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Abstract

Climate change and the associated effects of drought stress on Norway spruce (Picea abies
(L.) Karst.) are on focus of much debate in recent decades. Thereby, classical methods for the
efficient characterization of the hydraulic properties of trees have often been discussed.
Classical methods are destructive, take a lot of time and they are prone to errors.

In search for an alternative to classical methods to determine hydraulic vulnerability (Pso) of
sapwood in Norway spruce, several approaches were tested. The following criteria were used
in the selection of methods: (I) non-destructive, (11) efficient, (Ill) easy to assess, (IV) using well
established techniques, and (V) limited sample preparation needed. Two methods that met
these criteria are Fourier transform near-infrared (FT-NIR) spectroscopy and the calculation of
hydraulic traits from SilviScan measurements.

After an introduction, the thesis includes two articles presenting research on these two
methods, followed by general conclusions.

The first article deals with FT-NIR spectroscopy, a method established in many fields of
research, often used due to its speed and user-friendliness. FT-NIR spectroscopy combined
with partial least squares regression (PLS-R) models were used to predict the parameters Pso
(applied air pressure causing 50% loss of hydraulic conductivity) and RWLso (applied air
pressure causing 50% relative water loss). It was found that spectra recorded from the axial
wood surface provided better results than spectra from the radial surface for Pso (r = 0.81) and
for RWLso (r = 0.88).

The second article deals with use of a SilviScan instrument to determine wood density (WD)
and anatomical parameters of the wood in order to find efficient proxies for Pso. It was
confirmed that WD is one of the best proxies available for Pso (r = -0.64), but it does not
necessarily reflect the mechanism behind cavitation resistance. New approaches based on the
anatomical data from the instrument, such as the introduction of dynamic aspects of
conductivity loss through the analysis of 5% steps in the cumulated hydraulic conductivity (K),
provided even stronger correlations (r = -0.72). The correlations of Psy with averages for
earlywood (EW), transitional wood (TW), and latewood (LW) were lower than with the averages
of the sample, both for WD (r = -0.60 for WDegw, r = -0.56 for WDw, r = -0.23 for WD.w) and
for all anatomical characteristics investigated, reflecting that the proportions of the three parts
play an important role.

In summary, both methods, FT-NIR and SilviScan, have many advantages compared to
classical methods. They are more efficient and, first of all, the original sampling can be
performed without harvesting the tree. At this stage, it is not possible to judge objectively which
method is the better one, as it will depend on the research question. In terms of sample
preparation, FT-NIR spectroscopy can be more efficient. However, prediction models
developed for one type of wood may need to be updated or new developed for application on
other types of wood. For SilviScan, sample preparation can be more time-consuming despite
use of dedicated machines, but it provides anatomical and physical information directly from
the samples. Both methods represent interesting alternatives to the classical methods.



Zusammenfassung

Der Klimawandel und die damit verbundenen Auswirkungen von Trockenstress auf Fichten
(Picea abies (L.) Karst.) sind in den letzten Jahrzehnten immer mehr ins Zentrum vieler
Diskussionen gerlckt. Dabei sind klassische Methoden zur effizienten Charakterisierung der
hydraulischen Eigenschaften von B&dumen haufig diskutiert worden. Klassischen Methoden
wird nachgesagt, dass sie nicht zerstérungsfrei sind, viel Zeit in Anspruch nehmen und die
Fehlerwahrscheinlichkeit relativ hoch ist. Ziel dieser Studie war es, das Potenzial alternativer,
effizienterer Methoden zur Bestimmung der hydraulischen Verwundbarkeit (Pso) zu testen, um
klassische Methoden zu ersetzen. Bei der Auswahl der Methoden wurden folgende Kriterien
herangezogen: (I) zerstorungsfrei, (II) effizient, (Ill) einfach zu beurteilen, (V) etablierte
Techniken und (V) begrenzte Probenaufbereitung erforderlich. Zwei Methoden, die diese
Kriterien erftllten, sind die Fourier-Transform-Nahinfrarot-(FT-NIR)-Spektroskopie und die
Berechnung von hydraulischen Eigenschaften aus SilviScan-Messungen.

Nach der Einleitung werden in dieser Arbeit zwei Publikationen prasentiert, die die oben
beschriebenen Methoden darstellen, gefolgt von einer allgemeinen Schlussfolgerung.

Der erste Artikel beschéaftigt sich mit der FT-NIR-Spektroskopie, einer in vielen
Bereichen der Wissenschaft etablierten Methode, die aufgrund ihrer Schnelligkeit und
Benutzerfreundlichkeit haufig eingesetzt wird. Die FT-NIR-Spektroskopie in Kombination mit
PLS-R-Modellen (Partial Least Squares Regression) wurde zur Vorhersage der Parameter Pso
(Uberdruck, der 50% Verlust der hydraulischen Leitfahigkeit verursacht) und RWLso
(Uberdruck verursacht 50% relativen Wasserverlust) verwendet. Es wurde festgestellt, dass
die von der axialen Holzoberflache aufgenommenen Spektren bessere Ergebnisse lieferten
als die Spektren von der radialen Oberflache fiir Pso (r = 0,81) und fir RWLs (r = 0,88).

Der zweite Artikel beschatftigt sich mit der Verwendung eines SilviScan-Instruments zur
Bestimmung der Holzdichte (WD) und anatomischer Parameter des Holzes, um effiziente
Vertreter (Proxies) fur Pso zu finden. Es wurde bestétigt, dass WD einer der besten Proxies fir
Pso (r = -0,64) ist, aber die Korrelation spiegelt nicht unbedingt den Mechanismus hinter dem
Kavitationswiderstand wider. Neue Ansatze, die auf den anatomischen Daten des Instruments
basieren, wie die Einfihrung dynamischer Aspekte des Leitfahigkeitsverlustes durch die
Analyse von 5%-Schritten der kumulierten hydraulischen Leitfahigkeit (K), lieferten noch
starkere Korrelationen (r = -0,72). Die Korrelationen von Psp mit den Durchschnittswerten fiir
Fruhholz (EW), Ubergangsholz (TW) und Spatholz (LW) waren niedriger als mit den
Durchschnittswerten der Stichprobe, sowohl fur WD (r = -0,60 fir WDgw, r = -0,56 fur WDrw,
r = -0,23 fur WD.w) als auch fir alle untersuchten anatomischen Parameter, was zeigt, dass
die Anteile der drei Teile eine wichtige Rolle spielen.

Zusammenfassend lasst sich sagen, dass beide Methoden (FT-NIR und SilviScan)
viele Vorteile gegeniber klassischen Methoden aufweisen. Sie sind effizienter und vor allem
kann die Probenahme durchgefuhrt werden, ohne den Baum féllen zu missen. Zum jetzigen
Zeitpunkt ist es nicht moglich, objektiv zu beurteilen, welche Methode die bessere ist, da dies
von der Forschungsfrage abhangt. In Bezug auf die Probenvorbereitung kann die FT-NIR-
Spektroskopie effizienter sein. Allerdings muissen die fir eine Holzart entwickelten
Vorhersagemodelle moglicherweise fir eine andere Holzart aktualisiert oder neu entwickelt
werden. Fir SilviScan kann die Probenvorbereitung trotz Einsatz spezieller Maschinen
zeitaufwandiger sein, liefert aber anatomische und physikalische Informationen direkt aus den
Proben. Demnach stellen beide Methoden interessante Alternativen zu den klassischen
Methoden dar.
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1. General Introduction



1.1 Norway spruce —an economically important but endangered species

Norway spruce (Picea abies (L.) Karst.) (Figure 1) is a fast growing, large, evergreen, shallow-
rooted conifer species. It can grow in many adverse soil conditions and grows in different types
of sites (Skrgppa 2003). In addition, the spruce can be found at altitudes ranging from sea
level to about 2,300 m (Skrgppa 2003; Farjon 2017). It becomes between 20 and 45 m high,
and the trunk’s diameter of old trees can become between 1 and 1.5 m (Schmidt-Vogt et al.
1986; Skrgppa 2003).

Originally, the spruce was mainly found in
north-eastern and northern Europe. Today it is
widespread to temperate forests all over the
world, and it is the most common tree in Austria.
Approximately 48% of Austria's total area is
covered with forest, i.e. 4 million hectares of 8.4
million hectares. Conifers cover 63.5% of this
area, with 50.7% spruce. (Schadauer et al.
2015).

Norway spruce is an important high-quality
wood tree in Europe. Its long fibers makes it
important for the pulp and paper industry. The
wood is also used as construction wood, for
furniture, and selected wood even for musical
instruments (e.g. for the soundboards of
pianos, guitars, and violins). It is a popular
Christmas tree in Europe (Farjon 2017).
Furthermore it has high ecological importance
as a key species in Europe (Strasburger et al.
1983; Skrgppa 2003).

Coniferous species, such as Norway spruce, are Figure 1: Picea abies, lllustration by Koehler
one of the most endangered plant groups in 1887

terms of forest dieback due to drought (Solberg

2004; Bréda and Badeau 2008; Sergent et al. 2012; Klein et al. 2018; Rosner et al. 2018,
2019b). During the past years, drought and heat weaves have been frequently observed (Allen
et al. 2010; Sergent et al. 2012), and, as a consequence of climate change, it is predicted that
more extreme and frequent drought and heat waves will occur (Schér et al. 2004; IPCC 2012,
2014). The physiological mechanisms behind dieback due to drought sensitivity are not yet
well understood (McDowell et al. 2008; Hentschel et al. 2014). Facing global change (IPCC
2014), the development of fast and easy to use screening methods to predict drought
sensitivity of conifer species and trees may allow the selection of more suitable individuals for
propagation (Rosner 2013; Rosner et al. 2019a, 2019b).

1.2 Hydraulic functions within the tree trunk of Norway spruce

Through the development of a water transport system to the xylem, conifers have become well
adapted to their environment (Tyree et al. 1994; Schopfer Peter; Brennicke Axel 2010;
McElrone et al. 2013). Plants need water for the photosynthesis in the leaves. In plants living
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on land, the force achieving the transport of water from the soil to the leaves is created by loss
of water through transpiration. Water always moves from an region with a high water potential
(W) to an region with a low water potential, in this case from the soil with a potential close to
zero, to the air surrounding the leaves with large negative water potential. Loss of water
through transpiration can however also put the trees at risk on drought.

To briefly summarize the theory of water transport: Plants take up the water from the soil via
the root system, a complex network of individual roots (Cochard 2014). As trees get older, the
roots form a periderm very similar to that of the trunk of the tree. It is very important for trees
to be able to absorb large amounts of water despite this periderm formation and the associated
reduction in the permeability of older roots (Chung and Kramer 1975; Macfall et al. 1990;
McElrone et al. 2013), as the woody roots in some forests can make up a high proportion of
the root surface (up to 99%) (Kramer and Bullock 1966). The water absorbed by the roots must
pass through several cell layers before it reaches the specialized water transport tissue, the
xylem. These cell layers have an important function because they act as a filter system in the
root. They have a much higher resistance to water flow than the xylem, in which the water is
transported in more open tubes. In conifers, the water in the xylem is transported over long
distances in these conductive elements, the tracheids. In contrast to conifers, angiosperms
have specialised conducting elements, the vessels. The drive for the water transport is
provided by the evaporation of water vapor through the leaves. This creates a transpiration
suction in the plant. This process is generally referred to as the cohesion tension mechanism
(C-T) (Bohm 1893; Tyree and Zimmermann 2002; McElrone et al. 2013). For adequate
function, the water column created from roots to leaves as a result of the suction may not break
off, which is ensured by the strong cohesion forces between the water molecules amongst
each other and to the cell walls of the xylem tubes (Linder and Knodel 2012). From the xylem,
the water then passes through the petiole and into the leaves (McElrone et al. 2013). Figure 2
roughly shows the water path through the tree.

Interruptions of the water columns, such as cavitation when bubbles of air are released in the
water-conducting system resulting in embolism, can severely affect the hydraulic efficiency
(Tyree and Sperry 1989; Tyree and Zimmermann 2002). Vulnerability to air emboli formation
in the xylem sap is one key aspect to understanding the survival or mortality of plants
(McDowell et al. 2008; Mayr et al. 2014; Klein et al. 2018; Hammond et al. 2019). From the
moment plants left the sea and settled on land, they had to cope with water shortages. Despite
good adaptation to their environment, under special circumstances, there is a risk of air
bubbles entering their water-conducting system (McDowell et al. 2008; Vergeynst 2015).
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Figure 2: [a] Schema of the water potential in conifers according to McElrone et al. 2013; [b]
transpiration draws water from the leaf; [c] cohesion and adhesion draws water up the xylem;
[d] negative water potential draws water into the roots. Blue circles show the water molecules.

Norway spruce trees are designed to survive in northern regions (Solberg 2004) and at the
alpine timberline (Mayr et al. 2002). They are exposed to drought stress and to freeze-thaw
stress during winter (Mayr et al. 2014). Sectored radial architecture, in which almost completely
isolated hydraulic pathways to particular stem and crown regions are present, can be a
possible survival strategy under harsh environmental conditions in the timberline (Larson et al.
1993, 1994). However, an embolism dysfunction induced by drought stress is not always
permanent. Indeed, it is possible that trees can recover from drought stress by refilling
tracheids with water within days or by the next growth season. There are several studies
currently dealing with the topic of refilling (Mayr et al. 2014; Klein et al. 2018). But it is also
possible that permanent damage occurs (Tyree and Zimmermann 2002). Economic losses due
to top dieback after heat and drought waves could be due to a weak adaptation of Norway
spruce to the environmental conditions in the lowlands (Solberg 2004; Rosner et al. 2014).

There is a need to get more information about hydraulic vulnerability. In the next chapter
“Classical methods to determine hydraulic vulnerability using vulnerability curves (VCs)” (Page
12), different classical methods under laboratory conditions are described and an example is
given, before more efficient alternative methods are described in the chapter “Novel
approaches” (Page 19).
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1.3 Classical methods to determine hydraulic vulnerability using vulnerability
curves (VCs)

There are different techniques for estimating water potential and for measuring hydraulic
conductivity loss in order to construct vulnerability curves (VCs) (Page 15). Cochard et al.
(2013) provided a good overview of the different methods and previous publications. They
concluded that almost 96% of all VCs are produced by four methods: the bench-top
dehydration method "gold standard", the air injection method, centrifugation, and the cavitron
(also a centrifuge method). The proportion of VCs obtained with centrifugation and air injection
technology has increased significantly in recent years compared to the classic bench
dehydration method. This can be explained by the fact that the centrifuge and air injection
techniques are faster and consume less plant material (Cochard et al. 2013). Martin-StPaul et
al. (2014) compared the three methods (bench-top dehydration, cavitron, and air injection
method) and concluded that the cavitron and air injection methods deliver reliable results for
conifer species but should be used with caution for long vessel species. The next subchapter
concentrates on the air injection method, which in this thesis has been used as the reference
method for determining hydraulic vulnerability in Norway spruce trees, towards which the more
efficient proxies have been compared.

