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Abstract 

The main factor responsible for triggering debris flows is rainfall. The triggering mechanism however 

is a complex combination of causal factors which can be modelled by process-based models for 

intensively surveyed catchments. To date it is not possible to conduct a large-scale analysis for 

thousands of debris flows with sufficient information about relevant parameters to make 

substantiated general statements about their triggering behaviour. This problem can be overcome 

with the aid of well-established empirical approaches which help to describe factors of interest. In this 

study the evolution of the temporal occurrence of debris flows during the last one hundred years and 

the corresponding hydrometeorological triggers of debris flows are investigated and empirical 

relationships derived. The basis for this analysis is a database of all debris flow events documented by 

local authorities as well as data of daily precipitation and temperature from public meteorological 

station networks. The specific goal of the thesis was to identify potential shifts in debris-flow 

occurrence over the last > 100 years and to determine intensity-duration thresholds for debris flow 

triggering. Finally, a Bayesian approach was used to analyse the effects of different precipitation 

parameters on debris flow triggering probability. Results are comparable to the range of former studies 

and show that the distance of a precipitation gauge to the event is critical for identifying threshold 

conditions. It also shows that frequentist approaches are sensitive to the completeness of a hazard 

inventory as well as to the method of identification of triggering event rainfall or utilisation of a rainfall 

detection algorithm. The outcomes of this study contribute to a better understanding of the reaction 

of torrential watersheds to rainfall and aid developing more reliable debris flow forecasting tools for 

early warning. 

  



 

Kurzfassung 

Regen ist eine der Hauptursachen für das Auslösen von Muren. Der Auslösemechanismus ist jedoch 

von einem komplexen Zusammenspiel von verschiedensten kausalen Faktoren abhängig, die 

üblicherweise mit Hilfe von prozessbasierten Modellen adäquat beschrieben werden können. Solche 

Modelle können meist nur für gut dokumentierte Einzugsgebiete verwendet werden. Bis zum jetzigen 

Zeitpunkt ist es nicht möglich, alle notwendigen Informationen für eine großangelegte Untersuchung 

tausender Muren durchzuführen, was notwendig wäre um eine fundierte, generelle Beschreibung des 

Auslösemechanismus zu tätigen. Mit Hilfe von etablierten empirischen Herangehensweisen kann 

diesem Problem begegnet werden. Um die Auftretenshäufigkeit und Evolution von Muren im Hinblick 

auf hydrometeorologische Auslöser für die letzten hundert Jahre zu analysieren, wurden empirische 

Zusammenhänge auf Basis von Niederschlags-Intensitäts-Diagrammen genutzt und mit anderen 

häufigkeitsbasierten Herangehensweisen kombiniert. Für den vorliegenden Zeitraum (1900-2008) ist 

es zudem notwendig, zumindest die Temperatur als Indikator für Klimawandeleffekte zu 

berücksichtigen um potenzielle Veränderungen der Auftretenshäufigkeit mit klimatischen 

Veränderungen vergleichen zu können. Das Hauptziel der Arbeit ist daher, Primärdaten zu 

Niederschlag, Temperatur und Naturgefahren zu analysieren, generelle und klimawandelbedingte 

Trends herauszuarbeiten und Niederschlags-Intensitäts-Grenzwerte zu ermitteln. Abschließend wurde 

eine mit Hilfe des Theorems nach Bayes eine Untersuchung der Effekte von verschiedenen 

Niederschlagsklassen auf die Auftretenswahrscheinlichkeit vorgenommen. Die Ergebnisse wurden mit 

bereits publizierten Arbeiten verglichen und eine Sensitivitätsanalyse durchgeführt. Sie bewegen sich 

im Spektrum von vorhergehenden Studien und zeigen, dass vor Allem der Abstand einer Messstation 

zur Mure ein wichtiger Faktor in Bezug auf die Validität der Ergebnisse ist. Ferner wurde gezeigt dass 

deskriptive, häufigkeitsbasierte Methoden einen homogen erhobenen Ereigniskatalog voraussetzen 

und abhängig davon sind, wie ein Regenereignis definiert ist bzw. welcher Algorithmus angewandt 

wird um Regenereignisse zu identifizieren. 
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1 Introduction 

Gravitational mass-movements such as avalanches, landslides and floods pose a continuous threat in 

mountainous areas. Because the underlying physical processes cannot be modelled for DFs without 

thorough investigation of site conditions and collection of specific parameters through field work 

and/or evaluation with geo-information systems (GIS), it stands for reason to use other means of 

evaluation for larger sets of data. Therefore a quantitative empirical approach oriented at hazard 

frequency (also called frequentist approach) is used taking into account that for this thesis a dataset 

consisting of both a very large temporal spectrum of 100 years as well as a large geographic spectrum 

covering most parts of mountainous Austria accounting for many different catchments with a high 

diversity of mostly unknown catchment parameters. Such an approach provides a viable solution to 

possibly find common indicators and trends of CC impacts on DFs. Especially with respect for providing 

a first approach to find patterns for hydrometeorological triggers for a large part of the Austrian Alps, 

well-established empirical approaches can be utilised to at least partly overcome the problem of 

lacking data and accurate historical resolution. 

The main parameter for the initiation of DFs is precipitation (more specifically: rainfall), but in the 

context of a study taking into account potential climatic shifts a combined approach for considering 

rainfall as well as temperature and connect this information to DF inventories where possible. 

There are two main objectives to be covered by the thesis at hand:  

1. How did the temporal occurrence of DFs evolve in Austria? 

Connected to this question are the following secondary objectives:  

a. Are there seasonal shifts occurring in events triggered?  

b. Is it possible to assess the development of occurrence rates and magnitudes for the 

last 100 years? 

Since triggering of DFs is mainly connected to rainfall:  

2. What can the examination of rainfall data tell us with regard to triggering mechanisms of DFs? 

Therefore several important secondary questions arise:  

a. What is the percentage of events triggered by precipitation (thunderstorms and 

frontal systems)?  

b. Can seasonal shifts be determined with regard to these systems and can threshold 

values for frontal rainfall be determined? 

c. Which patterns exist between magnitude, frequency, precipitation thresholds and 

seasonality over time?  
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To answer the questions within the scope of a master thesis in this rather broad context mentioned in 

the Introduction, there is a brief description of the study area, scope and available data in Study Scope 

some of the relevant information needed for conducting a proper study as well as information omitted 

(e.g. other empirical approaches, which could not be verified because of lacking data) will be explained 

in the chapter Theoretical Background, which will explain the basics of precipitation formation, 

classification and relevant parameters as well as delineate DFs in the context of other hazards. As a 

foundation for the study relevant aspects of CC, available DF data and the role of CC on such hazards 

will be described as well as approaches for dealing with uncertainties and extremes. While the Data 

preparation section will describe how the data was prepared for this thesis-project, the Methods 

present an overview of the methods used for this study, the Results show the main findings separated 

into analyses of primary data, of shifts and an empirical approach on DF initiation followed by a 

Discussion and Conclusion. An aggregated comprehensive overview of the study results is provided in 

the respective appendices. 

After the end of each chapter an emphasised section summarizes the main findings and limitations 

on a by-chapter basis. 
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2 Study Scope 

With regard to gravitational mass movements, Austria – besides Switzerland – has a special position in 

Europe. About two thirds of the country consist of mountainous regions the most part of which are 

being the European Alps. From a meteorological point of view, the Alps are a climatically transitional 

region. They are part of a major atmospheric circulation source area influenced by three major 

regimes: the Atlantic Ocean, the Mediterranean Sea and the climate of continental Europe. Generally, 

the Austrian part of the Alps can be split into four climatic regions: The northwest, northeast, 

southwest and southeast (Matulla et al., 2003). 

The study area consisted of all DFs occurring in the Republic of Austria from 1900 until 2008, which are 

indicated by the red hexagons in the map in Figure 1. 

 

Figure 1: Illustration of all events and the meteorological stations considered for analysis. While the red hexagons depict the 
2,412 events investigated, the dark blue circles show eHYD stations measuring daily precipitation. The light blue circles 
represent the ZAMG stations additionally used for analysis. The translucent circles with a black outline show all stations 
examined for suitability but not used for analysis 

In total, 2,412 documented DF events and data distributed over a region of approximately 80,000 km² 

were available for investigation. A worldwide unique debris flow event database (EDB, provided by 

IAN) was merged together with two public datasets of daily precipitation data, data from the 

Zentralanstalt für Meteorologie und Geodynamic (ZAMG) and from the Hydrographic Service of Austria 

(“eHYD-data”). From the EDB only DFs with assigned daily dates were considered. Precipitation data 

was provided for 1,649 meteorological stations. The high number for precipitation gauges results in 
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the fact that some stations were moved 1 to 9 times during their lifetime. In this case ZAMG stations 

were assigned a new name, whereas eHYD-stations kept the same iD and just the coordinates changed. 

 

Figure 2: Geologic zones of Austria (modified after Sauer et al., 1992; Sitter, 2010) 

When overlaying the map of DFs with the geologic map of Austria the majority of DFs occur in high 

alpine catchments. As a previous study showed that DFs are dominating in the Penninic napes, the 

Crystalline basement, the Upper Austroalpine basement, and Northern calcareous Alps (cf. Table 1). 

The table below summarises the study conducted by Sitter (2010). 

Geological unit Percentage of debris-like 
processes [%] 

Total Number of processes 

Bohemian Massif 0.4 236 

Northern calcareous Alps 21.0 919 

Helvetic and Klippenzone 14.1 71 

Molasse zone and neogene 
basin 

6.3 254 

Crystalline basement 30.3 1,198 

Upper Austroalpine basement 26.7 797 

Penninic napes 39.3 216 

Rhenodanubian flysch 5.5 344 
Table 1: Influence of geological conditions on DF like processes (data from Sitter, 2010). Roughly 95 % of DF occur in four 
geological units: northern calcareous Alps, crystalline basement, upper austroalpine basement, and penninic napes. 

While the Molasse and the Flysch zone would favour DF-like processes, the relief energy available in 

these zones is too low and provides a limiting factor for transport processes. In the Bohemian Massif 
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though, the relief energy would increase again but granite and gneiss are a limiting factor for debris 

input.  

The abovementioned dominant geological units for gravitational mass movements are mainly situated 

at the main Alpine ridge and mainly cover southern Vorarlberg, Tyrol, Salzburg, Styria, and Carinthia 

with about one third of the catchments. Especially the high relief in this area as well as the geological 

substrate in this area, which is very susceptible to weathering are dominant factors for such processes. 

Out of 1,649 precipitation gauges, 452 were utilised for investigating 2,034 DF events from a 

database of 2,412 DFs occurring from 1900-2008. The numbers of DFs investigated are lower, when 

the distance of the nearest station (nearest neighbour precipitation gauge) is limited. 
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3 Theoretical Background 

Like most hazardous processes, gravitational mass movements are occurring through an interrelation 

of various causal relationships determined by long-term climatic and geophysical impacts, catchment 

morphology, event history (mainly defined by basic and variable disposition), antecedent conditions 

and short-term climatic parameters (Fuchs and Keiler, 2006). 

All of these can help to describe different aspects of gravitational mass movements. Whereas the long-

term processes such as glacial retreat, debuttressing effects or climatic impacts on geomorphic 

parameters (such as the lithological characteristics; Rickenmann, 1999) are responsible for the basic 

disposition (with the long-term climatic conditions having an effect on geomorphic as well as 

ecosystem conditions influencing the potential sediment availability), short-term effects influence the 

variable disposition and thus the overall load on the system which can lead to mass movements when 

a certain load-threshold is exceeded. In other words, while short-term effects usually decide if single 

DFs can be triggered, long-term effects can affect DF behaviour on a regional to continental scale. It is 

not yet known how climatic tipping points could change the basic disposition. 

Additionally to the conditions mentioned, social dimensions also play a major role in risk perception. 

This is not only true for considerations about changing risk in future climatic conditions, but also when 

examining the history with gravitational mass movements, where thinning-out of time series providing 

information about past events is a major problem which has to be dealt with using specialised 

approaches. 

During the last decades, systematic inventories of gravitational mass movements and important 

parameters associated with their occurrence have started, but only about 100 of 1,000 (10 %) 

torrential catchments being equipped with monitoring instruments (Sitter, 2010). As especially data 

from smaller catchments is lacking, approaches like dendrogeomorphic, stratigraphic, lichenometric 

or other are necessary to inventorise the abovementioned processes (Stoffel, 2010).  

The thesis at hand is based on such an inventory of historic events that was compiled at the Institute 

of Mountain Risk Engineering (Hübl et al., 2011, 2008). The inventory was compiled using two historical 

chronicles (Brixner chronicle and Stiny chronicle) and as well as hazard reports by governmental 

institutions, and also newer information such as newspaper articles, technical reviews, as-build 

drawings, hazard reports and information from departments of the Austrian Torrent and Avalanche 

control. Background information about the EDB is provided in detail in a thesis by Sitter (2010), 

whereas the most relevant information about the data used for this study is provided in Chapter 4: 

Data Preparation and Methods. 
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In this thesis, the focus will be mainly on precipitation, since – amongst other factors – precipitation 

has by far the biggest influence on the characteristics of DF occurrence and magnitude. Associated 

parameters will be also considered because the initiation of DFs is a result of a complex interaction of 

climatic factors and the geophysical processes mentioned above on different temporal and spatial 

scales.  

For clarification, a division into main climatic factors and secondary climatic factors was made. The 

main climatic factors describe the major parameters of interest in this thesis and secondary climatic 

factors are associated ones, which were not fully be integrated in this work. 

3.1 Gravitational Mass Movements 

Figure 3 is showing the number of people reportedly being affected by natural disasters globally. 

However, it only depicts a broad classification of events regarding the international dimension making 

the classification not appropriate for the subject under study here: in this data base DFs are either 

counted under hydrological or geophysical hazards depending whether the mass movement is dry or 

wet without a consistent rule (i.e., there is a distinction by water content, but it is not explained further. 

Apparently debris flows which are part of geophysical hazards have less water content; CRED, 2009). 

It is expected that disasters of the climatological and meteorological category will also increase 

throughout the world, because mountainous areas belong to rather susceptible areas globally (The 

World Bank, 2005). For a more consistent approach it seems desirable to use the category mass 

movement and subsume all DFs as wet mass movement in this data base. 

Disaster subgroup Definition Disaster Main Types 

Geophysical Events originating from solid 
earth 

Earthquake, Volcano, Mass 
movement (dry) 

Meteorological Events caused by short-
lived/small to meso scale 
atmospheric processes (in the 
spectrum from min. to days) 

Storm 

Hydrological Events caused by deviations in 
the normal water cycle and/or 
overflow of bodies of water 
caused by wind set-up 

Flood, Mass Movement (wet) 

Climatological Events caused by long-
lived/meso to macro scale 
processes (in the spectrum 
from intra-seasonal to multi-
decadal climate variability) 

Extreme Temperature, 
Drought, Wildfire 

Biological Disaster caused by the 
exposure of living organisms to 
germs and toxic substances 

Epidemic, Insect Infestation, 
Animal Stampede 

Table 2: EM-DAT disaster definition and classification (Guha-Sapir et al., 2011) 
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Table 2 shows an overview how disasters are categorised by the UN and by EM-DAT, including a short 

definition and typical phenomena (Guha-Sapir et al., 2011). Here DFs belong to the hydrological 

category because of their water content; however these events do not seem representative for the 

current study, since only disastrous types of hazards are reported in this database instead of aiming at 

a complete inventory. EM-DAT uses the United Nation definition of a disaster being a “serious 

disruption of the functioning of society, causing widespread human, material, or environmental losses 

which exceed the ability of the affected society to cope using only its own resources” (United Nations, 

1992, s.p.). Since disasters are commonly perceived as realization of hazards which exceed the 

response capacity of a society (Coppola, 2011), DFs will be strongly underrepresented. 
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Figure 3: Number of disasters reported between 1900 and 2011 (square rooted; CRED, 2009). Time-related underreporting 
further back in times is clearly visible 

Compared to the previous decade the number of people affected as well as the number of people 

killed by disasters in Europe decreased while the number of events and the monetary damage inflicted 

increased. Globally the trend is not so clear. During the last decade hazards in Europe seem to be 
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underreported (cf. colour-coded Table 3 showing no trends). On the other side, when looking into 

yearly damage statistics the overall trend is clear. While a first guess would be that there is just neither 

a clear signal nor climatic influence in frequency and occurrence of gravitational mass movements, this 

thesis aims at thoroughly investigating this topic. 

 № of Events Killed [1,000 
people] 

Total Affected 
[1,000 people] 

Damage [Billion 
USD] 

World 1900-1984 171 39,342 4,928 2.09 

World 1985-1994 136 8,293 3,356 2.52 

World 1995-2004 204 9,095 2,468 2.52 

World 2005-2014 169 8,512 2,979 1.54 

Europe 1900-1984 35 15,472 10 0.73 

Europe 1985-1994 16 706 21 1.05 

Europe 1995-2004 23 618 18 1.33 

Europe 2005-2014 4 17 1 n.a. 
Table 3: Numbers of events, people killed and affected as well as damage inflicted in the last three decades and in the period 
before (Categories dry and wet mass movements, i.e. Avalanche, debris flow, landslide, rockfall, subsidence, and unspecified 
CRED, 2009). The table is colour coded showing larger values in red, and smaller values in green. 

When examining the Austrian EDB, the cumulative curves for all mountain-related hazards do not show 

a significant change in hazard occurrence but rather increase linearly since 1960 (cf. Figure 4). Before 

the 1960ies less events were counted, however, it cannot be excluded that this scaling break is caused 

by under-reporting in the time before 1960. DFs amount to about 10% of all mountain-related hazards 

in Austria. 

