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Abstract

In geotechnical engineering, the evaluation of the long-term performance of
construction greatly depends on the time-dependent behavior of geotechnical
materials. It is well-known that, depending on the time and loading state, most
geotechnical materials exhibit both Coulomb type frictional behavior and rheo-
logical behavior. For proper modeling the time-dependent behavior of geoma-
terials, it is essential to develop a numerical model, which takes into account
the contributions of both the frictional and the viscous effects. Additionally,
the development of improved integration techniques is essential in numerical
computation. Hence, this dissertation focuses attention on the development of
such a model and an appropriate integration method for this model.

First, a new constitutive model for modeling the viscous behavior of soils is
proposed. This model consists of two components (the frictional part and the
viscous part) representing respectively the frictional and the viscous stresses in
soil. The frictional part is accounted for using a rate-independent hypoplastic
constitutive model, which is enhanced by incorporating a simple critical state
based formulations. The viscous part is considered using a viscous formulation,
which contains a high-order term denoting strain acceleration. The performance
of the proposed model is examined by simulating different elementary tests on
granular materials.

Second, a comprehensive study on the finite element implementation of the
simple critical state hypoplastic constitutive model (the frictional part) is pre-
sented. Several commonly used integration methods, including explicit and im-
plicit methods, are enhanced by a stress correction scheme to avoid the drifted
stresses lying outside the yield surface of the hypoplastic constitutive model.
These integration methods have been examined using triaxial compression tests,
stress response envelopes, and several typical boundary value problems. The re-
sults indicate that, in terms of accuracy, efficiency, and robustness, the adaptive
explicit methods are the best choices for constitutive integration of hypoplastic
models, while the stress correction scheme can stabilize the numerical computa-
tion, especially, in the simulation of slope failure. Based on the above study, an



adaptive explicit method with stress correction scheme is adopted to implement
the visco-hypoplastic constitutive model. This implementation is validated by
modeling some simple boundary value problems. The numerical evidence indi-
cates that this integration method can significantly reduce the integration error
produced during the computational time.

Finally, an in-situ direct shear creep test on the coarse-graded soil in slope is car-
ried out. On the basis of this test, a finite element simulation using the proposed
visco-hypoplastic model is performed. All comparisons of the experimental and
numerical results indicate that the visco-hypoplastic model is able to predict the
time-dependent behavior of soil.



Zusammenfassung

Die Beurteilung des Langzeitverhaltens von geotechnischen Konstruktionen
hängt stark vom zeitabhängigen Verhaltens des Untergrunds ab. Es ist bekannt,
dass, abhängig vom Zeit- und Lastzustand, die meisten geotechnischen Mate-
rialien sowohl ein Coulomb’sches Scherverhalten als auch ein rheologisches
Verhalten aufweisen. Für die korrekte Modellierung des zeitabhängigen Ver-
haltens von Geomaterialien ist die Entwicklung eines numerischen Modells
notwendig, welches das Scherverhalten als auch viskose Effekte berücksichtigt.
Weiters ist die Entwicklung verbesserter Integrationstechniken essentiell für die
numerische Berechnung. Darum liegt der Fokus dieser Dissertation auf der En-
twicklung eines solchen Modells.

Zuerst wird ein konstitutives Modell für die Modellierung des viskosen Verhal-
tens vorgeschlagen. Dieses Modell setzt sich aus einer Reibungs- und viskoser
Komponente zusammen, um die Scherspannungen und viskosen Spannungen
im Boden abzubilden. Die Reibungskomponente macht sich eines ratenun-
abhängigen hypoplastischen Stoffgesetzes zu nutze, welches durch die Ein-
bindung einer einfachen Critical-State Formulierung erweitert wird. Die For-
mulierung des viskosen Parts nutzt einen Terminus höherer Ordnung um Dehnungs-
beschleunigungen anzugeben. Die Performance des aufgestellten Modells wird
durch die Simulation von unterschiedlichen Elementtests mit granularem Ma-
terial getestet.

Danach wird eine umfangreiche Studie über die Finite-Elemente Implemen-
tierung des einfachen hypoplastischen Critical-State Stoffgesetzs (Reibungspart)
präsentiert. Einige gängige Integrationsverfahren, inklusive explizite und im-
plizite Methoden, werden durch ein Model der Spannungskorrektur verbessert,
um das Abdriften von Spannungen über die Grenzfläche des hypoplastischen
Modells hinaus zu verhindern. Diese Integrationsverfahren wurden mit triax-
ialen Kompressionsversuchen, spannungsabhängige Hüllkurven, und anderen
typischen Grenzwertproblemen getestet. Die Ergebnisse deuten an, dass, in
Bezug auf Genauigkeit, Effizienz, und Robustheit, die Adaptive-Explicit-Methoden



die beste Wahl für die konstitutive Integration des hypoplastischen Modells
sind, während das Model der Spannungskorrektur die numerische Berechnung
stabilisiert, insbesondere bei der Simulierung von Hangrutschungen. Basierend
auf dieser Studie wird eine Adaptive-Explicit-Methode mit Spannungskorrek-
tur in das visko-hypoplastische Stoffgesetz implementiert. Dieses wird durch
die Modellierung einfacher Grenzwertproblemen validiert. Es zeichnet sich ab,
dass das Integrationsverfahren den über die Zeit akkumulierten Integrations-
fehler signifikant reduzieren kann.

Zum Schluss wird ein in-situ Direktscher-Kriechversuch an einem grobkörni-
gen Böschungsboden durchgeführt. Auf der Basis dieses Tests wird eine Fi-
nite Elemente Simulation mit dem entwickelten visko-hypoplasitschen Modells
durchgeführt. Alle Vergleiche der experimentellen und numerischen Ergebnisse
weisen darauf hin, dass das entwickelte Modell im Stande ist das zeitabhängige
Verhalten des Bodens vorherzusagen.
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Chapter 1

Introduction

1.1 Statement of problems

In geotechnical engineering, the time-dependent behavior of geotechnical materials is of
importance to the evaluation of the long-term performance of construction. It is well-known
that both clayey soil and granular soil exhibit time-dependent behavior. Clayey soil, usu-
ally referred to as isotach material, follows a classic viscous behavior with time. However,
granular soil does not obey this classic viscous behavior and is considered as non-isotach
material (Augustesen et al., 2004; Karimpour and Lade, 2010; Tatsuoka et al., 2001). Ex-
perimental results show that the creep strains are not negligible and can reach up to 10%
of the monotonic loading strain, usually understood as the elastoplastic strain. In addi-
tion, when loading after creep and relaxation periods, the residence response is more rigid
than if the time-dependent processes have not occurred (Tatsuoka et al., 2000). Due to
this significance, the viscous effects have been studied extensively over the last decades,
including both experimental and theoretical investigations. The latter includes constitutive
modeling and application. From a mathematics point of view, the time-dependent defor-
mation of a material depends on its elastic, plastic, and viscous properties. Therefore, the
description of the deformation of a material often becomes an insurmountable task. Hence,
the time-dependent deformation of a material is often described by mathematical models
that concern the predominant characteristic with some assumption for simplification. From
the experimental investigations, the time-dependent behavior can be directly measured and
understood. Meanwhile, some useful empirical closed-formed equations may be obtained
and used directly in practice. However, to accurately predict the behavior of geotechnical
structures or a slope with more complex boundary conditions, it is essential to perform nu-
merical modeling using a proper constitutive model that accounts for the time dependency
of the stress–strain–strength properties of soils.
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Although numerous constitutive models have been proposed for soil creep, the problem
is far from being solved. On the one hand, most models describe either the elastoplastic
behavior, or the viscous behavior of soil, which concerns solid-like material and fluid-like
material, respectively. However, it is common knowledge that there are many import kinds
of materials which cannot be classified under either aspect. Some of these materials exhibit
both frictional and viscous properties. They may show elastoplastic deformation under the
influence of statical stresses, but under dynamic stresses, their deformations can transfer
from static regime to dynamic flow state. On the other hand, in any numerical scheme em-
ployed for the analysis of the boundary value problems, it eventually becomes necessary to
integrate the constitutive equations governing the material behavior. Whereas, the numerical
performance relies highly on the methods we choose, and inappropriate choices can easily
lead to unsuccessful computations, unreliable results, or unacceptably long analysis times.
Hence, it is essential to investigate the integration methods for the practical implementation
of the proposed model.

In this thesis, a novel constitutive model for modeling the time-dependent behavior of
soil is proposed, which takes into account the contribution of both the frictional and the
viscous effects in soils. Furthermore, by using an adaptive explicit integration method with
stress correction scheme, this model has been successfully implemented into finite element
code for some boundary value problems.

1.2 Experimental observations in clay and sand

Comprehensive reviews of the time-dependent behavior of soils, and the models charac-
terizing of this behavior have recently been presented in the literature Augustesen et al.
(2004); Liingaard et al. (2004). The essence of these reviews claims that clay and sand be-
have differently with respect to time. A brief introduction of this view concerns the different
time-dependent behavior of clay and sand is presented as follow.

In order to visualize the observed creep behavior in triaxial conditions, the creep test
data is plotted in logε̇-log t diagrams. When the data is presented in such diagrams, the
creep behavior can be analyzed by the parameter m, which is the slope of a straight line in
the logε̇1-log t diagram. However, upon initiated observation, it may be quite complex to
imagine the consequences of varying m values. For that reason, the characteristics of three
different m values are illustrated in Fig. 1.1. m is given by Eq. 1.1 and ε̇ is taken as the axial
strain rate, ε̇1, in this section concerning triaxial conditions.

m =− log ε̇1

log t
(1.1)
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Figure 1.1 (a) Creep characteristics for three different m values. (b) The strain-time curves
for the m values are shown to the right. m = 1 corresponds to a straight line in the ε̇1− logt

diagram. m ̸= 1 corresponds to curved lines in ε̇1− logt diagrams.

In one of the first studies of creep under drained and undrained triaxial conditions on vari-
ous normal consolidated clay, Sing and Mitchell (1968) found that the parameter m varied
between 0.75 and a value slightly greater than 1.0, with most values less than 1.0. They
also suggested that the value of m was independent of the deviatoric stress level for a given
soil. In other words, the creep lines for different deviatoric stress levels had the same slope
in the logε̇1-log t diagram. Sing and Mitchell (1968) also found that the creep strain rate
increased with applied deviatoric stress. These characteristics have also been found in sand.
The general opinion was that creep behavior in sand for various stress levels was similar
to that of clay. For that reason, some researchers have investigated the creep behavior by
means of the m parameter. Fig. 1.2(a) shows the creep behavior of Toyoura sand at different
stress levels, as reported by Murayama et al. (1984), while Fig. 1.2(b) shows creep tests on
Tailings sand for various stress levels, as presented by Mejia et al. (1988).

In the tests by Murayama et al. (1984), the axial effective stress was applied by a loading
lever, which corresponded to constant load creep, while Mejia et al. (1988) applied a static
load that was periodically adjusted to maintain constant stress. However, creep was allowed
for only 20 minutes at each stress levels. The tests results showed that the strain rates
increased with the applied deviatoric stress as expected. The strain-time relation in Fig.
1.2(a) seem to be semilogarithmic at low-stress levels, indicated by m values approximately
equal to 1.0. The m values at low stresses in Fig. 1.2(b) were approximately 0.9. The
results by Mejia et al. (1988) indicated an initial low slope for deviatoric stresses at q =



4 Introduction

(a) (b)

Figure 1.2 (a) Shear strain rate-time response for Toyoura sand at different deviatoric
stresses (b)Shear strain rate-time response for Tailing sand at different deviatoric stresses

51,240 kPa and 1,400 kPa. After approximately 10 s, the slopes increased and became
similar to the slopes for creep at lower stress levels. In both test series, creep failure was
observed at high-stress levels. Mejia et al. (1988) and Murayama et al. (1984) reported that
the stress levels at which creep failure occurred corresponded to the stress level at failure for
the usual triaxial compression tests at the same confining pressure, i.e., creep rupture was,
therefore, inevitable. A systematic study of long-term creep of sands has been presented by
(Lade and Liu, 1998; Lade et al., 1997, 2009). These experimental investigations included
experimentation with different strain rates, loading along different stress paths, and loading
with different time intervals. The strain rate effect, the creep behavior, and the cause of
creep in granular soils were largely demonstrated. The strain rate had distinct effects on
sand and clay, as highlighted in the schematic stress difference-axial strain diagrams in Fig.
1.3. They showed that strain rate had an important influence on the stress-strain behavior
of clay shown in Fig. 1.3(a), while widely different strain rates produce the same stress-
strain relation for sand shown in Fig. 1.3(c), as seen in experiments presented by Murayama
(1983), and also observed by AnhDan et al. (2006); Di Benedetto et al. (2002); Kiyota and
Tatsuoka (2006); Kuwano and Jardine (2002); Matsushita (1999); Tatsuoka et al. (2002,
2008). Changes in strain rate had permanent effects in clay, where changes from one to
another stress-strain curve occurred in response to changes in strain rate, see Fig. 1.3(b).
Only temporary changes occurred in the stress-strain relations for sand as shown in 1.3(d)

The observed behavior by Augustesen et al. (2004) showed that the phenomena of creep
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(a) (c)

(b) (d)

Figure 1.3 Isotach behavior observed in clay for: (a) creep and relaxation; (b) stepwise
chance in strain rate. Non-isotach behavior observed in sand for (c) creep and relation; and

(d) stepwise change in strain rate

and stress relaxation were also different in clay and sand. For clay, creep and relaxation
properties could be obtained from a constant rate of strain tests, and vice versa. The fact
that creep, relaxation, and strain rate effects are governed by the same basic mechanism
referred to as isotach behavior. Isotach behavior, usually observed in clay, implies that a
unique stress-strain-time rate relation exists for a given soil. Isotach behavior is shown
in Fig. 1.3(a) and (b). On the other hand, an investigation of strain rate effects in dense
Cambria sand under drained and undrained conditions at high pressures performed by Ya-
mamuro and Lade (1993) showed no significant rate effects on the strain-stress relations.
The Hostun and Toyoura sands tested by Matsushita (1999) exhibited noticeable amounts
of creep and relaxation with no strain rate effects. The experimental results led to one of
the main conclusions: the phenomena of creep and relaxation cannot be predicted based on
results of constant rate of strain tests. This is because the changes in stress-strain relations
due to changes in strain rate are temporary, as shown in Fig. 1.3(d). This behavior of sand
does not correspond to the observed rate effects in clay. For sand, this behavior is labeled as
nonisotach behavior. The non-isotach behavior is illustrated in Fig. 1.3(c) and (d).
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1.3 Constitutive models for time-dependent behavior of soil

Various types of models have been developed to capture time effects in soils Liingaard et al.
(2004). Empirical and rheological models have been mostly employed for one-dimensional
time effects, while general three-dimensional stress-strain-time models based on nonlinear
material behavior have been extensively used in practical engineering projects. In the later
models, the viscous behavior is often coupled to an existing elastic-plastic model, e.g. over-
stress theory by Perzyna (1963, 1966) and the non-stationary flow surface theory by (Olszak
and Perzyna, 1966b). In this section, the mentioned models will be briefly introduced. More
details can be referred to in (Liingaard et al., 2004)

1.3.1 Empirical models

Empirical models are mainly obtained by fitting experimental results from creep, stress
relaxation, and constant rate of strain tests. These constitutive relations are generally given
by closed-form solutions or differential equations. In addition, they are strictly limited to
a specific boundary and loading conditions (e.g., one specific model for creep and another
for relaxation) and frequently involve natural time. That is, the relations are not general.
However, these models are quite useful in several ways. They often reflect the real behavior
of the soils, and, despite their limited applicability and sometimes theoretical inconsistency,
they provide a basis for developing more sophisticated constitutive models. They may also
provide practical solutions to engineering problems, as long as the boundary conditions
comply with the laboratory experiments. The empirical models are categorized as empirical
primary relations and secondary semi-empirical relations.

(1) Empirical Primary Relations

Primary empirical relations are obtained by directly fitting the observed test data with
simple mathematical functions. They reflect actual observed soil behavior and are often re-
stricted to specific phenomena The empirical models described below are: (I) The semilog-
arithmic law for creep, (II) Singh and Mitchell’s creep model, (III) Lacerda and Houston’s
relaxation model, (IV) Prevost’s model, and (V) Strain-rate approach.

Based on above concept, different primary empirical models have been proposed, e.g.
relations for predicting creep by Yin (1999); The three parametric creep model by Sing
and Mitchell (1968); relaxation model for clay and sand by Lacerda and Houston (1973);
relaxation model based on undrained triaxial tests by Prevost (1976); viscous model for
rate-dependency based on strain rate approach by Leroueil et al. (1985); and viscous model
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proposed by Yin et al. (2011) for time-dependent behavior of structural clay, which was also
extended to three-dimensional form for general engineering practices

(2) Secondary Semi-empirical Relations

Secondary semi-empirical models are classified as models obtained by combining one or
more of the primary models. The models can, to some extent, be used as stress-strain-
time or stress-strain-strain-rate models that yield solutions for creep as well as relaxation
within one particular model. These models are recognized as closed-form solutions for
the different phenomena, such as creep and relaxation, contrary to the elastic/viscoplastic
models reviewed herein, which are presented as rate formulations in incremental form.

The semi-empirical models explained below are: (I) Kavazanjian and Mitchell’s ap-
proach, (II) Tavenas’ approach, (III) Bjerrum’s model, and (IV) Yin and Graham’s model.
For example, Kavazanjian and Mitchell (1977) proposed a general stress-strain-time model
based on the decomposition of strain into volumetric strain and deviatoric strain. The similar
approach has been used by Tavenas et al. (1978) for creep deformation of over-consolidated
clay. On the other hand, Bjerrum (1973) proposed a concept for settlement analysis of nor-
mally and lightly overconsolidated clay. Moreover, based on one-dimensional creep test, an
equivalent time concept have been proposed by Yin et al. (1994) for time-dependent of clay.

1.3.2 Rheological model

Rheological models were typically developed for metals, steel, and fluids, but they were, to
some extent, used in the study of time effects in geomaterials. The terminology rheological
models is often used when describing linear viscoelastic behavior of materials. However,
in the rheology of soils the term rheological model includes plastic behavior as well. The
rheological models are usually divided into three categories, the differential approach, en-
gineering theories of creep, and the hereditary approach.

(1) The differential approach

The differential approach is also referred to as the method of mechanical rheological
models. The constitutive relations are constructed by combining different elementary mate-
rial models, such as the Hookean, Saint-Vernant’s, Newtonian materials the Bingham model,
and the Herschel-Bulkley model. It is noteworthy that a modified form of the Herschel-
Bulkley model is combined with a hypoplastic model to describe the viscous behavior of
granular materials in this thesis. Therefore, special attention will be paid to the Herschel-
Bulkley model.
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The Herschel-Bulkley model is a purely empirical curve-matching model. It is applica-
ble to viscometer test results by using the following equation:

τ = τy + kv(γ̇)n (1.2)

where kv (consistent coefficient) and n (flow index) are constant fitting parameters. The
model can be characterized by two components, i.e. time-independent component and time-
dependent component. The time-independent component consists of the spring with spring
constant E, denoting the elastic element. The time-dependent component consists of the
dashpot with coefficient of viscosity, kv, and the slider with a threshold stress τy combined
in parallel, denoting the viscoplastic element. Since the elastic and viscoplastic elements are
connected in series, the total shear strain rate γ̇ may be additively decomposed with respect
to the two groups. The slider along with the viscoplastic element are inactive as long as
τ > τy. Therefore, it is only the difference τ− τy that gives rise to viscoplastic strains. The
Herschel-Bulkley model can be expressed by the decomposition of the strain rate.

ε̇ =

{
ε̇e + ε̇vp = σ̇

E + n
√

(σ −σy)/kv for σ > σy

ε̇e = σ̇
E for σ 6 σy

(1.3)

where ε̇ is total strain rate, ε̇e and ε̇vp are strain rates in the elastic and viscoplastic elements,
respectively. The assumptions of the Herschel-Bulkley model are similar to those of the
Bingham model for relatively high-viscosity fluids with laminar flow (Huang and Garcia,
1998). Chen et al. (2004) recommended that this model can be use for finer-grained soils

The basic theory behind the Herschel-Bulkley model is similar to the Bingham model.
Their major difference lies in the formulation of the viscous part, i.e. the Bingham rheology
is linear, while the Herschel-Bulkley rheology is nonlinear in the description of the viscous
flow. Therefore, the Herschel-Bulkley model can, to some extent, reflect the highly nonlin-
ear elastic and plastic behavior of soil. However, there are some shortcomings to different
approaches of rheological models. The constitutive relationships for the rheological mod-
els are formulated for uniaxial compression conditions. The generalization of rheological
models from one into three dimensions is possible, but practical calibration and application
seem to be difficult. In principle, rheological models can only describe the viscous behavior
of the material because the inviscid behavior is represented by a threshold stress τy. These
are apparently not correct assumptions for soils. It is well-known that soil exhibit both
frictional and viscous behavior. In most cases, these two contributions coexist and simulta-
neously influence the macro mechanics of soil. Hence, an inviscid part, which can describe
the frictional behavior of materials is needed if we want to extend the rheological models.
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Moreover, the accelerated creep cannot be modeled after rheological models.

(2) Engineering theories of creep

General theories for determining the inelastic creep response of solids are widely applied in
the mechanics of concrete and metal. The mathematical structures of empirical models are
varieties of this approach. Three sub-classes can be characterized as: (I)Total strain model,
in which the total strain is assumed consists of an instantaneous elastic and a viscid creep
component; (II) Time-hardening model, in which the hardening function is dependent on
time; and (III) Strain-hardening model, in which the hardening function is dependent on
creep strain.

(3) The hereditary approach

The hereditary approach is also known as the method of integral representation. In this
approach, the time-dependent creep strain or stress is defined by a creep or relaxation func-
tion, which is a hereditary memory function describing the historic dependence of strains or
stresses.

1.3.3 General stress-strain-time models

General stress-strain-time models are usually refereed to as three-dimensional models. They
are often given in the incremental form. Therefore, they are readily adaptable to numerical
implementation suitable for a finite element procedure. The models are not limited to the
boundary conditions from which they are calibrated, i.e., in principle, all possible stress
paths can be simulated. Special attention is paid to elastoviscoplastic models, which com-
bine inviscid elastic and time-dependent plastic behavior. Elastic-viscoplastic models can
be divided into three classes: (I) Elastoviscoplastic models based on the concept of over-
stress, they are denoted overstress models and the theory is called the overstress theory, (II)
elastoviscoplastic models based on the concept of a nonstationary flow surface. they are de-
noted nonstationary flow surface (NSFS) models and the theory is called the NSFS theory,
and (III) others.

(1) Overstress Theory

The concept of the overstress theory by Perzyna (1963, 1966) is widely used to develop
three-dimensional elasto-viscoplastic constitutive models. A key assumption in relation to
Perzyna’s overstress theory is that the viscous effects are negligible in the elastic region,
i.e., no viscous strains can occur within the static yield surface, which corresponds to the
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traditional yield surface associated with time-independent plasticity. In other words, the
elastic strains are time independent whereas the inelastic strains are time dependent. The
total strain rate is additively composed of the elastic and viscoplastic strain rates:

ε̇i j = ε̇e
i j + ε̇vp

i j (1.4)

where ε̇i j denotes the i, j component of the total strain rate tensor; and the superscripts e and
vp stand for the elastic and the inelastic components, respectively.

Figure 1.4 Stress state P is part of the dynamic yield surface fd and overstress F is defined
as the distance between P and the static yield surface fs . Furthermore, the viscoplastic

strain rate vector is perpendicular to the plastic potential surface g.

According to the theory of elasto-viscoplasticity, the inelastic strain rate represents both
the viscous and plastic effects. The elastic strain rate ε̇e

i j in Eq. (1.4) is assumed to conform
to the generalized Hooke’s law, while the viscoplastic strain-rate ε̇vp

i j is assumed to conform
to the following non-associated flow rule:

ε̇vp
i j = γφ(F)

∂g
∂σ ′i j

(1.5)

where γ is fluidity parameter; φ is viscous nucleus; F is overstress function; g is potential
function; and σ ′i j is effective stress state. The overstress function can be expressed as:

F(σ ′i j,W
vp) =

fd(σ ′i j,W
vp)

κs(W vp)
−1, where κs = κs(

∫ ε̇vp
i j

0
σ ′i jε

vp
i j ) (1.6)

In Eq. (1.6), the function fd depends on the stress state and the viscoplastic work W vp.
The function fd describes the dynamic loading surface on which the current stress state P
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is located, as shown in Fig. 1.4. κs is the hardening parameter of the static yield surface.
F = 0 when fd(σ ′i j,W

vp) = κs(W vp) which implies that κs must be an expression for the
static yield surface fs . The overstress theory differs from general elasto-plasticity in the
sense that the consistency rule is not used in the derivation of the theory. This implies that
inelastic strains in the overstress model are related to the current stress point rather than
the stress history, while the inelastic strains are related to the stress rate in elasto-plasticity.
Furthermore, by assuming the invalidity of the consistency rule, the stress state is allowed
to be on, within or outside the static yield surface. This is used in the definition of overstress
F . F is defined as the distance in stress space between the current stress state P and the
static yield surface fs , as illustrated in Fig. 1.4. F > 0, F < 0, and F = 0 when the state
of stress P is outside, within, or on fs . Therefore, according to the key assumption and the
flow rule, the following constraints apply to the scaling function φ :

〈
φ(F)

〉
=

{
0 for F 6 0
φ(F) for F > 0

(1.7)

Eq. (1.7) can be considered as the loading criterion for inelastic deformations. The direction
of ε̇vp

i j in Eq. (1.5) is normal to the potential surface g at the current stress point P, as shown
in Fig. 1.4. The magnitude of ε̇vp

i j is given by γ and the scaling function
〈
φ(F)

〉
. Different

scaling functions have been proposed for soils, as summarized by Yin et al. (2010a) in
Table.1.1. The term fd−κs in the original expression by Adachi and Oka (1982) has been
replace by fd/κs−1 in order to keep the same normalized term fd/κs.

Table 1.1 Scaling functions for viscoplasticity based on the overstress theory of Perzyna

No. Type Scaling function φ(F) Reference

1 Expo 1 exp[N( fd−κs)] Adachi and Oka (1982)

2 Expo 2 exp
[
N( fd

κs
−1)

]
−1 Fodil et al. (1998)

3 Power 1 ( fd
κs
)n Rowe and Hinchberger (1998)

4 Power 2 ( fd
κs
)n−1 Hinchberger and Rowe (2005)

5 Power 3 ( fd
κs
−1)n Shahrour and Meimon (1995)

In a conventional overstress model, the material is assumed to behave elastically during
the sudden application of a strain increment, which brings the stress state temporally beyond
the yield surface. After when viscoplastic strain occurs, the yield surface expands due to
strain hardening and simultaneously cause stress relaxation due to the reduction of elastic
strain. Based on the conventional overstress model, the viscoplastic strain will not occur
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when the stress state is located within the static yield surface. However, experimental re-
sults have indicated that the viscoplastic strain always occurs, implying that the static yield
surface never exists. Thus, the fundamental hypothesis of the conventional overstress model
is in conflict with the experimental interpretations.

Author's personal copy
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Extended overstress models [Adachi & Oka 1982, Kutter & 
Sathialingam 1992, Vermeer & Neher 1999, Yin et al. 2002]

Conventional overstress models [Shahrour & 
Meimon 1995, Fodil et al. 1997, Hinchberger & Rowe 
2005, Yin & Hicher 2008, Mabssout et al., 2006]

24h oedometer test

Conventional overstress model [Rowe & Hinchberger 1998]

Initial static 'p for overstress models
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Log(d

 

v/dt)

Figure 1.5 Schematic plot for the relationship between the strain-rate and the apparent
preconsolidation pressure by different assumptions of models (Yin et al., 2010b)

To overcome the shortcoming, Yin et al. (2010b) proposed the extended overstress con-
cept. The concept is graphically illustrated in Fig. 1.5. The double log plot of σ ′p−dεv/dt is
schematically plotted in Fig. 1.5. For conventional overstress models by Fodil et al. (1998);
Hinchberger and Rowe (2005); Shahrour and Meimon (1995); Yin and Hicher (2008), a lim-
iting initial static yield σ ′p was assumed at a very low strain-rate (point C), corresponding to
the initial equilibrium state. Within the region of low strain-rate, the path A-C is nonlinear.
The viscosity parameters can be back-calculated from a strain-rate test or 24 hours standard
oedometer test. The viscosity parameters strongly depend on the assumed value of the ini-
tial static yield stress σ ′p, which is somehow arbitrary. This deficiency can be overcome by
assuming the linear line is extended indefinitely (see the path A-D as shown in Fig. 1.5). In
this way, the initial static yield stress does not exist. Therefore, there is no need to assume
the initial value of static yield stress. The conventional overstress model is then extended
and able to produce viscoplastic strains indefinitely in time. It also implies that viscoplastic
strains may occur in the elastic region.

There are many elastoviscoplastic models based on the concept of overstress in litera-
ture. For example, the Adachi/Okano model for fully saturated and normally consolidated
clay (Adachi and Oka, 1982); a viscoplastic cap model proposed by Katona (1984); Ka-
tona and Mulert (1984) for a wide range of geological materials, especially soils and rocks;
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the models proposed by di Prisco and his co-workers (Di Prisco and Imposimato, 1996;
Di Prisco et al., 2000) for time effects in loose sand; and a viscoplastic model by Desai and
Zhang (1987) for description of the viscoplastic behavior of geologic material such as sand
and rock salt.

(2) Nonstationary Flow Surface Theory

The concept of the NSFS theory has been introduced and developed by Naghdi and Murch
(1962); Olszak and Perzyna (1966a) based on the yield surface of elastoplasticity. The NSFS
theory is a result of the further development of the inviscid theory of elastoplasticity. That
is, the NSFS theory is based on the basic concepts of inviscid elastoplasticity. The major
difference between the NSFS theory and classical elastoplasticity lies in the definition of
the yield condition. According to the latter, the yield condition for an isotropic hardening
material is given by:

f (σ ′i j,ε
p
i j) = 0 (1.8)

where σ ′i j ε p
i j are effective stress state and plastic strains, respectively. According to Eq. 1.8,

the yield condition does not change with time when the plastic strains are held constant. In
that sense, the yield surface can be denoted as stationary. In contrast, the yield condition
associated with the NSFS theory depends on time:

f (σ ′i j,ε
vp
i j ,β ) = 0 (1.9)

where εvp
i j and β are viscoplastic strains and a time-dependent function, respectively. It

can be concluded from Eq. 1.9 that the yield surface changes every moment even though
the viscoplastic strains are held constant. In that sense, the flow surface can be denoted
nonstationary. The difference between the yield surface defined in connection with classical
elastoplasticity and NSFS theory is illustrated in Fig. 1.6 For an elastoviscoplastic material,
the yield surface corresponding to any given viscoplastic strain will be reached at different
points A, A1, or A2 dependent on time β . For an elastoplastic material, the yield surface
corresponding to a given viscoplastic strain will for a given load path be reached at the
same point (for example A) independently of time β . Like the overstress theory, the total
strain rate ε̇ associated with the NSFS theory can be decomposed into an elastic ε̇e and a
viscoplastic ε̇vp part in the following way:

ε̇i j = ε̇e
i j + ε̇vp

i j (1.10)
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Figure 1.6 Loading path and yield surfaces of the NSFS model .

The elastic strain rate is determined by Hooke’s generalized law, and the viscoplastic
strain rate is defined according to the flow rule:

ε̇vp
i j =

〈
Λ
〉 ∂g

∂σ ′i j
(1.11)

where Λ is non-negative multiplier; and g is viscoplastic potential. < > is MacCauley’s
brackets. That is, MacCauley’s brackets ensure that viscoplastic strains occur when loading
from a plastic state and, in all other cases, the viscoplastic strains are zero. The expression
for Λ yields:

Λ =−
∂ f

∂σ ′i j
σ̇ ′i j +

∂ f
∂β β̇

∂ f
∂εvp

i j

∂g
∂σ ′i j

(1.12)

where Λ in Eq. 1.12 can be decomposed into two parts:

Λ = Λ1 +Λ2 =−
∂ f

∂σ ′i j
σ̇ ′i j

∂ f
∂εvp

i j

∂g
∂σ ′i j

−
∂ f
∂β β̇

∂ f
∂εvp

i j

∂g
∂σ ′i j

(1.13)

The parameter Λ1 is identical to the plastic multiplier λ defined in connection with classical
elastoplasticity, and Λ2 controls the viscoplatic strain.

Many elastoviscoplastic models based on the NSFS theory have been proposed (Dragon
and Mróz, 1979; Nova, 1982; Sekiguchi, 1977). The shortcoming of the NSFS theory lies
on that it cannot account for the viscoplastic deformation if the stress state lies inside the
yield surface. Therefore, it is inadequate to model creep and relaxation in this case. Due to
this theoretical shortcoming, very few researches related to the application of this type of
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model have been reported in recent years.

