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“If you just focus on the smallest details, you never get the bigger picture right.”
Leroy Hood

“When it rains, most birds head for shelter; the Eagle is the only bird that, in order to avoid
the rain, starts flying above the clouds.”

Unknown
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Preface

We carried out this study within the framework of the project “Carbon Storage and Soil
Biodiversity in Forest Landscapes in Ethiopia: Knowledge Base and Participatory
Management” with funding from the Austrian Federal Ministry of Agriculture, Forestry,
Environment and Water Management.

This is a cumulative dissertation comprising of two peer-reviewed scientific papers which can
be found in the Appendix of this work (section 9.1 to 9.2). The first part (section 1 to 8) is a
synthesis and extended summary of the papers, which, for the first time, demonstrates the
links between the two papers towards the development of the framework for the sustainable
forest management in the Amhara region. The second part (Appendix) consists of two first
authored papers published in peer reviewed international journals. The formatting of the

individual papers varies due to the individual style of the journals.

Citations of this work should refer to: Sisay, K., 2017. Develop a Conceptual Framework for
Sustainable Forest Management for the Amhara Region, Northwestern Ethiopia. PhD
Dissertation. University of Natural Resources and Life Sciences, Vienna, Austria or by

reference of the individual papers.
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Abstract

Deforestation and forest degradation, mainly as a result of land use changes, have posed a
great danger to the environment as well as the livelihood of many people. About 90% of the
people in Amhara region depend on the forest resources. As a consequence of population
pressure, the extent of deforestation and forest degradation in the region has been severe
during the last century. Forest ecosystem services and goods have diminished at a fast rate.
Up until now, no information exists on the current state of forests, nor do any sound forest
management schemes in either Ethiopia or the Amhara region. The aim of this study was to (i)
estimate the timber volume, the aboveground carbon and the net primary productivities of the
forest in the Amhara region and to (ii) downscale the daily climate data for the Amhara
region, needed as input data within an ecosystem modeling using the biogeochemical Biome-
BGC to assess the forest productivity situations. Height-diameter and form factor functions
were calibrated for the most important tree species and forest regions, so that timber volume
and carbon could be calculated. Increment core samples were taken for the estimations of
annual volume and carbon increment rates and net primary productivities. The terrestrial
forest inventory estimations were combined with the land cover map based on agroecological
zones and elevation ranges to derive clusters. Extrapolation of terrestrial forest estimates for
the whole Amhara region was applied by using the clusters as a reference stand. As a result,
forest productivity estimates for the whole Amhara region are provided for the first time.
Based on our results, the forest area in the Amhara region is 2% of the total land area with an
average volume stock of 65.7 m® ha *; the shrubland covers 27% and a volume stock of 3.7
m® ha %; and the woodland covers 6% with an average volume stock of 27.6 m® ha. The
annual volume increment rates of forests are 3.0 m* ha*; 1.0 m* ha %, for the shrubland; and
1.2 m*ha’?, for the woodland. The estimated current total volume stock in the Amhara region
is 59 million m® or 19.1 million tons of stored carbon. A spatiotemporally consistent grid
(1979 — 2010) of daily minimum temperature, maximum temperature and precipitation data
with a spatial resolution of 1 km was produced for the whole Amhara region. This had never
been available before. The climate data together with the terrestrial forest inventory data are
now available for use as input data for running the biogeochemical mechanistic (Biome-BGC)
model. Thus, a framework for sustainable forest management will be developed for the
Amhara region, for the first time. Finally, we will demonstrate a conceptual, methodological
approach to estimate the forest productivities of the whole Amhara region and suggest a

sustainable forest management framework.
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Kurzfassung

