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Abstract

Debris flow is a very common natural hazard that represents the gravity-driven flow of a mix-
ture of various sizes of sediment, water and air, down a steep slope, often initiated by heavy
rainfall or snow melting. The mud carrying large items, such as boulders and trees, rushes out
the channel and accumulates in a thick deposit that can wreak havoc in developed areas and
cause serious casualties and property losses. In order to avoid or mitigate such catastrophic
events, research on the initiation mechanism and flow characteristics of debris materials is re-
quired. There are mainly two directions about research of debris flows. The first one is focus-
ing on the macroscopic characteristics of debris flows to establish some empirical relationships
based on the statistics of a large number of debris flow events. The second direction of debris
flow research is focused on the material property and trying to develop more sophisticated
constitutive model for numerical simulations. This thesis follows the second direction, which
requires better understanding of the initiation and flowing mechanisms of debris flows.

The main factors influencing the initiation of debris flow are, among others, the topography,
material properties, water and the initial stress state in the affected slope. Upon initiation of
debris flow, debris material shows fluid-like behavior. In these processes, the development of
high pore water pressure is regarded as the most significant triggering factor. The water from
heavy rainfall or snow melting triggers an upland landslide which may develop into a hillside
debris flow when the water in the sliding mass cannot be drained quickly and therefore gives
rise to excessive pore water pressure. In addition, excess pore water is also observed during
the period of runout and depositing. Numerical simulation is an important tool in the analyses
of triggering and runnout distance of debris flows. In the simulations, a competent constitutive
model is required to capture the transition between the solid-like and fluid-like behaviors and
to describe the pore water pressure (or effective stresses) in the initiation stage and flowing
stage.

In the constitutive modelling, debris materials are normally simplified as a mixture of solid
spherical particle and viscous fluid and treated as continuum with microstructure. In most
conventional models, constitutive equations for the static and dynamic regimes are formulated
and applied separately. Although some models for granular-fluid flows take the stress state
of the quasi-static stage into account, the employed theories for the static regime still fail
to determine the evolving of pore water pressure (or effective stress) from the deformation
directly. Effective stress is a concept from soil mechanics in which the constitutive theories for
the static regimes of saturated granular materials are well established. Hypoplasticity is one of
them, which was originally proposed as an alternative to plasticity for describing the solid-like
behavior of granular materials. Effective stress can be directly determined from deformation
by hypoplastic models.



In this thesis, we combine the rate-independent constitutive theories of statics and the rate-
dependent dynamic theories to develop a unified and multi-scale constitutive model for de-
bris materials. A framework which consists of a static portion for the frictional behavior and
a dynamic portion for the viscous behavior is proposed. Bagnold’s constitutive theory was
then slightly modified and employed as the dynamic portion of the framework. The Mohr-
Coulomb criterion is used as the static portion and combined with the modified Bagnold’s
model to obtain a complete model for simple-shearing. This model is further extended to
a three-dimensional constitutive model for granular-fluid flows. Simulations of two annular
shear tests verified the capability of the modified Bagnold’s model to predict the stress state
in the flowing stage and brought out the shortcoming of the Mohr-Coulomb criterion to cap-
ture liquefaction in the initiation stage. Then, the applicability of a specific hypoplastic model
for describing the quasi-static state of granular-fluid flows is shown by simulating undrained
simple shear test of saturated granular materials. A concrete constitutive model for debris ma-
terials is obtained by using the hypoplastic model to replace the Mohr-Coulomb criterion in
the unified model. In the simulations of the annular shear tests, partial and full liquefaction
of the specimens with different densities are well predicted by the hypoplastic portion. The
predicted stress-strain curves agree well with the experimental data. Finally, the unified model
is implemented in a Smoothed Particle Hydrodynamics (SPH) code and verified by simulat-
ing some boundary value problems of granular flows. In the case of granular flow down an
inclined plane, steady dense granular flow is observed over a range of inclinations, which is
consistent with the theoretical analysis. For the granular pile collapse and the granular flow
in the rotating drum, the numerical results show wealth of various behaviors, i.e. quasi-static
motion, shear band, flow initiation, fully developed granular flow and granular deposition. The
implementation of the unified model in SPH is promising to handle the complex behavior of
granular flow in a consistent numerical model. It should be noted that all the numerical sim-
ulations by SPH in this thesis are focused on dry granular flows. Since some aspects, such as
hydro-mechanical coupling and particle segregation, still need further investigation to be con-
sidered in the numerical and constitutive model, applying the unified model to the numerical
simulation of debris flow in nature is an interesting challenge in our future work.
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Chapter 1

Introduction

1.1 Background

Debris flow is a very common natural hazard in mountainous areas of many countries. It rep-
resents the gravity-driven flow of a mixture of various sizes of sediment, water and air, down
a steep slope, often initiated by heavy rainfall and landslides [37]. In the general concept of
landslides, debris flows including mudflows, mudslides and debris avalanches are classified
as high-speed landslides which are destructive due to the great kinetic energy. A typical de-
bris flow usually starts in a hillslope depression where loose debris materials are stored, and
retains a scar there after the event. The debris then flows down along an existing stream chan-
nel like a viscous fluid and is accelerated to a high speed. The velocity of debris flows can
be more than 30 m/s; however, typical velocities are less than 10 m/s [59]. Its volume may
grow with significant erosion or combination of debris flows from different sources. When
the flow reaches the canyon mouth or a flatter ground, the debris spreads over a broad area
to form a fan-shaped deposit. In mountainous areas, people are willing to settle down close
to rivers or torrents because these areas are more favorable to urban development. However,
these areas are more likely to suffer from debris flows. The mud carrying large items, such as
boulders and trees, rushes out the channel and accumulates in a thick deposit that can wreak
havoc in developed areas and cause serious casualties and property losses. In recent years, a lot
of catastrophic debris flows were registered worldwide. For example, the Zhouqu debris flow
on August 7th, 2010, in China destroyed the the Zhouqu County town with a total volume of
almost 144.2× 104m3 and resulted in over 1700 casualties [102]; a series of debris flows took
place in the mountainous region of Rio de Janeiro State on January 11th and 12th, 2011, and
caused more than 1500 deaths and severe damage to the local infrastructure [4].

In order to avoid or mitigate such catastrophic events, preventive measures need to be taken
in the threatened areas. At the same time, research on the initiation mechanism and flow char-
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acteristics of debris materials is required for the design of the preventive measures. There are
mainly two directions about the research of debris flows. The first one foucses on the macro-
scopic characteristics of debris flows to establish some empirical relationships based on the
statistics of a large number of debris flows, such as the relation between the maximum debris-
flow volume and the peak discharge, the mean flow velocity or the runout distance [69], the
relation between the triggering of debris flows and the rainfall intensity and duration [91].
These relationships are widely used in practice since numerical methods are not widely used.
Thus, the second direction of debris flow research is focusing on the material property and
trying to develop more sophisticated constitutive model for numerical simulations. The study
in this thesis is along the second direction, which requires deep understanding of initiation and
flowing mechanisms of debris flows.

The main factors influencing the initiation of debris flow are, among others, the topography,
material parameters, water and the initial stress state in the affected slope [46]. Earth slopes
with inclinations ranging from 26◦ to 45◦ have been generally identified as most prone to de-
bris flow initiation [91]. The common solid volume fraction of debris materials, defined as the
ratio between the solid volume and the total volume of a representative volume element, varies
between 30 and 65%. The water from heavy rainfall or snow melting makes the unconsolidated
superficial deposit on a steep hillside saturated, which may give rise to reduced shear strength
to trigger landslide. Such an upland landslide may develop into hillside debris flow when the
water in the sliding mass cannot be drained quickly and therefore gives rise to excessive pore
water pressure. In this case, the effective stresses between solid particles will decrease to cause
reduction or complete loss of shear strength. Upon initiation of debris flow, debris material
shows fluid-like behavior. According to Iverson [41], debris flow can be mobilized by three
processes: (i) widespread Coulomb failure along a rupture surface within a saturated soil or
sediment mass, (ii) partial or complete liquefaction of a sliding mass due to high pore-fluid
pressure, and (iii) conversion of landslide translational energy to internal vibrational energy.
In these processes, the development of high pore water pressure is regarded as the most signifi-
cant triggering factor. In addition, experimental observation [39] shows that an almost constant
excess pore water pressure persists during the period of runout and deposition of debris flows.
Because of the characteristics of large scale, it is difficult and non-economical to simulate
a debris flow with specific terrain and material through physical model tests. Therefore, nu-
merical simulation is often used to analyses the triggering and runnout distance, in which a
competent constitutive model is required. As introduced before, debris materials show solid-
like behaviors before failure and fluid-like behaviors after failure. A constitutive model which
can capture the transition between the solid-like and fluid-like behaviors should has the capa-
bility to describe the developing of pore water pressure (or effective stresses) in the initiation
stage and flowing stage.
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Actually, debris materials are normally simplified as a mixture of solid spherical particle-
viscous fluid and treated as a fluid continuum with microstructural effect in the constitutive
modelling [24, 25]. Some important material parameters such as solid volume fraction (or
void ratio in soil mechanics) and the internal friction coefficient are taken into account. In
most conventional models, constitutive equations for the static and dynamic regimes are for-
mulated and applied separately, such as the models for the solid-like behaviors of granular
materials [94, 95, 62, 17], and that for the fluid-like behaviors [11, 5, 43]. Although some
models for granular-fluid flows have taken the stress state of the quasi-static stage into ac-
count, the employed theories for the static regime, such as Mohr-Coulomb criterion [75] and
extended von Mises yield criterion [71], fail to determine the evolving of pore water pressure
from the deformation directly. Generally, there are three approaches in modelling of granular
flows. The first one is that granular flow can be regarded as viscous fluid with an apparent
viscosity related to shear rate and material parameters, such as the models developed by Bag-
nold [5] and Jenkins & Savage [43]. The second idea is that the generalized Coulomb friction
law is considered to be satisfied in the entire process from quasi-static state to flowing state
of a granular flow, which means the shear stress is proportional to the normal stress with a
dynamic friction coefficient that is a function of the confining pressure and shear rate rather
than a constant. Typical models based on this idea are the one developed for dry dense gran-
ular flows by Jop et al. [45] and the one for granular-fluid flows [13] which is extended from
Jop’s model. The third notion about constitutive modelling of granular flows is similar with
the second one where friction law is always satisfied. In the third one, however, the friction
coefficient is regarded as constant while the effective part of the normal stress is considered,
which is changing with the evolving of pore-fluid pressure. The details of this idea and the
relative hydraulic models are well introduced in the literature [37, 38, 40, 73]. The models
based on the last two ideas are normally complete model which can fulfill the description of
the stress state in the entire flow process. However, additional theories, such as Darcy’ law, are
required to capture the evolving of pore-fluid pressure and further determine the solid-solid
contact stress (or effective stress) in a granular-fluid flow. Effective stress is a concept from
soil mechanics in which the constitutive theories for the static regimes of saturated granular
materials are well established. Hypoplasticity is one of the latest constitutive theories, which
was originally proposed as an alternative to plasticity for describing the solid-like behavior of
granular materials [94, 95]. The distinctive features of hypoplasticity are its simple formula-
tion and capacity to capture some salient features of granular materials, such as nonlinearity,
dilatancy and yielding [93]. Effective stress can be directly determined from deformation by
hypoplastic models. Therefore, we attempt to combine the rate-independent constitutive theo-
ries with the rate-dependent rheological theories in which no contact stresses before failure is
taken into account. Since the strain rate in the quasi-static stage is much smaller than that in
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the flowing stage, the combination will yield a multi-scale constitutive model for debris ma-
terials. The combined (or unified) model should be rate-dependent and capable of describing
the material behavior from the quasi-static stage to the fast flowing stage.

1.2 Contents

This thesis is organized as follows. Based on Bagnold’s constitutive theory for a gravity-free
suspension [5] introduced in Section 2.1, a framework which consists of a static portion for the
frictional behavior and a dynamic portion for the viscous behavior is proposed in Section 2.2.
Bagnold’s constitutive model is then slightly modified and employed as the dynamic portion.
The Mohr-Coulomb criterion is used as the static portion and combined with the modified Bag-
nold’s model to obtain a complete model for simple shear. This model is further extended to a
three-dimensional constitutive model in Section 2.3. The performance of the proposed model is
presented in Section 2.4 by verifying the capability of the modified Bagnold’s model to predict
exact stress state in the flowing stage and pointing out the shortcoming of the Mohr-Coulomb
criterion to capture liquefaction in the initiation stage. In Chapter 3, the Mohr-Coulomb cri-
terion is replaced by hypoplasticity for the static portion to obtain a unified model for debris
materials. The key features of hypoplasticity are briefly introduced at first. Afterwards, the
applicability of a specific hypoplastic model for describing the quasi-static state of granular-
fluid flows is studied by simulating undrained simple shear test of saturated granular materials
which is important for the initiation of debris flow. In Section 3.3, a complete constitutive
model is obtained by combining the hypoplastic model with the modified Bagnold’s model.
The performance of the new model is demonstrated by some element tests. In Chapter 4, the
new model is implemented in a Smoothed Particle Hydrodynamics (SPH) code and verified
by simulating some boundary value problems of granular flow. The fundamentals of SPH are
introduced at first. The mathematical framework of SPH and the implementation are presented
in Section 4.2. The SPH code is used to simulate some element tests and compared with the
analytic solutions in Chapter 3 in Section 4.3. Then the SPH code is applied to three boundary
value problems to further verify the capability of the unified model. Finally, some conclusions
are drawn in Chapter 5, where some perspectives for future work are discussed.

4



Chapter 2

The constitutive model for granular-fluid
flows

2.1 Bagnold’s theory

Debris flow is one of the most dangerous and destructive natural hazards in the mountainous
area. A reasonable constitutive model for debris materials is the crucial part for the prediction
of flow velocity and run-out distance in the numerical simulation. Due to the complexity of
the composition of debris materials, it is very difficult to take all the particle-sizes of the
solid compositions into account in a constitutive model. Thus, in constitutive modelling, debris
material is normally simplified to be a mixture of monosized particles and Newtonian fluid,
and can be treated as a fluid continuum with microstructural effect [24, 25].

Figure 2.1: The schematic of a simple shear test.

Based on the study about a gravity-free dispersion of solid spheres sheared in Newtonian
liquids, which can be treated as an undrained simple shear test shown in Figure 2.1, Bagnold
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[5] proposed the following relationship between shear stress and shear strain rate

Tv = 2.25λ
3
2µ

dU

dy
= k1

dU

dy
(2.1)

in the so-called ’macro-viscous’ regime and following relationship

Ti = 0.042ρs(λd)2

(
dU

dy

)2

sinαi = k2

(
dU

dy

)2

(2.2)

in the ’grain-inertia’ regime for λ < 12, respectively. In the above expressions, µ is the dy-
namic viscosity of the interstitial fluid; ρs and d are the material density and the mean diameter
of the grains, respectively; dU/dy denotes the shear strain rate; the tangent of the angle αi cor-
responds to the ratio between the shear and normal stress in the grain-inertia regime; λ is the
linear concentration of solid particles defined by

λ =
d

s
=

[(
C0

C

) 1
3

− 1

]−1

(2.3)

where s is the free distance between two particles, C is the mean solid volume fraction, and C0

is the maximum possible solid volume fraction when λ =∞ (s = 0). In Bagnold’s experiment
[5], an analytical value of C0 for spheres, 0.74, was used to calculate the linear concentration.
In other experiments with different materials and testing devices, the maximum measured solid
volume fractions were found related to the size of the particles and the container dimensions.
For the applicability of (2.3) in different experiments, C0 is replaced by the asymptotic limit
of the maximum measured solid volume fraction, C∞, as the container dimensions approach
infinity [34].

