Recurrence Quantification Analysis (RQA) – see Chap-
ter 7.

5.4 systems with more than one parameter

In the examples in Section 5.1.1 and Section 5.2.1, the time-evolution
laws of the studied dynamical processes were known beforehand,
and so it was clear that one single parameter completely described
the states of these systems. To know if a certain observed state is a
recurrence or not, we just needed to compare each observed value to
the other ones. But for most natural processes and systems, the exact
time-evolution law and/or the total number of parameters involved
are either not known, or only one or a few of the parameters are
(easily) measurable. In other words, we try to observe the state of a
system by measuring one of its parameters, but we know that the sys-
tem’s state is defined by more. Obviously, a recurrence of (only) the
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measured parameter to one of its former values does not necessarily
evoke a recurrence of the whole system.

5.4.1 Example 3 – Daily Air Temperature Oscillation

Consider the system “weather”, whose state is (amongst many oth-
ers) defined by the parameter air temperature. If we want to find
recurrences in a temperature profile (i. e. the temperature measured
on e. g. an hourly basis), we may find the same temperatures during
sunrise in the morning and after sunset in the evening. Although the
temperature values alone would indicate recurrences, the system as a
whole is clearly at completely different states at those times, because
additional, unknown parameters (which have different values at both
times) are involved (in this case they might be air pressure, humidity
etc.).

5.5 multidimensional phase spaces

A phase space is a space in which all possible states of a system are
represented, with each possible state of the system corresponding to
one unique point in the phase space [41]. Its dimension d (d ∈ R)
depends on the number of parameters involved (in the examples in
Section 5.1.1 and Section 5.2.1, it was 1 in both cases; in Section 5.4.1
it was unknown). As the system evolves over time, its state follows a
line (trajectory) between imaginary “points” (states of the system) in
this phase space.

The real strength of Recurrence Plots is revealed when studying
complex dynamical systems or processes whose states are defined by
several parameters. As natural processes often have a lot of variables
but not all of them are measurable, or the total number of variables
and thus the phase space dimension is not known, the trajectory has
to be reconstructed out of often only one observed variable – this is
done using the time delay method (see Section 5.6). With RPs, even
characteristics of systems with high-dimensional phase spaces can be
visualized in two-dimensional plots – that’s one of the main advan-
tages of RPs.

To allow RPs to work with phase spaces with d > 1, the different
parameters x1(t), x2(t), x3(t), . . . xd(t) that define the trajectory in the
d-dimensional phase space are considered to form a vector ~xt and
Equation 6 is extended to

RMi,j =

{
1 : ε ≥ ||~xi − ~xj||,
0 : ε < ||~xi − ~xj||,

i, j = 1 . . . N. (7)

To decide whether two values are sufficiently close to each other to
result in a black dot in the RP, it is not enough to compare the absolute
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difference between two values xi and xj with ε (because they are now
vectors, ~xi and ~xj), so | . | is extended to a norm || . || (see Section 5.7).

5.5.1 Example 4 – Lorenz System

A system with a three-dimensional phase space is for example the
Lorenz system. It was introduced by Lorenz in 1963 as a simplified
mathematical model for atmospheric convection [42] and serves as an
excellent example for systems with multidimensional phase spaces
in a lot of publications on RPs (e. g. [7, 35, 43]). The Lorenz System
consists of three equations:

dx1

dt
=σ(x2 − x1),

dx2

dt
=x1(ρ− x3)− x2,

dx3

dt
=x1x2 − βx3.

(8)

Using a MATLAB implementation [43] of these equations, the system
parameters σ = 10, β = 8

3 and ρ = 28 and the initial values x1 = 6,
x2 = 9 and x3 = 25, a plot (the phase space portrait) for t = 0 . . . 2000
and ∆t = 0.02 is shown in Figure 12.

−20

0

20 −20
0

20

0

20

40

x = x1

y = x2

z
=

x 3

Figure 12: Phase space portrait of the Lorenz system with σ = 10, β = 8
3 ,

ρ = 28, x1,0 = 6, x2,0 = 9 and x3,0 = 25 for t = 0 . . . 2000 and
∆t = 0.02
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5.6 trajectory reconstruction – the time delay method

Let’s assume we want to analyze a natural process which behaves like
the Lorenz system, but the underlying equations are not known and
only the variable x1 was measured. Of course we can now construct
a RP like in Section 5.1.1 and Section 5.2.1 just by using the observed
values of x1 as inputs. The resulting RP will show black dots for all the
times t at which x1 recurs close to a former value. But as the phase
space portrait in Figure 12 shows, it is obvious that the RP would
not at all reflect the characteristics of the system if x2 and x3 are not
considered.

So the phase space trajectory has to be somehow reconstructed
out of only the values of x1. This is done by using the time delay
method [7, 43] developed by Takens [44]:

~xt = (ut, ut+τ, ut+2τ, . . . , ut+(m−1)τ) (9)

where m is the embedding dimension and τ is the (index-based)
time delay. It can be shown that if m is chosen in a way that m >

2d + 1 with d being the dimension of the original phase space, the
reconstructed phase space trajectory is sufficient enough for subse-
quent data analysis [43].7 If d is unknown, the embedding dimension
should be increased until the majority of recurrence points in the re-
sulting RP form diagonal structures [7].

It needs to be considered that depending on the embedding param-
eters m and τ, the number of points (i. e. states) on the trajectory
decreases to

N2 = N − τ · (m− 1) (10)

where N is the length of the original and N2 the length of the recon-
structed time series. This means that the number of observations for
analyses using the time delay method needs to be considerably higher
than the one necessary for studying processes with one-dimensional
phase spaces.

5.6.1 Example 4 – Lorenz System (continued)

If we now reconstruct the original trajectory of Figure 12 using a time
delay of τ = 6 and an embedding dimension of m = 3,8 we get the
resulting trajectory shown in Figure 13. Although the reconstructed
trajectory differs from the original its main characteristics are still
nearly the same and it is sufficient enough for the analysis of recur-
rences.

7 This means that both the original and the reconstructed trajectory can be considered
to represent the same dynamical system in different coordinate systems [7]

8 In reality, at least a dimension of m = 7 would be required here as the original
phase space dimension d = 3 and m > 2d + 1 needs to be fulfilled. To maintain
the possibility of showing the reconstructed trajectory in a three-dimensional plot,
in this case an embedding dimension of m = 3 was chosen.
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Figure 13: Phase space portrait of the reconstructed system with τ = 6 and
m = 3 for t = 1 . . . 2000 and ∆t = 0.02

Figure 14 compares a RP calculated using the normalized original
time series – the vectors ~xt are formed out of (x1,t, x2,t, x3,t) – with a
RP calculated using a normalized reconstructed trajectory with τ = 6
and m = 7.

Despite the fact that the RP in Figure 14b has fewer values than the
one in Figure 14a (because of Equation 10 – see there), the general
characteristics of the two RPs look rather similar.

5.7 neighborhood – norms

The time delay method does not just take the current value ut into
account, but also the future values ut+τ, ut+2τ, . . . , ut+(m−1)τ. In case
of τ = 2 and m = 3, the vector ~xt has three components and consists
of the values (ut, ut+2, ut+4). This vector is then compared to the
other vectors formed at each time t. In practice, this means that not
only a single value xi has to be sufficiently close to another one xj
to result in a black dot in the RMi,j, but also the later value pairs at
(in case of τ = 2 and m = 3) xi+2, xj+2 and xi+4, xj+4 have to lie
in the neighborhood of each other. How exactly this neighborhood
condition is determined, depends on the selected norm.

To illustrate the different norms, a small time range of the (original)
first parameter x1 (which was later used for the reconstruction) from
Section 5.5.1 and Section 5.6.1 was extracted and is shown in Table 5.

Now the time delay method is used to reconstruct the phase space
trajectory using the values xt for t = 200 . . . 229 (due to Equation 10,
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(a) RP based on the original time series,
with ε = 0.3σ
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(b) RP based on the reconstructed trajec-
tory with τ = 6, m = 7 and ε = 0.3σ

Figure 14: RPs of the Lorenz System based on the normalized original and
reconstructed phase space trajectory

the number reduces to 225), a time delay of τ = 4 and an embed-
ding dimension m = 2.9 Table 6 and Figure 15 show the resulting
reconstructed trajectory.