Entwaldung und Walddegradation als Hauptfolgen von Verdnderungen bei der Landnutzung
stellen eine groRe Gefahr fiir die Umwelt sowie fur die Existenz des Menschen dar. Etwa 90%
der Bevolkerung von Amhara (Athiopien) sind auf Waldressourcen angewiesen. Ausgeldst
durch hohen Bevolkerungsdruck war das Ausmald der Entwaldung und Walddegradation im
letzten Jahrhundert sehr groRR in der Region. Waldokosystemdienstleistungen und Gliter
schwanden in raschem Tempo. Aktuell sind in der Region Amhara sowie in ganz Athiopien
weder Daten zu dem Waldzustand und noch solide Waldbewirtschaftungsstrategien
vorhanden. Ziel dieser Studie war (i) das Holzvolumen sowie die oberirdische Kohlenstoff-
und Nettodkosystemproduktivitat der Walder in der Region Amhara einzuschétzen und (ii)
tagliche Klimadaten fir diese Region auf einen kleineren Malstab zu reduzieren, um sie zur
okologischen Modellierung mithilfe des biogeochemischen Biome-BGC-Modells verwenden
und schlussendlich die Waldproduktivitat bewerten zu konnen. Regionale Hohen—
Durchmesser und Formzahlfunktionen wurden fiir die wichtigsten Baumarten abgeleitet, um
anschlieBend das Holzvolumen und die Kohlenstoffmenge zu berechnen. Holzbohrkerne
wurden entnommen, um den jahrlichen Volumenzuwachs, sowie die jéhrliche Rate der
Kohlenstoffixierung und die Nettoprimarproduktivitat einzuschatzen. Schétzwerte aus der
terrestrischen  Waldinventur wurden mit Landnutzungskarten kombiniert, die auf
agrookologischen Zonen sowie Seehdhe basieren, um Cluster abzuleiten. Extrapolation
terrestrischer Wald wurde fir die ganze Region Amhara mit Verwendung der Cluster als
Referenzbestdnde. Schatzwerte der Waldproduktivitdt wurden zum ersten Mal fur die ganze
Region erzeugt. Der berechnete Waldanteil in der Region Amhara betragt 2% der
Gesamtflache bei einem Holzvorrat von 65,7 m*® ha . Der Anteil und der Holzvorrat des
Buschlands liegen jeweils bei 27% und 3,7 m* ha !, wahrend Offenwald 6% der Gesamtflache
bedecken und tiber ein durchschnittliches Holzvorrat von 27,6 m® ha™* verfiigen. Die jahrliche
Zuwachsrate betragt 3,0 m® ha* im Wald, 1,0 m*® ha* im Buschland und 1,2 m® ha* in
Offenwald. Der aktuelle geschatzte Holzvorrat in der Region Amhara liegt bei 59 Millionen
Festmeter, das 19,1 Millionen Tonnen gespeichertem Kohlenstoff entspricht. Ein
quadratisches Rasterpunktnetz von 1 km x 1 km mit t&glichen Tiefst- und Hochsttemperaturen
sowie Niederschlagswerten (Referenzperiode: 1979 — 2010) wurde zum ersten Mal fir die
Region Amhara erstellt. Die klimatischen Daten sowie die Daten aus der terrestrischen
Waldinventur stehen jetzt zur Verfugung, um das biogeochemisch mechanistische Modell

Biome-BGC anzuwenden. Dies ermoglicht die Entwicklung eines Rahmens fiir die
VIII



nachhaltige Waldbewirtschaftung in der Region Amhara zum ersten Mal. SchlieRlich wird in
der vorliegenden Arbeit ein konzeptionell-methodischer Ansatz zur Schéatzung der
Waldeproduktivitat der gesamten Region Amhara dargestellt und Empfehlungen beziglich

eines Rahmens fir die nachhaltige Waldbewirtschaftung ausgesprochen.
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1 Introduction

Forests in the world are affected by various environmental and anthropogenic hazards (Kohl
et al., 2015). Deforestation and degradation of forests caused by land use change (Morales-
Hidalgo et al., 2015); tree harvesting (Ticktin, 2004), fragmentation (Tadesse et al., 2014), as
well as climate change (UNFCCC, 2014) pose additional risks to forests worldwide. As a
result, large areas of the world’s forests have been lost or degraded. Between 1990 and 2015,
a net loss of 129 million hectares of forest was observed, the majority in tropical forests
(Achard et al., 2014; Kohl et al., 2015). Moreover, forest degradation and deforestation result
in additional anthropogenic carbon emissions (Federici et al., 2015). The problem still seems
to continue despite the environmental conservation and afforestation efforts (d’Annunzio et
al., 2015). Though they are not sufficient to considerably minimize and/or reverse the global
trend, reforestation and afforestation, restoration and rehabilitation of degraded forest lands
are some of the measures being undertaken (Kohl et al., 2015). As a result, there is a net loss
of forest resources and extensive forest degradation across the world and the problem
continues to persist. These net losses of forest resources have resulted in a decline in
ecosystem services and goods, in global warming, in a loss of biodiversity and in a reduction

in human wellbeing (Zeleke and Hurni, 2001).