1.3.4 Time dependent hypoplastic model

The above models are based on the combination of classic elastoplastic theory with over-
stress concept. An alternative way to incorporate the time-dependency of soil is hypoplas-
ticity. Recently, some visco-hypoplastic models based on various theories, e.g. the theory
of overstress or hydromechanics, have been proposed.

Wu 1993

Wu et al. (1993) proposed several concepts for the visco-hypoplastic constitutive models.
The first concept for visco-hypoplasticity is to violate the restriction that the hypoplastic
equation is homogeneous in σσσ i.e. with λ > 0, if H(σσσ ,λ ε̇εε) ̸= λH(σσσ , ε̇εε), then, rate depen-
dent is inevitable. Based on this concept, an extended model has been proposed , it reads:

σ̊σσ =LLL (σσσ) : ε̇εε−NNN(σσσ)(α∥ε̇εε∥+β ), (1.14)

where α and β are scale function of stress, strain and strain rate.

α =
1

log(10+α1∥εεε∥α2)
, and β = α3exp(−α4l) (1.15)

where α1 ,α2 , α3 and α4 are constants, and the l denotes the length of the strain path and
can be expressed in the following:

l =
∫ t

0
∥εεε∥dt (1.16)

With an appropriate choice of the constants, the Eq. (1.14) can describe creep, relaxation,
and rate-dependent behavior of normally consolidated cohesive soils.

Another concept of visco-hypoplasticity is based on the theory of overstress by (Perzyna,
1963, 1966). This formulation adopts the classical visco-plasticity to the hypoplastic con-
stitutive equation by introducing a characteristic viscous strain rate ε̇εεv that depends on the
stress and possibly some structure tensors, yet not on their rates. The viscous strain rate
enters the constitutive equation in the following matter:

σ̊σσ =LLL (σσσ) : (ε̇εε− ε̇εεv)−NNN(σσσ)(∥ε̇εε− ε̇εεv∥), (1.17)

where LLL and NNN denote the linear and nonlinear operators, respectively. The direct of the
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viscous flow is
fv =

ε̇εεv

∥ε̇εεv∥
(1.18)

which is equal to the direction of the plastic flow in a limit state ( σ̊σσ = 0 ). Hence, the
viscous flow can be expressed by the linear and nonlinear operators.

fv =
LLL −1 : NNN
∥LLL −1 : NNN∥

(1.19)

In other words, the direction of the plastic flow corresponds to such a strain rate in the
limited state that causes no changes in stress. A yield function fd is introduced to describe
the intensity of viscous flow:

ε̇εεv = γφ(F) fv (1.20)

where γ is the fluidity parameter; and the viscous nucleus is expressed as φ(F) = ( fd/ fs)
n

with fd and fs being the dynamic yield surface and the static yield surface. Although some
concepts of visco-hypoplasticity have been outlined by Wu et al. (1993), no specific con-
stitutive equation have been proposed. However, these concepts lead to some advanced
visco-hypoplastic constitutive models, which will be described in the following subsections.

Niemunis 2003

Based on experimental observations on oedometer tests (Niemunis and Krieg, 1996) and
Olszak and Perzyna’s overstress theory (Olszak and Perzyna, 1966b), a noteworthy work
by Niemunis (Niemunis, 2003a,b; Niemunis et al., 2009) has forwarded the viscohypoplas-
tic models into many practical engineering projects. The rate type equation of the visco-
hypoplstic model is expressed in the following form:

σ̊σσ =LLL : (ε̇εε− ε̇εεv), (1.21)

Noted that the above equation only keeps the linear tensor as shown in Eq. (1.17).

The stiffness tensor LLL from hypoplasticity (Wolffesdorff, 1996) was modified for the
visco-hypoplastic model in order to reduce the change of volume when the deviator stress
increase. The tensor LLL for the visco-hypoplastic equation is: with the linear term

LLL = fb(F2III +a2σ̂σσ ⊗ σ̂σσ) (1.22)
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where III is a second-order unity tensor III i jkl = 0.5(IIIikIII jl + IIIilIII jk), and

a =

√
3(3− sinφc)

2
√

2sinφc
(1.23)

The factor F for adapting the deviatoric yield curve to Matsuoka–Nakai is

F =

√
1
8

tan2ψ +
2− tan2ψ

2+
√

2tanψcos3θ
− 1

2
√

2
tanψ (1.24)

with

tanψ =
√

3∥σ̂σσ∗∥,and cos3θ =−
√

6σ̂σσ∗3
(
trσ̂σσ∗2

)3/2 (1.25)

The new barotropy function fb is supposed to describe the volume changes at the absence
of creep, i.e. ε̇εεv ̸= 0. The barotropy factor is defined according to the condition of the
experiment. For isotropic conditions yields:

fb =−
trσσσ

(1+a2/3)κ
=−βbtrσσσ , (1.26)

and for oedometric conditions

fb =−
trσσσ[

1+a2/(1+2K0)
]
κ0

=−βbtrσσσ , (1.27)

The parameters κ and κ0 are the unloading or reloading slope of the isotropic and oedomet-
ric test respectively. The parameter K0, defined as the earth pressure coefficient, is calculated
as:

K0 =
−2−a2 +

√
36+36a2 +a4

16
(1.28)

As a matter of fact, the intensity of the viscous strain rate ε̇εεv can be expressed in different
ways. A similar way to Norton’s creep law is adopted:

ε̇εεv =−DrB⃗BB
( 1

ORC

)1/Iv
, (1.29)

where B⃗BB is the hypoplastic flow rule, Dr is the reference creep rate, Iv is the viscosity in-
dex of Leinenkugel (1976), and OCR is the over-consolidation ratio, which can be calcu-
lated from OCR = pe/p′ with p′ and pe representing the current effective mean stress and
the equivalent isotropic pressure, respectively. This visco-hypoplastic constitutive model
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has been shown to enable a remarkably good description of creep and relaxation(Gudehus,
2004). Future extension for anisotropic pre-consolidation surface and structured soils can
be found in literatures(Niemunis et al., 2009). Additionally, by making use of the Niemunis’
visco-hypoplastic model, numerical simulations of footing (Qiu and Grabe, 2011), creeping
slope (Van Den Ham et al., 2006, 2009), viscous behavior of Pampean Loess (Lizcano et al.,
2007), and structured soils (Fuentes et al., 2010) have been conducted. These works have
proved that the theory of visco-hypoplastic constitutive model is an attractive approach to
account for the time-dependent behavior of soil.

Gudehus 2004

It is worth noting that the new barotropy function fb in Niemunis’ viscous model is mod-
ified according to Cam clay theory. This approach is also adopted by Mašín (2005) for a
hypoplastic constitutive model for clay. Therefore, a modified viscous hypoplastic model is
proposed by replacing the Cam clay part with the genuine hypoplasticity Gudehus (2004).

Formally viscosity is introduced into hypoplasticity by replacing the factor ∥ε̇εε∥ by fvε̇εεr.
Hence, the generalized form of the visco-hypoplastic constitutive equation reads:

σ̊σσ =LLL (σσσ ,e) : ε̇εε−NNN(σσσ ,e) fvε̇εεr (1.30)

The same linear and nonlinear operators as Bauer (1996) are adopted:

LLL = fb(a2III + σ̂σσ ⊗ σ̂σσ), NNN = fb fda(σ̂σσ + σ̂σσ∗) (1.31)

where III is a second-order unity tensor, III i jkl = 0.5(IIIikIII jl + IIIilIII jk). and σ̂σσ = σσσ/trσσσ is the
normalized stress tensor. However, different scale function fd and fb are adopted in this
version. The argotropic density factor fd depends on the density index Id via

fd = (1− Id)
αp =

( e− ed

ec− ed

)αp (1.32)

where ei, ec, and ed are the pressure-dependent loosest, densest, and the critical void ratios
given by

ei

ei0
=

ed

ed0
=

ec

ec0
= exp

[
−
(−trσσσ

hs

)n] (1.33)

and hs is granulate stiffness given by

hs/hsr =

{
1+ IvIn(ε̇εε/ε̇εεr) if ε̇εε > ε̇εε0

αr if ε̇εε < ε̇εε0
(1.34)
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with a bound ε̇εε0 outlined below. ε̇εεr is a reference rate, conveniently taken as 10−6s−1, which
could be replaced by a physically objective value. The viscosity index Iv renages from 0.02
to 0.06. The lower bound for hs/hsr in Eq. (1.34) is called the relaxation factor αr. It is
fixed as αr = 0.5 and secures that hr does ot vanish for ε̇εε < ε̇εε0. In addition, the exponent
αp in Eq. (1.32) lies in the range from 0.10 to 0.25. For the rate ε̇εε < ε̇εεr, αp determines the
peak angles of friction and dilatancy as in non-viscous hypoplasticity.

The factor fb is determined by calculating an isotropic compression with constant strain
rate in the following equation:

fs =
hs

n

(ei

e

)β 1+ ei

ei

(−trσσσ
hs

)1−n
[
3/a2 +1−

√
3/a

( ei0− ed0

ec0− ed0

)α
]−1

(1.35)

The constant β usually lies in the range between 1.0 and 2.0, and β = 1.2 accounting for
soft soil.

The viscosity factor fv depends on the over-consolidation ratio by

fv =

{
exp

(
p′/pe−1

Iv

)
if p′/pe > αr

0 if p′/pe < αr
(1.36)

where pe is the equivalent pressure defined as

pe =
1
3

hsr[−In(e fτ/ec0)]
1/n (1.37)

with a factor
fτ =

ec0

ed0
−
( ec0

ed0
−1

)
·
(
− λσ

λc

)
(1.38)

with λσ being a ratio of stress invariants.

Other approaches

An alternative approach to rate dependence has been proposed by Kolymbas (1988). It
assumes that the total stress can be decomposed into two independent parts: the frictional
part for rate-independent behaviour, and viscous part for rate-dependent behavior,viz.

σσσ = σσσh +σσσ v, σ̇σσ = σ̇σσh + σ̇σσ v (1.39)
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The frictional part can be represented by any rate-independent hypoplastic constitutive
mode, which can be written out in terms of σσσh and ε̇εε as follows

σ̇σσh = H(σσσh, ε̇εε), (1.40)

The visco-hypoplastic model is a combination of a rate-independent hypoplastic mode and a
rheological model. This kind of model is assumed to describe both solid-like and fluid-like
behaviors of geomaterials, especially in dynamic flow .

One of the viscous parts by Kolymbas (1988) is accounted for by including the second
stretching tensor, which is similar to the Rivlin-Ericksen tensor (Truesdell and Noll 1965)
in the following manner

σ̇σσ v = η1
ε̈εε√

η2
2 + trε̇εε2

, (1.41)

and another candidate by Wu (2006) is

σ̇σσ v = η1

√
η2

2 + trε̇εε2 ε̈εε, (1.42)

where ε̈εε is the second stretching and η1 and η2 are materials parameters. The above for-
mulation can be crudely likened to a description of an accelerating motion, with the second
stretching being the acceleration. The above framework has been adopted to describe the
rate-dependent behavior of granular Wu (2006) and debris flow (Guo et al., 2016). More de-
tails will be illustrated in this thesis. In addition, Fang (2008) proposed a visco-hypoplastic
model for granular mass flow based on the theory of granular flow.

1.4 Outline of the study

The objective of this research is to provide a detailed demonstration of a unified constitutive
model combining a simple critical state hypoplastic model and a viscous model. The pro-
posed model contributes to the analysis of time-dependent behavior, especially the creep be-
havior of soil. The scope of this thesis is to numerically implement this unified constitutive
model with the Finite Element Method which allows the simulation of the time-dependent
behavior in soils up to the critical state of creep rupture.

In section 2, a simple critical state hypoplastic constitutive model for soil has been out-
lined. In this model, there is no clear boundary between elastic and plastic deformations
in the hypoplastic model. The explicit formulations of the yield and bound surfaces of this
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model are derived. Then, this model is used to simulate the behavior of sandy soil and co-
hesive soil. It should be noted that the model in section 2 is rate-independent, thus it cannot
account for the loading rate effects and rheological properties of sandy soil. With this con-
sideration, a rate-dependent hypoplastic constitutive model named as a visco-hypoplastic
constitutive model is developed in section 3. This viscous model is obtained by dividing the
stress rate into a frictional and a viscous part, which are formulated by the rate-independent
model in section 2 and a high order rheological model with respects to strain acceleration,
respectively. Then, the versatility of the viscous model is examined by simulating some
stepwise compression tests at the abrupt change of loading rates and some creep tests at
different creep stresses. In section 4, a comprehensive study of the numerical integration
methods for the rare independent model is carried out. Several explicit and implicit integra-
tion methods together with a stress correction scheme have been involved. The performance
of different integration methods was examined by performing triaxial compression tests,
stress response tests, and some boundary value problems. In order to get proper results in
numerical computation, the stress correction scheme is necessary for the implementation of
the hypoplastic model. On the basis of the numerical study of the rate-independent model,
the visco-hypoplastic model is successfully implemented into a finite element code. The
detailed integration strategies of the proposed visco-hypoplastic model are given in section
5. The implementation is examined by performing some numerical tests. Finally, an in-situ
direct shear creep test is carried out, and this test is modeled using the proposed visco-
hypoplastic constitutive model. In section 6, conclusions of this study are listed, followed
by some open-ended questions and remarks on this study.





Chapter 2

A simple critical state hypoplastic
constitutive model

2.1 Introduction

Understanding and modeling of the mechanical response of soils, particularly fine-grained
materials, has been the subject of several studies, one of which is the development of suit-
able constitutive models to mathematically describe soil properties. To achieve this aim,
many constitutive models based on the theory of elastoplastic have been developed for geo-
materials during the last decades, e.g., Cam-Clay and Mohr-Coulomb model, in which the
elastic and plastic deformations need to be distinguished and different material parameters
are required. Moreover, in order to account for the non-linear behavior of soil, different
approaches such as kinematic hardening plasticity (Wallin et al., 2003), bounding surface
plasticity (Dafalias and Herrmann, 1986) and generalized plasticity (Pastor et al., 1990) have
been incorporated with conventional elastoplastic models. These models are able to predict
soil behaviors with good performance.

An alternative approach to model the soil non-linearity is the theory of hypoplastic-
ity, which is a particular class of incrementally non-linear constitutive models (Mašín and
Khalili, 2008a). Unlike elastic-plastic models, there is no clear boundary between elastic
and plastic deformations in a hypoplastic model. Moreover, explicit pre-definition of yield
and potential surfaces are not needed, which have been proved to be by-produced of the
particular assumptions for their constitutive equation (Wu and Bauer, 1994). The predictive
capabilities of hypoplastic models compete with those of advanced models based on elasto-
plastic frameworks, yet they only require a nonlinear tensorial equation, which holds equally
for loading and unloading, and a single set of parameters. This, together with the availability



24 A simple critical state hypoplastic constitutive model

of robust algorithms for their implementation into numerical codes, makes hypoplasticity a
promising approach for use in practical applications (Mašín and Khalili, 2008b).

Early versions of the hypoplastic constitutive models (Chambon et al., 1994; Wu and
Bauer, 1994), albeit their simplicity, are able to reasonably capture some silent features of
granular materials, such as sands or gravels. It is well-known that the mechanical behavior
granular material is dependent on the void ratio, stress level and their interaction. An impor-
tant step forward in developing constitutive was the implementation of this important feature
for soil behavior. Wu et al. (1996) proposed a critical state hypoplastic constitutive model,
which took account the effect of void ratio and stress level using very simple formulation.
The later versions of hypoplasticity gained this capacity by sacrificing the simplicity(Bauer,
1996; Gudehus, 2000; Herle and Kolymbas, 2004; Mašín, 2005; Von Wolffersdorff, 1996).
Another important aspect of the behavior of geomaterials marks the cohesion. Though
the hypoplasticity is originally developed for granular materials rather than clay-like soils,
sands and clay-like soils possess many common properties. Therefore, arose the idea to
develop the hypoplastic model to clay. Recently, hypoplastic models have been extended
to a wide range of geomaterials, such as soils with a low friction angle and clays (Herle
and Kolymbas, 2004) and rockfill material (Bauer, 2009). Furthermore, hypoplastic consti-
tutive models have been successfully applied to solve some boundary value problems, e.g.
retailing wall, shallow foundation, pile foundation, shear band formation and site response
analysis.

The primary purpose of the present chapter is to introduce a simple critical state hy-
poplastic constitutive model. The chapter is organized as follows: section 2.2 is devoted
to the presentation of the framework of hypoplasticity and a reference hypoplastic model
for granular materials. Section 2.3 epitomizes an updated hypoplastic constitutive model,
including failure surface, bound surface and parameter calibration. Section 2.4 presents two
important extension of this model. i.e. the extensions for critical state concept and cohesion.
In section 2.5, the performance of this critical state model is outlined by performing a series
of triaxial compression tests. Finally, the main contents of this chapter is summarized in
section 2.6.

2.2 Framework of Hypoplasticity

2.2.1 General remarks

The basic idea of hypoplasticity can be traced back to the pioneering work of Kolymbas
on description the behavior of an elastic material by using nonlinear tensorial function of
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the rate-type (Kolymbas, 1977, 1985). Since then different versions of hypoplasticity have
been independently established for an alternative description of the soil behavior, without
an explicit definition of yield and potential surfaces

The original hypoplastic equation given by Kolymbas (1977) in 1977 is too complex
(at those days the name of hypoplasticity is not introduced). Later some improved versions
have been presented (Bauer, 1996; Wu and Bauer, 1994; Wu and Kolymbas, 1990). The
general hypoplastic constitutive equation is presented by Wu and Kolymbas (1990) in 1990.
Based on the general hypoplastic constitutive equation, a simple hypoplastic constitutive
model is proposed by Wu and Bauer (1994) in 1994. Recent hypoplastic models include
the concept of critical states (Wu et al., 1996) to account for the effects of density and stress
level (Wu and Bauer, 1993). However, this model shows excessive contraction (volume
reduction) in triaxial extension. In order to remedy this, the constitutive model is updated
by including a new term into the constitutive model (Wang, 2009) and the updated model
has been successfully used in some computations of boundary value problems within Fi-
nite Different method (FDM) code(Wang, 2009) and the smoothed particle hydrodynamics
code(SPH) as well (Peng et al., 2015). More recently, the updated constitutive incorporated
with micropolar theory has been successfully developed (Lin et al., 2015), which can be
used to model the evolution of shear band in granular material.

We recapitulate the main ingredients of hypoplasticity and begin with a fairly general
formulation by assuming that there exists a tensor-valued function H such that:

σ̊σσ = H(σσσ , ε̇εε), (2.1)

where σσσ is the Cauchy stress tensor, ε̇εε is the stretching tensor, σ̊σσ is the Jaumann rate of the
Cauchy stress tensor defined in terms of the time-deriviative of the Cauchy stress tensor σ̇σσ
and the spin tensor ωωω

σ̊σσ = σ̇σσ +σσσ ·ωωω−ωωω ·σσσ , (2.2)

The stretching and spin tensors are related to the velocity gradient tensor through

ε̇εε =
1
2
(∇∇∇vvv+ vvv∇∇∇), ωωω =

1
2
(∇∇∇vvv− vvv∇∇∇) (2.3)

where vvv is the velocity, ∇∇∇ is Gradient Operator. It should be noted that the function H in
Eq. (2.1) is required to be not differentiable in and only in ε̇εε = 0

In order to be able to obtain a concrete formulation, some restrictions are imposed on
the constitute equation (2.1). Some of these restrictions are based on the general principles
of continuum mechanics, while the others are based on experimental observation.

The first restriction follows directly from the definition of hypoplasticity (Wu et al.,
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1996). According to the definition, the natural time should not appear in the constitutive
equation and the behavior to be described is assumed to be rate independent. For constitutive
equation (2.1), rate independence is equivalent to the following statement.

Restriction 1. For rate independence the function H should be positively homogeneous
of the first degree in ε̇εε

H(σσσ ,λ ε̇εε) = λH(σσσ , ε̇εε). (2.4)

where λ is a positive but otherwise arbitrary scalar.

The second requirement states the objectivity of the constitutive equations under rigid
rotations. The objectivity requirement is fulfilled if the function (2.1) is isotropic.For this
requirement, it equivalent to:

Restriction 2.The function of H should fulfill the following condition of objectivity

H(QσσσQT,Qε̇εεQT) = QH(σσσ , ε̇εε)QT, (2.5)

in which Q is an orthogonal tensor.

The requirement of objectivity is satisfied if the function H is formulated according to
the representation theorems for isotropic tensor-valued functions. In the most general case,
the representation theorem for an isotropic tensor-valued function of two symmetric tensors
can be written out as follows (Wang, 1970):

σ̊σσ = α0δδδ i j +α1σσσ +α2ε̇εε +α3σσσ2 +α4ε̇εε2 +α5(σσσε̇εε + ε̇εεσσσ)

+α6(σσσ2ε̇εε + ε̇εεσσσ2)+α7(σσσε̇εε2 + ε̇εε2σσσ)+α8(σσσ2ε̇εε2 + ε̇εε2σσσ2), (2.6)

where δδδ i j is Kronecker delta.The coefficient α j( j = 0,1 . . . ,8) are functions of the invari-
ants and joint invariants of σσσ and ε̇εε:

α j = α̃ j(trσσσ , trσσσ2, trσσσ3, trε̇εε, trε̇εε2, trε̇εε3, tr(σσσε̇εε), tr(σσσ2ε̇εε), tr(σσσε̇εε2), tr(σσσ2ε̇εε2)). (2.7)

in which tr represents the trace of a tensor. Note that the isotropy of the tensorial function
does not necessarily mean that the response is also isotropic. The representation theorem
yields plenty of possibilities, so one needs several additional restrictions and assumptions to
construct a concrete formula of hypoplasticity.

The third restriction is based on the experimental observation by Goldscheider (1984)
with a true triaxial apparatus on dry sand: A proportional strain (stress) path starting from
a nearly stress-free and undistorted state gives rise to a proportional stress (strain) path.
This observation is of fundamental importance for developing constitutive equations, which
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can be mathematically expressed by the flowing restriction.

Restriction 3. The function H should be homogeneous in σσσ , e.g.,

H(λσσσ , ε̇εε) = λ nH(σσσ , ε̇εε) (2.8)

where λ is an arbitrary scalar and n denotes the degree of homogeneity. This restriction
implies that the tangential stiffness and strength is proportional to the nth power of the
stress level, which is represented by the trace of the stress tensor (trσσσ)n,so that experiments
conducted under different stress levels can be normalized by (trσσσ)n.

In hypoplasticity, the constitutive Eq. (2.1) is written in two parts, representing respec-
tively reversible and irreversible behaviors of soils. Within the framework of Eq. (2.1) the
general formulation for the hypoplastic rate-independent constitutive equation by Wu and
Kolymbas (1990) can be written as the sum of linear and nonlinear terms of the strain rate
ε̇εε .

σ̊σσ =LLL (σσσ) : ε̇εε−NNN(σσσ)∥ε̇εε∥ (2.9)

where the term LLL and NNN denote the linear and nonlinear components in tensor ε̇εε ,which are
isotropic tensor-valued functions consisted by the terms from the representation theorem
in Eq. (2.6) and (2.7). Here LLL (σσσ) is a fourth-order tensor. ∥ε̇εε∥ =

√
trε̇εε2 stands for the

Euclidean norm of the stretching tensor. The colon : denotes an inner product between two
tensors.

Owing to the non-differentiable term containing ∥ε̇εε∥ the constitutive equation (2.9) is
incrementally nonlinear, which can be brought to light by recasting Eq. (2.9) in a more con-
venient form with virtue of Euler’s theorem for homogeneous functions (Wu et al., 1996).

σ̊σσ = (LLL −NNN⊗⃗̇εεε) : ε̇εε (2.10)

where ⃗̇εεε = ε̇εε/∥ε̇εε∥ stands for the direction of strain; and the symbol ⊗ denotes an outer
product between two tensors.

The two terms in the brackets in Eq. (4.30) represents the tangential stiffness, which
depends not only on stress but also on the direction of strain rate. Noted that Eq. (2.9) can
describe the relation of stress rate and strain rate without using additional notions introduced
by elastoplasticity such as yield surface, plastic potential or decomposition of deformation
into elastic and plastic parts, since they are implied by the constitutive equation. Moreover,
the distinction between loading and unloading is of unimportance for the constitutive equa-
tion, because the nonlinear part of the equation works for both for loading and unloading.
For details please refer to literature (Wu and Niemunis, 1997; Wu et al., 1996). Some more
advanced hypoplastic constitutive models can be find in Appendix III
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2.2.2 Reference constitutive model

Base on the above concept, a simple hypoplastic constitutive equation for granular materials
by Wu and Bauer (1994) has been proposed to solve some boundary value problems, which
is composed of two linear and two non-linear terms in stretching tensor ε̇εε .

σ̊σσ =C1(trσσσ)ε̇εε +C2
tr(σσσε̇εε)

trσσσ
σσσ +(C3

σσσ2

trσσσ
+C4

σσσ∗2

trσσσ
)∥ε̇εε∥ (2.11)

where Ci (i = 1,2,3,4) are dimensionless parameters. The deviatoric stress tensor σσσ∗ in the
Eq. (2.11) is defined through

σσσ∗ = σσσ − 1
3
(trσσσ)δδδ i j, (2.12)

where δδδ i j is Kronecker delta.
The four parameters can be identified with single triaxial compression test. Details of

calibration procedure using the initial tangential stiffness Ei, the initial Poisson ratio υi, the
internal friction angle φ and the dilatancy angle ψ to identify the material parameters can
be found in the work by Wu and Bauer (1994).

The salient merits of the constitutive equation are the predictive capacity and the formu-
lative simplicity, which make this equation particularly appealing for problems with simple
loading. For complex loading, however, Eq. (2.11) is not well suited. Additionally, the
feature of this constitutive model such as failure criterion, flow rule, and mechanical per-
formance are demonstrated in great detail in literature (Wu et al., 1996). The critical state
concept has been incorporated into Eq. (2.11) to account for the influence of density changes
(Wu et al., 1996) and stress level by Wu and Bauer (1993).

2.3 An updated constitutive model

2.3.1 Constitutive equation

It was found out by Bauer (1996) that constitutive equation 2.11 predicts critical state (de-
fined by σ̊σσ = 0 and trε̇εε = 0 ) for any paths only if the two parameters in the nonlinear term
of Eq. (2.11) satisfy:

C3 =−C4, (2.13)

As a consequence of Eq. (2.13), the number of parameters in Eq. (2.11) reduces to three.
This changing, however, restricts the predictive capability of this model. For instances, The
initial Poisson ratio cannot be varied, which consequently results in another shortcoming
that the volumetric strain cannot be changed in the critical state of a specimen with a initial
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void ratio near critical (Wu and Kolymbas, 2000). To resolve this problem, a new term
(trε̇εε)σσσ introduced by Wang (2009) is added to the constitutive equation (2.11), and thus,
the number of material parameters regains four. The modified constitutive equation can be
rewritten out in full.

σ̊σσ =C1(trσσσ)ε̇εε +C2(trε̇εε)σσσ +C3
tr(σσσε̇εε)

trσσσ
σσσ +C4(σσσ +σσσ∗)∥ε̇εε∥, (2.14)

Without causing confusions the same notations for the four parameters are retained in the
above equation. The new term trε̇εε maintains the critical state for all paths, since it vanishes
in a critical state (trε̇εε = 0 ).

In the constitutive equation (2.14), the former three terms describe the reversible behav-
ior of material which are responsible for the stress increase during deformation, and the last
term describes the irreversible behavior that enables a stiffer behavior at unloading. Some
practical applications have been conducted based on the updated constitutive model. Re-
cently, micropolar theory has been successfully incorporated into this updated constitutive
model to model evaluation of shear band (Lin et al., 2015). Also, it has been implemented
into the smoothed particle hydrodynamics code (SPH) for debris flow materials (Peng et al.,
2015).

2.3.2 Failure surface, flow rule

The failure surface and flow rule of hypoplasticity are known as by-products of its consti-
tutive equation (Wu and Bauer, 1994; Wu et al., 1996). Hence, the failure surface and flow
rule of constitutive equation (2.14) can be explicitly expressed using the flowing failure def-
inition. A material element is considered to be at failure if, for a given stress σσσ , there exists
at least one strain rate ε̇εε ̸= 0 resulting in vanishing stress rate. A straightforward way of the
statement is given in the following:

σ̊σσ =LLL (σσσ) : ε̇εε−NNN(σσσ)∥ε̇εε∥= 0 (2.15)

The direction of strain rate at failure can be readily obtained from Eq.(2.15):

ε̇εε
∥ε̇εε∥

=LLL −1 : NNN (2.16)

By making using of the fact that (ε̇εε/∥ε̇εε∥) : (ε̇εε/∥ε̇εε∥) = 1 , the failure criterion can be derived:

f s = NNNT : (LLL T)−1 : LLL −1 : NNN−1 = 0 (2.17)
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Figure 2.1 (a) The failure surfaces of the the reference model and the updated model in π
plane. (b) The failure surfaces of the updated model in π plane for triaxial compression

test, triaxial tension test, and plate strain response,respectively

The explicit formula of the failure surface can be readily obtained using the symbolic
computational program Mathematica, which gives rise to the failure surface in the following
form:

f (σσσ) =
√

J2 + ς(Ci)I1 = 0, (2.18)

where J2 and I1 are respectively the second deviatoric stress invariant and the first stress
invariant. ς is a constant determined by the dimensionless parameters Ci (i = 1,2,3,4),
which may be expressed as:

ς =

√
a−b

12C2
3(3C2

1−C2
4)
, (2.19)

in which

a =−18C3
1C3 +9C2

2C2
4 +6C2C3C2

4 +C2
3C2

4 +6C1(6C2 +C3)C2
4−6C2

1(3C2C3 +C2
3−6C2

4)

b =C4(6C1 +3C2 +C3)
√
−36C3

1C3 +36C1C2C2
4 +(3C2 +C3)2C2

4−36C2
1(C2C3−C2

4)

It is worth to mention that the constant ς is only related to C1 and C4 if the dilatancy
angle ψ = 0 (see next section), and it takes the following form:

ς =
C1√
2C4

(2.20)

Further parameters studies show that the parameter ς is only dependent on the internal
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friction angle of materials, and it takes the formula as:

ς =
2sinφ√

3(3− sinφ)
(2.21)

Apparently, the Eq. (2.18) is coincident with the failure formula proposed by Bardet (1990),
which encompassed two widely used failure condition of Matsuoka and Nakai (1974) and
lade (Lade, 1977; Lade and Duncan, 1975).

To compare the updated model with the reference model, the failure surface of both
models are presented in Fig. 2.1(a), which shows that the failure surface of the reference
model in π-plane is a cone, whereas the failure surface of the updated model is a circle,
and it encloses the failure surface of the reference model. Therefore, the updated model
possesses the same yield limit for both compression and extension. Eq. (2.16) denotes the
direction of the strain rate, that is flow rule, in hypoplasticity, which is also plotted in Fig.
2.1(a) with short radial line. The direction of the strain rate is not usually normal to the
failure surface, which suggests that the flow rule is non-associated.

2.3.3 Material parameters

It is well-known that the Mohr-Coulomb yield surface is often expressed in terms of the
cohesion (we assume c = 0) and the angle of internal friction ( φ ). If we assume that the hy-
poplastic yield surface circumscribes, middle circumscribes and inscribes the Mohr–Coulomb
yield surface, the parameter ς in Eq. (2.18) can be expressed as:

ς =
2sinφ√

3(3− sinφ)
, ς =

2sinφ√
3(3+ sinφ)

,and ς =
tanφ√

3(3+4tan2φ)
(2.22)

The above three equations correspond to triaxial test(compression and tension) response and
plate strain response, respectively. Correspondingly, the yield surface of the updated model
circumscribes, middle circumscribes, and inscribes the Mohr-Coulomb yield surface in the
π plane is presented in Fig. 2.1(b).

According to the above equations, we can easily match the hypoplastic parameters with
the Mohr-Coulomb parameters in the triaxial compression state. To identify the four mate-
rial parameters in Eq. (2.14) with a single triaxial compression test under constant confining
pressure, we need to consider two specific stress states, namely the initial hydrostatic state
and the stress state at failure. The stress rate, stress and strain rate tensors at the initial state
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and the failure state are (σ̊σσ i,σσσ i, ε̇εε i) and (σ̊σσ f ,σσσ f , ε̇εε f ), respectively.