To determine if two specific points on the trajectory at t1 = i = 200
and t2 = j = 218 for ε = 5 form a recurrence point at RMi,j or not, the
vectors ~x200 = (x200, x204) and ~x218 = (x218, x222) have to be compared.
This can be done using one of the following norms:

• Maximum Norm (L∞-Norm): This norm calculates the abso-
lute differences between the component of the vectors ~xi and ~xj
and checks if the biggest difference is less than or equal to the
threshold ε:

max(|xi − xj|, |xi+τ − xj+τ|, . . . , |xi+(m−1)τ − xj+(m−1)τ|) ≤ ε

(11)
In the case of the example for i = 200, j = 218 and ε = 5:

max(|9.4617− 6.8331|, |6.2511− 9.9336|) ≤ 5

max(2.6286, 3.6825) ≤ 5

3.6825 ≤ 5

• Euclidean Norm (L2-Norm): This norm calculates the euclidean
distance for the vectors ~xi and ~xj and checks if it is less than or
equal to the threshold ε:√
(xi − xj)2 + (xi+τ − xj+τ)2 + · · ·+ (xi+(m−1)τ − xj+(m−1)τ)2 < ε

(12)

9 Again, the embedding dimension of m = 2 is chosen to be able to show the trajectory
in a 2-dimensional plot. In reality, a higher dimension would be necessary.
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Table 5: Parameter x1 for t = 200 . . . 229

t value t value t value

200 9.4617 210 4.3187 220 8.2726

201 8.5944 211 4.3445 221 9.0869

202 7.7438 212 4.4550 222 9.9336

203 9.9529 213 4.6475 223 10.7741

204 6.2511 214 4.9208 224 11.5553

205 5.6554 215 5.2749 225 12.2124

206 5.1727 216 5.7111 226 12.6749

207 4.8029 217 6.2305 227 12.8790

208 4.5416 218 6.8331 228 12.7818

209 4.3825 219 7.5163 229 12.3744

In the case of the example for i = 200, j = 218 and ε = 5:√
(9.4617− 6.8331)2 + (6.2511− 9.9336)2 ≤ 5

√
6.9095 + 13.5608 ≤ 5

4.5244 ≤ 5

• Minimum Norm (L1-Norm): This norm calculates the absolute
differences between the component of the vectors ~xi and ~xj and
checks if the sum of them is less than or equal to the threshold
ε:

|xi− xj|+ |xi+τ− xj+τ|+ · · ·+ |xi+(m−1)τ− xj+(m−1)τ| ≤ ε (13)

In the case of the example for i = 200, j = 218 and ε = 5:

|9.4617− 6.8331|+ |6.2511− 9.9336| ≤ 5

2.6286 + 3.6825 ≤ 5

6.3111 6≤ 5

Obviously, the resulting RM for ε = 5 would have the value 1 (i. e.
show a black dot) at position i = 200 and j = 218 if the maximum (L∞)
or the euclidean (L2) norm was chosen; a selection of the minimum
(L1) norm would result in no recurrence point at this position.

Figure 15 illustrates the sizes and shapes of the three norms in the
2-dimensional case.10 It can be seen that the maximum (L∞) norm
results in the most recurrence points while the minimum (L1) norm
is the most restrictive.

10 Obviously, the use of these embedding parameters ε, m and τ would include a lot
of consecutive points on the trajectory in the neighborhood (tangential motion). This is
because m = 2 was chosen to be able to plot the trajectory in a 2-dimensional plot;
in reality, at least m = 7 would be necessary here, which would decrease this effect.
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Table 6: Coordinates of the reconstructed trajectory x = xt and y = xt+τ

x y x y

t xt xt+τ t xt xt+τ

200 9.4617 6.2511 213 4.6475 6.2305

201 8.5944 5.6554 214 4.9208 6.8331

202 7.7438 5.1727 215 5.2749 7.5163

203 6.9529 4.8029 216 5.7111 8.2726

204 6.2511 4.5416 217 6.2305 9.0869

205 5.6554 4.3825 218 6.8331 9.9336

206 5.1727 4.3187 219 7.5163 10.7741

207 4.8029 4.3445 220 8.2726 11.5553

208 4.5416 4.4550 221 9.0869 12.2124

209 4.3825 4.6475 222 9.9336 12.6749

210 4.3187 4.9208 223 10.7741 12.8790

211 4.3445 5.2749 224 11.5553 12.7818

212 4.4550 5.7111 225 12.2124 12.3744

Other possibilities for the interpretation of the neighborhood size ε

(e. g. fixed amount of neighbors) can be found in the literature [7, 35].
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and sizes and shapes of the different norms at t = 200
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B A S I C C O N C E P T O F C R O S S R E C U R R E N C E P L O T S

6.1 introduction

Cross Recurrence Plots (CRPs) can be considered the bivariate exten-
sion of Recurrence Plots [7] and can be used to analyse the relation-
ship of two different systems by comparing their states [45]. Analo-
gously to RPs (Equation 7), CRPs consist of pairwise tests between the
states of two different systems, and a Cross Recurrence Matrix CRM
is calculated accordingly:

CRMi,j =

{
1 : ε ≥ ||~xi − ~yj||,
0 : ε < ||~xi − ~yj||,

i = 1 . . . N, j = 1 . . . M (14)

The basic concept of CRPs is similar to the one of RPs (e. g. em-
bedding parameters, trajectories in phase space, time delay method,
neighborhood – see Section 5.1), but there are some differences:

• As the two time series do not need to have the same length (N 6=
M is possible), the resulting Cross Recurrence Matrix CRM is
not necessarily a square matrix.

• The two axes of the CRP are not interchangeable, as the time of
one of the processes is plotted on the rightwards-faced and the
one of the other one on the upwards-faced axis.

• The CRP does not have a black main diagonal (LOI) in most cases,
because likely ~xi 6= ~yi and ~xj 6= ~yj.

Another important point that needs to be considered when working
with Cross Recurrence Plots is that both processes need to be repre-
sented in the same phase space, because a CRP looks for those times
when a state of the first system recurs to one of the other system [7].
If the time delay method is used for the trajecotry reconstruction, the
embedding parameters are the same for both processes. Also only
one value for the treshold ε can be chosen; so either the two observed
processes are similar in value range and dynamics, or the data needs
to be normalized. Only this procedure ensures comparabilty between
the values of the different processes.

Similar to RPs, diagonal structures are of particular interest in CRPs,
too. They reveal times at which the first process evolved in a similar
way the other process did at the same or another time. Also for
example nonlinear changing of time scales can be clearly identified
(bowed lines in the CRP). A visual interpretation of a CRP can provide

41
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a lot of information about a possible relationship between the two
processes (e. g. correlation, time lag/shift, etc.).

CRPs allow the detection of nonlinear similarities in short an non-
stationary time series with high noise levels, as they often occur e. g.
in life or earth sciences [7]. Other extensions of RPs (e. g. the Joint
Recurrence Plot or the Order Matrix) can be found in literature.

6.1.1 Example 5 – Two Sine Functions with changing Frequencies

To illustrate the principle of CRPs, an example similar to the one cre-
ated by Marwan et al. [7] is shown here. Consider the two sine func-
tions ft = sin t and gt = sin t2 (∆t = 0.01) as shown in Figure 16.
The second one differs from the first by the quadratic transformation
t2 = t2, but they still are clearly related.

0 200 400 600 800 1,000
−1

−0.5

0

0.5

1

t

f,
g

ft = sin t

gt = sin t2

Figure 16: Sine functions ft = sin t and gt = sin t2 with ∆t = 0.01

The CRP (m = 1, ε = 0.1σ, L∞-Norm) for these two (normalized)
functions (Figure 17) clearly shows the nonlinear relationship between
the two processes (undetected by linear correlation coefficients, e. g.
Pearson’s r2 = 0.0894).