1.3.1 The air injection method

The air injection technique applies pressure to water conducting plant material, thereby
mimicking decrease in water potential and its effects on water transport. In the case of this
thesis, the plant materials were small specimens of wood. More details on the plant material
used can be found in Chapters 2 and 3 (Material and Methods, Page 34 and 44) and in Rosner
et al. 2008. Figure 3 gives a brief overview of the samples used and how they were produced.
The specimens (wood micro-beams) from sapwood used for the measurements had
dimensions of 6 mm (radial) x 6 mm (tangential) x 120 mm (axial).

12
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Figure 3: Schema of sampling and sample preparation according to Rosner et al., 2008. [a to b]
Wood boles, 20 - 30 cm in length, were taken from the main trunk of Norway spruce trees after
felling; [b to c] “Plank-like” longitudinal samples were produced along a diameter at the centre
of the boles by splitting along the grain [c to d]. These samples were debarked and small beams
were split along the grain from their sapwood. Thereafter, these were planed on a sliding
microtome; small beams of sapwood with a size of 6mmx6mm x 120 mm
(radial x tangential x axial), were used for the measurements

Before the first flow measurement, the samples were completely saturated in H,O (Figure 4b).
A modified Sperry-Apparatus (designed by Mayr, 2002, Figure 4a) was used for the flow
measurements. The small beams were sealed into a hydraulic system in which water was
forced to move through the specimen in the longitudinal tracheid direction at constant pressure
between the ends of the sample, while the flow rate was determined (Sperry et al. 1988). The
modified Sperry apparatus has the advantage that parallel arranged measuring channels allow
the analysis of several samples. Overall, handling has also been simplified and routine work
made possible (Mayr 2002).

After the determination of the saturated weight and the flow measurement at full saturation,
cavitation was mimicked through the application during specified time (1 minute) of an air
overpressure (P) to the sides of the small wooden beams in a double ended pressure collar,
followed by a repeated measurement of the flow through the now partly embolized wood of
the micro beam. During air injection, the two ends of the wood beam protrude from the
double-ended pressure collar (PMS Instrument Company, Corvallis, Oregon) (4c and Figure
5). The collar is pressurized stepwise (0.5 MPa) with compressed air.
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Figure 4: [a] Modified Sperry equipment designed by Mayr 2002 for repeated flow
measurement; [b] fully saturated wood beams; [c] PMS instrument

14



pressure is applied

[d]
[b]

Figure 5: PMS instrument and [a and b] how the small wood beams (brown scheme) have to be fixed
in the double ended pressure collar. [c] Closed pressure collar; [d] Pressure is applied (green
arrows)

1.3.2 Calculation of hydraulic parameters and vulnerability curves

For a better understanding of how the parameters of interest (Pso and RWLso) were obtained,
the approach with wooden beams is now briefly described.

To calculate Pso (applied air pressure causing 50% loss of hydraulic conductivity) and RWLsg
(applied air pressure causing 50% relative water loss), the fresh mass and flow through the
small wood beams have to be determined, after stepwise application of air pressure (0.5 MPa)
in a double ended pressure collar. The weight at full saturation and the first flow measurement
performed also at full saturation serve as reference values for calculating the relative moisture
loss and the loss of hydraulic conductivity after the sequential application of positive pressure
in the double ended pressure collar. The results of the measurements are water release curves
and vulnerability curves (VCs) for assessment of vulnerability to cavitation.

A VC is a two-dimensional graph that shows how the conductivity loss in a woody tissue varies
with water potential (Cochard et al. 2013). The most widely used hydraulic vulnerability
parameter is Pso, defined as the change in water potential that causes a 50% loss in hydraulic
conductivity in sapwood (Choat et al. 2012).
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The sapwood area specific hydraulic conductivity (ks) is defined as:
k¢=F xLxAs" ' x AP~ (m%s~'MPa™?)

where F is the volume flow rate (m3 s™), L is the length of the segment (m), As is the cross-

sectional sapwood sample area (m2) and AP is the pressure difference between the ends of
the segment (MPa).

The percent loss of conductivity PLC is calculated as

k. after pressure
PLC (%) = 100 — (=Y terP

1
ks max ) % 100)

where ks after pressure is the hydraulic conductivity measured stepwise, ks max is the hydraulic
conductivity at full saturation.

By stepwise increasing the exterior pressure mimicking decreases in the water potential,
measuring the corresponding hydraulic conductivity and calculating the PLC for each pressure
application, the effects of increasing deficit of water can be simulated by constructing a VC
from the individual values (Figure 6). After fitting a sigmoid function, parameters of interest,
e.g. the Psp, can be calculated (Pammenter and Vander Willigen 1998).

100

' 80

60

40

PLC (%)

Mature wood
Pso =-2.3 MPa

20

-6 -5 -4 -3 -2 -1 0
Negative of applied pressure (MPa)

Figure 6: Example of a vulnerability curve showing how the percent loss of conductivity is

related to the negative of the applied pressure, starting from pressure 0 MPa to the right, moving
leftward to more negative water potentials.
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Additional information about the hydraulic performance of sapwood can be obtained from the
relative water loss (RWL) resulting from the overpressure, described with RWLso, the pressure
resulting in 50% water loss (Hietz et al. 2008; Rosner et al. 2008). RWLs has been reported
to be strongly related to basic density (Rosner et al. 2008), and it is supposed to give important
information on the water storage capacity (i.e. capacitance) (Cochard et al. 2013). The
following equation was used to calculate RWL.:

actual fresh mass — dry mass

RWL (%) = (1 - ) x 100

saturated mass — dry mass

RWLso is determined in the same way as Pso (Figure 7), but by fitting a cubic rather than a
sigmoidal curve (Rosner et al. 2008).
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Figure 7: Example of a vulnerability curve for the determination of Psp and RWLso. The
relationship between RWL and the negative of the applied pressure was therafter fitted by means
of a cubic curve and RWLsp was calculated (Rosner et al. 2008).

1.4 Demands for more efficient alternative methods

The classical methods to determine hydraulic traits like Pso, also the air injection method
described above, have some disadvantages. They are destructive, delicate, very labour
intensive, provide data from small samples only, which sometimes can be problematic for
representability, and the measurements take a lot of time. Moreover, they are prone to errors.
Therefore, there is a need for more efficient alternative methods.

In our time of increasing risks for drought damages, and due to these disadvantages of the
classical methods, there is an increasing need for more rapid and cost efficient methods for
hydraulic analysis (Cochard et al. 2013), which would allow the determination of vulnerability
to drought on larger numbers of samples for better statistics and representativity, in order to
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improve our knowledge about processes behind vulnerability and help select more suitable
individuals for propagation (Rosner et al. 2014). There are already a few approaches tested in
search for alternatives to classical methods to determine hydraulic vulnerability of conifer wood
(e.g. Luss, et al., 2015; Rosner, 2017; Luss et al., 2019; Rosner, et al., 2019a; Rosner, et al.,
2019b). In this thesis, selected alternatives have been compared and validated towards
classical reference measurements.

1.4.1 Criteria for selection of alternative methods to be investigated

The following criteria were set up for selection of alternative methods to evaluate. They should
be:

— non-destructive

— efficient

— easy to assess

— based on established techniques

— need limited sample preparation

Definition of criteria:

Non-destructive: Non-destructive can be understood in two ways; most important, the survival
and health of the tree, which should have supreme priority, secondly, for the sample. The
second aspect is often also very important, especially when different methods are to be
compared. In this thesis non-destructive means that neither the tree needs to be harvested
(wood cores) nor the sample is damaged.

Efficient: The method should allow processing of large quantities efficiently regarding time and
cost.

Easy to assess: Their use should be easy and the evaluation of the results should be possible
without much technical know-how. This is especially relevant for a next step of application,
after the method development has been completed.

Based on established techniques: Already well-established techniques in this or other fields
should be used. These techniques are also applicable for the samples of this study. In addition,
the techniques or devices should be accessible to a wider audience.

Limited sample preparation needed: Ideally, the samples could be used for the measurements
without complex preparation work, once the method development has been completed.
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1.4.2 Short Method overview

Two methods, both fulfilling the criteria above, were thoroughly tested:

1. Fourier transform near-infrared (FT-NIR) spectroscopy,
see Page 20 and with further detail in Chapter 2, Page 32.

2. Use of wood density and anatomic information from measurements with SilviScan,
see Page 24 and with further details in Chapter 3, Page 40.

Two other methods were also looked upon, despite their not meeting the above criteria:

3. Mechanical testing (compression in radial direction)
4. Pit anatomy

Since the initial results with the latter methods also did not look very promising, these studies
were not pursued further, but they are still briefly presented in the chapter "Rejected methods"
(Page 28).

1.5 Novel approaches

This chapter first describes the samples used, the two methods that met all criteria set up for
selection of alternative methods, then briefly the two rejected methods.

1.5.1 Preparation of samples to be compared

For the "new approaches" it was necessary to do some further sample preparation with the
samples previously analysed with the classical air injection method as basis for comparison
and validation. This implicated some extra steps which would not be needed using routine
measurements.

After the previous flow tests and the determination of the dry mass, the specimens had been
stored at -18°C until the start of the measurements with the alternative methods. Therefore,
the wooden beams had to be reconditioned.

A total of 1,126 smaller samples were produced from the 147 original specimens prepared for
the classical measurements, representing 59 trees. From 2-4 of the original wood specimens
per tree (Figure 8, left part), 5-11 shorter specimens were sawn from the middle part, each
with a size of 6 mm x 6 mm x 6 mm (Figure 8, right part), leaving two end pieces, kept for
future measurements. All these samples were used for FT-NIR and the rejected methods. For
the SilviScan measurements, one sample from each tree was used, a total of 59 cubes.
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1.5.2 FT-NIR spectra and prediction models

In about 1800, NIR energy was discovered by Herschel as the first region of the
electromagnetic spectrum after the visible region (Hindle 2001). In terms of transmitted or
reflected spectra, near infrared (NIR) (Figure 9) is in a wavelength range from 800 to 2,500 nm
(wavenumber range 12,500 to 4,000 cm™?). Almost 100 years after this discovery of the NIR
region, the development of the Michelson interferometer is often referred to as the beginning
of Fourier transform spectroscopy (FT).

b=
gamma X-rays u.Itra- 2 infrared  micro- radio
rays violet = rays wave  wave
rays &
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NIR MIR FIR
cm™ 12500 4000 400 5

Figure 9: Electromagnetic spectra with focus on Infrared rays (IR)

FT-NIR spectroscopy was developed to overcome the limitation of the dispersive NIR
instruments. The dispersion instrument uses a prism or a movable grid to separate the
individual frequencies emitted by the near-infrared source. A detector is then used to measure
the amount of energy that has passed through the sample at each frequency. This process
takes time. Therefore, to shorten the analysis time, a method was needed that measures all
infrared frequencies at the same time. The development of an FT-NIR spectrometer makes it
possible to generate a unique type of signal, a so-called interferogram. In an interferogram all
infrared frequencies are "encoded." The measurements of the signals are very fast, since
several scans can be performed per second. A following Fourier transformation then
transforms, or "decodes" the interferogram into a spectrum of intensity versus frequency or
wavenumber (Doshi 1998; Liptak 2006; Smith 2011).

Only with the advent of minicomputers was it possible for FT-IR spectroscopy to dominate IR
identification. At that time, however, chemometric techniques were still very slow. This is
because chemometrics require many spectra. An FT-IR spectrum has thousands of data points
compared to a disperse spectrum, which has only hundreds of spectral data points. The
development of even more powerful computers increased the interest in chemometrics for
Fourier transform spectrometers and led to the growth of the FT-NIR spectrophotometer
industry. Today, many companies manufacture FT-NIR spectrophotometers to take advantage
of the NIR region. (Hindle 2001).

FT-NIR is a non-destructive method that records the interaction of infrared light with matter
(Smith 1999). Non-destructive shall in this context be understood as that the method does not
destroy the prepared sample. In the FT-NIR range, radiation is absorbed by various chemical
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bonds (e.g. C-H, N-H, S-H, C=0, and O-H). Each type of bond has a frequency and
wavenumber signature and the number of bonds of each type interacting with the radiations
influence the spectrum recorded. Therefore, FT-NIR spectra contains information about the
organic composition of a wood sample (Foley et al. 1998; Owen-Reece et al. 1999; Viscarra
Rossel et al. 2006; Nicolai et al. 2007; Shenk et al. 2008).

However, a FT-NIR spectrum (Figure 10) does not only carry information about the chemical
(molecular absorption) properties of the sample. It is also influenced by its physical properties
due to reflection and scattering effects on the radiation (Blanco and Villarroya 2002; Foley et
al. 1998; Shenk et al. 2008). For good results, variations in reflection and scattering on the
surface and from within the samples have to be controlled on sample preparation, not to
confuse interpretation. But this sensitivity to reflection and scattering may also offer
possibilities to obtain information about physical properties not related to chemistry. Further,
measurements with NIR spectroscopy are indirect measurement relying on use of models to
estimate the properties from the spectra, models which must be developed with use of
adequate sets of reference data. Various types of pre-treatments of spectra are normally
performed before modelling and estimations.

1.4
1.3
1.2

2

=) 1.1

(@)]

2 10
0.9
0.8

9000 8000 7000 6000 5000
Wavenumber (cm™)

Figure 10: Example of a spectrum. A spectrum can be compared with a fingerprint. Due to the
unique combination of atoms of each different material, it is not possible for another compound
to show the exact same near infrared spectrum.

To obtain the information about the properties, multivariate statistical models such as partial
least squares regression (PLS-R) are used. There, the relationship between the spectral FT-
NIR absorption and the chemical components are described or the properties of the reference
methods are compared. With PLS-R models, many validation and evaluation steps are
necessary to ensure a reliable model. The fully developed PLS-R model can then be used to
predict the physical or chemical properties of new samples of similar origin. From these new
samples, only the FT-NIR spectra need to be collected (Foley et al. 1998; Workman Jr. 2008).
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As mentioned, FT-NIR spectroscopy has quickly developed into a fast and non-destructive
analysis method for many physical and chemical properties of woody materials (Smith 1999;
Workman Jr. 1999; Schimleck et al. 2000; So et al. 2004; Tsuchikawa 2007; Leblon et al. 2013;
Tsuchikawa and Schwanninger 2013). NIRs show a great potential in all facets of material
assessment and have been mainly used for measurements of organic material (Tsuchikawa
and Schwanninger 2013).

There are two principle ways to collect NIR spectra: Spectra of radiation returning from the
sample, reflection mode, and spectra of radiation passing through the sample, transition mode.
Compared to diffuse reflection spectroscopy, transmission measurements normally require
more sample preparation (Schwanninger et al. 2011). Another important aspect is that water
show very strong absorption in the NIR range, meaning that unwanted variations in humidity
may be an issue.

