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Chapter 1

Introduction

Even tough Marchfeld is one of the driest regions in Austria it is of high importance for the
country’s agricultural sector [1]. The low amount of precipitation in this part of Austria is
overcome by irrigation systems. This artificial water supply does not only facilitate agricultural
production itself but furthermore allows for high yield stability and crop quality, adding to
the agricultural importance of the area. FEspecially in water-scarce regions the management
of water resources is a delicate topic in need of precise monitoring and management. For the
Marchfeld region, with agriculture being the main user of water, this means to estimate the
need ol water supply for crops to sustain optimal yield conditions. Efficient waler management.
can not only help to reduce resource consumption but also to impede elution of nitrate which
[urther improves water quality of the general area.

The maintenance of favourable yield conditions is the fundamental concept of agricultural
production. Throughout history different kinds of techniques have been developed regarding
to their cultural and environmental conditions. Domestication of plant and animal species as
well as altering of soil, tillage, were among the first developments. Maintenance of soil fertility,
control of pests and environmental conditions require advanced technologies, all of which aim
to maintain or increase the output of agricultural production.

Early human civilizations had few possibilities to influence environmental conditions. One of
them was and still is to overcome lacking amounts of precipitation by applying water to land in
an artificial way. The earliest records of irrigation systems align with the spread of agricultural
technology itself. The Sumerian culture developed methods to cultivate barley in an area with
insufficient rainfall as early as the 6th millennium B.C.. Methods of flooding irrigation were
used in Ancient Egypt, civilizations in India, Syria, China and America developed conceptual
similar terrace irrigation. Records of canal irrigation technologies date back to 5th millennium
B.C. [2].

Agriculture advanced with human civilizations, or vice versa. As with other technologies
great advancements were achieved during the last century. Mechanization started to replace
human labour, constraints of soil fertility were overcome by chemical fertilization and breed-
ing of plant species developed further. All of these technologies are important contribution to
today’s agricultural systems. Thesc technologies enabled high productivity of agriculture in var-
ious types of environments, ensuring food variety and security. The downside is that, without
proper management, these techniques also start to effect the surrounding environment in a much
larger scale [3]. Predicted [uture development of human population and current environmental
degradation call for an intensification of agricultural production within given limitation of its
surroundings. This means a form of ”sustainable intensification” has to be achieved. As ex-
pressed by Mueller et al. [4] the necessity is to ”increase yields on under performing landscapes
while simultaneously decreasefing] the environmental impacts of agricultural systems [5].



Advanced (sprinkler) irrigation systems have been introduced towards the end of the nine-
teenth century. This lead to both, an increase of agricultural production capacity and to chal-
lenges in rural water management. Irrigated agricultural surfaces produce 30 to 50% of the
world’s food crop on 17% of all arable land [6]. These numbers emphasize the high productive
capacity of artificially irrigated agriculture. Overall 70% of freshwater withdraws are done by
agricultural irrigation systems. The last decades saw a growth in the use of water resources
which is predicted to further increase [7|. Water for agricultural irrigation is often pumped from
ground water storages which has a large effect on the respective water bodies. The discharge
from certain areas can lower groundwater levels on a large scale. Observation of the ground
water development in the Middle East resulted in an estimated loss of ground water volumes of
144 cubic kilometres, equivalent to the amount of water stored in the Dead Sea, within the time
period from 2003 to 2009. Although the influence of agricultural irrigation systems in these re-
lations is not given, most of the discharge is an effect of reduced water supply during droughts, a
time when water users turn to groundwater supplies [8]. Secondary problems are limited water
supply for downstream users, water pollution, soil erosion and nutrient elution. Scepage losses
of an inefficient irrigation system can accumulate in underlying groundwater, leading to water
logging or salinity problems due to a rise of groundwater levels [9]. For some areas (like the
one presented in this thesis) future development of climate is expected to result in a decline of
precipitation rates and an increased likelihood of drought events [10, 11, 12, 13, 14].

As suggested by the European Environment Agency the improvement of irrigation systems,
establishment of farmer advisory services and policy measures are tools to achieve a more
sustainable use of water resources within the agricultural sector. Adjacent to nutrient manage-
ment, efficient water inanagement is considered to be the main component that can contribute
to production increases (45% to 70% for most crops) thus supplying future food security in a
sustainable way [4]. The increase in food demand is linked to the increase of human popula-
tion. Recent decades brought a tremendous growth of human population from 2.5 billion in the
1950s to about 7.1 billion early 2013. Regarding food supply and food production the aim is to
increase water productivity rather than reduce the general amount of water used ("more crop
per drop”) [15, 16]. Efficient irrigation management can also help to reduce the expansion of
farmland. This is required for the upkeep of increasing agricultural production for food supply
and security under limiting spatial conditions (competing non-agricultural land-uses). These
developments can be supported by providing reliable and accurate information of crop water
requirements to managers and farmers running agricultural irrigation systems.

Much development has been made in the way water is conveyed from water sources to fields.
Increases in the efficiency of agricultural production were achieved by building new water ways
(like the Marchfeldkanal) and developing technologies for the actual application of water to
fields, like sprinkler irrigation systems. To achieve further efficiency in water use the question of
water application at field level has to be addressed. This means an estimation of the amount of
water needed by a given crop has to be performed with precise information about the temporal
(when?) and spatial (where?) aspect.

To achieve this goal accurate information about the observed agricultural system is needed.
Due to the nature of agricultural production the productivity depends highly on spatial and
temporal factors. A seasonal (temporal) aspect is introduced by vegetation dynamics over the
four seasons. Spatial variation is related to climatic conditions on large scale, and on smaller
scale related to other factors like land use, management practices, soil type, fertility, etc.

Information regarding above mentioned characteristics can be obtained by using Remote
Sensing (RS), and more specific, Earth Observation (EO) technologies. It provides the ability
to acquire information of large areas with relatively short time intervals. Remote Sensing refers
to the acquisition of information of an object or a phenomenon with no direct physical contact
to it. Although rcmote sensing is mainly associated with interpretation of optical imagery



from satellite or aircraft there are many different platforms and applications in different fields
like industrial quality control, security surveillance, medical applications and monitoring of
hazardous environments and/or -objects. Amongst the first applications of remote sensing was
the mapping of the land surface, photogrammetry and photo interpretation. The study of plant
dynamics using this technology was introduced by Robert Colwell in the 1950s who used aerial
colour-infrared photography to identify cereal crop, diseascs and other problems in plant sciences
[17].

The development of satellite- and digital technology later on brought the possibility of satel-
lite based Remote Sensing. First photographs of the earth’s surface from space were done by
the Mercury-Mission in 1965. One year later, 1966, the ”"Earth Resources Technology Satellite
Program” was initiated. The name of the program was later changed to ”Landsat” (1975) and
is still continued to this date with the last satellite launch (Landsat Data Continuity Mission,
Landsat 8) on February 11, 2013. Since then satellites provided large amounts of data for the
study of vegetation dynamics.

The fundamental concept of the study of vegetation dynamics through remote sensing sys-
tems is to derive characteristics of plants through their reflectance of radiation towards the
sensor. A lot of information about the plant-canopy can be obtained by the relation of red
to near-infra-red reflectance, therefore data for the study of vegetation is mainly acquired by
multi-spectral, optical sensors. Information recorded by these sensors can be used to determine
vegetation indices (VI) by few spectral bands only or used for a deduction of biochemical or
biophysical characteristics through higher spectral resolution (empirically or physically based
methods).

Biochemical and biophysical parameters like the the Leaf Area Index (LAI, one sided surface
area of green leaves per ground surface area) are a common source of information for the study
of vegetation status and dynamics and the application of remote sensing in agriculture technolo-
gies. These parameters can be derived from VIs which are calculated from measurements in two
(or more) spectral bands [18]. The majority of VIs is derived from the relation of red- to near-
infra-red reflectance. For vegetated surfaces this region exhibits a large increase of reflectance.
This difference represents a basic VI, where the radiation reflected in near-infra-red is subtracted
by the radiation reflected in red (Difference vegetation index; DVI = pyrp — pr). A normal-
isation of this index can be achieved by dividing the sum of near infra-red and red reflectance
leading to the "normalized difference vegetation mndex”; NDVI = (pnir — pr)/(pNIR + PR)-
The normalisation helps to eliminate influence of different illumination and serves for better
comparability. A list of vegetation indices (VIs) is given by Jones et al.[18] Vegetation indices
help to identify a relation from spectral reflectance to actual variables of the observed canopy
such as biomass, chlorophyll content or Leaf Area Index.

Leaf Area Index (LAL) is a key parameler to monitor vegetation dynamics. It is defined
as the total one sided arca of green leaf per unit ground surface area [19]. LAI is used to
derive agronomical indicators for various crop management purposes. For instance, LAI maps
are used in agro-meteorological models to derive the crop water needs (an example of operative
application is given in Irrisat) [20], to monitor the nitrogen status and to apply fertilizer with
variable rates (e.g., FarmSat), as input in crop models to derive agronomical variables [21,
22]. On a larger scale, LAT and other biophysical variables are used, amongst others, for
yield predictions at administrative level [23, 24, 25]. A general overvicw of remote sensing
contributions to agriculture is given in [26], EO contributions to irrigation practices are listed
by Schultz [27].

One application of EO technologies (and the focus of this thesis) is the assessment of water
requirement of crops. The water requirement of a plant is predetermined by meteorological
conditions and the plant’s potential to transpire water. The spatial and temporal knowledge of
the crop water requirements can be used for addressing the question of irrigation water require-



ments. The potential of transpiration of crop subtracted by the amount of precipitation results
in the amount of water that needs to be artificially supplied by irrigation systems to avoid water
stress and achieve optimum yield conditions (for more details see Chapter 2). Estimations of
water requirements through ground-based technologies lack the actual real-time measurement of
crop development over space. Current estimations of Marchfelds water consumption for agricul-
tural irrigation are hased on measurements of the ground water level or post-hoc measurements
of applied irrigation and do therefore not measure the real crop water requirement.

To operationally optimize water use and therefore agricultural output, data about vegetation
and meteorological conditions have to be obtained contemporary to irrigation practices. This
can be achieved by monitoring the spatial distribution of crop parameters over the growing
season by time-series of satellite acquisitions.

The aim of this thesis is the calculation and mapping of crop water requirements for the
Marchfeld region during the vegetation period of 2010.

As a first step Landsat-5 imagery and agrometeorological data was acquired in the Marchfeld-
Region. The satellite-imagery was used to estimate the extent of agricultural surface area. A
classification was used to differentiate winter and summer crops. Furthermore multi-temporal
VI maps were calculated through satellite imagery. These maps and additionally meteorological
data were applied to estimate the potential evapotranspiration (ET}) for the area. Secondly
effective precipitation (P,) was calculated from records of precipitation using data from local
agrometeorological stations. In a last step the information was combined to obtain the seasonal
water requirement for cropped surfaces in the Marchfeld-Region.

The methodology offers the possibility to assess the crop water requirement and its spatial
and temporal distribution for (agricultural) vegetation. This information can be used to support
water management at catchment scale and to cross check the yearly water exploitation plans.



Chapter 2

Materials and Methods

2.1 Overview

The content of this thesis is the calculation of crop water consumption in the Marchfeld-Region
during the year 2010. To perform this calculation the potential evapotranspiration, effective
precipitation and the arca of cropped surfaces needs to be estimated. Evapotranspiration (ET)
is a water loss by evaporation from soil and transpiration from plants and depends on type and
status of vegetation, land cover and meteorological conditions. Precipitation is the main water
input. The cropped surface area is used to calculate the total covered area and volumes for
agricultural crops on district scale.