σ̊σσ i =




σ̇i 0 0
0 0 0
0 0 0


 , σσσ i =




σi 0 0
0 σi 0
0 0 σi


 , ε̇εε i =




ε̇i1 0 0
0 ε̇i3 0
0 0 ε̇i3




σ̊σσ f =




0 0 0
0 0 0
0 0 0


 , σσσ f =




σ f 0 0
0 σi 0
0 0 σi


 , ε̇εε f =




ε̇ f 1 0 0
0 ε̇ f 3 0
0 0 ε̇ f 3




(2.23)

Hence, in a triaxial compression test the constitutive equation (2.14) can be explicitly written
out. According to Eq. (2.23), four independent equations can be obtained:

σ̇i =3C1σiε̇i1 +C2(ε̇i1 +2ε̇i3)σi +C3σi(ε̇i1 +2ε̇i3)/3+C4

√
ε̇2

i1 +2ε̇2
i3σi

0 =3C1σiε̇i3 +C2(ε̇i1 +2ε̇i3)si +C3si(ε̇i1 +2ε̇i3)/3+C4

√
ε̇2

i1 +2ε̇2
i3σi

0 =C1(σ f +2σi)ε̇ f 3 +C2(ε̇ f 1 +2ε̇ f 3)σ f +C3(σ f ėi1 +2σiėi3)/(σ f +2σi)σ f

+C4

√
ε̇2

f 1 +2ε̇2
f 3[2σ f − (σ f +2σi)/3]

0 =C1(σ f +2σi)ė f 3 +C2(ε̇ f 1 +2ε̇ f 3)σ f +C3(s f ε̇1i +2σiε̇3i)/(σ f +2σi)σi

+C4

√
ε̇2

1 f +2ε̇2
3 f [2σi− (σ f +2σi)/3]

(2.24)

Apparently, the first two equations in equation array (2.24) stand for the initial hydrostatic
stress state, and the last two equations denote the stress state at failure, respectively. For the
sake simplicity, four material parameters measured in a triaxial test are used, e.g., the initial
tangential stiffness:

Ei =
σ̇i1

ε̇i1
(2.25)

the initial Poisson ratio:
υi =

ε̇i3

ε̇i1
(2.26)

the failure stress ratio:
R f =

σ f 1

σi1
=

1+ sinφ
1− sinφ

(2.27)

and the failure Poisson ratio:
υ f =

ε̇ f 3

ε̇ f 1
=

1+ tanψ
2

(2.28)

where φ and ψ are the internal friction angle and the dilatancy angle. With the help of the
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above notations, equation array (2.24) can be simplified to:

Ei/σi = 3C1 +C2(1+2υi)+C3(1+2υi)/3−C4

√
1+2υ2

i (2.29)

0 = 3C1υi +C2(1+2υi)+C3(1+2υi)/3−C4

√
1+2υ2

i

0 =C1(R f +2)+C2(1+2υ f )R f +C3(R f +2υi)/(R f +2)R f −C4

√
1+2υ2

i (5R f −2)/3

0 =C1(R f +2)υ f +C2(1+2υ f )+C3(R f +2υi)/(R f +2)+C4

√
1+2υ2

i (R f −4)/3,

As a consequence, the four hypoplastic parameters can be computed by solving the follow-
ing matrix form equation.




Ei
si

0
0
0




=




3 1+2υi
1+2υi

3 −
√

1+2υ2
i

3υi 1+2υi
1+2υi

3 −
√

1+2υ2
i

R f +2 (1+2υi)R f
R f+2υ f

R f+2 R f −
√

1+2υ2
i

5R f+2
3

(R f +2)υ f 1+2υi
R f−2υ f

R f+2

√
1+2υ2

i
R f−4

3







C1

C2

C3

C4


 , (2.30)

Note that the four material parameters Ei, υi, φ and ψ are obtained under a specific confin-
ing pressure σ3 under which the triaxial test is performed. In the ensuing sections all the
parameters are assumed to be obtained from triaxial tests with confining pressure σ3 = 100
kPa.

Table 2.1 Material parameters for Mohr-Coulomb yield criterion

Para. Ei(Mpa) υi φc(/
◦) ψ(/◦)

Value 20 0.33 20 0

Table 2.2 The matched parameters for the updated model and Drucker-Prager model

Para. φd p(/
◦) φhypo(/

◦) C1 C2 C3 C4

Triaxial compression 37.6 20 -50.1 -541.7 -1135.2 -238.54

Triaxial tension 31.6 16.14 -50.1 -520.74 -1802.29 -300.57

Plane strain 30.2 15.33 -50.1 -505.8 -2014.8 -315.8

The parameters for triaxial compression test are provided, however, sometimes experi-
mental data are not directly available for triaxial tension test or plane strain state, in which
case we need to calculate the values for the parameters of the hypoplastic model to provide



34 A simple critical state hypoplastic constitutive model

a reasonable match to Mohr-Coulomb model. It is noticed that the failure surface is only
dependent on the internal friction angle, so it is reasonable to calculate the parameters by
using Eq. (2.22). We assume the friction angle for triaxial compression test is φc, then the
friction angle to calculate the parameters of the hypoplastic model in the case of triaxial
tension and plane strain response can be obtained in the following:

φt = arctan
[ tanφc(3− sinφc)

3+ sinφc

]
, φp = arctan

[ tanφc(3− sinφc)

2cosφc
√

3+4tan2φc

]
(2.31)

For example, material parameters of a triaxial compression test are shown in Table 2.1, the
friction angle is 20◦, by using Eq.(2.31), the friction angle to calculate the parameters of
the hypoplastic model is 16.14◦ for triaxial tension response and 15.33◦ for plane strain
response. The corresponding hypoplastic parameters are shown in Table 2.2.

2.3.4 Bound surface

One of the key characteristics of the Eq. (2.11) is the presence of the bound surface in
the stress space which encloses all accessible stress state (Wu and Kolymbas, 2000). The
constitutive Eq. (2.14) do not explicitly incorporate the bound surface. However, it can be
anticipated that the bound surface is predicted implicitly by the constitutive equation as a
by-product of Eq. (2.14).

=isotropic compression
=isotropic extension −

√
2σ2

−σ1−ε̇1

−
√

2ε̇2ε̇εε

σσσ0

σ̇σσ∆t

σ̊σσ = H(σσσ , ε̇εε)

∥ε̇εε∥= 1

Figure 2.2 Principal sketch of response envelope on the −
√

2σ2,−σ1 plane

Before proceeding further about the bound surface, it is useful to introduce the concept
of response envelop proposed in the seventies by Gudehus (2000) and Lewin and Burland
(1970). General speaking, a response envelope is a polar diagram of stiffness plotted for
different directions of stretching. It is an efficient approach to study the behavior of rate in-
dependent models. Usually stress states with cylindrical symmetry are considered. We start
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by choosing an initial stress state σσσ0 on the Rendulic place (−
√

2σ2,−σ1). The response
envelope is obtained as a plot of finial stresses σ̇σσ calculated from the corresponding probes
of the stretching ε̇εε with the same magnitude ∥ε̇εε∥ (with ∥ε̇εε∥,∆τ = const or ∥ε̇εε∥ = 1 ). A
constitutive model may be regarded as a mapping that carried a circle plotted in the strain
space (−

√
2ε̇2,−ε̇1) to the stress space (−

√
2σ2,−σ1), where it becomes an ellipse. The

response envelop can be presented either in the space of stress rate or in the stress space by
adding the stress increment to the initial stress σσσ = σσσ0 + σ̇σσ∆t, see Fig. 2.2.

The response envelopes of some stress paths of the updated model is presented in Fig.
2.3. As is shown in Fig. 2.3, some strain directions may lead to the limited stress states
beyond the failure surface. This feature led to the discovery of the bound surface by Wu and
Niemunis (1997). According to the theoretical analysis procedure of the bound surface for
the hypoplastic constitutive model by Wu and Niemunis (1997), the bound surface of the
updated model is derived.
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Figure 2.3 Response envelope of the updated constitutive model

Let B denote a bound surface, which possesses the definition B(σσσ) = 0, with B(σσσ) be-
ing an isotropic function of stress. We assume that stress σσσb happens to be on the surface, so
that B(σσσb) = 0. The outward normal to the bound surface at σσσb can be expressed succinctly
using the following relation

zzz =
∂B(σσσ)

∂σσσ

∣∣∣∣
σσσ=σσσb

(2.32)

It is convenient to represent the σσσb by using its diagonal form. Hence, the outward normal
zzz can be shown to be diagonal as well, that is zzz = diag(z1,z2,z3).

By the definition, all stress rate σ̊σσ calculated at σσσb must be directed to the interior of the
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bound surface. Therefore, for any strain rate ε̇εε the corresponding stress rate must satisfy the
inequality

zzz : σ̊σσ 6 0, (2.33)

Obviously, if the stress state lies on the bound surface, then the maximum of the scalar
product of zzz and σ̊σσ must vanish, i.e.

Max(zzz : σ̊σσ)σσσ=σσσb = 0, (2.34)

Substituting constitutive Eq. (2.9) into Eq. (2.34) and differentiating the resulting equation
after ε̇εε , then the maximizing of zzz : σ̊σσ can be obtained as follows

∂ [zzz : LLL : ε̇εε + zzz : NNN∥ε̇εε∥]
∂ ε̇εε

= zzz : LLL + zzz : NNN
ε̇εε
∥ε̇εε∥

= 0, (2.35)

Thus the above equation is formulated in term of ε̇εε . Since the constitutive equation (2.9) is
of rate independence, we require ∥ε̇εε∥= 1. The the maximizing of zzz : σ̊σσ can be obtained

Dmax =−
zzz : LLL
zzz : NNN

(2.36)

Substitution of Eq.(2.36) to Eq. (2.34), we obtain the a condition for stress lying on the
bound surface B(σσσ)

∥zzz : LLL ∥=−zzz : NNN (2.37)

Since the normal direction ZZZ is unknown, the criterion (2.37) is not sufficient to deter-
mine the bound surface. If the stress σσσb lies on the bound surface, then due to stress positive
homogeneity the proportional stress ασσσb (α > 0) also does. Thus B(σσσ) = 0 must repre-
sents a conical surface with the vertex in the origin of the stress space. From this property,
the following condition of orthogonality between σσσb and zzz has been obtained:

σσσb : zzz = 0 (2.38)

which can be regarded as an criterion condition to determine the bound surface.

The assumption the bound surface is an isotropic function of stress implies that for
special stress states σσσ s = diag(σb

1 ,σ
b
2 ,σ

b
3 ) with σb

2 = σb
3 , the respective partial derivatives

z2 and z3 are also equal. Making use of the property under consideration of (2.39) the stress
state on the bound surface B(σσσ) = 0 can be found by solving the following equation system:

σσσb− σσσb : σσσb

trσσσb 111 = zzz, ∥zzz : LLL ∥=−zzz : NNN. (2.39)
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Figure 2.4 (a)The failure surface and bound surface of the updated model in the π-plane,
and (b) view of (a) from a point in principal stress space.

For the updated constitutive equation (2.14), the bound surface is obtained. The explicitly
form of the bound surface is expressed in the following :

B(σσσ) =
√

J2−
C1√

C2
4−3C2

1

I1 = 0, (2.40)

With the help of Eq.(2.18) and (2.40), it is easy to plot the failure surface and bound surface
of the updated model in the π-plane , shown as Fig. 2.4(a) the cross-sections of the bound
and failure surfaces in π-plane, and Fig. 2.4(b) in the principal stress space. As is known
that the failure surface of the updated model is a cone with its apex at the origin in the
principal stress space. The bound surface possesses similar geometry as the failure surface,
whereas it lies slightly outside the failure surface.

Normally, the stress state is constrained inside the failure surface. However, some strain
directions may lead to stress state lying between the between the failure surface and the
bound surface. The distance between these two surface, to some extent, indicates the inte-
gration error in numerical computation. Let us consider two stress states σσσ f and σσσb with
the same lode angle lying on the failure and bound surface, respectively. Thus, the stress
ratios can be obtained:

σ f 1−σ f 3

σ f 1 +σ f 3
= sinφc f ,

σb1−σb3

σb1 +σb3
= sinφcb, (2.41)

where σ1 and σ3 are maximum principal stress and minimum principal stress, respectively.
The stress ratio yields a critical friction angle φc.

Contrary to Mohr-Coulomb yield criterion, the critical friction angle φc is various for
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different lode angles for the updated constitutive model. Additionally, the critical friction
angle obtained from σσσ f and σσσb are different. Fig. 2.5 shows the two critical friction angles
φc f and φcb for different MC friction angle (φ ). For triaxial compression stress state ( lode
angle is zero) with φ being 20o, we obtain φc f = 20◦ and φcb = 21.4◦, while for triaxial
tension stress state ( lode angle is 60o) , φc f = 26.3◦ and φcb = 28.8◦. In addition, the
difference between φc f and φcb largely increase with increasing of φ , as depicted in Table
2.3.
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Figure 2.5 The critical fiction angle φc f and φcb for different φ (a) φ = 20◦ , (b) φ = 25o,
and (c) φ = 30◦

Table 2.3 The critical friction angle φc f and φcb for φ = 20◦

Stress state Triaxial conpression[/◦] Triaxial tension[/◦]

φc f 20.0 25.0 30.0 26.3 36.8 43.6

φcb 21.4 28 35.9 28.8 49.2 73.2

The bound surface is an intrinsic property of the updated hypoplastic constitutive Eq.
(2.14), which gains a great advantage in numerical integration comparison with most con-
ventional constitutive models. For constitutive equation (2.14), the stress states lying outside
the bound surface, e.g., as a result of too large time increment, will be automatically cor-
rected in the next time step (Wu and Niemunis, 1997). However, the stress state can also lie
between the failure and bound surface for some strain paths, which can result in a consid-
erable error for large MC friction angle, e.g., φ = 30◦. Hence, stress correction algorithm
(Lee and Fenves, 2001) is needed to correct the drift of stress during numerical integration,
considering the large difference between φc f and φcb.
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2.3.5 Numerical examples

To give an overall assessment of the performance of the updated model, a set of elementary
tests, including drained triaxial compression tests and simple shear tests, are carried out.
The numerical results of the updated model and two conventional elastoplastic models, i.e.
Mohr-Coulomb model and Druck-Prager model, are compared.

Drained triaxial compression tests

Let us consider the drained triaxial compression test (DTCT). Due to the symmetry, we have
σ2 = σ3 and ε̇2 = ε̇3 in the whole loading process. Then the stress rate , stress and strain
rate and for triaxial test can be expressed in the matrix form:

σ̊σσ =




σ̇1 0 0
0 σ̇3 0
0 0 σ̇3


 ,σσσ =




σ1 0 0
0 σ3 0
0 0 σ3


 , ε̇εε =




ε̇1 0 0
0 ε̇3 0
0 0 ε̇3




The governing differential equations for drained triaxial compression test is obtained by
substituting the above matrix into constitutive equation (2.14):

σ̇1 =C1(σ1 +2σ3)ε̇1 +C2(ε̇1 +2ė3)σ1 +C3
σ1ε̇1 +2σ3ε̇3

σ1 +2σ3
σ1 +C4(σ1 +σ∗1 )

√
ε̇2

1 +2ε̇2
3

(2.42)

σ̇3 =C1(σ1 +2σ3)ε̇3 +C2(ε̇1 +2ε̇3)σ3 +C3
σ1ε̇1 +2σ3ε̇3

σ1 +2σ3
σ3 +C4(σ3 +σ∗3 )

√
ε̇2

1 +2ε̇2
3

(2.43)

In the drained triaxial compression numerical tests, the constant confining pressure is
100 kPa, and the test starts from a hydrostatic stress state. The parameters for Mohr-
Coulomb model in Table 2.1, and corresponding parameters for the updated hypoplastic
and Druck-Prager model in Table 2.2 are used in this simulation. The numerical results of
the axial strain-stress relation and axial strain-volumetric strain relation are presented in Fig.
2.6.

It can be observed from the numerical results in Fig. 2.6(a) that the numerical tests give
rise to the same failure deviatoric stress regardless of the model it used, while the test using
hypoplastic model gains a nonlinear strain-stress response. The results in 2.6(b) reveals
that different model results in various volumetric response. The hypoplastic model and
Druck-Prager model give contractive volume change, and the volume change vanishes at
limited state. However, the Mohr-Coulomb model gives a slight vilumetric dilatancy in the
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Figure 2.6 Numerical simulation of the drained triaxial compression test using different
constitutive models (a) axial strain-stress relation, and (b) axial strain- volumetric strain

relation(confining pressure σ3 = 100 kPa)

simulation. The difference in the volumetric response can be attribute to the definition of the
tangential stiffness in the three models,i.e., the initial Young’s modulus for the hypoplastic
model is stress dependent, while the initial Young’s modulus of Mohr-Coulomb and Druck-
Prager model is stress independent.

Simple shear test

The simple shear test (SST) is particularly relevant to the situations where failure is expected
to occur along the thin shear zone. In the laboratory, The simple shear test can be performed
using direct simple shear (DSS) apparatus. In this test, the soil specimen is commonly
subjected to K0-consolidation stress, and drained or undrained conditions can be considered.
The undrained condition is simulated by continuously adjusting the vertical stress so that the
specimen height is kept constant (thereby keeping constant volume). The change in vertical
stress is assumed to be equal to the change in pore water pressure that would have occurred
during a truly undrained test. Beside the practical significance, the simple shear test plays
an important role in developing constitutive models as well. To numerically perform the
simple shear test, we write out the stress rate, stress, strain rate, and spin rate for the simple
shear test can be expressed in the matrix form.

σ̊σσ =




σ̊11 σ̊12 0
σ̊12 σ̊22 0
0 0 σ̊33


 ,σσσ =




σ11 σ12 0
σ12 σ22 0
0 0 σ33


 , ε̇εε =




ε̇11 ε̇12 0
ε̇12 ε̇22 0
0 0 0


 , ω̇ =




0 ω̇12 0
ω̇12 0 0
0 0 0



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Figure 2.7 Numerical simulation of simple shear test using the triaxial compression test
matched parameters for the updated model, Druck-Prager model, and Mohr-Coulomb

model(confining pressure σ3 = 100 kPa)
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Figure 2.8 Numerical simulation of simple shear test using the triaxial tension test matched
parameters for the updated model, Druck-Prager model, and Mohr-Coulomb

model(confining pressure σ3 = 100 kPa)

Compared with the matrices representing of the triaxial test, the spin tensor (ω̇) does
not vanish in the simple shear test. To simulate the simple shear tests numerically, let us
consider the motion described by the following expressions:

x1 = X1 +X2 f1(t), x2 = X2 +X2 f2(t), x3 = X3 (2.44)

f1 and f2 in Eq. (2.44) represent the shear deformation and the volume change, respectively.
For simple shear test with constant volume(undrained), we have f2 = 0. The strain rate and
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Figure 2.9 Numerical simulation of simple shear test using the plane strain response
matched parameters for the updated model, Druck-Prager model, and Mohr-Coulomb

model(confining pressure σ3 = 100 kPa)

the spin tensors can be obtained from Eq. (2.44):

ε̇εε =
1

2(1+ f2)




0 ḟ1 0
ḟ1 2 ḟ2 0
0 0 0


 , ω̇ =

1
2(1+ f2)




0 ḟ1 0
− ḟ1 0 0

0 0 0


 , (2.45)

In the simple shear test, the material time rate of stress σ̇ rather than the Jaumann stress rate
σ̊ should be added to the stress in each time step. According to Eq. (2.2) and making using
of Eq. (2.45), the relation between σ̇ and σ̊ can be explicitly expressed:



σ̇11 σ̇12 0
σ̇12 σ̇22 0
0 0 σ̇33


=




σ̊11 σ̊12 0
σ̊12 σ̊22 0
0 0 σ̊33


+

ḟ1

2(1+ f2)




2σ12 σ22−σ11 0
σ22−σ11 −2σ12 0

0 0 0


 (2.46)

The governing differential equations for simple shear test can be obtained by substitut-
ing the corresponding stress and strain rate matrices into constitutive equation (2.14). The
parameters for Mohr-Coulomb model in Table are used in this simulation. Correspondingly,
the parameters mached from the triaxial compression test, triaxial tension test, and plane
strain test are used for comparison. The relation between the shear stress and the shear an-
gle γ using parameters matched for triaxial compression response, triaxial tension response,
and plane strain response are respectively presented in Fig. 2.7, Fig.2.8, and Fig. 2.9. It
is observed that the simulation using the parameters matched from plane strain test give
the closest results, while there is great difference in the simulation using the parameters
matched from the triaxial compression test. This result suggests that it is better to choose
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the parameters matched from plane strain test in some situation, where failure is expected
to occur in a shin shear zone, e.g. direct shear test.

2.4 Extensions of the updated constitutive model

Both the constitutive Eq. (2.11) and (2.14), albeit their mathematical simplicity, are capable
of capturing the salient features of granular materials, e.g. nonlinearity, failure and dilatancy
(Wang, 2009; Wu and Bauer, 1994). However, some behaviors such as cohesion of soils,
and the effect of void ratio and stress level cannot be taken into account. These shortcom-
ings may restrict the application of hypoplasticity. Fortunately, the inherent shortcomings
can be remedied by through extension of the hypoplastic constitutive equation. In the fol-
lowing subsection, the updated model is enhanced by a simple critical state formulation, and
furthermore, a simple way to account the cohesion of soil is introduced. These extensions
can broaden the piratical adoption of the hypoplastic model.

2.4.1 Critical state of granular material

The response of constitutive equation (2.14) is governed by the interaction between the
linear and nonlinear terms. The linear term can be viewed as constructive, whereas the non-
linear term can be considered as destructive. Any perturbation either on the linear term or
on the nonlinear term can unbalance the hypoplastic equation, i.e., enhancing the nonlinear
term causes the constitutive response to be contractive, resembling loose material behavior;
diminishing it causes the constitutive response to be dilatant, resembling dense material be-
havior Wu et al. (1996). Therefore, we can describe both dense and loose material behavior
with the same constitutive equation by enhancing or diminishing the nonlinear part with
density. Following the idea proposed in Wu and Niemunis (1996); Wu et al. (1996), we
introduce a multiplier Ie into the nonlinear term as a perturbation that incorporates the effect
of critical state on the constitutive response. The multiplier has the value Ie = 1 at the critical
state, greater than 1 for a loose state, and less than 1 for a dense state. In the framework of
Eq.(2.9), the general form of the extended model reads

σ̊σσ =LLL (σσσ) : ε̇εε−NNN(σσσ)∥ε̇εε∥ Ie, (2.47)

In the framework of Eq. (2.14), the consecutive equation including the critical state concept
reads

σ̊σσ =C1(trσσσ)ε̇εε +C2(trε̇εε)σσσ +C3
tr(σσσ · ε̇εε)

trσσσ
σσσ +C4(σσσ +σσσ∗)∥ε̇εε∥Ie (2.48)
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There are several forms for Ie in literature (Lin et al., 2015; Wu et al., 1996). In the present
work, a different formulation for the critical state function Ie is proposed:

Ie =
( e

ecrt

)α (2.49)

in which e and ecrt refer to the current void ratio and critical state void ratio, respectively.
α is a constitutive constant, which controls the degree of strain softening, as shown in Fig.
2.10(a). Li and Wang (1998) suggested a formulation for the location of critical state line
(CSL) in the e− p space that has a considerable range of applicability. A slightly modified
form is used in this work:

ecrt = ecoexp
[
−λ (

p
pa

)ξ ] (2.50)

where eco, λ , ξ are parametric constants, and p = trσσσ/3 and pa stands for the confining
pressure and atmospheric pressure for normalization, respectively. Due to the incorporation
of critical state function, the dilatancy angle ψ , which controls the dilatancy and contrac-
tion, should equal to zero. It is noteworthy that the original structure of Ie in (Guo et al.,
2016; Lin et al., 2015; Peng et al., 2016; Wu et al., 1996) has seven parameters. However,
only four parameters are needed in the present form. Note that constitutive equation (2.48)
is homogeneous of the first degree in stress. This implies that the tangential stiffness is
proportional to the stress level. By making use of this feature, the tangential stiffness can
be altered by multiplying Eq. (2.48) as a whole with a scale function, called the stiffness
function, without changing the critical state. From Eq. (2.47) it can be easily observed that
multiplying the whole constitutive with a scale function does not effect the failure criterion.
The stiffness function proposed by Wu (1999) is adopted:

Ise =
exp[β (ecrt− e)]

(1+ r)2 (2.51)

where β is a material parameters and r denotes the stress ratio ∥σσσ∗∥/trσσσ . The dependence
of the initial tangential stiffness on the initial void ratio is accounted for by the exponential
function in the numerator. The potential function in the denominator is introduced to mod-
ulate the shape of the stress-strain curve, since constitutive equation 2.48 gives rise to a too
stiff stress-strain response at small strain.

The modified constitutive model can be written as follow:

σ̊σσ = Ise
[
C1(trσσσ)ε̇εε +C2(trε̇εε)σσσ +C3

tr(σσσ · ε̇εε)
trσσσ

σσσ +C4(σσσ +σσσ∗)∥ε̇εε∥Ie
]
, (2.52)

with the stiffness function Ise(σσσ ,e) in Eq. (2.49) and the critical state function Ie in Eq.
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Figure 2.10 Strain-stress relations under drained triaxial condition:(a) the effect of
parameter α ,and (b) the effect of parameter β .

(2.51). The effect of β on the tangential stiffness is presented in Fig 2.10(b). It can be
observed from this figure that the tangential stiffness decrease with increasing β . There-
fore, the shortcoming that the constitutive equation (2.52) leads to too stiff of strain-stress
response with small strain is resolved by the stiffness function Ise.

Owing to the critical state function, the yield function can be obtained according to Eq.
(2.19) by multiplying Ci with the critical state function Ie and the stiffness function Ise, i.e.

C′1 = IseC1, C′2 = IseC2, C′3 = IseC3, C′4 = IseIeC4 (2.53)

in Eq.(2.18), which then can model the effect of strain softening and hardening. Con-
sequently, the hypoplastic model Eq. (2.52) is an attracting choice for describing rate-
independent behaviors of granular soils.

2.4.2 Extension for cohesive soils

Through a review of the development in hypoplasticity by Wu and Kolymbas (2000), one
can find that the attempt to specifically develop hypoplasticity to clay has been less success-
ful. An alternative approach to account for the cohesion of soil is to extend the hypoplastic
model by adding a structure tensor to the Cauchy stress. For instance, Bauer and Wu (1995)
extended the constitutive Eq.(2.11) by adding the intrinsic pressure, which depends on stress
level and void ratio, to the actual stress to account for cohesion and the effect of strain his-
tory. In a similar way, a structure tensor with respect to stress-like internal parameter was
introduced to model behavior of clay with sets of material parameters for various states of
consolidation (Weifner and Kolymbas, 2007).

Another approach is to combine the critical state soil mechanics with hypoplaticity. Ac-
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cording to this approach, a hypoplastic model for clay was proposed by Mašín (2005) on the
basis of a constitutive equation suggested by Herle and Kolymbas (2004), which combines
hypoplasticity principles with the traditional critical state soil mechanics. Moreover, Huang
et al. (2006) suggested a hypoplastic model based on the constitutive model proposed for
sands by Gudehus (2000) and Bauer (1996), which incorporates the critical state and is able
to capture the undrained behavior of normally consolidated clay. It is worth noting that the
aim of this work is to develop a visco-hypoplastic model to account for creep soils, there-
fore, a complex treatment of cohesion behavior of soils may weak the potential model’s
capacity of presenting the rheological characteristic of soils. Among these extensions of
hypoplasticity for cohesive soils, the adding of a structure tensor to the actual stress seems
simple for a sophisticated model.

Let us look at a simple way to extend the constitutive Eq. (2.14) to cohesive soils.
The constitutive Eq. (2.14) is originally proposed for granular materials, which are usually
cohesionless soil. As is discussed above, the limit state of Eq. (2.14) leads to a conical
surface with its apex in the conical origin of the principal stress space. Therefore, the Eq.
(2.14) is not able to account for tensile stress. Inspired by the similarities between the
failure surface of the updated model and Drucker-Prager model. The parameter kφ can be
introduced into Eq. (2.18) to account for cohesion, then the yield surface reads:

f s =
√

J2−χI1− kφ = 0 (2.54)

For the updated constitutive Eq. (2.14), the same effect can be achieved by simply replacing
the stress tensor σσσ with the following translated stress tensor (Wang, 2009)

σσσ ccc = σσσ − pc111 (2.55)

where pc is related to cohesion c and friction angle φ of Mohr-coulomb yield criterion.
With this approach, the apex of the circle cone was translated to point σ(pc, pc, pc) in the
principal stress space. Substitution of the stress point σ(pc, pc, pc) into equation (2.54)
yields the magnitude of pc = c /tanφ . Thus, the constitutive Eq. (2.14) can be extended in
the following form:

σ̊σσ =C1(trσσσ c)ε̇εε +C2(trε̇εε)σσσ c +C3
tr(σσσ c · ε̇εε)

trσσσ c
σσσ c +C4(σσσ c +σσσ∗c)∥ε̇εε∥ (2.56)

For cohesive soils, the magnitude of pc can be regarded as the cohesion of soils, which
can be obtained from triaxial compression test. However, it should be noted that different
chemical or physical causes for cohesion give rise to a different material behavior. In this
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study, the evolution equation for pc is focused on cohesive soils like clay, the soft clayey soil
where cohesion is assumed to depend on the physical-chemical effects of clay particles. The
effects of granulometry of the particles and the change of water content are not taken into
account. The effect of cohesion is demonstrated using two numerical triaxial compression
tests on a cohesionless and cohesive soil with . The material parameters presented in Table
2.1 for Eq. (2.56) are used for the numerical simulations. The cohesion is c = 11.5 kPa and
the confining pressure is σ3 = 100 kPa. The result is presented in Fig.2.11. The test result
reveals that the cohesive can influence the strain- stress response, i.e., increase the deviatoric
stress, while it cannot influence the volumetric response.
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Figure 2.11 Numerical simulation of triaxial compression test with or without cohesion
(confining pressure σ3 =100 kPa,c =0 kPa/11.5 kPa)

2.5 Constitutive model performance

The results from two types of soil, representing the cohesionless and cohesive soils, are
used to validate the model: Toyoura sand, whose calibration procedure has been illustrated
earlier, and a rockfill material. Toyoura sand has been studied extensively by different re-
searchers in Japan. Here, the series of triaxial compression test results from Toyoura sand
with different confining pressures and void ratios are used for the calibration under both
drained and undrained conditions. In addition, a cohesive soil for rockfill dam is used to
validate the effect of cohesion. The rockfill material contains both fine-graded particles and
a large proportion of coarse-graded particles. Owing to the existence of the fined-graded
particles, the selected soil exhibit cohesive behavior. Therefore, these simulations are used
to validate the capacity of the model for both cohesionless and cohesive soils.
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2.5.1 Cohesiveless soil

Toyoura sand is a uniform fine quartzitic sand consisting of sub-rounded to sub-angular
particles, which is the standard cohesionless soil reported in the Japanese soil mechanics
literature (Miura and Yamanoucm, 1975; Norihiko et al., 1984; Verdugo and K, 1996). Ver-
dugo and K (1996) have conducted a complete set of monotonic drained and undrained
triaxial tests on isotropically consolidated samples of Toyoura sand with a mean diameter
D50 = 0.17 mm and a uniformity coefficient Cu = 1.7. These tests have been conducted on
a wide range of void ratios and confining pressures. To demonstrate the performance of
the hypoplastic constitutive model, this set of data has been again used in this work. The
parameters used for constitutive equation (2.52) in these simulations are given in Table 2.6
and Table 2.5 for drained and undrained conditions, respectively.

Table 2.4 Material parametets for simulation of drained triaxial tests on Toyoura sand

Para. C1 C2 C3 C4 eco λ ξ α β

Value -47.2 -152 -398.1 -137.1 0.947 0.022 0.057 1.5 15

Table 2.5 Material parametets for simulation of undrained triaxial tests on Toyoura sand

Para. C1 C2 C3 C4 eco λ ξ α β

Value -47.2 -150.4 -220.3 -102 0.947 0.022 0.057 1.8 0

In the drained tests, two different confining pressures of 100 and 500 kPa were used.
Samples with three different void ratios ei =0.81, 0.917 and 0.996, which respectively cor-
responded to a relative density of 18%, 33%, and 52%, were used in the tests. Fig. 2.12
compares the results of the simulation and the experimental results. Fig. 2.12 (a) and (c)
makes the comparison in terms of variations of axial strain with shear stress and void ra-
tio, respectively, for the loose, medium and dense samples of Toyoura sand with the initial
confining pressure of 100 kPa. Similarly, Fig. 2.12 (b) and (d) compares the data and simu-
lations of drained triaxial tests with the initial confining pressure of 500 kPa. In particular,
Fig. 2.12 (e) and (f) does the same in terms of variations of variations of void ratio with
shear stress.

The undrained tests were conducted at a confining pressure ranging from p = 100 to
3000 kPa at three different void ratios ei = 0.907,0.833, and 0.735 that corresponded to a
relative density of 16, 38, and 64%, respectively. Fig.2.13 compares the data and simulations
for undrained triaxial compression (UTCT) tests on isotropically consolidated samples of
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Figure 2.12 Comparison of data and simulations for drained triaxial compression tests on
isotropically consolidated samples of Toyoura sand (pi =100 and 500 kPa)

Toyoura sand. In particular, Fig. 2.13 (a) makes the comparison in terms of stress-strain
response , while Figure 11(b) does the same in terms of effective stress paths for the loose
samples (ei = 0.907) with initial confining pressures in the range of 100 to 2000 kPa. Similar
comparison between data and simulations at medium dense (ei = 0.833) and dense (ei =
0.735) samples are presented in Fig. 2.13 (c)–(f), respectively.