 

Figure 4: Cumulative curves for the total number of events from the EDB (21437, blue line) and DFs (2412, red line) from 1900 
to 2009 (data taken from EDB) 
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For the European Union, there is an overall increase of natural disasters (EEA, 2012) as depicted in 

Figure 5. After comparison with EM-DAT data, the trend for hydrological hazards excluding floods (with 

DFs being a sub group in the EEA report) is unclear. 

 

Figure 5: Natural disasters in EEA member countries (1980-2011; EEA, 2012) 

Because the EDB is the most extensive hazard inventory currently available in Austria, it will 

subsequently be used as reference database in the thesis. 

This historical inventory of hazardous events was compiled according to the 3W-standard (what, when, 

where) defined during the INTERREG-project DISALP (DIS-ALP, 2007; Hübl et al., 2008). Following these 

standards, the process group (water-related, snow-related, slump, glide) and the associated process 

(eleven processes related to the process group) as well as the name of the catchment, the geographic 

location including coordinates, and the date of the event (as specific as possible) were incorporated 

into the database. Where possible, the event magnitude and triggering conditions were also added. 

The event magnitude was compiled from run-out area, spatial extent, deposition heights and 
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qualitative indicators and categorised into five different classes: small, medium, large, extremely large, 

and unknown (cf. Figure 6). Category “unknown” was used for events where no or not enough 

corresponding information was assigned in the respective database entry. 

 

Figure 6: Process magnitude classification used in the EDB provided by the Institute of Mountain Risk Engineering (Hübl et al., 
2011) 

3.1.1 Dominant catchment processes in Austria 

In Austria, two general types of dominant processes were distinguished on a catchment basis: Fluvial 

and DF-like hazard processes. Additionally, some catchments which were not clearly attributable to 

one type of process are termed indifferent catchments. 



13 

 

Figure 7: Dominant catchment processes in Austria (Sitter, 2010) 

Figure 7 shows the dominant catchment processes in Austria, with DFs depicted in brown (Hübl et al. 

(2011) We see that DF like processes only occurred in catchments < 80 km², with 95 % of catchments 

prone to DFs are < 15 km². Bigger catchments thus showed predominantly fluvial behaviour. 

 

Figure 8: Overview of torrent zones in Austria (Embleton-Hamann, 2007) 

The pattern for catchments prone to DFs was already analysed by Kronfellner-Kraus (1984) and showed 

that the catchments can be classified by maximum debris-load which is determined by the orographic 

characteristics on a large-scale: zones with large and dangerous debris stores are located in zones of 

highest relief (zone A in Figure 8; highest DF occurrence), while triggering factors for torrential hazards 

in zones B and C are more complex. According Kronfellner-Kraus’ study Austria can be subdivided into 

five zones (Figure 8 and Table 4). 
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Table 4: DF zonation (from Embleton-Hamann, 2007). Torrent types follow classification defined by Aulitzky (1986) with Type 
1 being the most dangerous (high occurrence of DF, not obeying the laws of hydraulics). Type 2 are torrents with high debris 
content (mainly obeying laws of hydraulics), type 3 torrents with some debris content, and type 4 are torrents without 
significant debris load. 

Bertrand et al. (2013) emphasize that the most dangerous torrent catchments are the ones that 

regularly produce DFs. This is because the sediment volumes transported by DFs are two to three 

orders of magnitude higher than the volumes transported by floods (Mao et al., 2009) and that peak 

discharges are also considerably higher (Hungr et al., 2001), the combination of both leading to high 

impact forces in the run-out zone. 

3.1.2 Melton number 

The Melton ruggedness index or ruggedness number (Melton, 1957) is a dimensionless number which 

is a good overall measure for describing the drainage evolution of a catchment. It was found that this 

number is also related to the occurrence and intensity of geomorphic hazards in general. First it was 

used to describe basin dynamics with no specific context to gravitational mass movements, but later 

on it was increasingly used as an index if a catchment is more or less prone to geomorphic hazards 

especially those connected with sediment or water mobilisation and slope erosion (Slaymaker, 2010). 

This was further examined by Korvanen and Slaymaker (2008) who could prove a relationship of the 

Melton ruggedness index with debris fan slope as well as an inverse relationship between the latter 

and catchment area. Overall, they proved a direct relation of this index with gravitational mass 

movements as well as inverse catchment area (Rickenmann, 2009). 

Dd [
𝒌𝒎

𝒌𝒎𝟐] Ht [m] R Coupling Geomorphic 
process 

Incidence of 
hazards 

>10 >1,000 >10 High DFs High 

1-10 300-1,000 ca. 1 Intermediate Fluvial Intermediate 

<<10 >>1,000 <1 Low Mass 
movements 

High 

Table 5: Characteristics described by the Melton ruggedness number (Slaymaker, 2010). Dd… drainage density; Ht… basin relief; 
R… Melton ruggedness index 

In this context, the results of a study from Hübl et al. (2008) are supported by other research which 

shows that high-mountain valleys are much likelier to have DFs as prevalent processes, because they 

consist of smaller, more rough catchments where the initiation of DFs is much more likely than in a 

large, mid-slope catchment, which is dominated by fluvial processes (Bertrand et al., 2013). Bertrand 

states that the Melton index and the fan slope are the most important parameters indicating DF 
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occurrence (Hübl et al., 2011) Bertrand shows an overview of how the Melton ruggedness index can 

serve as an indicator in connection to drainage density and basin relief (denoted as “coupling” in Table 

5). 

3.1.3 Further classification 

Because the Melton index is not more than a roughly empirically validated indicator for geomorphic 

process prevalence, other variables are used to describe a hazard in more detail. Table 6 summarizes 

important characteristics of DF-like processes in contrast to fluvial processes for better distinction. In 

the following sub-chapter important characteristics of DFs are described in detail. 
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Displacement 
type 

Fluvial Debris-DF like 

Name Flow Fluviatile 
sediment 
transport 

DF like sediment 
transport 

DF 

Process type Clear water flood Weak sediment 
transport 

Strong sediment 
transport 

DF 

Flow behaviour Newtonian Newtonian Close to 
Newtonian 

Non-Newtonian 

Volumetric 
sediment 
concentration 

negligible 0-2 % 20-40 % >40 % 

Max. grain size mm to cm Up to dm 
diameter 

Up to m Up to m 

Density About 
1,000 kg/m³ 

<1,300 km/m³ 1,300-
1,700 km/m³ 

>1,700 kg/m³ 

Determination of 
clear water 
runoff possible 

Yes Restricted No No 

Rating curve 
feasible 

Yes Yes No No 

Qtotal/Qflood 1 1-1.4 1.4-3.5 >3.5 

Viscosity [Pa] 0.001-0.01 0.01-0.2 0.2-2 >2 

Shear strength none none none present 

Main acting 
forces 

Turbulence, 
tractive stress 

Turbulence, 
tractive stress 

Buoyancy, 
turbulence, 
tractive stress, 
dispersive 
pressure 

Buoyancy, 
dispersive 
pressure, viscous 
and frictional 
forces 

Distribution of 
sediment in the 
profile 

Solids near the 
sole (creeping, 
saltating) and 
suspended 
matter 
distributed cross-
sectionally 

Solids near the 
sole (creeping, 
saltating) and 
suspended 
matter 
distributed cross-
sectionally 

Solids and 
suspended 
matter 
distributed cross-
sectionally 

Solids distributed 
cross-sectionally 

Sorting of 
deposited 
sediment 

present present not frequent none 

Decomposition of 
depositions 

Yes Yes Yes/no No 

Damage through Water and 
suspended 
matter 

Water, 
suspended 
matter and 
rubble 

Solids and water Mainly solids (in 
interaction with 
water) 

Table 6: Properties of processes occurring in torrential catchments (Hübl, 2006) 
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3.2 Debris Flows 

The information and classification methods mentioned in the previous section are of good help for 

processing field investigations, for example when trying to classify a hazard in a consistent way to 

include it into a hazard inventory. This section describes accompanying parameters of interest in the 

context of mountain risk engineering in a more detailed way. 

As van Steijn (1996), Hungr et al. (2005) and others have shown, DF activity in a certain area can be 

described with regard to frequency (i.e. the number of occurrences of DFs) and/or magnitude (i.e. the 

size of a DF event). 

Currently, no long-term analysis of the entire event data available in the EDB in correlation to 

aforementioned parameters exists in Austria. Thus, the aim is to bridge this gap in climate-related 

information for DFs. In the Austrian Alps such processes are mainly occurring in small catchments 

(Aulitzky, 1980; Hübl et al., 2011). Since most DFs flow down torrential gorges and leave their marks, 

catchments with a general disposition towards a certain process can be identified by silent witnesses 

(Kaitna and Hübl, 2013).  

For engineering hazard mitigation it is important to know certain process characteristics, like peak flow 

depth and mean velocity, however, often basic information like dominant process type as well as 

frequency of occurrence and magnitude of the event (Mazzorana et al., 2012) are rarely available 

(Fuchs et al., 2013, 2012). 

DFs are mainly initiated by mobilisation of sediment stored in channels, which can be induced by 

channel erosion or through shallow landslides through the sudden input of large amounts of water 

both of which is directly influenced by rainfall, which can be intense or long-term rainstorm, sudden 

snowmelt, rain-on-snow events, or the sudden release of water from glaciers (glacier lake outburst 

floods; GLOF) or blockage and release, e.g. by dammed lakes. Whereas the initiation process depends 

on antecedent and initial conditions the structure of the process mainly depends on the location (cf. 

Figure 9) and morphology. 
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Figure 9: Dependence of a process from location (Rickenmann, 2009) 

Figure 9 illustrates the role which location plays with regard to gravitational mass movements and 

shows some of the causal processes that are involved in DF formation. 

3.2.1 Interactions of processes in torrents 

A DF consists of a mixture of sediment, water, and occasionally woody debris. Because of its high 

content of sediment of various sizes and its unsteady and non-uniform flow behaviour, complex 

interactions between the liquid and solid phases yield high impact forces and high flow velocities. 

These dynamics are the results of multiscale interactions between the climate system and the 

geomorphology of a catchment. Often the DF process is divided into three zones: Initiation, transit, 

and deposition zone.  

In the initiation zone (source area), the relief, the nature of the surface and subsurface, general 

vegetation cover and climatic factors are critical parameters, which are effective a priori, meaning that 

they are acting over very long time-scales and therefore usually considered as constant. Triggering 

conditions are weather related impacts (i.e. short-term characteristics of a changing climate) or 

disturbances of the processes mentioned above, which can occur through human activity or other 

geophysical processes (e.g. earthquakes).  

In the transit zone (DF track), critical parameters are the inclination and cross section as well as the 

nature of the soil, terrain roughness, vegetation (dependent on previous erosion, LULUCF1 and 

generation changes) and the availability of material. The latter depends on the history of the channel, 

like e.g. if a large DF event occurred recently it is very unlikely that another large DF is initiated, under 

a ceteris paribus assumption (in this case: other parameters within the system under consideration are 

constant).  

                                                           
1 Land use, land-use change, and forestry 
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Finally there is the deposition zone, where the shape and height of the debris fan is influenced again 

by relief, but also by ground cover and potential obstacles e.g. houses or infrastructure. Because of 

precipitation being the main trigger it can occur suddenly, which makes it hard to develop early 

warning systems (De Blasio, 2011; Rickenmann, 2009). 

 

Figure 10: DF zonation (Zone 1 = initiation zone, zone 2 = transition zone, zone 3 = deposition zone), and an illustrative example 
of the development of a DF (Konagai et al., 2007; Takahashi, 2007). 

Not only process parameters in respective DF zones are relevant; DFs as a whole have different 

characteristics in terms of density and flow behaviour: in contrast to sediment-laden flows such as 

debris floods there is a harder-to-describe interaction between the liquid and solid phases, where the 

fluid and all sizes of particles can travel with equal speed (cf. example in Figure 10). Also, it can consist 

of more sediment than water (by volume). Compared to mud flows, DFs consist of coarser, granular 

and sometimes stonier particles having a significant impact on the flow behaviour. Very coarse DFs, 

which are common in alpine areas especially where glacial moraine deposits exist (Rickenmann, 2009; 

Steijn, 1996) with quicker dewatering occurring after deposition (Pierson, 1980; Rodine and Johnson 

1976; cited in Costa, 1984) than e.g. in mudflows (Rickenmann, 2009). Figure 11 shows a comparison 

of the main characteristics of DFs and water flows. In this respect, a DF is a sub-category of a 

hyperconcentrated flow. It generally has lower water content and is coarser than mud flows or lahars 

(Rickenmann, 2009). 
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Figure 11: Main characteristics of DFs and water floods (Rickenmann, 2009) 

A study conducted by the Austrian Research Centre for Forests (BFW; cf. Andrecs and Hagen, 2010) 

showed, that the most important parameters with regard to DF occurrence are such derived from 

precipitation followed by geological and topographic conditions. Andrecs’ and Hagen’s study tried to 

elaborate an easy-to-use decision guidance for practitioners, which is in line with state-of-the-art 

research (Mazzorana et al., 2012) and undermines the importance of precipitation for DF initiation. 

Importance Definition 

0 No relevance 

1 Small relevance (There is an influence, which is negligible compared to the dominant 
process) 

2 Small to medium relevance 

3 Medium relevance (Neglecting this parameter adds considerably to uncertainty) 

4 Strong relevance 

5 Highest relevance (Critical parameter) 
Table 7: Definition of the respective importance type determined through expert consultation (Andrecs and Hagen, 2010) 

The focus of the study carried out by the BFW was to develop a method to identify the reaction of 

different DFs to variables specified in Table 8 and to determine the absolute importance of parameters 

in the context of CC. Table 82 summarizes the main results with respect to DFs with a relative 

importance of a process with respect to process-relevant variables, the importance of an aggregated 

variable determined by consultation of international experts and an absolute variable as a rounded 

product of absolute variable importance and relative parameter importance (derived from the average 

                                                           
2Relative importance in brackets include additional consideration of indirect effects. Absolute importance is the 
rounded value of variable importance times the relative parameter importance. 
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relevance of a parameter for a whole process), defining the absolute importance of a parameter within 

the whole process. 

DF Variable Importance Parameter Importance 

 Abs. Rel. Abs. 

Precipitation 4.5 Intensity 5 23 

Cumulative 4.5 20 

Temporal distribution 3 14 

Spatial distribution 3 14 

Type (solid/liquid) 1.5 7 

Geology, Soil 4 Properties of loose substrate 5 20 

Infiltration 5 20 

Water storage capacity 5 20 

Thickness of loose substrate 4 (3) 16 (12) 

Basic substrate (bedrock) 2 (4) 8 (16) 

Topography 3.75 Terrain slope 5 19 

Channel slope 5 19 

Channel morphology 4 15 

Topography 3.5 13 

Catchment area 1 (2) 4 (8) 

Land use 2.75 Infiltration 5 14 

Structural measures 4 11 

Water storage capacity 4 11 

Type of use 3 8 

Surface reorganisation 0-3 0-8 

Surface roughness 1.5 4 

Vegetation 2.75 Water storage capacity 5 14 

Infiltration 5 14 

Forest cover 5 14 

Evapotranspiration 4 11 

Erosion protection 3 8 

Surface roughness 3 8 

Interception 2 6 

Wind 2 Wind speed and direction – Forest 
cover 

(2.5) (5) 

Wind speed – soil  (2.5) (5) 

Temperature 1.75 Temperature – air  4 7 

Temperature – subsoil  3 5 

Global radiation 1 Global radiation – vegetation  2 2 

Global radiation – soil  1.5 2 
Table 8: Perceived relevance of different parameters (Andrecs and Hagen, 2010). The parameter “importance” is defined in 
Table 7. 

In this study precipitation was identified as the most critical process with crucial parameters being 

precipitation intensity, cumulative precipitation as well as temporal and spatial distribution of 

precipitation to some extent. Besides this, also geological and topographic parameters play an 

important role in DF triggering. 

Besides rainfall, which is described in the sub-chapters below, also other factors not considered in 

Andrecs and Hagen’s (2010) study like snowmelt, glacier lake outburst floods, volcanic eruptions or 

earthquakes can lead to initiation of partly catastrophic DFs. While the latter three play a rather minor 
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role in the Austrian Alps, GLOF can provide an increased threat in other parts of the European Alps and 

were investigated in different studies (Huggel et al., 2003, 2002). 

The most common triggers of DFs in the Alpine region are high-intensity, short-duration rainstorms or 

low-intensity, long-duration precipitation events (Bollschweiler and Stoffel, 2010; Guzzetti et al., 2008, 

2007; Stoffel, 2010; Stoffel et al., 2011). There is an extensive body of studies conducted to derive 

empirical triggering rainfall thresholds considering i.e. the duration, intensity, cumulative and 

antecedent precipitation.  
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3.2.2 Magnitude-frequency relationships 

Different formulas to empirically derive future DF event magnitude have been proposed in literature 

(Table 9): 

Formula N Source 

𝑀 = 𝐾𝐴𝐶100𝐽𝐶  1,420 (Kronfellner-Kraus, 1987, 1984) 

𝑀𝑎 = 150𝐴𝐶(100𝐽𝑓 − 3)
2.3

 15 (Hampel, 1977) 

𝑀 = 27000𝐴𝐶
0.78 ~65 (Rickenmann, 1995; Zeller, 1985) 

𝑀 = 𝐿𝐶(110 − 250𝐽𝑓) 82 (Rickenmann and Zimmermann, 1993) 

𝑀𝑎 = 13600𝐴𝐶
0.61 551 (Takei, 1980) 

𝑀𝑎 = 29100𝐴𝑐
0.67 64 (D’Agostino et al., 1996) 

𝑀𝑎 = 70𝐴𝐶𝐽𝐶
1.28𝐼𝐺 84 (D’Agostino and Marchi, 2001) 

Table 9: Empirical relationships describing the Maximum (M) or average (Ma) event magnitude of DFs and/or torrential floods 
(Bergmeister et al., 2009; Rickenmann, 2009) 

A problem of empirical formulae for magnitude estimation is that catchment characteristics are not 

adequately represented and one has to be careful with transferring these empirical relationships to 

other study areas. With current knowledge about magnitude-frequency relationships it is not possible 

to transfer data gained from one catchments to another one. An analysis including the qualitative 

information on event magnitude exceeds the scope of this thesis, but would pose an interesting option 

for subsequent analysis and connection with the data elaborated here. An additional investigation 

would take into account catchment sizes, which were already used by Sitter (2010) for analysis and 

could make it possible to investigate the event magnitude of DFs with regard to rainfall intensity 

(Malamud et al., 2004) 

Magnitude-frequency relationships can only be used with confidence for the catchment where it has 

been derived, because there are very high differences with varying location (Crozier, 2010). 