The calculation of potential evapotranspiration in this thesis follows the Food and Agricul-
ture Organization of thc United Nations (FAO) guidelines (FAO-56, sec Section 2.3.2). This
calculation consists of two main components;

1. The reference evapotranspiration (ETy) which indicates the potential amount of
water removed from a standard vegetation surface through the process of evapotranspiration.
The varying influencing factors are of meteorological nature (solar radiation, wind speed, tem-
perature, air humidity) which are measured by local weather stations. Crop specific factors
(LAT=2.88, crop height=0.12, albedo=0.23) are kept constant in relation to the grass reference
surface.

2. The potential of thc observed crop to transact the reference evapotranspiration. The
capacity of transpiration of a plant is influenced by meteorological and crop specific factors
like crop type and its development stage and need to be assessed individually to calculate the
respective potential evapotranspiration. In the FAO-56 formulation the crop specific factors
combined are represented by the crop coefficient (K.).

Reference evapotranspiration was calculated by the Penman-Montecith equation using me-
teorological data from a local weather station. For further calculation of potential crop evapo-
transpiration EO data was used in an analytical K, estimation introduced by D’Urso [28]. Four
Landsat-5 TM images were acquired to observe crop development during the growing period.
Two different atmospheric correction software applications for satellite imagery were applied
(FLAASH - Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes and ATCOR -
Atmospheric Correction). Their performance was evaluated using pseudo-invariant-target com-
parison. For the estimation of K.. LATI and Albedo are needed. Crop height was set to a fixed
value. LAI values for the Marchfeld area were derived by estimation from spectral reflectance
using the CLAIR model [29]. For calibration reference measurements from the 2012 growing
season were used. A set of different techniques was applied to calibrate and validate param-



eters needed for the calculation. Albedo values were derived from Landsat-TM data through
the "wavelength integrated ground reflectance” by calculating the relative contribution of each
band to the total measured energy for each pixel. The influence of albedo, crop height and LAI
on the K. calculation was investigated by a sensitivity analysis.

K. and ETp data was combined to calculate ET, on a pixel basis. Effective precipitation
(P.) was calculated as a range between minimum and maximum estimations.

The total water requirement of Marchfeld was calculated. The images were first masked
to agricultural surfaces only by using the CORINE land-cover map [30]. Then the image time
series was used to differentiate winter and summer crop. In a final step the water requirement
for summer cropped surfaces of the Marchfeld-Region was determined.

The workflow of the methodologies applied in this thesis is presented in Figure 2.1.



Satellite Data

Figure 2.1:

Workflow of the methodology



2.2 Test Site Description

Marchfeld is an area in lower Austria. It is part of the ”Vienna Basin” and 1000 km? in size.
The area is depicted in Figure 2.2.

% 5 St
i ~ idern = it
J-_ a-)—“é:__' 5L Andrio

|’l.-- grarai L-'.r‘.,r.flt'l- "—oa__',l
C
# padenai
i/ .

demand  DTTESERS I
b

o

'} keipoididist

- Wainriaet
croB-mt‘:ﬂod i © S

Figure 2.2: Location of the Marchfeld region in Austria.

Climate Marchfeld is located at the western end of the pannonian climate-region. The yearly
mean temperature is 10°C and mean duration of sunshine around 1900 hours per year.

The average annual precipitation is 500-550 mm and can drop to 300 mm making it the
driest region of Austria. Annual precipitation during the vegetation period (April-September)
is 200-440 mm. Dry periods (time with no daily precipitation higher than 5 mm) of three weeks
can occur averagely 5 times per year, longer dry periods of 30-34 days are a yearly occurrence
[31]. Modeclling of future climatic development for Marchfeld and its surrounding regions suggest
a decrease of precipitation volumes and an expected increase of likelihood for drought events
[10, 11, 12, 13, 14]. High average wind speeds of about 3,5 m/s have an amplifying effect of
the dry climate considering plant transpiration. The climate chart of the year discussed in this
thesis is presented in Figure 2.3.
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Figure 2.3: Climate chart for the Marchfeld Region for the year 2010. Data from: ZAMG,
Weather Station Gro8-Enzersdorf

The dominant soil types are Chernozem and Fluvisol, based on the Food and Agriculture
Organization (FAO) World Soil Classification. The general soil conditions are characterized by
a humus-rich A horizon and a sandy C horizon, followed by fluvial gravel from the former river
bed of the Danube [32].

Agriculture The soil consists mainly of fertile aeolian slit deposit which, together with the
pannonian climate, high solar radiation and flat terrain forms a well qualified region for agri-
cultural purposes. Limitations to agricultural performance are low precipitation and a predom-
inantly low field capacity of 70 mm and less. This means that the soil can hold only a low
amount of precipitation thus limiting water supply to the plants in dry periods. The need for
water varies between crops and development stages. Wheat and sugar beet are sensitive to water
shortage in the beginning of the vegetation period whereas Maize encounters most limitations
during the flowering period. About 65.000 ha of the area in Marchfeld are used for agricultural
production. The main crops are vegetables (11%), sugar beet (10%) and potatoes (7%).

Although Marchfeld is the driest regions in the state, it is still one of the primary producers
of agricultural goods in Austria. This is possible due to irrigation techniques used by farmers to
compensate lacking amounts of precipitation. In Marchfeld most of the water used for irrigation
is taken from the ground water. However modernization and intensification of the agricultural
sector has resulted in a unbalance of groundwater extraction and replenishment. Thus the
groundwater levels in the Marchfeld region have dropped steadily (see Figure 2.4)

The drop of groundwater levels has a profound impact on its surroundings. These impacts
range from ecological disturbance over limitations in water use to economical restriction in
the agricultural production. To counterbalance the problem of dropping groundwater levels
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Figure 2.4: Development of Groundwater levels - Deutsch-Wagram 1940-2001. Source: March-
feldkanal

the Marchfeldkanal-Project was initiated and executed between the years 1986 and 2004. This
channel system is used to extract water from the Danube river and transport it to the Marchfeld
Region. The main goals of this project were to maintain a secure supply of water to the area,
increase water quality, flood control and revitalisation of flowing water bodies.

The construction consist of 100 km of Channels and 8 weirs which control surface water flow
and height. To control ground water levels 22 pumping stations and 7 infiltration basins are
implemented. In addition the area is equipped with a control system and power supply. An
overview of the channel system is given in Figure 2.5. In standard operation the rate of inflow
ranges from 0.5 to 7.6 m®/s. As a result of higher water demand the rate of inflow can rise up
to 15.2 m®/s during the growing season [31]. The cost of construction was 207,8 Million Euro
[33].

Irrigation With only 525 mm of precipitation per year additional water supply is needed to
sustain stablc agricultural production in Marchfeld. Of the 65.000 ha used for agriculture, 30%
are irrigated every year. The main water supply for the irrigation system is the groundwater
body. The withdrawal from groundwater for agricultural purposes is estimated to be 20-40 Mio.
m?® per year [34].

Irrigation facilities (pumps, infrastructure) are managed on a municipal level. Water is taken
cither from the channel system or from groundwater. The main mode of irrigation is the " Hose-
Reel Irrigator” (Figure 2.6). Sprinkler irrigation systems are also in use, but to a much lesser
extent mainly in areas where water pressure of the supply system is not sufficient for hose-reel
irrigation.

11
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Figure 2.5: Overwiew of the Marchfeld Area including channel system. Source: Marchfeldkanal

Figure 2.6: A Hose-Reel irrigation system, which is commonly applied in Marchfeld. Model:
Bauer Rainstar

12



2.3 Calculation of crop evapotranspiration

2.3.1 Introduction to crop evapotranspiration

The calculation of potential evapotranspiration (ET) is performed through the crop coefficient
approach presented in the FAO-56 paper [35] with the integration of satellite data into the
calculation as proposed by D'Urso [28]. The two main components in this concept are the
reference evapotranspiration (ETp) and the crop coefficient (K,).

The calculation of ET), is obtained as follows;

ET, = ET) x K,

The methodology assumes "disease-free, well-fertilized crops, grown in large fields, under op-
timum soil water conditions, and achieving full production under the given climatic conditions”
[35].

The reference evapotranspiration (ETp) is the evapotranspiration of a standardized
vegetated surface area for given climatic conditions within a specified time interval. For details
see Section 2.3.2.

The crop coefficient (K.) is a factor indicating the ratio of potential evapotranspiration
of crops compared to the reference evapotranspiration. It is defined as

_ ET,
KC T ET

A K, value of 1 means the evapotranspiration of an observed crop is at the same level as
the standard reference surface (grass). A K. of 1.2 means the evapotranspiration is 20% higher.
The primary effects that distinguish crop from the reference surface are

e Crop height

¢ Albedo

e Canopy resistance

e BEvaporation from soil

K, can be estimated from measurements of actual evapotranspiration and the comparison
to the reference evepotranspiration of the standard surface. Using this methodology K. has
been calculated for different conditions and can be provided in tables for several crops. As the
K. changes with crop development it can be displayed as a K -curve over time. In the FAO-
56 publication these are are provided for each crop development stage as follows: initial stage
((Keini), mid-scason stage (Kemiq) and end of the late season stage (Keena) (see Figure 2.7).

13
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Figure 2.7: Development stages of an exemplary crop and the corresponding developement of

K. over time. [85]

Some examples of K. values within the FAO-56 guideline are given in Table 2.1.

Table 2.1: Reference values of K, for different crops in three developement stages

Crop Initial Stage | Mid-season Stage | Late Stage
Sugar Beet 0.35 1.2 0.7
Maize 0.3 1.2 0.5
Winter Wheat 0.6 0.6 0.9
Soy Bean 0.5 1.15 0.5
Potato 0.5 1.15 0.5
Onion 0.7 1.05 0.75

Presented tabulated data represent a fixed value suitable for comparing crop types under
general conditions. Crop development is subject to change regarding to local conditions and its
climate. An indication of possible variability is given in Figure 2.8. The development of Maize
for example can vary between K. values of 1.1 to 1.4 in full crop development regarding to the
climatic conditions it is cultivated in.

14
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Figure 2.8: Ranges of possible K, values for full grown crops under variation of climatic condi-
tions [35]

The variability of actual K. to tabulated data further increascs when regarding not only
climatic differences but also variation in soil type, seeds and management practices.

Figure 2.9 is an illustrated example for the difference from tabulated to actual data. The
sample plot of sugar beet in the Marchfeld-Region does not reach the maximum value of K.=1.2
given by the FAO and is also reaching the senescence stage earlier.

For a precise estimation of water requirement on regional scale the K .-value must therefore
be dynamically adapted to the study area. In this work, the calculation of K, is achieved by
calculation through satellite data.

15



1.4 4
1.2 1
N R i c RN O
N ; [
- 1.0+ . // \\
qﬂ) F s \
S 0.8 4 /' o}
g : R
S 0.6 A P
o f/
g 044 ,// Ke (FAO-56)
O Kc satellite-based
0.2 -
- = = Kc (daily time step)
0'0 T T T T T T T T
0 25 50 75 100 125 150 175 200
Number of days from planting date

Figurce 2.9: Developement of K, values for a sample plot of sugar beet in the Marchfeld-Region
and the FAO-reference of K, developement for the same crop

2.3.2 Reference Evapotranspiration

The reference evapotranspiration was derived from meteorological data with the use of the
Penman-Monteith equation. It is physically based and incorporates physiological and aerdoy-
namic parameters [35].