The Bagnold number defined as

B =
λ

1
2ρsd

2(dU/dy)

µ
(2.4)

is used to characterize the flow as macro-viscous (B < 40), grain-inertia (B > 450) or tran-
sitional (40 ≤ B ≤ 450). The drag force of the interstitial fluid and particle collisions are
considered to be dominant in the macro-viscous and grain-inertia regime, respectively.

The normal stress P , also termed dispersive pressure, is observed proportional to the shear
stress with a constant value of about 0.75 in the macro-viscous region and decrease progres-
sively from this value through the transition region, till it reaches another constant value at
about 0.32 in the grain-inertia region. It is formulated as

Tv
Pv

= tanαv (2.5)
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and
Ti
Pi

= tanαi (2.6)

where αv and αi correspond to the stress ratio in different regimes and relate to material prop-
erties. In Bagnold’s experiments, the density of solid particles is equal to that of the interstitial
fluids. It is an imaginative arrangement which highlights the effect of the fluid viscosity and
particle collisions, eliminates the effect of gravity and makes the analysis of the experimental
data easier. However, this setting also eliminates the yield stress, which exists in some debris
materials. In addition, the relations (2.1) and (2.2) are developed for particular flow stages
rather than the entire flow process. The constitutive relation for the transition region remains
unspecified.

2.2 A constitutive framework for granular-fluid flows

During the past decades, much effort has been devoted to examine Bagnold’s pioneer work by
analysing the experimental procedure and apparatus [36], or using the conservation equations
to verify the constitutive relations [8, 61, 75]. Based on these analyses, a framework for the
models of solid-fluid flows is developed in this section.

As pointed out before, a shortcoming of Bagnold’s model is that the stress-strain rate relations
(2.1) and (2.2) are developed for two distinct regimes. There is no specific constitutive relation
for the transition region between them. A model that can describe the stresses in the entire
shearing process from the macro-viscous regime to the grain-inertia regime is required for the
simulation of granular flow from quasi-static state to rapid shearing stage.

Based on the experimental results in [5], we assume that the total rheological shear stress Tr is
the sum of Tv and Ti for λ < 12, i.e.

Tr = Tv + Ti. (2.7)

Figure 2.2 shows the comparison between (2.7) and the test data with satisfactory agreement.

Similarly, the total rheological normal stress Pr can be described by

Pr = Pv + Pi. (2.8)

As mentioned before, yield stress was not taken into account in Bagnold’s models. However,
the quasi-static stress-strain relation is an essential part of a complete model for common
granular-fluid mixture in which the effect of gravity cannot be ignored. It was proposed that the
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Figure 2.2: The result predicted by (2.7) for Bagnold’s experimental data of λ = 11 [5].

constitutive equations for the flow of granular materials satisfied a generalized Mohr-Coulomb
type yield criterion as dU/dy → 0 [20, 70]. Shibata & Mei [75] assumed the following relation

T0 = −fP0 sgn

(
dU

dy

)
(2.9)

where T0 and P0 are the shear and normal stresses in the quasi-static state; f is an empirical
coefficient of dynamic friction. Apparently, the specific expression of P0 is the crucial point to
determine the yield stress, and will be discussed in the following sections.

By combining the stresses in the quasi-static state with the rheological stresses for simple
shear, constitutive model can be written out as follows

P = P0 + Pr (2.10a)

T = T0 + Tr. (2.10b)

The above simple model implies that the contributions of contact friction, fluid viscosity and
particle collisions coexist in the entire flow process. P0 and T0 are regarded as the static portion
of the framework. Tr and Pr are termed the dynamic portion.

Bagnold’s tests [5] for two different interstitial fluids with different viscosities but the same
density show significant differences of stresses in the slow shear stage and tend to the same
stress-strain relation when the shear velocity is large enough. The explanation for this obser-
vation is that, in the rapid shear stage, the bulk behavior and dissipation of the flow kinetic
energy are dominated by the inelastic and frictional particle collisions. An impact between
two particles in a viscous liquid approximates a dry impact since the fluid effect is insignif-
icant in comparison with the collision force in this stage [99]. Therefore, the linear term Tv
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and Pv, rather than the quadratic terms Ti and Pi, help to distinguish granular-fluid mixtures
with different interstitial fluid. Dry granular flow can be treated as a particular case where air
is the interstitial fluid. However, in this case, the viscous terms Tv is normally much less than
the yield stress T0 in the beginning of the flow since the shear rate is very small in this stage.
It is also negligible in the fast shearing stage since the viscous effect of air is insignificant
compared to the frictional and collisional effect of particles. Thus, for dry granular flow, the
framework (2.10) can be reduced to the following form.

P = P0 + Pi (2.11a)

T = T0 + Ti. (2.11b)

Figure 2.3: The schematic of an uniform granular-fluid flow on a slope.

For a free surface dry granular flow shown in Figure 2.3, as stated in [61], the relation (2.2) and
(2.6) predict a steady uniform flow only when the slope θ is equal to the angle αi. However,
experimental results [7] show that such steady flow can be obtained not only at a single slope
but over a slope range. This experimental observation can be predicted by the reduced frame-
work (2.11) where a yield stress T0 and the corresponded confining pressure P0 are added to
the inertial stresses [70, 60]. According to the force balance for a steady uniform flow, the
following expressions can be obtained for free surface flow of dry granular material

P0 + Pi = ρsCgh cos θ (2.12a)

P0 tanφ+ Pi tanαi = ρsCgh sin θ (2.12b)

where g is the gravity acceleration; h is the depth along the y axis which is normal to the
flow bed; φ is the internal friction angle at failure which is termed as residual friction angle or
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critical friction angle. Then we get the following stress ratio

P0 tanφ+ Pi tanαi
P0 + Pi

= tan θ. (2.13)

Let us assume that αi is greater than the residual friction angle φ, which is consistent with
the experimental observations of dry granular flows [68]. The normal stress Pi is zero in the
critical state of flow triggering since the flow velocity is almost null at that time point. Thus,
from (2.12) and (2.13), we obtain

P0 = ρsCgh cos θ1 (2.14)

and
tan θ1 = tanφ (2.15)

where θ1 is the critical inclination for the granular material start flowing. With increasing
inclination, another critical state will be reached. In this state, the component of gravity per-
pendicular to the flowing bed is totally balanced by Pi since the flow velocity is large enough
at this inclination. From (2.13), we get

tan θ2 = tanαi (2.16)

where θ2 is the maximum inclination for the equation (2.13) holds. It indicates that the frame-
work (2.11), in which the stresses are divided into a static portion and a dynamic portion, can
predict steady uniform flows over a slope range θ ∈ [φ, αi].

For the case that the quasi-static stresses P0 and T0 decrease to same magnitude with the
drag force Tv due to buoyancy of the interstitial fluid or liquefaction (or gasification) under
undrained boundary condition, it is reasonable to speculate that the ratio between shear and
normal stresses will vary from the residual friction coefficient tanφ to the stress ratio of the
’macro-viscous’ stage tanαv at first, and then converge to tanαi in the fast flow stage.

By taking the effect of the interstitial fluid into account, a constitutive model developed within
the framework (2.10) can describe the stress-strain rate relations for both dry granular flows
and granular-fluid flows. It is expected that the constitutive models based on this framework
can capture the stress state throughout the shearing process from quasi-static to high-speed
shearing stage.

2.3 A constitutive model for granular-fluid flows

In this section, a concrete simple-shearing model for granular-fluid flow is developed based on
the framework (2.10). The specific expression for the flowing stage is determined by modifying
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former mentioned Bagnold’s models. A conventional approach is employed to determine the
yield stresses P0 and T0. The shortcoming of this approach is studied for further comparison
with a hypoplastic model introduced in next chapter. Inspired by a common structure for some
former models [89], the simple-shearing model is then extended to three-dimensional form.
Although the static and dynamic portions are formulated in different mechanical framework,
both the static and dynamic stresses in the new model are regarded as effective stress since
they are stresses of the solid phase. Obviously, the shear stress from model (2.1) will vanish
when the solid volume fraction decreases to zero.

2.3.1 Constitutive relation for the quasi-static state

As stated before, the yield stress T0 is proportional to the normal stress P0 with a constant
friction coefficient. The empirical friction coefficient, f , is considered to be equal to tangent of
the residual friction angle φ, which can be measured in simple shear tests [74], and is assumed
independent of shear rate. From (2.9), the shear stress in the quasi-static stage is expressed as

T0 = −P0 sgn

(
dU

dy

)
tanφ. (2.17)

If P0 is determined, the shear stress T0 will be obtained consequently. The normal stress P0

is usually produced by gravity. Take the free surface dry sand flow shown in Figure 2.3 as an
example, the normal stress is the component of gravity perpendicular to the flow plane,

P0 = ρsCghcosθ. (2.18)

For the case of granular-fluid flow with external load on the flow surface and in which no
excess pore water pressure is developed, P0 is easily determined by

P0 = (ρs − ρf )Cgh cos θ + Pl (2.19)

where ρf is the density of the fluid and Pl is the external load component normal to the flowing
bed.

The simple relation (2.17) can be easily implemented in numerical calculation. However, the
simple treatments of the normal stress, (2.18) and (2.19), are not capable to describe some
complex behaviors of granular-fluid mixtures in the quasi-static state, such as liquefaction
which means gravity of the solid particles are fully or partially eliminated by the excess pore
water pressure. These simple relations for the static stresses are used in the element tests in
this chapter for comparison with the more sophisticated theory studied in next chapter.
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2.3.2 Constitutive relations for the flowing state

The constitutive relations for the flowing state are developed based on Bagnold’s constitutive
model for concentrated gravity-free suspension [5]. From (2.1) and (2.2), two dimensionless
quantities are obtained as

Tvρsd
2

λµ2
= 2.25B (2.20)

and
Tiρsd

2

λµ2
= (0.042 sinαi)B

2. (2.21)

Both of them depend only on the Bagnold number B. Note that the above relationships are
inconsistent with the experimental observation when the linear concentration, λ, is greater
than 12 [5, 36]. Note further that the dimensionless quantities are also dependent on the linear
concentration. Thus, the stress relations (2.20) and (2.21) are assumed to have the following
forms

Tvρsd
2

λµ2
= f1(λ)B (2.22)

and
Tiρsd

2

λµ2
= f2(λ)B2 (2.23)

where f1(λ) and f2(λ) are functions of λ to be specified.

(a) Shear stress in the macro-viscous regime

We first investigate the shear stress in the macro-viscous regime and attempt to propose a
constitutive model suitable for the whole spectrum of λ in Bagnold’s experiments. Actually,
Bagnold derived an expression of the total shear stress for the viscous case as

T v = (1 + λ)

[
1 +

1

2
f(λ)

]
µ

dU

dy
, (2.24)

in which T v is the total shear stress composed of the grain and fluid contributions Tv and τv;
f(λ) is a function of linear concentration which determines the amplitude of the shear velocity
fluctuation with f(0) = 0. The question to be answered is that how to split the total shear
stress, T v, into Tv and τv. Bagnold assumed a simple relation for the fluid contribution to the
total shear stress in the grain-inertia regime as [6, 36]

τi =
τ0

(1 + λ)
, (2.25)

where τ0 is the shear stress of pure fluid. The fluid contribution decreases with the increasing of
the linear concentration. This relation is assumed also applicable in the macro-viscous regime,
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i.e.
τv = τi =

µ

(1 + λ)

dU

dy
. (2.26)

So, based on (2.24) and (2.26), we obtain the grain contribution of shear stress as

Tv = T v − τv =

{
(1 + λ)

[
1 +

1

2
f(λ)

]
− 1

1 + λ

}
µ

dU

dy
. (2.27)

By introducing Bagnold’s assumption that f(λ) = λ into (2.27), the expression of Tv is pre-
liminarily determined as

Tv =

[
(1 + λ)

(
1 +

1

2
λ

)
− 1

1 + λ

]
µ

dU

dy
. (2.28)

Based on this relation, the dimensionless quantity for the ’macro-viscous’ regime can be easily
obtained

Tvρsd
2

λµ2
=

(
λ−

3
2 +

3

2
λ−

1
2 +

1

2
λ

1
2 +

λ−
3
2

1 + λ

)
B. (2.29)

Obviously, (2.29) is a concrete form of the proposition (2.22) which is applicable for the
granular-fluid flows with high granular concentration to some extent. For exact prediction,
a further modification is required.

Figure 2.4: The schematic of a simple shearing granular-fluid flow with a stagnant zone be-
neath the flowing zone

A well-known phenomenon in granular-fluid flows is that the shear stress is relatively insensi-
tive to the solid volume fraction when this parameter is below approximately 0.5, but increase
rapidly when it exceeds this critical value [34]. Some previous works [23, 79] used a power se-
ries of the volume fraction (or the linear concentration) combined with an exponential term to
describe the dynamic viscosity of granular-fluid mixture. These expressions were determined
by fitting the shear stress vs shear strain rate curves. An important experimental observation
that a stagnant zone exists in the shear tests of a dense granular-fluid mixture was ignored in
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these analyses. It’s recognized that the solid volume fraction must be less than a critical value
Cc to assure a full shearing to occur [5, 34]. Bagnold [6, 75] stated that Cc depends on the
packing pattern and lies between 0.53 and 0.65. Let us consider a gravity flow shown in Figure
2.4. When the mean solid volume fraction C is greater than Cc, a stagnant zone with thickness
H − h appears at the bottom of the specimen. When C reaches the attainable maximum vol-
ume fraction in a specific apparatus, Cm, flows cannot happen and h = 0. For a uniform flow,
such as Bagnold’s experiments in 1954, a rational assumption is that Cc = Cm. In a steady
flow with C > Cc, particles exchanging between the flowing and stagnant zone will reach a
balance state. We deduce that the mean solid volume fraction in the upper layer, Cf , will keep
at the critical valueCc and the mean value in the stagnant zoneCs is greater thanCc. Otherwise
solid particles will move from the stagnant zone to the flowing zone till Cf is equal to Cc. For
two cases with the solid volume fraction C1 < Cc and C2 > Cc respectively, the measured
shear stresses with same shear velocity U are Tv1 and Tv2. Based on the above analysis, we
have

Tv
1 = µ(C1)

dU

dH
(2.30)

and
Tv

2 = µ(Cc)
dU

dh
(2.31)

where µ(·) is the dynamic viscosity as a function of the mean solid volume fraction. It is easy
to show that

Tv
2 > Tv

1 (2.32)

since
µ(Cc) > µ(C1) (2.33)

and
dU

dh
>

dU

dH
. (2.34)

The shear stress demonstrates dramatic increase when the solid volume fraction exceeds the
critical value Cc. This is attributed to both the increase of the dynamic viscosity and the de-
crease of the flowing zone thickness. However, the total thickness H rather than h is normally
used in the calculations of the dynamic viscosities, which would underestimate the shear rate
dU/dy. Note that the existence of the stagnation zone is ignored in the constitutive modelling
of granular-fluid flows. In other words, the critical value Cc should be taken into account in
the constitutive model for granular-fluid mixture. Inspired by [75], we propose the following
model for the shear stress in the macro-viscous regime.