6.2 positive and negative-signed trajectories

Equation 14 checks if the trajectory points ~xi and ~yj are close to
each other, which allows to check for positive correlation of the two
studied processes. To be able to look for negative correlation/anti-
correlation too, Equation 14 can be altered to

CRM−i,j =

{
1 : ε ≥ ||~xi + ~yj||,
0 : ε < ||~xi + ~yj||,

i = 1 . . . N, J = 1 . . . M. (15)

This means that for the data series of two different processes, two
CRPs can be calculated: One using Equation 14 to check for positive
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Figure 17: CRP with m = 1, ε = 0.1σ and L∞-norm of the (normalized) func-
tions ft = sin t and gt = sin t2 with ∆t = 0.01

correlation and a second one based on Equation 15 to find a possible
anti-correlation. To distinguish between the two resulting CRMs (or
RMs), the superscript indices + and − are added – like RM+

i,j or
CRM−i,j.





7
R E C U R R E N C E Q U A N T I F I C AT I O N A N A LY S I S

As mentioned above, visual interpretation of Recurrence Plots and
Cross Recurrence Plots can tell a lot about the nature and relation-
ship of the analyzed process(es). However, in order to go beyond
the visual impressions yielded by RPs and CRPs, several measures of
complexity which quantify the small scale structures, have been pro-
posed [46, 38, 47] and are known as Recurrence Quantification Analy-
sis (RQA) [45]. Three of the many measures proposed in literature will
be used in this work: The Recurrence Rate RR, the Determinism DET
and the Average Diagonal Line Length L.

7.1 recurrence rate

The Recurrence Rate RR is the simplest RQA measure. It corresponds
to the percentage of recurrence points in relation to the total number
of points; it therefore measures the recurrence point density. It is
calculated using the formula

RR =
1

N2

N

∑
i,j=1

RMi,j. (16)

The same applies for CRPs; here, the RR is sometimes referred to as
the cross correlation sum

RR = CC2 =
1

N ·M

j=1...M

∑
i=1...N

CRMi,j. (17)

7.2 determinism

The Determinism DET is the ratio of recurrence points that form
a diagonal structure with a minimum length lmin to all recurrence
points. Highly correlated processes cause longer diagonal lines: In
case of RPs, if a process often returns to a former state and evolves
in time similar to the way it did before, the number and length of
diagonal structures increases, and with that, the predictability and
the DET of the process; In case of CRPs, if the two processes run in
parallel for a certain period (also possibly shifted in time), the same
applies. DET is calculated using the formula

DET =
∑N

l=lmin
l · D(l)

∑N
l=1 l · D(l)

(18)

45



46 recurrence quantification analysis

where D(l) is the number of diagonals with the length l. Equa-
tion 18 clearly shows that for lmin = 1, DET = 1 because all recur-
rence points form “diagonals” with a length of at least 1. For lmin > 1,
the resulting value of DET depends on the shape of the distribution
of the lengths of the diagonals. While choosing lmin, it has to be taken
into account that with a rising lmin the histogram can become very
sparse and thus lead to a decreased reliabilty of DET [7].

When working with an embedding dimension of m > 1 and trajec-
tory reconstruction using the time delay method (see Section 5.6), a
diagonal with a length of l shows that a segment of the reconstructed
trajectory is sufficiently close to another segment at a different time for
l consecutive time steps. When looking at the original values used
for the reconstruction, this means that for l + (m− 1) · τ time steps
these values recur to those of another time; the closer this diagonal is
to the center, the smaller is the difference between these two times.

Analogously, the DET can be calculated for CRPs.

7.3 average diagonal line length

The Average Diagonal Line Length L of diagonals with a length of at
least lmin is the average time two segments of the trajectory are close
to each other and can be interpreted as the mean prediction time [7].
It is calculated using the formula

L =
∑N

l=lmin
l · D(l)

∑N
l=lmin

D(l)
(19)

where D(l) is the number of diagonals with the length l.

7.4 diagonal-wise measures

As like in the chapters above, all these measures can be calculated
for the whole RP or CRP, but also for each diagonal parallel to the LOI

separately. For a certain line parallel to the main diagonal with a dis-
tance of τ, the diagonal-wise measures are called τ-RR, τ-DET and
τ-L (or RRτ, DETτ and Lτ) accordingly (with τ = 0 corresponding to
the LOI).

Especially when working with CRPs, diagonal-wise measures can
reveal a lot of information about a possible time-shifted correlation
between the two processes. A high RRτ means that the trajectory of
the second process often visits the same phase space regions as the
trajectory of the first one did τ time steps before. Additionally, a high
DETτ shows that with a time lag τ, the trajectories visit the same
phase space regions at least once for more than lmin consecutive time
steps and seldom, if ever, for less than lmin consecutive time steps.
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To distuingish between RQA-calculations for both possible RPs/CRPs

(positive or negative correlation), the superscript indices + and − are
added to the measure, e. g. RR+

τ , L−τ , DET+ or RR−.
In CRPs, a distance of τ between two diagonals represents a “shift”

or time-lag between the two studied processes, where the direction is
given by the order of the two variables.
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C O R R E L AT I O N C A L C U L AT I O N

The correlation calculation was carried out on the Vienna Scientific
Cluster (VSC), a cluster computer located at and operated by the Tech-
nical University of Vienna1. After extensive testing and code opti-
mizations, individual jobs were submitted to compare the anomalies
of each NDVI class to every SST anomaly series. Additionally, we
wanted to test if there is a difference if we just use NDVI data from
the summer months June, July, August and September or from win-
ter (i. e. from the months October, November, December and January)
and set the rest to zero in the CRPs (see Figure 18). To calculate the
CRPs , we chose the parameters threshold ε = 0.8, dimension m = 20
and a time delay of 1, and calculated the diagonal-wise RQA indices
DET+

τ , DET−τ , RR+
τ , RR−τ , L+

τ and L−τ with lmin = 5 for diagonals with
time lags τ = 0 . . . 48 weeks (=one year; see below) between SST and
NDVI. Doing this for the three cases summer, winter and all, this led
to an amount of 6× 3× 49 = 882 RQA indices for each SST-NDVI-pair
and thus to approx. 1.0312 individual correlation calculations. The
total processing time was about 350,000 core-hours, which decreased
to around two weeks on the VSC thanks to parallel processing. The
resulting dataset had a size of about 4 TB, and it took another few
days to transfer it back to our local system from the VSC.

As explained in Section 5.1 ff, Cross Recurrence Plots include every
possible time shift between two time series. Since we just want to see
how the SST influences the NDVI, half of the CRPs (the half where the
SST anomalies are compared to NDVI anomalies which occured earlier
in time) are of no interest, and thus the RQA parameters were not
calculated for these diagonals. Additionally, we did not consider the
part of the CRPs representing correlations between events that hap-
pened more than 48 weeks (=one year) apart. So for most of the
diagonals of the CRPs, we didn’t calculate the RQA indices (see Fig-
ure 19) because we considered a correlation of events with a time lag
with more than one year seems to be rather unlikely. As a result of
the excluding most of the diagonals of and the seasonal NDVI value
selection, RQA calculations are based on CRPs similar to Figure 20 for
summer and winter and to Figure 19 for all.

The code used to calculate the RQA indices is shown and described
in Section A.2.

1 More accurately on the VSC-1; additional information can be found at http://www.
vsc.ac.at.

51
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Figure 18: Just NDVI anomaly values from winter taken into account (other
seasons marked gray) of a CRP
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Figure 19: Diagonals the RQA indices were calculated for (shown in black-
/gray) of a CRP; for all NDVI values
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Figure 20: Diagonals the RQA indices were calculated for (medium
gray/black) and NDVI anomaly values just from winter combined
(other seasons marked light/dark gray) of a CRP
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R E S U LT S A N D I N T E R P R E TAT I O N

9.1 overview

For a first overview of sea areas with a potential influence on vege-
tated areas, the average Recurrence Rates over all the NDVI classes per
continent and time lags of 0 to 10, 10 to 20, 20 to 30, 30 to 48 and 10 to
48 weeks were calculated. Figure 21 and Figure 22 show two of those
average RR images for Western Asia and Europe. In both images, a
sea area located in the Pacific Ocean close to the equator shows the
highest Recurrence Rates, although it seems to be a slightly different
part in both images.