Penman-Monteith equation

ETO _ 0.408A(R, —G’)—!—A/%uz(e5 —eq)

A+~ (140.34uy)

where
ETo=reference evapotranspiration [mm day 1],
R, =net radiation at the crop surface [MJ m~? day~!],
G=so0il heat flux density [MJ m~2 day 1],
T=mean daily air temperature at 2m height [C],
uz=wind speed at 2m height [m s~!],
es=saturation vapour pressure [kPa],
eg=actual vapour pressure [kPal,
es-e,=vapour pressure deficit [kPa],
A=slope vapour pressure curve [kPa C™!],
vy=psychrometric constant [kPa *C~?].

16



In summary ET, is a function of: Meteorological Data
s Radiation
e Temperature

e Relative Humidity

Windspeed

s Evaporation from Soil
Crop specific data

o Leaf Area Index

e Albedo

o Crop Height

The meteorological data is measured in-situ with weather stations. For the reference evapotran-
spiration (ETp) the crop specific factors are set to LAI=2.88, Albedo=0.23, h,=0.12.

Source for meteorological data was the Zwerndorf weather station operated by the ”Zen-
tralanstalt fiir Metcorologie und Geodynamik”. ET( estimations for this weather station have
becen cross-checked with another nearby weather station.

2.4 Satellite Data

2.4.1 Earth Observation-Data Description

EQ datasets were acquired by two satellites; Landsat-5 TM data was used for the calculation of
the water consumption. For this calculation a calibrated model is needed to obtain LAI maps.
For this purpose, a calibration campaign was conducted in 2012 where ground reference LAI-
measurements were taken in correspondence to DEIMOS-1 image acquisition. Both datasets
were geometrically corrected by the data supplier. Landsat-5 TM records data with the Landsat
Thermatic Mapper (TM)-Sensor in 7 bands with a spatial resolution of 30 m (in the visible,
near- and shortwave infrared bands) and 120 m (thermal). DEIMOS records data in 3 spectral
bands with a spatial resolution of 22 m. Table 2.2 shows the dates of the image acquisitions for
the two campaigns

Table 2.2: Dates of image acquisition used for the estimation of crop developement (Landsat-5)
and calibration of model parameters (DEIMOS-1)
Landsat-5 || DEIMOS-1
10.06.2010 || 17.06.2012
12.07.2010 || 30.06.2012
22.08.2010 || 01.08.2012
23.09.2010 || 20.08.2012
05.09.2012
18.09.2012

17



2.4.2 Data preparation

Due to the fact that the atmospheric conditions have a varying influence over time and space
a correction to account for these effects has to be applied. Two different software tools for
atmospheric correction (FLAASH and ATCOR) were considered and their performance tested.
FLAASH and ATCOR are two different software-modules. The aim of these modules is to
correct recorded at-sensor signal for atmospheric effects through modelling atmospheric param-
cters.

Atmospheric Correction

The radiance is recorded as a signal at sensor level. The signal is affected by properties of the
atmosphere that lic between the sensor and its observed target. Since atmospheric properties
are dynamic, the recorded at-sensor reflectance of a surface will be subject to variation. The
variations are of temporal (variation from one image acquisition to another) and spatial (varia-
tion within a single image) nature. Furthermore a part of the radiation recorded at the sensor
is reflected by the atmosphere directly with no interaction of the observed surface (backscat-
tering). The backscattered signal carries no information about the surface area and should be
eliminated for further processing.

There are different ways to perform atmospheric correction. The influence of the atmosphere
can be determined with in situ measurements of the surfaces’ reflective properties. Another
method is to estimate the atmospheric effect on image acquisitions through a model atmosphere.
The latter approach was used in this thesis. For the atmospheric modelling a set of model
parameters are needed. These parameters are:

e Latitude/Longitude
e Sensor Altitude
e Acquisition Date/Time

Ground Elevation

Visibility

Sensor Calibration

FLAASH is a tool included in the ENVI Image processing software. It is based of MOD-
TRAN4 radiative transfer model. The user interface of the software is presented in Figure 2.10.
To apply this correction method imagery data values were converted from digital number to
radiance and corrected with current radiometric calibration coefficients (bias and gain) using
the formula:

L/\ = GrescaleIQcal + Brecale

where

Ly=Spectral radiance at sensor [W/m?srum]
G'rescate=Band-specific gain factor [W/m2srum/DN)
Qcai—Band-specific rescaling bias factor [W/m?2srum)|

Bias and Gain factors are contained in the imagery metadata.
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Figure 2.10: The user interface for the model input parameter within the FLAASH atmospheric
correction tool

Resulting top of the atmosphere (TOA) radiance values were then used as input to FLAASH.
The resuli. was an estimation of top of the canopy (TOC) refllectance values.

ATCOR is also based on MODTRAN4 and is a modulc in the ERDAS Imagine software.
Additionally to an application of model atmosphere and its parameters, ATCOR allows the
iterative choice of the model parameters to match the corrected pixel reflectance with the
observed reflectance from a spectral library or from user measurements. The user interface for
comparison of reflectance is presented in Figure 2.11.
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Figure 2.11: The user interface for check and adjustment of model input and performance within
the ATCOR atmospheric correction tool

Comparison of Atmospheric Correction Methods

To compare the two correction approaches a set of pseudo invariant targets (PITs) was se-
lected. The assumption is that spectral response from invariant targets stay the same over time
thus making it possible to compare the performance of atmospheric correction methods. The
necessary characteristics of pseudo-invariant targets are [36], [37]:

e Targets should be available with both high and low radiance
e Targets should be as homogeneous as possible
e They should be smooth and horizontal to minimize shadow and directional effects.

e They should be of large size, to minimise adjacency effects and make them easy to identify
on different images, and on the ground.

To compare the correction methods the standard deviation of spectral response of a single
target over time was measured.

2.4.3 Data Processing

The aim of EO data processing is to derive K. maps for the observed area which are further
used for the estimation of potential evapotranspiration. EO based K, values were calculated
using the approach described by D’Urso [28] . For the estimation of K., LAI, albedo and crop
height are needed.
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Calculation of the leaf area index LAI

LAT was derived through the Weighted Difference Vegetation Index (WDVI) as follows [29]:

_ 1 WDVI
LAI = g in(1 — w552)
In this equation two coefficients (LAI,, WDVI,,) need to be calibrated. The calibration
of LAI, was done using ground reference measurements and contemporaneous image datasets
from the year 2012. The full process is described in Appendix A.

Calculation of weighted differential vegetation index WDVI
WDVI can be calculated from EO data as presented by Clevers [29]:

WDVI = pNIR — C x pR

The soil line slope (C) represents the slope of the linear relationship between bare soil
reflectance observed in two different wavebands [38]. It was calibrated by a number of samples
(60 in this study) of bare soil per image. From the respective reflective values in the red and
near-infrared bands of each sample the soil line slope was derived according to the following
equation.

__ pNIR
C= o

The intercept was set to 0.

Calculation of albedo

Albedo is defined as the ratio of the reflected radiation of a surface to the incoming radiation.
Albedo depends on the type of surface and angle of incidence of solar radiation. A high reflective
surface like fresh snow may reach an albedo of 0.95. Low values of 0.05 are common for wet
bare soils. Vegetation has an albedo of 0.20-0.25 [35].

Albedo is used in the calculation of the fraction of solar radiation (Rs) that is not reflected
from the surfacc (net solar radiation - R,s) with R,; = (1 — a)R;.

The calculation for the albedo is done by deriving the relative contribution of each band to
the total measured energy for each pixel. In this operation the surface albedo is substituted
by the ”wavelength-integrated ground reflectance” since the recorded spectral data only covers
part of the full spectral region. This operation was performed within the ATCOR module of
ERDAS Imagine. The formula applied to derive the wavelength-integrated ground reflectance
is:

2.5um
" op(A)dA

_ 03pm

2.5um
[ dx

0.3pum

Estimation of the crop coefficient (K,.)

For the estimation of potential evapotranspiration the EQO estimated canopy parameters (albedo,
LAI, h.) can be directly introduced to the FAO Penman-Monteith equation replacing the stan-
dard values of the grass reference surface (sec Section 2.3.2). This directly estimates the potential
ET. Because of its wide use in irrigation practice, it is useful to derive a physically-based basal
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crop coefficient K, expressed as an explicit function of crop parameters and of meteorological
data. Assuming a constant crop height the (polynomial) function relating K. to albedo and
LATIis:

K.= (a4+b4 X T)LA[4 + (a3+b3 X T)LA[3+ (a2+b2 X T)LA[2+
(a1+b1 xr)LA[+(a0+b0 X’T’)

where
r=Albedo[%)]

The coefficients a. and b are derived by calculating ET,, with meteorological data at the time

of the satellite image acquisition and averaging out the resulting K, for a period of 5-6 days
around the date of the image acquisition [39].
Crop height (h.) controls the resistance in canopy aerodynamic properties. Measurements of
exact crop heights for large areas and over a time period of several months are not feasible
due to considerable work load. Therefore the crop height was set to a fixed value, which is
considered to be a satisfactory compromise in estimation of ET), [39]. In this methodology the
crop height was set to a value of 0.3 m. Since in reality crop height is variable over time its
influence was investigated by performing a sensitivity analysis of K. to h.. The variation of
K. with six different h.-values over a range of LAI was calculated. This was done by deriving
a and b coefficients for crop heights of 0.1 m, 0.2 m, 0.25 m, 0.35 m, 0.5 m, 0.75 m and 1 m.
Their corresponding K. values were calculated and its variation plotted. A similar sensitivity
analysis was performed on variations of albedo. An estimation of K, with a constant A, of 0.5
and increasing LAT was done with variation of albedo ranging from 0.1 to 0.4.

Finally, we estimated the crop water requirement. This was achieved by subtracting effective
precipitation (P,) from the potential evapotranspiration. If ET, surpasses P, vegetation enters
a stage of water deficit. To achieve optimal crop development and yicld conditions this deficit
that has to be balanced out by applying irrigation.

The crop water requirement (CWR)) can be expressed as

CWR = ET,— P,

Effectiveness of precipitation relies on a number of factors such as: crop type, crop condition,
soil conditions, irrigation scheduling, characteristics of the precipitation events (duration, inten-
sity, frequency) etc. Since a number of these factors are inaccessible for a regional estimation
of water deficit the effective precipitation is estimated as a range. The lower end of effective
precipitation (less water is assimilated by the plant) is given above (P,min). The upper end
(Ppmaz) was set to:

Pomax = P x0.75

The lower end of effective precipilation was calculated by applying following formula:

Pymin = (P —5)*0.75

where
P=Precipitation [mm]
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Estimation of agricultural surface area

Image classification was used to estimate the cropped area for summer crops in the Marchfeld
region. As a first step all non-agricultural {urban & natural surfaces, forest, water bodies)
surfaces were masked. This was done by using the ”"Corine Land Cover Map” (CLC-Map)
which holds information of EO based estimation of landcover and usage. A subset of the CLC-
map for Marchfeld is presented in Figure 2.12. The CLC-Map was reprojected to UTM WGS
"84 with overlapping pixel features to imagery data of Landsat (pixel size of 30m). The next
step was to perform an unsupervised classification. The image acquired on August 22nd was
selected. The choice for this data was driven by the circumstance that agricultural summer
crop are expected to be well developed at this time and therefore easily distinguishable from
surrounding land cover types. Seven clusters were initially selected. The classification was
followed by a visual interpretation of the different clusters using a false-color composite image
of the region. During this analysis the clusters were separated into vegetation or soil. One
cluster resulted in uncertain classification and was further analysed visually based on the crop
coefficient. The visual interpretation of K, was done in regard of value, location and extent.

For further processing two types of area estimations were defined: (1) ” General Agricul-
tural Area” incorporates all agricultural surfaces, sparse and densc vegetation as well as soil
into the calculation.