Furthermore, derivations for future conditions are difficult since the system state of a channel network 

can change after a period of increased DF occurrence (Crozier and Preston, 1999), as well as through 

changes of climatic framework conditions. In a broader sense this means that first-time DFs (DFs which 

were triggered in a catchment where no records of DF activity existed before), are less a reliable 

indicator of climatic influence in triggering conditions than the reactivation or increase of existing 

movements. 

Because detailed information for relevant catchment parameters were not available, magnitude-

frequency relationships can only be analysed according to the magnitude classes described earlier. 

With catchment information available a more in depth-analysis could merge information about 

precipitation and temperature with other parameters for DF such as magnitude-frequency 

relationships or testing of applicability of empirical relationships.  
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As described in Malamud et al. (2004) such information can be used to fit DF inventories to frequency 

density distributions and extrapolate available data. Subsequently, also a power law for magnitude-

frequency relationships for the dataset at hand can potentially be developed.  
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3.3 Main climatic factors 

When investigating rainfall thresholds for Austria, it has to be kept in mind that especially due to 

orographic effects and diverse topography there is a high variability of climatic factors which can 

heavily affect a generalised statement about thresholds for the whole country. This means that even 

though it is of high interest to determine an overall triggering threshold for Austria it has to be used 

with caution since regions of homogenous geology and meteorological conditions are not bound by 

national borders. After all, Austria consists of regions of different orographic characteristics and the 

central Alps have different precipitation conditions than the southern and the northern alpine foothills. 

While the geological heterogeneity can be roughly derived from Figure 2 presented in Chapter 2, the 

meteorological heterogeneity is illustrated through climate graphs such as the one depicted in Figure 

12. 

 

Figure 12: Illustration of the variability of mean annual precipitation in Austria. Such variability is also true for other climatic 
factors (Lauschet 1976; after Barry, 2008) 

Since most DF events can be directly attributed to precipitation conditions it is important to look at 

the different characteristics of precipitation, which have to be considered in our study. The four 

variables of main interest are the following: 

 Event rainfall: i.e. the duration of pronounced rainfall, which has led to a DF – hereafter called 

TER (triggering event rainfall; due to the partly different nomenclature used in literature), 

denoting the cumulative sum of triggering rainfall [mm]. 

 Rainfall duration, which means the duration of a rainfall event in days [mm/d], or in hours [hrs] 

[mm/h] 

 Rainfall intensity, meaning the cumulative amount of rainfall per temporal unit – in our case 

daily rainfall, or  
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 Antecedent rainfall conditions being the sum of total rainfall before an event including TER, 

but also considering less intense conditions with prior wetting of the soil substrate, which can 

act as an agent for creating a slip surface for a land slide creating a DF in succession (or similar). 

3.3.1 Convective precipitation 

Convective precipitation manifests itself in short-duration, heavy rain fall events, which typically have 

a duration of up to few hours of varying intensity on a sharply delimited, small-scale area being below 

10 km². Convective precipitation develops when humid air masses are lifted into a potentially unstable 

stratification or missing inversion. This can lead to the development of Cumulus congestus clouds or 

Cumulonimbus type clouds. The latter can have a considerable vertical extent of up to 30 km up to the 

Tropopause, while the cells of the cloud have a life time of 30 to 60 min. (Klose, 2008). Because of the 

Bergeron-Findeisen process such clouds can develop very large drops and thus lead to high 

precipitation events (Kappas, 2009). 

During recent years, research increasingly used radar rainfall-data as a supplement or alternative to 

traditional rain gauge measurements. With radar data helps to spatially and temporally resolve rainfall 

like local convective precipitation events with much higher precision. Potential applications are e.g. to 

use quarter-hourly data and average values for catchments connected with other information such as 

solar radiation and wind speed (Sene, 2010). The downside of radar measurements is, that it is only 

available since a few years and for some regions are poorly covered because of radar shadowing. 
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Figure 13: Processes involved when heavy precipitation occurs (Campbell, 1975) 

Convective rainfall is the main factor for heavy rain in general. The latter is defined by the WMO (World 

Meteorological Organisation) as rainfall exceeding 50 mm in 24 h. For Austria definitions provided by 

Wussow 1933 and Schimpf (1970; both mentioned in Weinmeister, 1994) are often used. The criterion 

for heavy precipitation defined by Wussow is a function of time without spatial differentiation and is 

defined by: 

Equation 1 

ℎ𝑛 ≥ √5𝑡 −
𝑡

24

2

 [𝑚𝑚] 

With t denoting the duration in hrs.  

Schimpf studied precipitation for 713 rainfall gauges and defined four functions for Austria, which 

consider regional effects by using the maximum annual daily rainfall as a selection criterion for the 

formulas below: 
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Criterion: Avg. daily rainfall 
[mm] 

hn hn: 1h [mm] 

25 ℎ𝑛 = 6.49𝑡0.1855 13.9 

35 ℎ𝑛 = 4.85𝑡0.2715 14.7 

45 ℎ𝑛 = 3.89𝑡0.3365 15.4 

55 ℎ𝑛 = 3.25𝑡0.3891 16 
Table 10: Empirical estimation of heavy precipitation (Schimpf, 1970; mentioned in Weinmeister, 1994) 

For our dataset, regional effects are restricted to the location of the rain gauge. Therefore potential 

measuring errors and uncertainties have to be considered. Important aspects are described in form of 

the process flow chart below. 

 

Figure 14: Schematic illustration of potential uncertainties in precipitation gauging (Rodda, 1967).  

It is clear that an intensity-duration approach will always incorporate the uncertainties described in 

Figure 14, and that a statistical approach characterising DF occurrence will always neglect the 
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processes illustrated in Figure 13. Because of the lack of data it is very difficult to describe these 

uncertainties in (statistical) models. In the analysis at hand quantile statistics will be used for assessing 

heavy precipitation. 

3.3.2 Advective precipitation 

Advective or frontal precipitation consists of long-lasting persistent rainfalls. Advective precipitation 

occurs, when air masses are moved horizontally and when either warm air masses are lifted above 

cold ones (warm front) or colder air masses are pushed under warmer ones (cold front). This leads to 

precipitation events that can last several hrs and show a small and rather constant precipitation 

intensity. The horizontal extent is larger than 1,000 km² in many cases in contrast to advective 

precipitation (Bronstert et al., 2002). 

3.3.3 Orographic precipitation 

Orographic precipitation is caused by a vertical uplift of air masses due to a topographic barrier. 

Because the orographic component usually is weak, the combination with cyclonic of convective 

processes is necessary, where the orographic barrier can act as a triggering mechanism for heavy 

rainfall (Whittow, 2000). Orographic precipitation is by definition part of advective precipitation. 

Most of the studies investigating DF only distinguish between convective precipitation and antecedent 

rainfall. When data resolution is high enough it is advisable to additionally differ between convective 

and advective precipitation since convective precipitation can usually last from several min. up to an 

hour while convective precipitation lasts from hrs to several days, while antecedent rainfall is in most 

cases chained precipitation of several fronts. 

Such a distinction is useful to separate the pattern of high intensity rainfall from long-term rainfall and 

to investigate different characteristics of DFs triggered by different kinds of rainfall. In the Results 

section, these aspects are being accounted for through dividing precipitation into intensity and 

duration classes as well as through investigating probabilities for intensity, duration, TER, and 

antecedent rainfall. 

3.4 Secondary climatic factors 

3.4.1 Other Hydrometeors 

Hydrometeors are not only comprised of the forms of precipitation mentioned above, but also include 

solid and liquid water droplets which are suspended in the atmosphere as clouds or fog, particles raised 

by wind buoyancy (blowing gusts of snow), as well as liquid or solid water particles deposited on the 

surface (such as dew, deposition of fog, hoar, rime and glaze. They especially play an important role in 

mountain climate and weather and can influence precipitation measurements considerably (Barry, 

2008). 
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3.4.2 Rain-on-snow events 

Especially in Alpine areas as well as in mountainous areas in general rain-on-snow events have an 

influence on the initiation of DFs. 

Current research is to date mainly focusing on the Swiss Alps, where the comparably high population 

density with regard to other mountainous areas throughout the world as well as increased scientific 

interest in CC impacts has led to greater efforts to study and predict DFs in this context. 

A large amount of DFs triggered in 1987 was initiated due to a blockage of water beneath perennial 

snow patches, where snow melt was considered to be the main causal factor for DF occurrence. This 

melting was followed by a subsequent warm rainfall event. This combination of snowmelt and intense 

rainfall has led to over 600 DFs during summer 1987 (Rickenmann and Zimmermann, 1993). Also after 

the “avalanche winter”, which brought vast amounts of snow and thus a period of high avalanche 

occurrence in the winter 1999 to the European Alps was followed by increased snow melt events in 

the following years, since the high amount of snow was preserved due to microclimatic conditions. 

Following (Bardou et al., 2003) concluded that a large number of DFs was triggered in a large number 

of alpine catchments, part of which was likely to be triggered by the antecedent climatic relationship 

to snow precipitation and the first summer thunderstorms. Also snow avalanche deposits have been 

identified as a proximal cause for increased DF activity (Bardou and Delaloye, 2004). Also studies 

focusing on other areas confirm these developments (Blodgett et al., 1996; Carson, 2002; Harris et al., 

1997). 

  



31 

3.5 Characteristics of precipitation 

3.5.1 Extreme rainfall events  

Rare extremes can be assessed by classic extreme value theory, using well-established distribution 

models like Gumbel, Weibull, etc. In practical application there are two main issues described by 

Teegavarapu (2012): (1) Non-stationarity, and (2) changes with respect to extreme event intensity and 

occurrence. Normally extreme value quantiles are computed for different periods of time. To do this 

it has to be assumed that non-stationarity within these periods is negligible. Otherwise statistical 

models have to be used, where parameters vary over time to describe the temporal evolution of rare 

events (Teegavarapu, 2012), which makes analysis more complex. A good overview of how to 

statistically deal with extreme and rare events is given by Kropp and Schellnhuber (2011). 

In contrast to heavy precipitation analysis mentioned before, in the context of CC it is of high interest 

to use indices for extreme precipitation, which are more practical and rather easy to use in large 

datasets. Such indices can be either based on percentiles (e.g. 90 % or 99 %-percentile, 10 % or 1 % 

percentile), absolute values (e.g. maximum rainfall intensity), threshold (days with a minimum of 

10 mm daily precipitation) or duration (e.g. TER, Sillmann and Roeckner, 2007). 

3.5.2 Antecedent rainfall 

Antecedent rainfall constitutes a pre-dispositioning factor for the initiation of soil slips which can 

subsequently lead to DFs and its definition is of high importance for this study. Especially in soils with 

a low permeability, antecedent rainfall can be important because it significantly reduces soil and 

increases pore water pressure. The time intervals, which have been taken under consideration for this 

thesis are 1-10 mm TER (duration of pronounced rainfall, which has led to a DF) as well as 15 and 

30 days of antecedent precipitation (Aleotti, 2004). The definition of antecedent and TER is illustrated 

in Figure 25. 
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3.6 Climate Change Implications for Gravitational Mass Movements 

Various studies have investigated the link between regional climate models (RCMs) and hydrology: 

because of the projected higher surface temperature, it is expected that the macro-scale hydrological 

cycle will be also enhanced3 (Bates et al., 2008). Because a rise in global temperature, leads to an 

increased global evaporation and evapotranspiration (Trenberth and Dai, 2014; Wentz et al., 2007), it 

will additionally alter the global hydrologic regime and the regional climatic regime in Austria among 

all temporal scale (Zechmeister-Boltenstern, 2014).  

Even though meaningful global CC projections are available, analysis of the meso-scale impacts with 

respect to gravitational mass movements (for regional or local predictions) are difficult, because they 

can vary considerably depending on the region (Dobler et al., 2010). Especially in the Alps strong 

altitudinal gradients have a remarkable influence on atmospheric, hydrospheric, cryospheric, and 

ecological conditions. In the last decades this influence lead to trends three times higher than on global 

average (Dobler et al., 2010). The water cycle of the Alps is characterised by orographic effects, 

reduced evapotranspiration rates because of generally lower temperatures and an additional feedback 

through water storage in ice. The changes projected by the IPCC (Bates et al., 2008; cf. also Figure 16; 

IPCC, 2014) and recent studies shot that CC will have a considerable influence on the complex dynamics 

of runoff genesis in Alpine watersheds (APCC, 2014; Eckhart, 2012; Horton et al., 2006). 

                                                           
3 Shifting magnitude and timing of hydrological events; increases in surface atmospheric moisture with regional 
differences, substantial interannual do decadal-scale variations with a global upward trend; changes of 
precipitation patterns and increases of heavy precipitation events in high latitudes; reduced snow cover and 
widespread melting. 



33 

 

Figure 15: Illustration of increase in mean, variance and skewness of climatic events (IPCC, 2014). 

Nevertheless, general or coupled general circulation models (CGCMs, GCMs) help us to assess future 

developments through utilisation of information from the past on large scales. These models include 

several assumptions deduced from the expected concentration of greenhouse gases (GHG) and 

aerosols. Although GCMs have a fine temporal resolution of 30 min to a few hrs, provided simulations 

with a horizontal resolution of about 150-500 km are too coarse on a spatial scale (Groppelli et al., 

2011a, 2011b), creating the need for implementing additional approaches for downscaling. This can 

be done with the aid of statistical or dynamic downscaling. Because regional circulation models are 

more and more available, dynamic downscaling is becoming more popular. RCMs use the data 

provided by GCMs and incorporate meso-scale geographical features, such as topography or land use, 

land use change and forestry (LULUCF). Naturally, the largest uncertainties of this approach result from 
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the assumptions underlying the GCM scenario as well as the structure of the model. To minimise these 

uncertainties, different sets of RCMs incorporating extracted common CC signals and combination of 

different ensembles of GCMs are being utilised. 

For an exhaustive information base to assess the future, a comprehensive analysis of the historical 

data at hand is necessary to assess recent impacts of CC on DFs, but also to utilise this data to improve 

early warning systems and thereby improve vulnerability reduction (de Perez et al., 2014). 

Changes in temperature and precipitation have been linked to changes in glacier mass balance and 

terminus position, which is especially true for high mountain regions, but indirect effects on 

geomorphological processes are not yet well known. Especially areas with a strong relief are strongly 

influenced by the angle and aspect of the slope as well as the sediment input and supply of slope 

moisture. These processes then evolve in downslope direction (Keiler et al., 2010). 

 

Figure 16: Consecutive wet days (EEA, 2012) 

Future shifts in climate will probably be affected by a restructuring of atmospheric circulation cells on 

a global, synoptic-scale cell (Lionello et al., 2008). Variation in alpine climate is closely linked to the 

North Atlantic Oscillation (NAO; Keiler et al., 2010). The NAO is the main determinant of storm-tracks 

across Europe as well as temperature anomalies and is generally close to the Arctic Oscillation (AO; 

Ambaum et al., 2001; Deser, 2000) and influenced by the thermohaline circulation. Changes in 
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precipitation will likely affect the north south difference in precipitation, leading to increased 

precipitation in the north and to decrease in the south (Figure 16).  
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3.7 DFs and Climate Change 

CC in mountainous areas is expected to have an increased effect on slope instability and DFs amongst 

other hazards. This is particularly true for elevated regions in higher latitudes. It is obvious that land 

global land area warms faster than water and that continentality of climatic factors will probably 

increase4. Previous research also has well-established the fact, that mountainous areas will be more 

strongly affected with rises in mean temperature, but also experience even more frequent extreme 

temperature and precipitation than for the global averages as was illustrated by Liggins et al. (2013), 

for the European Alps, the Andes, Himalaya, Pyrenees, Caucasus and the New Zealand Alps (Figure 17). 

In a recent study Huggel et al. (2012) hinted that major ice and rock avalanches in Alaska could 

constitute a causal impact of CC, while there also seems to be a trend in slope instability in Asia, like 

with the famous Kolka-Karmadon event, where a rock avalanche led to a glacier lake outburst flood 

causing a DF leading to more than 100 casualties. 

 

Figure 17: Air temperatures at selected sites in mountainous areas and averages from 1994-2009 (Huggel et al., 2013). 

Changes in all aspects of precipitation will affect flood regimes globally (Reynard, 2007), especially 

mountains (Barry, 2008) with – from a standpoint of investigating climatic shifts – are temporally 

                                                           
4 Increasing temperature ranges over landmasses, increasing extreme weather events. The aridity of dry regions 
and the humidity of wet regions is projected to increase, causing positive feedbacks in meteorological conditions.  
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coupled to DF occurrence (Teegavarapu, 2012). Especially potential shifts in warm/wet days can lead 

to an increase of DF activity. 

When studying CC effects on DFs, it is important to look at the different time scales on which CC 

influences slope stability. Figure 18 illustrates the spectrum of effects with regard to their time scale 

(Huggel et al., 2012). 