For the FT-NIR measurements in this thesis, diffuse reflection mode has been used. Before
the measurements started, the surface properties between the samples were equalised, as
roughness can influence the NIR spectra (Cooper et al. 2011). The radial sides of the small
wooden cubes were already planed, as the wooden beams for the hydraulic measurements
were made on a sliding microtome. The axial surfaces were carefully sanded after the sawing,
and then cleaned with compressed air. Then, the wood samples were stored at 21°C and 60%
relative humidity for more than seven days to guarantee a uniform wood moisture content of
approximately 11% for acquisition of FT-NIR spectra, in order to avoid influence from different
moisture contents. A total of 4,505 spectra of the axial (n = 2,252) and radial (n = 2,252) surface
of each solid wood sample were collected in this thesis.

In addition, two measurement methods were tested, using different FT-NIR devices. In the first
test series, the wood samples were measured directly with a fiber optic probe (Figure 11 a and
b).

Figure 11: [a] FT-NIR fiber optic; [b] detail of the fiber optic with an example of a wood sample

The measurement with the probe had in this case some disadvantages related to the size of
the measurement window of the probe used compared to the sizes of the samples, resulting
in that parts of the sample could not be measured. It was also difficult to place the probe in
parallel to the sample surface. For this reason, a second series of tests with the Integrating
Sphere of a Multi Purpose Analyser (MPA, Brucker Optics) (Figure 12 a and b) was performed.
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Since no disadvantages affecting the results were detected during this test, this was the
preferred measuring method.

To be thorough, it should be mentioned that the Multi-Purpose Analyser (MPA, Brucker Optics)
has a modular design with units offering also other possibilities for sample measurement:
Sample compartment, fiber optic module, integrating sphere and transmission unit.

Figure 12: [a] MPA; [b] Sample on an integrating sphere

For this thesis, spectra from 12,000 to 3,600 cm™ were acquired from the whole surface in
diffuse reflection, with zero filling two (i.e. spectrum size is doubled), 16 cm™ spectral
resolution, and 50 scans per spectrum. For data analysis, the spectra of each specimen and
tree were averaged, resulting in 59 spectra per radial and axial surface, respectively.

In order to enable multivariate calibration and validation after the measurements, the software
OPUS QUANT 2 (Bruker, Germany) was used. This software is based on the common
algorithm Partial Least Squares (PLS). The method development is not time-consuming
because the setup of this software includes useful diagrams, statistics, and tools such as the
removal of redundant samples, the automatic selection of test kits, and an optimization tool to
find the parameters for the potentially best model (Bruker Optik GmbH 2012). In order to find
the best model to predict Pso or RWLso, the entire spectrum was first analyzed before focusing
on certain wavenumber regions for band assignment, such as lignin and cellulose
(Schwanninger et al. 2011; Luss et al. 2015). This focus on lignin and cellulose was because
these two chemical properties could be related to wood density (Leblon et al. 2013;
Tsuchikawa and Schwanninger 2013; Luss et al. 2015). More information about the FT-NIR
results can be found in Chapter 2 (Page 32).

FT-NIR spectroscopy has many advantages because it is an easy to use, measuring speed is
very fast, non-destructive method. The sample preparation in the lab and the handling of the
equipment is simple and there is a good reproducibility (Schwanninger et al. 2011). In practice,
the tools are very helpful, but it is necessary to manually find the best model. There are many
ways to find the "best" model. The first evaluations with software, samples, and sample pre-
treatment can therefore take a little longer than expected. After some time, the time factor can
be optimized due to the experience with modelling.
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1.5.2 High resolution measurements of wood density and anatomy with SilviScan

The anatomy of the xylem is obviously of fundamental importance for its hydraulic properties.
Conductivity is strongly related to the size of the conduit, power 4. Thus, the lumen size
distribution must be very important for the hydraulic properties. The lumen size is defined by
the radial width, tangential width and wall thickness of the tracheid, which are also major
determinants of the local wood density and mechanical properties of the xylem. Therefore, the
focus of this part of the work was placed on the study of relationships between wood anatomy,
wood density, conductivity and drought susceptibility, including anatomical variations between
and within annual rings. The potential of this approach got further attention after Dalla-Salda
et al. (2014) showed that cavitation in Douglas-fir is related also to wood density fluctuations
within the rings. Influences of such differences is a major topic in the analyses of this thesis.
In the subsequent statistical evaluation, the influence of earlywood, transition wood, and
latewood in rings was examined more closely.

In the early 1990s, Dr. Rob Evans and his team at CSIRO, Melbourne, Australia, developed
an instrument called SilviScan for efficient, high resolution assessment of spatial variations in
wood density and cross-sectional dimensions of tracheids (Evans 1994; Defo 2008). These
measurements are achieved through the integration of video microscopy and X-ray
transmission measurements performed on samples automatically translated with a motorized
stage. In the late 1990s, an upgraded version was developed as part of an Australian research
program on hardwoods, including new routines for instance for characterization of vessels
(Chen and Evans 2010; Lundqvist et al. 2010). This new version also included the integration
of X-ray diffraction for measurement of microfibril angle and wood stiffness (Evans 2006).
Some years later, CSIRO developed with support from STFI (now RISE), Stockholm, Sweden,
a third restructured version, in which automated microscopy, X-ray transmission and diffraction
measurements are performed in parallel on separate units, integrated via a server, for
increased throughput. The three existing instruments are located in Melbourne, Stockholm,
and Vancouver.

Figure 13 illustrates the three measurement units and how they are integrated: an image
analyzer for measurements of fiber cross-sections, an X-ray densitometer for measuring wood
density, and an X-ray diffractometer for analyzing the structure of the fiber and wall. One of the
physical installations is shown in Figure 14:
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diffraction pattern

shadow image
x-ray beam
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x-ray beam x-ray beam

image analysis X-ray absorption X-ray diffraction

Figure 13: lllustration of the three measurement units of the current SilviScan instruments and
how they are integrated. Referring to Robert Evans illustrations
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Figure 14: The three measurement units of SilviScan-3. Left to right: the densitometer (density
variation), cell scanner (tree ring orientations and cross-sectional cell dimensions) and
diffractometer (microfibril angle, wood stiffness), which are integrated via a server. [Photo: ©Rob
Evans, CSIRO]

SilviScan has been used since the mid 1990-ies for scientific and commercial activities related
to both softwood and hardwood species and in a wide span of areas, including tree
improvement, climate effects, forestry, forest product, sawn products, pulp and paper research.
It has become a well-established method of measuring that has been used in many projects
(Evans 1994; Evans et al. 1995; Downes et al. 2000; Buksnowitz et al. 2008; Lundqvist et al.
2010, 2018; Schimleck et al. 2010, 2019; Knapic et al. 2018). Examples from research on
different softwoods are Lindstrém et al. 1998; Downes et al. 2002; Lundgren 2004; Kostiainen
et al. 2009; Fries et al. 2014; Piispanen et al. 2014 and on modelling properties of Norway
spruce Wilhelmsson et al. 2002; Lundgvist et al. 2005; Franceschini et al. 2012; Auty et al.
2013.

The sample preparation and measurements are performed in a lab with conditioned
atmosphere for stable moisture content in the samples. Prior to measurements, radially
oriented sample strips of cross-section 2 mm x 7 mm and the length of interest, often from pith
to bark, are produced and the top surface polished for microscopy with efficient high precision
equipment, see Figure 15a. Such strips can be produced from various sources, such as stem
boles as in Figure 3, increment cores or planks. The next step is to determine gravimetrically
the average wood density of each sample strip from its mass (by scale) and its extensions.
(This is later used to automatically calibrate the density measurement, as the X-ray attenuation
constant of wood can vary.) Other types of sample strips may be produced for special
measurements. An example of that within the work of this thesis is shown in Figure 15b, where
a large number of specimens previously analysed for Psg have been glued to each other and
onto a support prior to being processed into a sample strip analogous to the one in Figure 15a
for analysis with SilviScan.

25



Figure 15: Example of a samples for measurements on SilviScan: [a] typical sample strip from
pith to bark, polished at the top for measurements of cross-sectional tracheid dimensions
(Lundqvist and Olsson, 2007); [b] 6 mm x 6 mm pieces from specimens analysed for Psg, glued
onto a support, prior to its processing with SilviScan’s precision equipment into a sample similar
to [a], to be followed by high resolution measurement of variations in wood density and cross-
sectional tracheid dimensions from edge to edge of each specimen, as well as averages for all
their annual rings and their parts of earlywood, transition wood and latewood.

After the gravimetric measurement of wood density, the sample strip is mounted into a holder,
normally together with more samples filling up the holder. They then stay there when the holder
is moved between the units for different measurements, while data from the individual samples
are integrated via the server in a common database. First, a microscopy image of the full length
of the sample strip is recorded, from which the cross-sectional dimensions of the fibres are
determined with image analysis. At the same time, the angles of all annual rings are
determined, and used when measuring on the two other units for successive rotary
adjustments of the sample holder to align the ring structure in parallel with the X-ray beams.
By this, sharper information on properties of the rings and their parts of earlywood, transition
wood and latewood is obtained. Next, the density variations are recorded, with such alignment
of the ring structure. Local wood density is also exploited for high quality data on fibre wall
thickness according to Scallan and Green (1974). The synchronized data in the database are
then used to provide property information as averages for consecutive radial intervals of width
50 um. Finally, if of interest for the study, also radial sequences of X-ray diffractograms are
recorded, from which the radial variations in microfibril angle are determined, and also in wood
stiffness by combining diffractogram and density information.

To summarize, these measurements provide data on radial variations of the following
properties:
— Wood density

— Widths in radial and tangential direction and wall thickness of tracheids in softwoods
and fibres in hardwoods

— Numbers and widths of vessels in hardwoods
— Microfibril angle (MFA)
— Wood stiffness (estimated acoustic MOE)
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Based on these data, for trees with annual growth seasons, the annual rings and their
compartments of earlywood (EW), transition wood (TW) and latewood (LW) can be identified,
more about that below, and averages for rings and their parts calculated. It is also possible to
derive information on further properties and features of wood. Examples of information used
in work behind this thesis are:

— Widths of annual rings and their parts of earlywood, transition wood and latewood

— Proportions of EW, TW and LW

— Estimated hydraulic conductivity

— New proxies for Psg, see Chapter 3 (Page 40)

As influences of within ring fluctuations in tracheid anatomy and wood density are important
parts of the thesis, some more words about how these are dealt with: The fundament is the
high-resolution data from edge to edge of each individual specimen, from which averages are
calculated for the specimens. It is however also interesting to discuss average properties of
rings and their parts. Traditionally, growth rings have been divided into two compartments:
earlywood and latewood. The most common definition was introduced by Mork (1928).
Previous work has however indicated that xylem close to the interface between these two
compartments plays an important role as a last resort of conductance on severe drought and
should be given special attention (Dalla-Salda et al. 2014). Therefore, we have used the “20-
80 density” definition, illustrated in Figure 16. This definition based on within ring density
variations introduces a third ring compartment, transition wood, describing the transition phase
between pronounced earlywood and latewood, and which is under strong influence from within
year weather variations. The definition is further described and motivated in Lundqvist et al.
(2018). The method was first introduced by Olsson et al. (1998), and has since been
established and used in many publications addressing various aspects of wood related
research (Kostiainen et al. 2009; Franceschini et al. 2012; Chen et al. 2014; Hong et al. 2015;
Lundqvist et al. 2018).

Growth ring 9 Growth ring 10

52

Wood density (conditioned), kg/m?

Sample 5882

Figure 16: X-ray densitometric images and lllustration of density thresholds for earlywood,
transition wood and latewood. [Image and lllustration: Lundqvist et al., 2018]
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When the interfaces between the rings and these compartments have been identified, property
averages are calculated for all rings and their compartments, as well as their proportions of
EW, TW and LW. After the measurements with SilviScan and generation of additional data
according to above, the data are evaluated using statistical programs. More information about
the evaluations based on the SilviScan results can be found in Chapter 3 (Page 40).

1.5.3 Rejected methods

As in many studies, different methods were tested in this thesis. However, not all methods
proved to be suitable, which had different causes. This chapter outlines two methods tested in
the search for alternatives to determine hydraulic vulnerability. Both were rejected on the basis
of the criteria described in Chapter “1.4.1 Criteria for selection of alternative methods to be
investigated” (Page 18). No data and results are presented here. The focus is on presenting
the basic idea and a short description of the methods.
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Mechanical Parameters

Rosner and Karlsson (2011) found the peak force calculated from stress/strain curves for radial
compression was strongly related to (t/b)2. Moreover, Luss et al. (2019) detected significant
correlations between (t/b)? and Psqo.

The aim of the mechanical testings was to relate the peak force of a stress/strain curve of
compression perpendicular to the grain directly to Pso, in order to test the potential of
biomechanical testing as a proxy for Pso. Hardly any literature deals with this problem as
mechanical testing of wood in this direction (perpendicular to the grain) is not quite common
(Mlller et al. 2003). The combination of hydraulic/biophysical testing (Figure 17) was
introduced by Rosner and Karlsson (2011) and has not been performed by anybody else so
far.

The first results of the correlations of the parameters from the mechanical testing were
promising (data not shown). However, this method had to be rejected because it did not meet
the criteria described on Page 18. The mechanical testing is a destructive method since
measuring the peak force of radial compression deforms the samples. Because of this
deformation, further analyses on the sample are not possible. A small overview of the
parameters, methods and key data is summarized in Table 1.

Table 1 Short overview about the mechanical testing

Parameters of Mechanical parameter
interest Radial compression strength perpendicular to the grain

Used equipment  Hardware Zwick/Roell Z020 (Figure 17)
Software testXpert® Il

Picture of the

equipment
during the
measurement
Figure 17: Norway spruce sample
during the measurements with the
Zwick/Roll Z020
Generic Stress/strain curve for radial compression perpendicular to the grain (Figure
measurement 18) shows a typical pattern in Norway spruce wood
output
6
5
= v Figure 18: Course of the
£ stress/strain curve for radial
P / compression perpendicular to the
g 2 grain: The blue circle marks the
: position for acquisition of the
parameter “peak force, radial
0oo 0.1 0.2 0.3 04 compression” (OT)-
Strain (mm)
Advantage — Fast
—  Well established equipment
Disadvantage — Destructive

— Not efficient
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Pit anatomy

A few studies have already dealt with the topic of bordered pits and hydraulic efficiency (Hacke
et al. 2001; Pittermann and Sperry 2006; Bouche et al. 2014). Hydraulic vulnerability should
depend on the characteristics of the bordered pits, thus it is assumed that the relationship
between Pso with wood density and/or tracheid anatomy is indirect. Rosner et al. (2007) found
no relationship between pit traits (Da, Dm, PP) and Pso, but strong relationships between
specific hydraulic conductivity at full saturation and pit aperture diameter (D,) and pit aperture
percentage (PP). Bouche et al. (2014) found a rather weak relationship between pit aperture
diameter (D.) and Pso. In addition, no relationship between Psy and torus diameter or pit
membrane diameter (Dm) was found. The aim of this study was to investigate these
relationships for mature wood of a given species (Norway spruce). For a given cambial age,
no significant correlation (data not shown) was found. It seems there are more differences
within a tree than between wood of similar cambial age. Compared to the other methods, it
can be summarized that pit dimensions cannot be used as a proxy for Pso. Other traits are
much more easily to assess and show differences at similar cambial age. The method takes a
lot of time, since individual bordered pits have to be measured manually. It is also a destructive
method. Two of the five criteria were not fulfilled; this method was thus classified as not suitable
as an alternative for classical methods. Therefore, the results are not further discussed in this
thesis. Table 2 provides a short overview of the pit anatomy testing.