Ethiopia is no different, if not the best example for the deforestation and forest degradation
experiences. Deforestation in Ethiopia is severe and has a long history, especially in the
central and northern highlands, the parts where human and animal population pressure has
been significant (Wondie et al., 2016). In Ethiopia, farming is subsistence; dependence on the
forest resources is extensive and settlements are usually near and/or inside forests which have
been changing landscapes for millennia (Lemenih and Kassa, 2014). Consequently, the forest
resources have been receding at a fast rate. Most of the remaining moist afromontane forests
of the country are found in the southwestern part of the country, which was remote and
inaccessible until recently. Ethiopian forest cover was once 40% of the total land mass
(Badege Bishaw, 2001) and declined to 3% in 2000s (Sisay et al., 2015). Loss of productivity
due to the severe soil and water erosion, loss of biodiversity, decline of benefits from forest
resources, etc are the main problems faced due to the deforestation and forest degradation in
Ethiopia (Zeleke and Hurni, 2001). Besides these prominent challenges, a number of other
factors also justify the need for restoration and forest management in Ethiopia. Biomass is the

main energy source for the over 90% of the 100 million people in the country (Federal
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Democratic Republic of Ethiopia, 2011). In order to minimize as well as avoid environmental
and socioeconomic problems, governments of Ethiopia began taking measures to rehabilitate
degraded forests and re-afforest forest lands. Up to the beginning of the 20" century, the
people and governments dealt with the scarcity of forest products by moving close to forested
areas (Lemenih and Kassa, 2014). However, in the 1890s, an alternative approach involving
reforestation and afforestation was introduced by the emperor of Ethiopia, Menilik-11 (Melaku
Bekele, 2003). This marks one of the first formal forest management attempt in the history of
contemporary Ethiopia. Despite the unsuccessful efforts, there is a recently growing
awareness that deforestation and forest degradation should be mitigated as soon as possible.
Thus, the Ethiopian government, in its December 2011 strategy, identified the forestry sector
as one of the pillars of the green economy that the country is planning to build by 2030
(Federal Democratic Republic of Ethiopia, 2011). The government also set targets on
afforestation, reforestation and improved management of natural forests and woodlands.
However, Ethiopia has not had a standardized and effective, sustainable forest management
scheme until now. Sustainable Forest Management (SFM) requires a continuous assessment
of forest conditions covering the species distribution, standing tree volume as well as volume
increment rates (Hasenauer, 2006). Woody biomass inventory and strategic planning project
(WBISPP) 1990 — 2000 have attempted to establish the National Forest Inventory (NFI) for
the assessment of forest conditions throughout Ethiopia (Parent, 2000). However, the efforts
made by WBISPP could not be further maintained after the phasing out of the project. There
have also been recent small scale efforts mainly by Non-Governmental Organizations (NGOS)
to curb the mismanagement through the so called participatory forest management (PFM)
(Gobeze et al., 2009; Siraj et al., 2016). The historical trend is similar for the Amhara region

as well.

The current situation in Ethiopia demands forest management studies which are sufficient for
long-term projections and extrapolations to large spatial scales (Moreno et al., 2016). Yet,
most of the studies being undertaken are restricted to local level scales, focus on specific
species and unfitting to each other to satisfy the large spatiotemporal scale which is currently
in demand (Berhe et al., 2013; Negash et al., 2013; Sisay et al., 2015; Wondie et al., 2011).
Therefore, conducting a study to ensure a sustainable forest management at a regional level is

imperative.



SFM is fundamental to satisfy the diverse interests vested upon forest ecosystems. Modern
SFM has, therefore, evolved from basic timber supply to more integrated land use planning
with social, economic, and ecological dimensions (Sloan and Sayer, 2015). At the local level,
SFM contributes to peoples’ livelihoods, income generation and employment (Gobeze et al.,
2009). At the environmental level, it contributes through, for example, carbon sequestration,
biodiversity protection, water and soil conservation (Liang et al., 2016). Therefore,
developing a framework for SFM for the Amhara region is of paramount importance.
Empirical studies for the Amhara region alone, which is a large land mass (1.5 million square
kilometer) with heterogeneous environmental features, are less efficient for developing a
framework for the sustainable forest management. Ethiopia, and particularly the Amhara
region, is a mountainous region in which topographic and climatic extreme conditions make
the ecosystem vulnerable to changes of climate and land use (Hurni, 1998). Combining forest
ecosystem modeling, remote sensing techniques and terrestrial point sampling is essential to

bridge the spatiotemporal scaling gap for mitigating the environmental and social threats.