 

Figure 18: Time horizons of effects influencing gravitational mass movements (Huggel et al., 2012) 

3.7.1 Short-term effects 

The following parameters are important parameters where CC can play a considerable role in affecting 

DF triggering conditions. 

Increase in precipitation totals 

Wetter antecedent conditions can cause that there is less rainfall needed to achieve critical water 

content. If there is a reduction in soil capillary suction this subsequently leads to a reduction in 

cohesion. Generally, high water tables can lead to a reduction in shear strength. Wetter conditions 

also lead to an increased weight of the soil layer. Increased bulk density causes a decrease in shear 

strength/stress ratio in cohesive material. For longer periods of time higher water tables lead to the 
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situation that critical water content is reached much faster and much more frequent during rainfall 

events. Precipitation totals also cause an increased river discharge (Crozier, 2010). 

Increase in rainfall intensity causes that infiltration is more likely to exceed subsurface drainage rates 

causing a rapid building-up of perched water tables. DFs can be triggered, because the effective normal 

stress is leading to a reduction in shear strength. But also increased through-flow causes increased 

seepage and drag forces, particle detachment and piping. Piping removes underlying structural 

support and usually enhances drainage until blockage occurs (Crozier, 2010). 

Another CC-related effect could be the shift in cyclone tracks and meso- to macro-scale weather 

systems. This could lead to DFs or to an increase in DFs at site which were unaffected or less affected 

before. In this case slopes would rapidly adjust to the new framework conditions, probably leading to 

a severe increase in frequency and possibly in magnitude. More frequent wetting and drying cycles, as 

expected for some regions in Europe would lead to an increase of fissuring and to a widening of joint 

systems, a reduction in cohesion and rock mass joint friction (Fischer et al., 2006). 

As outlined in the current and previous IPCC reports an increased variability in precipitation and 

temperature is to be expected. This leads to a set of effects for DFs: A reduction in antecedent water 

conditions through evapotranspiration could lead to a lower antecedent water status requiring more 

rain to trigger DFs. Transformative processes affecting continuous and discontinuous permafrost could 

lead to glacier down-wasting, debuttressing effects of the underlying soil, reduction in cohesion in 

jointed rock masses, debris and soil (Gobiet et al., 2013; Huggel et al., 2012; Stoffel and Huggel, 2012). 

More rapid snow melt would affect runoff and infiltration and thus build up pore water pressure and 

strength reduction. Also, a reduction in glacier volume would cause a removal of lateral support to 

valley side slopes (Crozier, 2010). 

Another component which is not considered much in current literature is an increase in wind speed 

and duration. This would lead to an increase in evapotranspiration rates causing a reduction of soil 

moisture, especially when high wind-speed events occur. This leads to enhanced drying and cracking, 

providing additional weak points for following rainfall events (Crozier, 2010). 

DFs are mainly initiated by mobilisation stored in channels induced by channel or through shallow 

landslides through the sudden input of large amounts of water both of which is directly influenced by 

rainfall which can be intense or long-term rainstorm, sudden snowmelt, rain-on-snow events, of the 

sudden release of water from glaciers (GLOFs) or dammed lakes (Fischer et al., 2006). The most 

common triggers of DFs in the Alpine region are high-intensity, short-duration rainstorms or low-

intensity, long-duration precipitation events. An increase of rainfall intensity due to CC therefore 

fosters increase of DF frequency.  
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3.7.2 Long-term effects 

Conductive heat transport can occur on a decadal range, where e.g. permafrost thawing processes can 

alter the system state, while debuttressing effects can take place in a range from decades to millennia 

on a large spatial scale. Also unloading of ice due to glacier melt-off can have effects on similar time 

scales (e.g. for sediment input are occurring at the scale of decades while effects on seismicity are at 

the scale of thousands of years; Huggel et al., 2012).  

Glacier retreat and/or debuttressing effects can alter the system state in a way that large-scale, 

catastrophic DFs can be triggered as occurred in the Kolka-Karmadon through initiation of a rock-ice 

avalanche, which caused the DF (Huggel et al., 2012; Stoffel and Huggel, 2012). 

Regardless of the time scale, it is likely that variables influencing DF-initiation are influenced by CC by 

going through a tipping-point behaviour. This has been assessed as being likely for some sites (e.g. 

Huggel et al., 2012). With regard to climatic tipping points the recent IPCC report substantiates the 

supposition that thresholds for a radical change in system behaviour – at least for temperature – could 

be lower than anticipated before, while the systemic behaviour of other climatic signals are difficult to 

assess (IPCC, 2013). Additionally, to the uncertainties of evaluating such signals with respect to DFs 

previous research also shows that geomorphic thresholds affect DF initiation in a non-linear way 

(Phillips, 2003). This can possibly lead to more extreme DFs in the future. The interaction of these 

processes with climatic shifts is currently not well enough understood, thus it is difficult to make a 

specific assertion about exact system conditions for a site under investigation. 

In periglacial areas sediments exposed by glacier retreat can remain on side for several decades before 

being mobilised by landslides of DFs. For these processes different lag times have been observed in 

other studies (Huggel et al., 2012). 
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3.7.3 Cryospheric and periglacial phenomena 

Increasing problems related to gravitational mass movements with respect to permafrost soils 

occurred in Austria in the recent years (Krainer, 2007). Especially buildings in skiing and hiking areas 

were affected by freeze-thawing processes and subsidence effects, while down valley people and 

structures are increasingly threatened by such hazards (Huggel et al., 2012). With regard to 

interdependencies between permafrost and DFs particularly, catchment characteristics are of 

importance. Thawing of the ice in permafrost soils can lead to destabilisation of slopes where 

previously ice worked as cohesive material and thus lead to a greatly increased input of sediment in 

general and to settling processes in areas with a low inclination (Gobiet et al., 2013). On steep slopes 

the hydraulic conductivity as well as the slope stability are influenced negatively, where thawed 

permafrost can act as active layer for sliding processes (Kellerer-Pirklbauer and Kaufmann, 2007). 

 

Figure 19: Cumulative net mass balance of selected European glaciers (EEA, 2012) 

CC can alter the hydrologic regime in mountainous areas and especially the thermal regime of glaciers 

(Figure 19), which will have an impact on permafrost soils and periglacial areas, leading to an increased 

sediment availability increasing the overall disposition for a longer time scale (e.g. Figure 20 shows 

that many of the DFs triggered in the “landslide year” 1987 in central Switzerland had initiation zones 

in recently deglaciated areas (Rickenmann and Zimmermann, 1993). Although it is expected that this 
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disposition will decrease after several events, process-understanding of DFs in periglacial areas is yet 

not well known and analyses of triggering conditions scarce (Dramis et al., 1995; Fischer et al., 2006; 

Haeberli, 1992; Harris and Gustafson, 1993; Rebetez et al., 1997). These dynamics take place in the 

order of decades or more, because it takes a long time for a CC signal to penetrate into the glacier or 

permanently frozen soil, even when air temperatures would be affected already. Because long-term 

changes in glacier extent, volume and mass of these glaciers which are globally driven by climatic and 

oceanographic conditions their mass balance will change. As stated in the report of the Arctic 

Monitoring and Assessment Programm (AMAP, 2011) runoff will probably increase in the next decades 

but will ultimately decline, because reductions in glacier area will outweigh the effect of rapid melting. 

This will lead to a decrease in runoff and is also true for mountainous Regions in Europe (Huggel 2014, 

talk5). 

 

Figure 20: Example of DF initiation in periglacial areas (Rickenmann and Zimmermann, 1993; Rickenmann, 2009). 

Another phenomenon associated with periglacial processes are glacial lake outburst floods (GLOFs). 

They can occur if water is being dammed in moraine-dammed lakes, while below these dams there are 

in many cases ideal conditions for DF triggering. Steep gradients and readily available material with a 

wide grain size distribution can result in extremely large events if the dammed lake should break 

(Haeberli, 1983). 

                                                           
5 Presentation of the contribution of the IPCC Working Group 2 to the Fifth Assessment Report at: 15. 
Österreichischer Klimatag, Innsbruck, Austria, 02-04. April 2014. 
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3.8 Empirical rainfall thresholds 

The investigation of hydro-meteorological thresholds through statistical analysis has been conducted 

in a wealth of studies before and is a common method used on a regional scale (Caine, 1980; Guzzetti 

et al., 2007; Wieczorek and Glade, 2005). Rainfall thresholds are part of approaches in modelling DF 

occurrence, which can be subdivided into the following categories (Berti et al., 2012): 

 Thresholds based on physical processes building upon numeric simulation models. These 

models usually define various relationships between rainfall and other hydrologic variables 

(Crosta, 1998; Montgomery and Dietrich, 1994; Terlien, 1998; Wilson and Wieczorek, 1995) 

o Process based 

o Conceptual models 

 Empirical models, based on an historical investigation of the relationship between rainfall and 

the occurrence of DFs (Caine, 1980; Campbell, 1974; Crozier and Glade, 1999) 

o Historical DF inventories 

o Statistical data 

 

Figure 21: Example of a hydro-climatic landslide triggering model (Crozier, 2010), i.e. a conceptual model. These processes are 
also valid for DF initiation. 

Furthermore, the empirical investigation of rainfall thresholds can be grouped into the following 

categories: Thresholds considering rainfall intensity (mm per time unit, as don in ID-threshold analysis), 

event rainfall length (i.e. duration of a rainfall event), thresholds including antecedent conditions for 

DF initiation (e.g. antecedent rainfall) or cumulative rainfall (i.e. cumulated rainfall over a defined 

event duration, TER), thresholds including other conditions (e.g. antecedent discharge, storms and the 
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like). Although there are different approaches in the specificities, the most common approach here are 

intensity-duration relationships (Tablebi et al., 2010).  

Also because the exact physical processes of DFs are not well described in the literature yet, models 

examining empirical thresholds are more commonly used in general (Aleotti, 2004; Crozier, 2010). This 

relationship can be further optimised by the usage of mean annual precipitation or the TER (in the 

literature also referred to as critical cumulative rainfall (Aleotti, 2004), which is used in the thesis at 

hand. 

Since our analysis includes a large part of Austria, the pluviometric characteristics of antecedent rainfall 

shows large variability with regard to duration (between 1 and 40 days6) and the mean triggering 

intensity (between 1.09 and 129 mm). Sub-daily rainfall is not resolved and thus represents a neglected 

part in the analysis which has to be accounted for. 

Figure 22 shows rainfall thresholds defined in previous studies and will serve as a comparison for the 

Austrian thresholds which were identified in this work. 

 

Figure 22: Intensity-duration thresholds determined in other studies for different study scopes (Aleotti, 2004). 

Usually, the term “threshold” means the minimum or maximum (critical) level of a quantity needed to 

induce a certain process (Reichenbach et al., 1998). 

                                                           
6 For the results section antecedent rainfall of max 30 days was considered. 
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While all of the abovementioned methods and elements described in Chapters 3.1 to 3.3 can be used 

to some extend for a limited number of catchments to make a first assumptions about parameters 

relevant for DF characteristics, they do not provide a feasible path for the large-scale analysis 

intended, mainly because consistent and detailed catchment data and characteristics could not be 

acquired. A thorough investigation for magnitude frequency relationships proves difficult, when the 

data available only describes DF magnitudes in rather broad classes. Because of this, the focus will 

be on descriptive statistics and the usage of methods in probability theory. 

As described in Chapters 3.4 to 3.10 different precipitation characteristics can be separated through 

means of descriptive statistics for better understanding and subsequently be used with applications 

of probability theory. In this case Bayes’ theorem was used for 1D and 2D analysis of characteristics 

of interest (as described in the Methods section). While temperature and precipitation extremes as 

well as thawing-effects could be described, additional information would be needed for a concise 

evaluation of potential climatic effects in the cryosphere. 

A combination of the frequency, precipitation and temperature data at hand with meteorological, 

geological and special parameters would provide a possibility for a follow-up investigation. 
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4 Data Preparation and Methods 

For subsequent analysis information from three data bases was connected to analyse potential effects 

on DF initiation and patterns of DF occurrence 

Through collaboration with the Forest Service for Torrent and Avalanche Control in Austria (WLV – 

Wildbach- und Lawinenverbauung) an extensive event database (EDB) was compiled at the Institute of 

Mountain Risk Engineering at Boku University Vienna. With 631 stations from ZAMG and 1,018 stations 

from eHYD, there is also exhaustive data available for meteorological and climatological parameters. 

The potentially usable stations for all events are 1,649 precipitation gauges in total. 

4.1 Precipitation Data 

4.1.1 eHYD-Data 

The Hydrographischer Dienst (eHYD) provided 1,018 datasets of daily precipitation measurement and 

data from 663 stations reporting average daily temperature7. The data generally begins with 

information in variable numbers of headers providing information about station name, iD-Numbers, 

coordinates and likewise. This header is then followed by two columns denoting the time in dd.mm.yyy 

hh:mm:ss format and the average temperature or the precipitation in two significant digits 

respectively. Because some of the stations were moved up to seven times in their history of existence, 

the lengths of the meta-information in the header varies and thus a routine was needed to attribute 

the daily measurement to the respective coordinate. 

4.1.2 ZAMG-Data 

The Zentralanstalt für Meteorologie und Geodynamik (ZAMG) provided 631 datasets of daily 

measurement with each consisting of geographical coordinates, height, date, daily precipitation, 

minimum daily temperature, maximum daily temperature, snow fall and pressure.  

4.2 EDB (Event Database) 

The EDB of the Institute of Mountain Risk Engineering is a worldwide unique database of mountain 

hazards occurring in Austria. In the version used for this study there was a total of 28,075 events of 

mountain hazard processes with 21,437 events which had daily information available including 2,412 

DFs within the period between 1900 and 2009 . 2,125 DF events had a magnitude class attributed (with 

classification according to Figure 6). Therefore subsequently the term “all events” will denote events 

from the whole dataset of dated DFs (2,412), while “magnitude assigned” will denote DFs from the 

2,125 dataset. It is important to differentiate between these two, because the practically usable 

amount of DFs in both approaches results in different probabilities. 

                                                           
7 In nearly all cases temperature data was from a station, where precipitation data was already available. 
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Because of compatibility issued the EDB was exported into *.CSV-values. The geo-coordinates were 

transformed from BMN M28, BMN M31, BMN M34 respectively into ETRS98 in ArcGIS, and later on 

merged with the rest of the respective data in MatLab for further processing. 

4.3 Data formats for MatLab processing 

To ease data analysis all the coordinates of the measurements in eHYD, ZAMG and all the event-

coordinates in the EDB were transformed into the ETRS89-format and checked in ArcGIS.  

Several entries contained typographical or other errors, but could be identified through the station 

name, while some of the stations were located too far outside of Austria. Because the MatLab default 

format for dates is days since the year zero (with 01.01.0000 being represented by the value 000001), 

a routine had to be written in C  for fast back and forth transformations, because the MatLab-algorithm 

couldn’t cope with the large amount of data in an feasible way. 

After pre-processing, the station measurements from the raw data files (examples cf. Appendix 2 – 

Raw data file examples) could be transformed into a matrix of the following format: 

[Station Number] [Beginning of measurement] [End of measurement] [X coordinate]  

[Y coordinates] [Z coordinates] [Day of measurement] [Variable] 

With variable being rain or temperature, while the data from the EDB was transformed as follows: 

[Event-iD] [X coordinate] [Y coordinates] [Date of occurrence] 

This then provided the main corpus for most calculations, enabling fast logical indexing for geospatial 

analysis and differentiation by date or season. The station number and event-iD helped to keep the 

link to the original data in case some inconsistencies would be found. 

For analysis of precipitation with respect to DFs for each event the nearest active gauging station was 

sought and the data was sorted in a different way for subsequent seasonal analysis and the 

investigation of Bayesian rainfall thresholds. The sorting was executed through creating a matrix 

described by an X-index for the respective nearest station found and a Y-index consisting of a time 

series starting with 01.02.1872 and ending with 31.05.2013. This was done separately for precipitation 

and temperature with Figure 20 illustrating the resulting data file. 
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Figure 23: Final data sorting for the main analysis. Data is aggregated in a matrix where rows can be filtered by date with a 
row index and columns sorted by a station index. Thus data can be filtered quickly with selecting station and date ranges (the 
respective indices of the date and station vectors are referenced to the matrix indices). There is one matrix for temperature 
data and one for precipitation data 

This format allowed to quickly extract time series for a given interval or station. Through logical 

indexing it is possible to make analyses e.g. for seasonal variations or different decades which makes 

it the core file for all subsequent analyses. 

4.4 Data validation (root mean square error of prediction) 

The root mean square error (RMSEP), which is also called the root mean square deviation is being used 

frequently to assess the difference between values which were predicted by a model or algorithm and 

values actually observed. In our case the observed values are deduced from manual definition of TER. 

Generally spoken, the RMSEP aggregates residual values into a single measure of predictive power: 

Equation 2 

𝑅𝑀𝑆𝐸𝑃 = √∑ (𝑋𝑂𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)
2𝑛

𝑖=1

𝑛
= √

∑ 𝑑𝑖
2𝑛

𝑖=1

𝑛
 

The RMSEP of a model prediction with respect to the estimated variable Xmodel is defined as the square 

root of the mean squared error: 

Where Xobs is observed values and Xmodel is modelled values at time/place i, d are the differences. 

This RMSEP values can be used to distinguish model performance in a calibration period with that of a 

validation period as well as to compare the individual model performance to that of other predictive 

models (Bras, 1990). 
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When calibrating the rainfall detection algorithm the first idea would be to use R2 for evaluating 

calibration result, because R2 is highly dependent on the range of a dataset. As shown in Figure 24, this 

measure is always higher if the spread of the data is lager, since it is a measure evaluating the spread 

of a dataset in a given linear fit. While the fit on the left (range 10 to 20) has an R2 of 0.90, the fit on 

the right has an R2 of just 0.625 (range 13-17 of the same dataset; Davies and Fearn, 2006). 