Tv = K1
dU

dy
, (2.35)
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where

K1 =

[
(1 + λ)

(
1 +

1

2
λ

)
− 1

1 + λ

]
µ

(
1− C

Cc

)−n
(2.36)

is called effective viscosity; n is a fitting parameter. In Shibata & Mei’s work [75], it was
chosen n = 1.

(b) Shear stress in the grain-inertia regime

Bagnold’s data [5] show that shear stresses in different regimes deviate as a whole with the
varying of the linear concentration λ in the logarithm coordinates of ρsd2(dU/dy)2 vs grain
shear stress. It is reasonable to assume that the shear stress in the ’grain-inertia’ regime Ti
changes in the same rate with Tv when λ is the single variable. Based on this assumption,
Bagnold’s model for the shear stress in the ’grain-inertia’ regime, (2.2), is modified to be

Ti = K2

(
dU

dy

)2

(2.37)

where
K2 = 0.042Rvρs(λd)2 sinαi (2.38)

is the modified coefficient and

Rv =
K1

k1

=

[
(1 + λ)

(
1 + 1

2
λ
)
− 1

1+λ

] (
1− C

Cc

)−n
2.25λ

3
2

(2.39)

is a correction factor.

(c) A simple shearing model for granular-fluid mixture

Substituting (2.35) and (2.37) into (2.7) yields the expression of shear stress in the flowing
state

Tr = K1
dU

dy
+K2

(
dU

dy

)2

. (2.40)

Based on (2.5), (2.6) and (2.8), the normal stress in the flowing state is expressed as

Pr =
K1

tanαv

dU

dy
+

K2

tanαi

(
dU

dy

)2

. (2.41)

The modified models are capable to describe the stress state of a granular-fluid mixture from
the ’macro-viscous’ regime to the ’grain-inertia’ regime even with high solid volume fraction.
As shown in Figure 2.5, by choosing n = 0.2 and Cc = 0.65 [34], (2.40) and (2.41) can
reproduce the experimental results in [5].
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Furthermore, based on the framework (2.10), the dynamic stresses (2.40) and (2.41) are com-
bined with the static stresses T0 and P0, respectively, to obtain a simple-shearing model as

P = P0 +
K1

tanαv

dU

dy
+

K2

tanαi

(
dU

dy

)2

(2.42a)

T = −P0 sgn

(
dU

dy

)
tanφ+K1

dU

dy
+K2

(
dU

dy

)2

(2.42b)

which is applicable to the whole flow process, from the quasi-static state to rapidly flowing
stage.

2.3.3 The three-dimensional form of the simple-shearing model

Now we try to extend (2.42) into the general three-dimensional form. A simplest model de-
scribing the non-Newtonian fluid (see e.g. [89]) may take the form

T = a11 + a2D (2.43)

where T is the Cauchy stress tensor; 1 and D denote the unit tensor and the strain rate tensor,
respectively. The coefficients

ai = fi(ID, IID, IIID, C, gradC), (i = 1, 2) (2.44)

are functions of the volume fraction C and the invariants of the strain rate tensor

ID = trD,

IID =
1

2
((trD)2 − tr(D2)),

IIID = detD.

(2.45)

In the case of isochoric, two-dimensional and fully developed channel flow, ai depends only
on IID, C and gradC since ID and IIID are equal to zero. Savage [70] proposed a tensor form
model as

T = s1 | IID | 1 + s2

√
| IID |D (2.46)

where s1 and s2 are functions of C; | · | denotes absolute value.
In the extension of the simple shearing model, we keep the assumption of isochoric, which
is corresponding to the definition of failure in elastoplasticity, and neglect the effect of the
third invariant of the strain rate tensor. Thus, the simple-shearing model is extended to be the
three-dimensional form model as
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T =−
(
P0 +

2K1

tanαv

√
| IID |+

4K2

tanαi
| IID |

)
1

+

(
P0 tanφ√
| IID |

+ 2K1 + 4K2

√
| IID |

)
D∗

(2.47)

where

D∗ = D− tr(D)

3
1 (2.48)

is the strain rate deviator tensor which is used to avoid double counting of the normal stresses.

It can be easily demonstrated that, for an undrained simple shearing flow shown in Figure 2.1
where the strain rate deviator tensor takes the form

D∗ = D =

 0 1
2
dU/dy 0

1
2
dU/dy 0 0

0 0 0

 , (2.49)

the general three-dimensional model, (2.47), will reduce to the simple-shearing form (2.42).

2.4 Performance of the proposed model

In this section, some element test results are presented to verify the applicability of the model
(2.47) in the cases with different materials and experimental apparatus. The new model is used
to predict the stress-strain relations obtained in two different granular-fluid flows which can be
treated as undrained simple shear tests in the simulations.

2.4.1 Dry granular materials

The experimental data of dry granular materials sheared in a annular shear cell were reported
by Savage & Sayed [74]. The data for 1.0 mm spherical polystyrene beads are selected for the
element tests. They were measured on the top of the sample where h is equal to 0. As stated
in the paper [74], the loads applied by the upper disk, Pl, range from 100 to 1500 N/m2.
However, the exact load for each sample was not reported. By checking the measured normal
stress for 1.0 mm beads, we assume that P0 has a value around 100 N/m2 which is regarded
as the residual stress at the critical point of yielding. As mentioned before, the theoretical
maximum value of solid volume fraction, C0, will be replaced by the asymptotic limit of the
maximum measured solid volume fraction, C∞, in the calculation for a specific experiment.
Since the exact value of C∞ was not reported in Savage & Sayed’s work, we use 0.64 which is
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a typical value for monosized spheres [34, 6]. The critical volume fraction Cc is approximately
0.62 [75]. All the parameters for the new model are listed in Table 3.4 and Table 2.2.

Table 2.1: Parameters for the shear tests of 1.0 mm beads in [74]

d C∞ Cc ρs ρf µ φ θ

[mm] [-] [-] [kg/m3] [kg/m3] [Pa · s] [◦] [◦]

1.0 0.64 0.62 1095 1.29 1.83× 10−5 23 0

Table 2.2: Stress ratios measured in the shear tests of 1.0 mm beads in [74]

C tanαv tanαi

[-] [-] [-]

0.461 0.50 0.51

0.483 0.40 0.51

0.504 0.30 0.51

0.524 0.30 0.51

As shown in Figure 2.6, the predicted curves can fit the data with high shear strain rate very
well. The non-quadratic dependence of the stresses on the shear rate in the slow shear stage
for dense specimen is also captured by the new model. The slight overestimations for the
samples with C < 0.524 may be due to the use of inaccurate P0. The assumed value 100
N/m2 is greater than the value in the tests with C < 0.524. However, 100 N/m2 is the
former stated minimum normal stress applied by the upper disk. The phenomenon that P0 is
less than the minimum value can only be explained by assumption that liquefaction occurs in
the relatively loose samples under undrained boundary condition. In Savage & Sayed’s tests,
the shear velocity was adjusted to keep the height constant and thus keep the volume of the
samples unchanged. This is equivalent to undrained boundary condition for saturated granular
materials. In this case, the confining pressure P0 which corresponds to the mean effective
stress in soil mechanics would decrease to a residual value to eliminate the tendency of volume
compression before yielding. A looser specimen will show lower residual strength. The simple
relations (2.17) and (2.19), as the static portion of (2.47), cannot capture the decreasing of P0.
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2.4.2 Granular-water mixture

Another element test is based on Hanes & Inmans laboratory tests [34] about spherical particles
sheared in water. The data for particles with diameter 1.85mm is selected for the element tests
since it was stated as good quality data. The maximum measured volume fraction for 1.85mm
particles was reported to be 0.55 in the literature. The asymptotic limit C∞ is presumed to be
approximately 0.61. The critical volume fraction is determined to be 0.52 due to a partially
shearing with C = 0.53 was reported. The load from the upper disk P0 is almost 200 N/m2.
The angle αv is assumed equal to the dynamic angle of repose, 28◦. All the parameters are
listed in Table 3.7 and Table 2.4.

Table 2.3: Parameters for the shear tests of 1.85 mm beads in [34]

d C∞ Cc ρs ρf µ φ θ

[mm] [-] [-] [kg/m3] [kg/m3] [Pa · s] [◦] [◦]

1.85 0.61 0.52 2780 1000 1.0× 10−3 0.59 0

Table 2.4: Stress ratios measured in the shear tests of 1.85 mm beads in [34]

C tanαv tanαi

[-] [-] [-]

0.49 0.53 0.59

0.51 0.53 0.59

The simulation results are shown in Figure 2.7. The predicted results of C = 0.51 show
well-fitting with the experimental data. Similar with the element test of dry granular flow, the
stresses of the relatively loose sample, C = 0.49, are slightly overestimated. The inaccurate
prediction of the residual stresses, P0 and T0, are considered to be responsible for this result.
According to the experimental data, the real residual stresses of the two samples should have
different value, and the sample with C = 0.49 should have a residual normal stress less than
200 N/m2. Nevertheless, the dynamic portion of the new model (2.47) shows competent to
describe the stress-shear rate relation in the flowing stage. More suitable theory for describing
granular-fluid mixture before yielding will be studied in the following chapters.
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(a)

(b)

Figure 2.5: The predicted curves by (2.40) and (2.41) with n = 0.2 for the data from (a) the
figure 3 and (b) the figure 4 in [5]. The experimental data are indicated by various symbols.
The dashed lines (upper panel) denote the shear stress while the solid lines (lower panel) for
the normal stress.
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(a)

(b)

Figure 2.6: Element test results for the dry granular flow with different solid volume fraction:
(a) nondimensional shear rate vs normal stress (b) nondimensional shear rate vs shear stress.
The experimental data are indicated by various symbols. The dashed lines (upper panel) denote
the normal stress while the solid lines (lower panel) for the shear stress.
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(a)

(b)

Figure 2.7: Element test results for the granular-water flow with different solid volume fraction:
(a) normal stress (b) shear stress. The experimental data are indicated by various symbols. The
solid lines denote the normal stress in the upper panel and the shear stress in the lower panel.
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Chapter 3

Hypoplastic constitutive model for debirs
flows

As pointed out in the previous chapter, the static portion of the model (2.47) cannot describe
the shear softening (or liquefaction) of granular-fluid mixtures in the undrained simple shear-
ing which is particularly relevant for the initiation of debris flows. More suitable constitutive
theories are required to determine the residual stresses P0 and T0 exactly for debris materials.
Now we try to study the applicability of a prospective theory, hypoplasticity, for the description
of partial or full liquefaction of saturated granular materials and further determine a specific
constitutive model which can capture the solid-like and fluid-like behaviors of debris materials.

3.1 Introduction of hypoplasticity

Hypoplasticity was developed for anelastic materials as an alternative to elastoplasticity. As
well known, elastoplasticity is characterized by a series of additional notions, such as yield
surface, flow rule and plastic potential ect., which hide the mathematical structure of the con-
stitutive equation. The various elastoplastic constitutive models are difficult to be implemented
in some common methods of numerical calculation and sensitive to parameters controlling
the various involved numerical algorithms [50]. The outstanding feature of hypoplasticity is
its simplicity since the additional notions introduced by elastoplasticity are not employed,
and same formula is used for both loading and unloading. The distinguishing of loading and
unloading is automatically accomplished by the hypoplastic equation itself. In addition, the
anelastic deformation is recognized to set on from very beginning of the loading process in
hypoplasticity. Thus, a prior distinguishing between elastic and plastic deformations is not
required. These features make hypoplastic constitutive models easier to be implemented into
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numerical calculations.

The origin of hypoplasticity can be traced back to the work of Trusedell in the 1950s. A concept
for constitutive equations entitled ’Hypoelasticity’ was proposed by expressing the stress rate
as a function of the stress and the strain rate [84]

T̊ = L(T,D) (3.1)

where T̊ is the Jaumann stress rate tensor; T is the Cauchy stress tensor and D is the strain
rate tensor; L is an isotropic tensorial function of its arguments and is linear in D; Truesdell’s
work was primarily conceived as an elasticity theory in rate form. It turned out that the con-
stitutive equations based on this concept are capable of describing the phenomenon of failure
or rupture. However, Truesdell himself was unsure about the physical relevance of his theory
at that time [97]. In the followed works [80, 30, 31], it was recognized that the behavior upon
reversal of strain rate cannot be described with a single hypoelastic equation. Attempts for
solving this problem, which yield a hybrid of hypoelasticity and plasticity, were regarded as
a patchwork in which the vision of developing a plasticity theory without its additional no-
tions was not realized. A renaissance of hypoelasticity appeared in modelling the behaviors
of pressure sensitive media, such as concrete [19] and dense sand [78], about two decades
later. However, the behavior upon unloading and reloading remained untouched [97]. In the
application of hypoelasticity for metallic materials, the failure criterion was formulated as the
vanishing determinant of the stiffness matrix by Tokuoka [81, 82, 83]. It is worth mentioning
that some ideas about failure in hypoplasticity are inspired by his work. About the same time,
Krawietz [51] devoted to a work on the theoretical foundation of hypoelasticity, which however
had as good as no impact on the practical application. The pioneering work of hypoplasticity
was the proposing of an incrementally nonlinear constitutive equation for soils, which was
still termed generalised hypoelasticity, by Kolymbas in 1977 [47]. Although the model has
the main ingredient of hypoplasticity, the daunting tensorial functions and the numerous co-
efficients make it too complex to be applied. This state was broken until a breakthrough was
achieved by Kolymbas [48, 49]. A tensorial equation with only four terms, two linear terms
and two nonlinear terms, was developed. The elegant formulation and the simple calibration
procedure made the equation the subject of years of intensive research. Further investigation
found some drawbacks of this model. And the fact that the constitutive equation possesses no
bound surface force researchers to abandon this model. Based on a frantic search, some im-
proved versions of hypoplastic constitutive equations were presented ([96, 94, 10, 92]). At the
same time, the discovery of the bound surface [98] made it necessary to formulate a frame-
work instead of working with specific versions. The formal definition of hypoplasticity was
proposed by Wu and Kolymbas in 1990 [96] as the following form.

T̊ = H(T,D) (3.2)
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where H is a tensorial function which is required to be continuously differentiable for all D
except at D = 0, the Jaumann stress rate T̊ is determined by

T̊ = Ṫ + TW −WT. (3.3)

Here, Ṫ is the time derivative of the Cauchy stress T, and W is the rotation rate (spin vector).

Since the formulation (3.2) is too broad to determine a concrete constitutive equation, some
restrictions, which are based on the general principles of continuum mechanics or experimental
observations, are imposed on the function H. They are described as following [97]:

1. The function H for describing rate-independent behavior must be positively homoge-
neous of the first order in the strain rate D. Thus,

H(T, λD) = λH(T,D) (3.4)

where λ is a positive but otherwise arbitrary scalar.

2. The function H should fulfill the following condition in order to be objective.

H(QTQT ,QDQT ) = QH(T,D)QT (3.5)

where Q is an orthogonal tensor. The equation (3.5) can be met when the function H is
generated according to the representation theorem for isotropic tensorial functions. For
a tensorial function of two symmetric tensors, T and D, the representation theorem can
be written as [76, 87, 88]

T̊ = α01 + α1T + α2D + α3T
2 + α4D

2 + α5(TD + DT) (3.6)

+α6(T2D + DT2) + α7(TD2 + D2T) + α8(T2D2 + D2T2)

where 1 is the unit tensor. The coefficient αi(i = 0, ... , 8) are the function of the invariants
and joint invariants of T and D:

αi = αi(trT, trT
2, trT3, trD, trD2, trD3, trTD, trT2D, trTD2, trT2D2) (3.7)

where tr represents the trace of a tensor. Note that the isotropy of the tensorial function
does not necessarily mean that the response is also isotropic.