Table 2: Short overview about pit anatomy testing

Parameters of Bordered pits (membrane diameter, Dm), the pit aperture diameter (Da); the ratio of the
interest pit aperture diameter to the pit diameter (PP, pit aperture percentage)

Used equipment  Hardware Leica DM4000 M microscope equipped with a Leica DFC320 R2 digital
camera (Figure 19)

Software Leica IM 500 Image Manager image analysing software (Leica, Wetzlar,
Germany) (Figure 20)

Picture of the
equipment
during the
measurement

Figure 19: Microscope

Generic
measurement
output

= Figure 20: Image of the bordered pits and the
| manual measurement

Advantage Well established method

Slow because manual analysis — each pit has to be measured by hand
— Not efficient

Disadvantage
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1.6 Thesis outline

The present thesis consists of four chapters. Chapter 1 includes a general introduction to the
topic and research performed. Chapter 2 and 3 are research publications covering the two
main parts of the thesis, respectively, before the general conclusions are compiled, completing
the thesis. Finally, the general conclusions are summarized in Chapter 4.

Chapter 2 has been published in the Canadian Journal of Forest Research with the title
“Hydraulic traits of Norway spruce sapwood estimated by Fourier transform near infrared
spectroscopy (FT-NIR)”. Classical methods to determine hydraulic traits like Pso (applied air
pressure causing 50% loss of hydraulic conductivity) and RWLso (applied air pressure causing
50% relative water loss) are time consuming, labor intensive, and prone to errors. The potential
of Fourier transform near-infrared (FT-NIR) spectroscopy to predict Psg and RWLso on 24-year-
old Norway spruce (Picea abies (L.) Karst.) sapwood samples was evaluated. FT-NIR spectra
were collected from axial (transverse) and radial surface of the wood samples. By using the
partial least squares regression (PLS-R) models with cross validation, there was an attempt to
establish relationships between the FT-NIR spectra and the reference data from classical
methods. The impact of the wavenumber range and the different pre-treatments during the
PLS-R model development and the difference between the axial and radial surface were
shown. For Psg and RWLso, the models of the axial surface showed better results than for the
radial. The first approach with FT-NIR to predict hydraulic traits was successful and it was
concluded that this method has a high potential to be put into practice as an alternative to
classical methods.

Chapter 3, titled “Within-ring variability of wood structure and its relationship to drought
sensitivity in Norway spruce trunks,” has been published in the International Association of
Wood Anatomists (IAWA Journal). The focus of this publication lies on wood density and other
anatomical parameters like conduit wall reinforcement ((t/b)?), double wall thickness (t), and
lumen widths (b) as proxies for Pso. Xylem specimens from Norway spruce trunk wood were
analysed with a SilviScan instrument for high-resolution information on spatial variations in
wood anatomy and wood density, from which further parameters were derived. Properties of
interest were calculated for each specimen, annual ring and its part of earlywood (EW),
transition wood (TW) and latewood (LW), in order to study influences of the different sections.
Also, influences of different anatomical features were compared, such as radial versus
tangential lumen size. Wood density is, so far, one of the best available proxies for Pso, judged
from correlation and that it is easy to use, but it does not necessarily reflect the mechanisms
behind resistance to cavitation. New traits calculated from SilviScan data, based on estimation
of conductivity loss as a dynamic process, provided even stronger correlations. This approach
to find good proxies for Psp was successful, and the method has a high potential to replace
classical methods.
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Hydraulic traits of Norway spruce sapwood estimated by
Fourier transform near-infrared spectroscopy (FI-NIR)

Saskia Luss, Manfred Schwanninger, and Sabine Rosner

Abstract: The potential of Fourier transform near-infrared (FT-NIR) spectroscopy to predict hydraulic traits in Norway spruce
(Picea abies (L.) Karst.) sapwood was evaluated. Hydraulic traits tested were Py, (applied air pressure causing 50% loss of hydraulic
conductivity) and RWL,, (applied air pressure causing 50% relative water loss). Samples came from 24-year-old spruce clones.
FI-NIR spectra were collected from the axial (transverse) and radial surface of each solid wood sample for the prediction of Ps,
and RWLg,. Partial least squares regression (PLS-R) models with cross validation were used to establish relationships between the
FI-NIR spectra and the reference data from hydraulic properties analysis. The impact of the wavenumber range and the
pretreatment during the PLS-R model development and the differences between the axial and radial surfaces were shown. Based
on the values of the coefficient of determination (r?) and the root mean square error of cross validation, predicted results were
evaluated as acceptable. The models from the axial surface gave better results than the models from the radial surface for
Ps, (12 = 0.65), as well as for RWLs,, (12 = 0.77). The first approach to predict hydraulic properties such as Ps, and RWLs, by FT-NIR
spectroscopy can be regarded as successful. We conclude that the method has high potential to be put into practice as a rapid,
reliable, and nondestructive method to determine Py, and RWL,.

Key words: Fourier transform near-infrared spectroscopy, Norway spruce, partial least squares regression, Picea abies, relative
water loss, vulnerability to cavitation.

Résumé : Le potentiel de la spectroscopie dans le proche infrarouge a transformée de Fourier (PIR-TF) pour prédire les traits
hydrauliques du bois d'aubier d'épicéa commun (Picea abies (L.) Karst.) a été évalué. Les traits hydrauliques qui ont été testés sont
Ps, (la pression d'air qui cause une perte de conductivité hydraulique de 50 %) et RWL,, (la pression d'air nécessaire pour causer
une perte relative d'eau de 50 %). Les échantillons provenaient de clones d'épicéa dgés de 24 ans. Les spectres PIR-TF ont été
collectés a partir de la face axiale (transverse) et de la face radiale de chaque échantillon solide de bois pour prédire P5, et RWL,.
L'analyse de régression partielle par les moindres carrés avec validation croisée a été utilisée pour établir les relations entre les
spectres PIR-TF et les données de référence obtenues par I'analyse des propriétés hydrauliques. L'impact de la plage de nombres
d'ondes et du prétraitement durant I'élaboration du modele de régression ainsi que les différences entre les faces axiale et radiale
ont été démontrés. Sur la base des valeurs du coefficient de détermination (r?) et de I'écart moyen quadratique de la validation
croisée, les résultats prédits ont été jugés acceptables. Les modeles élaborés a partir de la face axiale ont produit de meilleurs
résultats que ceux qui ont été élaborés a partir de la face radiale tant dans le cas de P, (12 = 0,65) et que de RWLs,, (> =0,77). La
premiére tentative de prédire les propriétés hydrauliques telles que P, et RWLs, en utilisant la spectroscopie PIR-TF peut étre
considérée comme un succes. Nous concluons que cette méthode présente un fort potentiel d'utilisation comme méthode
rapide, fiable et non destructrice pour déterminer les valeurs de P, et RWL,,,. [Traduit par la Rédaction|

Mots-clés : spectroscopie dans le proche infrarouge a transformée de Fourier, épicéa commun, régression partielle par les
moindres carrés, Picea abies, pertes relatives en eau, vulnérabilité a la cavitation.

factor and is related to defoliation, cone formation, and mortality
(Solberg 2004). Drought stress can affect the hydraulic efficiency
by cavitation of the water columns in the tracheids. Conductivity
loss leads to an impairment of the water supply of the crown.
Norway spruce (Picea abies (L.) Karst.) trees are designed to survive
in northern regions (Solberg 2004) and at the alpine timberline
(Mayr et al. 2002). Sectored radial architecture in which almost

Introduction

Forest dieback due to drought and heat waves has been fre-
quently observed during the last years (Allen et al. 2010; Rosner
et al. 2014). Drought is one of the main climate risks determining
survival in coniferous species (Bréda and Badeau 2008; Solberg
2004). As a consequence of climate change, drought and heat
waves will occur more frequently and could be more extreme in

the future (Intergovernmental Panel on Climate Change (IPCC)
2012). The effect of climate change, e.g., drought incidence, differs
among tree species and individuals (Bréda and Badeau 2008). For
Norway spruce, aberrant dry and warm weather is the main stress

completely isolated hydraulic pathways to particular stem and
crown regions are present can be a possible survival strategy un-
der harsh environmental conditions at the timberline (Larson
et al. 1993, 1994). Economical losses due to top dieback after heat
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and drought waves (Solberg 2004; Rosner et al. 2014) might be
related to weak adaptation of Norway spruce to lowland regions.

Embolism caused by drought stress occurs when xylem pres-
sure becomes negative enough to induce cavitation (Choat et al.
2012; Hietz et al. 2008; Tyree and Zimmermann 2002). The physi-
ological mechanisms behind dieback due to drought sensitivity
are, however, not well understood yet (McDowell et al. 2008). A
key factor to estimating the drought tolerance of trees is knowl-
edge of the cavitation resistance in the sapwood (Tyree and
Zimmermann 2002). Vulnerability to cavitation can be assessed by
a vulnerability curve (VC), i.e., a plot that shows how the conduc-
tivity loss in a xylem tissue varies with xylem pressure (Cochard
et al. 2013). The most widely used hydraulic vulnerability param-
eter is P5,, which is defined as the water potential that causes a
50% loss in hydraulic conductivity (Choat et al. 2012). Depending
on the research question, the overpressure resulting in 50% rela-
tive water loss (RWL) can give additional information on the hy-
draulic performance of a tree (Hietz et al. 2008; Rosner et al. 2008).
The RWL (%) is the amount of water loss relative to the amount of
water in never-dried sapwood at full saturation, i.e., when all
tracheids are filled with free water. The parameter RWL;,, defined
as the applied air pressure necessary to cause 50% of RWL, has
been reported to be strongly related to basic density (Rosner et al.
2008) and gives important information on the water storage ca-
pacity (i.e., capacitance) rather than the water transport capacity
(Cochard et al. 2013). Capacitance correlates highly not only with
density, but also with Py, or other VC parameters (McCulloh et al.
2014). Recent studies show that in woody species, the hydraulic
functioning relies on both capacitance and vulnerability to cavi-
tation (Choat et al. 2012; McCulloh et al. 2014; Meinzer et al. 2009).
Many studies still mainly focus on P5, and embolism avoidance,
whereas the dynamic influence of capacitance and refilling is
widely ignored, even though it is important to understand that
xylem is an active and responsive tissue (McCulloh et al. 2014). The
need of more time- and cost-efficient methodology for hydraulic
analysis is increasing. There is a great demand for rapid and pre-
dictive data of capacitance and vulnerability parameters to be
used for predicting survival under severe drought (Cochard et al.
2013). For this reason, Fourier transform near-infrared (FI-NIR)
spectroscopy is considered as an alternative to complement or
even replace conventional analytical methods.

FT-NIR spectroscopy has rapidly developed to become a fast and
nondestructive analytical method for many physical and chemi-
cal properties of woody materials (Leblon et al. 2013; Schimleck
et al. 2000; Smith 1999; So et al. 2004; Tsuchikawa 2007; Tsuchikawa
and Schwanninger 2013; Workman 1999). This nondestructive
technique records the interaction of infrared light with matter
(Smith 1999), operating in the range from 12 820 to 4000 cm™!
wavenumber (or from 780 to 2500 nm wavelength) (Blanco and
Villarroya 2002; Schwanninger et al. 2011). In the FI-NIR region,
the radiation is absorbed by the different chemical bonds, e.g.,
C-H, N-H, S-H, C=0, and O-H, of any chemical compounds pres-
ent in the sample. Furthermore, the radiation is absorbed in ac-
cordance with the concentration of these compounds. As a
consequence, FI-NIR spectra basically contain information about
the organic composition of a wood sample (Nicolai et al. 2007;
Viscarra Rossel et al. 2006). Therefore, the constituents of the
material determine the characteristics and number of chemical
bonds present and thus the wavenumbers and amount of NIR
light that is absorbed (Foley et al. 1998; Shenk et al. 2008). How-
ever, the obtained FI-NIR spectrum contains information not only
on the chemical (molecular absorbance) but also on the physical
(scattering or reflective) properties of an organic material (Blanco
and Villarroya 2002; Foley et al. 1998; Shenk et al. 2008). FI-NIR
information cannot be directly interpreted from obtained spectra.
Thus, to extract this information, multivariate statistical models
such as the partial least squares regression (PLS-R) models are
developed to describe the relationship between the FI-NIR spec-
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Table 1. Statistics of the reference values calculated from raw data
published in Rosner et al. (2008).

Mean  SD SE Minimum  Maximum
Trait n (MPa)  (MPa) (MPa) (MPa) (MPa)
P 59 -245 023 0.03 -3.00 -2.01
RWL, 59 -312 0.34 0.04 -4.24 -2.60

Note: n, number of samples; SD, standard deviation; SE, standard error.

tral absorbance and the chemical components or properties of
interest assessed by reference methods. Compared with linear
regressions in which the quality is determined only by the coeffi-
cient of determination, many steps of validation and evaluations
are necessary for PLS-R models to ensure a reliable model. The
final developed PLS-R model can then be used for the fast and
reliable prediction of physical or chemical properties of new sam-
ples of the same origin from which only FI-NIR spectra were
collected (Foley et al. 1998; Workman 2008).

Quality parameters of wood such as modulus of elasticity
(Lestander et al. 2008), fibre length, mechanical strength and stiff-
ness (Schimleck et al. 2005; Xu et al. 2011), compression wood
(McLean et al. 2014), wood density (Galleguillos-Hart et al. 2010;
Hans et al. 2013; Hein et al. 2009; Hoffmeyer and Pedersen 1995;
Inagaki et al. 2008, 2012; Mora et al. 2011; Rodrigues et al. 2013;
Stirling et al. 2007), and natural durability (Gierlinger et al. 2003)
have already been successfully predicted by PLS-R models (re-
viewed in Tsuchikawa (2007) and Tsuchikawa and Schwanninger
(2013)). Hydraulic traits of conifer sapwood have been shown to
correlate strongly with wood quality attributes such as tracheid
length and wall thickness (Rosner et al. 2007), modulus of elastic-
ity, and wood density (Domec and Gartner 2002; Rosner et al.
2008). Therefore, it is hypothesized that FT-NIR spectroscopy
could have a high potential to predict hydraulic properties as well.
PLS-R models could be used for quasi-nondestructive fast predic-
tion of hydraulic characteristics of small sapwood specimen, e.g.,
wood cores, and would thus allow for screening of less drought-
sensitive individuals.