(2) ”Cropped Surfaces” incorporates all pixels clearly classified as ”vegetation” | border-
effects (mixed-pixels) were excluded. This procedure represents an estimation of irrigation crop
water requirements of the region.
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Figure 2.12: A subsect of the Corine Land Cover map for the Marchfeld Region. Classes were
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2.5 Calculation of potential evapotranspiration and water
requirement

For the calculation of crop water requirement the raster based K, value was interpolated to
obtain daily K, values. This resulted in 106 (daily) K. values from 10th of July to 23rd of
September. A daily estimation of ET, was calculated by multiplying interpolated K. values
with ET, of the respective day. The result is a raster file with pixel based estimation of ET,
with 106 layers corresponding to each day from the first image acquisition to the last. A total
sum of ET, for cach pixel was calculated. 10-day time-step ET, aggregations were used to
calculate the water requirement for the areas. Effective precipitation values were aggregated
in the same 10 days time-steps and subtracted from the ET, estimations. The result is the
magnitude and temporal development of crop water requirement for the observed area
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Chapter 3

Results and Discussion

In the following chapter the results of the methodology are presented and discussed. All tables
and figures are located adjacent to the discussion.

3.1 Reference Evapotranspiration

The reference evapotranspiration (E7p) for the Marchfeld Region in 2010 ranges from 0.07
mm/day (27. Dec. 2010) to 6.64 mm/day (13. July 2010) with an average of 2.13 mm/day over
the whole vear (see Figure 3.1). The highest reference evapotranpspiration was taking place in
July with an ETy of 148.5 mm/month. January exhibits the lowest value with 12.8 mm/month.
Summarized monthly values of ETy are presented in Figure 3.2. The highest values of ETy are
located in the mid-summer months. Low values of ETy during this period are due to cloud-
coverage, low temperatures and other unfavourable condition. Notable is the high variability of
ETy during the summer months. Unfavourable meteorological conditions in June can result in
the same FTp as days in March or October. The estimation of ETy was within the expected
range of observed climatic conditions.

The results of ETy calculation from weather data recorded at Zwerndorf were compared to
the calculation for data recorded at GroB-Enzersdorf. The two weather stations are approxi-
mately 26 km apart. For the observed time period the differences in the estimations reaches
a maximum of 122.5% on the 25th. of July where Zwerndorf recorded ET,=1.18 and calcula-
tion from Grof-Enzersdorf weather data resulted in E7,=2.63. Analysis of the weather data
for GroB-Enzersdorf showed higher temperature (+0.6°C), a higher wind-speed (+1.4 m/s)
and lower air humidity (-10 %) during that day. Similar variations can be observed for other
high divergences. On average the calculation of ET), from Grof-Enzersdorf during the image
acquisition campaign was 2.16 % higher, with a standard deviation of 20.42 %.
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Figure 3.3: The percentage difference of calculated reference evapotranspiration (ET),) when
comparing meteo data recorded at Zwerndorf to ET),-calculation from Grof-Enzersdorf data.
The timeframe is 10. of June to 23. of September

3.2 Satellite Data

3.2.1 Pre-Processing - Atmospheric Correction

Band specific spectral reflectance

When analysing the reflection of a vegetated surface, atmospheric correction changes the recorded
reflectance the most in the 0.45-052 pum region (Band 1 - blue). In this band a decrease can be
observed after applying atmospheric correction. A similar, but smaller effect takes place in band
2 (green) and 3 (red). With Band 4 (NIR) the effect is reversed and the recorded reflectance
percentage after correction is higher than TOA recorded values (see Figure 3.4). For analysis
of a non-vegetated surface the spectral refletance profile of a stone quarry was used (see Figure
3.5). Except for band 1 (blue) reflectance responds with an increase of values after performing

atmospheric correction on TOA data.
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Stability of atmospheric correction using pseudo-invariant targets

The standard deviation of PITs over time was used to estimate the performance of atmospheric
correction methods.

The Tables from 3.1 to 3.3 shows the Standard Deviation of PITs over time for 3 different
scenarios; Table 3.1 shows top of the atmosphere data, Table 3.2 reports data atmospherically
corrected with ATCOR and Table 3.3 reports data atmospherically corrected with FLAASH.
Table 3.4 indicates the normalized difference of variability of all targets over the six spectral
bands when comparing an atmospheric correction method to top of the atmosphere.

The results showed an increase of variation after the application of both correction proce-
dures. This can be a result of the method used for the analysis and/or an actual limitation
of softwarc performance. Regarding the former (method used): some of the variation can be
related to actual change of the pseudo-invariant targets that were set on vegetation canopy.
This can be observed in Table 3.2 and Table 3.3 where higher percentages of the variation with
both models applied are coming from Band 4 of the sensor used when comparing to other bands.
Observed variation in the near-infra-red band is most likely duc to actual changes in the plant
canopy during the observed time period.

The other reason for an incrcase in variation might be the selected calibration of model
parameters and the performance of the correction method. To achieve better performance of
correction methods it is suggested to obtain in-situ measurements during the image acquisition
campaign and tune the model parameters in regard of these measurements. Further processing
was done with the FLA ASH-corrected datasets where the analysis of pseudo-invariant targets
showed a lower variation.

‘able 3.1: Standard deviations of PIT reflectance over time for top of the atmosphere (uncor-
rected) imagery

PIT# ||Band1 Band 2 Band3 Band4 Band5 Band 6 | average

1 1.29 1.82 2.02 3.38 2.55 1.90 2.16

2 0.82 0.82 0.86 4.53 0.66 1.03 1.45

3 0.47 0.48 0.50 3.88 0.21 0.44 1.00

4 0.74 0.30 0.48 2.29 0.46 0.14 0.73

5 0.43 0.41 0.29 3.87 1.15 0.58 1.12

6 0.41 0.56 1.06 0.88 1.35 1.88 1.02

7 0.27 1.08 1.76 2.71 2.60 2.84 1.88

8 041 1.19 1.40 1.75 1.18 1.78 1.29

9 1.95 2.10 1.83 1.90 1.89 1.58 1.87

10 0.47 0.00 0.20 0.55 0.29 0.49 0.33
average 0.73 0.88 1.04 2.57 1.23 1.27
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Table 3.2: Standard deviations of PIT reflectance over time for data corrected with ATCOR

PIT # | Band1 Band 2 Band 3 Band 4 Band 5 Band 6 | average

1 1.87 2.75 2.67 3.99 2.83 2.33 2.74

2 0.38 0.76 0.74 5.54 0.82 1.15 1.57

3 0.30 0.65 0.84 4.49 0.08 0.47 1.14

4 0.71 0.73 0.75 2.37 0.44 0.20 0.87

5 0.70 0.34 0.32 4.12 1.12 0.59 1.20

6 1.24 1.86 2.31 1.61 2.15 2.73 1.98

7 1.89 3.18 3.75 3.40 2.91 2.92 3.01

8 1.64 2.74 2.96 2.02 1.24 1.73 2.05

9 2.14 2.24 1.95 2.97 2.28 2.06 2.27

10 0.54 0.45 0.57 1.53 0.43 0.61 0.69
average 1.14 1.57 1.69 3.20 1.43 1.48

Table 3.3: Standard deviations of PI1 reflectance over time for data corrected with FLAASH

PIT # || Band1 Band 2 Band 3 Band 4 Band 5 Band 6 | average

1 1.93 2.56 2.54 3.92 2.79 2.33 2.68

2 1.24 1.29 1.18 5.09 0.84 1.16 1.80

3 0.11 0.13 0.41 4.21 0.09 0.38 0.89

4 0.34 0.25 0.31 2.23 0.34 0.18 0.61

S 0.36 0.32 0.21 4.04 1.21 0.61 1.12

6 0.64 0.98 1.30 0.90 1.79 2.42 1.34

7 0.88 1.67 2.16 3.05 2.96 3.05 2.29

8 0.88 1.48 1.56 1.70 1.05 1.77 1.41

9 2.72 2.95 2.66 2.53 2.18 1.97 2.50

10 0.11 0.29 0.15 0.87 0.46 0.60 0.42
average 0.92 1.19 1.25 2.85 1.37 1.45
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Table 3.4: Normalized difference of variability of PIT reflectance when comparing TOA re-
flectance to atmopsherically corrected data (ATCOR and FLAASH correction)
|| Band1 Band 2 Band3 Band 4 Band 5 Band 6 | average
ATCOR H 0.57 0.79 0.62 0.24 0.16 0.17 0.43

FLAASH 0.27 0.36 0.20 0.11 0.11 0.14 0.20

3.2.2 Data Processing
Calculation of albedo

Albedo values within the processed imagery are varying within 2% in the case of water pixels
and 80% in the case of clouds. The histogram shows a peak around an albedo value of 10%
which corresponds with soils and urban structures. Mean values and standard deviations are
reported in Table 3.5.
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Figure 3.6: Histograms for the raster based albedo calculation for four image acquisitions
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Calculation of the leaf area index (LAI)

The performance of different calibration techniques was validated with LAI ground reference
measurements. A detailed description of the approach used was published by Vuolo et al. [40]
and can be found in the appendix to this thesis. ‘

Using the CLAIR model with an image-specific tuning of the soil line slope and W DV I, and
a constant LAI, coeflicient value provided the most accurate and consistent results for WDVI
based LAl estimation (R?=0.64, RMSE = 0.86). The other validated calibration techniques
included seasonal average (constant) values for the soil line slope, W DV I, and LA, (R?=0.58,
RMSE = 1.04) and image-specific model parameters for each image acquisition (R?>=0.54 to 0.78,
RMSE = 0.97 to 0.53 depending on the individual imagery datasets).

Calculated LAI values range from 0 to 6. A visualisation of pixel based LAI calculations for
July 12th is given in Figure 3.8. The mean value of LAI over the region of interest varied with
the season due to vegetation development, land cover dynamics and cultivation practices from
LALean=1 (23.09.2010) to LAl ean=1.9 (10.06.2010). Modulation of model parameters and
results of the LAI calculation are presented in Table 3.5. The distribution of LAI values in the
region of interest are presented in Figure 3.7. One can observe a considerable shift to low LAI
values in the histogram when comparing the first to the second image acquisition. The observed
variation is due to senescence and harvest of winter wheat, a primary agricultural product of
the region. A second peak around an LAI of 1.5 and 3 appear in the third and forth image.
This is due to subsequent greening up of summer crops and secondary crops following on plots
antecedently used for winter crop cultivation.

Table 3.5: Calibrated parameters for the calculation of WDVI and LAI and resulting mean values
and standard deviations of resulting LAI calculation for each image acquisition respectively

Model parameters Albedo LAI
Date || Soil Line Slope LAI, WDVI, [mean ¢ |mean o
6/10 1.38 0.34 52 1063 3.13 194 104
7/12 1.34 0.34 56 10.34 275 1.30  1.06
8/22 1.32 0.34 56 11.38 3.62 1.33 110
9/23 1.46 0.34 57 1020 285 1.06 087
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Estimation of the crop coefficient (K.)

Results of the a and b coefficient calibration along with mean K, values and their standard
deviation for the raster image datasets are given in Table 3.6. Histograms of the K, raster
dataset are plotted in Figure 3.9. The calculation of mean values and histograms was done
using only the ”agricultural surface area”. Estimated K, values range from 0.05 to 1.5.
The EO data from June, 6th shows the highest image-wide mean value of K.=0.97. Mean
values of K are decrcasing over time with the lowest value (K.=0.53) at the end of the image
acquisition campaign. The steady decreasc of K is a result of crop development and agricultural
management. The first acquisition captured winter wheat cultivation during the end stage which
responded correctly with high K, values at the time. Another rcason for decreasing K, is the
vegetation cycle with declining vitality of vegetation in September.