 

Figure 24: Effect of the data range on calibration (Davies and Fearn, 2006). 

A good measure of the goodness of a calibration is the standard error of prediction (SEP). It quantifies 

the variability of the difference between the predicted values (provided by the detection algorithms) 

and the reference values from the validation (i.e. manual definition of TER for the whole DF dataset). 

The best way is to use the squared differences, because with this method it does not matter if the 

difference is negative or not  (Davies and Fearn, 2006). 

In this study the relative RMSEP was used to calibrate a rainfall detection algorithm with TER-data 

derived from known event rainfall for the debris flows from EDF and look for possibilities from rainfall 

between 1-10 mm and 1-10 days. The relative RMSEP shows the RMSEP on a scale between 0 and 

100 %. 
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4.5 Triggering event rainfall and derivation of rainfall thresholds 

4.5.1 Triggering event rainfall 

 

Figure 25: Defining the TER, described as critical rainfall in Aleotti (2004). The blue non-hatched area shows TER, the hatched 
area shows an additional proportion considered for antecedent rainfall (in my analysis antecedent rainfall is hatched area + 
blue area). 

As can be seen in Figure 25, TER is the amount of rainfall from a point in time where the curve for 

cumulative precipitation shows a pronounced increase in rainfall intensity until the triggering event. In 

well-defined cases such an increase should show a clearly visible break in the slope of the cumulative 

curve. Some studies use the term antecedent rain as defined in Aleotti (2004), while others shift the 

end to the time of DF initiation. In the latter case antecedent rainfall would include the time period of 

critical rainfall. For consistency the antecedent rainfall as used in this thesis means: Time period 

starting at the primal occurrence of continuous rainfall until the initiation of the DF. This means that 

the critical duration is included in our definition of antecedent rainfall. Because we only investigate 

daily rainfall data, this decision should not significantly affect calculations or results. 

4.5.2 Rainfall thresholds  

Studies show that DFs often evolve from small soil slips and caused e.g. by strong embankment on hill 

slopes, disadvantageous road cuts and unfavourable drainage conditions for surface water (Aleotti, 

2004; Jones et al., 2000; Nakamura, 2000). Terrain roughness plays a vital role with regard to drainage 

conditions and the probability of DF initiation (Similarly to the parameters identified in Andrecs and 

Hagen, 2010). 

Aleotti (2004) found that the distance of the rain gauge to the event is also critical for determining 

thresholds. He showed that the mutual pairwise distance between gauges in a given area for hourly 

precipitation verb missing a direct relation between the maximum difference in rainfall intensity and 
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the distance between the respective gauges now the sentence gets too long can be proven affecting 

the significance of a measurement with regard to the TER at site. For a distance between 5 and 10 km 

there is a greater relation between maximum rainfall intensity difference and distance, while it 

decreases in ranges being greater than 10 km. An additional difficulty is, that rainfall differences not 

only depend on the distance, but furthermore on e.g. elevation, aspect and its general position 

affected by micro and meso-meteorological variability. Because of the long time-scales, four ways of 

examination were used in this work: No limit on nearest station distance, max 30 km, max 20 km, and 

max 10 km. The results of this approach are shown in the Results section and discussed subsequently. 

Analyses were made for TER, rainfall intensity, rainfall duration and two lengths of antecedent rainfall 

(in one case antecedent rainfall of max. 15 days was considered, in another case it was 30 days). 

Because rainfall intensity was identified as the most influential variable, subsequently ID-relationships 

were investigated. 

4.5.3 Intensity-duration relationships 

Most ID thresholds follow a simple power law, while some also add a constant as y-intercept variable. 

Therefore, the following equation represents a general and widely used approach representing the 

whole spectrum of these power-law relationships (Guzzetti et al., 2007): 

Equation 3 

𝐼 = 𝑐 + 𝑎 ∙ 𝐷𝛽 

Where I denotes the rainfall intensity, D its duration and c, α, and β are parameters. While c represents 

the intercept variable, β is the exponent describing an inverse power law relationship while α 

represents the (nonlinear) gradient. The parameter β can be valid for about up to four orders of 

magnitude, but for very short or very long durations it usually becomes difficult to justify the causal 

relationship which is assumed through using this equation. 

This implies that global thresholds, or thresholds for very large areas usually describe somewhat lower 

levels below which debris flows should not occur. Subsequently regional thresholds are larger, but 

local thresholds usually have the highest values. This scaling relationship is also apparent in the data 

at use here, where very large areas are affected by an averaging effect, since the station usually 

represents a precipitation gauge somewhere in the valley where rainfall is not as strong as in 

orographically pronounced terrain (in addition to temporal averaging, where daily means are not 

representative of storm rainfall). 

In  this thesis the ID-relationships computed were mainly compared to the findings stated in Guzzetti 

et al. (2008, 2007) and Aleotti (2004). 
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Because of the large data set ID-relationships are computed for different durations while Equation 3 is 

only used as a descriptor for fitting a power law to the ID-curves ascertained in this thesis. 

4.6 Frequency Analysis 

For investigating processes of change there are two moments which were interesting in the context of 

this thesis. One was if and how DF occurrences are affected over time in general and the second 

question, which is deduced from the first was which part of such processes can be explained by 

influences of CC. 

4.6.1 Kernel Density Estimation (KDE) 

To detect possible significant long-term changes in DF occurrence DFs with known intensities (on a 

magnitude scale from 1 to 4) and at least monthly time designation were regarded. Thus, 2,526 DF 

phenomena from the EDB could be used with monthly accuracy ranging from 1008 up to 2008. Because 

of data thinning the KDE results were cropped to 1800-2008 (2,519 DFs were finally considered in the 

KDE). 

For a better representation of the data the average magnitude of the events per year was calculated 

(cumulated magnitude divided by number of occurrences) to determine if there is an overall shift in 

DF frequency. Here it has to be kept in mind, that a common problem in time series is that less data is 

available the farther back in time a phenomenon is investigated. We can clearly see this problem in 

the KDE-Figure in the Results-section where a more or less consistent inventorisation started around 

the year 1910, with nearly annual reporting of DF events. 

The estimated kernel density at one point of time is defined through the following formula 

Equation 4 

𝑓ℎ(𝑥) =
1

ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 

There are a number of functions available for KDE. The one used here was normal (Gaussian) KDE, 

which is frequently used to assess the frequency of occurrence of natural hazards (Mudelsee et al., 

2003). 

Consistency of the data set 

To determine if the uncertainties in the data set are small enough a sensitivity analysis by introducing 

some random noise was conducted. This showed that even when adding noise up to twice the 

uncertainty (two sigma) to the time series, the results remained unchanged. This leads to the 

conclusion that the trends are robust with regard to uncertainties. To determine if climate variability 

had an impact on the trends detected, homogenized precipitation data mentioned earlier in this 
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chapter was analysed. Precipitation for each season (DJF, MAM, JJA, and SON) was treated separately. 

In this data, trends in the occurrence of the 30-year means could be detected (cf. Chapter 5.2, Analysis 

of Precipitation).   

For assessing time-dependent DF occurrences and the detection of significant changes the earlier 

mentioned KDE method was employed. For analysing the data in this thesis a Gaussian kernel K was 

used to weigh the observed event dates as well as the number of DFs and to calculate the occurrence 

rate with the following formula: 

Equation 5 

𝜆(𝑡) = ∑ 𝐾 (
1

ℎ
(𝑇 − 𝑡𝑖))

𝑛

𝑖=1

 

While n… Number of DFs, K… Gaussian kernel, t… time of the occurrence of event i, h… band width. 

The selection of the bandwidth h was guided by cross-validation. The confidence bands at 90% were 

estimated by using a bootstrapping technique: N simulated DF events were taken from T(i) with 

replacement and simulated λ was calculated. 

According to this, the following null hypothesis H0 “constant occurrence rate” was stated: 

Equation 6 

∑
𝑇𝑖
𝑁

− (
𝑡𝑢 + 𝑡𝑙

2
)𝑛

𝑖=1

(𝑡𝑢 − 𝑡1)

√12𝑁

 

With tu being the upper bound of the observation interval (year 2008) and tl the lower bound (year 

1910). 

4.6.2 Analysis of Climatic Shifts 

Analysis of climatic shifts was mainly conducted through the use of linear regression analyses. While 

for precipitation the annual mean and maximum values were investigated, for temperature the annual 

maximum temperature as well as the 95 % percentile were analysed. 

Additionally, a composite index was formulated describing the humidity in combination with 

temperatures. To achieve this 10 % and 90 % percentiles for annual temperature and humidity were 

used respectively to construct the following indices: warm/wet (90 % percentile temperature and 90 % 

percentile precipitation), warm/dry (90 % percentile temperature and 10 % percentile precipitation), 

cold/wet (10 % percentile temperature and 90 % percentile precipitation), and cold/dry (10 % 

percentile temperature and 10 % percentile precipitation). Days meeting these criteria were summed 

up annually, so that changes can be analysed using regression. 
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4.7 Bayesian Analysis 

A Bayesian approach was used to analyse meteorological trigger conditions of all dated DF events in 

the EDB. This section explains the method and its advantages compared to conventional probability 

techniques in detail. The analysis is guided by pioneering work of Berti et al. (2012) who introduced 

this method to identify trigger conditions for shallow landslides in Italy and provided valuable help for 

data analysis through providing an example of a rainfall detection algorithm. 

4.7.1 One-dimensional Bayesian Analysis 

Equation 7 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

In this formula P(B|A) stands for the conditional probability of B given that A occurs. In our case this 

refers to the probability of observing a rainfall event of magnitude B under the condition that the 

landslide event A occurs. P(A) denotes the prior probability. 

Example 

As an example of the procedure applied we can use hypothetical data which was adapted from a 

randomly selected station from the data set. For illustrative purposes the number of debris flows was 

increased as well as higher precipitation values added8. 

N Duration [days] Intensity [mm/day] DF 

1 2 30.85 Yes 

2 4 3.4 No 

3 3 3.9 No 

4 3 22.9 No 

5 10 23.5 Yes 

6 2 4.0 No 

7 2 17.4 Yes 

8 7 20.0 No 

9 6 4.1 No 

10 6 22.4 Yes 
Table 11: Example of precipitation-gauge data (own creation). 

Table 11 shows an example of detected rainfalls with ten detected rainfall events where four of them 

resulted in DFs leading to a P(A) of 4/10= 0.40. The probabilities for Intensity <20 mm would be 

calculated as follows: P(B|A)=P(Intensity<20|A)=1/4= 0.25 and P(B)= P(Intensity<20)=5/10= 0.50. 

                                                           
8 It has to be noted, that landslide possibilities in the real datasets are by far smaller because of the length of the 

time series 
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This means that one out of three DFs in our mini-dataset were triggered by a precipitation intensity of 

< 20 mm/day and that 5 out of 10 rainfall events detected had an intensity of < 20 mm/day. The 

resulting DF probability – following Equation 7 – is P(A|B)= P(A|Intensity<20) = 0.25*0.40/0.50= 0.20. 

For intensity >=20 mm we would obtain analogously P(B|A)= 0.75, P(A)= 0.4, and P(B) = 0.50 with the 

result P(A|B)= 0.6. 

Figure 26 shows the results of this approach. 

 

Figure 26: (a) shows prior DF probability P(A) in blue, marginal probability P(B) in red, and likelihood P(B|A) in green; (b) shows 
the posterior probability P(A|B). 

4.7.2 Two-dimensional Bayesian Analysis 

Instead of interpreting singular propositions for A with respect to evidence B it is advisable to use the 

information gained from computing posterior probabilities to combine parameters of interest for 

different characteristics. We can examine more than one effect by looking at a slightly more expanded 

version of Bayes theorem: 

Equation 8 

𝑃(𝐴𝑗|𝐵) =
𝑃(𝐵|𝐴𝑗)𝑃(𝐴𝑗)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)𝑛
𝑖=1

 

According to Bras (1990) the important feature of this equation is, that the researcher can either 

express his/her experience in the form of P(Aj ) or – as in our case – probability classes of specific states 

of nature, before even any sample has been taken. In our case it helps us to incorporate the wealth of 

data measured by the meteorological stations at hand and incorporate the information into the 
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conditional probabilities of our samples given certain states of nature (our classes). With this in mind, 

the above equation can be expressed in Brass’s sense: 

Equation 9 

𝑃(𝑠𝑡𝑎𝑡𝑒|𝑠𝑎𝑚𝑝𝑙𝑒) =
𝑃(𝑠𝑎𝑚𝑝𝑙𝑒|𝑠𝑡𝑎𝑡𝑒)𝑃(𝑠𝑡𝑎𝑡𝑒)

∑ 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒|𝑠𝑡𝑎𝑡𝑒)𝑃(𝑠𝑡𝑎𝑡𝑒)𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠
 

Thus, above can be simplified into this form: 

Equation 10 

𝑃(𝐵𝑗|𝐴)𝑃(𝐴)

𝑃(𝐵𝑗)
 

By doing so it is possible to obtain the conditional probabilities for a space defined by two criteria. 

Example (cont.) 

When looking at the previous example from Table 11 it is also possible to compute the DF probability 

for specified intervals, e.g. rainfall smaller than 20 mm, and >20 mm as well as different duration, e.g. 

0-4.5 days and 4.5 to 10 days (we can denote intensity classes as Bi. and duration classes as B.j). This 

can be illustrated as follows: 

 

Figure 27: Example of 2D Bayesian analysis 

In the class of intensity from 0 to <20 mm and duration from 0 to < 4.5 days one out of 4 rainfall events 

resulted in a DF. According to Equation 10 we have P(B|A)= 1/4 = 0.25 and P(B)= 4/10 = 0.40. The prior 

B11 

B21 

B12 

B22 
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DF probability is P(A) = 4/10 = 0.40; the posterior DF probability according to the equation is thus 

P(A|B11) = 0.25 ∙
0.40

0.40
= 0.25. 

If we repeat this for the other sectors of Figure 27, then we obtain:   

P(A|B21)= 0.50, P(A|B12)= 0, and P(A|B22)= 0.67. This information is illustrated in the Figure below. 

 

Figure 28: Histogram of conditional probabilities for different duration-intensity classes 

4.7.3 Uncertainty Estimation 

The probabilities of DFs increase with the “extremeness” of an event, but this rise is irregular to some 

extent, because the data is unevenly distributed. At the highest values the parameters seem to 

decrease mainly due to two factors: The computed probabilities of extreme events are affected by a 

lack of significance due to low sample sizes. Bins with a low amount of data may be not informative 

enough to be significant and a small variation in the number of DF events could result in a considerably 

different probability. To account for the impact of this uncertainty the 95 % confidence interval from 

a Poisson distribution fit representing possible counting errors in the number of DFs was computed 

(Berti et al., 2012; Naylor et al., 2009) and considered throughout all the computing routines to define 

the confidence interval for the DF probability (dashed lines in Figure 29). As can be further seen in 

Figure 29, the upper confidence limit increases strongly with the severity of the event. 
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Figure 29: Illustration of prior probability, marginal probability, and conditional probability (Figure 26a) and posterior 
probability (Figure 26b) computed from example data in Table 11. 

Another reason for this uncertainty calculation is that there is a bias introduced through the definition 

of the TER. While TERs are truncated at the occurrence date of the DF, the non-triggering rainfall 

continues until the end of the rainfall. Because of this it could happen, that DFs triggered by a long-

term rainfall event are counted in another bin, because they have occurred before the end of the 

rainfall. In combination with other effects this bias may explain the observed trend of DF probability 

associated to extreme events (Berti et al., 2012). 

For one-dimensional (1D) Bayesian analysis the probability can be analysed by estimating the 95% 

confidence bounds from Poisson counting errors with respect to the number of landslides within a 

precipitation or duration interval respectively. This procedure is described by (Naylor et al., 2009) for 

frequency-magnitude distributions in earthquake evaluation and can be applied for any counting 

errors of histogram data, where power laws play a role. For extreme value analysis it is common to 

assume power laws in the context of natural hazard occurrence. 

Calculation of the confidence bounds is performed as follows: The counting errors are accounted for 

in the computation of P(A) and for P(B|A). Therefore the total count of DF-triggering precipitation is 

fitted to a Poisson distribution at α=0.05. Then also the count of all triggering rainfall in range is fitted 

resulting in the following values: 
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Variable Count Poisson fitted lower 
bound 

Poisson fittet upper 
bound 

P(A) 4 1.0899 10.2416 

P(B|A) at TER< 20 mm 1 0.0253 5.5716 

P(B|A) at TER>= 
20 mm 

3 0.6187 8.7673 

Table 12: Fitting results showind the upper and lower bount at a confidence of 95 % 

Each of these results is then included instead of the counted number, e.g. P(A|B) at the lower bound 

for TER < 20 mm would be 
0.0253

1.0899
∙
1.0899

10
5

10

. 

Basically, this means that counting errors for the amount of debris flows as well as counting errors for 

TER are considered. 

All of the data available in this study incorporate uncertainties and contain artefacts. While the EDB 

is potentially biased through over- and underreporting, partially missing data as well as an unclear 

definition if the coordinate was the DF fan or in the release zone, meteorological data in many cases 

does not yield a consistent time series, but incorporates a lot of data gaps which cannot be included 

in the cumulative precipitation graphs. Partially, also the special of temporal information provided 

is wrong due to input errors (eHYD) or wrong coordinates (ZAMG). However, because of the quantity 

of data potential impacts on the quality of results are deemed negligible. 

In comparison to the example for Bayesian analysis provided in the Methods-section it is much 

harder to make a classification and thus to train an algorithm for TER for real-world data. This is the 

most sensitive aspect of an analysis relying on Bayes’ theorem. 