The dramatically different responses that result from different combinations of confining
pressure and the void ratio in drained and undrained condition can be all successfully cap-
tured by using a unique set of model constants. The response varied from highly dilatant in
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Figure 2.13 Comparison of data and simulations for undrained triaxial compression tests
on isotropically consolidated samples of Toyoura sand (ei =0.907, 0.83, and 0.735)

higher densities and lower confining pressures to highly contraction in lower densities and
higher confining pressures. The key to this achievement lies function Ie. Very good match
has been achieved in simulations of the void ratio along with axial strain in the drained
condition; however, one can observe a comparative shortcoming of the model in accurately
capturing the stress-strain relations. To be more specific, the simulations have overestimated
the strain softening of the densest samples in drained conditions. This could be solved by
choosing slightly higher initial void ratios for simulations, however, this will affect the evo-
lution of the void ratios. On the other hand, the stain-stress response in undrained condition
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can be well caricatured, while simulated stress paths do not agree very well with the experi-
mental results. To be specific, the effective mean pressures degrade too fast in the undrained
condition. Nevertheless, the strain hardening and softening behavior, together with the crit-
ical state, can be depicted using the hypoplastic constitutive model.

2.5.2 Cohesive soil

A series of drained triaxial tests on rockfill material are used to validate the effect of co-
hesion. The tested rockfill material is a crushed weakly-weathered granite from Nuozhadu
rockfill dam in Yunnan, China (Wu et al. 2015). Selected properties of the original granite
block are: density is 2.63 g/cm3, saturated compression strength σc = 85 Mpa. The hy-
drophilic softening coefficient, defined as the ratio of two uniaxial compression strengths
measured respectively under saturated and dry conditions, is ηc = 0.76. The rockfill ma-
terial can be characterized as a coarse-grained soil, which to some extent exhibits cohesive
behavior under very dense condition. The parameters for Eq. (2.56) used in this simulation
are calibrated with triaxial compression tests of rockfill soil. as shown in Table.2.6.

Table 2.6 Material parameters for simulation of the drained triaxial test on rockfill material

Para. Ei(Mpa) υi φ(/o) ψ(/o) c(kPa) C1 C3 C3 C4

Value 200 0.1 46 0 20 60.6 -95.12 -228.45 -117.67
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Figure 2.14 (a)Stress-strain behavior, and (b) Volumeric strainaxial strain behavior of a
rockfill material

Fig. 2.14(a) presents the strain-stress relations of the rockfill material under three con-
fining pressures, i.e., 200 kPa, 400 kPa, and 600 kPa. The numerical stress-strain result
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is compared with the experimental data. Reasonable agreement of stress-strain response is
noted in this simulation. It should be noted that the dilative behavior in the volumetric strain
versus axial strain cannot be captured with the same dilation angle. Different dilation angles
for different confining stress are needed for capturing the dilative phenomenon better. As
shown in Fig. 10(b), the dilation angle is 23◦, 7◦ and 1◦ for confining pressure of 200 kPa,
400 kPa, and 600 kPa, respectively.

2.6 Conclusion

This chapter discusses a simple critical state hypoplastic constitutive model. The main
conclusions of this chapter are drawn in the following:

Firstly, a simple hypoplastic constitutive is presented. Based on this model a comprehen-
sive study on the failure surface and bound surface is carried out. This simple hypoplastic
model has a Drucker-Prager type failure surface with its apex in the conical origin, and cir-
cumscribes the Mohr-Coulomb yield surface in the principal stress space. Its bound surface
possesses the same geometry as the failure surface, while lies slightly outside the failure
surface. Normally, the stress state is constrained inside the failure surface. However, some
strain directions may lead to stress state lying between the between the failure surface and
the bound surface. The distance between these two surfaces, to some extent, indicates the
integration error in numerical computation. Furthermore, this distance increase with in-
creasing the friction angle. Therefore, stress correction algorithm should be considered
during the stress integration for numerical analysis.

Secondly, the critical state concept and cohesion are incorporated into the hypoplastic
constitutive equation (2.14). The performance of the model is validated using triaxial tests
on Toyoura sand under both drained and undrained conditions. The strain hardening and
softening behavior, together with the critical state of Toyoura sand, can be depicted using the
hypoplastic constitutive model. On the other hand, the cohesion is described by a translated
tensor, which is added to the Cauchy tensor in the hypoplastic model to account for the effect
of cohesion. The magnitude of the translated tensor is connected to the Mohr-Coulomb
parameter constants: cohesion c and friction angle φ .



Chapter 3

Modeling the viscous behavior of
granular material

3.1 Introduction

Geotechnical structures such as embankments, bridge abutments, retaining walls, slopes,
etc., have been extensively observed with significant deformation and settlement with time
(Karstunen and Yin, 2010; Komornik et al., 1972; Lade et al., 2009). These long-time
deformations are largely due to the time-dependent behavior of soils. It is well known that
both clayey and granular soils exhibit time-dependent behavior. Clayey soil, usually referred
to isotach material, follows a classic viscous behavior with time (Kim and Leroueil, 2001;
Kimoto and Oka, 2005; Yin and Graham, 1989). However, granular soil does not obey this
classic viscous behavior and is considered as non-isotach material (Augustesen et al., 2004;
Karimpour and Lade, 2010; Tatsuoka et al., 2001). Many experimental investigations reveal
that the effect of strain rate is insignificant on the stress-strain relationships of sand in the
constant strain rate tests (Lade and Liu, 1998; Lade et al., 1997, 2009; Yamamuro and Lade,
1993) , whereas the stress-strain relationship temporarily overshoots the unique relationship
owing to the accelerated loading in the stepwise rate of strain tests (Di Benedetto et al.,
2002; Kuwano and Jardine, 2002; Matsushita, 1999). Granular soils, other than clay, to
some extent is acceleration dependent. The practical significance of this viscous behavior
in granular material is increasingly evident. For instance, driven or displacement piles in
sand often demonstrate a significant increase in the shaft capacities with time (Bowman and
Soga, 2005; Chow et al., 1998; Jardine et al., 2006). Creep settlement contributes a large
proportion of the overall movements of the foundations constructed on granular soil regions
(Burland and Burbridge, 1985; Morsy et al., 1995). Hence, it is essential to consider the
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time-dependent behavior of granular material in engineering design.
The constitutive equations for time-dependency of granular soil, which govern how the

material moves over time are still a matter of debate. One reason is that, depending on the
time and loading condition, a granular soil exhibits both frictional and viscous behaviors,
but most of the models focus on frictional behavior. To model the viscous effects in gran-
ular soil, different approaches can be classified as: (1)some empirical models (Lacerda and
Houston, 1973; Murayama, 1983) by closed-form solutions or differential equations, which
can be applied only to problems of specific boundary conditions (Liingaard et al., 2004);
(2) granular rheology models, such as Herschel-Bulikley and Bingham based models (Ata-
pattu et al., 1995; Chen and Lee, 2002) and models (Jop et al., 2006; Tankeo et al., 2013)
in which the viscous deformation takes place if the shear stress exceeds the yield value
and difficult to be determined; (3) general elasto-viscoplastic models based on theories of
Perzyna (Perzyna, 1963, 1966), such as Di Prisco and Imposimato (1996) and Di Prisco
et al. (2000), which describe the constant rate of viscoplastic flow, but not relating to accel-
eration; and (4) models considering acceleration effect by Tatsuoka (Tatsuoka et al., 2002)],
in which the frictional component was too simple to describe the nonlinear stress-strain of
sand, and the viscous component was too complicated for use. An alternative approach is
to model the frictional and viscous behaviors of granular material in the framework of hy-
poplasticity. Owing to the predictive capacity and the formulative simplicity, hypoplastic
models have enabled the unified description of frictional and viscous behaviors of granular
material much easier. Recently, rate-dependency has been incorporated into hypoplasticity
to describe the creep of frozen soil (Xu et al., 2016), debris flow (Guo et al., 2016; Peng
et al., 2016), creep of clay (Niemunis, 2003b). However, up to now there is no report on
such models describing acceleration effect of granular material. Nevertheless, the devel-
opment of well-established constitutive equations describing both the viscous and inviscid
behaviors of granular soils is still an ongoing undertaking.

In the present paper, a new constitutive model for modeling viscous behavior of gran-
ular materials is proposed. The model consists of two components (frictional part and vis-
cous part) representing respectively the frictional and viscous stresses in granular media.
The frictional part is accounted for using a rate-independent hypoplastic constitutive model,
which is enhanced by incorporating simple critical state based formulations. The viscous
part is implemented by a high order term considering the effect of strain acceleration. The
performance of the proposed model is examined by simulating different tests on granular
materials, i.e. a stepwise strain-rate triaxial test, creep tests under different stress levels on
Toyoura sand, and a stepwise strain rate triaxial test on Chiba gravelly soil.



3.2 Constitutive model framework 55

3.2 Constitutive model framework

Two main mechanisms that govern the behaviors of granular materials are friction and
viscosity. In the quasi-static regime, the interparticle frictional forces give rise to rate-
independent Coulomb-type plastic behavior. On the other hand, in the dynamic flow state, a
notable part of stress comes from the particle collision (Peng et al., 2016). In this work, we,
therefore, make the fundamental assumption, as in (Di Benedetto et al., 2002; Wu, 2006; Xu
et al., 2016), that the frictional and the viscous stresses coexist in the granular viscous re-
sponse. Direct addition of the two stress contributions gives the following form of granular
stress:

σσσ = σσσh +σσσ v (3.1)

where σσσh and σσσ v denote frictional stress (time-independent) and viscous stress (time-dependent),
respectively. As illustrated in the above model, the frictional and the viscous stresses take
effect simultaneously. This mathematical structure corresponds to the fact that the soil ex-
hibits both frictional and the vicious behaviors.

To obtain a concrete formulation, some fundamental restrictions should be imposed on
the constitutive equation (3.1). Firstly, the resulting constitutive relation should able to cap-
ture the salient behaviors of granular material in the quasi-static frictional regime. Secondly,
the formulation for the viscous stress part should consider the influences of strain rate and
strain acceleration. Additionally, in poorly graded sands such as Hostun and Toyoura sands,
viscous stresses decay with an increase in the strain path. As a result, in granular soils, vis-
cous stresses depend not only on the strain rate and strain acceleration but also on the recent
strain path. Consequently, the influence of strain path also needs to be considered. Thirdly,
the proposed model should be able to describe the whole process of creep failure including
primary creep, secondary creep, and tertiary creep in a unified way, which is realized by the
coupled evolution of the two stress parts.

In the present work, the critical state hypoplastic constitutive model presented in previ-
ous chapter and a rate form of HB rheology are employed to formulate the new constitutive
model. The rate form of the new model is expressed as follows:

σ̇σσ = σ̇σσh + σ̇σσ v (3.2)

where σ̇σσ , σ̇σσh and σ̇σσ v denote the Cauchy, hypoplastic frictional and HB viscous stress rates,
respectively.
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3.3 Structure of viscous models

The mathematical theories of viscous behaviors developed independently from that of fric-
tional behaviors. Traditionally, the rheological models are based on a superposition princi-
ple. This indicates that the response (i.e., strain) at any time is directly proportional to the
value of the initiating signal (i.e., stress). In the linear theory of viscoelasticity, the differ-
ential equations are linear, and the coefficients of the time differentials are constant as well.
Following the above concept, we can write down a general differential equation for linear
viscoelasticity as follows:

σσσ +µ1
∂σσσ
∂ t

+µ2
∂ 2σσσ
∂ t2 + ...+µn

∂ nσσσ
∂ tn = η0εεε +η1

∂εεε
∂ t

+η2
∂ 2εεε
∂ t2 + ...+ηm

∂ mεεε
∂ tm (3.3)

where n = m or n = m−1, µi (i = 1, ...,n) and η j ( j = 1, ...,m) are time differentials con-
stants. These constants are material parameters, such as viscosity coefficient and rigidity
modulus. σσσ and εεε are the Cauchy stress tensor and the strain tensor, respectively. However,
other types of deformation could be included without difficulties, with the stress and strain
referring to that particular deformation process. For example, the stress tensor and strain
tensor can be replaced in terms of shear stress τ and shear strain γ , respectively, relevant to
a simple shear test.

The basic fluid-like behavior of a material can be expressed in terms of uniaxial models
or mechanical elements, one of the simplest case, Hookean model, is the spring element,
which is capable of representing the elastic characteristic of the continuous medium. In Eq.
(3.3), if η1 is the only non-zero parameter, we have:

σσσ = η1ε̇εε, (3.4)

in our notation, this represents Newtonian viscous flow, with ε̇εε being the stretching tensor
and η1 being the viscosity coefficient. The above equation can be regarded as the simplest
rheological model for fluid-like behavior. Let us then consider some other basic rheological
models based on the general Eq. (3.3). in which if η0 and η1 are both non-zero, whilst
the other constants are zero, Kelvin model, one of the basic rheological models, can be
obtained:

σσσ = µ0εεε +µ1ε̇εε, (3.5)

where η0 a modulus of elasticity. Kelvin model, also known as Voigt model, represents a
viscoelastic material having the properties both of elasticity and viscosity. It can be regarded
as a combination of the Hookean model and the Newtonian model as well.
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Another very simple model is so-called Maxwell model. The differential equation of the
model is obtained by making µ1 and η1 the only non-zero parameters

σσσ +µ1σ̇σσ = η1ε̇εε (3.6)

With strain rate ε̇εε in Eq.(3.6) being zero, equation (3.6) represents a relaxation test. There-
fore, the meaning of µ1 can be identified as relaxation time. Noted that the hypoplastic
Eq.(2.1) has a similar construction with Maxwell viscous flow.

The next level of complexity in the framework of Eq.(3.3) is to make three of the material
parameters non zero. More specifically, if µ1, η1 and η2 are taken to be non-zero, the
Jeffreys model has been obtained. In the present notation, the equation is presented in the
following form.

σσσ +µ1σ̇σσ = η1ε̇εε +η2ε̈εε, (3.7)

It is worth to note that the Kelvin model and Maxwell model and can be regarded as special
cases of the Jeffreys model. We note with interest that Jeffreys model has been used for a
dilute suspension of solid elastic spheres in a viscous liquid by Fröhlich and Sack (1946)
and a dilute emulsion of incompressible viscous liquid by Oldroyd (1953).

3.4 Extended H-B model for viscous behaviors

The Jeffreys’s model can be decomposed into two parts, with one part denoting the Newto-
nian flow, and the other part denoting the contribution of strain acceleration. The later part
can be formally regarded as the time differentiation of the former part provided the viscosity
coefficient η2 is constant. In this work, we need to consider the contribution of the strain
acceleration to the viscous behaviors of granular materials, so that the later part is chosen as
a possible candidate for the viscous model. Hence, the constitutive equation for the viscous
part can be expressed by the following isotropic function:

σ̊σσ v = H(ε̇, ε̊) = ηε̊εε (3.8)

where ε̊εε is the Jaumann stretching-rate tensor and can be obtain according to the scheme in
Eq. (2.2).

ε̊εε = ε̈εε + ε̇εε ·ωωω−ωωω · ε̇εε, (3.9)
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The constant η is defined as functions of strain rate in the following form

η = α̃i(Iε̇ , IIε̇ , IIIε̇ ,∥ε̇εε∥...), i = 1, ...,m (3.10)

where I, II III are invariants of strain rate tensor defined as Iė = tr(ε̇εε), IIε̇ = [tr(ε̇εε)2−
tr(ε̇εε2)]/2, and IIIε̇ = det ε̇εε.

Note that the inclusion of high temporal derivative of strain rate tensor in Eq. (3.8)
requires the specification of an initial value for ε̇εε . This can be compared to the specification
of the initial speed in an accelerated motion. Before considering in depth the complete form
of the fluid model, let us turn back to consider the normal stress effects. We assume that the
following terms may be used to compile a workable constitutive equation.

σ̊σσ v = η1ε̊εε +η2(ε̇εεε̊εε + ε̊εεε̇εε), (3.11)

In order to demonstrate the normal-stress effects, we consider a steady simple shear flow
where the rectangular components of ε̇εε takes the following form:

ε̇εε =




0 γ̇ 0
γ̇ 0 0
0 0 0


 , (3.12)

Making use of Eq.(3.9), we obtained the terms ε̊εε and ε̇εεε̊εε + ε̊εεε̇εε as follows:

ε̊εε =




0 γ̈ 0
γ̈ 0 0
0 0 0


+2



−γ̇2 0 0

0 γ̇2 0
0 0 0


 , ε̇εεε̊εε + ε̊εεε̇εε = 2




γ̇ γ̈ 0 0
0 γ̇ γ̈ 0
0 0 0


 (3.13)

Therefore, the relevant stress distribution for Eq.(3.11) can be expressed in terms of shear
stress :

τxy = τ = φ1γ̈, τxz = τyz = 0, (3.14)

and normal stress differences N1 and N2 :

N1 = τxx− τyy =−4φ1γ̇2, N2 = τyy− τzz =−2(φ1γ̇2 +φ2γ̇ γ̈) (3.15)

It is clear that the first normal stress is proportional to quadratic in shear rate, and the second
normal stress is a function of shear rate and shear acceleration. Therefore, both the terms ε̊εε
and ε̇εεε̊εε + ε̊εεε̇εε can give rise to normal stresses in a steady shear flow.

Before proceeding to the much more difficult subject of the viscous model, it is helpful
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to consider some viscous behaviors of granular materials subjected to large viscous flow.
Nushimura et al. (2002) investigated the rate-dependency of natural sand using cyclic torsion
shear tests under drained condition. Fig. 3.1(a) shows the relation between shear strain rate
and viscosity coefficient obtained from tests on Toyoura sand under a confining pressure of
30 kPa. It is observed that the viscosity coefficient η decreases with the increase of shear
strain rate in an exponential manner. This decrease of viscosity with respect to increasing
shear strain rate is termed as shear thinning, which is a common property for natural soils
(Lal and Shukla, 2004). Fig. 3.1(b) shows the results of viscous stress under different shear
strain rates, strain levels and confining pressures. The results reveal that the viscous stress
depends both on the strain and the strain rate, while the effects of confining pressure on
viscosity are less significant at low confining pressure. In common occasions of viscous
granular deformation such as creep and geophysical flow, the confining pressure is usually
low. Therefore, it is rational to assume that the viscous stress rate depends only on strain
rate and strain acceleration.
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Figure 3.1 Relation between deviator strain rate and (a)viscosity coefficient,(b) viscous
stress of Toyoura sand

Following the framework of Eq. (3.8), the form of the viscous coefficient is proposed as
η = kvγ̇m. Thus, the viscous stress rate defined by the strain rate and strain acceleration is
obtained:

τ̇v = kvγ̇mγ̈ (3.16)

in which m is an index usually satisfying m 6 0, kv is the consistency index , which depends
on the physical properties of the granular materials such as particle diameter, dry density
and void ratio. Integration of Eq. (3.16) with respect to time, the total stress in terms of the
frictional stress and strain rate can be obtained.

τ = τ f + kvγ̇m+1 (3.17)
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This form of viscous model is known as Herschel-Bulkley model (H-B model), in which
τ f indicates the frictional stress. By using Eq. (3.17), the same tendency that viscous
stress increases with increasing strain rate is shown in Fig. 3.1(b). The assumptions of
the Herschel-Bulkley model are similar to those of the Bingham model for relatively high-
viscosity fluids undergoing laminar flow (Huang and Garcia, 1998). Chen et al. (2004)
recommended this model for use with fine-grained soils.
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Figure 3.2 (a) The effect of decay factor R, and (b) the effect of parameter χ on the time of
creep rupture

We extend the H-B model to three-dimensional to represent the viscous part of the new
model. It takes the following formulation:

σ̊σσ v = kv∥ε̇∥mε̊ (3.18)

Note that some poorly graded sands exhibit non-isotach behavior, that is the viscous stress
decays with the increase in strain path. This behavior can be described by a decay factor.
In this work, the viscous stress is assumed to decay with strain path when the acceleration
vanishes. Thus, the viscous stress can be expressed as follows:

σσσ v =





kv
∫ l

li ∥ε̇∥
(m)ε̊ dτ if ε̈ ̸= 0

σσσ i
vR(l−li) if ε̈ = 0

(3.19)

in which the strain path l is defined by the the accumulated ∥ε̇εε∥ with time: li =
∫ ti

t0 ∥ε̇εε∥dτ,
and σσσ i

v is the viscous stress that developed in the accelerated phase when strain path is li
and then decayed until strain path is l. R is a positive constant smaller than unity. The decay
factor R controls the speed of decaying of viscous stress at the constant strain rate test, , as
observed in 3.2(a). Eq. (3.19) reveals that the viscous stress accumulates only in the process
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of non-uniform motion, such as soil creep and granular flow, in which the constant R = 1.

3.5 The new constitutive model and its formulation for creep

We combine Eq. (2.52) and Eq. (3.18). Thus, the complete form of the new model is
obtained:

σ̊σσ = Ise
[
C1tr(σσσh)ε̇εε +C2tr(ε̇εε)σσσh +C3

tr(σσσh · ε̇εε)
trσσσh

σσσh +C4(σσσh +σσσ∗h)∥ε̇εε∥Ie
]
+ kv(∥ε̇∥)mε̊, (3.20)

Within the framework of Eq. (3.20), we consider the variation of deformation with vanishing
stress rate (σ̊σσ = 0), namely creep, and we assume spin tensor ωωω equal to zero at creep. Thus
the creep acceleration can be obtained. Integrating of the creep acceleration with respect to
time yields the integral form of the creep rate tensor:

ε̇εε =
∫ −Ise∥ε̇∥−m

kv

[
C1tr(σσσh)ε̇εε +C2tr(ε̇εε)σσσh +C3

tr(σσσh · ε̇εε)
trσσσh

σσσh +C4(σσσh +σσσ∗h)∥ε̇εε∥Ie
]

dτ, (3.21)

Constitutive parameters Ci(i = 1,2,3,4) and parameters related to the critical state factor
Ie are first identified with triaxial compression test. The consistent coefficient kv and flow
index m can be identified by fitting tests as shown in Fig.3.1.
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Figure 3.3 The evaluation of creep strain rate of sand over time, t f denotes the creep failure
time

It is known that the grains experience accelerated and decelerated motion over time at
a creep. Although the interparticle velocity of grains is usually very slow, the interactions
between individual particle display both Coulomb-type plastic and rheological deformation,
and there is no evident phase transition from the frictional regime to viscous flow regime in
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the process of creep. Fig. 3.3 depicts the evaluation of strain rate over time during creep.
As shown in Fig. 3.3 three stages of creep is characterized. In the primary stage, the strain
rate decreases with negative strain acceleration. A very short secondary creep is defined
as a point (also defined as creep failure point at the time (t f ) where the strain acceleration
vanishes and the minimum creep strain rate ε̇min is obtained. The tertiary creep starts when
the strain acceleration becomes positive.

The viscous behaviors of granular materials can be attributed to several processes includ-
ing progressive particle breakage due to intergranular contact stresses and the rearrangement
of the grains with time due to micromechanical slip (Ghiabi and Selvadurai, 2009). Similar
conclusions are reported by Di Prisco and Imposimato (1996); Gajo et al. (2000); Kuwano
and Jardine (2002); Lade and Liu (1998), who also provide additional references. The creep
rupture in the material can cause the decrease of the critical ratio as well. These processes
become significant when the creep failure occurs in a material at accelerated creep stage. On
the other hand, the accelerated creep can lead to the change of the critical state void ratio.
Based on the microscopic description of the microstructure change of granular material in
creep process, an additional parameter to account for the accelerated failure is introduced
into Eq. (2.50)

ecrt = (e0−χla
p
pa

)exp
[
−λ (

p
pa

)ξ ] (3.22)

where χ is a constitutive parameter, la is the acceleration path defined by the accumulated
∥ε̈∥ after creep failure time, so it is activated only in the tertiary creep stage. The effect of χ
on the creep rupture time is depicted in Fig. 3.2(b). It can be observed that the rupture time
decrease with increasing χ . Since the critical state function Ie increases with decreasing
critical void ecrt , both the increment of stress level and the acceleration path can contribute
to the creep failure in the time-strain rate curve, as shown in Fig. 3.3.

3.6 Proposed model performance

In this section, the performance of the presented model is demonstrated. The viscous behav-
iors of granular materials including strain rate effects and creep are simulated using different
tests on granular materials, e.g., a stepwise strain-rate triaxial test, creep tests under different
stress levels on Toyoura sand, a stepwise strain rate triaxial test on Chiba gravelly soil.

3.6.1 Drained Stepwise strain rate tests

The abrupt change of strain in the stepwise strain rate tests is assumed to be achieved by an
accelerated loading phase. Let us first consider the numerical form of the stepwise strain
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rate test with the hypoplastic constitutive model. Due to the symmetry, we have σ2 = σ3

and ε̇2 = ε̇3 in the whole loading and testing phase, and ε̈2 = ε̈3 in the loading phase. Then
the stress rate, stress and strain rate and strain acceleration for triaxial test can be expressed
in the matrix form:

σ̊σσ =




σ̇1 0 0
0 σ̇3 0
0 0 σ̇3


 ,σσσ =




σ1 0 0
0 σ3 0
0 0 σ3


 , ε̇εε =




ε̇1 0 0
0 ε̇3 0
0 0 ε̇3


 , ε̈εε =




ε̈1 0 0
0 ε̈3 0
0 0 ε̈3


 ,

The simulation is carried out according to the following procedures: In the loading phase,
the prescribed rate of strain is assumed to be achieved by conducting an acceleration process,
in which the axial acceleration of strain is constant while the radial acceleration is various.
So the governing differential equations for the triaxial test can be obtained by substituting
the above matrix into constitutive Eq. (3.20):

σ̇1 = Ise

[
C1(σh1 +2σh3)ε̇1 +C2(ε̇1 +2ε̇3)σh1 +C3

σh1ε̇1 +2σh3ε̇3

σh1 +2σh3
σh1+

IeC4(σh1 +σ∗h1)
√

ε̇2
1 +2ε̇2

3

]
+ kv(

√
ε̇2

1 +2ε̇2
3 )

m−1ε̈1 (3.23)

σ̇3 = Ise

[
C1(σh1 +2σh3)ε̇3 +C2(ε̇1 +2ε̇3)σh3 +C3

σh1ε̇1 +2σh3ε̇3

σh1 +2σh3
σh3+

IeC4(σh3 +σ∗h3)
√

ε̇2
1 +2ε̇2

3

]
+ kv(

√
ε̇2

1 +2ε̇2
3 )

m−1ε̈3 (3.24)

The equation (3.23) and (3.24) contains six unkonwns, namely σ̇1, σ̇3, ε̇1, ε̇3, ε̈1 and ε̈3. We
start the accelerated phase from an initial state (σi1,σi3),(ε̇i1, ε̇i3). For the stepwise strain
rate test with constant confining pressure and acceleration of strain, three of the six unkon-
wns can be specified. So we have σ̇3 = 0 and ε̈1 = const., respectively. At the initial time ti,
the strain rate ε̇1 = ε̇i1, if we assume a time step ∆t in the accelerated phase, the strain rate
ε̇1 can be determined as ε̇1 = ε̇i1 + ε̈1∆t. Substitution of σ̇3 = 0 into equation (3.24), and
integration of the acceleration of strain, we have the integral form of radial strain rate.

ε̇3 =
∫ t

ti

−Ise(
√

ε̇2
1 +2ε̇2

3 )
−m

kv

[
C1(σh1 +2σh3)ε̇3 +C2(ε̇1 +2ε̇3)σh3+ (3.25)

C3
σh1ε̇1 +2σh3ε̇3

σh1 +2σh3
σh3 + IeC4(σh3 +σ∗h3)

√
ε̇2

1 +2ε̇2
3

]
dτ (3.26)

The above equation can be integrated by assuming a time step ∆t, then we obtain the radial
acceleration of stain ε̈3. The stretching tensor obtained in this way will be inserted into
Eq.(3.23) to get the axial stress rate σ̇1. The frictional stresses and viscous stresses are then
updated for the next time step. In general, the updating of stress for a time step ∆t can be
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performed as follows:

σσσ f (t +∆t) = σσσ f (t)+
∫ t+∆t

t
σ̇σσ f [σσσ f (τ), ε̇εε(τ)]dτ

σσσ v(t +∆t) = σσσ v(t)+
∫ t+∆t

t
σ̇σσ v[ε̇εε(τ), ε̈εε(τ)]dτ (3.27)

σσσ(t +∆t) = σσσ f (t +∆t)+σσσ v(t +∆t)

In accelerated phase, the viscous stress σσσ v and the new strain rate (ε̇1, ε̇3) for the constant
strain rate test are obtained.

In the constant strain rate tests, we assume the strain acceleration vanishes, that is (ε̈εε =

0), then the rate form Eq. (3.23) and (3.24) degrade to

σ̇ f 1 = Ise

[
C1(σh1 +2σh3)ε̇1 +C2(ε̇1 +2ε̇3)σh1 +C3

σh1ε̇1 +2σh3ε̇3

σh1 +2σh3
σh1+

IeC4(σh1 +σ∗h1)
√

ε̇2
1 +2ε̇2

3

]
(3.28)

σ̇ f 3 = Ise

[
C1(σh1 +2σh3)ε̇3 +C2(ε̇1 +2ε̇3)σh3 +C3

σh1ε̇1 +2σh3ε̇3

σh1 +2σh3
σh3+

IeC4(σh3 +σ∗h3)
√

ε̇2
1 +2ε̇2

3

]
(3.29)

The updating of stress for a time step ∆t can be performed in the same way as illustrated
above.

σσσ(t +∆t) = σσσ f (t)+
∫ t+∆t

t
σ̇σσ f [σσσ f (τ), ε̇εε(τ)]dτ +σσσ v (3.30)

Due to the complexity of the constitutive equation, the above integral can be rarely per-
formed analytically (Wu and Niemunis, 1996). Instead, a simple one-step, Euler forward
scheme is adopted to integrate the above equation.

To investigate the rate effects of granular materials, Kiyota and Tatsuoka (2006) have
carried out a series of drained triaxial tests on Toyoura sand. The specimen was consolidated
up to an effective confining pressure equal to 400 kPa in the drained triaxial condition. The
sample achieved an initial void ratio of ei = 0.912 after the consolidation, then was subjected
to a prescribed loading path. In these tests, the axial strain rate was stepwise changed many
times during otherwise monotonic loading. The variated strain rates are taken as ε̇0/10, ε̇0,
10ε̇0 and 20ε̇0, with the strain rate ε̇0 = 0.0125 %/min in the monotonic loading. These
strain rates are small enough to make sure that no excessive pore pressure is developed;
thus, the drained condition is guaranteed.

In the stepwise strain rate tests, the viscous property is quantified mainly by changing
stepwise the axial strain rate many times during otherwise monotonic loading at a con-
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Table 3.1 The strain acceleration for simulation of stepwise strain rate tests on toyoura sand

Acc.(%/sec2) ε̈1 ε̈2 ε̈3 ε̈4 ε̈5 ε̈6

Value -0.5 50.5 -50.5 0.5 -30.1 30.1

stant axial strain rate. In the simulation, we assume the samples experienced two different
loading path. namely: (I) constant strain rate phase, and (II) accelerated strain rate phase.
Correspondingly, the viscous stress increased nonlinearly, accompanied by the increase of
frictional stress. Parameters presented in Table 2.6 are used for modeling the frictional
stress. The other parameters for the viscous model are: kv = 180 kPa·secm, m = −0.4 and
R = 0.12. In addition, the second time derivative of strain in Eq. (3.18) is required to change
the strain rate at each step. In this work, the strain accelerations presented in Table 4.5 are
obtained by fitting the stepwise strain rate tests.

0 4 8 1 2 1 6 2 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0
�

6

�
5�

4

�
3�

2

�
1

�
0

20�
0�

0�
0
/1010�

0

�
0
/10

 

 

 E x p e r i m e n t a l
 N u m e r i c a l

De
via

tor
ic s

tre
ss 

(kP
a)

A x i a l  s t r a i n  ( % )

�
0

�
0
=0.0125 %/ m i n

( a )

0 4 8 1 2 1 6 2 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0

s t e p  6s t e p  5s t e p  4s t e p  3s t e p  2

 

 

Str
ess

 (k
Pa)

A x i a l  s t r a i n  ( % )

 T o t a l  s t r e s s
 F r i c t i o n a l  s t r e s s
 V i s c o u s  s t r e s s

( b )

s t e p  1

1 0 1 2 1 4 1 61 2 0 0

1 3 0 0

1 4 0 0

1 5 0 0

 

 

 

Figure 3.4 Comparison of data and simulations for stepwise monotonic loading drained
triaxial tests on isotropically consolidated samples of Toyoura sand (pi =400 kPa).