3. In order to be applicable to the behavior of pressure sensitivity, the function H is required
to be homogeneous in T, which is formulated as

H(λT,D) = λnH(T,D) (3.8)

where n denotes the order of homogeneity. It implies that the tangential stiffness is
proportional to the n-th power of the stress level (trT)n, so that experiments conducted
under different stress levels can be normalized by (trT)n.
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Without loss in generality, it is assumed that the constitutive equation (3.2) can be decomposed
into two parts representing reversible and irreversible behavior of the material:

T̊ = L(T,D) + N(T,D) (3.9)

where L and N are assumed linear and non-linear in the strain rate D, respectively. L(T,D) in
equation (3.9) can be specified by invoking the representation theorem for isotropic tensorial
functions. Since the non-linear dependence of N on D should also satisfy the restriction of
rate-independence, we consider the following generalized form for hypoplastic constitutive
equations [97]:

T̊ = L(T,D) + N(T)||D|| (3.10)

where ||D|| =
√

trD2 stands for the Euclidean norm. The same symbol N is retained in (3.10)
to avoid confusion. It is clear that no predefined notions, such as yield surface, flow rule and
plastic potential which are necessary for a elastoplastic constitutive equation, are used in the
developing of hypoplastic constitutive equations.

Within the framework (3.10), a simple hypoplastic constitutive model is proposed by Wu and
Bauer [94] for sand as

T̊ = c1(trT)D + c2
tr(TD)T

trT
+ (c3

T2

trT
+ c4

T∗2

trT
) ‖ D ‖ (3.11)

where ci(i = 1, ..., 4) are dimensionless material parameters; T∗ is the deviatoric stress tensor
expressed by

T∗ = T− 1

3
(trT)1. (3.12)

The hypoplastic model (3.11) possesses simple mathematical formulation and contains only
four material parameters, c1 ∼ c4, which are related to some widely used parameters in soil
mechanics, such as the initial tangent modulus Ei and the internal friction angle φ0. The spe-
cific determination process of c1 ∼ c4 can be obtained in the literatures [9, 94, 95]. Two stress
states, the initial hydrostatic and the state at failure, are chosen for the identification of c1 ∼ c4

based on a triaxial test with constant confining pressure, i. e. Ṫh(2, 2) = Ṫh(3, 3) = 0. And
then, the following parameters are introduced:

the stress ratio, R = Th(1, 1)/Th(3, 3);

the initial tangent modulus, Ei = [(Ṫh(1, 1)− Ṫh(3, 3))/D(1, 1)]R=1;

the initial Poisson ratio, υi = [D(3, 3)/D(1, 1)]R=1;

the failure stress ratio, Rf = [Th(1, 1)/Th(3, 3)]max;

the failure Poisson ratio, υf = [D(3, 3)/D(1, 1)]R=Rf
.
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The failure stress ratio Rf and the failure Poisson ratio υf are related to the internal friction
angle φ0 and the dilatancy angle ψ, respectively, through the following relations [94]:

Rf =
1 + sinφ0

1− sinφ0

(3.13)

and
υf =

1 + tanψ

2
. (3.14)

Taking the four material constants c1 ∼ c4 as unknowns, a system of four linear equations can
be obtained by substituting the corresponded stress and strain rate of the two stress states into
the model (3.11). Therefore, the material constants are determined as functions of the well-
established parameters in soil mechanics, the initial tangent modulus Ei, the initial Poisson
ratio υi, the internal friction angle φ0 and the dilatancy angle ψ. It should be pointed out that
these parameters are related to a specific confining pressure, all the sets of material constants
used in this thesis are obtained with a confining pressure Th(3, 3) = 100kPa. In addition,
the deviatoric loading in the initial hydrostatic state is considered to be zero, i. e. the initial
Poisson ratio υi = 0.

It is worth to mention that although the additional notions in elastoplasticity, such as failure
surface and flow rule, are not employed in hypoplasticity, these notions can be derived from
hypoplasticity based on the definition of failure that

T̊ = 0,

D 6= 0,

trD = 0.

(3.15)

The failure surface derived from the hypoplastic model 3.11 is shown in Figure 3.1 (a)
which indicate that the failure surface is a cone in three-dimensional principal stress space,
similar with that of some widely used failure criteria, such as WillamWarnke criterion and
Matsuoka-Nakai criterion. The plastic flow directions shown in Figure 3.1 (b) demonstrate a
non-associative flow rule of the hypoplastic model 3.11.

3.2 The applicability of hypoplastic models for debris mate-
rials

Now we try to find a suitable hypoplastic model for the static portion of the constitutive model
for debris materials and further study its capability for describing the shear softening occurred
at the initiation stage of debris flows. Two hypoplastic models, the one developed by Wu et
al. [95] and the one by Gudehus [32], are compared in the selection of the static portion for

27



Figure 3.1: Failure surface and flow rule derived from the constitutive equation (3.11): (a)
failure surface; (b) flow rule on the π-plane.

the framework (2.10). In the more recent models by Gudehus[32], mainly the stiffness is mod-
ified by the two factors, fb and fe, which take into account the influence of stress state and
density, respectively. In modelling debris flow, however, the strength is very important and
the stiffness is not important. Moreover, his model makes use of the exponential functions for
the dependence of critical void ratio and minimum void ratio on pressure. For each function
the parameters reduce from 3 to 2. However, there are only few data in the literature for the
exponential functions. Therefore, in this chapter, we will embark on the model proposed by
Wu et al. [95] which is the first hypoplastic model with critical state to verify that, by em-
ploying an appropriate hypoplastic model as the static portion, the combined model based on
the framework (2.10) can fulfill an entire and quantitative description of stress state for debris
materials from quasi-static stage to fast flow stage. The hypoplastic model with critical state
has the form as

T̊h = c1(trTh)D + c2
tr(ThD)Th

trTh

+ (c3
Th

2

trTh

+ c4
Th
∗2

trTh

) ‖ D ‖ Ie, (3.16)

where the subscript h is used to distinguish the hypoplastic portion from the dynamic portion
in the model which will be developed for debris materials; the introduced factor Ie is called
density function and defined as

Ie = (a− 1)Dc + 1 (3.17)

where a is a material parameter related to the stress level and

Dc =
ecrt − e

ecrt − emin
(3.18)
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is the modified relative density; e denotes the void ratio; emin and ecrt are the minimum and
the critical void ratio, respectively. The effect of void ratio and stress level on the behavior of
granular materials is taken into account in the model (3.16) by using the following expressions,

ecrt = p1 + p2exp(p3 | trTh |), (3.19)

and
a = q1 + q2exp(q3 | trTh |) (3.20)

where pi(i = 1, ..., 3) and qi(i = 1, ..., 3) are material parameters and can be determined
by fitting the experimental data of drained triaxial tests under different confining pressure.
It is shown that the model (3.16) is applicable to both initially and fully developed plastic
deformation of granular materials with drained or undrained conditions [94, 95]. It will reduce
to the original model (3.11) when the void ratio e is equal to the critical value ecrt from (3.17)
and (3.18). It means, for same material, same constants c1 ∼ c4 will be obtained for the
original and extended models in the case of e = eecrt. Thus, the material constants emerging in
the model (3.16) can be determined by the same way for (3.11). The dilatancy angle ψ is equal
to zero since there is no volume deformation in this case [97]. About the material parameters
pi(i = 1, ..., 3) and qi(i = 1, ..., 3), some theoretical and experimental analysis are presented
in [95]. p1 is the critical void ratio when the confining pressure approaches infinity, since p3

is negative. The value of p1 should be close to the minimum void ratio under a high confining
pressure. For the case of zero confining pressure, the critical void ratio is equal to p1 + p2

which may close to the maximum void ratio measured with very low confining pressure. q1 is
assumed to be always equal to 1 and q3 is a negative value. For the case of trTh → ∞, the
difference between dense and loose packing tends to disappear since the parameter a → 1.
Based on the numerical parametric study [95], q2 is suggested to lie in the range (-0.3, 0.0).
p3 and q3 for quartz sand are assumed to be -0.0001 kPa. In the case of very low confining
pressure, such as the state of liquefaction, relatively higher values of q2, p3 and q3 may be
needed to keep the sensitivity of Ie to the stress level.

The hypoplastic model (3.16) may be the proper model to describe the shear softening (liq-
uefaction) and to capture the residual strength in the beginning of a debris flow. It is worth
to mention that the hypoplastic model with critical state is just one of the choices for de-
scribing the initiation of debris flows. Recently some improved models have been available
e.g. [52, 77, 29], which are developed from some widely used versions of hypoplastic model
[64, 86] and aim to improve the dependence of stiffness on pressure and density. However,
the capability of these models for capturing the phenomenon of liquefaction and the stability
in the cases of large deformation or low confining pressure still need to be verified. A more
concise hypoplastic model with the former mentioned capability and stability can be employed
to determine the stress state in the quasi-static stage of debris materials.
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In a debris flow, the material is subjected to large shear deformation. For developing and
evaluating constitutive models the planar simple shear motion is particularly relevant [33].
Therefore, we try to verify the applicability of the hypoplastic model (3.16) in the simulation
of debris flow initiation by using this model to reproduce the typical experimental results of
granular materials in undrained simple shear tests. As presented in the literatures [15, 101], sat-
urated sand specimens with different initial void ratios demonstrate three types of stress-strain
behavior in undrained simple shear tests as indicated in Figure 3.2: (i) the dense specimens
have tendency of dilation and show shear hardening to reach a ultimate steady state (USS)
finally; (ii) the very loose specimens demonstrate shear softening to obtain constant residual
strength or complete liquefaction in the critical steady state (CSS); (iii) the specimens with
medium void ratio first soften, then harden and reach also a ultimate steady state [100]. The
shear softening is considered to be the main mechanism in the mobilization of debris flows.

Now we intend to reproduce these three types of stress-strain behavior in the element tests. We
are more concerned with the qualitative than with the quantitative outcome since some impor-
tant material parameters are not available in [101]. In order to obtain the material constants
c1 ∼ c4 for sand in the critical state with Ie = 1, the initial tangent modulus Ei is determined
approximately by the following relation [42, 85]

Ei
Pa

= 150

(
σ33

Pa

)0.5

, (3.21)

in which Pa is the atmospheric pressure (101.3 kPa) and σ33 is the effective confining stress,
given as 100 kPa in the experiments. Thus the initial tangent modulus is obtained approxi-
mately 15 MPa. A relatively low friction angle φ0 of 25◦ is assumed for saturated loose sand
in the critical state with e = ecrt. Both the initial Poisson ratio υi and the dilatancy angle ψ are
assumed to be 0 as stated before. The determined material constants for the model (3.16) are
presented in Table 3.1.

Table 3.1: Material constants for the model (3.16) in the simulation of the undrained simple
shear tests in [101]

c1 c2 c3 c4

[-] [-] [-] [-]

-50.0 -629.6 -629.6 1220.8

The three types of stress-strain behavior are reproduced as shown in Figure 3.3, when the
values in Table 3.2 are employed for pi and qi in the relations (3.19) and (3.20).

The following observations can be made. In the hardening regime, an increase of the stress
level gives rise to a reduction of the critical void ratio ecrt and increases the parameter a,
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(a)

(b)

Figure 3.2: Three types of stress-strain behavior observed in undrained triaxial tests and
undrained simple shear tests: (a) shear strain vs shear stress (b) mean principal stress vs shear
stress. The shear stress q is equal to the difference between the first and the second principal
stress. p′ is the mean value of the first and the second principal stress.
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(a)

(b)

Figure 3.3: The simulation results of (3.16) for saturated sand with different initial void ratio in
undrained simple shear tests: (a) shear strain vs shear stress (b) mean principal stress vs shear
stress
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Table 3.2: Parameters for ecrt and a in the simulation of the experiments in [101]

p1 p2 p3 q1 q2 q3

[-] [-] [kPa−1] [-] [-] [kPa−1]

0.53 0.45 -0.0018 1.0 -0.4 -0.0001

which increase the density function Ie and limit the hardening. Conversely, in the softening
regime, Ie will decrease to restrict softening and liquefaction. Due to the feedback of Ie, the
model (3.16) can describe the shear softening and the residual strength of very loose granular
materials. It can be used as the static portion of the new model for debris materials. As shown
in Figure 3.4, the normal stresses σii(i = 1, 2, 3) of the very loose specimen with e = 0.876

tend to be isotropic when the shear strain is large enough, no matter what the initial stress
state is. The isotropic normal stress at large deformation corresponds to the former mentioned
thermodynamic pressure P0.

3.3 The new constitutive model for debris materials

Based on the above analysis, the hypoplastic model (3.16) and the tensor form of the modified
Bagnold’s model are employed as the static and dynamic portions of the new constitutive
model, respectively. The structure of the new model is proposed as

T = Th + Td. (3.22)

In Chapter 2, the three-dimensional form of the dynamic portion was developed as a part of the
model (2.47). By eliminating the static portion from (2.47), the general 3-dimensional form of
the dynamic portion is obtained as

Td = −
(

2K1

tanαv

√
| IID |+

4K2

tanαi
| IID |

)
1 +

(
2K1 + 4K2

√
| IID |

)
D∗. (3.23)

It is shown that for a simple shear flow the dynamic stress (3.23) is reduced to the models
(2.40) and (2.41).

From (3.22), the concrete model for debris materials is determined as

T =

∫
Ṫhdt−

(
2K1

tanαv

√
| IID |+

4K2

tanαi
| IID |

)
1

+
(

2K1 + 4K2

√
| IID |

)
D∗

(3.24)

where Ṫh can be determined by (3.16).
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(a)

(b)

Figure 3.4: The normal stresses of the specimens with e = 0.876 in the undrained simple shear
tests with different initial stress state: (a) σ11 = σ22 = σ33 = 100kPa, (b) σ22 = 100kPa and
σ11 = σ33 = 1kPa
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The structure of the new model is demonstrated by simulating undrained simple shearing flow.
As shown in Figure 3.5, the static portion obtained by the hypoplastic model (3.16) is combined
with the dynamic portion to get the total effective stress.

(a)

(b)

Figure 3.5: Schematics of the new model (3.24): (a) shear rate vs normal stress (b) shear rate
vs shear stress

The proposed model bridges the solid-like and fluid-like behaviors of debris materials and de-
scribes the transition between solid and fluid state without any initiation criterion. The static
and dynamic stress portions evolve concurrently depending on the flow state, the loading and
boundary conditions. The assumptions in plasticity theory such as yield stress and strain de-
composition are not required in the model. These features make the numerical implementation
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simplified.

What need to be mentioned is that the static portion, Th, is rate-independent. Stress is calcu-
lated due to the accumulation of the shear strain rather than the changing of the shear rate. By
merging with the dynamic portion, the total effective stress (3.24) becomes rate-dependent.
As shown in Figure 3.4, the normal stresses reach a residual constant when the shear strain is
approximately 0.4. This quasi-static process takes place with very small shear velocity. Thus,
in the simulation, the shear rate must be kept at a small value before the failure of the granular-
fluid mixture to make sure that the static portion is the dominant part in the total effective
stress. The static portion should be much greater than the dynamic portion at the point A in
Figure 3.5. One approach to meet this requirement in numerical calculations is to use small
shear strain acceleration for the stage before failure.