The objective of this study is to explore the potential of models
using FT-NIR spectroscopy to estimate different hydraulic proper-
ties on Norway spruce samples. P5, and RWL,, reference data were
available from a previous study (Rosner et al. 2008).

Materials and methods

Reference data (Table 1) and FI-NIR spectra were used to develop
PLS-R models based on FT-NIR for the prediction of P5, and RWLs,.
Complex PLS-R models are often not reliable, because they are
influenced by numerous chemical and structural parameters. For
this reason, in this first approach to predict hydraulic parameters,
only one species was used.

Plant material

Norway spruce trees grown on two sites in southern Sweden
were harvested at the age of 24 years. The sites are located at an
altitude of 60-120 m, and precipitation during the growth period
'was between 350 and 600 mm. On both sites, the soil is sandy loam
till. The mean height of the trees was between 9.3 and 10.8 m, and
the mean diameter at breast height (1.3 m) was from 10.6 to
11.8 cm. More details about the sampling sites and trees are de-
scribed in Rosner et al. (2008).

Hydraulic reference dataset

For this study, we used hydraulic raw data obtained from pre-
vious research (Rosner et al. 2008). For the calculation of P, and
RWLs,, the fresh mass and flow was determined on small wood
beams (6 mm x 6 mm x 120 mm) that were produced on a sliding
microtome after stepwise application of air pressure (0.5 MPa) in
a double-ended pressure chamber (PMS Instrument Company,
Corvallis, Oregon). The reading accuracy of the display of the

< Published by NRC Research Press



Luss et al.

double-ended pressure chamber was 0.05 MPa. The first flow mea-
surement performed at full saturation was used as a reference
value to calculate the loss of hydraulic conductivity after sequen-
tial application of positive pressure in the double-ended pressure
chamber. Rosner et al. (2008) calculated P, and RWLg, values for
each tree from pooled data on conductivity loss or RWL data and
pressure application of at least three sapwood beam specimens.
Spectra were collected only from the samples that had enough
data points available to construct whole VCs. Thus, the reference
data for the FI-NIR models were first calculated for each wood
beam and afterwards were averaged per tree. Reliable Py, and
RWL,, values could be calculated for 147 samples. The mean val-
ues of our new sample set (Table 1) differ slightly from the dataset
presented in Rosner et al. (2008), because for a pooled analysis (VC
per tree), it is also possible to include single-point measurements
of conductivity loss and applied pressure. In addition, samples
with compression wood were excluded from analyses. P, was
calculated as described in Pammenter et al. (1998), in which the
percent loss of conductivity is related to the negative of the ap-
plied pressure with a sigmoid function. The relationship between
RWL and the negative of the applied pressure was fitted by means
of a cubic curve and RWLg, was calculated (Rosner et al. 2008).

FI-NIR spectroscopy

After the flow experiments and the determination of dry mass,
the wood beams were stored at —18 °C. For FI-NIR spectroscopy,
5-11 specimens with a size of 6 mm x 6 mm x 6 mm were sawn
from the middle part of 2-4 replicate wood beams per tree. In
total, 1126 specimens from 147 samples of 59 trees were equili-
brated at 21 °C and 60% relative humidity for 1 week to guarantee
a uniform wood moisture content of about 11% for acquisition of
FT-NIR spectra. Not only are FT-NIR spectra influenced by varia-
tion in moisture content, but the surface of solid wood samples
also has to be planed for the measurements. The radial sides of the
small wood cubes had a planed surface, because wood beams for
hydraulic measurements were produced on a sliding microtome
and the axial surfaces were carefully sanded and cleaned with
compressed air after sawing. The surface characteristics between
samples should be similar, because the roughness can affect the
NIR spectra (Cooper et al. 2011). From each solid wood sample, two
FT-NIR spectra were collected from the radial (n = 2252) and the
axial (n = 2252) surfaces with a multipurpose FI-NIR analyzer
(MPA; Bruker, Germany). By using an integrating sphere, spectra
of the whole surface were acquired in diffuse reflection from
12 000 to 3600 cm™, with zero filling 2 (i.e., spectrum size is
doubled), 16 cm™! spectral resolution, and 50 scans per spec-
trum. For data analysis, the spectra of each specimen and tree
were averaged, resulting in 59 spectra per radial and axial sur-
face, respectively.

Data analysis

The PLS-R method was used to establish a mathematical corre-
lation between the FT-NIR spectra and the hydraulic parameters.
Using OPUS 7.0 Quant 2 software (Bruker, Germany), PLS-R models
based on the 59 averaged spectra from the axial and radial sur-
faces were established to predict Py, and RWLg,, respectively.
First, the whole range of the spectrum was analyzed. Second, we
focused on wavenumber regions for the band assignment of
lignin and cellulose (reviewed in Schwanninger et al. (2011)), be-
cause both chemical traits could be related to wood density
(Leblon et al. 2013; Tsuchikawa and Schwanninger 2013). To date,
wood density is the best predictive trait for P5, and RWLg, in
Norway spruce (Rosner et al. 2014). Different wavenumber ranges
(Fig. 1) and spectral pretreatments (multiplicative scatter correc-
tion, vector normalization, and first and second derivatives) were
tested. The spectral pretreatment was used to minimize the irrel-
evant information in the spectra to develop robust models (Blanco
and Villarroya 2002). The optimum number of PLS vectors was

35

Fig. 1. Averaged FI-NIR spectra from the axial and radial surfaces.
(a) Ps, (applied air pressure causing 50% loss of hydraulic
conductivity) and (b) RWLs, (applied air pressure causing 50%
relative water loss) restricted wavenumber ranges (dark) for both
surfaces. log(1/Refl), “absorbance” (Schwanninger et al. 2011).
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determined during cross validation (CV) and test set validation
(TS) according the software and is described in detail elsewhere
(e.g., Gierlinger et al. 2002). The coefficient of determination for
calibration (R?; data not shown) and for CV and TS (r?), the root
mean square error of cross validation (RMSECV) and test set vali-
dation (RMSEP), and the ratio of the standard deviation of valida-
tion set to RMSECV (RPD) were used to evaluate the quality of the
established model. To find the best wavenumber restriction and
spectral pretreatment, all samples were validated by the leave-
one-out CV. In a second step, the sample set was divided in half to
perform CV and TS validation. Each set was used for CV and TS and
the other way around to evaluate if the model statistic is similar;
this shows if the number of PLS vectors is the same (Gierlinger
et al. 2002; Santos et al. 2012).

Results and discussion

The PLS-R models

The ability of FT-NIR spectroscopy to predict the hydraulic prop-
erties (Ps, and RWLs,) is summarized in Table 2, and r?, RMSECV,
and RPD are given. Preprocessing methods were chosen as those
that provided the best models for each property (lowest RMSECV
values and highest 2 values).

PLS-R calibration models were developed for P, and RWLs, with
spectra acquired from the axial and radial surfaces, respectively.
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Table 2. Results of the cross-validated predictions for 5, and RWL, using partial least squares (PLS) regression.

RWLg,

PSO

Radial

Axial

Radial

Axial

9700-4100  8455-7498,

9700-4100

9700-4100 9403-4597

9700-4100

9700-4100 9403-7498,

9700-4100

9403-6071

9700-4100  9700-4100

‘Wavenumber (cm™!)

5454-4598

2.Der
0.68
0.19
175

6102-5762

1.Der
0.53
0.14
147

2.Der
0.66
0.18
1.71

None
0.6

None
0.64
0.18
1.67

1.Der
0.43
0.16
1.33

1.Der, MSC None

0.65
0.09
1.69

1.Der, MSC

0.42
0.16
1.31

None
0.34

0.

Pretreatment

r

0.77
0.15
2.08

0.74
0.16
199

0.34
0.17
1.23

0.19
1.58

18

RMSECV (MPa)

RPD

123
3

No. of PLS vectors

Outlier

10
59 for P5, and RWLs,,. n, number of samples; 12, coefficient of determination; RMSECV, root mean square error of cross validation; RPD, ratio of the standard deviation of analyzed data to RMSECV; 1.Der,

first derivative; MSC, multiplicative scatter correction; VN, vector normalization; 2.Der, second derivative.

Note: n
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Fig. 2. Relationships between (a) Ps, and (b) RWLs, measured by
standard laboratory procedures and predicted by FI-NIR
spectroscopy. Cross validation of P, (pressure that induces 50% loss
of hydraulic conductivity) and RWLg, (pressure application
necessary to result in 50% relative water loss).
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Typical FI-NIR spectra are shown in Fig. 1. Axial and radial spectra
exhibited the same log(1/R) bands (hereafter termed
“absorbance”; see Schwanninger et al. (2011)) but with different
intensities. Four main peaks were present at 8230, 6790, 5190, and
4740 cm~. The axial surface had a higher absorbance than the
radial surface (Fig. 1), as light probably passed deeper into the
cross section due to the presence of tracheids that were cut open
(Defo et al. 2007; Schimleck et al. 2003).

The influence of data pretreatment and the wavenumber re-
striction on Py, models is shown in Table 2. Scatterplots of pre-
dicted versus measured values for Py, and RWLg, are shown in
Fig. 2. The axial calibration models for P5, showed r? values of up
to 0.65, RMSECV values of more than 0.09 MPa, and a RPD value of
1.69 with three PLS vectors. Compared with the axial calibration
models, the optimum number of PLS vectors were higher (4-6) for
the radial models, whereas 2 and RMSECV showed similar values
for both models. There was a slight improvement in the model
with restriction of the wavenumber.

The relatively strong relationship between the measured Py,
reference data and the FI-NIR predicted spectra with the first
derivative, with the multiplicative scatter correction as pretreat-
ment and the restricted wavenumber (9403-6071 cm™), is dis-
played in Fig. 2a. Notably, the best model statistics (r* = 0.65,
RMSECV = 0.09) were achieved after detecting and removing
10 samples as outliers during the validation (Table 2). These outli-
ers could be removed, because either the samples had traumatic
resin canals or the radial faces of the small cubes were not rect-
angularily aligned to the annual rings. These anatomical and tex-
tural (alignment along the grain) characteristics presumably
influenced the hydraulic flow measurements and thus estimation
of P, but they did not necessarily influence measurements of the
moisture loss and thus estimation of RWLs,.

The model established for RWL;,, (Table 2) led to better statisti-
cal results (higher r2 and lower RMSECV) than that for Py, espe-
cially with spectra acquired from the axial surface. The RWLg,,
axial calibration models showed r? values up to 0.77, RMSECV
values below 0.18 MPa, and RPD values of 2.08. The RWL;, radial
calibration models showed slightly lower 12, higher RMSECV, and
lower RPD values, as well as a higher optimum number of vectors.
Again, the quality of the models and their suitability for the
prediction could be improved by spectra preprocessing and
wavenumber selection (Table 2). The vector normalization led to
the best result for the axial spectra (Fig. 2b), and the second deriv-
ative led to the best result for the radial spectra. The most suitable
wavenumbers were, however, different for the two investigated
anatomical directions. On the axial surface, more light may pass
deeper into the cross section than on the radial surface (Defo et al.
2007; Schimleck et al. 2003); therefore, we suggest analysing spec-
tra from the axial surface for predicting hydraulic traits. Using the
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same wavenumber range (Fig. 1) resulted in much weaker models
for the radial side (results not shown), whereas the exclusion of
the wavenumber range of 7000-6000 cm~! (Fig. 1) led to improved
models. Within this wavenumber range, range bands can be as-
signed to water and cellulose (Schwanninger et al. 2011). The in-
fluence of this wavenumber range is not yet clear. Further work
will focus on the relationship between the cutting direction (axial
or radial), physical parameters, and chemical features.

PLS-R models for prediction of RWL, were stronger than those
for Py, (Fig. 2; see Supplementary Table S1'). Coates (2002) con-
cludes in his column entitled “Is near infrared spectroscopy only
as good as the laboratory reference values?” that “the more accu-
rate the reference values, the more accurate will be the predic-
tions”. There is no doubt that practical assessment of P, is more
prone to errors compared with RWLs, in which only the mass has
to be determined after each pressure application. Potential sources
of error in the determination of Py, are the repeated flow mea-
surements after pressure application performed on the same
specimen. Cavitation fatigue due to damage on the bordered pits
can lead to an underestimation of P, in Norway spruce sapwood
when repeated pressure applications are performed (Rosner et al.
2010). It is, however, quite difficult to assess possible sources of
error of the reference method, because there are not two exactly
equal samples, and it is not possible to resaturate and repeat the
flow measurement procedure on the same specimen. The mea-
surements to predict the hydraulic performance under drought
stress are complex, and standard protocols for estimating the
hydraulic function are still missing (Rosner 2014). The discussion
on and the search for the most reliable method to estimate Ps, is
ongoing (Cochard et al. 2013); in this regard, the FI-NIR technique
could be used as a valuable tool to compare the reliability of
different methods.

Structural and chemical traits determining hydraulics: can
they be reflected by NIR?

Stronger PLS-R models for RWL;, than those for Py, raises an-
other question: to which amount can structural and chemical
traits that determine hydraulics be reflected by NIR spectroscopy?

Wood density is a reliable indirect trait to estimate Py, of Nor-
way spruce sapwood across cambial ages (Rosner et al. 2014). In
specimens of similar cambial age, the relationship is, however,
much weaker (Rosner et al. 2008). The relationship between den-
sity and RWLs,, (% = 0.57) was found to be stronger than the rela-
tionship between density and P, (> = 0.34) in the specimens from
which spectra were collected. Moreover, within the same density
range, RWL;, had a wider data range than P5,, which should, in
general, be a better precondition for constructing empirical mod-
els. For Norway spruce, PLS-R models for density were successfully
developed (Hauksson et al. 2001; Hoffmeyer and Pedersen 1995;
Thygesen 1994). Hoffmeyer and Pedersen (1995) evaluated the den-
sity and the strength of Norway spruce cross sections by FT-NIR
spectroscopy and a four-factor model was obtained (r? = 0.77).
PLS-R models for density were, however, found to be stronger in
other conifer species (Tsuchikawa and Schwanninger 2013) such
as black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.)
and balsam fir (Abies balsamea (L.) Mill.) (r? = 0.88) (Xu et al. 2011). In
Japanese larch (Larix kaempferi (Lam.) Carriére), a four-factor PLS-R
density model was developed (% = 0.98) (Rodrigues et al. 2013). The
better model statistics obtained for RWL;, compared with Pg,
might be explained by the stronger correlation between density
and RWILg, than between density and P5,. However, prediction of
P, by the FI-NIR models gave much better results (r? = 0.65) than
prediction by wood density (r? = 0.34). The variability in P5, should
be strongly related to the characteristics of bordered pits (Lens
et al. 2011). It is not yet known which pit properties exactly deter-

mine Py, in Norway spruce wood and if these properties can be
assessed by FT-NIR at all. Hot candidates are pit frequency (Domec
et al. 2006), pit diameter (Mayr et al. 2002), and the characteristics
of the pit membrane, e.g., its rigidity (Hacke et al. 2004; Domec
et al. 2006). There is correlation between the hydraulic vulnera-
bility and pit aperture size factors (Mayr et al. 2002; Rosner et al.
2007). It remains to be tested to what extent the spectra can reflect
the pit frequency, the pit aperture diameter, and their anatomical
and mechanical properties, e.g., the size of the pores in the fibril-
lose margo or the stiffness of the torus.