Together with the experimental results, the simulated stepwise strain rate tests on Toy-
oura sand are presented in Fig. 3.4. The experimental results show that the stress changes
temporarily when the constant strain rate was changed stepwise. This feature is known as
non-isotach behavior. The simulated strain-stress curve is in agreement with the experimen-
tally measured curve except that the model underestimates the stress at the initial stage of
the test. The constitutive predictions in Fig. 3.4(a) show that the model is capable of captur-
ing the stress-strain relation under the drained condition and modeling the non-isotach strain
effect, both in constant strain rate and accelerated strain rate conditions. The evolution of
viscous, frictional and the total stresses with axial strain is presented in Fig. 3.4(b). The
viscous stress decreases /increases in the deaccelerating/accelerating phase, and decay in
the constant strain rate phase. The viscous stress change may influence the frictional stress.
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In particular, as shown in step 5 with 20ε̇ , the frictional stress experienced a big increase,
while it drops when the strain rate decreases from 20ε̇ to ε̇

Table 3.2 Values of material parametets for Chiba gravelly soil

Para. C1 C2 C3 C4 e0 λ ξ α β kv m R

Value -124 -410.4 -457.1 -238.1 0.24 0.019 0.071 0.5 50 205 -0.49 0.98

Table 3.3 Strain accelerations for simulating drained stepwise tests on Chiba gravelly soil

Acc.(%/sec2) ε̈1 ε̈2 ε̈3 ε̈4 ε̈5 ε̈6 ε̈7 ε̈8 ε̈9 ε̈10

Value -1.1 20.5 -50.1 20.5 -15.5 -1.1 20.5 -50.1 15.5 -20.5
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Figure 3.5 Comparison of data and simulations for stepwise monotonic loading drained
triaxial tests on isotropically consolidated samples of gravelly soil (pi =490 kPa).

In the previous sections, the present model has been evaluated by drained stepwise strain
rate tests on Toyoura sand. Here, we further evaluate the model on gravelly soil by (AnhDan
et al., 2006). A well-graded quarry gravelly soil of sandstone was used. The sample was
prepared to achieve a high dry density in a range of 2.2-2.3 g/cm3 and a void ratio of ei =

0.19, which is close to typical field values of this type of gravelly soil. The parameters
used in this simulation are given in Table 4.7. Likewise, a set of strain accelerations is
required in this simulation, as shown in Table 3.3. Fig. (3.5) presents the numerical results
along with the experimental data. It can be observed that the proposed model gives a good
prediction of the strain rate effects for gravelly soil. Owing to the properties of the gravelly
soils, the viscous stress does not decay during the constant strain rate period. Therefore,
the presented model is capable of modeling both the isotach and non-isotach behavior of
granular materials.
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3.6.2 Drained triaxial creep tests with constant stress

The conventional drained triaxial creep tests can be conducted by applying a prescribed
deviatoric stress on the confined sample. Usually, the process of achieving this prescribed
stress state is not taken into account. From a constitutive modeling point of view, the pre-
scribed stress state is applied instantaneously, the realistic process of applying this stress
state is out of the scope of most constitutive models. In the numerical test, creep is referred
to as the variation of deformation under vanishing stress rate(σ̇σσ = 0). According to this
definition, we can give the expression of stress rate, stress and strain rate for drained triaxial
creep test in the matrix form:

σ̇σσ =




0 0 0
0 0 0
0 0 0


 ,σσσ =




σ1 0 0
0 σ3 0
0 0 σ3


 , ε̇εε =




ε̇1 0 0
0 ε̇3 0
0 0 ε̇3


 , ε̈εε =




ε̈1 0 0
0 ε̈3 0
0 0 ε̈3




Contrary to the conventional view, we assume that there is an accelerated loading phase
to achieve the testing state, in which both the initial frictional and viscous stresses are accu-
mulated. After the loading phase, the initial viscous stresses (σv1,σv2) and the initial strain
rate (ε1,ε3) are obtained. So the strain accelerations components in the drained triaxial creep
tests can be obtained by substituting the above matrices into constitutive Eq. (3.20).

ε̈i =
−Ise(

√
ε̇2

1 +2ε̇2
3 )
−m

kv
σ̇hi (3.31)

where σ̇hi, i = 1,3 is the corresponding stress rate, which can be obtained by substituting
the above matrices into Eq. (2.48). Integration of the Eq. (3.31) , both the axial and radial
strain rate can be obtained. Correspondingly, the viscous stress rate can be obtained as well.
Then the viscous and frictional stresses can be updated by using Eq. (3.1).

Matsushita (1999) performed a series of drained triaxial compression creep tests for a
period of 20 minutes under a constant mean effective principal stress of 147.0 kPa. Re-
molded Toyoura sand was used in these tests after removing grains coarser than 0.297 mm
and finer than 0.074 mm by sieving. The properties of the sand were as follows: effective
diameter D10 = 0.14 mm, uniformity coefficient Cu = 1.47, specific gravity of solids Gs =
2.635. All samples for the creep tests were prepared in an attempt to have the same initial
void ratio by applying the same isotropic pressure. The initial void ratio is ei = 0.840. In the
creep tests, the samples were subjected to several levels of deviatoric stresses under drained
condition.

Since remolded Toyoura sand was used in the creep tests, a new set of parameters shown
in Table 3.4 are used in this simulation. The material parameters are obtained from a triaxial
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Figure 3.6 The strain-stress relationship of Toyoura sand in drained triaxial test (pi =147
kPa)

Table 3.4 Values of material parameters for remolded Toyoyra sand

Para. C1 C2 C3 C4 eco λ ξ α β kv m χ

Value -30.3 -93.8 -441.7 -115.7 0.947 0.022 0.51 1.0 10 35.5 -0.38 1.08

compression test, as shown in Fig.5.4. The exponent m and the consistency index kv are
obtained by fitting the creep tests. In addition, the the same strain acceleration ε̈ = 1.0×
10−4 %/sec2 is used in the simulation of loading phases.
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Figure 3.7 Comparison of data and simulations for drained creep triaxial tests on Toyoura
sand (pi =147 kPa)

Fig. 3.7 presents the creep strain rate and creep strain over time together with the numer-
ical results. Both predicted creep rate (Fig. 3.7(a)) and creep strain (Fig. 3.7(b)) agree well
with the experimental results. . In Fig. 3.7(a)), It can be observed that the relationships for
different creep stresses are expressed as straight lines, except for the creep stresses greater
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than a certain value, such as deviatoric stress q =231.08 kPa and 231.62 kPa. At the outset of
creep, the creep rates decay in a linear manner and all the lines are approximately parallel to
each other. In other words, all the samples in this study exhibit a similar creep rate change,
i.e., the same slope, which is controlled by the constant m. This can be compared to the
constant defined by m defined by Sing and Mitchell (1968).

m =−(∆log ε̇
∆log t

−1) (3.32)

In addition, a higher deviatoric stress q applied during creep will give a greater creep
rate. For the case, q =231.08 kPa, typical three stage creep of sand is characterized. The sand
packing starts to creep with a primary creep, which is followed by a very short secondary
creep and a tertiary creep. In the primary creep, the strain rate decreases continuously from
the outset of creep until it reaches a minimum, where is usually defined as the time of
creep failure. After creep failure, the strain rate increases dramatically until creep rupture.
Accordingly, the creep strain increases rapidly, as shown in Fig. 3.7(b).
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Figure 3.8 Simulation results with various levels deviatoric stresses: (a)the frictional and
(b)viscous stresses over time

The evolution of the frictional stress and the viscous stress over time at different stress
levels are shown in Fig. 7. For the case q =231.08 kPa, it can seem from 3.8(a) that the
three stages, corresponding to the primary, secondary, and tertiary creep stage, are also
recognizable. The frictional stresses increase at the primary creep stage. Then it reaches
a maximum corresponding to the inflection point in the creep curve, which represents the
second stage. Accordingly, in the third stage, the frictional stress decrease until the end
of creep test when creep rupture occurs. For lower creep stress levels, for example, below
231 kPa, only the first stage of creep can be observed and the change of frictional stress
after the onset of creep is negligible. However, the frictional stress continuously increases
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and gets infinitely close to a constant value. Correspondingly, the viscous stresses evaluate
in a converse manner to the frictional stresses, as shown in 3.8(b). Obviously, the balance
between the frictional and viscous stresses will maintain the total stress constant, which is
required by the creep test.
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Figure 3.9 The evaluation of frictional and viscous stress rates over time (a) q = 213.15
kPa, and (b) q = 231.62 kPa

Because the total stress rate in the proposed model is composed of a frictional stress
rate and a viscous stress rate, as shown in Eq. (3.2), the evaluation of the frictional and
viscous stress rates can also be analyzed during the creep test. Fig. 8 presents the changes
in frictional and viscous stress rates over time under creep stresses and q=231.62 kPa. As
can seem from Fig. 3.9(a) that the frictional stress decrease throughout the three typical
creep stage. Likewise, three stages of frictional stress rate can also be characterized. The
frictional stress decrease from a positive value to null in the first stage, and an approximate
null in the second stage, and then decrease from null to a negative value in the third stage.
Fig. 3.9(b) depicts the change of frictional and viscous stress under creep stress q=213.15
kPa. For this case, there is no failure taking place in the sample, and the frictional stress
decrease to approaches null. Fig. 3.9(a) and Fig. Fig. 3.9(b) also show that the change
pattern of the viscous stress rate is opposite to that of the frictional stress rate. This will give
rise to a vanishing total stress rate and remain the total stress constant at the creep.

The point of minimum creep rate, ε̇min is also defined as the onset of tertiary creep
hereinafter which the creep rate accelerates rapidly and the sample eventually undergoes
creep rupture or creep failure. An alternative way to denote ε̇min is the point where the
strain acceleration ε̈ = 0. Fig. 3.10 presents the evolution of the strain acceleration over
time at different stress levels. The strain acceleration can be also evaluated from Eq. (3.31).
Note that the frictional stress rate is positive at the onset of creep. Therefore, the strain
accelerations are negative for all stress levels at the beginning of the creep tests. At the
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Figure 3.10 Simulation results with various levels deviatoric stresses: the creep
acceleration over time. The absolute value of the strain acceleration is plotted in a log-log

scale in which the creep failure time t f is signed

beginning of creep tests, the strain accelerations increase conterminously. For relative low-
stress levels, the strain acceleration will approach zero asymptotically but cannot exceed
null. For example, at creep stress q=213.15 kPa, no matter how long the test last, creep
failure will not occur. This can be evidenced by Fig. 3.7(a), in which the strain rate is
concave-downward for q=213.15 kPa. For relative high creep stresses, such as q =231.06
kPa and 231.62 kPa, creep failures have occurred in the samples. It is observed that the
strain accelerations surpass zero and become positive if we zoom into Fig. 3.10 and plot the
absolute value of the strain accelerations in a log-log scale. In addition, the time to failure
decrease from t f = 12.2 min to t f = 3.1 min with the creep stress level increase from q
=231.06 kPa to 231.62 kPa, as shown in the log plot. According to Eq. (3.18), the positive
strain accelerations will lead to increase of the viscous stress, and may eventually lead to
creep rupture. It can be concluded that the coupling of viscous stress and frictional stress
can give rise to strain acceleration in granular materials at the creep. In return, the evaluation
of acceleration can affect the frictional and viscous stresses and results in the three stages of
creep in granular materials.

3.7 Conclusion

A new constitutive model is proposed for modeling viscous behaviors of granular materials.
The model consists of two components representing respectively the frictional and viscous
stresses in granular media. The development of frictional stress is modeled using a critical
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state hypoplastic constitutive model, which is able to describe the friction-induced behaviors
of granular materials. The viscous part is a differential form of the Herschel-Bulkley (HB)
model with a high order term, which is used to account for the effect of strain acceleration.

Drained stepwise strain rate triaxial tests on Toyoura sand and gravelly soil and drained
triaxial creep tests on Toyoura sand are modeled to evaluate the present model. Comparisons
between experimental results and numerical results show that the capability of the model in
describing both the strain rate effects and creep behaviors of granular materials. In the
stepwise strain rate tests, The non-isotach behavior of granular can be successfully modeled
by introducing the strain acceleration. Moreover, in the creep test, the coupling between the
frictional stress and the viscous stress gives rise to the evolution of strain acceleration. As
a consequence, three stages of creep including primary, secondary and tertiary creep can be
described in a unified way.

It is worth to note that the proposed model can not only describe the creep behavior of
the granular material but can also predict creep behavior of cohesive soil by introducing a
cohesive-related structure tensor.



Chapter 4

Study on the numerical integrations of
the hypoplastic model

4.1 Introduction

Hypoplasticity is a particular class of incrementally non-linear constitutive models (Mašín
and Khalili, 2008a). Unlike elastic-plastic models, there is no clear boundary between elas-
tic and plastic deformations in hypoplastic models. Moreover, explicit pre-definition of
yield and potential surfaces are not needed, which have been proved to be by-produced of
the particular assumptions for their constitutive equations (Wu and Bauer, 1994). The stress
rate is related to the strain rate through a well-defined tensorial function, which is gener-
ally nonlinear in the strain rate. The predictive capabilities of hypoplastic models compete
with those of advanced models based on elastoplastic frameworks, yet they only require a
nonlinear tensorial equation, which holds equally for loading and unloading, and a single
set of parameters. This, together with the availability of robust algorithms for their imple-
mentation into numerical codes, makes hypoplasticity a promising approach for modeling
the non-linear behavior of soils (Mašín and Khalili, 2008b). However, due to their com-
plex structure, hypoplastic models exhibit strongly non-linear behavior and thus require
carefully-crafted algorithms to avoid unreliable results.

Though numerous references are available on the numerical implementation of conven-
tional elastoplastic models, few works have been devoted to the hypoplastic constitutive
models. Several numerical studies have been conducted to investigate the accuracy and ef-
ficiency of local integration schemes for hypoplastic models. Explicit Euler methods with
constant step sizes were adopted in early works (Tejchman et al., 1999), while Roddeman
(1997) discussed the θ -method for stress-strain integration. Later, Heeres and de Borst



74 Study on the numerical integrations of the hypoplastic model

(2000) considered implicit integration methods, and Fellin and Ostermann (2002); Fellin
et al. (2009) proposed a method for generating the consistent tangent operator numerically.
Tamagnini et al. (2000) systematically studied the behavior of explicit and implicit meth-
ods in the integration of CLoE hypoplastic models. A comparison of different integration
schemes by Ding et al. (2015) concluded that the explicit methods with substepping and
error control are the suitable ways for hypoplasticity.

It is well known that some hypoplstic models are characterized by the bound surface,
which restricts the accessible stress state in a certain range and avoids unreasonable stress
state occurring in the computation (Wu and Niemunis, 1997). Hence, it is usually assumed
that there is no need to consider the crossing of the yield surface in an integration scheme.
For a hypoplastic model, however, if the bound surface and the failure surface possess large
difference, stress may surpass the yield surface and results in an accumulative error if there
is no stress correction scheme. Thought the integration accuracy and efficiency can be en-
hanced using only explicit adaptive integration methods, the phenomenon that some stresses
drift from the yield surface commonly exists in the analysis of boundary value problems
using finite element method. Therefore, the adaptive explicit method must deal with the
intersection of the yield surface to make sure that the updated stress states lie close to the
yield surface. The intersection to some extent complicates the integration method, but it
may cause significant errors if there is no dealing with the intersection.

In this chapter, the first key objective of the research is to study the stress integration
methods for a simple constitutive model. Particularly, a stress correction is introduced to
enhance these integration methods. The present chapter is therefore organized as follows.
In section 4.2, the basic principles underlying the formulation of the constitutive equations
for elastoplasticity and hypoplasticity are briefly outlined. Section 4.3 provides the detailed
numerical equation and the strain stress integration of the hypoplastic constitutive model.
Due to the intrinsic property of hypoplasticity, some stresses are accessible to surpass the
yield surface. To overcome this shortcoming, a stress correction algorithms is adopted. In
section 4.4, the performance of different integration methods as well as the stress correction
scheme are demonstrated by performing a series of numerical simulation. Some concluding
remarks and suggestions for further studies are finally given in section 4.5.
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4.2 General finite element equation

4.2.1 Momentum balance and weak form

Let us consider a continuum Ω delineated by surface ∂Ω as shown in Fig.4.1. We assume
that the boundary surface ∂Ω can be decomposed into two parts: Dirichlet and Neumann
boundary ∂Ωv , where a velocity vvv is specified, and Neumann boundary ∂Ωt , where a
surface traction ttt is prescribed. In addition, a body force fff is specified in the whole body as
well. We also assume the usual boundary can be expressed more succinctly by the following
equations:

∂Ω = ∂Ωv∪∂Ωt , Φ = ∂Ωv∩∂Ωt (4.1)

where the superposed line denotes a closure.
For a body with given geometry, we know the applied loads, displacement boundary

conditions, and material stress-strain law, the requirement for the finite element equations is
to determine the displacement field for the body.

Ω

∂Ωv

∂Ωt

Figure 4.1 Definition of problem domain Ω , boundary ∂Ωv and boundary ∂Ωt

For a linear continuum, the strong form consists of the balance of linear momentum and
the traction boundary conditions. The balance of linear momentum takes the form:

ρ
Dvvv
Dt
−∇∇∇ ·σσσ − fff = 0, (4.2)

where D/Dt is the material time derivative, vvv is the solid velocity, σσσ is the Cauchy stress
tensor, fff is the body force , and ∇∇∇ is the symmetric component of the gradient operator. The
relevant essential and natural boundary conditions are

vvv = v̄vv on ∂Ωv; nnn ·σσσ = t̄tt on ∂Ωt , (4.3)
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where nnn is the outward unit normal to boundary ∂Ωt , v̄vv and t̄tt are the prescribed line velocity
and force traction vectors, respectively.

To develop the weak form of the momentum conservation laws, consider a set of trial
functions

V = {vvv|vi ∈ H1;vvv = v̄ on ∂Ωv} (4.4)

and a set of variations
W = {www|wi ∈ H1;www = 0 on ∂Ωv} (4.5)

We want to find vvv ∈ V such that for all www ∈W ,
∫

Ω
www · (ρ Dvvv

Dt
−∇∇∇ ·σσσ − fff )dV = 0, (4.6)

Integrating by parts of the following term, we have
∫

Ω
www · (∇∇∇ ·σσσ)dV =

∫

Ω
∇∇∇ · (σσσT ·www)dV −

∫

Ω
σσσ : (∇∇∇www)dV (4.7)

Using the divergence theorem and substituting Eq. (4.3), we have
∫

Ω
∇∇∇ · (σσσT ·www)dV =

∫

∂Ωt

nnn · (σσσT ·www)dA =
∫

∂Ωt

www · t̄ttdA (4.8)

By combination of the above three equations, we obtained the weak form for linear momen-
tum ∫

Ω
www ·ρ Dvvv

Dt
dV +

∫

Ω
(∇∇∇www)T : σσσdV =

∫

Ω
www · fff dV +

∫

∂Ωt

www · t̄ttdA (4.9)

where superscript T is a transposition operator.

For quasi-static loading the inertia terms drop out, and we are left with the equation.
∫

Ω
(∇∇∇www)T : σσσdV =

∫

Ω
www · fff dV +

∫

∂Ωt

www · t̄ttdA (4.10)

Let us consider an abstract three-dimensional finite element. Here, the only relevant
kinematical variables are the line velocities vx , vy, and vz at each nodes. Therefore, the
generalized trial and weighting functions can be written in vector form as:

VVV =





vx

vy

vz




, WWW =





wx

wy

wz





(4.11)
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For completeness, we also write the generalized trial function V in time-integrated form as

VVV =





vx

vy

vz





=⇒ UUU =





ux

uy

uz





(4.12)

where ui(i = 1,2,3) are the nodal displacement components at each nodes. The generalized
body and traction vectors can also be written as

FFF =





fx

fy

fz




, TTT =





t̄x
t̄y
t̄z





; (4.13)

Whereas the generalized gradient of the weighting functions, as well as the force stresses,
are written in the column form

QQQ =





wx,x

wy,y

wz,z

wx,y

wy,z

wz,x





, σσσ =





σxx

σyy

σzz

τxy

τyz

τzx





(4.14)

Therefore, we can write the variational equation of the balance of linear momentum in the
more compact form

∫

Ω
QQQ ·σσσdV =

∫

Ω
WWW ·FFFdV +

∫

∂Ωt

WWW ·TTT dA (4.15)

4.2.2 Finite element formulation

The finite element formulation for the linear continuum model follows the standard Galerkin
approximation of the weak form. According to the Eq. (2.3), the strains rate can be written
as

ε̇εε =
1
2
(∇∇∇vvv+ vvv∇∇∇) (4.16)
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Therefore, the generalized strain rate vector are of the form

ε̇εε =





vx,x

vy,y

vz,z

vx,y

vy,z

vz,x





(4.17)

The similar structures of the generalized virtual strain vector QQQ and the generalized
strain rate vector ε̇εε leads to the standard Galerkin formulation of the finite element problem.
Consider the following finite element interpolation of the trial function within the finite
element domain Ωe

VVV |Ωe = NNNeȧaae, ε̇εε = BBBeȧaae (4.18)

In the preceding equations, [NNNe] is the element shape function matrix of the form

NNNe = [NNN1,NNN2, ...,NNNin], NNNi = Ni




1 0 0
0 1 0
0 0 1


 (4.19)

where Ni is the local shape function associated with element node i, ȧaae is the generalized
element nodal velocity vector, and in is the number of element nodes. The gradient operator
matrix BBBe for three-dimensional elements has the following form

BBBe = [BBB1,BBB2, ...,BBBin ], BBBi = ∇∇∇NNNi =




Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x




(4.20)

In the Galerkin approximation , the trial solution VVV and weighting functions WWW are ap-
proximated using the same collection of shape functions. So the finite element interpolation
of the weighting function can be written as

WWW |Ωe = NNNeċcce, QQQ|Ωe = BBBeċcce (4.21)

where ċcce is a vector of arbitrary constants. Therefore, the variational Eq. (4.15) can be
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expressed in terms of the global shape function matrix NNN and gradient operator BBB

∫

Ω
BBBT ·σσσdV

︸ ︷︷ ︸
FFF int

=
∫

Ω
NNNT ·FFFdV +

∫

∂Ωt

NNNT ·TTT dA
︸ ︷︷ ︸

FFFext

(4.22)

In practice, the internal and external nodal force vectors FFF int and FFFext can be evaluated from
assembling the contributions of the individual finite elements .

fff e
int =

∫

Ωe
BBBeT ·σσσdV, and fff e

ext =
∫

Ωe
NNNeT ·FFFdV +

∫

∂Ωe
t

NNNeT ·TTT dA, (4.23)

Then assemble the contributions { fff e
int} and { fff e

ext} as follows

FFF int =

nel

A
e=1

fff e
int , and FFFext =

nel

A
e=1

fff e
ext , (4.24)

where A denotes an assembly operator.

For the hypoplastic formulation, it is more convenient to write the finite element equa-
tion in rate form,

KKKȧaa = ḞFFext , (4.25)

where KKK is the tangent stiffness matrix. ȧaa is the generalized nodal velocity vector. It is easy
to show that KKK can simply be assembled from element stiffness matrices of the form

kkke =
∫

Ωe
BBBeTDDDBBBedV =⇒ KKK =

nel

A
e=1

kkke (4.26)

For the updated hypoplastic constitutive model, the generalized rate-constitutive equa-
tion is of the form

σ̇σσ = DDDε̇εε +σσσw, (4.27)

where σσσw emanate from rigid-body rotation to satisfy objectivity. The next section develops
an expression for the tangential matrices DDD for the updated hypoplastic model .

4.2.3 Implementation in Abaqus

The equations of motion together with the constitutive law form a coupled system consisting
of an initial–boundary value problem and an ordinary differential equation (Fellin and Os-
termann, 2002). A steady-state solution of this system is usually obtained by co-simulation:
the equations of motion are solved with the help of a finite-element package, and the con-
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stitutive law by a solver for ordinary differential equations. As an example, we describe
henceforth the situation for Abaqus. However, the ideas presented below are not at all based
on Abaqus. This can be used with any co-simulation-based finite-element package. The rel-
evant constitutive information is passed to Abaqus by a subroutine UMAT which is the user
subroutine for defining a material’s mechanical behavior in Abaqus and has to be supplied
by the user. Thus various constitutive models can be implemented as alternatives to the
built-in models. This function greatly increases the freedom of users dealing with various
materials. The two main functions of UMAT are:

• Updating the stresses in the FE model due to the changes of strains which are provided
by Abaqus at the start of each iteration;

• Providing a Jacobian matrix for formulating the global stiffness matrix in the FE
model.

It should be noted that the Jacobian matrix provided by UMAT does not necessarily exactly
reflect the true behavior of a material constitutive relations.

We describe the process of UMAT. Starting from an equilibrium at time ti, Abaqus per-
forms an (incremental) loading and provides the subroutine UMAT with the Cauchy stress
tensor σσσ(ti) at the beginning of the loading as well as with the time increment ∆t and an
initial guess ∆εεε i for the strain increment. The subroutine UMAT has then to supply Abaqus
with the new Cauchy stress tensor σσσ(ti +∆t); updated according to the constitutive law as
well as with the derivative of σσσ with respect to the strain increment. With this information,
a new guess for the strain increment is calculated and the whole procedure is iterated until
convergence. The precise information on the Jacobian

JJJ =
∂∆σσσ
∂∆εεε

=
∂σσσ(ti +∆t)

∂∆εεε
(4.28)

is essential to achieve fast (quadratic) convergence in the Newton-type iteration performed
by Abaqus. With a poor approximation in Eq. (4.28), the speed of convergence can be very
slow and might even demand ∆t to be very small too. One problem of the co-simulation ap-
proach is that the equilibrium iterations performed by Abaqus are decoupled from the stress
computations over a time window of length ∆t. Information between the two subsystems is
only exchanged at the beginning and at the end of this time window. Therefore, the temporal
rate of the strain tensor is not known as a function of time. Only its mean value over the
window

ε̇εε =
∆εεε
∆t

(4.29)
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is available for use in the constitutive law. Moreover, since our constitutive law is path
dependent, the simulation results might slightly depend on the loading history, i.e. on the
choice of ∆t. This, of course, is rather a problem of the modeling than a problem of dis-
cretization. A remedy is to supply an upper bound on ∆t at the price of a higher computing
time.

4.3 Stress–strain integration algorithms

The Eq.(2.9) can be recast in a more convenient form with the virtue of Euler’s theorem for
homogeneous functions (Wu and Niemunis, 1996).

σ̊σσ = (LLL −NNN⊗⃗̇εεε) : ε̇εε = Dhp(σσσ ,e,⃗̇εεε) : ε̇εε (4.30)

where ⃗̇εεε = ε̇εε/∥ε̇εε∥ stands for the direction of strain; and the symbol ⊗ denotes an outer
product between two tensors. It can be seen that the tangential stiffness tensor Dhp for the
hypoplastic model depends on the stress variables (σσσ ,e) as well as the direction of the strain
rate ⃗̇εεε . Hence the constitutive equation can be regarded as an ordinary differential equation
, for which the general time integration over an increment step t ∈ [tn, tn+1] can be written
as:

σσσn+1 = σσσn +
∫ tn+1

tn
h(σσσ ,e, ε̇εε)dτ = σσσn +DDD∆εεε +σσσw∆t, n = 1,2, ... (4.31)

where the subscript n denotes the nth step of the analysis.

In the integration of the updated hypoplastic constitutive model, all stresses are evaluated
at time tn. so the rate form Eq.(2.14) effectively takes the form:

σ̊σσ = Ise
[
C1(trσσσn)ε̇εε +C2(trε̇εε)σσσn +C3

tr(σσσnε̇εεn)

trσσσn
σσσn +C4(σσσn +σσσ∗n)∥ε̇εε∥Ie

]
(4.32)

where σσσn denotes the Cauchy stress tensor. It should be noted that, for cohesive mate-
rial, the stress tensor σσσ should be replaced by the the cohesion-related stress tensor σσσ c as
demonstrated in Eq. (2.55).

The problem can be solved numerically in time by evaluating the tangent(dropping the
time subscript n for brevity)

∂ σ̊i j

∂ ε̇mn
= Ise

[
C1ΘIIIi jmn +C2σi jδmn +C3

σi jσmn

Θ
+C4(σi j +σ∗i j)ĖmnIe

]
= di jmn (4.33)
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where IIIi jmn is a rank-four symmetric identity tensor with components

IIIi jmn =
1
2
(δimδ jn +δ jmδin) (4.34)

and Θ= trσσσ , Ėmn = ε̇mn/∥ε̇∥. Then the constitutive equation can be recast in the following
form

ṡi j = di jmnε̇mn− sikwk j +wiksk j (4.35)

Thus, the tangential tensor DDD and the incremental contributions arising from the rigid-body
rotation can be obtained in matrix forms

di jmn→ DDD, and (−εikwk j +wikεk j)→ σσσw (4.36)

The constitutive equation can be integrated by assuming a time step ∆t:

σσσn+1 = σσσn +DDD∆ε̇εε +σσσw∆t, (4.37)

where ∆εεε|Ωe = BBBe∆ȧaae is the increment of the generalized strain. The solution can be ad-
vanced step by step with different integration methods.

The evolution of the void ratio is related to the volumetric strain ε̇v = tr(ε̇εε) and ε̇ =

(1+ e) · ε̇v. A closed form of integration for the void ratio is therefore available:

en+1 = (1+ en) · exp(∆εv)−1 (4.38)

Various numerical integration methods for Eq. (4.31) are possible and a few commonly-used
methods are discussed in the following.

In our implementation, three simple integration schemes, the explicit forward Euler
method, the modified Euler method and the Crank-Nicolson method are examined. Ad-
ditionally, several adaptive explicit methods are compared with the simple integration meth-
ods. Furthermore, a stress correction scheme is adopted as a supplementary, which will be
introduced in the next section.

4.3.1 The theta method

The general form of the theta method, or generalized midpoint method (e.g. (Tamagnini
et al., 2000)), can be written as:

σσσn+1 = σσσn +∆tn+1[(1−θ) · σ̇σσn +θσ̇σσn+1] n = 1,2, ... (4.39)
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Here ∆tn+1 = tn+1− tn is the time step increment, the parameter θ ∈ [0,1] , and θ = 0
and θ = 1 correspond to an explicit forward Euler and an implicit backward Euler method,
respectively. The Crank-Nicolson (mid-point or trapezoidal) method is obtained by setting
θ = 0.5.