It is worth to mention that Wu [93] developed a rate form framework by combining a hypoplas-
tic model and a rate-dependent dynamic model as

T̊ = T̊h(Th,D) + T̊d(D, D̊). (3.25)

where T̊ is the total Jaumann stress rate tensor and T̊d is the dynamic part of the Jaumann
stress rate tensor. The models developed within this framework may have the capability to
account for the different behaviors for loading and unloading. However, the Jaumann strain
acceleration tensor, D̊, makes the implementation of these models in some numerical methods
more difficult. It will be an interesting exploration to solve this problem in our future work.

3.4 Performance of the proposed model

In this section, the new model, (3.24), will be used to predict the stress-strain behavior of
granular-fluid flows with different materials and experimental apparatus in some element tests.
The experimental data of two annular shear tests as undrained simple shear tests are employed
to verify the applicability of the new model. In Chapter 2, these two experiments have been
simulated by the model (2.47). The simulation results revealed that the contact stresses of the
relatively loose granular materials decreased to residual stresses in the quasi-static stage and
the normal stress P0 cannot be treated as the weight component of the solid phase roughly in
this case. The former simulation results are used as a control to highlight the capability of the
hypoplastic portion in capturing shear softening.

3.4.1 Dry granular materials

The data for the spherical polystyrene beads with No. PS18 ∼ PS21 and diameter of 1.0 mm
in [74] are selected for the element tests. The loads applied by the upper disk range from 100 to
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1500 N/m2 which is normal to the flow surface. By checking the measured normal stress for
1.0mm beads, the initial confining pressure of an element at the upper surface of the specimen
is assumed equal to 500 N/m2. The value of C∞ is equal to 0.64 which is a typical value for
monosized spheres [34, 6]. Thus, the corresponding minimum void ratio

emin =
1− C∞
C∞

(3.26)

is determined equal to 0.563. The critical volume fraction Cc is approximately 0.62 [75]. The
internal friction angle φ0 of 1.0 mm spherical beads is 23◦ and the initial tangent modulus Ei
is assumed equal to 15 MPa as a typical value of loose granular materials with the confining
pressure is 100 kPa. Based on the identification of parameters introduced before, the material
constants c1 ∼ c4 and the parameters for the density function Ie are determined and listed in
Table 3.3.

Table 3.3: Parameters for the static portion in the simulation of dry granular flows

c1 c2 c3 c4 emin p1 p2 p3 q1 q2 q3

[-] [-] [-] [-] [-] [-] [-] [kPa−1] [-] [-] [kPa−1]

−50 −746.55 −746.55 1855.13 0.563 0.65 0.55 -0.11 1.0 -0.24 -0.013

The stress ratios in the fast shearing stage, tanαi, are chosen as a constant of 0.51 based on
the experimental results for the four specimens, which correspond to a αi of about 27◦. The
parameters for the dynamic portion are listed in Table 2.2 and Table 3.4.

Table 3.4: Parameters for the dynamic portion in the simulation of dry granular flows

d C∞ Cc ρs µ αi

[mm] [-] [-] [kg/m3] [Pa · s] [◦]

1.0 0.64 0.62 1095 1.83× 10−5 27

As shown in Figure 3.6, the predicted results are in good agreement with the experimental data
even though typical values rather than fitted values are employed for some parameters unstated
in [74]. Following Savage and Sayed [74], the non-dimensional shear rate and stress are em-
ployed in the figures. The non-quadratic dependence between the stresses and strain rate in the
slow shear stage for the samples with C = 0.524 is captured by the new model. As introduced
in Chapter 2, the shear velocity of this experiment was adjusted to keep the height constant,
thereby keeping the volume of the samples unchanged. It is equivalent to the undrained con-
dition in the tests of saturated granular materials. The mean effective stress would decrease

37



from the initial confining pressure to a residual value or zero to stop the tendency of volume
compression in the quasi-static stage of very loose granular-fluid mixture. The residual normal
and shear stresses, corresponding to the stresses P0 and T0 in the framework (2.10), are deter-
mined by the hypoplastic portion and presented in Table 3.5. Only the test with C = 0.524

demonstrates residual strength. In this case, the frictional contacts and collisions contribute
to the stress development simultaneously. At low shear rate, frictional contact is significant,
resulting in non-zero residual stress. As the shear rate increases, the stress from collision be-
comes larger. At high shear rate, although the magnitude of the frictional stress is unchanged,
its proportion in the total stress declines. For the looser specimens with C = 0.504, 0.483 and
0.461, the frictional contacts vanish at large shear strain. This is consistent with the experimen-
tal observation [101] that granular materials will be fully liquefied when the initial void ratio
exceeds a threshold. As a consequence, only particle collisions contribute to the stress in the
flow stage. The stress-strain rate curves in the flow stage show a slope of 2 in the logarithmic
coordinates. It implies that the linear terms Tv and Pv which characterize the effect of the in-
terstitial fluid are insignificant in the dry granular case, which is consistent with the analysis in
Section 2.2. It confirms that the proposed model (3.24) can describe the shear softening of dry
granular materials in the quasi-static stage. The stress-shear rate relation throughout the shear
process from quasi-static stage to fast shearing stage also can be exactly described by the new
model.

Table 3.5: The residual stresses of the four samples of dry granular flow determined by the
hypoplastic model

Solid volume fraction, C [-] 0.461 0.483 0.504 0.524

Initial void ratio, e [-] 1.17 1.07 0.98 0.91

P0 [Pa] 0 0 0 81

T0 [Pa] 0 0 0 36

3.4.2 Granular-water mixture

For the case of a granular-fluid mixture, Hanes & Inman’s experiments [34] about spherical
particles sheared in water are taken as an example again. The data for particles with diameter
1.85 mm are chosen to verify the new model. The maximum measured volume fraction for
1.85 mm particles was reported to be 0.55. Thus the asymptotic limit C∞ is presumed to be
approximately 0.61 and the corresponding minimum void ratio is 0.64. The load from the
upper disk is about 500 N/m2. The internal friction angle φ0 is stated to be 28◦ and the initial
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(a)

(b)

Figure 3.6: Element test results for the dry granular flow with different grain linear concentra-
tion: (a) shear rate vs normal stress (b) shear rate vs shear stress. The experimental data are
indicated by various symbols. The dashed lines denote the normal stresses while the solid lines
for the shear stresses.
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tangent modulusEi is 15MPa. The determined material constants c1 ∼ c4 and the parameters
for the density function Ie are presented in Table 3.6.

Table 3.6: Parameters for the static portion in the simulation of granular-fluid flows

c1 c2 c3 c4 emin p1 p2 p3 q1 q2 q3

[-] [-] [-] [-] [-] [-] [-] [kPa−1] [-] [-] [kPa−1]

−50 −511.31 −511.31 680.53 0.64 0.65 0.55 -0.11 1.0 -0.12 -0.013

The stress ratios tanαi for all the specimens are equal to 0.59, corresponding to a αi of about
30.5◦.The parameters of the dynamic portion are listed in Table 2.4 and Table 3.7.

Table 3.7: Parameters for the dynamic portion in the simulation of granular-fluid flows

d C∞ Cc ρs µ αi

[mm] [-] [-] [kg/m3] [Pa · s] [◦]

1.85 0.61 0.52 2780 1.0× 10−3 30.5

The simulation results are shown in Figure 3.7. The stress states of the two specimens are
reproduced based on the residual stresses as presented in Table 3.8. The sample with C = 0.51

shows a residual strength after failure in the undrained simple shearing and the looser sample
shows full liquefaction. The stress-shear rate curves of C = 0.49 have a slope less than 2 in
the stage with shear rate between 1 to 10 s−1 in the logarithmic coordinates. Comparing to the
dry granular flows, the effect of the interstitial fluid in a granular-fluid flow is non-negligible.
In the rapid shear stage, there is slight difference between the slopes of predicted curves and
the experimental data of C = 0.49 which implies that the residual strength of this specimen
is non-zero. The underestimate of the residual stresses may be attributed to that inaccurate
parameters are employed for the hypoplastic model.
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Table 3.8: The residual stresses of the two samples of ganular-fluid flow determined by the
hypoplastic model

Solid volume fraction, C [-] 0.49 0.51

Initial void ratio, e [-] 1.04 0.96

P0 [Pa] 0 173

T0 [Pa] 0 102

(a)

(b)

Figure 3.7: Element test results for the granular-water flows with different solid volume frac-
tion: (a) shear rate vs normal stress (b) shear rate vs shear stress. The experimental data are
indicated by various symbols. The solid lines denote the shear stresses and the dashed lines
are the normal stresses.
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Chapter 4

Verification of the new model by smoothed
particle hydrodynamics method

The new constitutive model for debris materials, (3.24), needs to be implemented in numerical
methods and further verified in the simulations of some boundary value problems. Smoothed
particle hydrodynamics (SPH) method which is ideal for modelling both solid-like and fluid-
like behaviors within a consistent numerical scheme is used for the numerical simulations in
this chapter.

4.1 Introduction of SPH method

With the development of computer technology, computer simulation has become one of the
most important tools for solving complicated and practical problems in engineering and sci-
ence. Numerical methods are usually classified into two categories, the traditional grid-based
methods and the mesh-free methods, based on the different treatments of the problem domains.
The grid or mesh based numerical methods such as the finite element method (FEM), the fi-
nite differential method (FDM) and the finite volume methods (FVM) are widely applied to
solve problems in the areas of computational solid mechanics (CSM) and computational fluid
dynamics (CFD) [56]. The common feature of grid-based numerical methods is that a con-
tinuum problem domain will be divided into discrete small subdomains in the simulation by
the process termed as discretization or meshing. Despite the great success of the grid based
methods, the existence of the grid or mesh limits the application in the problems with free sur-
face, deformable boundary, moving interface, and extremely large deformation and so on [56].
Moreover, for the problem domain with complicated geometry, it is very difficult to generate
a quality mesh. The Lagrangian grid-based methods, such as FEM, need special techniques
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like rezoning to deal with large deformation problem, which is tedious and time-consuming,
and may result in inaccurate solution [54, 56, 103]. In addition, the grid-based methods are
also considered to be unsuitable for the simulation of discrete systems [1, 35], such as granular
materials.

For solving the former mentioned complicated problems, the mesh-free methods have become
the research focus during the past decades. Numerous mesh-free methods have been proposed,
which bear advantages compared to the traditional grid-based methods in the simulation of
large deformation, free surface etc., due to the abandonment of mesh [66]. SPH can be re-
garded as the oldest modern mesh-free particle method which was first developed to solve as-
trophysical problems in three-dimensional space [27, 56]. It is a Lagrangian mesh-free method,
where the continuum is represented by a set of particles possessing field variables (e.g., posi-
tion, density, velocity, stress and strain) and moving with the material velocity [14, 66]. In the
simulation using SPH, a method termed as function approximation is applied to the partial dif-
ferential equations (PDEs) of the continuum to produce a set of ordinary differential equations
(ODE) in a discretized form with respect only to time [55]. The ODE can be solved by one of
the standard integration routines of the conventional finite difference method. For finishing the
these processes, the following key ideas should be employed in the SPH method [55].

1. The problem domain is represented by a set of particles between which no connectivity
is needed.

2. The field function approximation is finished by using the integral representation method,
which is termed as kernel approximation in SPH.

3. The integration in the integral representation of the field function and its derivatives are
replaced by the summations over all the corresponding values at the particles in a local
domain called the support domain. This process is termed as particle approximation in
SPH.

4. In the process of particle approximation at every time step, the number and location of
the particles in the support domain are changing since the current local distribution of
the particles is changing with time.

5. All terms related to field functions in the PDEs are approximated using particles to
produce a set of ODEs.

6. The ODEs are then solved using an explicit integration algorithm to achieve fast time
stepping, and to obtain the time history of all the field variables for all the particles.
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As summarized by Liu [56], SHP has the following advantages compared to the traditional
grid-based methods. 1) The advection and transport of the system can be calculated since
the inside algorithm of SPH is Galilean invariant, and thus the time history of the material
particles can be obtained. 2) The free surface, material interfacial and moving boundaries can
all be traced naturally in the simulation by SPH when the particles at specific position are
deployed properly in the pretreatment stage. 3) As a traditional and mature mesh-free method,
SPH allows a direct handling of large deformation problems, since the connectivity between
particles are generated as part of the computation and changing with time. 4) SPH can be used
for small and multiple scale problems, such as that in biophysics and biochemistry, since it is
similar to the molecular dynamics (MD) method and the dissipative particle dynamics (DPD)
method which are traditional methods for small scales.5) SPH is suitable for the problems with
micro scale or astronomic scale, where the research object cannot be treated as a continuum.
6) SPH is more natural to develop three-dimensional simulation than grid-based methods.

Based on these advantages, SPH has been applied extensively to a vast range of problems
in either computational fluid or solid mechanics. Beside the application in astrophysics, SPH
is also applied to solid problems such as dynamic analysis [53], impact [44] and explosion
simulations [57], which verified the applicability of SPH for the multiscale problems. Granular
materials show solid-like behavior before failure and fluid-like behavior after failure which
lead to a typical multiscale problem.

4.2 SPH modelling of granular material

Now we try to implement the new model (3.24) in SPH to simulate some granular flows.
Since the hydro-mechanical coupling still needs further investigation to be considered in the
numerical model, all the following simulations by SPH are focused on dry granular flows. In
this case, for simplifying the numerical calculations, the new model (3.24) is reduced to

T =

∫
Ṫhdt−

4K2

tanαi
| IID | 1 + 4K2

√
| IID |D∗ (4.1)

by eliminating the negligible viscous terms. Nevertheless, the structure of the unified model
where a hypoplastic model is combined with a rheological model is well retained in (4.1),
which is the primary objective of the simulations of granular flows. In addition, the applica-
bility and stability of hypoplasticity in the simulations of multiscale deformation problems,
which is the main content of this thesis, can be tested by employing either (3.24) or (4.1). As
introduced in Section 3.3, the following elements are not required in our unified model, i.e.
initiation criterion, yield stress and strain decomposition, which simplify the numerical im-
plementation. The parameter K2 is related to the particle density, particle diameter and solid
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volume fraction. It is a constant when the volume remains unchanged. In this chapter, K2 is
given directly as a measured parameter for the element tests by SPH.

As stated before, SPH is a Lagrangian mesh-free method where the whole computational do-
main Ω is discretized with a set of particles. By tracking the movement of the particles and
the evolution of the carried variables, the considered problem can be solved numerically. Be-
cause the SPH uses an updated Lagrangian formulation, large deformation problems in solid
mechanics as well as free surface tracking in fluid dynamics are treated naturally. Debris flow
is simplified to granular flow in the constitutive modelling and typically involving large defor-
mation and free surface problems. The mesh-free and Lagrangian properties of SPH make it
an appealing method for granular flow modelling [14, 16, 18, 66].

4.2.1 The governing equations

In the case of dry granular flows, the interstitial fluid, air, is ignored and the granular ma-
teril is modelled as single phase medium. The governing equations for granular flows in the
Lagrangian description take the form

dρ

dt
= −ρ∇ · v (4.2)

dv

dt
=

1

ρ
∇T + g (4.3)

where d(·)/dt is the material derivative, ρ is the density of the continuous medium, and g is
the body force. The governing equations consist of conservation of mass (4.2) and momentum
(4.3).