A Bayesian approach gives the possibility to analyse data in a consistent and principled way. The 

theoretical framework is well proven and was already used in similar contexts (Landslides, Berti et 

al., 2012; Guzzetti et al., 2007; CC and precipitation, Tebaldi et al., 2005, 2004). The disadvantage is 

that there is no such rule to select a prior, but depends on the author’s estimation on how to classify 

the prior. In combination with the sample size, this can heavily influence posterior distributions and 

possibly affect results adversely when compared to frequentist methods (though the problem of data 

thinning is present in most approaches). 
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5 Results 

From its structure the results section basically follows the research design as detailed in the methods 

section.  

5.1 Analysis of Primary Data 

5.1.1 Intensity-Duration Relationships 

At first ID relationships were analysed to acquire some basic characteristics regarding debris-flow 

thresholds for all events and to identify potential effects of debris flow magnitude class in conjunction 

with precipitation data. 

 

Figure 30: Intensity-duration diagram of all TER (red; n=862) and the whole spectrum of data (blue; n=2,818,619 potential 
TERs) 

Figure 30 depicts the ID-plot of precipitation that actually triggered DFs (in red) as well as data of all 

rainfall events recorded by any station of the data set shown in blue. The definition of TER is explained 

in section 4.5.1; rainfall were detected through using a rainfall detection algorithm described in Berti 

et al. (2012). While the red circles in the figure above show actual TER for event-data (training data for 

the algorithm), the subsequently detected potential TERs are shown in blue. We see that there exists 
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a high variability for precipitation triggering DFs throughout the whole area of Austria, with trend of 

decreasing intensity with increasing duration. However, the data varies over more than one order of 

magnitude, limiting it’s predictive power. 

The TER-data for triggering DF was subsequently used to acquire more detailed information about the 

influence of different DF magnitudes. Plots for different magnitudes are shown in Appendix 1 – 

Evaluation of climatic parameters, here a plot of triggering events (n=862) is shown together with three 

threshold curves (median threshold; lower and upper 10 % percentile). The 10%- and 90%- percentile 

as well as the median were calculated from 1-day and 10-day rainfalls and then extrapolated. Thus the 

lower dashed line in Figure 31 provides a rather good minimum precipitation threshold for the whole 

dataset. But it is visible that extreme DFs can occur as illustrated with red circles. This is just a 

preliminary analysis for the subsequent investigation of Bayesian thresholds possibilities.  

 

Figure 31: Intensity-duration diagram of all event with an assigned date (black, all events), events with a magnitude 4 (red, 
sub-set from dataset with magnitude assigned) for comparison and triggering events with median threshold curve (black 
middle), lower 10 % percentile (black dashed lower), and upper 10 % percentile (black dashed upper). 

The number of DFs for investigation was further reduced, because not all active rain gauges provided 

meaningful information to train the rainfall detection algorithm. Out of the usable DFs about 94 % had 

a magnitude class assigned which is about 72.8 % of the total DF dataset. The magnitudes are relatively 
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well distributed – it is visible that DFs of magnitude class 2 are reported the most, probably because 

magnitude 1 has less impact on settlements. Naturally, the number then diminishes with increasing 

magnitude, with extreme DFs (magnitude 4) contributing to about 5.1 % of the whole dataset available. 

Table 13 summarises this information 

Date assigned (1910-2008) 2,412 (max. 2,034 usable data) 100 % (84.3 %) 

Gauge measuring TER available 2,125 (max. 1,861 usable data) 88.1 % (77.2 %) 

Magnitude assigned 1,756 72.8 % 

Magnitude 1 (small) 471 19.5 % 

Magnitude 2 (medium) 790 32.8 % 

Magnitude 3 (large) 372 15.4 % 

Magnitude 4 (extreme) 123 5.1 % 
Table 13: Overview of the DFs for different sets of data considered in the analyses.  

 

5.1.2 Analysis of Precipitation 

For the analysis three data bases were provided: (1) the EDB from the Institute of Mountain Risk 

Engineering, (2) measurements from meteorological stations from ZAMG and (3) precipitation 

measurements from the national hydrographic service (eHYD). At first, precipitation was analysed to 

prepare the dataset for investigation of potential climatic shifts with regard to the occurrence of DFs. 

The data set was homogenised and the seasonal means as well as maxima were computed to detect 

overall trends. For a first orientation, statistical measures of tendency were used to investigate annual 

shifts in precipitation data regressing throughout the whole dataset. For investigation of precipitation 

thresholds an algorithm provided by M. Berti (pers. Communication) was adapted to the MatLab 

routines developed for this thesis project. Finally, also long-term antecedent precipitation was 

computed for two ranges – one for 15 days and another one to investigate possible long term effects 

of antecedent precipitation of 30 days. 

Annual means and maxima were investigated for each season. This means that for each year the 

maximum was extracted from the dataset for each season and the mean for all data of one season in 

a year. Subsequently seasons will be denoted as follows: DJF – December, January, February; MAM – 

March, April, May; JJA – June, July, August and SON – September, October, November. It can be seen 

that the overall regression of the overall climate in Austria is shifting towards less overall precipitation 

and thus a drier environment in general (cf. Figures for average precipitations and precipitation 

maxima as well as composite temperature/precipitation indexes stated in Appendix 1). If we look at 

the precipitation maxima, it is obvious from the same regression approach, that there is also a 

tendency towards higher extreme precipitation events. All seasons analysed showed an increasing 

trend for precipitation maxima with autumn being the most pronounced (depicted in Figure 32). An 
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analysis of the upper percentile (i.e. the 99 % percentile) confirms this assumption which is in line with 

the state of the art research summarised in the Background chapter. 

 

Figure 32: Autumn (SON) precipitation maxima. 

Also the other seasons show a similar trend (cf. Appendix 1 – Evaluation of climatic parameters) 

although is it not as pronounced as the autumn precipitation maxima, where the slope of the 

regression curve is 0.388.  
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Figure 33: Seasonal analysis of precipitation on different scale; box plots (1=DJF, 2=MAM, 3=JJA, 4=SON). 

The box plots in Figure 33 show, that a meaningful statement for whole of Austria is difficult. There is 

no clear seasonal signal in precipitation variability visible. Due to the large and heterogeneous area it 

is hard to determine seasonal patterns for precipitation. While there is no clear signal for precipitation 

maxima, mean precipitation is clearly declining for all seasons, as depicted in box plots (cf. Figure 34) 

for 30 year intervals of [1916-1946]; [1947-1977]; and [1978-2008]. 
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Figure 34: Distribution of mean precipitation (1=DJF 1916-1946, 2=DJF 1947-1977, 3=DJF=1978-2008, 4=MAM 1916-1946, 
5=MAM 1947-1977, 6=MAM 1978-2008, … 7-9 JJA, 10-12 SON). 

5.1.3 Analysis of Temperature 

A similar analysis has been done for temperature data, but the figure below (cf. Figure 35, max 

temperatures and 95 % quantiles of temperature9) shows unusually high temperatures at the 

beginning of the century. This is due to the fact, that there were fewer precipitation stations at the 

beginning of the century and because they were likely to be insufficiently sheltered from direct sunlight 

creating a warm bias in summer and a cold bias in winter, whereas newer stations accounted for this 

problem already through better standardised procedures. After correcting this data we can see an 

overall warming trend as well as an increase in extreme temperatures at the right tail of the data, 

which is also supported by previous research for the Alps (Böhm, 2012; Gobiet et al., 2013) as well as 

for Austria (Nemec et al., 2013). 

                                                           
9 Temperature data was not homogenised, which means that the warm bias in early instrumentation is included. 
However it is not as dramatic for extreme temperatures as for means, for example. The problem was described 
in Böhm et al. (2009). 
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Figure 35: Maximum annual SON temperatures and 95% quantiles for the time period from 1872 to 2012 from the whole 
dataset. 

A box plot of seasonal data for 30 year intervals of [1916-1946]; [1947-1977]; and [1978-2008] shows, 

that temperature maxima are clearly increasing for each season over time (Figure 36). Although this is 

an unambiguous indicator a general warming trend, it is important to mention that shifts in 

temperature are strongly affected by topography, particularly by the orography in Austria. Therefore 

deductions from overall statements cannot be easily made for regional or even small-scale predictions 

before it has been downscaled appropriately (Beuchat et al., 2011), which can be also done with the 

aid of general circulation models (GCM; Groppelli et al., 2011a).  

Time [yrs] 

Te
m

p
er

at
u

re
 [

°C
] 



67 

 

Figure 36: Shifts in the distribution of annual temperature maxima (1=DJF 1916-1946, 2=DJF 1947-1977, 3=DJF=1978-2008, 
4=MAM 1916-1946, 5=MAM 1947-1977, 6=MAM 1978-2008, … 7-9 JJA, 10-12 SON). 

5.1.4 Analysis of combined indicators 

Because previous studies of single climate variables (Beniston, 2007; Klein Tank and Können, 2003) 

showed rather mixed results, additionally an investigation looking at the combined tails of probability 

density functions was applied . This method is described in detail in (Beniston and Goyette, 2007; 

Storch and Zwiers, 1999). 

An analysis over all seasons showed a significant increase of warm and wet days10 for the whole dataset 

of Austria. The most pronounced and at the same time most significant increases occur in the summer 

and autumn months which means that the combined mode of the 90th percentile for temperature and 

the 90th percentile for moisture (warm and moist) are the most pronounced, while the combined mode 

for the 90th percentile for temperature and the 10th percentile for moisture (warm and dry) has also 

increased significantly during the last decades. Depending on the season the cool-wet mode and the 

cool dry mode either don’t show a significant trend or are decreasing. 

                                                           
10 Warm and wet days are determined by examining precipitation and temperature anomalies at a specific 
percentile. Warm and wet days is the number of days above the warmest decile of temperature and the wettest 
decile of precipitation (Horton et al., 2001; details in: IPCC, 2007 Ch. 2.8.2.2. Jones et al., 1999) 
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Figure 37: Analysis of annual data for combined warm and wet days. Figures for seasonal analysis can be found in Appendix 
1. 

If a composite index is built from data, where climate signal is clear, it is possible to use this data for 

subsequent analysis of the influence of potential climatic shifts and debris flow initiation. To have a 

starting point the 10% and 90%-percentiles for max Temperature and mean Precipitation respectively 

were elicited and are documented in the table below: 

 DJF 

1916-

1946 

DJF 

1947-

1977 

DJF 

1978-

2008 

MAM 

1916-

1946 

MAM 

1947-

1977 

MAM 

1978-

2008 

JJA 

1916-

1946 

JJA 

1947-

1977 

JJA 

1978-

2008 

SON 

1916-

1946 

SON 

1947-

1977 

SON 

1978-

2008 

Mean precipitation [mm] 

10% 

perc. 

2.69 1.52 1.27 4.02 1.96 1.85 5.61 3.67 2.96 3.51 2.10 1.60 

90% 

perc. 

5.48 3.95 2.536 5.44 4.15 2.68 8.13 6.43 4.01 6.07 4.50 3.06 

Max temperature [°C] 

10% 

perc. 

8.55 9.55 11.25 19.55 22.23 20.38 2.73 25.13 26.98 20.33 21.03 21.43 

90% 

perc. 

12.23 14.75 17.33 23.43 24.03 27.50 27.40 19.45 31.45 23.88 25.30 26.45 

Table 14: Percentiles for wet, dry, cold and warm days (perc… percentile)  
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Table 14 shows the upper and lower deciles from the box plots for precipitation and temperature. This 

climate data was subsequently used for analysis of potential climatic shifts in debris flow occurrence 

(cf. Chapter 5.2.2: Analysis of Climatic Shifts, Table 17) 

5.1.5 Climate data and DFs 

After the general analysis the climatic data with regard to DF initiation was analysed 

Triggering Rainfall 

Since convective rainfalls per definition consist of high-intensity storm events a good rule of thumb 

approach is to separate the precipitation ranging from 0-24 hrs from precipitation which lasts longer 

than 24 hrs. In the dataset at hand this means that daily rainfall could be rather attributed to convective 

rainfall events and rainfall with duration longer than one day can be considered as advective. Of course 

this is a rather rough approach, because there could be also several subsequent days of convective 

precipitation.  

Precipitation totals at the respective nearest station of a DF event vary considerably, having a range 

between 5.2 and 566.9 mm. The data analysis also shows, that small totals of TER can be attributed to 

small DFs while medium and some of the large DFs are almost exclusively triggered by convective 

rainstorms (one day rainfall events). For medium DFs the TER totals lie between 5.2 and 87.1 mm. Last 

but not least many large or extreme DFs were initiated by very-long lasting advective precipitation. 

Table 15 summarises the information acquired for DFs magnitude assigned in the period from 1900 to 

2008 with usable data (1756)11 

Magnitude class S M L XL 

Number of events 471 790 372 123 

Precipitation type > 1 day12 > 1 day > 1 day > 1 day 

Precipitation totals 
(mean) [mm] 

79.8 87.1 93.3 104.4 

Precipitation totals 
(minim) [mm] 

5.3 5.2 5.3 5.8 

Precipitation totals 
(max) [mm] 

566.9 483.6 416.8 344.2 

Duration [days] of 
rainfall events (mean) 

9 9 9 9 

Seasonality JJA JJA JJA JA 
Table 15: Hydrometeorological conditions during DF events when combining the DF inventory with actually measured 
precipitation data. 

 

                                                           
11 369 didn’t have usable precipitation data. 
12 Since there is now way to resolve precipitation <1 day in the available data, it is not possible to derive the 
information, if precipitation is advective or convective. 
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5.2 Analysis of Shifts in DF Occurrence 

5.2.1 Analysis of General Shifts 

A good overall approach to determine a change in occurrence of hazards is KDE, of which a general 

overview is given in (Mudelsee et al., 2003). Figure 38 shows the average yearly intensity and 

occurrence rates as well as a KDE overlay using a Gaussian kernel which was applied to the dataset by 

using an adapted version of the Gaussian KDE Toolbox (Horová et al., 2012). Another approach with 

local bandwidth optimisation (Shimazaki and Shinomoto, 2010) was also evaluated, but is not depicted 

here, since the Gaussian KDE approach is accurate enough and local optimisation focuses on extremes 

whereas here deviations from the “standard” trend are of interest. From Figure 38 it can be seen, that 

from the period of around 1950 until the last years, there is a significant peak of DF occurrence in the 

1960. After that, DF occurrence rate decreases. The reason for the first observation may be that in the 

1960ies there was a series of DFs triggered along whole Austria through strong storms (Eisbacher, 

1982; Glade, 2005). Because of an over-reporting of small DFs this can lead to the pronounced peak in 

KDE. The decreasing trend in the recent years may be connected to the effect of engineering mitigation 

measures, which started to become effective.  

 

Figure 38: Average yearly magnitude of the investigated dataset (black bars), occurrences per year (red bars and left upper 
axis) as well as kernel density rate (black solid line). 

As already mentioned by previous authors there is a problem with data before 1950 because of data 

thinning. This means that standardised and routine monitoring was not developed yet and reporting 

mainly focused on damaging DFs with a focus on large-scale hazardous events. This lead to a significant 

bias towards higher-magnitude events before this time. As in other Alpine European countries 

consistent reporting was established in the 1960s by the Austrian torrent and avalanche control. 

Overall, the analysis shows no upward trends in DF occurrence and a consistent seasonal signal is not 

detectable in the available dataset. 

Time [yrs] 
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Additionally, shifts in seasonal occurrence were investigated by calculating the decadal relative 

percentage of occurrence for each season and by counting the mean Julian day of annual occurrence 

(as proposed by Stoffel et al., 2011). This analysis showed no significant shift in the season of 

occurrence, where the main season in Austria is summer throughout the whole analysis (cf. Figure 39) 

except the first decade under consideration, where a bias due to the lack of events cannot be ruled 

out. As the numbers below “Events” show there were only 43 events recorded for the decade from 

1910-1919 where about 60 % of the DFs occurred in summer. 

 

Figure 39: Relative seasonal occurrence rate of DFs per decade (the number of DF is higher in this Figure, because there were 
also DFs included which don’t have an exact day assigned). 

5.2.2 Analysis of Climatic Shifts 

The data obtained for general shifts as illustrated in Figure 39 was used to further analyse information 

about precipitation and precipitation duration, which was compiled in Table 16. The table shows 

information about all 1756 DF events which had magnitude assigned, as well as a date and 

precipitation information of the nearest station. 
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Magnitude class S M L XL 

1888-1907 

Number of events 4 8 8 3 

Precipitation totals (10%, 90%) 17.6, 62.6 31.6, 162.1 28.0, 228.5 8.2, 171.9 

Duration of rainfall events 
(mean) 

4 7 7 4 

Seasonality JJ AS S S 

1908-1927 

Number of events 20 49 33 15 

Precipitation totals (10%, 90%) 8.7, 159.9 11.2, 207.6 15.6, 270.2 11.2, 140.5 

Duration of rainfall events 
(mean) 

5 8 8 5 

Seasonality JAS JAS JAS JAS 

1928-1947 

Number of events 55 87 53 20 

Precipitation totals (10%, 90%) 25.0, 166.2 17.9, 182.5 22.1, 188.2 66.5, 256.3 

Duration of rainfall events 
(mean) 

8 8 9 10 

Seasonality JJA JJA JJA JJA 

1948-1967 

Number of events 137 242 120 44 

Precipitation totals (10%, 90%) 20., 233.4 20.4, 257.1 20.4, 257.4 26.9, 281.0 

Duration of rainfall events 
(mean) 

10 9 9 9 

Seasonality JJAS JJAS JJAS JAS 

1968-1987 

Number of events 129 246 89 27 

Precipitation totals (10%, 90%) 10.0, 170.2 11.0, 164.0 8.4, 157.2 10.3, 120.8 

Duration of rainfall events 
(mean) 

7 6 7 6 

Seasonality JJA JJA JJA JAS 

1988-2007 

Number of events 126 159 69 14 

Precipitation totals (10%, 90%) 8.1, 128.4 10.3, 183.8 17.0, 112.5 9.1, 95.7 

Duration of rainfall events 
(mean) 

6 7 6 5 

Seasonality JJA JJA JJA JA 
Table 16: Analysis of different event magnitudes in periods of 20 years since 1888 and 1907. 