4.3.2 Explicit method with substepping and error control

For a given integration method, the accuracy can be improved by reducing the size of the
time increment. Thus, a simple way to increase the accuracy is to divide a given time step
into k equal substeps. Choosing k empirically does not allow the error to be controlled to
a specified tolerance, but this can be achieved using the procedure described in Wissmann
and Hauck (1983) A more powerful scheme, which enables us to adjust the substep size
automatically according to the local truncation error, was introduced by Sloan (1987). Stud-
ies have revealed that this approach has the merits of being efficient and robust for a wide
range of constitutive models. In this paper, two explicit substepping methods, namely the
Richardson extrapolation (RE) scheme and the Runge−Kutta−Fehlberg (RKF23) scheme,
are implemented and compared. Following the method proposed by Fellin and Ostermann
(2002); Fellin et al. (2009) , we collect all the stress components and state variables (if there
are) in the vector yyy for integration of Eq.(4.31).

yyy = {σ11,σ22,σ33,σ12,σ13,σ23,v1 . . .vm}T (4.40)

where σi j are stress components and vi(i = 1...m) are additional state variables,if void ratio
or strain softening related factor is included . Integration of Eq.(4.40), we have to solve the
given initial value problem

yyy′(t) = H(yyy(t)), yyy′(0) = yyy(0). (4.41)

To compute the local error in each substep of the stress integration, two different approxi-
mate solutions with different orders of accuracy (p,q) are obtained and compared, if the two
solutions are in close agreement, the approximation is accepted. Otherwise, the step size is
reduced. If the difference of the two approximation is larger than a prescribed accuracy,
then the step size is increased. For the generic substep k in the time interval [tn, tn+1], with
dimensionless size ∆Tk ∈ (0,1] given by the following equation,

∆Tk = (tk+1− tk)/(tn+1− tn)6 1 and
ns

∑
k=1

∆Tk = 1 (4.42)
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Two different approximate solutions of the evolution problem (4.41) are obtained simulta-
neously according to

yyy(p)
k+1 = yyyk +Φ1(yyyk,∆εεεn+1,∆T )∆(Tk)

(p+1) (4.43a)

yyy(q)k+1 = yyyk +Φ2(yyyk,∆εεεn+1,∆T )∆(Tk)
(q+1) (4.43b)

The two function Φ1 and Φ2 are constructed as

Φ1 : =
p

∑
i=0

k(p)
i hi(yyyk,∆εεεn+1,∆T ) (4.44a)

Φ2 : =
q

∑
i=0

k(q)i hi(yyyk,∆εεεn+1,∆T ) (4.44b)

where

hi(yyyk,∆εεεn+1,∆T ) := h(yyyk +∆T
l−1

∑
j=0

ϑl jh j,∆εεεn+1) (4.45)

For simplicity and speed, we usually set q = p+ 1. The constants k(p)
i , k(q)i and ϑl j

are used to obtained the approximated solutions of order p and q, respectively. Then the
local truncation error of the lower order method at time Tk+1 can be obtained by using the
difference of the above two approximate solution :

RRRk+1 = yyy(p)
k+1− yyy(q)k+1, and Rk+1 =

∥RRRk+1∥
∥yyy(q)k+1∥

(4.46)

The integration over the kth substep is assumed to be successful when, for a given stress
error tolerance STOL:

Rk+1 6 STOL, (4.47)

Then the new substep size can be estimated by using the following extrapolation formula:

∆Tk+1 = ∆Tk

[STOL
Rk+1

]1/(p+1)
(4.48)

If the estimated error is less than the prescribed accuracy tolerance STOL, the step is ac-
cepted and we enlarge our step size according to

∆Tk+1 = ∆Tk ·min
{

1.1,0.9
[STOL

Rk+1

]1/(p+1)
}

(4.49)
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Box 1. Adaptive method with substepping and error control

1. Initialize substep counter, vector yyy , dimensionless time and time increment:

k = 1 yyyk|k=1 = yyyn Tk = 0 ∆Tk = 1

2. Check if integration process is complete:

IF Tk = 1 GO TO 10

3. Compute approximate solutions for yyyk+1:

yyy(p)
k+1 = yyyk +Φ1(yyyk,∆εεεn+1,∆T )∆(Tk)

(p+1)

yyy(q)k+1 = yyyk +Φ2(yyyk,∆εεεn+1,∆T )∆(Tk)
(q+1)

4. Compute relative error:

Rk+1 =
∥RRRk+1∥
∥yyy(q)k+1∥

=
∥yyy(p)

k+1− yyy(q)k+1∥

∥yyy(q)k+1∥

5. Skip if the step failed:

IF Rk+1 > TOL GO TO 9

6. Update dimensionless time and vector yyy:

Tk+1 = Tk +∆Tk,yyyk+1 = yyy(q)k+1

7. Evaluate next substep size according to equations

∆Tk+1 = min
{

0.9∆Tk

[TOL
Rk+1

]1/(p+1)
,1.1∆Tk

}

8. Make the substep size less than residual dimensionless time and start a new
substep

∆Tk+1← min{∆Tk+1,1−Tk};k← k+1;Tk← Tk+1; and yyyk← yyyk+1

9. The step has failed; reduce substep size according to equations

∆Tk+1← max
{

0.9∆Tk

[TOL
Rk+1

]1/(p+1)
,0.25∆Tk

}
GO TO 3

10. Integration process is complete, the new vector yyy is obtained:

yyyn+1 = yyyk+1, EXIT

If condition (4.47) is not satisfied, i.e. the kth substep has failed, we have to reject this
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step and redo it with a new, smaller value for the step size ∆T ∗k :

∆T ∗k = ∆Tk ·max
{

0.25,0.9
[STOL

Rk+1

]1/(p+1)
}

(4.51)

Noting that the right side of Eq.(4.48) is multiplied by a safety factor to generate a
new time step. This factor attempts to prevent later steps just failing because of slight
inaccuracies in the prediction and is typically set to 0.9. Also, an upper bound 1.1 and a
lower bound 0.25 are set for each new substep so that the extrapolation will not be carried
too far. For more details about the substepping algorithm, please refer to literature (Abbo,
1997). After the integration process is complete, new stress tensor can be extracted from the
super vector yyy. The complete structure of the adaptive method is summarized in Box 1

4.3.3 Correction of Stresses to failure Surface

At the end of each increment in the integration process, the stresses may diverge from the
yield condition so that f (σσσ) > FTOL. The extent of this violation, which is commonly
known as yield surface ’drift’, depends on the accuracy of the integration scheme and the
nonlinearity of the constitutive relations. Sloan (1987) suggests that, provided the integra-
tion is performed accurately, the extent of drift from the yield surface will tend to be small
and no remedial action is required. Wu and Niemunis (1997) and Niemunis (2003b) , on
the other hand, reported that some stress states are accessible to surpass the yield surface no
matter how accurate the integration results are. In this case, the stress state is not satisfying
the yield condition, and this effect is cumulative. Hence, some form of stress correction is
advisable.

0
failure surface

response envelope

σ2

σ1

σn

σn+1
σn+1

trial

σ 1 =
 σ 2 =

 σ 3

pn

pn+1

 π plane

bound surface

Figure 4.2 The sketch of correction of stresses to yield surface
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Consider a point, which is lying outside the failure surface, defined by σσσn at (n)th step
of analysis, no matter how accurate the integration method, the stress, defined by σσσ trial

n+1 at
(n+1)th step of analysis, will violate the yield condition, as shown in Fig. 4.2, so that:

f (σσσ trial
n+1) =

√
J2(σσσ∗trial

n+1 )+ ς(Ci)I1 > FTOL, (4.52)

As any deviations from the yield condition are cumulative and may result in unaccept-
able errors in subsequent computations, the stresses should be corrected in an attempt to
satisfy the current yield condition. In these circumstances, it is assumed that the correction
is applied along the radial direction and the stress is forced back to the yield surface (Wu,
1990). With the radial return scheme, the corrected stress state takes the following form:

σσσ∗n+1 = λσσσ∗trial
n+1 , pn+1 = ptrial

n+1 , (4.53)

where p = 1/3I1 denotes the hydrostatic pressure, λ is an unknown multiplier. Using the
definition of J2, we have:

σσσ∗n+1

J2(σσσ∗n+1)
=

σσσ∗trial
n+1

J2(σσσ∗trial
n+1 )

. (4.54)

In returning the stress state to the yield surface, it is desirable that the total strain increment,
∆ε , remains unchanged, since this is consistent with the philosophy of the displacement
finite element procedure. The corrected stress state in Eq.(4.53) is satisfying the consis-
tency condition. Using Eq. (4.52) and (4.54), together with the assumption that departures
from yield surface are small and that one return step is sufficient, we have the consistency
condition expressed as:

f = λ
√

J2(σσσ∗trial
n+1 )+ ς(Ci)I1 = 0, (4.55)

which yields the unknown multiplier λ . After solution of the above equation , the stress is
updated by Eq.(4.53). The return mapping scheme can be easily adopted to incorporate the
effect of critical state and the cohesion. To this end, the constant ς can be obtained according
to Eq.(2.19) and Eq.(2.53) for constitutive equation (2.56) and (2.52), respectively.

4.4 Numerical tests for different integration strategies

To give an overall assessment of the integration methods presented in Section 3, a com-
prehensive set of numerical tests is conducted for the constitutive model (2.52). Firstly,
drained and undrained triaxial compression tests are modeled. Next, the influences of stress



88 Study on the numerical integrations of the hypoplastic model

correction on the stress-strain relation in drained and undrained triaxial tests are evaluated.
The relative error that denotes how much the stresses drift from the yield surface has been
studied as well. Thirdly, incremental stress envelopes are calculated for various initial stress
states and loading conditions. These kinds of numerical tests are conducted on the integra-
tion point level. The influence of the loading path, the direction of the strain increment, and
the initial state on the accuracy and robustness of the methods are discussed. Finally, three
particular boundary problems, namely a rigid footing test, a tunnel excavation in soil, and
the safety factor of a homogeneous slope are solved using Finite Element Code Abaqus.
The performance of the integration methods and correction of stress on these problems are
compared in terms of their accuracy, efficiency, and robustness.

4.4.1 Triaxial compression tests

Performance of integration methods

Six integration methods are employed in the numerical triaxial compression tests: the for-
ward Euler (FE) method, the modified Euler (ME) method, the Crank-Nicolson (CN) method
and the Richardson extrapolation method with substepping and error control (REsec) and
the Runge−Kutta−Fehlberg method with substepping and error control (RKF23sec and
RKF45sec). The summary of different integration methods is given in Table 4.1.

To assess the numerical performance, an exact solution is obtained by using the RKF45
method with substeping and error control, in which the integration error tolerance is set to
10−9. The relative error, which is calculated for every step as follows:

En =
∥σσσn

exact−σσσn∥
∥σσσn

exact∥
. n = nth step (4.56)

In the modeling of triaxial compression tests, an initial isotropic stress state with σ11 =

σ22 = σ33 = 100 kPa is assumed. The initial void ratio is set to ei = 0.78 for the drained
triaxial test and ei = 0.93 for the undrained triaxial test, and the tests are strain-controlled
with a maximum axial (vertical) strain of ε̇22 = 10% being applied. The parameters used
in these simulations are shown in Table 4.2. In the numerical procedures, two kinds of
increments are adopted. In the first calculation, the loading process is divided into 10 equal
increments, which denotes large increment sizes scheme. In the second calculation, the
loading process is divided into 20 equal increments, which denotes relative fine increment
sizes scheme. For each kind of increment scheme, different substeps are performed for
the explicit Euler method and the implicit CN method. Different STOLs are applied for
the CN method. Likewise, the integration error tolerance STOL is various for the adaptive
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Table 4.1 Different integration methods for generating estimated errors.

Method Formulation Error estimation

FE σn+1 = σn +∆σn+1 Rn+1 =
∥σn+1−σn∥

σn+1

ME
σ1

n+1 = σn +∆σ1
n+1 Rn+1 =

∥σ2
n+1−σ1

n ∥
σ2

n+1σ2
n+1 = σn +0.5(∆σ1

n+1 +∆σ2
n+1)

RE

σ1
n+1 = σn +∆σ1

n+1

Rn+1 =
∥σ3

n+1−σ1
n ∥

σ3
n+1

σ2
n+1 = σn +0.5∆σ1

n+1

σ3
n+1 = σ2

n +0.5∆tn+1H(σ2
n+1)

RKF23

σ1
n+1 = σn +0.5∆σ1

n+1

Rn+1 =
∥σ k

n+1−σ3
n ∥

σ k
n+1

σ2
n+1 = σn−∆σ1

n+1 +2∆σ2
n+1

σ3
n+1 = σn +∆σ2

n+1

σ k
n+1 = σn +

1
6 ∆σ1

n+1 +
2
3 ∆σ2

n+1 +
1
6 ∆σ3

n+1

RKF45

σ1
n+1 = σn +

1
4 ∆σ1

n+1

Rn+1 =
∥σ k

n+1−σ z
n∥

σ k
n+1

σ2
n+1 = σn +

3
32 ∆σ1

n+1 +
9

32 ∆σ2
n+1

σ3
n+1 = σn +

1932
2197 ∆σ1

n+1− 7200
2197 ∆σ2

n+1 +
7296
2197 ∆σ3

n+1

σ4
n+1 = σn +

439
216 ∆σ1

n+1−8∆σ2
n+1 +

3680
513 ∆σ3

n+1−
845
4104 ∆σ4

n+1

σ5
n+1 = σn− 8

27 ∆σ1
n+1 +2∆σ2

n+1− 3544
4104 ∆σ3

n+1 +
1859
4104 ∆σ4

n+1− 11
40 ∆σ5

n+1

σ k
n+1 = σn +

25
216 ∆σ1

n+1 +
1408
2565 ∆σ3

n+1 +
2197
4104 ∆σ4

n+1− 1
5 ∆σ5

n+1

σ z
n+1 = σn +

16
135 ∆σ1

n+1 +
6656

12825 ∆σ3
n+1 +

28561
56430 ∆σ4

n+1− 9
50 ∆σ5

n+1+ 2
55 ∆σ6

n+1

explicit method with error control strategies. For each method, the integration results will
be accepted once convergence is obtained or the iteration number limit is reached.

The numerical results of drained and undrained triaxial tests obtained from various inte-
gration methods with 10 increments ( 2 substeps ) and 20 increments (1 substeps ) are shown
in Fig. 4.3 and Fig. 4.4. The substeps and maximum error of each integration method during
calculations are summarized in Table 4.3 and Table 4.4. The total substeps are the accumu-
lative substeps in the total increments. Maximum stress error denotes the maximum stress
error in the total increments.

As indicated by the data in the Table 4.3, the various integration strategies show very
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Figure 4.3 Stress-strain relations (10 increments, 2 substeps, STOL = 10−4) (a)drained
triaxial tests, and (b) undrained triaxial tests
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Figure 4.4 Stress-strain relations (20 increments, 1 substeps, STOL = 10−4) (a)drained
triaxial tests, and (b) undrained triaxial tests

Table 4.2 Parameters for numerical simulation of the drained triaxial test

Para. C1 C2 C3 C4 e0 λ ξ α β

Value -30.56 -90.93 -375.35 -107.09 0.957 0.022 0.061 1.5 1.0

different behavior. The simple forward Euler (FE) method with single substep gives the
roughest estimation of the stress-strain response for both the drained and undrained triaxial
test. Indeed, the relative error produced by this scheme reached 0.0365 and 1.344 for drained
and undrained tests, respectively, which can easily lead to unacceptable results in finite
element calculations due to error accumulation. With increasing the number of substeps, the
relative error increase. However, the stress error in the undrained test is still not satisfactory.
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Table 4.3 Performance of different integration methods for the triaxial test (10 increments))

Method
Drained test Undrained test

Total
substeps

Maximum
Stress error

Total
substeps

Maximum
Stress error

FE
2 substeps 20 3.6447×10−2 20 1.3443
20 substeps 200 2.5379×10−3 200 1.4907×10−2

100 substeps 1000 4.9987×10−4 1000 2.8393×10−3

ME
2 substeps 20 4.1771×10−3 20 0.35299
20 substeps 200 1.1497×10−4 200 6.095×10−4

100 substeps 1000 4.5241×10−5 1000 2.2028×10−5

CN method (2 substeps)
STOL = 10−1 20 1.0168×10−2 20 5.0406×10−2

STOL = 10−2 20 5.8278×10−3 20 3.0047 ×10−2

STOL = 10−3 20 5.5931×10−3 20 2.979 ×10−2

STOL = 10−4 20 5.5616×10−3 20 2.9787×10−2

CN method (20 substeps)
STOL = 10−1 200 3.7791×10−4 200 9.8036×10−4

STOL = 10−2 200 6.9199×10−5 200 3.1577×10−4

STOL = 10−3 200 5.7284×10−5 200 2.6922×10−4

STOL = 10−4 200 5.6718×10−5 200 2.6614 ×10−4

MEsec method
STOL = 10−1 78 2.1806×10−3 139 1.5462×10−2

STOL = 10−2 120 9.8354×10−4 142 2.1586×10−3

STOL = 10−3 122 1.1362×10−4 138 2.4943×10−4

STOL = 10−4 241 1.6432×10−5 274 2.6199×10−5

STOL = 10−6 2178 1.2466×10−7 1876 2.6876×10−7

REsec method
STOL = 10−1 82 4.7348×10−2 168 3.7314×10−2

STOL = 10−2 108 3.6243×10−3 64 1.5343×10−2

STOL = 10−3 99 1.7921×10−3 134 5.8378 ×10−3

STOL = 10−4 245 6.8076×10−4 216 1.9108×10−3

STOL = 10−6 1569 9.2606×10−5 1356 1.9587×10−4

RKF23sec method
STOL = 10−1 155 1.1314×10−3 104 2.5724 ×10−3

STOL = 10−2 88 1.1455×10−4 122 4.8971 ×10−4

STOL = 10−3 106 6.7266×10−5 152 1.7561×10−4

STOL = 10−4 119 2.2932×10−5 155 2.0948×10−5

STOL = 10−6 219 2.6641×10−7 264 2.2705×10−7
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Table 4.4 Performance of different integration methods for the triaxial test (20 increments))

Method
Drained test Undrained test

Total
substeps

Maximum
Stress error

Total
substeps

Maximum
Stress error

FE
1 substeps 20 2.5674×10−2 20 1.2743
10 substeps 200 2.373×10−3 200 1.8918×10−2

50 substeps 1000 4.7127 ×10−4 1000 3.6557×10−3

ME
1 substeps 20 2.6538×10−3 20 0.32113
10 substeps 200 6.202×10−5 200 9.6345×10−4

50 substeps 1000 2.4883×10−6 1000 3.5063×10−5

CN method (1 substeps)
STOL = 10−1 20 2.9048×10−3 20 8.2816×10−2

STOL = 10−2 20 2.7617×10−3 20 5.2308×10−2

STOL = 10−3 20 2.7315×10−3 20 5.4467×10−2

STOL = 10−4 20 2.4501×10−3 20 5.4769×10−2

CN method (10 substeps)
STOL = 10−1 200 2.8223×10−4 200 9.5735×10−4

STOL = 10−2 200 3.7108×10−5 200 5.2871×10−4

STOL = 10−3 200 3.2723×10−5 200 4.2185×10−4

STOL = 10−4 200 3.1086×10−5 200 4.2975×10−4

MEsec method
STOL = 10−1 187 1.322×10−4 161 1.5476×10−2

STOL = 10−2 240 2.3702×10−4 216 2.0051×10−3

STOL = 10−3 172 2.0073×10−4 189 2.1432×10−4

STOL = 10−4 282 1.5749×10−5 343 2.2663×10−5

REsec method
STOL = 10−1 225 1.1674×10−2 261 4.2371 ×10−2

STOL = 10−2 229 7.9004×10−3 246 1.7145×10−2

STOL = 10−3 271 1.4684×10−3 171 6.2644×10−3

STOL = 10−4 292 1.2891×10−3 366 2.074 ×10−3

RKF23sec method
STOL = 10−1 222 5.3623×10−5 177 3.2024×10−3

STOL = 10−2 190 4.159×10−5 227 4.5993×10−4

STOL = 10−3 190 2.6404×10−5 188 1.2079 ×10−4

STOL = 10−4 222 2.5566×10−6 261 1.4964×10−5

Though better than the FE method, the performance of the simple Modified Euler (ME)
method is also not very satisfactorily. The maximum error is obviously reduced compared
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with the FE method. The implicit Crank-Nicolson (CN) method with 2 substeps gives better
accuracy than either of the above explicit methods. However, the total integration error for
C–N method are not sensitive to STOL (here STOL means the error tolerance for local
iteration in implicit methods). This implies that, for a small step size (20 substeps ), the
C–N method can result in very high accuracy.

Among the three explicit adaptive methods, the Modified Euler method and Rkf23
method with substepping and error control achieved the highest accuracy with relative er-
rors around 10−5, but the computation using REsec with STOL = 10−1 gives relative coarse
accuracy. When STOL is decreased, all the adaptive explicit methods exhibit good accuracy.
The stress errors continue to reduce as STOL is reduced, and the best accuracy is achieved
when the error tolerance is set to 10−6. The total number of substeps is also counted. As
expected, these counts increase as STOL is tightened for the MEsec and REsec methods.
Among these methods, the total substeps is dramatically increased as STOL is tightened to
STOL = 10−6 For RKFsec methods, very fine accuracy can be achieved using relative fewer
substeps. This implies the RKFsec methods performances the best both in accuracy and
efficiency.

In the second calculation, whose results are shown in Table 4.4, a smaller increment
size has been used (20 equal increments). The basic features of the results are similar to the
results of the former case. In these two cases, the simple Euler methods and implicit method
have the same total substeps but different global increments. However, the integration errors
produced by the simple Euler methods and implicit method are reduced. This implies the
global increment has the fundamental effect on the performance of different methods. The
integration errors produced by adaptive explicit methods are reduced when the error toler-
ance is tightened, while the effect is not sensitive. Still, the REsec method gives the worst
prediction both in drained and undrained tests. but the RKF23sec method performances
very well. The results again confirm the accuracy and robustness of explicit RKF23 meth-
ods with substepping and an error control scheme. All in all, the numerical performance
of integration methods in the drained tests are better than that in the undrained test, which
implies all the integration methods can be strongly influenced by the stress path.

The effect of stresses Correction

To evaluate the effect of stress correction, three different initial isotropic stress states with
σ11 = σ22 = σ33 = 50/100/200 kPa are assumed. The initial void ratio is set to ei = 0.78
for the drained triaxial test and ei = 0.95 for the undrained triaxial test, and the tests are
strain-controlled with a maximum axial (vertical) strain of ε̇22 = 20% being applied. The
parameters used in these simulations are shown in Table 4.2. To eliminate the effect of
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integration methods, only the RKF23sec method with error control is employed in this sim-
ulation. The integration error tolerance STOL = 10−4, which is sufficient fine to guarantee
the accuracy of this simulation. The stress correction scheme is employed in each step to
force the stress state to the yield surface.
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Figure 4.5 Results of stress correction in triaxial tests: Stress-strain relations of (a) drained
triaxial test, (a) undrained triaxial test

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

 Mean stress / kPa

 D
ev

ia
to

ri
c 

st
re

ss
 / 

kP
a

 

 

Drained test
Undrained test

Critical state line

Peak stress state line

50 100 150 200 250 300 350 400
-250

-200

-150

-100

-50

0

50

 Mean stress / kPa

no stress correction
stress correction

f
=

√
J
2
+

ς(
C

i)
I 1

(b)

Figure 4.6 (a) stress path of triaxial tests (a) the velue of yield function f in drained triaxial
test

Fig. 4.5 presents the results of stress correction in both drained and undrained triaxial
tests. As can be observed from Fig. 4.5(a) the stress correction takes effect only after the
peak is obtained in the stress-strain curve. This implies that the stresses may violate the yield
surface if softening occurs. However, stress correction does not occur in the undrained test,
as shown in Fig. 4.5(b). The stress path of both drained and undrained tests are presented
in Fig. 4.6(a). It can be observed from Fig. 4.6(a) that the undrained stress paths do not
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Figure 4.7 The effect of stress correction on drained triaxial tests (p = 50 kPa): (a)
Stress-strain relation with various internal friction angle, and (b) relative error after stress

correction

surpass the critical state line, while the drained stress paths exceed the critical state line and
reach the peak stress state line. This reveals that the stress correction takes place in between
the domain of critical state line and the peak stress state line. Fig. 4.6(b) shows the value of
the yield function f in drained tests. It is clearly shown that the yield function f > 0 after
the stress peak is obtained. With the stress correction scheme, the yield function f become
null. Therefore, this stress correction scheme can guarantee the stress lying in or on the
yield surface.

It has been discussed in Chapter 3 that the stress will lie out of the failure surface for
some strain paths, especially for some materials with large friction angle, e.g., φ = 30o. The
effect of stress correction for materials with various friction angle has been discussed. Fig.
4.6(a) shows the stress-strain relations for different friction angles. It can be observed from
this figure that the magnitude of corrected stress increases with increasing the friction angle.
Fig. 4.6(b) shows the relative error of the stress correction in drained triaxial tests. With
increasing the friction angle, the relative error increase from 0.8% for φ = 15o to 5.5% for
φ = 45o. This further indicates the necessary of stress correction scheme in the numerical
implementation of the hypoplastic constitutive model.

4.4.2 Stress response envelopes

It is well known that the numerical performance of an integration algorithm is influenced by
the loading path (Ding et al., 2015; Tamagnini et al., 2000). In this section, the influence of
the loading direction on the performance of the various algorithms is studied based on the
Stress Response Envelope (SRE).
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The concept of stress response envelope can be adapted to represent in an effective way
the influence of loading direction on the algorithm performance. Tamagnini et al. (2000)
and Ding et al. (2015) discussed the influence of the direction of the applied strain incre-
ment, instead of strain rates, on the integration methods for the CLoE hypoplastic model and
Gudehus-Bauer hypoplastic model. The results reveal that the loading direction, as well as
the strain increment size, can strongly influence the performance of integration algorithms,
and the adaptive explicit methods show better accuracy and efficiency. Similar to their ap-
proach, the SREs for the updated hypoplastic model are computed to examine the influence
of the strain increment direction. For the sake of simplicity, only three representative in-
tegration methods are considered: the Crank-Nicolson (CN) method, the Modified Euler
method with substepping and error control (MEsec) and the Modified Euler method with
substepping and error control and stress correction.

To obtain straightforward graphical representations of the SREs, two special loading
cases are examined: Axisymmetric deformation and Simple shear loading. Each loading
cases consider two initial stress states: isotropic stress and limited stress stats. The limited
stress state represents the stresses on the failure surface. This stress state is adopted to study
this stress correction algorithm.

(I) Axisymmetric deformation, ∆ε11 = ∆ε33 =− 1√
2
∥∆εεε∥cosθε , ∆ε22 =−∥∆εεε∥sinθε

(a) Isotropic stress, p= -100 kPa, σ11 = σ22 = σ33 = -100 kPa

(b) Limited state, p= -156.3 kPa, σ11 = σ33 = -100 kPa, for σ22 =-275 kPa

(II) Simple shear, ε12 = ε21 =− 1√
2
∥∆εεε∥cosθε , ∆ε22 =−∥∆εεε∥sinθε ,

(c) Isotropic stress, p= -100 kPa, σ11 = σ22 = σ33 = -100 kPa

(d) Limited state, p= -100 kPa, σ11 = σ22 = σ33 = -100 kPa, and σ12 = 65 kPa

The norm of strain increment is constant (∥∆εεε∥ = 2.0 × 10−3), θε ∈ [0, 2π). The
parameters used in these simulations are shown in Table 4.2. To compare the performance
of the two methods, an exact solution is obtained using the MEsec method with a tight
stress integration error tolerance of STOL = 10−6 . The CN and REsec methods are then
used with the error tolerance STOL = 10−3 . As a supplement, another calculation was
conducted using the CN method with STOL = 10−3 and strain increments divided into 100
equal substeps. Additionally, the MEsec method with stress correction is considered for the
limited stress state. The results are plotted in the

√
2σ11/trσσσ : σ22/trσσσ and

√
2σ12/trσσσ :

σ22/trσσσ planes, as shown in Fig. 4.8.



4.4 Numerical tests for different integration strategies 97

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 
11

/tr

 22
/t

r

 

 

A
B
C
D
E

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

2 
11

/tr

 22
/t

r

 

 

A
B
C
D
E

(b)

bound surface

initial stress

failure surface

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 
12

/tr

 22
/t

r

A
B
C
D
 E

(c)

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1
0.1

0.2

0.3

0.4

0.5

0.6

2 12/tr

22
/tr

A
B
C
D
E

(d)

failure surface

bound surface

Figure 4.8 Stress response envelopes: (a) axisymmetric loading with isotropic stress state;
(b) axisymmetric loading with axisymmetric stress state; (c) simple shear loading with

isotropic stress sate; (d) simple shear loading with axisymmetric stress state. The
numerical results are for A the CN method with STOL = 10−3 with single step; B the CN
method with STOL = 10−3 with 100 equal substeps; C the MEsec method with STOL =
10−3; D the MEsec method with STOL = 10−6; E the REsec method with STOL = 10−6

and stress correction

As can be indicated from the above results, the numerical performance of the various
schemes is influenced by the loading direction. The CN method with STOL = 10−3 and a
single step produces the largest integration error in the extension direction for both axisym-
metric loading and simple shear loading. The numerical results of the MEsec method with
STOL = - 10−3, and the CN method with STOL = 10−3 and 100 equal substeps, are very
close to the exact solution. These results agree with the conclusions of Tamagnini et al.
(2000) and Ding et al. (2015) for their numerical implementation of the CLoE hypoplas-
tic model and Gudehus-Bauer hypoplastic model. Since the stresses lie within the failure
surface for isotropic stress state for both axisymmetric loading and simple shear, the stress
correction does not take place, see Fig. 4.8(a) and (c). On the other hand, for the limited
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stress state, the stress state lies between the bound surface and failure surface. The correc-
tions of stress take effect for both axisymmetric loading and simple shear, and the stresses,
which is beyond the failure surface, are corrected to the failure surface, see Fig. 4.8(b) and
(d).

The results also indicate that the stress integration for a hypoplastic model is affected
strongly by the step size, with much better performance being obtained when the step size
is reduced. For a relatively large increment size and a certain loading direction, the implicit
iteration may converge but give a significant error. The errors from the adaptive explicit
methods, however, can be reduced easily by tightening the tolerance STOL and thus in-
creasing the number of sub-increments. Although the stress states lying outside the bound
surface will be automatically corrected in the next time step for the updated constitutive
model. However, the stress will lie out of the failure surface for some strain paths, which
would result in large errors in FEM analysis. Thus, in FEM analysis with complex loading
conditions and large number of increments, some stresses lying outside the failure surface
can be remedied by adopting the stress correction algorithm.

4.4.3 Typical boundary value problem tests

In this section, the discussion is extended to two typical boundary value problems: a rigid
footing test and a tunnel excavation test. In the first boundary value problems, attention is
focused not only on the accuracy and robustness, but also on the computational efficiency of
the numerical schemes. As can be seen from subsection 4.4.1, the simple explicit methods
and implicit method with large step sizes can produce large errors or unsuccessful compu-
tation. In a FEM calculation, to circumvent these risks, a widely used approach is to divide
the applied step into several equal substeps. In our implementation, this kind of substepping
is adopted for the forward Euler method (with 100 equal substeps), modified Euler method
(with 100 equal substeps) and Crank-Nicolson method (with 20 equal substeps and 100
equal substeps). For Crank-Nicolson method, different stress tolerances are adopted and the
maximum number of local iterations is set to 10000. The integration results are accepted
once the error is tolerable or the maximum iteration number is reached.

In the second boundary value problems, the attention will be focused on the effect of
stress correction strategy. Still, an exact solution is assumed to be obtained by using the
RKF45sec method with STOL = 10−9. Then the calculation obtained using ME method
(10 substeps )and the ME method (10 substeps ) with stress correction are compared. For
the adaptive explicit methods, the maximum number of substep is less than 10000 and the
minimum substeps size is less than 1.0× 10−7 of the current increment size. To avoid nu-
merical failure for positive (tensile) stresses, a cohesive is given to all elements. Therefore,
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the development of tensile stresses is allowed during the computations.

Rigid footing test

A further investigation of the above numerical methods is conducted for the boundary value
problem of a rigid footing. The computation domain, as shown in Fig.4.9, is 4.0 m thick by
12 m wide and the width of the footing is w = 1.2 m with a depth of h = 0.38 m.

For the sake of simplicity, an asymmetric model was chosen for this numerical sim-
ulation. A total of 150 four node plane strain elements, involving 600 Gauss integration
points, are used. The maximum vertical displacement is d = 0.5 m, at which the vertical
force reaches its peak value, and the displacement loading process is divided into 100 equal
increments. Prior to loading the footing, an initial geostatic stress (120 kPa) is applied to
obtain negligible displacement for this model. The parameters shown in Table 4.5 are used
in this simulation and the initial void ratio ei = 0.78. As before, the results from the RKF45
method with substepping and error control are used as the exact solution for this simulation.
To ensure this solution is sufficiently accurate, the stress error tolerance STOL is set to 10−9.

4.
0m

0.6m

6.0m

Figure 4.9 Finite element meshes of the rigid footing

Table 4.5 Parameters for Rigid footing test

Para. C1 C2 C3 C4 e0 λ ξ α β c (kPa)

Value-50.1 -520.74 -1802.29 -300.57 0.957 0.022 0.061 1.5 1.0 47.6



100 Study on the numerical integrations of the hypoplastic model

Table 4.6 Results of different methods for rigid footing test (100 increments.)

Method
CPU

time (s)
Total Number
of substeps

Maximum Number
of substeps

Average
error

FE (100 substeps) 22.5 6×106 10000 1.928×10−4

FEs (100 substeps) 23.7 6×106 10000 -
ME (100 substeps) 41.8 6×106 10000 1.293×10−4

MEs (100 substeps) 43.1 6×106 10000
CN method(20 substeps)
STOL = 10−1 16.8 1.2×106 2000 2.886×10−4

STOL = 10−2 15.9 1.2×106 2000 2.886×10−4

STOL = 10−3 22 1.2×106 2000 2.886×10−4

STOL = 10−4 17.2 1.2×106 2000 2.886×10−4

CN method(100 substeps)
STOL = 10−1 38 6×106 10000 1.928×10−4

STOL = 10−2 43.5 6×106 10000 1.928×10−4

STOL = 10−3 41.9 6×106 10000 1.928×10−4

STOL = 10−4 45.7 6×106 10000 1.928×10−4

MEsec method
STOL = 10−1 16.6 317357 1407 1.525×10−4

STOL = 10−2 16.3 647377 1514 1.983×10−5

STOL = 10−3 16.9 678211 1486 7.647×10−6

STOL = 10−4 18.2 754393 1745 2.884×10−6

RKF23sec method
STOL = 10−1 24.1 84150 1223 4.076×10−5

STOL = 10−2 29.1 251326 1351 7.550×10−6

STOL = 10−3 29.5 385152 1387 1.252×10−6

STOL = 10−4 30.8 627134 1475 1.914×10−7

RKF45sec method
STOL = 10−9 29.5 644161 1429 -

The stress integration errors are evaluated from the results of at the end of calculation.
Note that the explicit Euler method with stress correction is not involved in the evaluation
of stress error. The numerical results can be found in Table 4.6, in which the “Total number
of substeps ”is calculated according to the accumulated number of substeps for all Cause
points in the whole increments, while the “Maximum number of substeps ”is the substeps
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of one Cause points with the maximum number of substeps in the whole increments.