The actual result of the correlation calculation were 882 different
“maps” for each NDVI class, showing one specific positive or negative
RQA index for one specific time lag, one subset of NDVI input values
and the whole sea surface.

Figure 23, Figure 24 and Figure 25 are examples of such a maps,
showing the three different RQA indices for different time lags and
summer, winter and the whole time period.

These figures clearly illustrate that

• distinctive structures or patterns are formed by all of the three
RQA indices and their distribution is far from random,

• the structures look different for NDVI classes located in different
parts of the world and

• the Recurrence Rate seems to be the least noisy and most promis-
ing index.

9.2 example - southern france (europe)

Since a visual representation of the complete resulting dataset is not
possible due to its size, this section focuses on an NDVI class located
in the south of France, Europe. It was chosen because it was excep-
tionally affected by a severe drought during summer 2003 (with more
than 70,000 casualties all over Europe [48]), and RQA possibly allows
to find any connections with this event in the SST dataset. Figure 26

displays the size and location of this NDVI class; of course, the same
data is available for all the other NDVI classes too.

Although the NDVI anomaly series of this class is obtained by cal-
culating the z-score of the mean of all the NDVI time series from each

55
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Figure 26: Size and location of the France NDVI class in Europe

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
−4

−2

0

2

Year

N
D

V
I

A
no

m
al

y
[σ

]

Figure 27: NDVI anomalies France; drop in summer 2003 at week 896

individual pixel of this class, it clearly shows a drop during this par-
ticular time (see Figure 27).

Since the Recurrence Rate RR has shown to be the most promising
RQA index for this application, these results should now be examined
more in detail. Figure 28, Figure 29, Figure 30 and Figure 31 display
the Recurrence Rates based on the positive and negative CRPs for a
time lag of 10 weeks for summer, winter and all. Again, the RR values
form clear structures all over the oceans, but their interpretation is
rather difficult. However, they do not seem to change a lot if all
values or just the ones from summer or winter are taken into account;
the structures seem to remain similar.

Another thing that catches one’s eye is the fact that across the
oceans, areas with high RR+

10 and RR−10 seem to somehow “alternate”.
To illustrate this observation, Figure 32 shows areas with RR+

10 > 15 %
and/or RR−10 > 15 %. Obviously, sea areas tend to either have a high
RR+ or RR−, not both at the same time.

To look into the results even further, a five pixels out of these areas
were chosen and their SST-NDVI anomaly signatures compared to the
RQA results (Figure 33). In the SST-NDVI anomaly plots (Figure 34,
Figure 35, Figure 36, Figure 37 and Figure 38), no clear relationships
between those two time series are visible for all of the pixels, but the
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development ofRR+ and RR− over the time lags from 0 to 48 weeks
often reveal distinct maxima. It was therefore decided to smoothe
the RR values of each SST pixel using the above-mentioned smoother
(Section 3.3) with λ = 10−0.4 and d = 2. Then the time lags with
the maximum RR+ and RR− were determined for each pixel and are
displayed in Figure 39 and Figure 40. Clearly also the time lag with
the highest RR are distributed following certain patterns all across
the sea surface.

Since in some cases the maximum RR occurs with a time lag of less
than 5 weeks, additionally the maximum RR between time lags of 6

and 15 weeks might be of interest (Figure 41 and Figure 42).
Generally, an almost unlimited amount of different map plots or

images can be generated out of the RQA results. Since we lack the
necessary knowledge to interpret the resulting patterns and to com-
pare them to known phenomena, just a small part of the possibilities
are shown here. Further analysis, validation and interpretation may
be the focus of future projects.
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Figure 34: Calculation of CRM+
10 (dark gray areas) and CRM−10 (light gray

areas) and development of RR+
0...48 and RR−0...48 for SST pixel 1
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areas) and development of RR+
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Figure 36: Calculation of CRM+
10 (dark gray areas) and CRM−10 (light gray

areas) and development of RR+
0...48 and RR−0...48 for SST pixel 3
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Figure 37: Calculation of CRM+
10 (dark gray areas) and CRM−10 (light gray

areas) and development of RR+
0...48 and RR−0...48 for SST pixel 4
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areas) and development of RR+
0...48 and RR−0...48 for SST pixel 5
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10
C O N C L U S I O N A N D O U T L O O K

Because of the huge amount of data and the large number of indi-
vidual parameters, only a small percentage of the total results of the
calculations could be inspected in detail. Nevertheless, we think this
approach is promising and worth being pursued in future research
projects.

Since the use of CRPs and RQA together with remote sensing data is
relatively new, we learned plenty of things in the course of this work:

• Applications like that heavily depend on the quality of the un-
derlying datasets. Additional quality tests, improved filtering
and validation checks during preprocessing might lead to bet-
ter results.

• RPs and CRPs are based on a variety of different parameters.
Slight adjustments of these can greatly affect the nature of the
plots and thus lead to completely different RQA results.

• The resulting RQA indices are clearly not randomly distributed
all across the oceans, but show distinctive patterns and struc-
tures. However, interpreting these patterns is rather difficult.

• The Recurrence Rate RR seems to be the most stable and least
“noisy” RQA index of the three that were tested (DET, RR and
L).

• Calculating the RQA indices for the whole period or replacing
parts of the CRPs with zeros (summer or winter) seems to alter the
general value range of the indices, but the resulting structures
remain more or less the same.

• There are vast possibilities of further processing and illustrating
the results (e. g. map plots, animations, additional filtering or
smoothing, additional calculations etc.).

• Limited resources required a drastic reduction of the amount
of input data. Classifying the NDVI and cropping of the SST

dataset was not planned beforehand, but became essential dur-
ing resource planning.

Additional tasks that go beyond the scope of this thesis, but might be
in the focus of future projects include

1. showing our preprocessing chain, set of CRP parameters and
calculations to experienced users of RPs, CRPs and RQA,

77
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2. comparing our outcome to the results of studies with similar
objectives, but different approaches of achieving them,

3. presenting our results to specialists in oceanography and clima-
tology, since we lack the knowledge to identify possible well-
known climate phenomena our results might represent,

4. focusing on (smaller) regions with well-studied teleconnections
to be able to work with higher spatial resolutions and to verify
the results more easily and

5. testing different RQA indices, CRP parameters etc.
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A
M AT L A B F U N C T I O N S

a.1 preprocessing function

The function prep_sst was used to preprocess the SST dataset, i. e. to
interpolate, smoothe and filter to daily values, rescale back to weekly
values, get the mean and standard deviation and calculate the anoma-
lies.

A similar function exists for the preprocessing of the NDVI dataset.

Function 1: prep_sst
1 function prep_sst
2 % Function to preprocess SST DATA
3

4

5 % Definitions
6 numd = 8035; % number of days
7 perl = 48; % period length (number of weeks per year)
8 years = 22; % number of years
9

10 lambda=10^4; % smoothing parameter
11 d=2; % order of differences (for smoothing)
12

13 % load Time Matrix (from tm_path)
14 load([tm_path,'\TM.mat']);
15 % (amongst others) two variables (each with 8035=daily ...

values):
16 % daynum_sst: 0=missing, 1=day with SST value
17 % daynum_outp: 0=not needed, 1=day for analysis
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
20

21 % Read SST Row files in a given path (path_mfiles)
22 matfiles = dir(fullfile(path_mfiles, '*.mat'));
23

24 % Loop through all files
25 for i=1:numel(matfiles)
26

27 disp(['Processing file ', num2str(i),...
28 ' of ', num2str(numel(matfiles)), '...']);
29

30 % Load variables out of each file
31 % (quality flag, land mask, SST values)
32 load(fullfile(path_mfiles, matfiles(i).name),...
33 'qual', 'sst', 'land');
34

35 % Preallocate output
36 sstw_sm_n = zeros(1, size(sst, 2), perl*years, 'double');
37