This study suggests that the hydraulically relevant properties
should be better reflected by spectra from the axial surface. How-
ever, bordered pits are more frequently found in the radial cell
wall and are more numerous at the ends of the tracheids than in
the middle parts (Meier 1962; Sirvié and Karenlampi 1998). Also,
pit frequency and diameter should be more reliably assessed on
the radial wood surface. However, these pit properties can be
measured only on exact radial splits, which would result in a
rather rough surface that is not suitable for performing flow ex-
periments (tightening into the tubing system) and for collecting
reliable spectra. Further anatomical and chemical analyses can
provide more information about the differences between the ax-
ial and radial surfaces.

NIR is suitable to predict chemical constituents such as ex-
tractives, lignin, and cellulose in conifer wood (reviewed in
Tsuchikawa and Schwanninger (2013)). However, little is known
about the chemistry of pit membranes and their role in hydraulic
functions, especially in resistance to cavitation. The effect of com-
mercial chemicals on vulnerability to cavitation was recently
tested in two angiosperm species by Dusotoit-Coucaud et al.
(2014). Against a background of ongoing debate over the presence
of pectins in pit membranes, they found evidence that cellulose
and pectins are critical components for vulnerability to cavitation
and that they likely have distinct roles in the efficiency and safety
of xylem hydraulics. For the final P5, model, the wavenumber
ranges between 9403 and 6071 cm~' were chosen (Fig. 1); the peak
at 6790 cm~! can be assigned to cellulose (bond vibration, first
overtone at the O-H structure) (Schwanninger et al. 2011). Bauch
and Berndt (1973) investigated about 100 coniferous species by
histochemical methods and some by spectrophotometrical meth-
ods to determine the chemical composites of their pit mem-
branes. It was found that for many species in sapwood, the pit
membranes consist mainly of pectins accompanied by cellulose
and hemicellulose without any phenolic compounds. The sub-
stances in the membranes can differ between neighbouring trac-
heids and likewise even between neighbouring pits. It remains to
be tested if pit membrane chemistry affects hydraulic vulnerabil-
ity of Norway spruce and if hydraulically relevant variations be-
tween tracheids or neighboring pits can be reflected by FI-NIR
spectra of the entire solid wood specimen.

Conclusions

The first approach to predict hydraulic properties such as P,
and RWLs, by FT-NIR spectroscopy can be regarded as successful;
the PLS-R models were stronger than the relationship between
wood density and these hydraulic parameters. However, the PLS-R
models gave better results for RWLs, than for P, which might be
explained by the stronger relationship between RWLs, and wood
density, and due to the strong influence of the characteristics of
the bordered pits on Py, their properties might not be assessed by
FT-NIR spectra. Application of the technique on specimens with a
wider P5, and RWL, data range might lead to a further improve-
ment of the models. This implies development of techniques
to collect FI-NIR spectra from smaller surface areas, e.g., from

'Supplementary table is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2014-0452.
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branches. Thereafter, the calibration could be put into practice as
arapid, reliable, and nondestructive method to determine P5, and
RWL,,. Furthermore, applications of FI-NIR on other species or in
conjunction with other reference methods, e.g., the centrifuge
technique, are suggested. Relating FT-NIR spectra to different hy-
draulic methods to assess P, could be an important contribution
to the ongoing discussion about the different methods that are
currently used to determine hydraulic traits.
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ABSTRACT

Relationships between hydraulic vulnerability expressed as Ps (the air pres-
sure causing 50 % loss of hydraulic conductivity) and within-ring differences in
wood density (WD) and anatomical features were investigated with the aim to
find efficient proxies for Ps( relating to functional aspects. WD and tracheid
dimensions were measured with SilviScan on Norway spruce (Picea abies (L.)
Karst.) trunk wood.

Pso was strongly related to mean WD (r = -0.64) and conduit wall reinforce-
ment ((¢/b)?), the square of the ratio between the tracheid double wall thickness
(7) and the lumen width (b), where use of tangential lumen width ((¢/b,)?) gave
better results (r = -0.54) than radial lumen width (» = -0.31). The correlations
of Psy with earlywood (EW), transition wood (TW) and latewood (LW) traits
were lower than with the specimen averages, both for WD (r = -0.60 for WDgw,
r =-0.56 for WD, r =-0.23 for WD w) and all anatomical traits. The loss of
hydraulic conductivity was addressed as a dynamic process and was simulated
by defining consecutive phases of 5% theoretical conductivity loss. WD and
tracheid traits were calculated and correlated with Ps( values of each specimen.
Tightest correlations were found for (#/b,)2, at relative cumulated theoretical
conductivities until 45 to 50 % (r = -0.75).

We conclude that WD is one of the best available proxies for Ps(), but does not
necessarily reflect the mechanism behind resistance to cavitation. The new trait,
based on estimation of conductivity loss as a dynamic process, provided even
stronger correlations.

Keywords: Vulnerability to cavitation, percent loss of conductivity, wood den-
sity, wood anatomy, wall thickness, tracheid dimensions, conduit wall rein-
forcement.
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INTRODUCTION
List of abbreviations:
b tracheid lumen width, arithmetic mean of b, and b,
b, radial lumen width
Bgr radial tracheid width from one middle lamella to the next
by tangential lumen width
Bt tangential tracheid width from one middle lamella to the next
EW earlywood
LW latewood
Ps hydraulic vulnerability
t tracheid double wall thickness

(t/b)2  conduit wall reinforcement

(t/b,)? radial conduit wall reinforcement

(t/b))?  tangential conduit wall reinforcement

(t/by)?  conduit wall reinforcement of + 10 % of mean hydraulic lumen diameter

(t/by,)? radial conduit wall reinforcement of + 10 % of radial hydraulic lumen diam-
eter

(t/bp)? tangential conduit wall reinforcement of + 10 % of tangential hydraulic lumen
diameter

™ transition wood

WD wood density

WDgw earlywood wood density

WDy transition wood wood density

WD, w latewood wood density

During the past years forest dieback due to drought and heat waves has been frequently
observed (Allen et al. 2010; Sergent et al. 2014; Rosner et al. 2014). For the future it
is predicted that climate change will bring more extreme and frequent drought and
heat waves (Schir ef al. 2004; IPCC 2012; IPCC 2014). For coniferous species such as
Norway spruce drought is one of the main climate risks (Solberg 2004; Bréda & Badeau
2008; Sergent et al. 2014). Still, the knowledge about the physiological mechanisms
behind dieback due to drought sensitivity are not yet well understood (McDowell et al.
2008). More knowledge on relationships between anatomical structure and hydraulic
functioning within tree trunks may allow the development of screening methods to
determine the vulnerability to drought, for selection of more suitable provenances or
individuals (Rosner 2013). The most widely used hydraulic vulnerability parameter
is Ps(, defined as the water potential that causes 50 % loss in hydraulic conductivity
(Choat et al. 2012). There are also other techniques to measure xylem hydraulics, but
all available methods, Ps included, are delicate, labour intensive and can be performed
only on samples of fresh wood. Therefore, there is a need for more rapid methods to
measure vulnerability to cavitation (Cochard et al. 2013; Luss et al. 2014), and prefer-
ably methods which can be applied on larger samples more representative for the tree.
An alternative approach is to find proxies for adaptive traits related to drought resistance
(Ruiz Diaz Britez et al. 2014).
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Vulnerability to cavitation is linked to xylem structure (Hacke et al.2001; Domec &
Gartner 2002b; Dalla-Salda et al. 2009). Pittermann et al. (2010) concluded that, among
structural parameters in conifers, the ratio of the torus to aperture diameter shows the
strongest direct relationship with Ps( across species. For conifers, relationships have
been found also with wood attributes such as tracheid double wall thickness, tracheid
length (Rosner et al. 2007) and wood density (Domec & Gartner 2002a; Rosner et al.
2008; Dalla-Salda ez al.2009). In that regard, wood density is one of the most promising
candidates (Rosner ef al. 2008) in the search for proxies of hydraulic vulnerability in
mature Norway spruce wood. Density as a proxy has also the advantage that it correlates
strongly with a variety of hydraulic and biomechanical performance measures, a lot of
density data are available and it is relatively simple to assess. Density of wood results
from anatomical and to some extent also from chemical properties, which define how
much mass there is in a given volume (Rathgeber et al. 2006; Lachenbruch & McCulloh
2014; Cuny et al. 2014). Intensive research on the relationship between vulnerability
to cavitation and density within tree trunks has been carried out for Norway spruce
(Rosner et al.2007,2008,2014) and Douglas-fir (Domec & Gartner 2002a; Dalla-Salda
et al.2009,2014). Dalla-Salda et al. (2014) showed that also within-ring wood density
variations are related to vulnerability to cavitation in Douglas-fir. There are several
patterns of variation of wood properties within trees (Zobel & van Buijtenen 1989),
on different levels of scale. One pattern is the variation within an annual ring that in
conifers is characterised by a transition from wide and thin-walled cells formed at the
beginning of the growing season to narrow and thick-walled cells formed at the end.
Traditionally, tree rings are described as of two parts: earlywood (EW) and latewood
(LW) (Mork 1928). But often the transition from EW to LW extends over a consider-
able part of the ring. For more descriptive information on within-ring variations, a third
compartment, termed transition wood (TW), has been introduced between EW and LW
(Olsson er al. 1998; Park & Spiecker 2005; Dalla-Salda et al. 2014; Hong et al. 2015).
Dalla-Salda et al. (2014) found that TW has a major impact on the between-tree vari-
ation of vulnerability to cavitation. In Norway spruce, Ps is strongly related to mean
ring wood density (Rosner et al. 2014). Wood density influences also the mechanical
properties of the tracheids, including their resistance to collapse. Thus, the question
arises: can a detailed analysis of the variability of anatomical traits within annual rings
bring further understanding of hydraulic vulnerability?

Several methods to determine wood density and anatomical traits exist and they
undergo a continuous development and refinement (Lehmann & Evans 2010). SilviScan
is a quasi-non-destructive method, since it can be applied on material from wood cores.
It has been developed for rapid analysis of radial variations in many wood and fibre
properties on the annual ring and within-ring level, using automated and integrated
X-ray and microscopy measurements, combined with image and data analyses. Among
the properties measured are wood density (wood moisture in equilibrium with the con-
ditioned laboratory atmosphere), tracheid widths radially and tangentially in the wood
matrix, and tracheid wall thickness (Evans 1994). These traits show differences across
the annual ring and with tree height (reviewed in Lachenbruch ef al. 2011; Carrer
et al. 2015), which can be described on an aggregated level as EW, TW and LW.
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Across species, Hacke et al. (2001) found a tight relationship between cavitation resis-
tance and (#/b)2, the conduit wall reinforcement, where ¢ is the tracheid double cell wall
thickness and b the tracheid lumen width. Also in Picea abies, mean (#/b)? proved as
a good proxy for Pso (Rosner et al. 2016b). However, cavitation normally occurs or
is at least initiated locally in wood, at vulnerable locations within rings. Therefore, it is
important to investigate how Ps( of the whole annual ring relates also to the anatomi-
cal variability within annual rings. A recent study by Nardini ef al. (2017) showed by
means of in vivo imaging with micro computed tomography that there is a progressive
embolisation from wider to narrower conduits with increasing xylem tension.

The aim of this study was to investigate how Ps, of Norway spruce (Picea abies
(L.) Karst.) sapwood specimens is related to the within-ring variability in wood density
and anatomical traits, in order to learn more about the influence of wood design on
vulnerability to cavitation. We hypothesised that anatomical features corresponding
to 50 % of the cumulated theoretical hydraulic conductivity of a given wood sample
are stronger related to P, than a mean value calculated for the whole sample span. In
order to test this hypothesis, we analysed SilviScan datasets from 50 Norway spruce
specimens originating from different sites in southern Sweden and Norway and cor-
related potential functional traits such as wood density and (#/b)? with Ps.

MATERIALS AND METHODS

Plant material

The specimens (n = 50) came from Norway spruce (Picea abies (L.) Karst.) trees
grown on two sites in southern Sweden (Tonnersjoheden and Vissefjdrda) and two
sites in southern Norway (Sande and Hoxmark). These were harvested at the age of
24 years on the Swedish sites and at 40-50 years on the Norwegian sites. The trees
from Sweden were located at altitudes of 60 and 120 m, respectively, on sites with
soil of sandy loam till. Their mean height was 10.1 + 1.5 m and the mean diameter at
breast height was 11.2 + 2.5 cm. The sites in Norway had rather shallow soils of clay
mixed with a mineral soil layer and sand fractions (Hentschel ef al. 2014). The trees
of these sites had mean height 21.4 + 1.6 m and mean diameter at breast height of
29.1 +4.8 cm. Wood boles from trees of the Swedish site were taken at breast height,
from trees of the Norwegian site from the living crown (10t whorl from top). More
details of the Swedish sampling sites and trees can be found in Rosner et al. (2008)
and of the Norwegian sites in Rosner et al. (2014).

Wood boles were debarked and split along the grain out in the field. The samples
had a length of 200 mm when they were put in plastic bags with fresh water and 0.01%
Micropur Classic (Katadyn Products Inc., Wallisellen, Switzerland). Within 48 hours,
the samples were sent to BOKU Vienna (Austria) where they were stored at -18°C
until further preparation steps.

Vulnerability to cavitation
A core in studies of sensitivity to drought is the vulnerability curve (VC), the de-
crease in hydraulic conductivity plotted against the stress applied, causing these con-
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ductivity losses (Fig. 1). In our case, the stress was induced by the application of com-
pressed air in a pressure collar; the positive pressure applied is an equivalent for the
water potential (Cochard et al. 2013). The water potential has a negative algebraic sign
and describes the tension that develops during water transport in small conduits.