4.2.2 The SPH formulations

Based on the former mentioned key ideas employed in SPH, the formulation of SPH contains
two key steps, the integral representation (or the kernel approximation) of field functions and
the particle approximation.

(a) The integral representation

The concept of integral representation of an arbitrary function F (x) in SPH is inspired from
the following formula where the function F (x) is represented in an integral form as

F (x) =

∫
Ω

F (x′)δ(x− x′)dx′ (4.4)
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where x = (x, y, z) is a spatial point in the volume of the integral Ω, and δ(x−x′) is the Dirac
delta function defined by

δ(x− x′) =

1 x = x′

0 x 6= x′.
(4.5)

In the integral representation in SPH, the Dirac delta function is replaced by a smoothing
function W (x − x′, h) which is termed as kernel function (or smoothing kernel function).
Thus, the kernel approximation of the field function f(x) is expressed as

f(x)=̇

∫
Ω

f(x′)W (x− x′, h)dx′, (4.6)

where h is the smoothing length determining the influence area, i.e. the support domain of the
function W . The kernel function W is normally an even function which satisfies the following
conditions.

The first one is stated as ∫
Ω

W (x− x′, h)dx′ = 1, (4.7)

which is termed as the normalization condition or unity condition.

The second condition is formulated as

lim
h→0

W (x− x′, h) = δ(x− x′) (4.8)

and termed the Delta function property.

The third condition is the so-called compact condition formulated as

W (x− x′, h) = 0 when | x− x′ |> kh (4.9)

where k is a constant which determines the support domain of the kernel function of point x
together with the smoothing length h.

These three conditions imply that the integral representation in equation (4.6) can only be
an approximation unless the kernel function W is the Dirac delta function δ. In SPH, the
angle bracket<> is conventionally used to mark the kernel approximation operator. Therefore,
equation (4.6) can be rewritten as

< f(x) >=

∫
Ω

f(x′)W (x− x′, h)dx′. (4.10)

The kernel function W used through this paper is a Wendland C6 function [22, 90] for which
the support domain has a radius of 2h.
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The approximation for field function’s spatial derivative is obtained by substituting ∇f(x)

into Eq. (4.10), which gives

< ∇f(x) >=

∫
Ω

[∇f(x′)]W (x− x′, h)dx′. (4.11)

Since

[∇f(x′)]W (x− x′, h) = ∇[f(x′)W (x− x′, h)]− f(x′)∇W (x− x′, h), (4.12)

equation (4.11) is changed into

< ∇f(x) >=

∫
Ω

∇[f(x′)W (x− x′, h)]dx′ −
∫

Ω

f(x′)∇W (x− x′, h)dx′. (4.13)

Based on the divergence theorem, the first term on the right-hand side of (4.13) can be con-
verted into an integral over the surface S of the domain, Ω. Thus, equation (4.13) is further
converted into

< ∇f(x) >=

∫
S

f(x′)W (x− x′, h) · ndS −
∫

Ω

f(x′)∇W (x− x′, h)dx′ (4.14)

where n is the unit normal vector of the surface S. Since the function W is defined to have
compact support, the integral over the surface S is identically zero when the support domain is
located within the probelm domain. Therefore, the approximation for ∇f(x) is expressed as

< ∇f(x) >= −
∫

Ω

f(x′)∇W (x− x′, h)dx′. (4.15)

It can be seen that the differential operation of the field function f(x) is turned into the differ-
ential operation of the kernel function W by equation (4.15).

(b) The particle approximation

In the SPH method, the studied continuum is represented by a set of particles possessing
specific mass and volume. It is fulfilled by the second key step, the particle approximation.
In this step, the continuous integral representations of the filed functions and their derivatives
can be converted into discretized forms of summation over all the particles in the support
domain. Let’s consider a specifc particle i which has an associated kernel function Wi centred
at xi. The continuous integrations in Eq. (4.10) and (4.15) are written as

< f(xi) >=
n∑
j=1

f(xj)Wij
mj

ρj
(4.16)

< ∇f(xi) >=
n∑
j=1

f(xj)∇iWij
mj

ρj
(4.17)
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where n is the number of particles within the support domain of particle i; mj and ρj are
the mass and density of particle j, respectively; thus, mj/ρj denotes the volume occupied by
particle j; the kernel function concerning the location xi is expressed as

Wij = W (xi − xj, h); (4.18)

∇iWij is the gradient of kernel function Wij and expressed as

∇iWij =
xi − xj
rij

∂Wij

∂rij
(4.19)

in which rij is the distance between particle i and particle j. Through SPH simulations the
mass of a particle is usually constant but its density can evolve according to the varying of
inter-particle spacing, resulting to constantly changing particle volume.

Many particle discretization forms of the governing equations are available in the SPH lit-
erature. By numerical experiments, we find that the following expressions give rise to better
results

dρi
dt

=
n∑
j=1

mj(vi − vj) · ∇iWij (4.20)

dvi
dt

=
n∑
j=1

(
Ti

ρ2
i

+
Tj

ρ2
j

)
∇iWijmj + gi (4.21)

where T is the total effective stress tensor, consisting of the hypoplastic stress portion and the
dynamic stress portion.

The calculation of stress rate in the proposed constitutive relation requires the velocity gradi-
ent, which can be computed in the SPH as

∇vi =
n∑
j=1

(vj − vi)⊗∇iWij
mj

ρj
(4.22)

4.2.3 The correction of kernel gradient

The continuous SPH kernel interpolation in Eq. (4.10) theoretically ensures second order ac-
curacy for interior regions. That is, constant and linear functions can be reproduced exactly.
However, this C0 and C1 consistency are not always satisfied in the SPH particle approxi-
mation, especially when particle distributions are irregular, or the particle support domain is
truncated by boundaries [56]. This deficiency, termed particle inconsistency, is the direct cause
of the relatively low accuracy and slow convergence rate in the original SPH method. Usually
the lack of C1 consistency is more hazardous, because the discrete forms of the governing
equations Eq. (4.20) and (4.21) all make use of the kernel gradient ∇W . Many corrections
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have been proposed to improve the accuracy of kernel gradient approximation. In the present
study, we use the renormalization technique [12, 65] to enforce the C1 consistency, which is
briefly given as follows.

The gradient of the field function f(x) can be rewritten as

∇f(x) = ∇f(x)− f(x)∇1 (4.23)

The continuous kernel approximation of the above equation reads

< ∇f(x) >=

∫
Ω

f(x′)∇Wdx′ − f(x)

∫
Ω

∇Wdx′ (4.24)

Performing the second order Taylor expansion to the first term on the right-hand side of
Eq. (4.24), we have∫

Ω

f(x′)∇Wdx′ = f(x)

∫
Ω

∇Wdx′ +

(∫
Ω

(x′ − x)⊗∇Wdx′
)
∇f(x) +O(h2) (4.25)

Substituting the above equation into Eq. (4.24) gives

< ∇f(x) >=

(∫
Ω

(x′ − x)⊗∇Wdx′
)
∇f(x) +O(h2) (4.26)

From Eq. (4.26) we can see that the kernel approximations of function gradient have second
order accuracy when the following requirement is satisfied:∫

Ω

(x′ − x)⊗∇Wdx′ =

(
1 0

0 1

)
(4.27)

In order to ensure the C1 consistency in the SPH method, the above requirement needs to be
satisfied in discrete particle approximation. This is achieved using the renormalization tech-
nique, which employs the corrected kernel gradient ∇CW such that at particle i

n∑
j=1

(xj − xi)⊗∇C
i Wij

mj

ρj
=

(
1 0

0 1

)
(4.28)

where ∇C
i Wij = L(xi)∇iWij denotes the corrected kernel gradient at particle i. L is the

renormalization matrix in the following form

L(xi) =


n∑
j=1

(xj − xi)
∂Wij

∂xi

mj

ρj

n∑
j=1

(xj − xi)
∂Wij

∂yi

mj

ρj

n∑
j=1

(yj − yi)
∂Wij

∂xi

mj

ρj

n∑
j=1

(yj − yi)
∂Wij

∂yi

mj

ρj


−1

(4.29)

The corrected kernel gradient ∇WC is applied to the Eqs. (4.20), (4.21) and (4.22), replacing
the original kernel gradient∇W . The employment of the corrected gradient kernel ensures the
C1 consistency in the SPH method.
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4.2.4 Numerical implementation and boundary conditions

In the SPH method, the solution of granular flow problems is obtained by marching Eq. (4.20)
and (4.21) forward in time starting from initial conditions. Many explicit integration methods
are available for this task. In this thesis, we employ a Predictor-Corrector scheme [28]. The
time step of the explicit solver is controlled by a combination of the Courant condition and the
maximum acceleration [66]

∆t = χCFL min

(
h

max ‖ ai ‖
,
h

c

)
(4.30)

where ai = dvi/dt is the particle acceleration, c is the artificial speed of sound used to control
the size of the time step, and χCFL is the Courant condition coefficient. In this thesis c and
χCFL are taken as 80 m/s and 0.05, respectively.

In the unified model, the hypoplastic stress part is history-dependent. Therefore, the hypoplas-
tic stress tensor Th is calculated by integrating hypoplastic stress rate Ṫh using the same
Predictor-Corrector scheme. As long as the time step is small enough, the direct stress inte-
gration of the hypoplastic stress is accurate sufficiently [66]. Since there is no explicit failure
in hypoplasticity, complex stress integration and return-mapping algorithms in elastoplasticity
are unnecessary.

Two kinds of boundary conditions are considered in this chapter, i.e. periodic boundary and
non-slip solid boundary. The periodic boundary condition in SPH is straightforward, as shown
in [16, 28]. The treatment of solid boundary condition is still a challenge in SPH computa-
tions. In the following simulations, a boundary particle method developed for geomechanical
applications [67] is employed. In this method, the solid boundary is discretized with boundary
particles, which take part in the SPH approximation like real particles but keep fixed or move
with prescribed motions. The velocity and stress tensor at boundary particles are extrapolated
from the real granular particles. It is found that this boundary treatment method works properly
in our simulations.

4.3 SPH element tests

In this section, the implementation of the unified constitutive model in SPH is validated using
two element tests. Their analytical solutions have been presented in Section 3.2 and Section
3.4, respectively. By comparing the analytical and numerical results, we can show whether the
model is well implemented in the SPH code. For simplicity, velocity restrictions are imposed
on SPH particles to reproduce a uniform deformation condition in the test, analogous to an
element test in the FEM.
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4.3.1 Quasi-static undrained simple shear test

The static portion of the unified model as well as the SPH method are tested at first by simulat-
ing the undrained simple shear test in Section 3.2 which is within the quasi-static deformation
range. In real applications, the accurate modelling of the former mentioned three types of
stress-strain behavior is crucial because it determines whether a subsequent material flow oc-
curs. The computational setup is shown in Figure 4.1, with a size of 0.1 × 0.1 m. Periodic
boundary conditions are applied to reproduce a uniform shear deformation, where arbitrary
large shear strain can be modelled. The undrained condition is simulated by keeping the vol-
ume fixed. Pore water is not considered, so all stresses presented in the analysis are effective
stress. The constitutive parameters given in Table 3.1 and Table 3.2 are employed. The param-
eters K2 and αi for the flow range are assumed, because the experiments are only performed
with quasi-static loading. Although K2 depends on the initial void ratio, it assumed as an con-
stant of 0.01 since the dynamic part is insignificant when shear rate is low. αi is assumed equal
to 35.0◦.

Figure 4.1: Computational setup for the undrained simple shear test. Granular particles and
boundary particles are marked blue and gray.

A velocity field of vx = 0.01z m/s and vz = 0 m/s is imposed on the particles as boundary
condition for the element test, which corresponds to a constant shear rate of ε̇xz = 0.5 %/s,
larger than that in the experiments. However, with the applied shear rate the dynamic stress
part is sufficiently small (∼10−7 Pa), so that the simulation lies in the quasi-static range. Five
simulations with different initial void ratios are performed with a confining pressure p0 = 100

kPa. The numerical results are given in Figure 4.2. The simulation successfully captures the
sand behaviors in the quasi-static simple shear tests. The three types of stress-strain relations
are well reproduced. Comparing to the analytical solutions shown in Figure 3.3 where the
dynamic portion is not taken into account, almost the same results are obtained in the SPH
simulations since the dynamic stress is negligibly small in the low shear rate condition. It

51



confirms that the unified model is well implemented in the SPH numerical model and can be
used to simulate the static behaviors of granular materials.

(a)

(b)

Figure 4.2: Simple shear tests with different initial void ratios:(a) shear strain vs shear stress,
(b) mean principal stress vs shear stress.

4.3.2 Granular sheared in an annular shear cell

In this section, the experiments by Savage and Sayed [74] with a cohesionless dry granular
material sheared in an annular shear cell are modelled by the SPH method. The experiments
aim to investigate the stress developed in rapid shearing dry granular material with a constant
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volume. As stated in Section 3.4, the initial normal stress ranges from 100 to 1500 Pa due to
gravity; p0 = 500 Pa is chosen as the initial confining pressure in the numerical simulations;
the first group of experiments in [74], No. PS18 ∼ PS21 with small polystyrene beads, are
simulated by the SPH method. The physical properties of the beads are: particle density ρs =

1095 kg/m3, diameter d = 1.0 mm. According to the geometry of the experimental apparatus,
the experiments can be modelled as an infinite simple shear test with fixed volume. Therefore,
the computational setup displayed in Figure 4.1 is employed again. The material parameters
for the hypoplastic portion used in the numerical modelling is same with that in Table 3.3.
The angle αi which correspond to the stress ratio in fast shearing stage is assumed equal
to a constant of 27◦ for all the specimens. Following the experiments, four simulations with
different solid volume fraction (hence different void ratio) are performed. The solid volume
fraction, the corresponding void ratio and K2 are given in Table 4.1.

In the numerical simulations a velocity field of vx = 2κz m/s and vz = 0 m/s is imposed,
where κ is the desired shear rate. In this work the range of shear rate κ is 10 ∼ 500. At the
beginning the model is given a shear rate of κ = 10 for 0.5 s, to make sure that the granular
flow fully develops and the critical state is reached. Then κ is linearly increased to 500 in 20
seconds. Due to the extremely large shear strain, any stress part from the hypoplastic model is
the residual stress after critical state being reached.

Table 4.1: List of solid volume fractionC, void ratio e, residual stresses and viscous coefficient
K2 in the four simulations.

Solid volume fraction, C [-] 0.461 0.483 0.504 0.524
Void ratio, e [-] 1.169 1.070 0.984 0.908

Txz [Pa] 0.0 0.0 0.0 36.5
Tzz [Pa] 0.0 0.0 0.0 83.2
K2 [kg/m] 0.0022 0.0033 0.0050 0.0080

The residual stress from simulations with different solid volume fraction after the first 0.5
second of shearing are listed in Table 4.1, presenting almost the same values of the analytical
results as shown in Table 3.5. Full liquefaction (or gasification since the interstitial fluid is
air) for the specimens with C = 0.461, C = 0.483 and C = 0.504 are well captured in the
numerical simulations. For the dense case C = 0.524, a non-zero residual stress is obtained
regardless of the magnitude of shear strain. According to the equation (2.38), the coefficient
K2 for the four simulations is calculated and listed in Table 4.1. Since ρs and d are constants
for a given granular material, the solid volume fraction (void ratio) is significant to the granular
flowing property as it has great influence on K2.