No clear shifts could be determined (Table 16). For all DF-magnitudes occurrence is prevailing in the 

summer months. The pattern of occurrence of DFs is generally corresponding to the KDE, but can be 

mainly attributed to “general shifts” which is probably over-reporting as mentioned previously. 

Another analysis was conducted regarding the potential influence of pronounced climatic shifts on 

DFs. Here the number of DF for each season was analysed in 30-year steps again [1916-1946, 1947-

1977, 1978-2008] and the number of debris flows on warm/wet, warm/dry, cold/wet, and col/dry days 

was analysed.   
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Finally, the events from EDB were also considered in the same 30-year steps as before for ID-analysis 

 

Figure 40: Overview of lower 10%-percentile threshold for the period 1916-1946 (blue, n=321), 1947-1977 (green, n=929), 
1978-2008 (red, n=726). In the nested element the numbers on the x-axis correspond to 1:blue, 2:green, 3:red. The higher 
threshold in green is due to the wider distribution. 

Figure 40 shows ID-thresholds for the three 30-year periods. The lower 10%-percentile was computed 

for 1-day rainfall and 10-day rainfall and then extrapolated. The difference in the green threshold (2) 

is partly due to the distribution and partly due more outliers compared to distributions 1 and 3. 
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Period Index Count Percentage13 

DJF 

1947-1977 Cool/dry 3 27.27 % 

1978-2008 Cool/dry 8 72.73 % 

MAM 

1916-1946 Cool/wet 1 1.72 % 

Cool/dry 2 3.45 % 

1947-1977 Cool/wet 26 44.83 % 

Cool/dry 4 6.90 % 

1978-2008 Cool/wet 19 32.76 % 

Cool/dry 6 10.34 % 

JJA 

1947-1977 Warm/wet 83 14.36 % 

Warm/dry 11 1.90 % 

Cool/wet 129 22.32 % 

Cool/dry 64 11.07 % 

1978-2008 Cool/wet 216 37.37 % 

Cool/dry 75 12.98 % 

SON 

1916-1946 Cool/wet 6 6.90 % 

Cool/dry 2 2.30 % 

1947-1977 Cool/wet 48 55.17 % 

Cool/dry 4 4.60 % 

1978-2008 Cool/wet 22 25.29 % 

Cool/dry 5 5.75 % 
Table 17: Summary of a composite analysis of 10% and 90%-percentiles. 

The statistical analysis shows that during DJF all DFs are likely to be caused rain-on-snow events, since 

temperatures were around thawing temperature (Table 17). In 9 out of 11 cases it was raining for ≥ 5 

days, with an average daily precipitation around 20 mm/day. In the period from 1978-2008 the average 

temperature for these events was mostly higher than in the period from 1947-1977. 

Table 17 also shows that initiation of DFs under more extreme climate variables is dominated by the 

cool/wet-index. When looking into this index in more detail, it is visible that summer DFs are increasing 

at the expense of cool/wet MAM and JJA DFs. It has to be considered that this table only represents 

combinations of upper/lower percentiles (n=764 DFs), and that other DFs are probably not subject to 

climatic shifts. Nevertheless, this number is a considerable part of the DFs selected for analysis. About 

89 % of the DFs used for analysis of rainfall intensity are subject to one combination of the outer 20 % 

boundary of all the climatic data which could be obtained for Austria.  

                                                           
13 Percentages show the proportion of an index-period combination amongst the quantity of DFs occurring in a 
season. 



75 

5.3 Bayesian Analysis 

Additionally to climatic shifts, climatic parameters can also be included for DF hazard estimation 

through the application of Bayesian theory (Bras, 1990). For a reliable analysis the key factors of 

precipitation were identified and analysed in 1D and 2D approaches. 

5.3.1 Definition of Triggering Events 

Because there is no standardised approach on how a “typical” rainfall event looks like, it had to be 

defined beforehand to be of use for the Bayesian analysis. Therefore the cumulative precipitation of 

the nearest station of each event was plotted, assessed manually and subsequently divided in well-

defined rainfall events or uncertain rainfall events. In this context well-defined TER is an event where 

a steep precipitation curve before the occurrence of an event is clearly visible. Usually the end of this 

event is defined as the day of DF initiation. The beginning of an event is a moment in time before which 

no or no significant rainfall occurred and after which a steep and constant increase in cumulative 

precipitation is clearly visible. Such procedure of defining start and end dates of cumulative 

precipitation events has then been conducted for all events with date and precipitation data assigned 

(2412-378) to get a set of “typical” TER for the triggering of DFs. Because this procedure is prone to 

subjective biases, but is unomittable for the analysis in mind, the evaluation of diagrams was 

performed by the author of the thesis at hand and repeated independently twice by two students, 

which were previously schooled by example datasets and simplified parts from previous research 

performed by (Berti et al., 2012). From these assessments the ones with the highest deviation from 

standardised event precipitation were re-examined and corrected where deemed implausible. 

Subsequently, the TER and the rainfall duration for each event were averaged. This result then 

provided a training dataset to feed into a heuristic which looked through all measuring stations in the 

whole dataset to find similar TER which fit to the training set. 

If we look for patterns we need to define a certain threshold for the dataset under examination which 

has the smallest error compared to the training dataset. To accomplish this the rainfall detection 

algorithm provided by Berti (pers. comm.14) was adapted to the MatLab routines developed for 

answering the questions stated in the Introduction and all possibilities of a TER between 0 and 10 mm 

(in 1 mm steps) and 1 to 10 days (in 1-day steps) were compared and the relative RMSEP (root mean 

square error of prediction) was computed for each combination. 

                                                           
14 Matteo Berti provided a very helpful example by e-mail (24.11.2013) of a learning-based approach to train an 
algorithm for automated detection of TER explaining methodological aspects of his research published in Berti 
et al. (Berti et al., 2012) 
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Figure 41: Contour plot of RMSEP calculation showing the results of the rainfall detection algorithm for different combinations 
of event rainfall and rainfall duration compared to the training dataset (i.e. the reference dataset). The blue indicates on what 
values the algorithm should be trained (6 days, 5 mm; as described in the text) 

The analysis resulted in a training rainfall of 5 mm and a duration of 6 days. This means, that a rainfall 

event starts when the cumulative rainfall exceeds 5 mm in 1, 2, 3, 4, 5, or 6 days (i.e. if 5 mm are 

exceeded on the first day, the rainfall starts at day 1. The end of the rainfall is defined when it doesn’t 

rain above 5 mm for at least 6 days (or if a debris flow is triggered). This pattern is the most 

representative for all events which could be evaluated. Figure 41 shows a contour plot of the relative 

RMSEP for the event rainfall and the event duration between manually evaluated DF TER and the all 

the possibilities between an event rainfall of 0 to 9 mm and 1 to 10 days. The blue circle represents 

the calibrated value for event rainfall and event duration associated with the minimum RMSEP. 

5.3.2 One-Dimensional Analysis 

Because no significant shifts could be detected, the whole dataset was analysed to detect the 

significant parameters with regard to precipitation and DFs. 

For all 2,412 events the cumulative precipitation was plotted and the start and end of the rainfall was 

defined. With this data, the rainfall detection algorithm (Berti et al., 2012) could be trained to find 

typical TER in the whole precipitation dataset. 
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This helped to acquire substantiated values for the total amount of TER-events within the considered 

time frame. By classification of potential TER, actual TER and threshold classes, Bayes’ theorem (Bras, 

1990) could be applied. 

 

                                   (a)                           (b) 

 

Figure 42: 1D Bayesian analysis for the parameters: event rainfall, rainfall intensity, and rainfall duration. Column (a) shows 
prior DF probability P(A) in blue, marginal probability P(B) in red, and likelihood P(B|A) in green; column (b) shows the posterior 
probability P(A|B) and the confidence interval as dashed lines. 

Bayesian analysis was applied for five parameters, the event rainfall, rainfall intensity, rainfall duration, 

and two different lengths of antecedent rainfall. Event rainfall is the amount of rain that accumulates 

before the initiation of a DF. Because there is no standardised rule for what defines a typical rainfall 

event, it was defined as in section 5.3.1. 

In Figure 42 and Figure 43 we see, that event rainfall has the highest posterior probability and is thus 

the most significant parameter in our analysis. While the left illustration show the prior probability, 

the marginal probability, and the conditional probability (likelihood). The right diagrams show the 

conditional landslide (or posterior) probability 
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Figure 43: 1D Bayesian analysis for two lengths of antecedent rainfall. (a) show prior DF probability P(A) in blue, marginal 
probability P(B) in red, and likelihood P(B|A) in green; (b) shows the posterior probability P(A|B) and the confidence interval 
as dashed lines. 

Figure 43 shows the antecedent rainfall in hours. Also the antecedent rainfall shows some relation with 

DF initiation. In both plots there is a peak at around 11 days (250 hrs) which shows that this aspect of 

precipitation plays a role in long-term advective rainfall. Above about 400 hrs uncertainties get to high 

to draw a reliable conclusion from this aspect of precipitation. As already noted by Guzzetti (2008) 

there are too many potential secondary factors when investigating very short or very long periods of 

time, since at short durations it is hard to attribute slope failures to rain alone and for long time scales 

it is hard to adequately prove the causal relationship. 

5.3.3 Two-Dimensional Analysis 

After the 1D analysis a 2D analysis was conducted as described in the methods section. Here, the 

duration of event triggering rainfall was compared with all of the parameters including event 

magnitude to find if a pattern exists for any of these combinations. 

In our case this is the conditional probability of a DF occurring when rainfall intensity  

𝑖 = log10 𝐼 [mm], with 

𝑖𝑖 ≤ 𝑖 < 𝑖𝑖+1 with 𝑖1:𝑛 = {0: 0.2: 1.2} 

and when duration 𝑑 = log10 𝐷 [days] with 

𝑑𝑑 ≤ 𝑑 < 𝑑𝑑+1 with 𝑑1:𝑛 = {0: ,0.2: 1.8} 

and with 𝑖, 𝑑 ∈ 𝐴. 

(a) 

(a) 

(b) 

(b) 
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If different DF magnitudes are computed separately, the results on the right are even more 

pronounced. 

 

Figure 44: 2D analysis of precipitation (intensity vs. duration). The red line separates marginal areas of probability from more 
significant ones (visual estimation) and approximation (thin red line) 

Figure 44 shows the decadal logarithm coloured graph for different event rainfall classes (x-Axis) versus 

different classes of precipitation intensities (y-Axis). As a result the posterior probabilities, i.e. DF 

probabilities are depicted (z-Axis). Illustratively an ID-diagram was fitted for the event rainfall length 

(on the y-z-Plane for visualisation, the x-y-Dimensions correspond to Figure 30). As can be seen from 

the plot, rather large durations of 10-16 days [axis: 101-101.2 days] show the highest probability for DF 

initiation, which is about 1.4 % for the duration and an intensity class of 16-25 mm [axis: 101.2-

101.4 mm]/10-16 days [axis: 101-101.2 days]. That means that the highest probabilities of a DF occurring 

are in this bandwidth of long-duration, high-intensity rainfall. The selected probabilities for different 

ID-classes allow to derive an ID-threshold (Figure 44, red line). 

When visually separating clusters of occurrences from aggregates with negligible activity (cf. red line 

in Figure 44) a power law could be formulated to describe thresholds between <100.4 days and <101.2 

days. From 15 days on there is not enough data available and causality questionable, but one way to 

approach this is to keep the threshold constant here. With shorter rainfall durations a formulation of 

a power law makes sense. Thus, the information available can be extrapolates for shorter TERs. 
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Figure 45: 2D Bayesian analysis visualising the whole usable dataset (all events that with an active station. Threshold derived 
from combined information is indicated in red (derived from the thin red line in Figure 44). 

Because of the large amount of precipitation data one the one hand, but the comparably few 

inventoried DF events on the other hand, the detected probabilities are very small. From Figure 45 it 

is clearly visible that long-term advective rainfall is well resolved in the analysis. For the whole dataset 

the highest DF probability is shown by the dark red square in the picture. This means that for the 

duration interval between 1 and 1.2 (10 to 16 days) and the intensity between 1.2 and 1.4 (about 16 

to 25 mm/day) have the highest conditional probability for DF occurrence of about 1.2 %. The hatched 

squares mean that there were no rainfall events are existent in the dataset, while the white squares 

mean, that no DFs were observed in this interval classes. 

From this result is becomes obvious that sub-daily rainfall data is missing and the computations do not 

resolve the influence of high intensity precipitation. If high-resolution precipitation data would be 

available, the author would expect a second peak in landslide probability on the beginning of the x-

Axis (sub-daily) for high-intensity convective precipitation, based on a broad literature review. 

This analysis including all data was also applied to investigate precipitation data for each of the four 

magnitude classes defined in the EDB. Because not all DFs had a magnitude assigned the conditional 

probabilities for each class are naturally considerably smaller. All classes have in common that long-

term wet conditions are positively correlated with DF initiation. Even though the conditional 

probability is increasing due to the smaller number of events occurring it is visible that there is a strong 
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tendency for DFs occurring at a TER-duration of >0.6 (> 4 days) and that virtually no extreme DFs occur 

below that class (keeping in mind that sub-daily rainfall is not being resolved). 

Because no clear differentiation between DF magnitudes could be found, the ID-plot described before 

was overlain with TER for different magnitudes. However, also these plots don’t show any clear signal 

that for whole Austria the DF magnitude would dependent on rainfall intensity or duration. To further 

elaborate conclusions for the data at hand it would be necessary to obtain more information about 

site conditions and to divide the data into homogenous precipitation regions (or climatic regions). 

Based on the information collected in the whole Bayesian analysis it is feasible to define a threshold 

separating negligible probabilities from significant ones. With the aid of Figure 45 and the plots 

provided in the appendix the threshold depicted as red line accounts for most of the DFs. For 

comparison there is a blue threshold line added, which represents the consideration of the upper 90%-

percentiles of precipitation above the threshold from previous analysis in Chapter 5.1.1. For 

comparison a bold green line from the project Deucalion15 (Kaitna et al., n.d.a, n.d.b) for up to 5 days 

was added and extrapolated as thin green line. 

  

                                                           
15 Deucalion was a project for the 2nd call of the Austrian Climate Research Programme. 
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5.3.4 Sensitivity Analysis and Robustness Check 

These above analyses included all nearest stations found. Since the distance of the measuring station 

is a critical parameter, the dataset of nearest stations was furthermore reduced to a maximum distance 

of 10 km, 20 km, and 30 km for comparison. All other data were discarded in the respective data sets. 

 

To check for differences results of 2D Bayesian analysis the whole computation procedure was 

repeated and computed for the two distances mentioned above. 

After a reduction to a maximum distance of 30 km, the resulting number of rain gauges considered 

was reduced to 452. At maximum distance of 20 km, there is further reduction to 431 stations, while 

at max. 10 km this number was further reduced to 405 stations. As visible in Figure 46 one station can 

be used for different DFs at different times. 

Max. distance Number of stations Number of events 

No limitation 452 (100 %) 2,034 (100 %) 

30 km 436 (96.4 %) 862 (42.4 %) 

20 km 431 (95.4 %) 769 (37.8 %) 

10 km 405 (89.6 %) 541 (22.4 %) 
Table 18: Overview of stations utilisable from the whole dataset according to limiting the maximum distance of a station from 
the event. 

Figure 46: Overview of stations considered for events which are not farther away from a rain gauge than 10 km (green), 
20 km (green), and 30 km. Some events can’t be included anymore if the maximum distance is limited further 
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Subsequently, the relative differences were calculated for the following combinations: Bayesian 

analysis for max. 20 km distance and max 10 km distance; 30 km distance and 10 km distance; and 

nearest station irrespective of distance and 10 km. The relative deviation was calculated as follows: 

Equation 11 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝐵𝑎𝑦𝑒𝑠𝐿𝑎𝑟𝑔𝑒 − 𝐵𝑎𝑦𝑒𝑠𝑆𝑚𝑎𝑙𝑙

𝐵𝑎𝑦𝑒𝑠𝐿𝑎𝑟𝑔𝑒
 

With BayesLarge denoting probabilities based on the bigger distance and BayesSmall based on the smaller 

one. 

All pairs show an increasing importance of high-intensity short-term rainfall when moving towards 

lower distances. As we can see in Figure 47 (comparing the difference between conditional probability 

of all nearest stations (irrespective of distance) versus stations, which are not farther than 10 km), the 

relative differences indicate generally a positive dependency of rainfall towards lower distances which 

means that DFs are more dependent of rainfall occurring nearer to site. However, it also shows higher 

positive deviations towards the upper left of the illustration, which means that for smaller distances, 

shorter and more intense precipitation gets more important. In other words: The reliability of 

estimates increases with shorter distance from the rain gauge to the event, but the availability of data 

decreases. 

It has to be kept in mind, that the black dots represent the deviation in probability for the respective 

class and thus the interpolation sometimes leads to artefacts. In all three Figures we can see the 

influence of very long term rainfall too. In most cases these were TER with very long duration and one 

short, intense rainfall event leading to high precipitation intensity (y-axis). 

To make data more visible, deviations of 100 % were removed for special cases. This can happen if 

there is data available for a DF in the larger-distance dataset but the DF was excluded in the smaller-

distance dataset because of missing data which means zero (no observed DF for this duration/intensity 

class). These 100 %-values were replaced by NaN (not a number), because they are not defined in this 

context. 

A priori NaN were also excluded. They occur, if there is no precipitation data available in the whole 

dataset for a specific combination of duration/intensity classes and are thus also excluded. 