Table 3.6: Coefficients for the calculation of K. and mean values and standard deviation of
resulting raster based K, dataset for each image acquisition respectively

Calibration coefficients K.
Date || coefficient # | a b | mean std
6/10 0 0.0595 -0.0298 097 033
1 0.7939 -0.4982
2 -0.1855  0.0996
3 0.0229 -0.0103
4 -0.0013  0.0005
7/12 0 0.1224  -0.0546 0.73 0.38
1 0.9535 -0.5304
2 -0.2946  0.1431
3 0.0456  -0.0202
4 -0.0028  0.0012
8/22 0 0.0635 -0.0312 0.59 0.43
1 0.816  -0.4899
2 -0.1953  0.0978
3 0.0246 -0.0101
4 0.0014  0.0005
9/23 0 0.0712  -0.0439 0.53  0.39
1 0.743  -0.4778
2 -0.1534  0.1061
3 0.0171  -0.0129
4 -0.0009  0.0007
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Figure 3.9: Histograms for the raster based K, calculation for four image acquisitions.
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Figure 3.10: Visualisation of K -Values for 22.08.2010
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Sensitivity Analysis

Figure 3.12 displays the variation of K, values when calculated with different input parameters
(h., LAI). Starting off at the same point the curve is increasing in a slope that has a steeper
inclination with higher h. values. All curves saturate around the LAI value of 5. After this
peak a slight decrease is taking place.

The percentage difference of K. presented in Figure 3.13 is a measure of the influence
of variation over LAI. Differences in K. estimation increase with LAI values and saturate at
around LLAI=4.5. The results show possible variation of K, of up to £0.15% for high LAT values.

A similar, but more regular change can be observed for the variation of albedo values in the
estimation of K.. The variation of albedo for high values of LAI results in a difference of +
15% is close to that value (+ 13%) for low valucs.

The sensitivity analysis showed that the crop height can influence the estimation of K, within
a maximum range of + 15% for high values. Low values of LAI show a much lower variation
when applying different hc-values (for LAI=1; -0.005% to +0.002%). A possible solution to
minimize the error is to estimate the h. over time. To do so additional information about the
observed crop (type, sewing date etc.) has to be obtained.
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Figure 3.13: Percentage difference of K. estimations under varying h, conditions in relation to
h.=0.5
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K, variation for different Albedo values
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Figure 3.14: The variation of estimated K. values when calculating with different albedo as
input values
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Estimation of agricultural surface area

The 7 data clusters obtained from the image unsupervised classification could be identified
and grouped in soil and vegetation classes accordingly One cluster remained uncertain and
was further investigated. Analysis of K. values for these areas showed a K -variation of 0.01
to 1.1 with a maximum amount of pixels at K,.=0.63. The spatial distribution of pixels in
this class showed that it identifies "border-effects” around agricultural fields. (see Figure 3.17)
For the estimation of the ”cropped surface area” estimation all classes clearly identifiable as
vegetation were combined. Mixed-pixels were excluded. ”Cropped surface area” incorporated
all pixels which are assumed to be dense vegetation on agricultural soil. This dense vegetation
is assumed to be a result of irrigation practice (since dense vegetation would not develop with
low precipitation).

A subset of the image classification is shown in Figure 3.16. The total surface area is given
in Table 3.7. The estimated surface area for general agricultural areas and summer cropped
surface are within the expected range when being compared to other reference values which
estimate the area extent of summer crops to be around 20 000 ha [41]. 34% of the general
agricultural arca was used for summer crop (”cropped surface”) production in the year 2010.

Table 3.7: Extent of the two types of surface areas classified from satellite data
Surface Typc || Area
General Agricultural Area || 62933 ha
Cropped Surface 21780 ha
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Figure 3.16: Land cover map derived from Landsat-TM Imagery of August 22.
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Figure 3.18: Results of 2 the different area estimations displayed as K -values on 22.08.2013

3.3 Calculation of potential evapotranspiration

The seasonal evapotranspiration is presented in Figure 3.19. The distribution of values within
the region of interest is presented in Figure 3.20. The ” General Agricultural Area” responds with
a larger amount of pixels for low E'T,, values than the ”Cropped Surface Area” and vice versa
because regions with low potential for evapotranspiration (uncropped surfaces) were masked in
the classification process. Fields with high potential evapotranspiration are located throughout
the Marchfeld-Area. These fields correspond with overall high K, values over time as depicted
in Figure 3.21 and Figurce 3.22. This indicates high plant vigour during the time of the image
acquisition campaign, which coincides with the development of summer crops. Winter crops,
like winter wheat are covered only in their end- and senescence stage and do thus not contribute
decisively to high seasonal ET}, rates. On average, ET), is 272 mm from June 10th to September
September 23rd for the the General Agricultural Area. When analysing the Cropped Surface
Area only the mean value is expectedly higher with 398.44 mm (see Figure 3.20). The maximum
value is 560mm. This amount of total potential evapotranspiration for 4 months represents
closely total precipitation of a full year in this region evidently illustrating the need for irrigation.

For further analysis the daily potential evapotranspiration was aggregated to 10 days time-
steps for the "General Agricultural Area” and for the ”Cropped Surface Area”. The results are
given in Table 3.8 and plotted in Figure 3.23. The ”Cropped Surface” area shows a potential
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evapotranspiration ranging from 58.6 mm/10 days at the end of July to 19.6 mm at the end
of the observed time period. The ”General Agricultural Area” has an overall lower potential
for the evapotranspiration. The maximum is 40.6 mm and the minimum 12.5 mm. Potential
evapotranspiration is increased during the summer months due to higher temperatures, higher
radiation and advanced plant development. This can be observed in Figure 3.23 as an incline
of ET, in the beginning of the observed time interval for the cropped surface area. I'his effect
is reversed later in the observed time period when, additionally to a reduction of ETp, crops
are either entering a senescence stage or are being harvested. Both events lower the potential
evapotranspiration of the surface (also expressed in the lowering of K.).

The total potential evapotranspiration calculated for the extent of the respective surface
area is given in Table 3.9.
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Figure 3.19: Seasonal potential evapotranspiration of the agricultural area in Marchfeld from
June 10th to September 23rd
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Figure 3.22: K. developement over time from start of the image acquisition for four sample
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Table 3.8: Estimated ET), values over time for two surface estimations. General A. A. =General
Agricultural Area. Date Format = M/DD
ETp [mm)] | 6/10 6/20 6/30 7/10 7/20 7/30 8/9 8/19 8/29 9/8

Cropped Surface 32.8 40.4 53.6 58.6 48.0 40.2 416 38.9 21.8 19.3
General A. A. 36.2 35.7 40.6 39.0 29.4 23.8 24.2 22.5 13.0 12,5
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Figure 3.23: ET, estimation for cropped surface arca and the general agricultural area of the
Marchfeld Region

Table 3.9: The total ET, for the observed time frame of two area estimations
Surface Type H Total potential evapotranspiration
General Agricultural Area 174.29 Mio. m?

Cropped Surface 86.09 Mio. m?

3.4 Calculation of effective precipitation and water re-
quirements

3.4.1 Calculation of effective precipitation

To account for a number of unknown factors like soil type, soil conditions, crop type, irrigation
management etc. effective precipitation for the region was given as a range between a minimum
and a maximum estimation. The estimations of effective precipitation cumulated to 10-day
time intervals resulted in minimum of 0 (P,min and P.maz) and maxima of P,min = 23.8 and
Pymaz = 39.5. The maxima wecre observed in the beginning of the growing season following
a sharp decrease in the following months. A second peak can be observed at the end of July
where effective precipitation was estimated to be within a range of 23.7 to 39.5 mum (see Figure
3.24). With 759.5 mm annual precipitation was higher than the long-term average of 550 mm.
An overview of the P.-estimations is given in Table 3.10.

51



3.4.2 Calculation of water requirements

The estimation of water requirement was done for cumulated periods (10-day) and resulted in
surplus values of +19.6 mm to a deficit of -50.4 mm. Water deficit is the highest from mid-June
to beginning of July (-34.1 to -50.3 mm/10 days). During this time agricultural crop was well
developed and meteorological conditions allowed for high evapotranspiration while precipitation
was low. Towards the end of July the water deficit was lowered due to increasing precipitation
and a decrease of potential evapotranpsiration of agricultural crops (harvest or senescence).
Figure 3.25 plots the cumulated periods for the observed time frame.

The total estimation of water deficit for cropped surfaces in the agricultural region of
Marchfeld from June 10th to September 23rd in the year 2010 ranges from -32.02 to -52.8
Mio. m?.

Estimations of groundwater withdrawals for agricultural irrigation within the Marchfeld re-
gion were performed by the Marchfeldkanal Company. The estimations for the last 20 years
vary between -9.8 to -45.1 Mio. m3. These figures are a result of measurements of groundwater
level fluctuations for representative test-sites. The Marchfeldkanal Company attempts to esti-
mate the withdrawal for irrigation purposes by limiting the time frame to summer periods were
distinct drops in the groundwater levels can be observed (in assumption that these drops are a
result of irrigation practices). This way the irrigation season for the year 2010 was estimated
to start on June 24th and to end on July 17th. The estimation of groundwater withdrawal for
irrigation for this time period is 14.5 Mio. m®.

For comparison the EO based estimation presented in this thesis was limited to the same
time frame and resulted in a crop water requirement of 21.8 to 24.5 Mio m?.

When comparing the two estimation it has to be taken into account that the calculation by
the Marchfeldkanal-Company aims to represent actual applied irrigation whereas the calculation
presented in this thesis aims to represent the mazimum water requirement of crops. Furthermore
presented method incorporated the cropped surface area in its full extent whereas irrigation
infrastructure can be assumed to only cover a fraction of the same surface.

Table 3.10: Estimated values for precipitation, effective precipitation and the resulting water
balance for each calculation of effective precipitation for the cropped surface area of Marchfeld
in the year 2010 aggregated in 10 day time steps. Date format = M/DD

[mm)] | 6/10 6/20 6/30 7/10 7/20 7/30 8/9 8/19 8/29 9/8
Precipitation 70 1 9 33 47 53 46 23 36 13
Pe min 36 0 3 20 22 24 23 8 16 2
Water req. 3 -40 -50 -39 -26 -16  -19 -31 -6 -17
P. maz 52 1 7 24 35 39 35 17 27 10
Water req 20 -39 -47 -34 -13 -1 -7 -21 ) -9
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Figure 3.24: ET, for the cropped surface area and effctive precipitation in the Marchfeld region
for the irrigation season 2010
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Figure 3.25: Water requirement of the cropped surface area in the Marchfeld region in the year
2010 aggregated in 10 days time-steps
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Chapter 4

Conclusion

This thesis describes the estimation of water requirements in the context of agricultural pro-
duction in the water-scarce environment of Marchfeld.

Reference evapotranspiration was calculated from meteorological data recorded at the ZAMG
weather station in Zwerndorf by applying the FAO-56 Penman-Monteith equation. A time series
of Landsat-5 observations was acquired for deriving information about the extent of the surface
area for crops, the crop coefficient and the potential evapotranspiration. In a pre-processing step
the EO dataset was atmospherically corrected with two software tools (FLAASH, ATCOR) and
their performance was compared by analysis of pseudo-invariant targets. EO data was used for
calculation of albedo {wavelength integrated ground reflectance) and LAI (through the CLAIR-
model). A sensilivily analysis was performed to evaluate the influence of different parameters on
the calculation of the crop coefficient. Meteorological and EO data were combined to calculate
potential evapotranspiration. The EO dataset was further used in a classification to estimate
the extent of the agricultural surface area. A range of plant effective precipitation was calculated
from meteorological data. The water requirement for the region during the observed time period
was then calculated.