The shear and normal stresses developed in rapid shearing are shown in Figure 4.3 and 4.4. By
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Figure 4.3: Dry granular flow with different solid volume fraction: shear rate vs. shear stress.
The markers denote experimental data from [74].

comparing with the analytical results in Section 3.4, it can be seen that the evolution of stress
from the quasi-static state to rapid shear flow is correctly modelled by the SPH method.

Figure 4.4: Dry granular flow with different solid volume fraction: shear rate vs. normal stress.
The markers denote experimental data from [74].
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4.4 Application to boundary value problems

Two element tests are performed in Section 4.3, where the velocity fields are prescribed to
reproduce uniform deformation conditions. The tests give preliminary validation of our unified
approach. In this section, the proposed unified model and the SPH method are applied to real
granular flow problems.

4.4.1 Granular flow on an incline

The problem of a granular mass on an incline is considered, as shown in Figure 4.5. The
inclination is θ, the granular mass has a free surface and is subjected to gravity. The total
height of the granular is H . In this section, the characteristics of granular flows with different
inclinations are studied.

Figure 4.5: Sketch-up of a granular flow on an inclined plate.

Analysis based on the unified model

For a static granular mass or a steady flow, the stress components at arbitrary height z should
be hydrostatic

Tzz = ρg(H − z) cos θ, Txz = ρg(H − z) sin θ (4.31)

where ρ is the bulk density. Now we proceed to calculate the actual shear stress provided by
the frictional contact in the plane parallel to the incline. The failure criterion in the hypoplastic
model Eq. (3.16) is of the rounded Mohr-Coulomb type. Therefore, the failure of the material
approximately follows the Mohr-Coulomb friction law. For an infinite steady granular flow
on the incline, we assume that the failure slip lines are parallel to the plane. Therefore, the
maximum shear stress provided by the hypoplastic model can be estimated as T hxz = T hzz tanφ,
where φ is the internal friction angle at failure, termed as residual fiction angle or critical
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friction angle. For the static state, the dynamic stress part can be neglected. Therefore, the
balance in the z direction requires Tzz = T hzz = ρg(H − z) cos θ. As a result, the condition for
static state is Txz = T hxz ≥ ρg(H − z) sin θ, which means θ ≤ φ.

When θ > φ, the granular starts to flow, generating a dynamic stress part. Under steady flow
condition, by examining the force balance we have

Tzz = ρg(H − z) cos θ = T hzz + T vzz, T
v
zz = 4kvε̇

2
xz/ tanαi, T

h
zz = Tzz − T vzz (4.32)

Txz = ρg(H − z) sin θ = T hxz + T vxz = T hzz tanφ+ 4kvε̇
2
xz (4.33)

In the steady granular flow, the stress consists of the contributions from a frictional contact
part and a collision part, described by the hypoplastic model and the Bagnold-type rheology,
respectively. Owing to the steady flow assumption, the strain rate tensor has only one non-zero
component ε̇xz = 0.5∂vx/∂z.

Based on Eq. (4.32) and (4.33), we obtain the velocity profile by solving a differential equation

A

(
∂vx
∂z

)2

−B(H−z) = 0, A = (1−tanφ/ tanαi)kv, B = ρg(sin θ−cos θ tanφ) (4.34)

Solving the above equation, we have the velocity profile

vx(z) =
2

3

√
B/A(H3/2 − (H − z)3/2) (4.35)

and its derivative
∂vx
∂z

=
√
B/A(H − z)1/2 (4.36)

The velocity profile, evolving as (H − z)3/2, corresponds to a Bagnold profile [16]. Once the
velocity profile is obtained, the hypoplastic and dynamic stress parts can be calculated from
Eq. (4.32) and (4.33). The Eq. (4.35) and (4.36) show that the velocity and shear rate increase
with the inclination θ. Therefore, with increasing θ, the normal and shear stresses caused by
collision become more significant. The increase in normal stress gives rise to dilation, tend-
ing to reduce the possibility of frictional contact thus resulting in a decrease in the frictional
(hypoplastic) stress part.

If we define a phenomenological frictional coefficient µ = Txz/Tzz, in steady shearing flow
we can observe that the coefficient µ increases with θ because the force balance requires that
µ = tan θ. This increase of the phenomenological frictional coefficient is found in many tests,
as well as described by the µ(I) model by Jop et al [45]. According to classical explanations,
this increase is the result of granular dilation [2]. In the present work this dilation can be
properly described by the combination of the hypoplastic model and Bagnold-type rheology.
As stated in Section 2.2, the maximum inclination for a steady shearing flow is equal to the
angle αi, i.e.

φ ≤ θ ≤ αi (4.37)
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Only in this range steady dense granular flows can be observed. When θ > αi, frictional
(hypoplastic) stress part disappears. The shear stress provided by granular collisions is insuf-
ficient to balance the driving force, so the granular accelerates continuously and reaches a
gasified state. It is noteworthy that the obtained results are quite similar to that from the µ(I)

model [16], where the coefficients µs and µl corresponds to tanφ and tanαi, respectively.

One important assumption in the above analysis is T hxz/T
h
zz = tanφ at failure and subsequent

flow state. When describing granular flows in the framework of depth-averaged equations, Sav-
age and Hutter employ the same assumption [72]. However, some discrete simulations suggest
that T hxz/T

h
zz = sinφ [3, 21], indicating a different failure slip line. Besides, the actual fail-

ure surface of the hypoplastic model is slightly different from that of Mohr-Coulomb model,
which may result to minor violation of the frictional law. Nevertheless, the above analysis is
valid in principal, though the exact ratio between T hxz and T hzz may be subject to further discus-
sion. Considering separately the friction and collision in granular flow gives rise to interesting
findings.

Figure 4.6: Numerical setups for the simulation of steady granular flow. The color scale repre-
sents the velocity field in θ = 26◦.

Numerical modelling

The numerical setups for the simulation of the steady granular flow is shown in Figure 4.6.
The height of the granular is H = 0.03 m. A square granular body is modelled with pe-
riodic boundary condition. The material constitutive parameters are given in Table 4.2. The
hypoplastic parameters c1 ∼ c4 correspond to an internal friction angle φ0 = 25◦. The critical
state parameters and initial void ratio are chosen such that the residual friction angle φ = φ0,
i.e. no softening or hardening occurs at the critical state. Other physical constants are: granular
diameter d = 1.1 mm, particle density ρs = 1095 kg/m3. Three simulations with varied slope
angle θ = 26.0◦, 27.5◦ and 30.0◦, are performed. These angles lie in the range of φ < θ < αi,
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steady granular flows are therefore expected (see Section 4.4.1). All particles are at rest at
the beginning of simulation. As θ > φ, the shear force provided by particle friction cannot
balance the driving force. The granular starts to flow while the dynamic stress part begins
to develop. The two stress parts evolve simultaneously and adjust continuously according to
the flowing state, loading conditions and boundary conditions. Eventually the flow reaches a
steady shearing state.

Table 4.2: Material parameters for the granular on a inclined plate.

c1 c2 c3 c4 emin p1 p2 p3 q1 q2 q3 K2 αi

[-] [-] [-] [-] [-] [-] [-] [kPa−1] [-] [-] [kPa−1] [-] [◦]

-66.7 -832.9 -832.9 1594.5 0.597 0.53 0.45 -0.0011 1.0 -0.4 -0.0001 0.1 33.0

Figure 4.7: Velocity profiles: lines indicate reference solutions calculated from Eq. (4.35) and
markers are numerical results.

To compare flows with different inclinations, the following dimensionless variables are used
in the analysis: z∗ = z/H; v∗x = (vx/

√
gH)(d/H); T ∗ = T/(ρgH). Steady granular flows are

observed in all the tested inclinations in numerical simulation. The velocity profiles are given
in Figure 4.7. The analytical solutions in Section 4.4.1 are used as the reference. The velocity
changes in height show clearly Bagnold profile. For all three inclinations, the numerical results
are in good agreement with the analytical solutions. Figure 4.8 and 4.9 give the frictional
contact (hypoplastic) and collisional stresses, respectively. A systematic agreement between
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Figure 4.8: Normalized analytical and numerical frictional contact (hypoplastic) stress. Normal
stress is in the left (negative part) and shear stress in the right (positive part).

the analytical and numerical results is observed. The discrepancy is pronounced close to the
bottom, particularly on the profiles of frictional contact stress. It can be found that as the
inclination increases, the frictional contact becomes less significant, and collisional stress turns
into the dominant one. The two stress parts evolve simultaneously, automatically balancing
the external loading. The presented results can be regarded as a validation of the numerical
implementation of the unified model within the SPH method.

Figure 4.9: Normalized analytical and numerical collisional stress. Normal stress is in the left
(negative part) and shear stress in the right (positive part).
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4.4.2 Collapse of a granular pile

The collapse of a granular pile on a flat surface is studied in this section. This problem has well
defined initial and boundary conditions and has been studied experimentally and numerically
[58, 14, 66]. Previous numerical simulations often apply rate-independent constitutive models,
thus do not consider the dynamic effect in granular flows.

The simulation is performed under plain strain condition. The initial geometry and boundary
conditions are shown in Figure 4.10. A pile of granular material with 10 cm height and 20 cm
width is initially under static state. Similar to a dam-break problem in fluid dynamics, after
suddenly releasing the confining gate, the granular pile starts to collapse. The material proper-
ties are the same as those used in the Section 4.4.1 except c1 ∼ c4. The parameters c1 ∼ c4 are
taken as c1 = −50, c2 = −832.1, c3 = −832.1 and c4 = 2369.9, which correspond to a fric-
tion angle of 22◦. The initial particle spacing is taken as 0.002 m, giving rise to approximately
5000 particles.

Figure 4.10: Initial geometry and boundary conditions.

Figure 4.11: The collapse process of the granular pile. The figures are coloured by equivalent
viscosity η.

As pointed out in Section 1.1, a granular flow can be treated as a viscous fluid with an equiv-
alent viscosity which depends on the shear rate. From Eq. (4.1), the equivalent viscosity can
be defined as η = 2K2

√
| IID |. The equivalent viscosity is not only dependent on material

properties, but also on the granular kinematics. It is related to both viscous shear stress and
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dispersive pressure. In quasi-static region, the equivalent viscosity is negligibly small, thus
it can be used to distinguish the solid-like and fluid-like regions. Figure 4.11 shows the pro-
cess of the collapse together with the evolution of the equivalent viscosity η. The flowing area
propagates from right to left. There exists a slip plane above which the particle moves and be-
low which particles are generally at rest. The equivalent viscosity helps us easily identify the
flowing state. In the flow regions, significant parts of stress components are developed by par-
ticle collisions. To demonstrate the evolution of dynamic stress in the collapse, in Figure 4.12,
we show the percentage of the dynamic part of stress in the total vertical stress component
(T vzz/(T

v
zz + T hzz)× 100%) at three different particles throughout the simulation. From the ini-

tial locations of the three particles, we can see particle A and B are in the potential flow area
with A closer to the surface, particle C is deep inside the granular body, subjected to less de-
formation in the collapse. In the collapse, dynamic stresses at particle A and B are significant,
indicating partial fluid-like behaviors. For a short period, the dynamic stress accounts for the
whole stress (percentage reaches 100%), which means the granular material behaves like a
pure Bagnold-type fluid. With collapse coming to its end, the significance of dynamic part
reduces, the granular material behaves more and more like solid. Once granular mass finally
reaches static packing, the dynamic stress part disappears and stress components are all devel-
oped by frictional contacts. Comparison between particles A and B shows that dynamic stress
is usually larger at particle A, indicating particles near the right surface are more fluid-like in
the collapse. At particle C deep in the granular body, the dynamic stress components are very
close to zero. The material is solid-like and does not undergo fluid-like flow.

Figure 4.12: Change in percentage of dynamic stress part in the total stress at three particles.

The proposed unified model differs substantially from Bingham model or pure Bagnold-type
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model. It can account for the rate-independent solid state accurately with its hypoplastic com-
ponent. Material behaviors inside the yield surface are well-defined. In simulations with the
Bingham model or pure Bagnold-type models, materials will never reach the final static state,
creeping is usually observed. However, in simulations with the unified model, material can
reach the final static state because the final solid-state is described with the hypoplastic model.
Figure 4.13 gives the evolution of runout distance in time. It is observed that the granular pile
reaches the final state in about 0.5 second. From then on the granular material is at rest, and
no creep is observed.

It is well-known that SPH suffers the so-called short-length-scale-noise, which leads to stress
fluctuations in areas with large deformation [63]. Several methods are proposed to mitigate
this deficiency, e.g. artificial viscosity and stress regularisation. In this thesis only artificial
viscosity is used. The stress results at the final state are shown in Figure 4.14. In areas with-
out particle rearrangement, very smooth stress distributions are obtained. However, in regions
with large deformation, stress oscillations are observed. Fortunately, it is reported that the kine-
matics obtained through SPH are generally satisfactory even with stress oscillation [63]. This
finding is also confirmed by our simulations. Nevertheless, the stress accuracy is a challenge
for SPH and is subject of further study.

Figure 4.13: Evolution of runout distance.

4.4.3 Granular flow in a rotating drum

A granular mass rotating in a drum is modelled in this section. The material properties are
the same as those used in Section 4.4.1. The numerical setup is shown in Figure 4.15. The
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Figure 4.14: Stress distributions in the final state.

granular flows in the rotating drums are surface flows over the static grains. The granular
quasi-static and dynamic flowing states coexist in this configuration. The flows in rotating
drums are inhomogeneous in flow depth and inclination. Therefore, analytical solutions are
usually unavailable.

Figure 4.15: Numerical setups for the simulation of granular in a rotating drum: (a) initial state;
(b) steady flow state.

Three simulations with different angular velocities ω = 0.5, 1.0 and 2.0 s−1 are performed. The
rotating process of ω = 1.0 s−1 is shown in Figure 4.16. At first the granular mass moves with
the drum like a solid block without any deformation. As the surface slope angle grows, failure
occurs in the granular body. As a consequence, shear band develops, and the first avalanche
takes place. This first avalanche is followed by several small avalanches, and eventually a
steady surface granular flow is observed. Below the surface flow the granular remains quasi-
static and moves with the drum as a solid block. This process is further confirmed by the
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Figure 4.16: The developing process of steady surface flow in the rotating drum, ω = 1.0 s−1.

evolution of the maximum surface speed, as shown in Figure 4.17. The velocity evolutions
under different rotating angular speeds are similar. The peaks in Figure 4.17 mark the first
avalanche. As expected, the appearance of this critical event is delayed with the decrease of
the rotating velocity of the drum. In each simulation, a steady flow state is achieved after
several seconds of rotating.

Figure 4.17: Evolution of maximum surface velocity.

A local coordinate as shown in Figure 4.15(b) is used, and the flow characteristics along di-
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rection z are studied. zy is the height where flow state changes and zs is the height of the flow
surface; h = zs − zy is the flow depth. In the range of z < zy the granular mass behaves
solid-like, so the velocity profile is linear. The steady velocity profiles in the dynamic flowing
layer are given in Figure 4.18. On a middle cross-section, the velocity direction pointing down
the slope is defined as positive. The velocity profiles for different rotating speeds are simi-
lar in shape but with different magnitudes. In experiments [26], similar velocity profiles are
observed. The simulated flow rates, flow depths and average inclinations are summarised in
Table 4.3. In our flow configuration, the flow rate is calculated by Q = 0.5ω[R2− (R−H0)2],
where R = D/2 is the drum radius. It is found that the flow depth h and average inclina-
tion θ changes almost linearly with respect to the flow rate Q. This observation is also well
collaborated with the experimental results [26].