The method used in this study for the assessment of VCs is described in detail in
Rosner et al. (2008). The most important parameter derived from VC is the P5, (Choat
et al.2012), defined as the pressure (i.e. water potential) that induces 50 % loss of the
initial hydraulic conductivity. For the calculation of Ps, the flow through small wood
beams (6 x 6 x 120 mm, produced from the 200-mm-long samples) was determined on
stepwise air pressure application in a double ended pressure chamber (PMS Instrument,
Corvallis, OR). In Rosner et al. (2008), such calculated P values were presented for
each tree from pooled data of at least three sapwood beam specimens. In the current
study, we recalculated Ps for the single wood beams and SilviScan analyses were per-
formed on all samples for which enough data points were available to construct whole
VCs (Luss et al. 2014). This resulted in data on Psy and anatomical features from
50 wood beam samples originating from the sapwood of 38 trees. The 50 samples were
then divided into two groups, one with Ps, < -2.5 MPa (n = 19) and one group with
Psy >-2.5 MPa (n = 31), representing low and high hydraulic vulnerability. Average
curves for each cluster are presented in Figure 1.

SilviScan measurements

For the SilviScan measurements, specimens with a length of 1 cm were sawn from
the wood beams used for hydraulic testing. 35 samples originating from 28 of the trees
harvested in Sweden were analysed by Innventia (Sweden) with its SilviScan instrument.
Fifteen specimens originating from 10 trees harvested at the sites in southern Norway
were analysed with the SilviScan instrument at CSIRO (Australia). These analyses
provided detailed data on the spatial variations in WD and anatomy. The data were
compiled in the form of averages for consecutive 50 um wide intervals across the 6 mm
of the specimens. These data showed large differences in growth among the samples:
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from fast-grown wood with one complete annual ring with small parts of other rings at
the edges, to slow-grown wood with three complete rings. Figure 2 shows an example
for wood density (WD), tracheid double wall thickness (), radial (b,) and tangential
lumen (b;) widths for a specimen with one complete annual ring.

Discrimination of earlywood, transition wood, and latewood
The individual rings and their intra-ring compartments of EW, TW and LW were
identified based on the density variations across the analysed wood specimens. As
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mentioned above, the intra-ring variations have traditionally been described with
two parts only, EW and LW, most often using the definition of Mork (1928), setting a
transition point where the tracheid double wall thickness equals the lumen diameter.
Several other definitions of a transition point between two compartments of rings have
been suggested and their benefits discussed (Denne 1988; Koubaa et al. 2002; Park
& Spiecker 2005; Cuny et al. 2014). The intra-ring variations are, however, normally
characterised by relatively stable property levels at the innermost and outermost parts
of the rings with a transition zone in between, constituting a considerable part of the
ring. This transition may be very different in character and is often strongly influenced
by annual weather and other factors. The definition of a transition wood compartment
used in this study, the “20-80" method (Kostiainen et al. 2009; Franceschini et al.2012;
Chen et al. 2014; 2016; Hong et al. 2015), was introduced by Olsson et al. 1998) to
obtain less weather-dependent data on these inner and outer parts of each ring, and a
better description of the statistical distributions of wood and tracheid (“fibre”) proper-
ties for industrial applications. The method was first applied on brightness data from
wood images, and was then introduced on density data from SilviScan. For each ring,
the span from minimum to maximum density (or brightness) is determined. The part
from 0 to 20 % of the span is defined as EW, the part from 80 to 100 % as LW, and the
part in between as TW.

Potential hydraulic proxies for Ps

Hydraulic proxies tested in this study were: wood density (WD), tracheid double
wall thickness (7), mean lumen width (b), radial lumen width (b,), and tangential
lumen width (b,), as well as conduit wall reinforcement (#/b)2 (Hacke er al. 2001; Hacke
& Jansen 2009). Conduit wall reinforcement traits were calculated using mean lumen
widths (average of radial and tangential width) (#/b)2, radial lumen widths (#/b,)? and
tangential lumen widths (#/b;)?. Arithmetic mean values were calculated of WD, ¢, b,
by, by, (1/b)*, (1/b,)*, (t/b,)* for the whole radial spans of the specimens and for EW,
TW and LW of complete annual rings.

As the hydraulic conductivity of lumens with different widths are not proportional
to these widths but rather to their fourth power, the arithmetic averages for the conduit
wall reinforcements were complemented with average hydraulic lumen diameters.
These were calculated as Xd°/2d* (Kolb & Sperry 1999; Rosner et al. 2016b), where
d represents the averages of the different types of lumen widths for the 50 um inter-
vals provided by the SilviScan dataset, resulting in hydraulically weighted averages
for mean (by,), radial (by,,) and tangential (by,,) lumen widths. Hydraulic lumen widths
were then used to calculate the corresponding hydraulically adjusted conduit wall
reinforcements (Hacke er al. 2001; Hacke & Jansen 2009); (#/by,)? was calculated for
+10% (i.e. 90—-110 %) of by, ((t/by,)?), for £ 10 % of by, ((#/by,)?) and for £ 10 % of by,
((#/bpy)?) according to Domec et al. (2009) and Rosner et al. (2016b).

According to Hagen-Poiseuille’s law, the volumetric flow in a pipe increases with the
fourth power of its radius. In order to analyse the variability of the within-ring variation
in lumen diameter for each Ps cluster (see chapter Vulnerability to cavitation),data for
the 50 wm intervals were sorted into I wm broad categories of mean lumen diameters (b),
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from 11 to 33 wm. The data for mean lumen diameter widths were cumulated to 1 um
categories, starting with the intervals of the largest lumen diameters (typically part of
EW) to the smallest lumens (typically from LW), followed by normalisation to 100 %
for the total sum. Then, the series representing the two clusters were plotted versus
lumen diameters.

Further, the hydraulic conductivity (K) was calculated as an average for every 50 um
radial section across the samples from the corresponding SilviScan data on widths of
tracheids and lumens. It is assumed, that the hydraulic conductivity is fully controlled
by the lumen size. The Hagen-Poiseuille law has been used to calculate a theoretical
hydraulic conductivity of water conducting elements in the (secondary) xylem (Tyree
& Zimmermann 2002). The following equation was used to calculate K:

b3 b3
8Y] BRBT (br + bt)z

where By is the radial tracheid width, b, the radial lumen width, By the tangential
tracheid width and b, the tangential lumen width.

The vulnerability curves for the clusters of specimens with high and low vulner-
ability presented in Figure | illustrate the dynamic character of loss in conductivity. In
order to investigate how wood with different anatomical characteristics is involved in
loss of conductivity during various phases, the 50 um wide intervals of each specimen
were sorted according to WD, from the interval with lowest WD (presumably with high
vulnerability and K) to the highest WD (with low vulnerability and K). The K values
of the intervals were successively added, ending with the total theoretical hydraulic
conductivity of the specimen. The curve was normalised with this value, resulting
in a curve from 0% to 100 %, expressing the proportions in which wood of different
WDs (or hydraulic vulnerabilities) contributed to the total hydraulic conductivity of
the specimen. The cumulated hydraulic conductivity was then divided into 20 phases,
representing each a theoretical stepwise increase in 5 % conductivity. WD and anatomi-
cal traits were calculated for each stepwise cumulated K phase.

K [m?MPa-'s-1] =

Equation 1

Statistical analyses

Statistical analyses were carried out for all traits with IBM SPSS Statistics 21. Pearson
correlation coefficient was used to test relationships between traits. Mean values were
tested for significant differences by the Student’s t test. Ps( values and calculated traits
that were related to Ps( followed a normal distribution. Correlations or differences were
accepted as significant if P <0.05.

RESULTS

Ps related to wood density and anatomical traits across the whole specimen

Strongest relationships with Psy and averages for other traits across the full speci-
men were found for mean WD (r = -0.64) and (#/by,,)?, i.e. conduit wall reinforcement
calculated from + 10% of the tangential hydraulic lumen diameter (r = -0.64). All
other anatomical traits had correlation coefficients below 0.6 (Table 1). The weakest
correlation was obtained for (#/b,)% (r =-0.31, P < 0.05), while (¢#/b;)?> showed a much
better result (r =-0.54, P < 0.001).
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Figure 3. Hydraulic vulnerability (Ps) plotted against mean values of WD for the (a) earlywood
(EW), (b) transition wood (TW) and (c) latewood (LW) parts of the specimens, resulting in three
data points for the Ps, value of each specimen. Filled black circles denote EW, gray squares
denote TW and dark gray diamonds denote LW. Linear relationships are indicated by regression
lines for each part separately; «###> indicates P < 0.001.

Structure-function relationships for earlywood, transition wood, and latewood

The strongest correlations were found with WDgyw (r = -0.60) and with WDy
(r =-0.56), while no significant relationship was found with WDy (Table 1, Fig. 3).
Nor were significant relationships found between Psy and any other anatomical trait
of LW (Table 1). All lumen traits of TW (b, b, and b,) showed stronger correlations
with Ps than those of EW. In contrast, all (#/b)? traits of EW showed tighter relation-
ships with Ps( than those of TW (Table 1). Figure 3 also shows that the range of WD
values in EW among the specimens investigated is much narrower, compared to those
in TW and LW.

Within-ring variability of wood density and anatomy traits of the clusters with high
and low Ps

In Figure 1, the concept of vulnerability curves (VC) was illustrated for two clusters
of samples: samples with Ps, values < -2.5 MPa (min = -3.24 MPa, max = -2.60 MPa,
mean =-2.88 £0.19 MPa, n = 19), and samples = -2.5 MPa (min = -2.50 MPa, max =
-1.74 MPa, mean = -2.29 + 0.18 MPa, n = 31). Figure 4 visualises the differences in
intra-ring variations of wood density and anatomical traits between the specimens of
high and low hydraulic vulnerability, with plots of averages for successive 5 % intervals
within the complete annual rings for WD, tracheid double wall thickness (7), radial lu-
men width (b,), tangential lumen width (b,), (#/b,)? and (t/b,)?. Differences in the mean
values of WD, ¢, (#/b,)? and (#/b)? between Ps clusters were statistically significant
for all 5% segments, except in the LW of the annual rings (Fig. 4). Above 95 %, i.e. in
the latest formed LW part, no traits investigated showed significant differences, except
(#/b)? traits. Significant differences in b, were found after 25 % of the annual ring, and
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Figure 4. Mean values and standard errors of wood density (WD) (a), double tracheid wall
thickness (7) (b), radial lumen width (b,) (c), tangential lumen width (b,) (d), radial conduit wall
reinforcement (#/b,)2 (e) and tangential conduit wall reinforcement (1/b,)2 (f) of 5% radial seg-
ments of annual ring for Psy below -2.5 MPa (open symbols, i.e. less vulnerable to cavitation)
and above P5 -2.5 MPa (closed symbols, i.e. more vulnerable to cavitation).

in b, after 35% of the annual ring. Even though there were statistically significant
differences between the two Ps categories in WD and (#/b)? traits, differences in the
mean values were not much until 35% of the annual ring compared to the absolute
differences from 40 % until 80 % of the annual ring (Fig. 4). In order to compare both
clusters, it was necessary to relate the traits to a relative radial position within the tree
ring. The cluster with low Ps, values and low vulnerability included specimens with
narrower rings and thus lower contents of EW, while the specimens with a high EW
content were found in the more vulnerable cluster. Thus, the less vulnerable wood had
generally higher WD. The differences were, however, small at the innermost part of
the rings where EW dominated and in the very outermost part where LW dominated
in both Ps( categories, respectively. But the differences were pronounced from the
mid- to the 2/3-part where TW dominated in the less vulnerable category and EW in
the other.
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Figure 5. Histograms of the mean tracheid lumen width for Psy below -2.5 MPa (black bars,
n = 19 specimens) and above -2.5 MPa (grey bars, n = 31 specimens).

Significant differences between lumen clusters were found in the range between
16-25 um, where the relative cumulated lumen widths were significantly higher in
more hydraulically vulnerable samples (Fig. 6a). Histograms of the frequency dis-
tributions of lumen diameter for the two clusters showed that more vulnerable wood
specimens had a much higher fraction of larger lumen widths than the less vulnerable
specimens (Fig. 5). In Figure 6b and 6 ¢ the average WD and (#/b,)? are plotted versus
the lumen categories. No significant differences between the two vulnerability groups
were found when compared at the same lumen size categories.

A novel approach to predict Ps

In search for more structural-functional related proxies for Ps,, we calculated the
theoretical hydraulic conductivity (K) and added it cumulatively in 5 % steps, starting
with the lowest WD. Based on our findings described above, it was hypothesised that
parts of the specimens with wood of different anatomical features will lose their conduc-
tive capacity in the same order as this accumulation, starting with wood of lowest WD
and large lumen sizes, successively followed by wood of higher density, meaning that
the 5 % parts would correspond to different phases of the successive loss of conductiv-
ity of the specimen. The averages for WD and anatomical traits contributing to each
5 % step were then calculated and correlated to the Ps values. This way, we were able
to investigate not only different traits as proxies for Ps, but also to estimate critical
levels of such functional traits of each specimen, providing even sharper proxies.
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The correlation coefficients for the relationship between these potential functio-
nal traits and Ps( are listed in Table 2. Ps, was tightest correlated with the mean
WD of the specimens calculated until 40 to 45% of the cumulated K (r = -0.72,
P < 0.0001) and with the mean (#/h,)? calculated until 45 to 50 % (r = -0.75,
P < 0.0001) (Fig. 7). Much weaker relationships were found between Ps, and b, b,,
b, as well as (t/b,)?; also the mean of the double wall thickness as well as (#/b)? were
more weakly related to Ps.
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Figure 7. Hydraulic vulnerability (Ps,) plotted against the mean wood density (WD) lumen
widths and conduit wall reinforcement calculated from tangential lumen diameters (#/b;)? for
the whole wood sample [a,c,e] and for the cumulated theoretical hydraulic conductivity (K)
range until 50 % [b,d,f].
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DISCUSSION

Predictive power of wood density and anatomical traits for hydraulic vulnerability

Classical methods to determine Ps( values are destructive, time consuming, labour
intensive and prone to errors (Cochard et al. 2013). There is thus a strong need for
easily assessable proxies. Research on relationships between wood structure and its
effect on multiple aspects of performance enable a better management and selection
of plant material (Lachenbruch & McCulloh 2014). Rapid and easy prediction of Ps
would be useful in tree improvement to screen for individuals or provenances with
higher hydraulic safety (Dalla-Salda et al. 2009; Rosner ef al. 2016a).