Substep numbers
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+1.458e+02
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+2.536e+02
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+4.693e+02

(a)

 E, Max.  (Avg: 75%)
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+6.812e−01
+7.493e−01
+8.174e−01

(b)

Figure 4.10 (a) The contour of the number of substep at the 3th increament, and (b)Strain
contour of of the foundation, and The integration method is RKF45sec method with STOL

= 10−9

From Table 4.6, we find that the explicit Euler method and the CN method with a total
number of substeps of 6.0× 106 give very close results. While ME method and the CN
method cost two times of the CUP time than that of the FE method. The CPU time of
the explicit Euler with stress correction is all most the same than that of without stress
correction. The CN method with 20 substeps gives wore prediction compared with the CN
method with 100 substeps. However, the former takes less time than the later one. As
is expected, the adaptive explicit method can control the integration error and CPU time
cost effectively for a given STOL. Among the two adaptive methods, the MEsec method
is efficient but the RKF23sec method is accurate and both show the very good prediction.
Additionally, a color contour plot of the number of substeps for each element is shown in
Fig. 4.10(a). As we can see from Fig. 4.10(a), a well-defined the shear band is developed
near the loading area tests. The average number of substeps, as expected, is much higher
in the region where the shear band emerges. This indicates that the substepping scheme
reduces the size of the increments efficiently to acquire the predefined accuracy.

The constant-velocity boundary condition applied to the top surface of the foundation
causes the foundation to settle at a constant rate. Theoretically, the foundation pressure
can be increased gradually up to the failure point (termed the bearing capacity) at which
a failure surface develops. In the present finite element analysis, such a failure surface
is evident when the shear strains are plotted for the at-failure condition as shown in Fig.
4.10(b). From this figure, one can immediately notice the presence of a triangular zone
directly under the foundation, a radial zone, and a Rankine passive zone resembling the
three zones assumed by Terzaghi.
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Figure 4.11 Relations of vertical force and vertical displacement(no critical state effect

The relation of vertical force and vertical displacement is shown in Fig.4.11. The vertical
force increases non-linearly until the failure point has been achieved, where the bearing
capacity of the footing is obtained. As shown in this figure, the FE method with a single
substep fails after some steps, however, with stress correction, the FE method finishes all the
computation, albeit with an unsatisfying result. The FE method with 10 constant substeps
gives better results than the former one. However, it achieves a larger bearing capacity
than FE method with 10 constant substeps and stress correction. This indicates that the
stress correction, to some extent, can stabilize the numerical computation by avoiding the
appearing of too excessive stress states at large increment size.

Tunnel excavation

The model has a height of 60 m and a width of 60 m, which is defined using Abaqus with 446
plate strain elements, the diameter of the tunnel is 8 m in the soil. For the sake of simplicity,
an asymmetric model was chosen for the FEM simulation. The material parameters used in
this simulation are shown in the following table.

Table 4.7 Parameters for tunnel excavation in soil

Para. C1 C2 C3 C4 e0 λ ξ α β c (kPa)

Value-50.1 -541.7 -1135.24 -238.54 0.957 0.022 0.061 1.5 1.0 30

There are two steps to carry out the tunnel excavation: a geostatic step and a tunneling
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Figure 4.12 Finite element meshes of the excavation in the soil

step. For both steps, appropriate boundary conditions need to be applied. In the geostatic
step, the boundary condition for the bottom nodes is given by fixing the vertical displace-
ment. Nodes on lateral boundaries are fixed in the horizontal direction. The moment on all
nodes is set to be zero. Gravity load is applied in this step after all boundary conditions are
applied. In the second step, the elements of the tunnel is removed to model the excavation
process. In the practical tunneling process, however, a tunnel lining will be set up, which is
not considered in this simulation, since we are focusing on the effect of different integration
methods on the response of the excavation. Three integration methods, the simple Modified
Euler method(10 constant substeps), the Modified Euler method(10 constant substeps) with
stress correction and RKF45sec method with an error tolerance of STOL = 10−9, have been
used in this example.

Fig.4.13(a) and Fig.4.13(b) show the horizontal and vertical displacement after the end
of the excavation, respectively. Correspondingly, Fig.4.14(a) shows the surface settlement
on the ground surface calculated with different integration methods. As shown in this figure,
the largest surface settlement is 10 m distance from the tunnel centreline. Corresponding de-
formations at the final excavation stage along the vertical cross-section 10 m distance from
the tunnel centreline are depicted in Fig. 4.14(b). Differences in the settlement magnitudes
are due to different responses of integration method in the model. Overall, The adaptive
method with error control and the simply modified Euler method with constant substeps
gain the same results, however, the ME method with stress correction owns larger displace-
ment. Since the hypoplastic constitutive model allows some stress state outside of the yield
surface whilst bounded by the bound surface. After using the stress correction scheme, some
stresses, which are supposed to surpass the yield surface, have been forced back. The means
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Figure 4.13 The displacement after the excavation (a)horizontal direction U1 (b) vertical
direction U2
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Figure 4.14 (a)Surface settlement above tunnel centreline, (b) Variation of deformations 10
m from tunnel centreline with depth at final stage of excavation

the accessible stress range become smaller and consequently results in larger displacement
in the process of excavation.

Safety factor and failure of a homogeneous slope

The stress correction scheme is further validated by evaluating the safety factor of a homo-
geneous slope and simulating the subsequent failure process. In slope stability analysis, the
so-called shear strength reduction technique is usually applied to evaluate the safety (Peng
et al., 2015). In the strength reduction technique, the shear strength (friction angle and cohe-
sion) is reduced by a reduction factor until slope failure occurs. The safety factor is defined
by this reduction factor. In this section, the safety factor and failure of a homogeneous slope



4.4 Numerical tests for different integration strategies 105

are calculated using the proposed hypoplastic model in Chapter 2. Results from FEM using
different integration methods: the implicit CN method, the FE method, the adaptive RKF23
method and those methods with stress correction scheme, are compared.

The geometry and boundary conditions of the considered slope are shown in Fig. 4.15.
The slope is assumed to consist of cohesive soil with the material parameters listed in Table
4.8. The initial void ratio of the soil is ei = 0.88. The friction angle / and the cohesion c are
the two shear strength parameters subjected to strength reduction. In the searching process,
the actual shear strength is reduced by a factor, i.e.,

φ f = φ/Fs, c f = c/Fs, (4.57)

The reduced shear strength parameters are then used to compute the corresponding hy-
poplastic parameters C1,C2,C3,C4 by the procedure given in Chapter 2.

Table 4.8 Parameters for the homogeneous slope

Para. E (Mpa) v φ ψ e0 λ ξ α β c (kPa)

Value 100 0.35 20o 0 0.957 0.022 0.061 1.5 1.0 12

A

Figure 4.15 Geometry and boundary conditions of the slope

The considered slope is discretized by 349 four node plane strain elements. The bottom
of the slope is fixed in horizontal and vertical direction, while the lateral boundaries are fixed
in horizontal direction. To obtained the initial stress state, a geostatic step is performed by
applying 2 g gravity loading to the soil. In this analysis step, the factor Fs keeps the constant
value of 0.5 to avoid failure occurring. In the second step, the shear strength parameters
reduced by increasing the factor Fs from 0.5 to 2.0. The initiation of slope failure is defined
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at which time the computation is not convergent. Therefore, a feasible incrementation is
adopted in this simulation. The numerical results are presented in Table 4.9

Table 4.9 Results of different methods for Safety factor of slop(Automatic incrementation)

Method
CPU

time (s)
Total Number
of increments

Total Number
of substeps

Max. Number
of substeps

Safety
factor

FE (100 substeps) 229.2 488 1.396×105 48800 1.2233
FEs (100 substeps) 317.7 482 1.396×105 48200 1.2041

CN method (100 substeps)
STOL = 10−1 363.5 529 1.396×105 42900 1.284
STOL = 10−2 477.2 559 1.396×105 49300 1.3152
STOL = 10−3 555.8 545 1.396×105 54500 1.2404
STOL = 10−4 316.0 535 1.396×105 53500 1.2938

CNs method (100 substeps)
STOL = 10−1 Failed at 1st increment
STOL = 10−2 Failed at 1st increment
STOL = 10−3 Failed at 1st increment
STOL = 10−4 Failed at 1st increment

RKF23sec method
STOL = 10−1 195.6 547 7714296 5526 1.3071
STOL = 10−2 194.5 488 6908804 4949 1.2233
STOL = 10−3 221.4 542 7630232 6108 1.2992
STOL = 10−4 218.4 531 7425739 6050 1.2535

RKF23secs method
STOL = 10−1 113.0 354 4943236 3541 1.0223
STOL = 10−2 135.5 510 7211736 5166 1.2563
STOL = 10−3 141.9 510 7243457 5966 1.2563
STOL = 10−4 135.0 510 7308777 6071 1.2563

It can be observed from Table 4.9 that all explicit methods with or without stress correc-
tion scheme give rise to a safety factor approximate 1.2, This means that the slope becomes
unstable for the shear parameters of about φ = 16.7o and c = 10 kPa. However, the various
integration methods show very different performance. The forward Euler (FE) and forward
Euler with stress correction (FEs) methods finish about 480 increments of the computa-
tion with every loading increment being divided into 100 equal substeps. However, the FE
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method with stress correction cost approximate 100 s much than the forward Euler method
and gives rise to a less safety factor.

The implicit CN method with 100 equal substeps takes more than 500 increments to
obtain the safety factor. It is noted that Increasing of the error tolerances does not corre-
spondingly increase the computational time of the analysis for the CN method. The CN
method with stress correction scheme fails in the 1th increment as convergence is not ob-
tained during the local iterations. This implies the local iteration is very sensitive to the
stress state. Obviously, correction of the stresses may result in a large difference between
the current and the last substep of the local iterations. Similarly, the adaptive explicit method
with or without stress correction finishes more than 500 increments to get the safety factor.
The total number of substeps for all Gauss points is much more than the forward Euler
method and implicit CN method, while the total CPU times is less than the other methods
without substepping schemes. This further indicates that the adaptive explicit methods can
effectively save CPU time due to their adaptive nature. It is also noted that the adaptive
explicit method with the stress correction (e.g.the RKF23secs method) cost less time than
the RKF23sec method without stress correction.
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Figure 4.16 Change of the horizontal displacement at the top of the slope under different
reduction factors using different integration strategies

The above results imply that, for numerical computation with a hypoplastic model, the
stress correction scheme can significantly influence the computation. Fig. 4.16 presents
the change of the horizontal displacement at the top of the slope ( point A in Fig. 4.15)
under different reduction factors using different integration strategies. It is observed that the
computations with stress correction scheme can achieve a horizontal displacement of 0.1
m and 0.4 m for the adaptive explicit method and the forward Euler method, respectively.
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Figure 4.17 The failure surface depicted by the displacement (a,b) and the total equivalent
strain (c,d) obtained from the RKF23sec ( STOL= 10−4 ) method no stress correction

scheme (a, c) and with stress correction scheme (b,d)

However, the same methods without stress correction scheme obtain no convergence with
negligible displacement. The effect of the stress correction scheme can be interpreted by
the shear surface of the slope. Fig. 4.17(a),(b) shows the contour plots of the displacement
at the final increment. It reveals that a failure surface depicted by the displacement can
be observed in the computation with stress correction scheme, while there is no failure
surface generated in the computation without stress correction scheme. Correspondingly,
Fig. 4.17(c),(d) shows a shear band depicted by the equivalent strain in the computation with
stress correction scheme. Therefore, the failure process can be captured by the computation
using a hypoplastic constitutive model with stress correction scheme.

4.5 Conclusion

Some important aspects in solving local problems for the implementation of the updated
hypoplastic models have been investigated. The influence of factors such as the load incre-
ment size, the initial state, the load directions, and the specified error tolerance, and stress
correction on the performance of different integration strategies have been studied using tri-
axial compression tests, stress response envelopes and boundary value problems. The main
conclusions of our studies with the hypoplastic model are summarized in the following:

(1) Hypoplastic models are quite sensitive to the increment size, the loading direction, and
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the integration algorithm. Inaccurate integration methods can easily lead to unreliable
results and thus may result in computation failure. In terms of accuracy, efficiency and
robustness, adaptive explicit methods have better performance than implicit methods

(2) The implicit integration methods is sensitive to the loading direction and increment
size. A significant error can be produced for the extension loading direction, even
though convergence is achieved. On the other hand, the implicit integration methods
are not sensitive to the error tolerance compared to the Adaptive explicit methods.

(3) Adaptive explicit methods can effectively avoid many of the shortcomings of implicit
methods. They are less sensitive to the loading direction and increment size as they
can automatically reduce the step size according to the prescribed accuracy require-
ment. The latter feature ensures that the step size is reduced in highly nonlinear
regions. Not surprisingly, these techniques are quite sensitive to the specified error
tolerance due to the strong nonlinearity of the hypoplastic model. The accuracy can
be effectively improved by tightening the error tolerance, but this does not obviously
increase the number of sub-steps and the CPU time.

(4) Although the adaptive explicit method can achieve adequate numerical results, the
intrinsic shortcoming of a hypoplastic model that some stresses can lie outside the
yield surface can not be solved. This may result in inaccuracy results. To avoid this
shortcoming, stress correction technique must be employed. On one hand, the stress
correction can guarantee all stresses lying inside the yield surface. On the other hand,
it can stabilize the numerical computation of hypoplasticity in the condition of large
increment size.





Chapter 5

Numerical implementation and
simulation of the visco-hypoplastic model

5.1 Introduction

In engineering industry, the Finite element method incorporating with hypoplasticity has
been developed, thus allowing geotechnical engineer, as well as researchers, to solve some
complex boundary value problems. One of the first finite element implementation of hy-
poplastic constitutive model dates back to Sikora (Sikora, 1992). Few of early numerical
applications of hypoplasticity to soil mechanical analysis are focused on numerical inves-
tigation of soil behavior, for example, generation of shear zone in sands (Tejchman and
Bauer, 1996; Tejchman and Górski, 2010; Tejchman and Niemunis, 2006; Tejchman et al.,
2007b), soil pressure with respect to void changing (Tejchman et al., 2007a), and deforma-
tion analysis of weathered rockfill materials (Bauer, 2009; Bauer et al., 2010). Nowadays,
an increasing number of them have been found in practical geotechnical aspects, such as
tunnel design (Mašín and Herle, 2005), pile installation process (Henke and Grabe, 2008),
shallow foundations (Salciarini and Tamagnini, 2009; Sturm, 2009) and so on, but few of
them are considering the time-dependent problems.

Recently, the theory of hypoplasticity has been extended to describe time-dependent be-
havior of soils according to the over-stress theory (Perzyna, 1963, 1966). A noteworthy
visco-hypoplastic constitutive model by Niemunis (1996) has been widely used to describe
the viscous effects (including strain-rate effects and rheological behavior) of soil. Later
on, the capabilities of the visco-hypoplastic model have been numerically expanded to even
more complex applications, such as footing penetration (Qiu and Grabe, 2011) and creeping
movement of a natural slope (Van Den Ham et al., 2009). On the other hand, some viscous-
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hypoplastic models have been proposed based on the fluid theory, such as rheology, have
been developed to describe the creep of frozen soil (Xu et al., 2016), debris flow (Guo et al.,
2016; Peng et al., 2016). However, no numerical implementation of this kind of hypoplas-
tic models has been reported by using the finite element method. One possible reason is
that the visco-hypoplastic models based on the fluid theory usually contains a rheological
part, which brings unpredictable risk into the numerical computation. Especially, the model
by Xu et al. (2016) is assumed unable to implement into FEM code, because this model
contains a higher order term.

In any numerical scheme employed for the analysis of the boundary value problems it
eventually becomes necessary to integrate the constitutive equations governing the mate-
rial behavior. Whereas the numerical performance relies highly on the methods we choose
and inappropriate choices can easily lead to unsuccessful computations, unreliable results
or unacceptably long analysis times. In most cases, the implementation of a constitutive
law requires the resolution of systems of differential equations, thus requiring robust nu-
merical integration algorithms which stem from the theory of differential calculus. Such
numerical methods can be summarized in explicit and implicit methods: either an explicit
or an implicit method can be employed and each one of the two methods has its advan-
tages and shortcomings: in particular, for the integration of the elastoplastic model, the
return mapping algorithm was formulated following an implicit scheme. Explicit methods
have the advantages of being simple and straightforward to implement. Low-order explicit
methods, such as the forward Euler method and the modified Euler method, however, often
give results of low accuracy. This can lead to significant error in the numerical solutions
or unexpected failure, especially for highly non-linear models such as those involving non-
associated plastic flow. To overcome this shortcoming, Sloan (1987) introduced a substep-
ping scheme which divides an increment of strain into several substeps automatically, based
on an estimation of the local truncation error. This kind of integration method can be called
the adaptive explicit method, which will be adopted for the implementation of the proposed
visco-hypoplastic model. As is discussed in chapter 4, the stress correction scheme is of im-
portance to guarantee the numerical accuracy of the hypoplastic constitutive model. Hence,
a new stress correction strategy is applied in the implementation.

The present chapter is organized in the following. In section 5.2, the detailed numerical
equation and integration method of the visco-hypoplastic model for creep is outlined. A
stress correction scheme has been adopted to avoid numerical error in the integration of the
creep model. In section 5.3, the predictive capabilities of the visco-hypoplastic model are
examined by performing a series of numerical tests: e.g., a triaxial creep tests, and a gravity-
induced creep of a homogeneous slope. In section 5.4, an in-situ direct shear creep test is
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presented. Then this test is examined by using FEM simulation with the proposed visco-
hypoplastic model. Finally, some concluding remarks and suggestions for further studies
are given in section 5.5.

5.2 Numerical implementation of the creep model

5.2.1 Numerical equation

The creep model is constructed in terms of creep acceleration components, which are used as
the independent state variables in Umat (User defined material in Abaqus). To differentiate
the creep constitutive equation (3.21), we evaluate all strain rates and state variables at time
t with Eq. (4.32). Hence the acceleration equation can be recast in the following:

ε̈εε =−−Ise∥ε̇εε∥−m

kv

[
C1(trσσσh)ε̇εε +C2(trε̇εε)σσσh +C3

tr(σσσh · ε̇εε)
trσσσh

σσσh +C4(σσσh +σσσ∗h)∥ε̇εε∥Ie
]
. (5.1)

Noted that the stresses are constant in creep process, thus the strain rates can be obtained
by integration of the acceleration Eq. (5.1). The problem can be solved in the same way
as adopted for the hypoplastic constitutive equation in chapter 4. For integration the creep
equation, the following tangent is numerically evaluated (the subscript h is dropped as well
for brevity)

∂ ε̈i j

∂ ε̇mn
=

Ise∥ε̇εε∥−m

kv

[
C1ΘIIIi jmn +C2σi jδmn +C3

σi jσmn

Θ
+C4(σi j +σ∗i j)ĖmnIe

]
= hi jmn (5.2)

where IIIi jmn is a rank-four symmetric identity tensor with components

IIIi jmn =
1
2
(δimδ jn +δ jmδin) (5.3)

and Θ= trσσσ , Ėmn = ε̇mn/∥ε̇∥. Then the constitutive equation can be recast in the following
form:

ε̈i j = hi jmnε̇mn, (5.4)

Let HHH denotes the creep strain tangential tensor generated by hi jmn → HHH, then the creep
constitutive equation can be regarded as an ordinary differential equation, for which the
general time integration over an increment step t ∈ [tn, tn+1] can be written as:

ε̇εεn+1 = ε̇εεn +
∫ tn+1

tn
h(σσσh,σσσ v,e, ε̇εε)dτ = ε̇εεn +HHH∆εεε, n = 1,2, ... (5.5)
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where the subscript n denotes the nth step of the analysis. The evolution of the void ratio is
related to the volumetric strain ε̇v = tr(ε̇εε) and ε̇ = (1+ e) · ε̇v. A closed form of integration
for the void ratio is therefore available:

en+1 = (1+ en) · exp(∆εv)−1 (5.6)

The stress-strain integration of the basic hypoplastic model has been studied in the last
chapter. The main conclusion is that the explicit method with substepping and error control
schemes give the best performance. Herein, the adaptive method for time integration of
Eq. (5.5) will be adopted to obtain the creep strain step by step. Theologically, the strain
increment obtained from Eq. (5.5) will keep the stresses constant at the creep, i.e., the creep
strain increment should vanish the stress increment at step n:

∥∆σσσn∥= Tiny, (5.7)

Due to the numerical error, the creep strain rate obtained from Eq. (5.5) may not always
equal to the trailed strain rate in Abaqus, which may lead to numerical failure in the FEM
computation. In order to make these two strain rates equal, a stress correction algorithm
presented by Haj-Ali and Muliana (2004), as shown in subsection 5.2.2, is adopted to nu-
merically remedy the shortcoming.

5.2.2 Adaptive integration algorithm with stress correction

To implement the creep constitutive model in a numerical algorithm, Eq. (5.1) needs to
be recast in incremental form. A numerical integration method for a three-dimensional
viscoelastic ULDB balloons has been presented by Gerngross et al. (2008). We follow the
same approach for our creep constitutive equation. This method can be readily extended to
any displacement-based FEM code, where the strain components are used as independent
state variables.

At the time tm, the Umat (Abaqus interface for a user defined material) passes a time
increment ∆t and a trial strain increment ∆εεε tr

h , which is determined by the Jacobian matrix
computed at the end of the previous time increment. Likewise, the frictional stresses σσσ f

as well as the creep strain increment ∆εεεcr
m are initialized based on the integration at the

end of the previous time step. The difference between the trial and calculated creep strain
increment can be obtained, and thus its scalar measure of relative error reads:

Rn =
∥∆εεε tr

n −∆εεεcr
n ∥

∥∆εεε tr
n ∥

(5.8)
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The current integration over the nth time step is accepted if the relative error is less than
a given error tolerance TOL:

Rn 6 TOL, (5.9)

Box 1. Stress correction algorithm

1. Initialize stress, trial strain increment, time increment :

σσσn = σσσ , ∆εεε tr
n = ∆εεε tr, ∆tn = ∆t

2. Computer frictional stress and creep strain increment with ∆tn:

σσσn = σσσn−σσσn−1, ∆εεεcr
n = ε̇εεcr

n ∆tn

3. Compute relative error:

Rn =
∥RRRn∥
∥∆εεε tr

n ∥
=
∥∆εεε tr

n −∆εεεcr
n ∥

∥∆εεε tr
n ∥

4. Skip if the step failed:

IF Rn > TOL GO TO 7

5. Integrate Eq. (5.1) to obtain creep strain rate for next time step :

ε̇εεcr
n+1 = ε̇εεcr

k (subscript k denotes RKF algorithms)

6. Computer stress increment according to equation:

∆σσσn = HHH∆εεε tr
n +DDD∆ε̇εε tr

n

7. If step has failed, correct the stress increment according to equation:

∆σσσn =
[ ∂RRRn

∂∆σσσn

]−1
RRRn

8. Integration process is complete, return finial stress tensor and Jacobian ma-
trix:

σσσn+1 = σσσn +∆σσσn, JJJ =
[ ∂RRRn

∂∆σσσn

]−1
, EXIT

Then the RKF algorithm has been used to solve equation (5.1) before all the stresses and
state variables being updated. For integration of the acceleration equation, we first collect
all the creep strain rate components and state variables in the super-vector yyy

yyy = {ε̇11, ε̇22, ε̇33, ε̇12, ε̇13, ε̇23,e}T (5.10)

where ε̇i j are creep rate components. Integration of Eq. (5.10) yields the creep strain rate
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for the next time step .
ε̇εεcr

n+1,en+1← yyy′ (5.11)

Making use of tangential tensor HHH and DDD, the stress increment ∆σσσn can be obtained in
the following:

∆σσσn = DDD∆εεε tr
n +HHH∆ε̇εε tr

n (5.12)

However, the integration process would be skipped if relative error is larger than the accu-
racy requirement. In this case, we get the stress correction.

∆σσσn :=
[ ∂RRRn

∂∆σσσn

]−1
RRRn (5.13)

After the integration process is complete, UMAT exits and return the stress tensor σσσ as well
as the Jacobian matrix JJJ.

σσσn+1 = σσσn +∆σσσn, JJJ =
[ ∂RRRn

∂∆σσσn

]−1
(5.14)

Also, at the end of the increment, the history for creep strain rate and viscous stress com-
ponents are stored using the state array. The complete structure of the stress correction
algorithm is given in Box 1.

5.3 Numerical examples

In this section, two numerical simulations, e.g., triaxial creep test and gravity induced slope
creep, are examined using the visco-hypoplastic model. In this simulation, the explicit
adaptive method with a stress correction is used to integrate the constitutive equation (5.1). It
should be noted that there is no attempt to match the simulation results with the experimental
data since we only focus on the performance of the proposed model on multiple elements
modeling.

5.3.1 Triaxial creep test

The first example is a triaxial creep test simulated using the visco-hypoplastic mode in FEM.
The model has a height of 100 mm and a width of 50 mm. For the sake of simplicity, the
asymmetric element is chosen for the FEM simulation, see Fig.5.1. The material parameters
for modelling of the triaxial creep test are shown in the Table 5.1, and the initial void ratio
is set to ei = 0.92.
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Figure 5.1 The finite element model and meshes of the triaxial test sample(unit:mm)

Table 5.1 Constitutive parameters for the simulation of the triaxial creep test

Para. C1 C2 C3 C4 eco λ ξ α β kv m χ

Value -101.2 -962.1 -877.3 1229.2 0.947 0.022 0.51 1.0 10 350.5 0.5 1.08

There are two steps to conduct the creep test: Isotropic loading and creep loading. In
the isotropic loading step, an initial isotropic stress state with σ11 = σ22 = σ33 = 100 kPa is
assumed. For both steps, appropriate boundary conditions are needed to be applied. Since
asymmetric elements are included, the nodes on the left side are fixed in the horizontal
direction. and the bottom nodes are fixing in the vertical direction. In the creep loading
step, a maximum axial (vertical) loading of σ22 = 280 kPa, which is greater than the creep
threshold of this material, is applied on the top surface. In what follows, the creeping stage
is automatically carried out for a creep time of 100000 min. As is depicted in the chapter 4,
the initial conditions of strain rates, as well as the initial viscous stresses, are of significance
for the simulation result. Therefore, care should be taken for setting these initial conditions.
For an isotopically loaded model, the strain rates and viscous stresses are set to be the same
for all integration points in this model. The initial condition of strain rates and viscous stress
are shown in Table 5.2.

Table 5.2 Initial conditions and creeping load for the simulation of triaxial creep test

Index ε̇11 (%/min) ε̇22 (%/min) σv11 (kPa) σv22 (kPa) σ11 (kPa) σ22 (kPa)

Value −0.142×10−4 6.11×10−6 -100 10 -280 100
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The results of creep test are shown in Fig.5.2. Fig.5.2 (a) represent the contour plot of the
total displacement, and the corresponding displacement components are shown in Fig.5.2
(b). It is observed that the sample experiences a short period of primary creep, which is
followed by a very long time of second creep. It is also noted that the displacement rate is
increasing after approximate 40000 hours both in the horizontal and vertical direction.
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Figure 5.2 (a) The contour plot of the total displacement of the sample, and (b)the
horizontal and vertical displacement at the node M

The strain rate and strain acceleration are presented in Fig.5.3. As can be observed from
Fig.5.3(a), the strain rate decreases dramatically at the primary creep stage, and remains
nearly constant in the second creep stage. In the third creep stage, the strain rate gradually
increases. Correspondingly, the strain acceleration is positive at the beginning of creep.
The positive acceleration leads to a reduction of the strain rate. Additionally, the absolute
value of the acceleration rate in a log-log scale plot is presented in Fig.5.3(b). It reveals
that the acceleration reaches zero at 18000 min, where the minimum strain rate is reached.
This point can be characterized as the creep failure point. In the fowling time, the strain
acceleration turns to negative and remains nearly constant. This negative strain acceleration
constantly increases the strain rate in the third creep stage. From the above analysis, it can
be concluded that the evaluation of the strain acceleration leads to the generation of the three
stages of creep.

Two different types of creep strain, i.e., the integrated creep strain and the trial creep
strain, are are presented in Fig.5.4(a). Both strain strains exhibit similar trend to the devel-
opment of the creep displacement. It should be noted that integrated creep strain and the
trial strain are compared, a very good agreement is achieved in this simulation. This implies
that the stress correction scheme takes effect in this implementation.

The evolution of the viscous, the frictional, and the total stresses are presented in Fig.5.4(b).
It can be observed from this figure that the total stress remains constant at the value of σ22=
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Figure 5.3 (a) log-log plot of the creep strain rate, and (b)Semi-log plot of the strain
acceleration
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Figure 5.4 (a) The creep strain obtained from integration of the creep equation and the trial
strain rate of Abaqus, and (b) the viscous, total, and frictional stresses

-280 kPa during the whole creep process. Although the viscous stress is initially set to be
-100 kPa, it increases to 120 kPa in the primary creep stage, and then remains constant until
the strain acceleration surpasses zero. Correspondingly, the frictional stress decreases from
-180 kPa to -400 kPa. It can be observed, albeit very slowly, the viscous stress begins to
decrease after the creep failure.

5.3.2 Gravity induced creep for a homogeneous slope

In the geotechnical engineering, some new-built slope may experience long-term defor-
mation. Usually, the evaluation of the long-term stability of slops requires of the in-situ
monitoring work, which is tedious and time-consuming. Therefore, numerical simulation
of the creep slope is necessary for both economic and time consideration. In this study, the
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gravity-induced creep of a homogeneous slope is investigated using the proposed model.
The slope model has a height of 30 m , and an angel of 45o. To present the simulation
results, five positions at different depth of the slope are selected, as shown in Fig. 5.5. The
parameters is presented as Table 5.3 and the slope soil has an initial void ratio of ei = 0.88.

20.0

30.0

10.0 40.0

10.0

a

c

d

e

ba = 0 m
b = 6.6 m
c = 11.6 m
d = 16.7 m
e = 21.6 m

Figure 5.5 The finite element model and meshes of the slope(unit:m)

Table 5.3 Constitutive parameters for the simulation of the slope creep

Para. C1 C2 C3 C4 eco λ ξ α β kv m χ

Value-47.2 -81.4 -692.8 -153.1 0.927 0.012 0.61 1.5 10 45.5 -0.5 1.68

Table 5.4 Initial condition of the slope modeling

Index ε̇11 (%/min) ε̇22 ε̇33 σv11 (kPa) σv22 σv33 gravity

Value−0.182×10−4 0.811×10−6 0.111×10−8 5 -10 5 2 g

U, U1

−4.395e−02
−4.029e−02
−3.662e−02
−3.296e−02
−2.930e−02
−2.564e−02
−2.197e−02
−1.831e−02
−1.465e−02
−1.099e−02
−7.325e−03
−3.662e−03
+0.000e+00

U, U2

−1.531e−01
−1.404e−01
−1.276e−01
−1.148e−01
−1.021e−01
−8.932e−02
−7.656e−02
−6.380e−02
−5.104e−02
−3.828e−02
−2.552e−02
−1.276e−02
+0.000e+00

Figure 5.6 The contour plot of creep displacement of the slope: (U1) horizontal
displacement, and (U2) vertical displacement
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Similar to the previous test, this simulation also includes two steps. Before the creep
process, a geostatic step is performed obtain the initial geostatic stress. In this step, a 2
g gravity load is imposed on the slope. After the initial equilibrium state is obtained, the
slope begins to creep under the gravity load.During the simulation, the bottom boundary
is fixed in both horizontal and vertical direction, and the lateral boundary is fixed in the
vertical direction.The top of the slope is set to be free. The same initial viscous stress and
initial strain rate are assigned to all slope element, which is presented in the Table 5.4.
The contour plot of the horizontal and vertical displacements of the slope after 5000 hours’
creep are presented in Fig.5.6. It reveals that all creep displacements increase gradually and
then remain constant over the creep time. In addition, the creep deformation of the slope
decreases with increasing the slope depth.
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Figure 5.7 (a) The horizontal creep displacement, and (b)the vertical creep displacement at
different depth of the slope

The creep strain rates at different slopes depth over creep time are presented in Fig.
5.8(a). Similar to the development of the creep displacement, all strain rates decrease grad-
ually at the primary creep stage, and then remain constant during the rest creep time. Like-
wise, the largest strain rate in the slope is seen at the top of the slope, and the strain rate
decreases with increasing the slope depth. Correspondingly, the strain accelerations at slope
depth of 21.6 m, 16.7 m, 11.6 m and 6.6 m, as shown in Fig. 5.8(b), sequentially vanish
at creep time of 1100 hour, 1500 hour, 1300 hour and 5000 hours, respectively. However,
the strain acceleration at the top of the slope is still greater than zero at the end of the creep
time. This implies the creep of the slope is non-stop.
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Figure 5.8 (a)Creep strain rate and (b)Creep acceleration at different depth of the slope

5.4 Modeling direct shear box creep test

In the direct shear test, the top half of the specimen is translated relative to the bottom half
of the specimen in order to create a shear band/plane across the mid-height of the speci-
men (Zhang and Thornton, 2007). This test is widely used to measure the shear strength of
soil. In geotechnical engineering, the test is performed in a Casagrande shear box (square
cross-section). Usually, the direct shear box test is displacement-controlled, in which the
externally applied vertical and horizontal forces are measured, and the ratio of horizontal
to vertical load is assumed to provide an estimation of the average ratio of shear to normal
stress acting in the shear band, and thereby provide a direct measure of the angle of internal
friction. Owing to its reliability and simplicity, the direct shear box text is extended to in-
vestigate the viscous behavior of cohesive soil by modifying the displacement-control mode
to force-control mode. The direct shear creep test has advantages in mimicking the creeping
movement of a slope with a pre-existing shear surface. In this section, a force-controlled
shear device is designed to perform an in-situ creep test. Then this test is examined by using
FEM simulations with the proposed visco-hypoplastic model.