The highest potential evapotranspiration for the full observed time period from June 10th
to September 23rd was 560 mm. The total estimated water requirement ranged from 32.02 to
52.8 Mio. m®. The observed peak of water deficit (5 mm/day) was observed at the end of June.

Further improvement of the methodology can be achieved at the step of atmospheric correc-
tion and assessment of effective precipitation. For the former; accompanying measurements for
model input and reference could help to improve the performance. For the latter; the variation
of soil types and their storage capacity must be incorporated. The Marchfeld-Region has a great
variation of soil-types; implementation of this aspect is of particular importance when working
on field scale since soil conditions and thus water requirements will vary from field to field. A
prerequisite for this is the availability of data on soil types and soil conditions.

The type of information generated with this methodology can be used at field or regional
scale. It generates information about the crop surface in a temporal and spatial dimension.
Providing precise information about the observed region can help managers at regional scale
and farmers in their decision making progress. Regions of high water demand can be identified
and allocation of resources properly managed. A critical factor for agricultural production is the
high water deficit at the start of the growing season. If not managed properly this circumstance
could lead to water stress and further effect plant vigour and ultimately yield stability. In an
extended context the data on crop development itself (e.g.: LAI, K.) can be used as additional
source of information. This data can be used to compare different fields, soil types, seed types,
management practices and vegetation periods to one another. EO-data of agricultural regions
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can also be uscd in applications other than estimation of water requirements such as biomass-,
yield estimation, cropland mapping and others.

For improvement of agricultural management practices this data has to be relayed to farmer
level in an accessible and user friendly way. Moreover the information needs to be provided in
a timely matter for the farmer to react duly on possible stress conditions.
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Abstract: This work evaluates different procedures for the application of a semi-empirical
model to derive time-series of Leaf Area Index (LAI) maps in operation frameworks. For
demonstration, multi-temporal observations of DEIMOS-1 satellite sensor data were used.
The datasets were acquired during the 2012 growing season over two agricultural regions in
Southern Italy and Eastern Austria (eight and five multi-temporal acquisitions, respectively).
Contemporaneous field estimates of LAl (74 and 55 measurements, respectively) were
collected using an indirect method (LAI-2000) over a range of LAI values and crop types.
The atmospherically corrected reflectance in red and near-infrared spectral bands was used
to calculate the Weighted Difference Vegetation Index (WDVI) and to establish a
relationship between LAl and WDVI based on the CLAIR model. Bootstrapping
approaches were used to validate the models and to calculate the Root Mean Square Error
(RMSE) and the coefficient of determination (R*) between measured and predicted LAl as
well as corresponding confidence intervals. The most suitable approach, which at the same
time had the minimum requirements for fieldwork, resulted in a RMSE of 0.407 and R* of
0.88 for ltaly and a RMSE of 0.86 and R? of 0.64 for the Austrian test site. Considering
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this procedure, we also evaluated the transferability of the local CLAIR model parameters
between the two test sites observing no significant decrease in estimation accuracies.
Additionally, we investigated two other statistical methods to estimate LAl based on:
(a) Support Vector Machine (SVM) and (b) Random Forest (RF) regressions. Though the
accuracy was comparable to the CLAIR model for each test site, we observed severe
limitations in the transferability of these statistical methods between test sites with an
increase in RMSE up to 24.5% for RF and 38.9% for SVM.

Keywords: LAI;, DEIMOS; satellite time-series; calibration; WDVI; Random Forest;
Support Vector Machine; regression

1. Introduction

In the recent years, the use of satellite sensor data has become more common in precision
agriculture technologies [1], and various operational services are being developed within the Global
Monitoring for Environment and Security (GMES) initiative [2]. In this context, the data users (i.e.,
farmers, large and small scale agri-businesses) are mostly interested in monitoring the spatial
distribution of some crop characteristics over the growing season and time-series of satellite
acquisitions at high spatial resolution are a major source of information.

A key vegetation parameter attracting most interest is the Leaf Area Index (LAI), defined as the
total one-sided area of green leaf area per unit ground surface area [3]. LAl is used to derive
agronomical indicators for various crop management purposes. For instance, LAl maps are used in
agro-meteorological models to derive the crop water needs (an example of operative application is
given in Irrisat) [4], to monitor the nitrogen status and to apply fertilizer with variable rates (e.g.,
FarmSat), as input in crop models to derive agronomical variables [5,6]. On a larger scale, LAI and
other biophysical variables are used for example for yield predictions at administrative level [7-9]. A
general overview of remote sensing contributions to agriculture is given in [10].

Two groups of techniques have been commonly applied for the estimation of the LAI from optical
satellite sensor data using semi-empirical/statistical approaches (i.e., vegetation indices, VI) or physical
based approaches of leaf-canopy radiative transfer model (RTM) inversion [11,12]. Most of the
empirical or statistical equations, such as regressions between spectral reflectance, vegetation indices
(V1) or shape indices (e.g., red edge) and field measurements [13—15], employ data in two or more
wavebands, usually red and near-infrared [16,17]. Vls are often the only option for the retrieval of LAI
with limited spectral information (such as in the case of DEIMOS-1 data with only three spectral bands).

A prerequisite for the quantitative analysis of time-series of satellite sensor data is to perform
radiometric and atmospheric corrections [18], if possible using reliable instantaneous atmospheric
measurements (such as aerosol optical thickness, water vapor content) and/or the spectral reflectance of
known ground targets either derived from ground measurements (surface and/or atmospheric conditions)
or from consolidated library data [19,20]. Several approaches have been proposed for performing
atmospheric corrections. An operative procedure is based on the use of look-up-tables (LUT) with
pre-calculated atmospheric RTM simulations for different satellite sensor types [20,21]. However,
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model assumptions and simplifications often lead to inaccuracies in the estimated top-of-canopy (TOC)
reflectance measurements [22].

The inherent inaccuracy of TOC reflectance data can be accounted for by using image-specific
calibration procedures to estimate LAI. A typical example is the use of soil line-based VlIs in place of
intrinsic VIs [23]: in this case the image-specific tuning of the soil line slope parameter can be used
to increase the consistency in the analysis of atmospherically corrected products, especially for
time-series datasets.

In this study, the application of image-specific calibration procedures to estimate LAl was tested.
We used satellite time-series from DEIMOS-1 data, an operational satellite in the DMC constellation,
acquiring radiance in three spectral bands (green, red and near-infrared) at 22 m spatial resolution.
DEIMOS-1 satellite is equipped with a wide-image-swath sensor (630 km), providing a large coverage
and overlap between scenes and therefore increasing the revisit time and the probability of capturing
cloud-free images. Considering the available spectral resolution of the sensor, we selected a simple
LLAT retrieval approach based on a VI using the CLAIR model [24]. This approach has been tested
using canopy reflectance model data [24], field-based reflectance measurements [25] and satellite data
in a number of studies [4,26].

The main goal of this work was to evaluate different operational strategies to identify the
parameters of the semi-empirical CLAIR model to estimate LAIL. Within this main goal, we assessed
the transferability of the model parameters between test sites. For comparison, two relatively novel
statistical methods were also investigated using Random Forest (RF) and Support Vector Machine
(SVM) regressions.

In addressing these issues, the study provides recommendations for deriving consistent time-series
maps of LAI in operational frameworks at moderate (22 m) spatial resolution with limited spectral
information. Other statistical LAI mapping approaches are presented in other papers of this special
issue [27].

2. Materials and Methods
2.1. Overview

The described methodology provides an operational perspective to identify the parameters of the
semi-empirical CLAIR model [24,28] for deriving consistent time-series LAl maps. A set of
DEIMOS-1 satellite sensor data were acquired over two agricultural regions in Southern Italy and
Eastern Austria during one growing season. Contemporaneous field estimates of LAl were collected
for a number of fields and crops. Using this dataset, three operational procedures were tested (Table 1).
First, we considered a test site specific application based on seasonal average (constant) values of the
CLAIR model parameters, namely the soil line slope, the WDV, (representing the asymptotically
limiting value for the Weighted Difference Vegetation Index (WDVI) when LAI tends to infinity) and
the o extinction and scattering coefficient. Secondly, we derived the model parameters for each
satellite acquisition separately. Finally, we tested an intermediate solution based on an image-specific
estimation of the parameters that can be extracted directly from the images (i.e., soil line slope and
WDVI,) and on a seasonal average (constant) value of the parameter that requires contemporaneous
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field measurements (i.e., the o coefficient). Additionally, we evaluated the transferability of local
models between the two test sites. For comparison, two other statistical methods to estimate LAl were
also investigated: Random Forest (RF) and Support Vector Machine (SVM) regressions.

Table 1. Summary of the three procedures to derive the CLAIR model parameters. The
‘soil line slope’ represents the slope of the linear relationship between red and near-infrared
reflectance of bare soil pixels. The WDVI,, is the asymptotically limiting value for the
Weighted Difference Vegetation Index (WDVI) when LAI tends to infinity and o is the
extinction and scattering coefficient of the CLAIR model. A fourth procedure consisted in
transferring the model parameters from one test site to another.

Procedures Soil Line Slope WDVI, o
1 constant Constant constant
2 image-specific image-specific image-specific
3 image-specific image-specific constant
Transferability image-specific image-specific constant

2.2. Field Experimental Campaigns

The field and satellite data used in this study were acquired in the context of two field campaigns
carried out in two agricultural regions located in Southern Italy and in Eastern Austria during the 2012
growing season. The Italian field campaign was undertaken at the 500 km? ‘Piana del Sele’ and at the
3820 km® ‘Piana del Volturno® sites in the Campania region of Southern Italy (Figure 1) (Lat.
40.52°N, Long. 15.00°E). The two sites are large agricultural regions and are characterized by irrigated
agriculture (mainly forage crops, fruit trees and vegetables) with an average field size of about
2 ha [29]. The first site is characterized by very different soil types including Mollisols, Alfisols,
Inceptisols and Entisols [30] according to the United States Department of Agriculture (USDA)
soil taxonomy; the second plain is an alluvial formation with soil types varying from Entisols to
Vertisols [31]. The average annual precipitation is about 800 mm, mostly concentrated during the
winter months, with dry and warm summers. Maximum reference evapotranspiration rates, generally
occurring during the second half of July, range between 3 and 5 mm/d [32].

The Austrian field campaign was undertaken at the 1000 km” ‘Marchfeld region’ in Lower Austria
(Lat. 48.20°N, Long. 16.72°E). The dominant soil types are Chernozem and Fluvisol, based on the
Food and Agriculture Organization (FAO) World Soil Classification. The general soil conditions are
characterized by a humus-rich A horizon and a sandy C horizon, followed by fluvial gravel from the
former river bed of the Danube [33]. The region is characterized by a semi-arid climate with an
average annual precipitation of 500-550 mm that can drop to 300 mm making it the driest region of
Austria. Precipitation during the growing season (April-September) is 200440 mm. Irrigation in
Lower Austria has made it possible to establish a variety of crops thus contributing to the importance
of Marchfeld in agricultural production. About 65000 ha of the area in Marchfeld are used for
agricultural production. The main crops are vegetables (11%), sugarbeet (10%) and potatoes (7%).

Within these two large and relatively flat regions, LAI was estimated within 400 m” elementary
sampling units (ESU) that were relatively homogeneous in terms of both vegetation type and growth
stage. The center of each ESU was geo-located by means of a GPS, with an accuracy of £3—5 m.
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Figure 1. Selected study regions. The study was carried out in an agricultural region
located in the Eastern part of Austria (‘Marchfeld region’) and in two areas (‘Piana del
Sele’ and ‘Piana del Volturno’) located in the Campania region in Southern Italy.
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For the Italian case study, LAl was sampled within ESUs over a period of three months
(July—September 2012) in correspondence of each satellite acquisition for a total of 74 multi-temporal
measurements comprising 11 ESUs (5 alfalfa and 6 maize fields in ‘Piana del Sele’) and 8 ESUs (3
alfalfa and 5 maize fields in ‘Piana del Volturno’). LA values within the 19 ESUs ranged between 0.2
and 4.9 with a mean of 2.4 and a standard deviation of 1.2.