2 Objective and Outline

This PhD work is part of the ongoing larger activity for the assessment of forest productivities
and development of sustainable forest management framework for the Amhara region. The
project covers two main efforts. The first part is tackled by this PhD work and the second part
is being tackled by another PhD work which is in progress (Belay et al., 2017). The mission
of this thesis is therefore to assess the current situations of forests and provide the necessary
input data for the biogeochemical forest ecosystem model using Biome-BGC. Finally, the
conceptual framework for the SFM for the Amhara region will be developed by integrating
different conceptual approaches, such as terrestrial forest estimation, land cover classification
using remote sensing data and a biogeochemical forest ecosystem modeling. Different forest
types were sampled for timber volume, annual volume increment, aboveground carbon stock,
annual carbon increment and NPP estimations and extrapolated to the whole region using a
land cover map. Due to the lack of data in the Amhara region, we further used the
biogeochemical ecosystem model Biome-BGC to fine-tune the regional estimations and
assess the state of forests under different environmental and management scenarios. For the
modeling work and the development of an SFM framework, additional input data such as

daily minimum temperature, maximum temperature and precipitation is needed.
The objectives are:

Q) to estimate the productivity of forests in the Amhara region using terrestrial and
remote sensing data (Paper I);
(i) to provide daily climate data for the Amhara region needed as input data within an

ecosystem modeling and productivity assessment scenario (Paper II).

This PhD work is the first part of an ongoing larger activity. The first step of this PhD work
was to collate the forest inventory data in different forests in the Amhara region. In the
beginning, height-diameter and form factor functions were calibrated for the forests in the
Ambhara region. The increment cores collected during the forest inventory were used to
estimate the forest increment rates. The forest stand data were then used to estimate the
current timber volume, carbon stocks, volume and carbon increments and NPP. The results
were existing timber volume, volume increments, carbon, carbon increments and NPP. The
local terrestrial inventory data is extrapolated to the whole Amhara region using a land cover
map. However, because of lack of enough inventory data, a biogeochemical forest ecosystem

4



modeling is being implemented to further improve the estimations and analyze the different
scenarios. This modeling extension is the second part of the ongoing project (Belay et al.,
2017). The second and final part of the project, which is the implementation of the modeling
and scenario analysis using biogeochemical model Biome-BGC, is in progress by another

PhD work, which will enable us develop an SFM framework (see Figure 1).

In order to run the Biome-BGC model, we also needed spatiotemporally consistent input data.
Daily climate data, in addition to the terrestrial inventory data for the Amhara region was one
of the necessary input data. Therefore, weather data from weather stations in the Amhara
region were collected. The collated weather station data was used for calibration and
validation of downscaled daily climate data. Global datasets from National Centers for
Environmental Predictions (NCEP) and WorldClim are used to produce the daily climate data
for the Amhara region. Daily minimum and maximum temperature and precipitation with 1

km spatial resolution from 1979 — 2010 were produced.
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3 Data

3.1 Description of Ethiopia

Ethiopia is the most populous, mountainous and landlocked country in the world located in
the Eastern Horn of Africa. The Great Rift Valley splits the country from West to East. It
shares borders with six African countries. To the north and northeast Ethiopia borders Eritrea,
with Djibouti and Somalia to the east, Sudan and South Sudan to the west and Kenya to the
south. Ethiopia is the oldest, with more than 3000 years written history and one of the
independent nations in the world. It has a unique cultural heritage as being the home of the
Ethiopian Orthodox Church and the source of the first modern humans (Karbo, 2013; Pagani
et al., 2015). The current form of Government in Ethiopia is a Federal Democratic Republic
with 9 regional states. The Amhara region is the third largest region and is located in the
northwestern part of Ethiopia. Ethiopia covers a total geographical area of 1.1 million square

km and a population of more than 100 million (Tegegne et al., 2016).