5.4.1 In-situ shear box creep test

To investigate the mechanism of slow-moving landslides, a testing tunnel was excavated be-
neath the sliding mass of the Huangtupo landslide by Three Gorges Research Center (China)
in 2012. The in-situ creep test aimed to investigate the viscous behavior of the sliding zone
soil, which is usually a composition of a large proportion of gravels and bounded by soil.
The test tunnel was excavated along nearly the strike direction of the slip surface, exposing
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a sliding zone, on which the direct shear test was carried out.
The direct shear apparatus is made of steel for reliability and comprises a reaction frame,

two servo-controlled, oil-actuated hydraulic jacks, a circulation cooling device and the box.
The shear box consists two part, i.e., a upper and a lower box. The upper box has the
dimensions 0.5×0.5×0.25 m, while the low box is 0.5×0.5×0.10 m. The The hydraulic
jacks can produce an maximal shear force of 500 kN and normal force of 1000 kN. Both
hydraulic jack has a 100 mm’s stroke. This implies that the maximal shear and normal
displacement is 100 mm. The configuration of the shear box, transducer valves, reaction
frame and the loading cylinders are shown in Fig. 5.9.

Load cell

 Oil-actuated17.5cm bore × 15cm
   stroke loading cylinder1

Ball bearing plate

Undisturbed soil column

Shear plane

Load cell

 Vertical displacement
transducer

 Horizontal displacement
transducer

Reaction support

Reaction wall

   Loading cylinder2

 2 cm gap and gap
can be changed

Handle

Bedframe (tow sides) 10 cm height 
the lower part of sample is inside

Fh

Fv

Figure 5.9 Configuration of large direct shear creep box

The in-situ creep test involved the assembly of the shear box and the application of
the forces. To as real as possible to mimic the shear movement of the landslide, a block
of sample, with near-vertical sides to the slipping surface, was prepared to approximate
dimensions of 0.5 m × 0.5 m × 0.35 m on the inclined shear surface. Then the exposed
interface was grouted flatly before the bedframe was fixed. The bedframe had a height of
0.10 m, and was used as the lower shear box, which accommodated the lower part of the
soil sample. The upper shear box was centered over the upper part of the block sample, and
stabilized by two adjustable support legs connecting with the bedframe. The gap between
the box and the block was filled with wet coarse sand. Afterwards, the loading cylinders,
transducers, and data acquisition system were instrumented.

The application of normal and shear forces were of crucial importance for the creep
test. To apply the normal and shear forces, two reaction walls in the shear direction and the
normal direction were built on the top the inclined slip surface and the left side of the tunnel
lining, respectively. The shear force was applied directly to the upper box, at an offset to the
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plane of shear. The normal load was applied through a rigid pipe supported by the tunnel
lining, which imposed a normal stress on the block. During testing, the shear and normal
force were servo controlled; and the shear displacement of the upper shear box, vertical
displacement of the loading plate, and air temperature were monitored by high-precision
transducers. The test was terminated at a horizontal displacement of approximately 100
mm, or the failure occurs in the block sample. The field set-up of the shear box and physical
dimensions are shown in Fig. 5.10.

(a)

Figure 5.10 (a) Field set-up of the test, and (b) the inclined fixed shear box

Before starting the long-term shear creep test in the test tunnel, several displacement-
control shear tests were conducted in the testing tunnel to investigate the general strength
range of creep, using the same size of intact samples. Three normal effective stresses (e.g.
100 kPa, 300 kPa and 600 kPa) are applied for the direct shear box tests. The samples were
sheared under a shear-rate controlled model with a shearing rate of 0.05 mm/min until the
shear residence become constant. Usually, 30 - 40 mm shear displacement was needed to
obtain the constant shear strength. The displacement-control shear tests gave a friction angle
of about φ = 19.6◦, and cohesion of about c = 30.5 kPa, which was used as a reference for
the assignation of the shear force in the in-situ creep test.

The in-situ shear creep test is so-called multistage creep test which is used commonly
in the current creep test. In the test process, the shear force was brought rapidly up to an
initial creep level and then was increased to the limit in several equal stress increments under
constant normal effective stress, each kept constant for 15 days. Four in-situ creep tests were
planned to conducted on the sliding surface. The first test took 34 days from July, 2015 to
August 2015. Unfortunately, after two stages of creep test, a technical problem discontinued
the test. Therefore, we carried out some short-term creep tests (two days for each stage)
instead of long-term creep test after the malfunction was resolved. In consideration of the
difficulties in maintaining the device on the inclined surface, only one test in-situ creep test
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was conducted finally. Improvement of the device is needed to make it more stable for the
current test, and afterward, more in-situ tests will be carried out in the test tunnel. Therefore,
numerical simulations of the direct shear creep tests are necessary to predict the rest tests at
the present time.

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

 Time / hour

 H
or

iz
on

ta
l d

is
pl

ac
em

en
t /

 m
m

108.2 kPa

96.5 kPa

(a)

0 50 100 150 200 250
12

13

14

15

16

17

18

19

20

 Time / hour

 H
or

iz
on

ta
l d

is
pl

ac
em

en
t /

 m
m

 

 

(b)

109.2 kPa

112.8 kPa

116.4 kPa

120.5 kPa

Figure 5.11 Creep displacement against creep time in (a) long-term creep test, and
(b)short-term creep test ( σ ′ = 255kPa)

The in-situ creep test was carried out under effect normal stress of 255 kPa. According
to the Mohr-Coulomb criteria, the peak strength of the soil was 123 kPa under σn = 255 kPa.
As interpreted in subsection 5.4.1, this test was divided into two part: the long-term creep
test and the short-term creep test. The experimental results are presented in Fig.5.11. It
can be observed that each stage of creep test starts with a rapid primary creep phase, which
is followed by a long-term secondary creep phase with nearly constant horizontal creep
displacement rate. The sample block experienced more than 12 mm shear displacement in
the long-term creep test. In the short-term creep test, the shear stress increment was very
small ( ∆τ = 3-4 kPa ). Each stage of creep test might lead to more than 1.0 mm shear
displacement. The sample block failed after 4 mm shear displacement at a shear stress of
120.5 kPa, which is very close to the assumed peak assumed peak strength.

5.4.2 Numerical simulation

Direct shear test

Two-dimensional simulations of the direct shear test using the finite element method (FEM)
have been performed on the sling zone soil. Before the simulation of the shear creep test, a
simulation of the displacement-control shear test is performed. This numerical simulation
aims to study the basic strength parameters of the sliding zone soil. In this simulation, the
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mesh size is selected in accordance with the expected shear band width (i.e. 2 cm ). The soil
in a vertical cross section is discretized into 350 plane strain elements. Drained behavior is
assumed for the soil. The interface between soil and box walls is assumed non-frictional,
and the lateral walls are assumed by smooth rigid surfaces. Additionally, the steel cap of the
shear box is assumed rigid and its rotation is prevented. Hence, the interactions between the
soil and the shear box cannot be taken into account. Instead, the upper box is constrained
in the horizontal direction to have the same displacement. Meanwhile, the top surface is
constrained in the vertical direction. The lower box is fixed in the horizontal direction, and
the bottom of the model is fixed in both direction. The shear box test is simulated by giving
the upper half of the shear box a small displacement, and the corresponding horizontal shear
load is obtained by summing the appropriate horizontal reaction force FFF . In presenting the
results of the analyses, the mean shear stress τxy is obtained by dividing the reaction force
of the upper box by the initial length of the shear box (i.e. 50 cm).

τxy =
F
L

(5.15)

where FFF and L are the reaction force and the length of the shear box, respectively. A very
small isotropic initial stress was giving as the initial stress in the sample before shearing,
and the vertical load was applied as a distributed pressure on the top of the sample. The
finite element grids and the boundary conditions are shown in Fig. 5.12. The initial void
ratio of the soil is 0.48 and the rest of the parameters are presented in Table 5.5.

Figure 5.12 Finite element model of the direct shear test

The numerical predictions are shown in Fig. 5.13. The experimental results of the
displacement-control shear box test are also shown for comparison. There is close agree-
ment between the numerical predictions and experimental results. The same peak shear
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Table 5.5 Constitutive parameters for the simulation of the direct shear test

Para. C1 C2 C3 C4 eco λ ξ α β c

Value -7.52 -74.6 -317.6 -48.8 0.55 0.032 0.51 1.2 1 30.5 kPa
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Figure 5.13 Comparison of the numerical predictions and experimental results in the direct
shear box test under various normal effective stresses

strength is obtained in all normal stress level. However, the strain-softening behavior for
high normal stress level is not well depicted. Despite this, the proposed hypoplastic con-
stitutive model and the numerical simulation can perfectly capture the load - displacement
behavior of the sliding zone soil in the shear box test.
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(b)

Figure 5.14 (a) Contour plot of the shear stress , and (b) shear displacement in direct shear
box test under normal effect stress of 300 kPa

The last increment of the shear stress under the the normal effective stress of 300 kPa is
presented in Fig. 5.14(a). As is shown in this figure, an elliptical stress concentrated zone
is depicted in the area of the shear band. The magnitude of the largest shear stress in the
shear band is very close to the shear stress in Fig.5.13. Meanwhile, the shear displacement
is mainly concentrated in the shear zone as well, see 5.14(b). The numerical results have
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validated the hypoplastic constitutive model in the simulation of the direct shear box test,
and further efforts will be made in the simulation of the direct shear creep test.

Direct shear creep test

The direct shear creep tests follow the same procedure as the direct shear box tests while
using stress-control mode. Contrary to the experimental creep test, the numerical creep test
is carried out using a single stage procedure instead of the multistage procedure. In the
creep test simulation, the horizontal force is applied at the middle of the upper box after the
vertical pressure is applied. The forces are sustained for a prescribed creep time.

The basic strength parameters of the soil were obtained from displacement-control shear
test, as shown in Table 5.12. The viscous parameters were obtained from viscometer test,
which gave the kv = 35.5 and m =−0.38. The experimental results of the direct shear creep
test in Fig. 5.11 are presented according to the multistage creep, while a superposition
method is used to separately present the experimental and numerical results at each creep
stage, see Fig.5.15.
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Figure 5.15 The numerical result of the direct shear box creep test, (a) long-term creep test,
and (b) short-term creep test

Likewise, six levels of shear stress were applied to model the direct shear creep test,
which includes two long-term creep tests (400 hours ) and four short-term creep tests (50
hours). The simulation gave a very close prediction to the first stage of creep experiment
with shear stress τxy = 96.5 kPa. In the last stage of creep test, however, the numerical
predilection of the failure time was much shorter than the experimental test. The contour
plot of the shear stress is presented in Fig. 5.16, in which both the equivalent shear stress
and the viscous shear stress after failure, are shown. Fig. 5.16(a) reveals that the shear stress
in the soil sample is non-uniform. Specifically, the shear stress is mainly concentrated in the
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shear zone, which is oriented at approximately 10◦ to the horizontal. This might be induced
by the dilation of the shear zone.

Fig. 5.16(b) presents the contour plot of the viscous shear stress at the last increment of
the creep test. It reveals that the largest viscous shear stress is concentrated near the rupture
areas. This implies these areas may significantly influence the viscous behavior of the soil
in this simulation.

(a) S, Mises
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Figure 5.16 Contour plot of (a) the equivalent shear stress , and (b) viscous shear stress in
direct shear box test under normal effect stress of 255 kPa
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Figure 5.17 Contour plot of (a) the shear strain , and (b) shear strain rate in direct shear box
test under normal effect stress of 255 kPa

The contour plot of the shear strain and the shear strain rate are shown in Fig. 5.17. Cor-
responding to the viscous shear stress in Fig. 5.16(b), the rupture areas have the largest shear
strain and shear strain rate, since these areas experienced the largest shear displacement.

5.5 Conclusion

In this chapter, the visco-hypoplastic constitutive model has been successfully implemented
into FEM code. The implementation has been validated by performing some simple bound-
ary value problems, such as a triaxial creep test and a gravity induced slope creep. Finally, a
numerical simulation of shear box creep test is performed using the proposed model. Some
key conclusions can be drawn in the following:
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Owing to the high order term (strain acceleration )in the visco-hypoplastic constitutive
model, the numerical implementation of this model is not straightforward. However, this
aim can be achieved by integrating the strain acceleration instead of the stress integration.
An adaptive explicit method with a stress correction scheme is adopted, which can signifi-
cantly reduce the integration error produced over accumulated time. The numerical model
is validated by modeling some simple boundary value problems. Finally, a direct shear box
creep experiment and numerical simulation using the proposed visco-hypoplastic model are
carried out. The comparison of the experimental results and the results from finite element
analysis shows that the visco-hypoplastic model is able to predict the behavior of soils.
However, difficulties in determination of the parameters and assignation of the initial con-
ditions are still challenges for practical application. Therefore, further investigations are
required.



Chapter 6

Conclusion and further works

6.1 Main work

Modeling of viscous behavior of soils with finite element method is a challenging topic.
It has been studied in many different disciplines by many researchers, but there are still
many open-ended questions. In this dissertation, a new model is developed to describe
the viscous behavior of the granular material. This model combines a simple critical state
hypoplastic model and rheological model. The main work and conclusions of this study can
be summarized as:

1. A simple critical state hypoplastic constitutive model is introduced for granular and
cohesive soils, as shown in chapter 2. To incorporate the critical state behavior of soil,
a newly critical function is adopted. Additionally, this model can take the cohesion
into account, and thus can model some salient behavior of cohesive soil. It should
be noted that this model is rate-independent, therefore cannot take into account the
rheological properties of granular soil.

2. Based on the rate-independent hypoplastic constitutive model in chapter 2, a rate-
dependent hypoplastic constitutive model, named as visco-hypoplastic the constitu-
tive model is developed in chapter 3 to account for the rheological behaviors, such
as acceleration effect and creep behavior, of granular materials. This viscous model
is obtained by dividing the stress rate into a frictional and a viscous part, which is
represented by the rate-independent model in chapter 2 and a high-order model with
the term of strain acceleration, respectively. This model can describe not only the
acceleration effect but also the creep behavior in granular material.

3. In order to implement the proposed visco-hypoplastic model, a comprehensive study
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of the numerical integration method for the rare independent model in chapter 4 has
been carried out. Several explicit and implicit integration methods together with a
stress correction scheme have been discussed. The performance of different inte-
gration methods has been examined by performing triaxial compression tests, stress
response tests, and some boundary value problems. In order to get proper results in
numerical computation, the stress correction scheme is necessary for the implemen-
tation of the hypoplastic model.

4. On the basis of the numerical study of the rate-independent model, an adaptive method
with stress correction scheme is proposed in chapter 5 to implement the visco-hypoplastic
model into Finite Element method. The performance of this integration scheme has
been examined by performing triaxial creep tests. Furthermore, some boundary value
problems have been analyzed using the visco-hypoplastic model.

6.2 Open-ended questions and discussion

This study proposes a new approach to incorporate the time-dependent behavior of granular
soil. Some concepts, such as acceleration effect in granular soils, accelerated loading, and
creep acceleration have been outlined. Although this new model can describe some salient
viscous behavior of granular materials, there are still some problems worthy of attention and
need to be declared, such as the limitation of the models, feasible extension or reasonable
improvement to the models. These problems are presented in below.

1. The hypoplastic model in chapter 2 possesses a Drucker-Prager type yield surface.
This feature has enabled the implementation of this model much easier. Hence it has
the same yield limit for both compression and extension. Additionally, this model
is not able to correctly model the stress path at the undrained condition. Therefore,
some modifications are needed to improve the prediction ability of this model.

2. The visco-hypoplastic constitutive model in chapter 3 has been proved to have a good
performance. It can describe not only creep tests at different stresses, but also stepwise
compression tests at different loading rates. However, the calibration of the model is a
challenge. In the simulations in chapter 3, the model parameters are obtained by fitting
experimental data. Hence, some effective methods for determining the parameters are
still in need.

3. The viso-hypoplastic model is a combination of a frictional part and a viscous part.
In this study, the frictional part of the visco-hypoplastic model is a simple hypoplastic



6.2 Open-ended questions and discussion 133

model for granular materials, but in general, the viscous behavior of clay soils is much
more obvious than that of sands. Therefore, an advanced hypoplastic model for clay,
such as the model by Mašín (2005), could be considered as a proper candidate to rep-
resent the frictional part of clay. With this combination, a new high-order hypoplastic
model for clay creep can be proposed.

4. The initial viscous stress and initial strain rate in the application of the visco-hypoplastic
constitutive model, owing to the existence of a high order term of strain, can not be
obtained in a straightforward way. One approach is to perform an accelerated-control
numerical test. Then the accumulated viscous stress can be used as the initial viscous
stress. However, this sophisticated way primarily limits the practical application of
the visco-hypoplastic.
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Appendendix I

Matrices [L ] and [N] for Eq.(2.14)

The fourth-order tensor [L ] and the second-order tensor [N] in Eq. (2.9) can be written as
a 6×6 and a 6×1 matrices, respectively. The constitutive equation (2.14) can be recast in
the following matrix form:




σ̊11
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=
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L61 L62 L63 L64 L65 L66




×




ε̇11

ε̇22

ε̇33

ε̇12

ε̇13

ε̇23




−




N11

N22

N33

N12

N13

N23




∥ε̇εε∥

Since the existence of the second term tr(ε̇εε)σσσ in the constitutive equation (2.14), the ma-
trix [L ] is shown to be unsymmetric. Therefore, it is suffices to provide the independent
components for [L ]:

L11 =C1σ̄ +C2σ11 +C3
σ11σ11

σ̄
L12 =C2σ11 +C3

σ11σ22

σ̄
L13 =C2σ11 +C3

σ11σ33

σ̄
L14 =C3

σ11σ12

σ̄
L15 =C3

σ11σ13

σ̄
L16 =C3

σ11σ23

σ̄
L21 =C2σ22 +C3

σ22σ11

σ̄
L22 =C1σ̄ +C2σ22 +C3

σ22σ22

σ̄
L23 =C2σ22 +C3

σ22σ33

σ̄
L24 =C3

σ22σ12

σ̄
L25 =C3

σ22σ13

σ̄
L26 =C3

σ22σ23

σ̄
L31 =C2σ33 +C3

σ33σ11

σ̄
L32 =C2σ33 +C3

σ33σ22

σ̄
L33 =C1σ̄ +C2σ33 +C3

σ33σ33

σ̄
L34 =C3

σ33σ12

σ̄
L35 =C3

σ33σ13

σ̄
L36 =C3

σ33σ23

σ̄
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L41 =C2σ12 +C3
σ12σ11

σ̄
L42 =C2σ12 +C3

σ12σ22

σ̄
L43 =C2σ12 +C3

σ12σ33

σ̄
L44 =C1σ̄ +C3

σ12σ12

σ̄
L45 =C3

σ12σ13

σ̄
L46 =C3

σ12σ23

σ̄
L51 =C2σ13 +C3

σ13σ11

σ̄
L52 =C2σ13 +C3

σ13σ22

σ̄
L53 =C2σ13 +C3

σ13σ33

σ̄
L54 =C3

σ13σ12

σ̄
L55 =C1σ̄ +C3

σ13σ13

σ̄
L56 =C3

σ13σ23

σ̄
L61 =C2σ23 +C3

σ23σ11

σ̄
L62 =C2σ23 +C3

σ23σ22

σ̄
L63 =C2σ23 +C3

σ23σ33

σ̄
L64 =C3

σ23σ12

σ̄
L65 =C3

σ23σ13

σ̄
L66 =C1σ̄ +C3

σ23σ23

σ̄

and we obtain the following components for [N]:

N11 =C4(σ11 +σ∗11) N22 =C4(σ22 +σ∗22) N33 =C4(σ33 +σ∗33)

N12 =C4(σ12 +σ∗12) N13 =C4(σ13 +σ∗13) N23 =C4(σ23 +σ∗23)

∥ε̇εε∥ and σ̄ in the above expressions are defined by

∥ε̇εε∥=
√

ε̇2
11 + ε̇2

22 + ε̇2
33 +2ε̇2

12 +2ε̇2
13 +2ε̇2

23

σ̄ = σ11 +σ22 +σ33
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Incremental form in Abaqus

The constitutive equation (2.14) can be integrated by assuming a time step ∆t:

∆σ11 =C1tr(σσσ)∆ε11 +C2tr(∆εεε)σ11 +C3
tr(σσσ∆e)

trσσσ
σ11 +C4(σ11 +σ∗11)∥∆εεε∥

∆σ22 =C1tr(σσσ)∆ε22 +C2tr(∆εεε)σ22 +C3
tr(σσσ∆εεε)

trσσσ
σ22 +C4(σ22 +σ∗22)∥∆εεε∥

∆σ33 =C1tr(σσσ)∆ε33 +C2tr(∆εεε)σ33 +C3
tr(σσσ∆εεε)

trσσσ
σ33 +C4(σ33 +σ∗33)∥∆εεε∥

∆σ12 =C1tr(σσσ)∆ε12 +C2tr(∆εεε)σ12 +C3
tr(σσσ∆εεε)

trσσσ
σ12 +C4(σ12 +σ∗12)∥∆εεε∥

∆σ13 =C1tr(σσσ)∆ε13 +C2tr(∆εεε)σ33 +C3
tr(σσσ∆εεε)

trσσσ
σ13 +C4(σ13 +σ∗13)∥∆εεε∥

∆σ23 =C1tr(σσσ)∆ε23 +C2tr(∆εεε)σ23 +C3
tr(σσσ∆εεε)

trσσσ
σ23 +C4(σ23 +σ∗23)∥∆εεε∥

We recast the equations in a more convenient form by virtue of Euller’s theorem for
homegeneous functions, then the integral form is:

∆σσσ = (LLL −NNN⊗ ∆⃗εεε) : ∆εεε = DDD : ∆εεε (1)

By using the components of the matrices [L ] and [N], the tangential matrix [D] can be

obtained, for instance, D1 j( j = 1 . . . 6):

D11 = L11 +N11∆ε11/∥∆εεε∥, D12 = L12 +N11∆ε22/∥∆εεε∥
D13 = L13 +N11∆ε33/∥∆εεε∥, D14 = L14 +N11∆ε12/∥∆εεε∥
D15 = L15 +N11∆ε13/∥∆εεε∥, D16 = L16 +N11∆ε23/∥∆εεε∥
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Appendendix III

Different versions of hypoplastic constitutive model

For the complete of the thesis, some mostly used hypoplascit models are presented in the
following. These model are mostly developed based on the reference model presented in
chapter 2. The introduction of these model is presented in chronological order. Normally,
the later versions of the hypoplastic model is a process of inheritance and development of
the earlier versions.

1. Gudehus and Bauer 1996

Gudehus(Gudehus, 2000) and Bauer (Bauer, 1996) proposed a model. In this model, the
fourth-order tensor LLL and the second-order tensor NNN have the following representations:

LLL = fs(â2III + σ̂σσ ⊗ σ̂σσ), NNN = fs fd â(σ̂σσ + σ̂σσ∗) (2)

where III is a second-order unity tensor, III i jkl = 0.5(IIIikIII jl + IIIilIII jk). and σ̂σσ = σσσ
trσσσ is the

normalized stress tensor. The scalar factors are functions of the mean pressure p =−trσσσ/3
and the void ratio e:

fs =
(ei

e

)β 1+ ei

ei

hs

nhi(σ̂σσ : σ̂σσ)

(−trσσσ
hs

)1−n
,and fd =

( e− ed

ec− ed

)α (3)

where ei, ec and ed are the pressure-dependent loosest, densest and the critical void ratios,
as given by

ei

ei0
=

ed

ed0
=

ec

ec0
= exp

[
−
(−trσσσ

hs

)n] (4)

and hi is another scalar factor given by

hi =
8sin2φ

3− sinφ
+1− 2

√
2sinφ

3− sinφ
( ei0− ed0

ec0− ed0

)α (5)
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The strength parameter â depends basically on the critical friction angle φc. It is also
related to the Lode angle θ by

â = â0

(√3
8
∥σσσ∗∥2 +

1− (3/2)∥σσσ∗∥2

1−
√

3/2∥σσσ∗∥cos3θ
−
√

3
8
|σσσ∗∥

)
(6)

where

â0 =

√
8
3sinφc

3− sinφc
, cos3θ =−

√
6σ̂σσ∗3

(
trσ̂σσ∗2

)3/2 (7)

The model consists of 8 parameters, which are listed in Table 4 with values used in the
numerical investigations.

Table 1 Constitutive parameters used in the calculations for Bauer and Gudehus’s model

Para. φc hs n ei0 ed0 ec0 α β

Value 30 190 MPa 0.4 1.20 0.82 0.51 0.14 1.05

2. Von wolffersdoff 1996

The version of Bauer led to the so-called version of Von Wolffersdorff (1996), in which
the limit surface was explicitly defined in this version, and pressure dependent limits for the
void ratio were also introduced: a minimum, a maximum and a critical void ratio. With
this version, laboratory tests with sand could be successfully simulated, as it enables us to
model the material behavior of sand irrespective of its state of compaction, and different
parameters are not needed for different initial densities like the previous models of Wu and
Kolymbas

The model proposed by Von Wolffersdorff (1996) is outlined as follows

σ̊σσ =LLL (σσσ ,e) : ε̇εε−NNN(σσσ ,e)∥ε̇εε∥ (8)

with the linear term
LLL = fs

1

tr(σ̂σσ2)
(F2III +a2σ̂σσ ⊗ σ̂σσ) (9)

and the non-linear term
NNN = fs fd

aF

tr(σ̂σσ2)
(σ̂σσ + σ̂σσ∗) (10)

where III is a second-order unity tensor III i jkl = 0.5(IIIikIII jl + IIIilIII jk)
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The factors for pressure and density dependency (barotropy and pyknotropy) are given
by

a =

√
3(3− sinφc)

2
√

2sinφc
, fd =

( e− ed

ec− ed

)α
,and (11)

fs =
hs

n

(ei

e

)β 1+ ei

ei

(−trσσσ
hs

)1−n
[
3+a2−a

√
3
( ei0− ed0

ec0− ed0

)α
]−1

(12)

The factor F for adapting the deviatoric yield curve to Matsuoka–Nakai is

F =

√
1
8

tan2ψ +
2− tan2ψ

2+
√

2tanψcos3θ
− 1

2
√

2
tanψ (13)

with

tanψ =
√

3∥σ̂σσ∗∥,and cos3θ =−
√

6σ̂σσ∗3
(
trσ̂σσ∗2

)3/2 (14)

The void ratios must fulfill the compression law

ei

ei0
=

ed

ed0
=

ec

ec0
= exp

[
−
(−trσσσ

hs

)n] (15)

This hypoplastic law has eight parameters: the critical friction angle φc; the granular hard-
ness hs; the void ratios ei0; ec0 and ed0; and the exponents n and β They can be easily
determined from simple index and element tests, see Table 2.

Table 2 Constitutive parameters used in the calculations for Von Wolffersdorff’s model

Para. φc hs n ei0 ed0 ec0 α β

Value 30 190 MPa 0.45 1.18 0.4 0.8 0.15 1.0

3. Herle Kolymbas 2004

The Von wolffersdoff’s version was used as the basis for further modifications. Based
onVon wolffersdoff’s model, Herle and Kolymbas (2004) proposed a hypoplastic model for
soil with low friction angle.

The model assumes the following stress–strain relation

σ̊σσ = fsLLL (σσσ ,e) : ε̇εε− fs fdNNN(σσσ ,e)∥ε̇εε∥ (16)
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with the linear term

LLL =
1

σ̂σσ : σ̂σσ
(c1F2III + c2a2σ̂σσ ⊗ σ̂σσ) (17)

and the non-linear term
NNN =

Fa
σ̂σσ : σ̂σσ

(σ̂σσ + σ̂σσ∗) (18)

where III is a second-order unity tensor III i jkl = 0.5(IIIikIII jl + IIIilIII jk)

The factors for pressure and density dependency (barotropy and pyknotropy) are given
by

a =

√
3(3− sinφc)

2
√

2sinφc
, fd =

( e− ed

ec− ed

)α (19)

and

fs =
hs

n

(ei

e

)β 1+ ei

ei

(−trσσσ
hs

)1−n
[
3c1 +a2c2−a

√
3
( ei0− ed0

ec0− ed0

)α
]−1

(20)

The factor F for adapting the deviatoric yield curve to Matsuoka–Nakai is

F =

√
1
8

tan2ψ +
2− tan2ψ

2+
√

2tanψcos3θ
− 1

2
√

2
tanψ (21)

with

tanψ =
√

3∥σ̂σσ∗∥,and cos3θ =−
√

6σ̂σσ∗3
(
trσ̂σσ∗2

)3/2 (22)

The void ratios must fulfill the compression law

ei

ei0
=

ed

ed0
=

ec

ec0
= exp

[
−
(−trσσσ

hs

)n] (23)

The scalar factors c1 and c2 are calculated using

c1 =
(1+1/3a2−1/

√
3a

1.5r

)ξ
, c2 = 1+(1− c1)

3
a2 (24)

with
ξ =

〈sinφc− sinφmob

sinφc

〉
,where sinφmob =

σ1−σ3

σ1 +σ3
(25)

σ1 and σ3 are the maximal and minimal principal stresses, sinφmob is a mobilized friction
angle and

〈〉
are Macauley brackets: < x >= (x+ |x|)/2

The model requires nine parameters: φc,hs,n,ed0,ec0,ei0,α,β and r,see Table 3.
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Table 3 Constitutive parameters used in the calculations for Herle and Kolymbas’s model

Para. φc hs n ei0 ed0 ec0 α β r

Value 22 627 kPa 0.24 5.65 1.84 3.35 0.15 1.0 1.0

4. D.Mašín version 2005

On the basic of Herle and Kolymbas’s version, Mašín (2005) modified the linear term
and the factors for pressure and density dependency (barotropy and pyknotropy) to describe
the basic behavior of clay.

Mathematical formulation of the proposed hypoplastic constitutive model for clays: The
general stress–strain relation reads

σ̊σσ = fsLLL (σσσ ,e) : ε̇εε− fs fdNNN(σσσ ,e)∥ε̇εε∥ (26)

with
NNN =LLL :

(
−Y

mmm
∥mmm∥

)
(27)

The hypoelastic tensor LLL is

LLL = 3(c1III + c2a2σ̂σσ ⊗ σ̂σσ) (28)

where III is a second-order unity tensor III i jkl = 0.5(IIIikIII jl + IIIilIII jk) and

a =

√
3(3− sinφc)

2
√

2sinφc
(29)

The degree of non-linearity Y ; with the limit value Y = 1 at Matsuoka–Nakai failure surface,
is calculated by

Y =
( √3a

3+a2 −1
)(I1I2 +9I3)(1− sin2φc)

8I3sin2φc
+

√
3a

3+a2 (30)

with stress invariants I1; I2 and I3;

I1 = trσσσ , I2 = 0.5[σσσ : σσσ − (I1)
2], Is = detσσσ (31)

The tensorial quantity m defining the hypoplastic flow rule has the following formula-
tion:

mmm =− a
F

[
σ̂σσ + σ̂σσ∗− σ̂σσ

3

( 6σ̂σσ : σ̂σσ −1
(F/a)2 + σ̂σσ : σ̂σσ

)]
(32)
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with factor F given by

F =

√
1
8

tan2ψ +
2− tan2ψ

2+
√

2tanψcos3θ
− 1

2
√

2
tanψ (33)

with

tanψ =
√

3∥σ̂σσ∗∥,and cos3θ =−
√

6σ̂σσ∗3
(
trσ̂σσ∗2

)3/2 (34)

The void ratios must fulfill the compression law

ei

ei0
=

ed

ed0
=

ec

ec0
= exp

[
−
(−trσσσ

hs

)n] (35)

Barotropy and pyknotropy factors fs and fd read

fs =−
trσσσ
λ ∗

(3+a2−2αa
√

3)−1,and fd =
[
− 2trσσσ

3pr
exp

(In(1+ e)−N
λ ∗

)]α
(36)

where pr is the reference stress 1 kPa and the scalar quantity α is calculated by

α =
1

In2
In
[λ ∗−κ∗

λ ∗+κ∗
(3+a2

a
√

3

)]
(37)

The scalar factors c1 and c2 are calculated using

c1 =
2(3+a2−2α/

√
3a)

9r
, c2 = 1+(1− c1)

3
a2 (38)

with The model requires five constitutive parameters: φc; λ ∗; κ∗ ;n and r

Table 4 Constitutive parameters used in the calculations for Mašín D.’s model

Para. φc λ ∗ κ∗ n r

Value 22.6 0.11 0.016 1.375 0.4
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