Figure 4.18: Velocity profiles in the flowing layer.

Table 4.3: Summary of the numerical modelling of rotating drum.

Rotating speed ω (s−1) 0.5 1.0 2.0
Flow rate Q (m2/s) 0.0052 0.0104 0.0208

Flowing depth h (m) 0.046 0.054 0.065
Average inclination θ (◦) 21.48 22.43 24.81

In the drum the surface flow moves over the solid-like granular body, so that both static and
flow states coexist in the computational domain. In the simulations the dynamic part is always
taken into account. However in the quasi-static zone the calculated collisional stress is negli-
gible that the dynamic part has no realistic effect on the mechanical response of the material.
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In the beginning, there is no flow and the granular behaves like solid. Phenomena observed in
solids, such as non-isotropic stress tensor and shear band, are reproduced in the simulations.
As shown in Figure 4.19, in the steady flow state the flowing zone, where dynamic stress part
takes effect, can be marked by an apparent viscosity η = 2K2

√
| IID |. In the blue zones the

apparent viscosity is almost zero. Therefore, the dynamic part of the constitutive model has
no realistic effect. As a result, only the solid-like behaviors are described by the hypoplastic
model. From the simulations, we can see that the solid-like and flow behaviors of granular ma-
terial are successfully modelled by the unified constitutive model. The explicit determination
of the solid/flow states is unnecessary. The solid/fluid transition is achieved naturally in the
computation. We do not make use of concepts such as yield stress or flow initiation criterion.
Therefore, the numerical implementation is greatly simplified.

Figure 4.19: Quasi-static and flowing regions in the drum: (a) ω = 0.5 s−1; (b) ω = 1.0 s−1;
(c) ω = 2.0 s−1. The figures are coloured by the apparent viscosity η.
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Chapter 5

Conclusions and outlook

5.1 Conclusion

In Bagnold’s pioneering work [5], a gravity-free dispersion of solid spheres is sheared in New-
tonian liquids, where the solid particles with same density of the liquids are used. The stresses
in the ’macro-viscous’ regime where the effect of fluid viscosity is the dominant mechanism
show linear dependence on the shear rate. The stresses in fast flow stage which termed ’grain-
inertia’ region present quadratic dependence on the shear rate. In this stage, the bulk behavior
and dissipation of the flow kinetic energy are dominated by the inelastic and frictional particle
collisions. In both regimes, the ratios between shear and normal stresses are almost constants.
However, no constitutive relation is available for the transition region between the ’macro-
viscous’ and ’grain-inertia’ regimes. By fitting the experimental data in [5], the addition of the
shear stresses in the viscous case and inertia case, equation (2.7), is found to be a competent
model to describe the shear stress in the entire flow stage, including the stress in the transition
region. Since two constant stress ratios is observed in the experiments, the combined model
is also obtained for the normal stress as equation (2.8). As stated before, the density of solid
particles is equal to that of the interstitial fluids in Bagnold’s experiments, which is similar to
the state of full liquefaction. It is an imaginative arrangement which highlights the effect of
the fluid viscosity and particle collisions, eliminates the effect of gravity and further facilitates
the analysis of the experimental data. However, this setting eliminates the yield stress in the
experiments. It means no yield stress was considered in Bagnold’s models since they are de-
veloped based on the experimental data. For a general case where the gravity is not eliminated
by the pore fluid pressure completely, the stresses due to prolonged contact before yielding
should be taken into account in a complete model which can describe the stress state through-
out the shear process from quasi-static state to high-speed shearing stage. The stresses in the
quasi-static state, T0 and P0, are considered to meet Mohr-Coulomb criterion. By adding T0
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and P0 to equation (2.7) and (2.8) respectively, the framework for constitutive modelling of
granular-fluid flows is obtained as (2.10). T0 and P0 are termed the static portion while Tr and
Pr are the dynamic portion. For dry granular flow on an inclined plane, the framework can
predict the experimental observation that the steady state flow is obtained over a slope range.
A concrete simple-shearing model for grain-fluid flows is developed within this framework.
The critical solid volume fraction for a full shearing to occur is taken into account in the dy-
namic portion. The existence of the stagnant zone is considered to be the main reason for the
dramatic increasing of dynamic viscosity when the solid volume fraction is greater than the
critical value. Inspired by a common structure of some former models, the simple-shearing
model is extended to a three-dimensional form as (2.47). The new model was used in the ele-
ment tests to simulate the stress-strain relationship of two annular shear tests with dry granular
material and granular-water mixture. The predicted stress-shear rate curves in both tests show
well agreement with the experimental data in the high shear rate stage. However, when the
residual normal stress in the beginning of the flow is determined as the gravity component of
the solid phase which is perpendicular to the flow plane, the total shear and normal stresses
in the low speed stage is overestimated by the model (2.47). Actually, the residual normal
stress doesn’t equal to the gravity component in the cases of saturated granular materials with
undrained boundary condition or dry granular materials with constant volume. Shear soften-
ing is normally observed in these cases where the normal stress in the quasi-static stage will
decrease from the gravity component of the solid phase to a residual value. Therefore, more
sophisticated theory is required for the static portion of (2.47) to capture this process in the
initiation of a granular-fluid flow.

Debris flow is normally simplified as granular-fluid flow in constitutive modelling. The in-
creasing of excess pore water pressure which corresponds to the former mentioned process of
shear softening is considered as the most significant triggering factor in the initiation of debris
flows. Therefore, a constitutive model for debris materials should be capable to capture the
shear softening before flow and to determine the residual strength exactly. The applicability
of a hypoplastic model in describing the solid-like behaviors of debris materials is studied by
simulating the undrained simple shear tests of saturated granular material. Undrained simple
shear test is believed to be particularly relevant to the initiation mechanism of debris flows.
Three types of stress-strain behavior in which the ’liquefaction’ is regarded as the main cause
of debris flow mobilization are reproduced by the hypoplastic model. It is shown that the hy-
poplastic model has the capability to describe the tendency of volume deformation and further
capture the phenomenons of shear softening and hardening of granular-fluid mixtures. There-
fore, it is chosen as the static portion of the new model for debris flows. On the other hand, the
fluid-like behavior of debris materials in the flowing stage is related to some material param-
eters, such as solid volume fraction, fluid viscosity and particle density which have be taken
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into account in the dynamic portion of the model (2.47). The hypoplastic model is combined
with the dynamic portion of the model (2.47) to obtain a new complete model for debris mate-
rials as equation (3.24). Thus, statics and dynamics are unified in the new model. No explicit
critical point between the solid and fluid state is determined by the unified model which cov-
ers the whole spectrum of granular state from quasi-static motion to rapid granular flow. The
conversion of motion state is achieved by the coupled evolution of the frictional contact and
collision stress parts and finished automatically. The new model is employed to simulate the
same annular shear tests used in Chapter 2 for comparison. In the case of dry granular flow
with constant volume, the residual stresses of the specimens with different compactness are
predicted by the hypoplastic portion, which indicate partial and full liquefaction. Based on the
accurate prediction of the residual stresses, the overestimation of the total shear and normal
stresses in the low speed stage is eliminated and all the predicted stress-strain curves agree
well with the experimental data. The non-quadratic dependence of the stresses on the shear
rate in the experimental data of the relatively dense specimen is captured by the new model.
Similar conclusions are obtained in the simulation of water-saturated granular flow. Compar-
ing to the dry granular flow, the linear terms Tv and Pv, which characterize the effect of the
fluid viscosity, are non-negligible in granular-fluid flows. The element test results show that
the new model is applicable to model granular-fluid mixtures with different interstitial fluid.

In Chapter 4, the unified model for debris materials is implemented in numerical methods
and further verified in the simulations of some boundary value problems. Smoothed particle
hydrodynamics (SPH) method which is proved ideal for modelling both solid-like and fluid-
like behaviors within a consistent numerical scheme is used for the numerical simulations.
The simulation results of two element tests show that the unified approach captures the salient
feature of the quasi-static and flowing states of granular materials. In the study of two boundary
value problems that dry granular materials flow down an inclined plane and in a rotating drum,
the following observations are made: (1) In the case of granular flow down an inclined plane,
steady dense granular flow is observed over a range of inclinations, which is consistent with
the theoretical analysis in Section 2.2. Moreover, the solutions to this problem in the present
model are well collaborated with those from the µ(I) model [45, 16]. (2) For the granular
pile collapse and the granular flow in the rotating drum, the numerical results show wealth of
various behaviors, i.e. quasi-static motion, shear band, flow initiation, fully developed granular
flow and granular deposition. The implementation of the unified model in SPH is promising
to handle the complex behavior of granular flow in a consistent numerical model. It should
be noted that all the numerical simulations by SPH in this thesis are focus on dry granular
flows. Since some aspects, such as hydro-mechanical coupling and particle segregation, still
need further investigation to be considered in the numerical and constitutive model, applying
the unified approach to the numerical simulation of debris flow in nature is an interesting
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challenge in our future work.

5.2 Outlook

As concluded above, a new constitutive model for debris materials is developed by unifying
statics and dynamics stresses in a framework. This new model is implemented in SPH and
verified by applying to some element tests and boundary value problems. It is demonstrated
that the mechanical behavior and motion of granular-fluid flows are well described by the
unified model. Based on the work in this thesis, some aspects can be further studied.

The unified model should be used to simulate boundary value problems of granular-fluid flows
by fulfilling hydro-mechanical coupling. The simulation results can be compared with that of
the µ(Iv) model developed by Boyer et al. [13].

The dynamic portion of the new model is developed for monodispersed granular materials. It
may be extended to more general case that polydispersed particles are contained by using an
equivalent particle diameter d̂ to replace d in the expression of K2. Since particle size distribu-
tion mainly affects stresses in the ’grain-inertia’ regime, the equivalent particle diameter can
be determined by the following equation

Ti(d̂) = Ti
m (5.1)

where Tim is the measured shear stress in the high-speed shear stage of multi-size particle-
fluid flow with a specific solid volume fraction. Based on a large number of laboratory tests or
numerical experiments, the relation between particle size distribution and equivalent particle
diameter may be determined.

In this thesis, the hypoplastic model developed by Wu et al. [95] is employed as the static por-
tion of the complete model. As stated before, finding more suitable and concise hypoplastic
models for the static portion will be an interesting exploration to refine the new model. On the
other hand, developing a complete rate-form model for granular materials within the frame-
work of hypoplasticity is the main target of our future work. Based on the framework (3.25),
the developed model may have the capability to distinguish between loading and unloading.
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[78] P. Stutz. Comportement élasto-plastique des milieux granulaires. In A. Sawczuk, editor,
Foundations of Plasticity, volume 1, pages 37–49. Noordhoff Int. Pub., 2000.

[79] D. G Thomas. Transport characteristics of suspension: Viii. a note on the viscosity
of newtonian suspensions of uniform spherical particles. J. Colloid Sci., 20:267–277,
1965.

[80] T. Y. Thomas. Combined elastic and prandtl-reuss stress-strain relations. Proc. N. A. S.,
41(10):720–726, 1955.

[81] T. Tokuoka. Yield conditions and flow rules derived from hypoelasticity. Arch. Rat.
Mech. Anal., 42:239–252, 1971.

[82] T. Tokuoka. Rate type plastic material with kinematic hardening. Acta Mechanica,
27:145–154, 1977.

[83] T. Tokuoka. Simple shear deformation of rate type plastic materials with combined
work-hardening. Int. J. Engng. Sci., 20:791–801, 1982.

[84] C. Truesdell. Hypoelasticity. J. Rat. Mech. Anal., 4:83–133, 1955.

[85] P. von Soos. Properties of soil and rock. In Grundbau taschenbuch part 4. Ernst &
Sohn, Berlin, 1990.

[86] P. A. von Wolffersdorf. Hypoplastic relation for granular materials with a predefined
limit state surface. Mech. Cohes. Frict. Mater., 1(3):251–271, 1996.

[87] C.-C. Wang. A new representation theorem for isotropic functions: An answer to Pro-
fessor G. F. Smith’s criticism of my papers on representations for isotropic functions -
Part 1. Scalar-valued isotropic functions. Archive for Rational Mechanics and Analysis,
36(3):166–197, 1970.

[88] C.-C. Wang. A new representation theorem for isotropic functions: An answer to Pro-
fessor G. F. Smith’s criticism of my papers on representations for isotropic functions -
Part 2. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions,
and skew-symmetric tensor-valued isotropic functions. Archive for Rational Mechanics
and Analysis, 36(3):198–223, 1970.

77



[89] Y. Wang and K. Hutter. Granular material theories revisited. In N. J. Balmforth and
A. Provenzale, editors, Geomorphological Fluid Mechanics, chapter I, pages 79–107.
Springer, 2001.

[90] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial
functions of minimal degree. Advances in computational Mathematics, 4(1):389–396,
1995.

[91] G. F. Wieczorek. Effect of rainfall intensity and duration on debris flows in the central
santa cruz mountains, california. In J. E. Costa and G. F. Wieczorek, editors, Debris
Flows/Avalanches: Process, Recognition, and Mitigation. Geol. Soc. of Am., 1987.

[92] W. Wu. On simple critical state model for sand. In Proc. of the seventh Int. Symp. on
Numerical Models in Geomechanics-NUMOG, Graz, Austria, Balkeman, 47-52, 1999.

[93] W. Wu. On high-order hypoplastic models for granular materials. Journal of Engineer-
ing Mathematics, 56:23–34, 2006.

[94] W. Wu and E. Bauer. A simple hypoplastic constitutive model for sand. International
Journal for Numerical and Analytical Methods in Geomechanics, 18:833–862, 1994.

[95] W. Wu, E. Bauer, and D. Kolymbas. Hypoplastic constitutive model with critical state
for granular materials. Mechanics of Materials, 23:45–69, 1996.

[96] W. Wu and D. Kolymbas. Numerical testing of the stability criterion for hypoplastic
constitutive equations. Mechanics of Materials, 9(3):245–253, 1990.

[97] W. Wu and D. Kolymbas. Hypoplastic then and now. In D. Kolymbas, editor, Constitu-
tive Modelling of Granular Material, pages 57–105. Springer, 2000.

[98] W. Wu and A. Niemunis. Beyond failure in granular materials. Int. J. Numer. Anal.
Methods Geomech., 21:153–174, 1997.

[99] F. L. Yang and M. L. Hunt. Dynamics of particle-particle collisions in a viscous liquid.
Phys. Fluids, 18:121506, 2006.

[100] M. Yoshimine and K. Ishihara. Flow potential of sand during liquefaction. Soils and
Foundations, 38:189–198, 1998.

[101] M. Yoshimine, K. Ishihara, and W. Vargas. Effects of principal stress direction and in-
termediate principal stress on undrained shear behavior of sand. Soils and Foundations,
38:179–188, 1998.

78



[102] B. Yu, Y. Yang, Y. Su, W. Huang, and G. Wang. Research on the giant debris flow
hazards in zhouqu county, gansu province on august 7, 2010. Journal of Engineering
Geology, 4:437–444, 2010.

[103] O. C. Zienkiewicz and R. L. Taylor. The finite element method. Butterworth-Heinemann,
Stonham, 2000.

79