LAl in the ‘Marchfeld region’ was sampled within 55 ESUs for a range of crops including maize
(10 ESUs), sugarbeet (7 ESUs), vineyards (7 ESUs), carrots (5 ESUs) and other crops (26 ESUs). LAl
values within the 55 ESUs ranged between 0.1 and 5.8 with a mean of 2.2 and a standard deviation of
1.36. A summary of the field and satellite data acquisitions is given in Table 2.

LAI was estimated using the Plant Canopy Analyzer LAI-2000 [34]. Measurements were made
during early morning and late afternoon under diffuse light conditions to minimize the effects of direct
sunlight otherwise leading to LAI underestimation [35]. A view cap of 180 degrees was used to
physically limit the sensor field-of-view and ‘thus to reduce interference due to the presence of an
operator. There are some limitations in this type of indirect measurements technique [36]. On the one
hand, the LAI-2000 sensor does not distinguish photosynthetically active leaf tissue from other plant
elements, such as stems, flowers or senescent leaves. This leads to overestimated LAL On the other
hand, the ‘clumping effect’, i.e., non-random positioning of canopy elements, is also neglected by the
measurement device causing LAl underestimation. Hence, some compensation can be assumed [37].
The LAI recorded using the LAI-2000 sensor represents a measure close to the effective Plant Area
Index (‘PAle’) for reasons discussed above [37]. The average LAI, resulting from three replications of
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one above-canopy and nine below-canopy measurements, was taken as representative measure for
each ESU. The three replications (for a total of 27 measurements) were sampled randomly within the
ESU. The same sampling protocol was used in Austria and in Italy and throughout the three months
field campaigns.

Table 2. Timing of the field campaigns and satellite acquisitions with corresponding
statistics of the LAl measurements. Note that acquisitions were not always performed
during the same dates in the two areas (Sele and Volturno) of the Italian test site.

LAI

Field Campaign Dates Satellite Acquisition Dates No. of Samples .
Min Max Mean

Italy (Sele /! Volturno)

04/07 04/07 // 07/07 11 020 332 132
11/07 10/07 // 13/07 12 025 377 178
17/07 20/07 /1 20/07 12 039 462 236
26/07 29/07 12 0.44 4.08 272
31/07 05/08 7 1.63 339 295
07/08 11/08 7 0.63 413 295
13/08 18/08 10 074 492 3.6
10/09 09/09 3 243 284 268
Austria (Marchfeld)

04/07 9 0.44 448 218
02/08 20 0.11 452 175
22/08 Coincident with field campaigns 10 0.15 331 1.82
07/09 6 1.79 579 283
21/09 10 093 510 296

2.3. Satellite Data

Multispectral data were acquired from DEIMOS-1, a satellite in the DMC constellation. The sensor
records radiance in three broad spectral bands corresponding to green, red, and near-infrared parts of
the electromagnetic spectrum at a ground sampling distance (GSD) of 22 m. Five and eight scenes
were acquired during the 2012 growing season (Table 2) for the Austrian and for the Italian case
studies, respectively. Satellite images were provided orthorectified to sub-pixel accuracy (~10 m)
using ground control points and the Shuttle Radar Topography Mission (SRTM v3) data as digital
elevation model. The image data were atmospherically corrected by using ATCOR-2 [20]. For the
Austrian test site, during the image acquisition campaign, five reference measurements of ground
spectral reflectance (bare soils, dry and dense vegetation) were taken in correspondence of one satellite
acquisition (August 2nd). A subset of these measurements was used to perform the atmospheric
correction. The other subset was used to validate the results of the correction algorithm. The
atmospheric correction for the other images in the time-series was cross-checked by observation of
pseudo-invariant targets within the study area [19]. A similar procedure was used for the Italian test
site and the accuracy of the atmospheric correction was checked against a set of reference pixels
containing identifiable pseudo-invariant ground targets (i.e., asphalt, sea water, concrete and sand)
with known reflectance values from a spectral library [20].



Remote Sens. 2013, 5 1280

Figure 2. An example of the time-series of DEIMOS-1 satellite sensor data for an area in the
Marchfeld region (Austria). Five images were acquired to monitor the crop development
during the growing season (June—September). The images were atmospherically corrected
using ATCOR-2. RGB composites correspond to Near-infrared, Red and Green channels.
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2.4. Estimation of Leaf Area Index

In this study, we selected a simple semi-empirical model and two statistical methods to estimate
LAIL In all cases, we used the TOC (atmospherically corrected) reflectance data. Regarding the
semi-empirical model, two spectral bands (red and near-infrared) were used to calculate the Weighted
Difference Vegetation Index (WDVI), which was related to LAI through an inverse exponential
relationship using the CLAIR model [24,28]. Regarding the statistical methods two models were
applied: the first based on a regression tree algorithm using Random Forest (RF) and the second based
on a linear kernel Support Vector Machine (SVM) regression.

2.4.1. Semi-Empirical Estimation of LAI with the CLAIR Model

The CLAIR model is based on an inverse exponential relationship between LAI and the WDVI,
which was derived using field spectral radiometer data experimentally [24,28]. This relationship is
built upon a simplified reflectance model of the light extinction through the vegetation canopy. The
WDWVI is calculated from the reflectance in red (p,.4) and near-infrared (p,,;;-) as follows:

WDVI = pyir — Pred * Bomir "

Psred
where p__ . /p. .., represents the ‘soil line slope’, a linear relationship between red and near-infrared
reflectance of bare soils [38]. The soil line slope parameter accounts for the effects of the soil

background on the calculation of the vegetation index and it has to be determined for each test site [23].
Based on the WD VI, LAl is determined according to the following equation [28]:

LAl = —%* In (1 — WDV ) (2

WDV,
where o is an extinction and scattering coefficient and WDV L, is the asymptotically limiting value for
the WDVI. The two model parameters (WDVI. and the o coefficient) can be estimated empirically
using a set of LAI values from field measurements and contemporaneous reflectance values from
satellite sensor data [24]. Generally, WDV, is derived directly from the image data considering the
maximum WDVI value for vegetated areas in correspondence of saturation (LAl < 6). The o
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coefficient can be calibrated using a regression analysis technique applied to observed and estimated
LAT values [4]. This latter parameter describes the canopy architecture and it is dependent on the crop
type and the corresponding Leaf Angle Distribution (LAD) value.

Different values of the parameters in Equation (2) can be found in the literature. For instance,
Clevers [25] reported an o value ranging between 0.252 and 0.53 and WDVI, ranging between 68.6
and 57.9 for vegetative and generative growth stages of barley respectively.

In this study, we visually selected about 40-60 sample points of bare soils within each of the
acquired satellite image data and the reflectance of these points was used for calculation of the soil line
slope. The soil line slope was then used to calculate the WDVI. The WDVI,, value was extracted for
each image. Then, we derived the o coefficient using an unconstrained nonlinear optimization method,
which minimizes the Root Mean Square Error (RMSE) (our cost function) between measurements and
predictions of LAI values. An initial o value of 0.35 was used as first guess based on previous
campaigns for the Italian test site. We checked different starting values, which always converged at the
same final result.

We tested three different procedures (Table 1) to derive a set of oc and WDV, values to be applied
throughout the growing season. Firstly we considered a test site specific estimation of the empirical
parameters of Equations (1) and (2) obtaining one seasonal average (constant) value of the soil line
slope and of WDVlI.,.. The o coefficient was derived using the pooled set of LAl measurements
acquired during the three months campaign. In this way, the time-series field and satellite datasets
were considered as a unique dataset. This procedure was repeated independently for each of the two
test sites under investigation. In this case, we would perform field measurements for each new test site
only during the first year or during short field campaigns before the operational activities. Once
calibrated, the model parameters could be applied to the newly acquired images, without further need
for field work.

The second procedure consisted in deriving a set of image-specific model parameters for each new
satellite acquisition. In this case, we calibrated the o coefficient using only the LAI measurements
acquired in correspondence of each acquisition. To avoid introducing biases related to measurements
taken on different dates, we did not consider antecedent measurements. This procedure represents the
most intensive and time consuming approach, in which we would need field campaigns for each new
satellite overpass for the estimation of image-specific o coefficients. Similarly, we would extract a
certain number of points from each image in order to calculate the soil line slope and the WDVI,,.

Differently, a constant o value to be applied throughout the growing season for each test site was
considered as third procedure. This represents an intermediate solution in terms of resources required
since we retain the same approach of the second case for deriving image-specific soil line slope and
WDVI,, values.

These three procedures reflect possible practical approaches for applying the CLAIR model in order
to derive time-series of LAl maps in nearly real-time (48 h from satellite acquisitions) and for
operational campaigns. For instance, the CLAIR model has been used to derive LAI for the calculation
of crop water requirements in irrigation advisory services [4].

Considering the feasible size of the field datasets for this kind of analysis (74 and 55 measurements
for Italy and Austria, respectively), the validation of the model performance was achieved by
resampling the field dataset using a bootstrapping approach with 200 repetitions [39] in order to
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provide an unbiased estimation of the model accuracy [40]. To quantify the model prediction
accuracies we used the following statistical measures: RMSE, the coefficient of determination (R%)
between measured and predicted LAl and the confidence intervals.

2.4.2. Statistical Based Approaches for the Estimation of LAI: Support Vector Machine (SVM) and
Random Forest (RF) Regression

A second group of techniques were applied for the estimation of LAl based on statistical models
established using (1) a least-squares version of a support vector machine (SVM) regression and (2) a
regression tree using Random Forest (RF) algorithm.

SVMs have been developed in the framework of statistical learning theory by Vapnik [41] for
classification purposes and have been recently extended to regression problems [42]. SVMs have been
applied for the estimation of LAI in previous studies [43—46] providing satisfactory results. A
comprehensive tutorial for SVM regression was provided by [47]. In this study we used a SVM
implemented by [48] as a Matlab toolbox. We selected a linear kernel function, which provided better
results compared to polynomial or radial basis functions.

RF is an ensemble algorithm developed by Breiman [49]. It consists of several regression trees;
each tree is trained on a bootstrap sample of the training dataset and the majority vote is taken for the
RF prediction. Random subsets of input variables are used to train the regression tree. The algorithm
provides an internal unbiased estimate of the error using the so-called ‘out-of-bag’ (OOB) samples. RF
has been successfully used in several classification problems but limited application to biophysical
vegetation parameters retrieval can be found in the literature [50,51]. In this study we used a Matlab
implementation of RF [52] with a default set of model parameters (no. of trees = 500; no. of input
variables randomly chosen at each split = 2).

For both SVM and RF, the regressions were established using LAl measurements and atmospherically
corrected reflectance values in green, red and near-infrared bands. Additionally, date-specific WDVI
and WDV, values were used as input variables. This set of variables provided the most stable and
accurate results compared to using seasonal average of WDVI and WDVI,, values or reflectance only.
In the case of SVM, we first optimized the regularization parameter y of SVM model using a simplex
search method and a leave-one-out cross validation approach with the experimental LAl dataset. Then,
two models (one for each test site) were applied to the experimental datasets to calculate RMSE and
R?. In the case of RF, the model performance was calculated using the RMSE obtained from the
average OOB Mean Square Error (MSE) over 500 trees. A pseudo-coefficient of determination
(pseudo-Rz) was calculated as follows: 1 — MSE/variance (LAI).