38 % Loop through all Pixels
39 for x = 1:size(sst, 2)
40

41 disp(['X: ',num2str(x)]);
42

43 % if current pixel is a water Pixel

81
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44 if ~land(1,x)
45

46 % Prepare Data
47 sst_cur=double(squeeze(sst(1, x, :)));
48 qual_cur=squeeze(qual(1, x, :));
49

50 % Preallocate daily weights
51 % (just zeros; for smoothing)
52 w_d=false(numd, 1);
53

54 % Preallocate daily SST values
55 sst_d=zeros(numd, 1, 'double');
56

57 % Assign a weight of 1 to values
58 % with quality flag > 3
59 w_w=qual_cur>3;
60

61 % Populate daily weights/SST values with
62 % the weekly values
63 w_d(daynum_sst(:,2))=w_w;
64 sst_d(daynum_sst(:,2))=sst_cur;
65

66 % apply smoother
67 sst_d_s=func_whitsmw(sst_d, w_d, lambda, d);
68

69 % Select weekly values
70 sst_w_s = sst_d_s(daynum_outp);
71

72 % Reshape to matrix for mean
73 % calculation and normalization
74 sst_w_sr = reshape(sst_w_s, [perl, years]);
75

76 % calculate mean year
77 m_sst_w_s = mean(sst_w_sr, 2);
78

79 % Calculate Standard Deviation
80 std_sst_w_s=std(sst_w_sr, 1, 2);
81

82 % Repeat mean year and std dev for subtraction
83 m_sst_w_s = repmat(m_sst_w_s, [years,1]);
84 std_sst_w_s = repmat(std_sst_w_s, [years,1]);
85

86 % Calculate ZSCORE
87 sst_w_s_n = (sst_w_s−m_sst_w_s)./std_sst_w_s;
88

89 % Allocate to output variable
90 sstw_sm_n(1, x, :) = ...
91 reshape(sst_w_s_n, [1,1,numel(sst_w_s_n)]);
92 end
93 end
94

95

96 % Prepare output path (path_write)
97 fn_ready = [path_write, matfiles(i).name];
98

99 % Save File
100 save(fn_ready, 'sstw_sm_n', 'land');
101 disp(['File ', fn_ready, ' written.']);
102 disp(' ');
103 end

In lines 6–11, the total number of days numd, the number of weeks
per year perl, the total number of years years and the smoothing pa-
rameters lambda and d are defined. Then the time matrix file where
binary variables daynum_sst, daynum_outp and daynum_ndvi used
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to extract the required days out of the total 8035 are stored is loaded.
In line 22, all the MATLAB files in the input folder path_mfiles are
listed; each of these files holds a 1× 2048× 1148 pixel row with SST

values and is named in a way that the reading order is correct. Then
the function loops through all the SST files found, opens them in line
32 and loads the variables sst (the 1148 SST values), land (the land-
water-mask) and the quality flag qual for each SST value. After that,
the output matrix sstw_sm_n is preallocated; note the number of SST

observations (1056).
As the values are processed pixel-wise, the function loops through

all the pixels in line 39, and checks if the current pixel is a water or
land pixel to avoid unnecessary processing time. In line 47 and 48,
the dimensions of the current SST and quality flag values sst_cur

and qual_cur (which both are 1× 1× 1148) are reduced to 1148× 1
using the MATLAB function squeeze.

The smoothing algorithm func_whitsmw accepts a weight parame-
ter (1 or 0) for each input value: 0 marks a value as missing and for
interpolation, while 1 tells the smoother to use this value. After pre-
allocating the variables for the weights for each day and the daily SST

values in lines 5 and 55, a weight vector w_w is created for the weekly
SST observations, where values with a quality flag greater than 3 are
assigned 1, the rest 0. This vector is then rescaled to daily weights
in line 63 using the second column of the matrix daynum_sst, which
selects the 1148 days the observed values belong to out of the 8035

days and assigns them the weigh of w_w. The same is done with the
SST values and the vector sst_d in line 64.

Now the smoothing and interpolating algorithm func_whitsmw is
applied to the data using the weight vector w_d and the parameters
lambda and d. A detailed description of this algorithm is available by
Eilers [18]. Line 70 rescales the resulting data back to weekly values
using the matrix daynum_outp which defines the 4

th, 11
th, 18

th and
25

th day of each month and stores them in sst_w_s.
As a last step, the anomalies are calculated: Line 74 reshapes sst_w_s

to a 48× 22 matrix and assigns the result to sst_w_sr to calculate the
average of each month m_sst_w_s in line 76 and the standard devi-
ation std_sst_w_s in line 80. To subtract the mean and standard
deviation from all the years, the resulting 48 × 1 vectors are repli-
cated 22 times to dimensions of 1056× 1. The zscore is calculated in
line 87 (see Equation 2), the resulting matrix is reshaped back to di-
mensions of 1× 1× 1056 and stored in the output matrix sstw_sm_n

at the current pixel position x; then the next pixel is processed in the
same way.

After processing the last pixel of each row, the anomalies are saved
in path_write and a message is displayed.
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a.2 crp and rqa functions

The processing chain for calculating the CRPs and diagonal-wise RQA

indices was split over several separate MATLAB functions to improve
its handling. The first function, which is called to start the process, is
called telecon.

Function 2: telecon
1 function telecon(sstnum, classnum, ndviw_sm_n)
2 % Function to calculate all (diagonalwise)
3 % RQA measures bewteen an NDVI time series and
4 % an SST Pixel Row
5

6

7 % define Parameters
8 m=20;
9 t=1;

10 e=0.8;
11

12 % Load definitions for summer/winter
13 % (path_sumwin needs to be set)
14 load([path_sumwin,'sumwin.mat']);
15 % This file contains two variables:
16 % summr: defines the summer weeks
17 % wintr: defines the winter weeks
18

19 % Create Variables for CRPs
20 i=(1:(1056−m+1))';
21 j=0:t:(m−1);
22 i=reshape(i(:,ones(1,m))+...
23 j(ones((1056−m+1),1),:),m*(1056−m+1),1);
24 ds=eye(m);
25

26 % Load selected SST data file
27 load([path_mfiles, num2str(sstnum, '%03d'),'.mat'],...
28 'sstw_sm_n', 'land');
29

30 for x=1:2048
31 % Loop through pixels
32

33 % If it is no land pixel...
34 if land(1,x)~=1
35

36 % ... Create positive and negative CRP
37 Xp = calc_crp(sstw_sm_n(:,x,:), ...
38 ndviw_sm_n, m, e, i, ds);
39 Xn = calc_crp(sstw_sm_n(:,x,:), ...
40 −ndviw_sm_n, m, e, i, ds);
41

42 %%%%% POSITIVE, SUMMER ONLY
43 Xp_now=Xp;
44 tsg = true(1,(1056−m+1));
45 tsg(summr(1:(1056−m+1)))=0;
46 Xp_now(tsg, :)=0;
47

48 % Calculate diagonal−wise RQA
49 DETp_summer(1,x,:)=calc_crqad_diag_DET(Xp_now);
50 RRp_summer(1,x,:)=calc_crqad_diag_RR(Xp_now);
51 Lp_summer(1,x,:)=calc_crqad_diag_L(Xp_now);
52

53

54 %%%%% POSITIVE, WINTER ONLY
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55 Xp_now=Xp;
56 tsg = true(1,(1056−m+1));
57 tsg(wintr(1:(1056−m+1)))=0;
58 Xp_now(tsg, :)=0;
59

60 % Calculate diagonal−wise RQA
61 DETp_winter(1,x,:)=calc_crqad_diag_DET(Xp_now);
62 RRp_winter(1,x,:)=calc_crqad_diag_RR(Xp_now);
63 Lp_winter(1,x,:)=calc_crqad_diag_L(Xp_now);
64

65

66 %%%%% POSITIVE, ALL
67 Xp_now=Xp;
68

69 % Calculate diagonal−wise RQA
70 DETp_all(1,x,:)=calc_crqad_diag_DET(Xp_now);
71 RRp_all(1,x,:)=calc_crqad_diag_RR(Xp_now);
72 Lp_all(1,x,:)=calc_crqad_diag_L(Xp_now);
73