Wood density (WD) has a high potential as a proxy for hydraulic vulnerability
(Dalla-Salda ef al. 2011; Rosner et al. 2014). Also the present study showed a signifi-
cant correlation between mean ring WD and Ps,. WD can thus be used as a proxy for
Ps, but there is no direct causal relationship. The statistical correlation exists because
anatomical traits interact so that they adversely influence hydraulic vulnerability and
WD (Hacke et al.2001; Lachenbruch & McCulloh 2014; Bouche et al. 2014; Zwieniecki
& Secchi 2015). WD is largely defined by the cross-sectional area and wall thickness
of the tracheids, which also define the cross-sectional extension of the lumens, influ-
encing Pso. Hacke er al. (2001) were first to find a strong relationship between Pspand
mechanical proxies such as (#/b)2. Their results were thereafter confirmed by many other
studies (e g. Domec et al. 2009; Bouche ef al. 2014; Rosner et al. 2016a, b). Relation-
ships within a species between Ps and (#/b)? were found to be stronger (Domec et al.
2009; Rosner et al. 2016 a) than across conifer species (Bouche et al. 2014; Rosner
etal.2016a).

Recently, Rosner ef al. (2016b) found that detangling tracheid lumen width in ra-
dial and tangential lumen diameters results in a higher predictive quality of (#/b)? for
Ps. In the present study, we confirm that (#/by,,)2, derived from tangential hydraulic
lumen diameters, showed a stronger correlation with Psg than (#/by,;)2, derived from
radial hydraulic lumen diameters.

Radial lumen diameters are very variable within an annual ring and are strongly in-
fluenced by climate, annual weather and other site conditions than tangential lumen
diameters (e.g. Vysotskaya & Vaganov 1989; Larson 1994). In many conifer species bor-
dered pits are generally located in the radial-longitudinal walls (Domec et al.2006) but
they can be found in tangential cell walls, too (Kitin e al. 2009; Rosner 2013). In Norway
spruce, EW tracheids are the most effective water-conducting pipes and there are higher
numbers of pits per conduit length unit in EW than in LW (Rosner et al. 2007).

To sum up, WD is an easy-to-use proxy for Ps and there are also some other ana-
tomically oriented proxies which are easier to assess than the classical labour-intensive
methods. An ambition of the study was, however, to learn more about the intra-ring
variation of WD and wood anatomy and their relationship to Psg. Therefore, we also
investigated (a) influences of the individual compartments of EW, TW, and LW, (b) of
the anatomical variability within rings, and (c) a new approach introducing dynamic as-
pects of conductivity loss through the analysis of 5 % steps in the cumulated hydraulic
conductivity (K).
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Contribution of earlywood, transition wood, and latewood to variations in Ps

Where cavitation initiates and where it ceases within a tree ring and how it distributes
to Ps is poorly understood (“who is the lord of the ring” (Dalla-Salda et al. 2014)).
For Douglas-fir, Dalla-Salda et al. (2014) found that LW tracheids of the main trunk
are more vulnerable to cavitation compared to EW tracheids. The hypothesis that EW
transports water more efficiently and is less vulnerable to embolism than some parts
of LW was supported by Domec et al. (2002b) and Rosner (2013). In many studies
on structure-function relationships, annual rings are separated into two parts (EW and
LW) (Koubaa er al. 2002; Domec & Gartner 2002 b). In other studies, annual rings
were however divided into three parts (Kostiainen ef al. 2009; Rozenberg et al. 2004;
Franceschini et al. 2013; Dalla-Salda et al. 2014), including also a transition part. This
is preferable for wood in which the transition from earlywood to latewood constitutes
a considerable part of the rings, such as in Norway spruce (Fig. 2). Our comparison
of correlations of Ps, with averages for full specimens and versus averages for the
compartments showed generally higher correlations for the former type. The highest
correlation among compartment types was found for WDgyw, generally the largest
compartment, and almost as high for WDy, but no significant correlation between Ps,
and WD in the latewood, which constitute a minor part of the annual rings. Dalla-Salda
et al. (2014) observed the dynamics of embolism propagation in EW, TW, and LW
of Douglas-fir. They describe that the initiation and the distribution of the cavitation
follows a discrete development in two steps. When a water-deficit episode has started,
the cavitation occurs and distributes in the LW. LW tracheids lose free moisture earlier
than EW tracheids. This was also shown for Norway spruce branch compression wood,
which is more vulnerable than opposite wood (Mayr et al. 2003) and distinct latewood
parts as visualised by means of neutron transmission profiles of dehydrating mature
Norway spruce wood beams (Rosner 2013). Dalla-Salda et al. (2014) report that, after
the water deficit further increases, embolism spreads in the EW and finally reaches the
TW. In Douglas-fir, TW is thus the last conductive part within an annual ring before
full cavitation occurs. We found slightly stronger relationships between EW density
and Ps than between TW density and Psg and no correlation between LW density and
Ps. This may at first sight seem contradictory, but shall not be a surprise, as Ps, does
not relate to the local initiation of cavitation, but how vulnerable the wood of the speci-
men is, when cavitation already has happened in LW and been distributed to various
extents, influenced by the anatomy of the wood, where relatively more conductivity
is lost when the tracheids with large lumens are affected. Accordingly, no anatomical
traits of LW investigated showed any significant relationship with Psy.

A new approach for predicting Psy based on cumulated estimated hydraulic con-
ductivity

Lumen and double wall dimensions play a major role in the resistance to cavitation
(Pittermann et al. 2010; Delzon et al. 2010; Dalla-Salda et al. 2014; Bouche et al.
2014). According to Hacke et al. (2001), tracheids with lumen widths (b) close to the
hydraulic lumen diameter (by,) will cavitate at Ps, if air seeding progresses from wide
to narrow tracheids. The parameter (#/by,)2, the second power of the ratio between the
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double wall thickness (7) and lumen width (b) ratio of tracheids which deviate only
slightly from the hydraulic lumen diameter, was introduced as an estimate for Ps by
Hacke et al. (2001). Use of hydraulic lumen diameter as a basis for calculating con-
duit wall reinforcement proxies for Psg has the disadvantage that all lumen diameters
in a radial file have to be assessed before a (#/b)? for tracheids with e.g. = 10% of the
hydraulic lumen diameters (Domec et al. 2009) can be calculated. We overcame that
by analysing the specimens with SilviScan, providing datasets which can be used to
calculate hydraulic diameters. When using this approach, the best anatomical proxy in
this study for Psy was (#/by)?, calculated from tracheids with + 10 % of the tangential
hydraulic diameter (Rosner et al. 2016b).

The new approach presented in this study, relating Psy to WD and anatomical traits
in the perspective of different phases in the loss of hydraulic conductivity (K), provided
potential proxies with higher correlations to Ps, than averages of the traits across
specimens or their parts of EW, TW, or LW. Ps is not a static trait but is calculated
from a dynamic dataset (Fig. 1), which implies the need of a screening approach that
addresses the stepwise loss of conductivity within different regions of an annual ring.
The novelty of this study compared to earlier approaches (e.g. Dalla-Salda et al. 2009;
Rosner 2013; Rosner et al. 2016b) was to introduce a dynamic aspect to relate to the
vulnerability curve used when determining proxies for Ps, rather than a static use of
trait data. This was made possible by the analysis of wood- and tracheid traits with use
of SilviScan, providing synchronised WD and anatomical data from the same loca-
tions across the specimens. The results obtained with the new approach are considered
to be particularly sound, as the tightest correlations with Ps, the pressure at which
50 % of the conductivity has been lost, were obtained with the tangential conduit wall
reinforcement ((#/b,)?) until 45-50 % of the estimated K (r =-0.75) and with WD until
40-45 % of the estimated K (r = -0.72).

Thus, the correlations with Ps obtained when introducing the dynamic perspective
were stronger than found using static averages (r = -0.64 for (#/by)?, r = -0.54 for
(t/by)? and r = -0.64 for WD). It should however be considered that the consistency
of these relationships across species and locations within the trees (different positions
in trunks, branches and roots) is yet to be investigated. For example, Willson et. al.
(2008) found a correlation between the hydraulically weighted conduit diameter (d},)
and K for stems, but not for roots. It would be of particular interest to see if the new
approach can be applied to investigate differences in Psy and K between juvenile and
mature wood and the considerable variations among clones, which have been shown
for juvenile wood of Norway spruce (Rosner et al. 2007). Differences may also occur
due to tradeoffs between hydraulic and mechanical demands of plant organs, which
may mask relationships between hydraulics and quantitative anatomical traits (Baas
1983; Lachenbruch et al. 2011; Rosner 2013).

CONCLUSIONS

The aim of this study was the search for a proxy that reflects the wood-functional aspects
of resistance to cavitation and that is applicable on Norway spruce wood originating
from different sites. The study confirmed that WD data from micro X-ray transmission
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has a high potential as a proxy for Psy. Also the conduit wall reinforcement is a hot
candidate as a hydraulic vulnerability proxy, where the best correlations were obtained
by using the tangential width of the lumen. Analysis of anatomical traits may provide
a much deeper understanding of the mechanisms behind vulnerability to cavitation
than analysis of wood density. SilviScan can provide such data for radial variations in
both wood density and all anatomic traits involved from measurements on the same
sample, produced for instance from increment cores. In this study, it can thus be put
into practice for efficient and non-destructive estimation of several proxies for hydraulic
vulnerability (Psy) based on wood density and anatomical traits. The most important
result of this study is that such data can be used to introduce a dynamic perspective on
vulnerability to cavitation by estimating successive loss of hydraulic conductivity for
individual specimens. From this we could determine phases of conductivity mainte-
nance and related trait values, new candidate proxies, which provided clearly higher
correlations with Psq than earlier studied proxies based on static averages.

We conclude that analysis of anatomical variability is useful to increase our under-
standing of structure-function relationships and can help to increase the predictive
quality of anatomical traits for drought sensitivity. Similar studies shall be performed
on other woody species in order to learn more about nature’s designs to cope with
drought stress.
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Conclusions

Methods for efficient characterization of hydraulic properties of trees and their vulnerability to
drought are increasingly important in our time of climate change. Such methods would be very
useful in tree improvement for more resilient trees, for selection of trees suitable for different
sites, and in research. The aim of this study was to test the potential of more efficient alternative
methods for determining the hydraulic vulnerability (Pso) in order to replace classical methods.
Two different approaches based on well-established techniques were tested.

The following criteria were defined for the selection of the methods to test: (I) non-destructive,
(I1) efficient, (Ill) easy to asses, (IV) well established, and (V) limited sample preparation
required. The study was performed on samples from Norway spruce. To ensure that the
comparison of the methods was sound, the same set of samples in the form of wood micro-
beams was used for the measurements with all instruments.

The first approach (see chapter 2) shows how Fourier transform near infrared spectroscopy
(FT-NIR) and prediction models (partial least square regression (PLS-R) models) can be used
to determine the desired parameter Pso. The second approach, described in chapter 3, uses
data from a SilviScan instrument on between and within annual ring variations in wood density
and anatomical properties to calculate good proxies for the hydraulic vulnerability (Pso).

FT-NIR technology is widely used in various fields and is described as a hon-destructive, fast,
and simple method. All these characteristics could be confirmed. One advantage is that this
technique does not require advanced sample preparation, which speeds up measurements in
comparison to the classical and most other methods. PLS-R modeling and interpretation of the
results requires a lot of expertise and takes more time at the beginning. But compared to the
classical method, the search for suitable prediction models is very fast. With routine and
experience, time can be saved. Models that have already been created allow a prediction to
be made within a few seconds. This makes this method very attractive.

The models developed and presented in this thesis are promising and have already inspired
other authors to concentrate on this topic (Savi et al. 2019). A large pool of prediction models
for different tree species and parameters would be a great enrichment for the determination of
the hydraulic parameter in practice. It is recommended that the models are developed based
on large sample size representing large spans of Pso variation, as FT-NIR is super sensitive
and e.g. compression wood or other anatomical or chemical variations can influence the
results.

All samples used on this modelling were from the same species. It cannot be taken for granted
that it is possible to use the models across conifers. Bordered pits or other anatomical
structures may also have an influence on the results, so it is important to note that the direction
(axial, radial, tangential) of the measured sample must also be carefully considered. Moreover,
the age of the trees must be taken into account. For example, the models developed were not
tested for very young or old trees. The results of this thesis provide strong and positive
indications. This could be very interesting for forestry and tree breeders as a method to detect
more suitable provenances and clones for propagation. But for use in practice, further work is
recommended. It would be preferable that European or world-wide networks work together to
establish different models for the praxis.

SilviScan is a well-established instrument for efficient measurements of radial variations in a
large number of wood and fiber properties from the same sample, through the integration of
microscopy and X-ray techniques. In this study, high resolution data on within and between
ring variations of wood density (WD) and cross-sectional tracheid dimensions were used to
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calculate for instance conduit wall reinforcement ((t/b)?) from tracheid lumen width (b) and
tracheid double wall thickness (t) were used to find proxies for Pso. WD had previously been
observed as a potential proxy for Pso, and significant correlation between WD and Psy was
confirmed, but there is no direct causal relationship between the two parameters. A new
approach was developed, introducing dynamic aspects of conductivity loss through the
analysis of 5% steps in the cumulated hydraulic conductivity (K), producing even stronger
correlations. It would be desirable to test this approach for other tree species in order to better
assess its potential.

Normally, samples analysed with SilviScan originate from increment cores taken from standing
trees, which is common practice in forestry. The cores are then sawn into radial strips and
polished on one side for microscopy, using machinery designed for this, and the strips are kept
some days in the conditioned lab of the instrument to reach a stable controlled moisture content
before the measurements are performed, routines which by now have been applied on at least
100 000 samples. Analogous procedures should be possible to develop also for the sample
preparation before FT-NIR measurements for the method described above, including
production of samples of suitable dimensions and to secure same the surface properties
between samples.

Another benefit of the Silviscan alternative is that it provides spatially matched information on
many growth-, wood- and fibre related properties from the same sample, and many of those
are also of interest for tree improvement, research and industry. This is an advantage over FT-
NIR spectroscopy, even though it is theoretically possible to predict different parameters with
FT-NIR spectroscopy, but only with previously created PLS-R models the specific parameter
and type of material. When choosing the method, it should also be considered that SilviScan
is currently available solely at three locations in the world (Melbourne, Stockholm, and
Vancouver). This factor makes this measurement method more exclusive than for example
FT-NIR.

Both methods investigated have advantages, and it is not possible to generally state which
method is preferred to the classical methods. Using SilviScan, data are obtained which relate
to identifiable features in wood, data which can be used to sharpen proxies. Regarding FT-NIR
measurements: when routines for sample preparation are available and reliable prediction
models in place for the types of trees of interest, this method should be more efficient and have
the potential to approach applications in the field. However, with the expectation that
successive updates of the models will be needed. It is safe to assume that FT-NIR and
SilviScan both have high potential to replace classical methods.

In conclusion, this thesis tested two different methods to replace classical methods to
determine Pso. Both methods, FT-NIR spectroscopy and SilviScan, showed promising results.
The results shall be seen as a basis for further tests and development. They have already
inspired other projects to continue research in this field and hopefully this will be continued in
the future.
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