3. Results and Discussion
3.1. Identification of the CLAIR Model Parameters and LAl Estimation Accuracy

Procedure 1: the soil line slope and of the asymptotic limiting value for the WDVI (WDVL,,), along
with the dates for field campaigns and satellite acquisitions are presented in Table 3. The o coefficient
was derived using a bootstrap approach with 200 resampling of the experimental LAl dataset. The
RMSE and R? between measured and predicted LAl and the corresponding o coefficient were taken as
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the median values of the 200 bootstrap estimations. Prediction accuracies are presented in Table 4. The
scatterplots between field and satellite estimates of LAl are shown in Figure 3. Applying this first
procedure resulted in a RMSE of 0.817 and a R* of 0.57 for the study region in Italy. For Austria, the
RMSE was 1.037 and R* was 0.57. It can be observed that the distance from the 1:1 line increases with
higher values of both measured and estimated LAl. In addition, the variation of the actual estimates
increases along with the LAl-value, an effect which was greatly reduced for the study region in Italy
by using the second procedure. As expected, the RMSE for the Austrian case study was higher given
the larger variability of the crop types in this area compared to Italy.

Procedure 2: the LAl measurements from the last two field campaigns (31/07 and 07/08, 13/08 and
10/09) and the corresponding image data for the Italian test site were combined in a single dataset due
to a limited number of field measurements. Similarly, the LAI and image data from the last campaign
(07/09 and 21/09) for the Austria test site were combined. The number of LAl measurements used for
each image-specific calibration, including LAI statistics (minimum, maximum and mean values) is
provided in Table 2.

The scatterplots between field and satellite estimates of LA] are shown in Figure 4. Varying the soil
line slope and thus WDVI values helped to improve WDVI based LAl estimation. Using the
parameters (soil line slope and WDVL,,) listed in Table 3 resulted in an RMSE of 0.388 and R” of 0.89
for the test site in Italy (Table 4). In addition, the higher variation of LAI estimation could be reduced
when compared to the first procedure. For the Austrian test site the RMSE was 0.82 and R? was 0.66.
Analyzing the data presented in Table 4, we noticed that the range of variability of the o values (0.08)
in the Austria test site is greater than the Italian one (0.04). This explains the Jarger RMSE observed in
Austria as a consequence of the large crop variability in this area. In spite of this, larger errors are
observed only for LA values greater than 3.

Procedure 3: results are presented in Table 4 and in Figure 5. A constant o coefficient value
throughout the growing seasons and image-specific variation of soil line slope and WDV, resulted in
a RMSE of 0.407 and R? of 0.88 for Italy and a RMSE of 0.86 and R” of 0.64 for the Austrian test site.
No substantial changes in the performance of the LAI estimation were observed when comparing this
procedure to the full image-specific procedure. The slight increase in the RMSE is compensated by the
reduced field work requirements of this approach.

3.2. Parameterization of Support Vector Machine and Random Forest (RF) Regressions and LAl
Estimation Accuracy

The results of the SVM tuning provided a 7y value of 0.5435 and 0.2998 for ltaly and Austria,
respectively. The application of tuned models (one for each test site) to the experimental datasets
resulted in a RMSE of 0.394 and 0.785 for the Italian and for the Austria test sites, respectively. R*
resulted in 0.86 for Italy and 0.69 for Austria. The application of the RF regression achieved a RMSE
(OOB) of 0.502 + 0.027 and R* of 0.82 for the Italian case study and a RMSE of 0.860 + 0.017 and R*
of 0.63 for the Austrian case study. Compared to the CLAIR model performance, SVM achieved
comparable accuracy for procedures 2 (Figure 4) and 3 (Figure 5) with image-specific soil line slope
and WDVI., values. On the contrary, RF reported slightly lower accuracies for the Italian case study.
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However, the error estimates obtained from the OOB samples might be more realistic compared to the
RMSE estimates for SVM.

Table 3. Soil line slope and WDVI,, values for each satellite image in the two study
regions. The seasonal averages correspond to the constant values used in procedure 1.
Image-specific soil line slope and WDV, values were used for procedure 2 and 3.

EO Acquisition Dates Soil Line Slope WDVI.
Italy (Sele /] Volturno)
Seasonal average 1.35 0.518

Seasonal Min-Max 1.24-1.42 0.469-0.588
Image | 04/07 // 07/07 1.37// 1.33 0.493//0.488
Image 2 10/07 // 13/07 1.38//1.32 0.50//0.495
Image 3 20/07 /1 20/07 1.37//1.42 0.469//0.538
Image 4 29/07 1.33//1.37 0.56
Image 5 05/08 1.33//1.38 0.485
Image 6 11/08 1.24/1.38 0.588
Image 7 18/08 1.30//1.38 0.48//0.525
Image 8 09/09 1.31 0.54

Austria (Marchfeld)

Seasonal average 1.47 0.596

Seasonal Min-Max 1.41-1.64 0.57-0.61
Image | 04/07 1.64 0.57
Image 2 02/08 1.41 0.61
Image 3 22/08 1.47 0.60
Image 4 07/09 1.43 0.60
Image 5 21/09 1.41 0.60

Table 4. Statistics of the CLAIR model accuracy based on the experimental field dataset.

Procedure Case Study Dataset RMSE R? o

1 Italy Combined image 1-8 0.82£0.01 0.58 0.32 £ 0.01
Austria Combined image -5 1.04 £0.03  0.58 0.39 £ 0.02

Italy Image 1 0.23+0.02 095 0.34 £ 0.02

Image 2 0.24+0.01 096 0.35+0.01

Image 3 0.24+0.01 097 0.37+0.01

Image 4 0.49+£0.03 0.75 0.34£0.02

Image 5 & Image 6 0.44+£0.02 0.74 0.33+0.01

2 Image 7 & Image 8 0.54+0.03 0.82 0.36 £ 0.02
Austria Image | 0.79+0.05 0.66 0.32+0.03

Image 2 0.85+0.03 0.64 0.40 = 0.04

Image 3 0.53+£0.04 0.78 0.32+£0.02

Image 4 & Image 5 0.97+0.04 0.54 0.32+0.02

3 Italy Combined image 1-8 0.41+0.004 0.88 0.35+£0.01

Austria Combined image [-5 0.86+0.01 0.64 0.34+0.02




Remote Sens. 2013, 5

Figure 3. Procedure 1: scatterplots of the LAI estimation for the Italian case study (a) and
for the Austria case study (b). Vertical error bars correspond to the Standard Error on LAI
(SEL) measurements for each ESU. Horizontal error bars correspond to the Standard Error

on LAI predictions and it was estimated using resampling with 200 bootstraps.
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Figure 4. Procedure 2: scatterplots of the LAI estimation for the Italian case study (a) and
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Figure 5. Procedure 3: scatterplots of the LAl estimation for the Italian case study (a) and

for the Austria case study (b).
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3.3. Transferability of LAI Estimation Models from One Test Site to Another

To test the transferability of the CLAIR model parameters from one test site to another we used the
results obtained from the procedure 3 (see Table 1) based on image-specific soil line slope and

WDV, seasonal- and test site-specific o coefficients. An example of the LAl time-series maps

derived with this procedure is presented in Figure 6.

Figure 6. An example of the LAI time-series of DEIMOS-1 satellite sensor data for an
area in the Marchfeld region (Austria). The maps were derived using the CLAIR model
with an image-specific tuning of the soil line slope and WDVI, and a constant o

coefficient value.
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The reciprocal exchange of the calibrated models resulted in a RMSE of 0.412 and R* of 0.88 for
the Italian test site. The RMSE for the Austrian test site was 0.855 with R? of 0.64. Both datasets
responded a slight LAl underestimation starting from measured LAI values of 2.3 and higher.
Percentage variations in the RMSE compared to test site specific models were lower than 0.5%.
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Similarly, we tested the transferability of the SVM and RF regressions between test sites. The
application of RF models provided a RMSE of 0.747 when transferring to Italian case study and a
RMSE of 0.906 for the Austrian case study. In this case, we observed poorér prediction power
compared to test site specific models, with a percentage increase in the RMSE up to 24.5%.

The mutual application of the SVM regression models provided a RMSE of 0.783 and of 0.808 for
the Italian and Austrian case study respectively, with a percentage increase of the RMSE up 38.9%
compared to test site specific models. A summary of the results is provided in Table 5.

Table 5. Transferability between test sites (IT: Italy; AT: Austria) of the CLAIR model,
Random Forest and Support Vector Machine regressions. The parameters of the CLAIR
model used in this comparison were derived following the procedure 3.

LAI Estimation Variations in RMSE (%)

Transferability RMSE R’

Methods Compared to Test Site Specific Models
CLAIR model IT with AT model 0412  0.88 +0.2%
AT withIT model  0.855 0.64 -0.5%
Random Forest IT with AT model  0.747  0.75 +24.5%
AT withIT model 0.906 0.61 +4.6%
Support Vector Machine IT with AT model  0.783  0.79 +38.9%
AT withIT model  0.808  0.69 +2.3%

4. Conclusions

In this study, we described a methodology to derive consistent time-series of Leaf Area Index (LAI)
maps using an exponential relationship (CLAIR model) between LAI and the soil-line based Weighted
Difference Vegetation Index (WDVI). The study analyzed different procedures for estimating the
CLAIR model parameters (soil line slope, WDVI,, and o coefficient) and highlighted the operational
aspects of these approaches. We tested a seasonal average (constant) and an image-specific tuning to
increase the consistency in the analysis of atmospherically corrected time-series images. Additionally,
we applied two other statistical methods based on Random Forest (RF) and Support Vector Machine
(SVM) regressions. These two algorithms, applied in several remote sensing problems have proved
particularly useful in recent years for land cover classification. However, few studies can be found in
the remote sensing literature for their application to biophysical parameter prediction problems.

The experimental analysis was conducted using a set of DEIMOS-1 satellite sensor data acquired
over two agricultural regions in Southern Italy and Eastern Austria. In particular, these data were
acquired in the context of two satellite-based irrigation advisory services; LAl maps are used as input
in agro-meteorological models to derive crop water needs. This information is delivered directly to the
farmers for water management purposes in nearly real time. The Italian case study represents already
an operational service, while the Austrian site is a test-bed for further development and testing
transferability of models and procedures from different environments, agricultural and management
practices. Although limited to one satellite type only, this dataset offered the possibility to evaluate the
transferability of the model parameters from one test site to another. This is particularly relevant in
case no field measurements are available.
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Using the CLATR model with an image-specific tuning of the soil line slope and WDVI,, and a
constant o coefficient value provided the most accurate and consistent results (RMSE =0.407 and 0.86
for Italy and Austria respectively). Notably, this approach has the minimum requirements for
fieldwork. Considering this procedure, we also evaluated the transferability of the local model
parameters between the two test sites observing a decrease in estimation accuracies smaller than 0.5%.
RF and SVM regressions provided comparable results for each test site. However, we observed severe
limitations in the transferability of these statistical methods between test sites with an increase in
RMSE up to 24.5% for RF and 38.9% for SVM.

This work indicates that the CLAIR model can provide satisfactory accuracy if an adequate model
parameterization is performed; results achieved here (with a limited number of spectral inputs) do not
justify the use of advanced regression techniques (such as RF and SVM) compared to simple and
robust semi-empirical relationships. One advantage of the semi-empirical model used in this study is
that its parameters have a physical denotation and it is possible to interpret and explain the model
behavior. In addition, it has the advantage of not requiring a priori crop map information. This
additional layer could be used, if available, to perform a crop specific calibration of the extinction and
scattering coefficient (o). However, this would require additional fieldwork to achieve a statistically
significant number of measurements for each crop type.
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