Additionally extreme singular results were taken out a posteriori to ensure correct grading (otherwise 

one extreme value would get a colour assignment, while the other ones are assigned to one pool). 

These out-takes are indicates separately next to the respective data point (black dot). 
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Figure 47: Difference between conditional probability of all nearest stations (irrespective of distance) versus stations, which 
are not farther than 10 km. 

While Figure 47 does not show a clear overall clear pattern, it can be summarised, that all deviations 

are positive. This means that for each point the conditional probability of a DF occurring depends on 

duration and intensity increase with decreasing distance, i.e. an inverse relationship of rainfall 

parameters and probability. 
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Figure 48: Relative difference of conditional probabilities between 30 km and 10 km. 

Also Figure 48 shows a clear trend towards an increasing importance of increasing precipitation 

intensity and decreasing duration. There is still a prominent peak at a duration of 10 days and an 

intensity of 15 days, but an increasing separation between rainfall lasting several days and shorter-

duration TER is clearly visible showing that there is an increasing importance of these two patterns, 

the nearer the precipitation gauge is from the actual event.  
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Figure 49: Relative differences between 20 km and 10 km. 

Figure 49 shows the relative difference of conditional probability between precipitation data for 

stations which were at a maximum distance of 20 km and such which were not located at a greater 

distance than 10 km. This figure furthermore illustrates well the declining importance of long term 

rainfall (except for very long TER events of 10 days with an intensity of about 16 mm). Whereas for the 

long-term component there is only one class (duration [1,1.2], intensity [1,1.2]) supporting the 

assumption, this deviation is visible throughout all dataset indicating a pattern worth further 

investigation. 

Basically, this sensitivity analysis shows that although including stations farther away is not wrong in 

particular, an increasing distance smoothens out noteworthy distinctive features, making it more 

difficult to assess the role of short-term TER 

The main drawback in the presented analysis is, that temperature and precipitation data resolved 

only on a daily basis, which renders an analysis of the effects of short-term intensive precipitation 

impossible.  

A further disadvantage is that there is no rule for the selection of triggering precipitation. That 

means that it is not possible to determine, whether TER was the main trigger of a DF or not. All DFs 

which showed an increase in cumulative precipitation were included in the analysis. 
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Another approach could be to exclude DFs with a TER below a certain threshold. This is only expected 

to make sense if there is higher-resolution precipitation data available. Otherwise it will certainly 

distort results even more. 

The advantage of the presented approach is the possibility to visually assess DF probability and thus 

acquire valuable information for establishing new ID-thresholds. The contour plots of the differences 

in distance provide valuable information on how to evaluate rainfall data. In a next step, 

probabilities from DFs farther away from a precipitation gauge could be normalised to probabilities 

from closer DFs.  
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6 Discussion 

The analysis shows that no distinct climatic shifts could be found for DF initiation mechanisms, 

although there are clear shifts evident for climatic parameters such as heavy rainfall and temperature 

extremes throughout the last 100 yrs. The ID-thresholds for 30-year periods since 1916 (in Chapter 

5.2.2.), don’t show changes in ID-thresholds. The occurrence of different event magnitudes does not 

change significantly, and only the amount of DF occurring on cool/wet days show a significant increase 

(Table 17) irrespectively of the season. It also is shown that 89 % of DFs used for analysis in Chapter 

5.2.2. are occurring under a combination of extreme temperature/precipitation deciles. 

Furthermore my results are in line with other research with respect to the frequency of occurrence of 

hydrological hazards (Mudelsee et al., 2003). The KDE showed one prominent peak, but no clear trend 

could be deduced from this. This particular peak in the 1960s can be attributed to over reporting in 

that decade. Although the Austrian torrent and avalanche control has provided the public with 

considerable hazard mitigation efforts before, a systematic approaches to inventorisation hand in hand 

with extensive protection efforts with respect to hydrologic and gravitational mass movements has 

not started before 1960. Interestingly this period of over reporting even overshadows the preeminent 

“years of hazard” in 1987 and 2009 (mainly ring-on-snow events after the “avalanche winter”) 

In particular my investigation shows two important aspects of precipitation: when combining intensity 

and duration with the Bayes theorem we can see that there is a pattern in nearly all investigations for 

very-short (assumed as convective) to short term (assumed as adjective) precipitation. While the short-

term advective precipitation is expected to be well represented in the 2D-Bayesian Histograms, the 

convective part is not depicted due to the lack of data. Nevertheless there is a trend towards a strong 

convective effect represented well through the contour plots of relative deviations with regard to 

event-distance to the precipitation gauge. The long term component is also represented in all analyses 

as potential bias due to distance. It can be excluded, since the conditional probability increases with 

decreasing distance. This short-duration pattern is prominent up to 2.5 days. Conditional probability is 

high for very short events with very high intensities, whereas it can be lower for increasing durations 

(cf. Contour plots). There is a very distinctive peak for Bayesian analysis as well as for distance 

relationships for the duration class between about 2.5 and 4 days [0.4, 0.6] for higher precipitation, 

indicating that this duration-intensity class was rather frequently triggering hazards in our dataset.  

The second noteworthy feature is very long precipitation lasting roughly between 6.3 and 20 days [1.0, 

1.4]. Here the highest probability is already evident at about 16mm [1.4], but there were also events 

being triggered at lower intensities for this duration. 
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Answering our first research question we can tell that significant seasonal shifts could not be found for 

DFs, which could be affected by data thinning. Nevertheless it was possible to assess the evolution and 

the occurrence rates of DFs for the last 100 yrs. 

Answering the second research question it can be stated that there are clear seasonal shifts in 

precipitation and temperatures whereas the distinction between convective and adjective cannot be 

made due to temporal resolution issues. Our analysis furthermore shows that it is possible to 

determine clear conditional probabilities for different precipitation-intensity classes, as well as to 

quantify frequencies and ID-thresholds, although in a very general way. 

The 2D-Bayes-aproach and the contour plots are an ideal way to quantitatively describe the 

relationship between magnitude, frequency and probability, while seasonality didn’t have a significant 

effect. When comparing the overall results with data from Guzzetti (2008), Aleotti (2004) and the 

Deucalion project (n.d., n.d.) it is possible to make a comparison, which is shown in Figure 50.  

 

Figure 50: Comparison of selected ID-tresholds for DFs from other studies: 1. Caine (1980), 2. Jibson (1989 ), 3. Paronuzzi et 
al. (1998), 4. to 6. Bolley and Olliaro (1999); 1. to 6 are cited in Guzzetti (2007b), 7. to 9. Deucalion project (bold lines; with 
dashed upper being max. threshold, dashed lower min. threshold, bold drawn-through line mean threshold), 10. extrapolated 
ID-threshold from Chapter 5.1.1, 11. extrapolated ID-threshold from Bayesian analysis (Figure 45 under consideration of ID-
plots for magnitude stated in the Appendix)  
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From the non-standardised data analysed in Chapter 5.1.1., the ID-thresholds are rather low which I 

assume is  due to the large data-set at hand, where the nearest stations of some DFs didn’t measure 

significant amounts of precipitation before DF initiation. This can occur either through missing data 

from the precipitation gauge, where the cumulative sum of precipitation does not increase 

significantly. Another possibility is that some nearest-neighbour gauges are more than 30 km away and 

thus include the possibility of distortion of precipitation data. Bearing these effects in mind the analysis 

points to the influence of convective, strongly localised precipitation (visible e.g. in the ID-threshold 

curves in the Results section). When analysing ID-data from Bayesian analysis this problem can be 

partly visually accounted for through looking at Bayesian DF probabilities. Here it was tried to consider 

also extreme and large hazards which then results in a steeper ID-threshold, because large DFs are 

tried to be included into the threshold. 

When extrapolated, the red line in Figure 50 is in accordance with Deucalion data for short-term TER, 

while the long-term TER is considerably lower because of a stronger inclusion of extreme DFs. The 

author thinks that this is a viable ways to adequately account for DF initiation, alleviating the problem 

of a quantile-approach, where short-term thresholds would be too low and long-term thresholds 

wouldn’t account for extreme hazards. 

While the probabilities presented in the Bayesian analysis seem very small, it has to be considered 

that the number of potential TERs was very high, while the sample data-set was rather small. This 

shows that while rainfall is quite well represented, the whole sample of debris flows seems vastly 

underrepresented. 

The author is aware that this work omits several aspects of this topic, but hopes to make a 

contribution to an overall picture for CC impacts on DF processes. When such subsequent studies 

would be extended to all relevant types of gravitational mass movements it can provide valuable 

insights to the effects of CC on such type of hazard. 

  



91 

7 Conclusion  

Temporal resolution 

Although the results show first interesting trends in how DFs are initiated; they also show some 

limitations which were discovered using Bayesian analysis. All results indicate that there is a short-

term component missing when analysing rainfall events. This component is lost, because the highest 

available resolution for the whole dataset was one day. 

To account for this component sub daily resolutions are needed, which could be derived by e.g. using 

ultra high resolution radar datasets of up to 15 min. With complementing the current dataset by this 

component it would be possible to downscale all available precipitation patterns and to create 

subduing Bayesian classes. However, this would result in another problem: Ultra-high resolution data 

for Austria are only available since 2002 which would render analysis of climatic shifts completely 

impossible.  

In this case, there are two further possibilities: either trying to project shifts on a daily scale at a 

minimum onto shorter durations with theoretical methods or empirical approaches from studies 

already made or to use downscaled GCM-data to utilise projections for possible future shifts which 

was also part of core research throughout the project Deucalion (Kaitna et al., n.d., n.d.). 

Spatial resolution 

A difficulty adding to the uncertainties induced by temporal resolution is the vastly discussed 

heterogeneity of precipitation throughout Austria, which introduces distortions and biases when going 

towards a whole-country approach. Here the solution could be to define homogenous precipitation 

regions – an approach which has been already carried out by Matulla et al. (2003) – from the 

meteorological perspective. Even without temporal downscaling this would lead to clearer results, 

where regionally validated ID-curves could be aggregated to a curve for the whole country. Additionally 

this would provide the advantage of being able to see the impact of topographic differences on such 

an approach. 

Generally spoken, this study provides a methodological toolbox and a rough estimate for a rather big 

and diverse area. To better assess rainfall effects on DFs, but still be able to conduct investigations in 

a quantitatively viable way, an important step for future work is to define regions of homogenous 

precipitation. Since it is probable that very-short, high-intensity rainfall events are neglected in the 

study at hand, it is advisable to conduct downscaling experiments with recent data and use the 

information gathered to perform precipitation downscaling for all the historical daily precipitation data 
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at hand similar to other smaller-scale studies (e.g. Jomelli et al., 2009). Robust and suitable methods 

have been developed and tested during the last years to address this issue (Beuchat et al., 2011). 

The conducted investigation of precipitation threshold provides a fundament for a more thorough 

investigation. As van Asch (after Crozier, 2010) has concluded, interpretations with regard to a shift in 

landslide occurrence has to be carried out for the same type of landslide material within the same 

geomorphological framework. It is difficult to use overall frequency data to reconstruct CC effect in 

the past. This is also true for the assessment of future shifts, especially for DFs. 

Implications for DFs in a changing climate 

Already previous studies have tried to assess the likelihood of DF occurrence for future CC (Belaya, 

2003; Dehn and Buma, 1999; Schmidt and Glade, 2003). These studies all have in common that they 

illustrate the uncertainty associated with predictions by using secondary models which derive 

information from climate models. Nevertheless they provide scientifically a first hint of what could 

happen in the future. As mentioned above, CC will cause different responses with regard to the surface 

and subsurface hydrology of catchments in the temporal as well as in the spatial domain. From my 

study I can derive that there are influences mainly by rainfall intensity, but also interactions with TER 

and antecedent conditions. This means that further investigations about the future climate will have 

to take into account possible shifts, but also uncertainties for each variable of interest. 

This means that future investigations of climatic effects on DF activity any shifts of TER are needed to 

be taken into account, as well as variations in storm frequency and variations in storm intensity. 

Another important task is to relate general catchment information to the EDB to investigate 

relationships of TER with respect to geological conditions, catchment size, catchment morphology and 

other parameters. 

As a summary for the whole thesis the table below discusses obtained results in comparison to the 

research questions stated in a kind of check list. 
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No. Question Description Answered 

1 How did the temporal 
occurrence of DFs evolve in 
Austria? 

KDE shows that there are no 
significant shifts for DF in the 
last 100 years except a peak in 
the 1960s which is likely due to 
over reporting 

Yes, there is a hint of a downward 
trend in from 1980, but data from 
2008-2014 would be needed to 
substantiate an assumed 
downward trend 

1a Are there seasonal shifts 
occurring in events 
triggered? 

Our extensive analysis showed 
no seasonal, shifts over time. 
There are uncertainties 
regarding the DF inventory, 
short-term precipitation and 
rain-on-snow events (not 
investigated) 

Yes 

1b Is it possible to assess the 
development of occurrence 
rates and magnitudes for the 
last 100 years? 

Yes, but there is no significant 
pattern for occurrence rates and 
magnitudes. However, the 
analysis sheds more light on 
magnitude-frequency 
relationships 

Yes, but other potential parameters 
which could affect the occurrence 
of DF of a certain magnitude should 
be investigated. Magnitude classes 
are too general for thorough 
assessment 

2 What can the examination of 
rainfall data tell us with 
regard to triggering 
mechanisms of DFs? 

Rainfall intensity and duration 
have the biggest influence on 
conditional probability. Also the 
cumulated sum of a TER and 
antecedent rainfall play a role 

Yes. An investigation on rain-on-
snow events is necessary to reduce 
uncertainties 

2a What is the percentage of 
events triggered by 
precipitation? 

The current approach is not 
suitable to analyse DF which are 
not triggered by precipitation. 
This could have led to “false 
positives” (very low 
precipitation is attributed to 
rainfall induced triggering) 

No. It is difficult to approach this 
task with current analysis. It would 
be necessary to define how much 
TER is attributed to “rainfall 
induced” 

2b Can seasonal shifts be 
determined with regard to 
this systems? 

No Yes. With current data and 
literature seasonal shifts are likely 
not to be the primary driver for 
changes in DF occurrence. It is very 
likely that they can be a secondary 
driver 

2c Which patterns exist 
between magnitude, 
frequency, triggering 
precipitation and  
seasonality over time? 

The rather complex results for 
this questions are described in 
the results section and partly 
illustrated in Appendix 1 

Yes, partly (analysis in 30-year 
intervals) 

Table 19: Overview of research questions dealt with in the thesis. 

Table 19 summarises information to what extent it is possible to answer the research questions with 

all the available data, which could be acquired for the investigation of potential climatic effects on 

hydrometeorological triggers of DFs.  
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An important next step would be to conduct more pilot studies for selected areas to have control 

catchments, where every occurring DF can be registered (ideally with high resolution precipitation 

data and additional parameters). When focusing on a smaller temporal and spatial window with 

well-observed parameters more robust estimates for Bayesian probability can be made. Several 

catchments representative for designated climatic and geomorphologic regions would give valuable 

insights on how future debris flows can possibly change under a changing climate. 
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Appendix 1 – Evaluation of climatic parameters 

Precipitation 
Mean annual DJF precipitation 

 

Mean annual MAM precipitation 
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Mean annual JJA precipitation 

 

Mean annual SON precipitation 
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Maximum annual DJF precipitation 

 

Maximum annual MAM precipitation 
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Maximum annual JJA precipitation 

 

Maximum annual SON precipitation 
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Temperature 
Changes in DJF temperature from 1872 to 2012 (Tmax and 95% quantiles) 

 

Changes in MAM temperature from 1872 to 2012 (Tmax and 95% quantiles) 

 

Changes in JJA temperature from 1872 to 2012 (Tmax and 95% quantiles) 
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Changes in SON temperature from 1872 to 2012 (Tmax and 95% quantiles) 
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Analysis of joint quantiles 
Cold/Dry and Cold/Wet Days – Annually; compared to 10/10 and 10/90 percentile  
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Warm/Dry and Warm/Wet Days – Annually; compared to 90/10 and 90/90 percentile 
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Cold/Dry and Cold/Wet Days – DJF; compared to 10/10 and 10/90 percentile  
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Warm/Dry and Warm/Wet Days – DJF; compared to 90/10 and 90/90 percentile 
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Cold/Dry and Cold/Wet Days – MAM; compared to 10/10 and 10/90 percentile  
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Warm/Dry and Warm/Wet Days – MAM; compared to 90/10 and 90/90 percentile 
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Cold/Dry and Cold/Wet Days – JJA; compared to 10/10 and 10/90 percentile  
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Warm/Dry and Warm/Wet Days – JJA; compared to 90/10 and 90/90 percentile 
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Cold/Dry and Cold/Wet Days – SON; compared to 10/10 and 10/90 percentile  
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Warm/Dry and Warm/Wet Days – SON; compared to 90/10 and 90/90 percentile 
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Intensity-Duration relationships 

Intensity-duration diagram for TER (black) and for TER of DFs of magnitude=1 

 

Intensity-duration diagram for TER (black) and for TER of DFs of magnitude=2 
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Intensity-duration diagram for TER (black) and for TER of DFs of magnitude=3 

 

Intensity-duration diagram for TER (black) and for TER of DFs of magnitude=4 
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Magnitude-Intensity relationships 

Box plots for the TER for different intensity classes 

 

Bayesian analysis 

2D Bayesian analysis for all events 
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2D Bayesian analysis for all events with assigned magnitudes 

 

2D Bayesian analysis for all events with magnitude = 1 
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2D Bayesian analysis for all events with magnitude = 2 

2D Bayesian analysis for all events with magnitude = 3 
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2D Bayesian analysis for all events with magnitude = 4 
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Appendix 2 – Raw data file examples 

Example of a ZAMG data-file 

 

Example of an eHYD data-file 

 

 