74

75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76

77 %%%%% NEGATIVE, SUMMER
78 Xn_now=Xn;
79 tsg = true(1,(1056−m+1));
80 tsg(summr(1:(1056−m+1)))=0;
81 Xn_now(tsg, :)=0;
82

83 % Calculate diagonal−wise RQA
84 DETn_summer(1,x,:)=calc_crqad_diag_DET(Xn_now);
85 RRn_summer(1,x,:)=calc_crqad_diag_RR(Xn_now);
86 Ln_summer(1,x,:)=calc_crqad_diag_L(Xn_now);
87

88

89 %%%%% NEGATIVE, WINTER
90 Xn_now=Xn;
91 tsg = true(1,(1056−m+1));
92 tsg(wintr(1:(1056−m+1)))=0;
93 Xn_now(tsg, :)=0;
94

95 % Calculate diagonal−wise RQA
96 DETn_winter(1,x,:)=calc_crqad_diag_DET(Xn_now);
97 RRn_winter(1,x,:)=calc_crqad_diag_RR(Xn_now);
98 Ln_winter(1,x,:)=calc_crqad_diag_L(Xn_now);
99

100

101 %%%%% NEGATIVE, ALL
102 Xn_now=Xn;
103

104 % Calculate diagonal−wise RQA
105 DETn_all(1,x,:)=calc_crqad_diag_DET(Xn_now);
106 RRn_all(1,x,:)=calc_crqad_diag_RR(Xn_now);
107 Ln_all(1,x,:)=calc_crqad_diag_L(Xn_now);
108

109

110 end
111

112 end
113

114 % Save results to output path (path_results)
115 save([path_results,...
116 '/Class_',num2str(classnum, '%03d'),'/',...
117 num2str(sstnum, '%03d'),'.mat'], ...
118 'DETp_summer', 'RRp_summer', 'Lp_summer', ...
119 'DETp_winter', 'RRp_winter', 'Lp_winter', ...
120 'DETp_all', 'RRp_all', 'Lp_all', ...
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121 'DETn_summer', 'RRn_summer', 'Ln_summer', ...
122 'DETn_winter', 'RRn_winter', 'Ln_winter', ...
123 'DETn_all', 'RRn_all', 'Ln_all');
124

125 end

The function telecon expects 3 input arguments: sstnum (the num-
ber of the pixel row of the SST dataset, ndvi_w_sm_n (a weekly and
smoothed NDVI anomaly time series) and classnum (the number of
the NDVI class; just to save the outputs into the correct folder).

In lines 8–10, the desired values are assigned to the variables di-
mension m, time lag t and threshold e. Then the file sumwin.mat

which contains two vectors (summr and wintr) for selecting appro-
priate months for the summer and winter period is loaded. Lines
20–24 create some embedding vectors for the later CRP calculation
(done already here to save processing time). After that, the pixel row
indicated by sstnum which contains the SST anomaly data is loaded.

Line 30 loops through all the pixels (1 . . . 2048) in the SST row. If the
current pixel is not a land pixel (line 34), the positive and negative
CRPs are calculated by calling the function calc_crp two times and
passing the current SST anomaly time series sstw_sm_n(:,x,:), the
NDVI anomalies ndviw_sm_n and some CRP and RQA parameters as
arguments to this function (line 37–40). The first time, the positive
CRP Xp is calculated, while the second time the NDVI anomaly time
series is passed to the function with a negative sign to recieve the
negative CRP Xn.

To calculate RQA indices for the different times summer, winter and
all, the rows of the two resulting CRPs Xp and Xn which should not
be taken into consideration are then set to zero (e. g. lines 43–46 or
78–81) and the three indices are calculated by handing the new CRPs

(Xp_now and Xn_now) over to the functions calc_crqad_diag_DET,
calc_crqad_diag_RR and calc_crqad_diag_L (e. g. lines 49–51).

In the end, the resulting parameters are saved class-wise in separate
folders (lines 115 ff).

Function 3: calc_crp
1 function X=calc_crp(x, y, m, e, i, ds)
2 % Calculate Cross Recurrence Plot
3 % (c) by Norbert Marwan,
4 % http://tocsy.pik−potsdam.de/CRPtoolbox/
5 % edited by Michael Wess
6

7

8 % Remove singleton dimensions
9 x=reshape(x, [1056, 1, 1]);

10 y=reshape(y, [1056, 1, 1]);
11

12 % Determine length after applying time
13 % lag and dimension (may be shorter!)
14 NX=(1056−m+1);
15

16 % Create new matrices
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17 x1=x(i);
18 x2=reshape(x1,NX,m);
19 y1=y(i);
20 y2=reshape(y1,NX,m);
21

22 % Switch vectors
23 y2=y2*ds;
24

25 % Determine new sizes of the embedded vectors
26 [NX, ~] = size(x2);
27

28 % Calculate indices
29 px = permute(x2, [ 1 3 2 ]);
30 py = permute(y2, [ 3 1 2 ]);
31 on=ones(1,NX);
32

33 % Calculate Differences
34 s1 = px(:,on,:) − py(on,:,:);
35

36 % Calculate absolute differences
37 s = max(abs(s1),[],3);
38

39 % Apply threshold
40 X2=s<e;
41

42 % Transpose and convert to uint8
43 X=uint8(X2)';
44

45 end

The function calc_crp expects the two time series x and y and the
CRP and RQA parameters as input arguments. At first, any singleton
dimensions of the two time series are removed (lines 9 and 10). In line
14, the size of the CRP NX with the seleted dimension is calculated.
Then, two new matrices are created, which are populated with the
shifted input data (lines 17–31). Then the absolute differences are
calculated (line 37) and the threshold is applied to create the CRP (line
40). As a last step, the resulting CRM X2 is transposed and converted
to class uint8.

The three functions calc_crqad_diag_DET, calc_crqad_diag_RR
and calc_crqad_diag_L are used to calculate the diagonal-wise RQA

indices based on the two CRPs Xp and Xn.

Function 4: calc_crqad_diag_DET
1 function DET=calc_crqad_diag_DET(X)
2 % Calculate Determinism
3 % (c) by Norbert Marwan,
4 % http://tocsy.pik−potsdam.de/CRPtoolbox/
5 % edited by Michael Wess
6

7 % Define parameters
8 lmin=5;
9 w=48;

10

11 i=1;
12 for j=0:−1:−w
13 % Loop from 0 to −w
14

15 clear z z0 z1
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16

17 % Get current diagonal
18 k=double(diag(X,j));
19

20 % Detect changes
21 z=diff(k);
22 if ~isempty(find(~(z−1), 1))
23 z0(:,1)=find(~(z−1));
24 else
25 z0=0;
26 end
27

28 if ~isempty(find(~(z+1), 1))
29 z1=find(~(z+1));
30 else
31 z1=0;
32 end
33

34 % Correct lengths of vectors
35 if z0(1)>z1(1)
36 z0(2:end+1,1)=z0(1:end);z0(1)=0;
37 end
38 if length(z0)>length(z1)
39 z1(end+1)=length(k);
40 end
41

42 % Calculate line lengths and sort
43 l=sort(z1−z0);
44

45 % Apply lmin
46 l1=l(l>lmin);
47

48 % Calculate Determinism
49 DET(i)=sum(l1)/sum(k);
50

51 % Increment counter
52 i=i+1;
53

54 end
55

56 % Set NaNs to 0
57 DET(isnan(DET))=0;
58

59 end

Function 5: calc_crqad_diag_RR
1 function RR=calc_crqad_diag_RR(X)
2 % Calculate Average Diagonal Line Length
3 % (c) by Norbert Marwan,
4 % http://tocsy.pik−potsdam.de/CRPtoolbox/
5 % edited by Michael Wess
6

7 % Define parameters
8 w=48;
9

10 i=1;
11 for j=0:−1:−w
12 % Loop from 0 to −w
13

14 % Get current diagonal
15 k=double(diag(X,j));
16

17 % Calculate RR
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18 RR(i)=sum(k)/length(k);
19

20 % Increment counter
21 i=i+1;
22 end
23

24 % Set NaNs to 0
25 RR(isnan(RR))=0;
26

27 end

Function 6: calc_crqad_diag_L
1 function L=calc_crqad_diag_L(X)
2 % Calculate Average Diagonal Line Length
3 % (c) by Norbert Marwan,
4 % http://tocsy.pik−potsdam.de/CRPtoolbox/
5 % edited by Michael Wess
6

7 % Define parameters
8 lmin=5;
9 w=48;

10

11 i=1;
12 for j=0:−1:−w
13 % Loop from 0 to −w
14

15 clear z z0 z1
16

17 % Get current diagonal
18 k=double(diag(X,j));
19

20 % Detect changes
21 z=diff(k);
22 if ~isempty(find(~(z−1), 1))
23 z0(:,1)=find(~(z−1));
24 else
25 z0=0;
26 end
27

28 if ~isempty(find(~(z+1), 1))
29 z1=find(~(z+1));
30 else
31 z1=0;
32 end
33

34 % Correct lengths of vectors
35 if z0(1)>z1(1)
36 z0(2:end+1,1)=z0(1:end);z0(1)=0;
37 end
38 if length(z0)>length(z1)
39 z1(end+1)=length(k);
40 end
41

42 % Calculate line lengths and sort
43 l=sort(z1−z0);
44

45 % Apply lmin
46 l1=l(l>lmin);
47

48 % Calculate Average
49 L(i)=mean(l1);
50

51 % Increment counter
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52 i=i+1;
53

54 end
55

56 % Set NaNs to 0
57 L(isnan(L))=0;
58

59 end

To calculate DET and L, at first the lengths of the diagonal struc-
tures are calculated, then the threshold lmin is applied and then
lengths of diagonals > lmin to the total length of diagonal structures
(line 49 of calc_crqad_diag_DET) and the mean lengths of diagonal
structures > lmin (line 49 of calc_crqad_diag_L) are calculated.

To obtain RR, the total length of diagonal structures is divided by
the total length of the current CRP diagonal (line 18).



B I B L I O G R A P H Y

[1] D. Adams. The Restaurant at the End of the Universe. Pan Books,
1980. (Cited on page vii.)

[2] J. Mennis. Exploring relationships between ENSO and vegeta-
tion vigour in the south-east USA using AVHRR data. Interna-
tional Journal of Remote Sensing, 22(16):3077–3092, 2001. (Cited on
pages 3 and 4.)

[3] J. Verdin, C. Funk, R. Klaver, and D. Roberts. Exploring the cor-
relation between Southern Africa NDVI and Pacific sea surface
temperatures: results for the 1998 maize growing season. Inter-
national Journal of Remote Sensing, 20(10):2117–2124, 1999. (Cited
on page 3.)

[4] R.B. Myneni, S.O. Los, and C.J. Tucker. Satellite-based identifi-
cation of linked vegetation index and sea surface temperature
anomaly areas from 1982-1990 for Africa, Australia and South
America. Geophysical Research Letters, 23(7):729–732, 1996. (Cited
on pages 3 and 4.)

[5] J. Cho, P.J.-F. Yeh, Y.-W. Lee, H. Kim, T. Oki, S. Kanae, W. Kime,
and K. Otsuki. A study on the relationship between Atlantic
sea surface temperature and Amazonian greenness. Ecological
Informatics, 5:367–378, 2010. (Cited on page 3.)

[6] D. Chen, M.A. Cane, A. Kaplan, S.E. Zebiak, and D. Huang. Pre-
dictability of El Niño over the past 148 years. Nature, 428(6984):
733–736, 2004. (Cited on page 3.)

[7] N. Marwan, M.C. Romano, M. Thiel, and J. Kurths. Recurrence
plots for the analysis of complex systems. Physics Reports, 438:
237–329, 2007. (Cited on pages 3, 25, 26, 28, 33, 34, 38, 41, 42,
and 46.)

[8] M.H. Trauth, B. Bookhagen, N. Marwan, and M.R. Strecker. Mul-
tiple landslide clusters record Quaternary climate changes in the
northwestern Argentine Andes. Palaeogeography, Palaeoclimatol-
ogy, Palaeoecology, 194:109–121, 2003. (Cited on pages 3 and 25.)

[9] A. Yadav, V.K. Jayaraman, M. Kale, and U. Kulkarni-Kale. Phylo-
genetic Clustering of Protein Sequences Using Recurrence Quan-
tification Analysis. Advanced Science Letters, 19(5):1336–1339,
2013. (Cited on pages 3 and 25.)

91



92 bibliography

[10] S.A. Brian, L.P. Salamanca, J. Whitehill, J.S. Reilly, M.S. Bartlett,
D. Angus, and J. Wiles. Using recurrence plots to visualize the
temporal dynamics of tutor/student interactions. In 2012 IEEE
International Conference on Development and Learning and Epigenetic
Robotics (ICDL), 2012. (Cited on pages 3 and 25.)

[11] S. Dia, S. Fontaine, and M. Renner. Using Recurrence Plots for
Determinism Analysis of Blade–Disk Tribometer. In Proceedings
of the SEM Annual Conference, 2009. (Cited on pages 3 and 25.)

[12] S.C. Li, Z.Q. Zhao, and F.Y. Liu. Identifying spatial pattern of
NDVI series dynamics using recurrence quantification analysis.
European Physical Journal Special Letters, 164:127–139, 2008. (Cited
on pages 3 and 25.)

[13] American Meteorological Society. Glossary of Meteorol-
ogy. URL http://glossary.ametsoc.org/wiki/Teleconnection.
25.03.2013. (Cited on page 4.)

[14] C.F. Ropelewski and M.S. Halpert. North American precipitation
and temperature patterns associated with the El Niño/Southern
Oscillation (ENSO). Monthly Weather Review, 114:2352–2362, 1986.
(Cited on page 4.)

[15] C.F. Ropelewski and M.S. Halpert. Global and regional scale
precipitation patterns associated with the El Niño/Southern Os-
cillation. Monthly Weather Review, 115:1606–1626, 1987. (Cited on
page 4.)

[16] K.S. Casey, T.B. Brandon, P. Cornillon, and R. Evans. The Past,
Present and Future of the AVHRR Pathfinder SST Program. In
V. Barale, J.F.R. Gower, and L. Alberotanza, editors, Oceanography
from Space: Revisited. Springer, 2010. (Cited on page 9.)

[17] K. Kilpatrick, G.P. Podesta, M. Arbelo, R. Evans, V. Halliwell,
and J. Brown. Errors in high-latitude SSTs and other geophys-
ical products linked to NOAA-14 AVHRR channel 4 problems.
Geophysical Research Letters, 30(11):1548, 2003. (Cited on page 9.)

[18] P.H.C. Eilers. A Perfect Smoother. Analytical Chemistry, 75(14):
3631–3636, 2003. (Cited on pages 11, 20, and 83.)

[19] E.T. Whittaker. On a New Method of Graduation. Proceedings
of the Edinburgh Mathematical Society, 41:63–75, 1923. (Cited on
page 11.)

[20] P.M. Atkinson, C. Jeganathan, J. Dash, and C. Atzberger. Inter-
comparison of four models for smoothing satellite sensor time-
series data to estimate vegetation phenology. Remote, 123:400–
417, 2012. (Cited on page 11.)

http://glossary.ametsoc.org/wiki/Teleconnection


bibliography 93

[21] C. Atzberger and P.H.C. Eilers. A time series for monitoring
vegetation activity and phenology at 10-daily time steps covering
large parts of South America. International Journal of Digital Earth,
4(5):365–386, 2011. (Cited on page 11.)

[22] F.J. Kriegler, W.A. Malila, R.F. Nalepka, and W. W. Richardson.
Preprocessing transformations and their effects on multispectral
recognition. Proceedings of the Sixth International Symposium on
Remote Sensing of Environment, 1:97–131, 1969. (Cited on page 17.)

[23] M.S. Rasmussen. Assessment of millet yields and production in
northern Burkina Faso using integrated NDVI from the AVHRR.
International Journal of Remote Sensing, 13:3431–3442, 1992. (Cited
on page 17.)

[24] S.M.E. Groten. NDVI-crop monitoring and early yield assess-
ment of Burkina Faso. International Journal of Remote Sensing, 14:
1495–1515, 1993. (Cited on page 17.)

[25] L.S. Unganai and F.N. Kogan. Drought monitoring and corn
yield estimation in Southern Africa from AVHRR data. Remote
Sensing of Environment, 63:219–232, 1998. (Cited on page 17.)

[26] C.J. Tucker, J.E. Pinzon, and M.E. Brown. NDVI 1985–2006.
In Global Inventory Modeling and Mapping Studies. Global Land
Cover Facility, University of Maryland, 2004. (Cited on page 18.)

[27] C.J. Tucker, J. Pinzon, M.E. Brown, D. Slayback, E.W. Pak, R. Ma-
honey, E. Vermote, and N. Saleous. An Extended AVHRR 8-km
NDVI Data Set Compatible with MODIS and SPOT Vegetation
NDVI Data. International Journal of Remo, 26(20):4485–4498, 2005.
(Cited on page 18.)

[28] J. Pinzon, J. Brown, and C.J. Tucker. Satellite time series correc-
tion of orbital drift artifacts using empirical mode decomposition, vol-
ume 5 of Interdisciplinary Mathematical Sciences. World Scientific
Publishing Co. Pte. Ltd., 2005. (Cited on page 18.)

[29] G. A. F. Seber. Multivariate Observations. John Wiley & Sons, Inc.,
1984. (Cited on page 20.)

[30] H. Spath. Cluster Dissection and Analysis: Theory, FORTRAN Pro-
grams, Examples. Halsted Press, 1985. (Cited on page 20.)

[31] B. Georgescu P. Meer. Edge detection with embedded confi-
dence. IEEE Trans. Pattern Anal. Machine Intell., 23:1351–1365,
2001. (Cited on page 20.)

[32] P. Meer C. Christoudias, B. Georgescu. Synergism in low-level
vision. In 16th International Conference on Pattern Recognition, vol-
ume IV, pages 150–155, 2002. (Cited on page 20.)



94 bibliography

[33] P. Meer D. Comanicu. Mean shift: A robust approach toward
feature space analysis. IEEE Trans. Pattern Anal. Machine Intell.,
24:603–619, 2002. (Cited on page 20.)

[34] H. Poincaré. Sur la problème des trois corps et les équations
de la dynamique. Acta Mathematica, 13:1–271, 1890. (Cited on
page 25.)

[35] J.-P. Eckmann, S. Oliffsonn Kamphorst, and D. Ruelle. Recur-
rence Plots of Dynamical Systems. Europhysics Letters, 4(9):973–
977, 1987. (Cited on pages 25, 26, 27, 33, and 38.)

[36] G.M. Mindlin and R. Gilmore. Topological analysis and synthe-
sis of chaotic time series. Physica D, 58(1–4):229–242, 1992. (Cited
on page 28.)

[37] M. Koebbe and G. Mayer-Kress. Use of recurrence plots in the
analysis of time-series data. In M. Casdagli and S. Eubank, edi-
tors, Proceedings of SFI Studies in the Science of Complexity, vol. XXI,
pages 229–242, Reading, MA, 1992. Addison-Weasly. (Cited on
page 28.)

[38] J.P. Zilbut and C.L. Webber Jr. Embeddings and delays as derived
from quantification of recurrence plots. Physics, 171(3–4):199–
203, 1992. (Cited on pages 28 and 45.)

[39] J.P. Zilbut, J.-M. Zaldivar-Comenges, and F. Strozzi. Recurrence
quantification based liapunov exponents for monitoring diver-
gence in experimental data. Physics Letters A, 297:173–181, 2002.
(Cited on page 28.)

[40] M. Thiel, M.C. Romano, J. Kurths, R. Meucci, E. Allaria, and
F.T. Arecchi. Influence of observational noise on the recurrence
quantification analysis. Physica D, 171:138–152, 2002. (Cited on
page 28.)

[41] Wikipedia. Phase Space, 4 2013. URL http://en.wikipedia.

org/wiki/Phase_space. (Cited on page 32.)

[42] E. Lorenz. Deterministic nonperiodic flow. Journal of the Atmo-
spheric Sciences, 20(2):130–141, 1963. (Cited on page 33.)

[43] M.H. Trauth. MATLAB Recipes for Earth Sciences. Springer, 2006.
(Cited on pages 33 and 34.)

[44] F. Takens. Detecting strange attractors in turbulence. Springer,
Berlin, 1981. (Cited on page 34.)

[45] N. Marwan and J. Kurths. Nonlinear analysis of bivariate data
with cross recurrence plots. Physics Letters A, 302(5–6):299–307,
2002. (Cited on pages 41 and 45.)

http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Phase_space


bibliography 95

[46] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and
J. Kurths. Recurrence plot based measures of complexity and
its application to heart rate variability data. Physical Review E, 66

(2):026702, 2002. (Cited on page 45.)

[47] C.L. Webber Jr. and J.P. Zilbut. Dynamical assessment of physio-
logica. systems and states using recurrence plot strategies. Jour-
nal of Applied Physiology, 76(2):965–973, 1994. (Cited on page 45.)

[48] J.-M. Robine, S. L. Cheung, S. Le Roy, H. Van Oyen, C. Griffiths,
J.-P. Michel, and F. R. Herrmann. Death toll exceeded 70,000 in
Europe during the summer of 2003. Comptes Rendus Biologies, 331

(2):171–178, 2008. (Cited on page 55.)





S TAT U T O RY D E C L A R AT I O N

I herewith declare that I have completed this thesis independently,
using only the literature and aids specified in the bibliography. The
thesis in this form or in any other form has not been submitted to any
examination body.

Vienna, March 2014

Michael Wess





colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of March 18, 2014 (classicthesis Version 1.1).

http://code.google.com/p/classicthesis/

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Nomenclature
	Introduction
	1 Motivation
	2 Objectives

	Material
	3 SST Data
	3.1 Data Source
	3.2 MATLAB Import
	3.3 Smoothing, Interpolation and Rescaling
	3.4 Anomaly and Z-Score Calculation
	3.5 SST Data Compression

	4 NDVI Data
	4.1 Basics
	4.2 Data Source
	4.3 MATLAB Import
	4.4 Smoothing, Interpolation and Rescaling
	4.5 Data Classification
	4.6 Anomaly and Z-Score Calculation


	Methods
	5 Basic Concept of Recurrence Plots
	5.1 Introduction
	5.1.1 Example 1 – Circular Motion

	5.2 Threshold 
	5.2.1 Example 2 – Sine Function

	5.3 Basic Characteristics of Recurrence Plots
	5.4 Systems with more than one Parameter
	5.4.1 Example 3 – Daily Air Temperature Oscillation

	5.5 Multidimensional Phase Spaces
	5.5.1 Example 4 – Lorenz System

	5.6 Trajectory Reconstruction – The Time Delay Method
	5.6.1 Example 4 – Lorenz System (continued)

	5.7 Neighborhood – Norms

	6 Basic Concept of Cross Recurrence Plots
	6.1 Introduction
	6.1.1 Example 5 – Two Sine Functions with changing Frequencies

	6.2 Positive and Negative-Signed Trajectories

	7 Recurrence Quantification Analysis
	7.1 Recurrence Rate
	7.2 Determinism
	7.3 Average Diagonal Line Length
	7.4 Diagonal-wise Measures


	Application, Results and Conclusion
	8 Correlation Calculation
	9 Results and Interpretation
	9.1 Overview
	9.2 Example - Southern France (Europe)

	10 Conclusion and Outlook

	Appendix
	A MATLAB Functions
	A.1 Preprocessing Function
	A.2 CRP and RQA Functions

	Bibliography
	Declaration
	Colophon