Ethiopia’s landscape varies from barren desert to the green Ethiopian Plateau. It is a land of
natural contrasts: vast fertile land from the west; arid and degraded from the east; tropical
moist afromontane forests, which are included in the United Nations Biosphere Reserves;
numerous rivers and the world's lowest and hottest places of Dallol in the north. Ethiopian
highlands are Africa's largest continuous mountain ranges. Ethiopia also suffers recurrent
droughts with their concomitant famines. The elevation gradient ranges from the lowest
Danakil Depression at 152 meters below sea level to the highest point of Ras Dejen at 4550
meters above sea level. As a result of very wide elevation difference and undulating
topography, the country’s climate is very diverse. The country can be classified into six major
agro-ecological zones based on the agro-climatic conditions determined by altitude and
rainfall distribution (Hurni, 1998). The topographical and climatic features of the whole
country result in a mosaic of watersheds with a wide array of ecosystems and immense
biodiversity, making Ethiopia fulfil the two biodiversity hotspots of global significance: the
Eastern afromontane and the Horn of Africa (Myers et al., 2000). Ethiopia is the place of
origin of the coffee bean, which originated from a place called Kefa. As the forest covers less
than 3% of the country’s land surface, the biodiversity resource, including the wild coffee
populations are severely in endangered. Ethiopia is home to nine UNESCO World Heritage
Sites (Ndoro et al., 2009), the most in Africa.



The Ambhara region is located in the Northwestern part of Ethiopia and characterized by its
very diverse agroecology, with a highly undulating topography throughout the center and
northern highland areas, and flat woodlands covering the western lowlands to the Sudan. The
region contains the source of the Nile and the highest point in Ethiopia - Ras Dejen (4550 m).
It is also endowed with many endemic species of fauna and flora. There are over 20 million
inhabitants in the region of which the majority lives in rural areas where the main livelihood
is small-scale agriculture. The average landholding size, mainly in the highland areas where
rain-fed agriculture takes place, is roughly one ha of land (Central Statistical Agency, 2008).
Given the subsistence farming in the most part of the Amhara region, the dependence on the
forest resources is so high it resulted in deforestation and forest degradation (Pistorius et al.,
2017; Wondie et al., 2016). The studies which estimated the forest cover of the whole Amhara
region reported different numbers and less than 10% (Hailu et al., 2015; Mekonnen et al.,
2016).

3.2 Forest Stand Data

The forest data came from five forest regions of the Amhara National Regional State (ANRS).
The forest regions represent different forest types at different agroecological zones (Figure 2).
Forest stand data consisted of tree species, DBH, total tree height (H), height to live crown
base (HLC), azimuth, and horizontal distance from the plot center. Saplings (DBH < 10 cm
and height > 1.3 m) and seedlings ( 50 cm < height < 1.3m) were recorded (Sisay et al., 2017).



36°E 37PE 38°E 39°E 40°E

Ethiopia ! ! ! ! !
Ambhara National Regional State
i F13°N
- @
g ® e .Ambober (Shrublan@)
~ -
Mahlbereselass‘f% @Taragedam (Forest)
Taragedam (Woodland) ® 5
[ X ] ® ® ® @@ F12°N
e0000000 o ®e
e0e00000 (= o Qg}ePwdlwos (F@rest)
o000 oo = o ®
! ®
o o o000 @ ®
0000000
e0000o000 F11°N
o0 o0
Grid Interval 250m X 250m
Plot Design ¢ _ F10°N
e Inventory site
5 = 1
% ® Weather Station
; B Lake Tana
| [ ] Amhararegion g 2550 100 150 200 9° N
10m I . —— km

Figure 2. Map of the Amhara region

The terrestrial forest inventory does not address all the forests in the Amhara region. In order
to get the full forest conditions of the Amhara region, an extrapolation of the inventory results

using land cover map was used.

3.3 Land Cover Data

A land use and land cover map spanning 12 classes with 200 m x 200 m pixel spatial
resolution was obtained from the Amhara Bureau of Agriculture. We defined the three
simplified forestry relevant land cover classes: (i) forest, (ii) shrubland, and (iii) woodland
plus the non-vegetated area. Since elevational gradients are one of the main factors affecting
the growing conditions and thus the species distribution of Ethiopian mountains forests, we
adopted Hurni's, (1998) elevation classes for agroecological zonation resulting in five
elevation classes: (i) low land (500-1500 meters above sea level (m.a.s.l.)), (ii) mid altitude
(1500-2300 m.a.s.l.), (iii) high land (2300-3200 m.a.s.l.), (iv) subalpine (3200-3700 m.a.s.l.)

and (v) alpine (3700-4530 m.a.s.l.). Then, we assigned the land area derived from Landsat



data to each vegetation type and elevation classes to extrapolate the inventory results over the

entire region.

Both the terrestrial inventory and land cover map fell short from the intended target due to the
lack of sufficient data. Environmental and management scenario analyses were not possible as
well. To circumvent data limitations and run the scenarios, we simulated a biogeochemical
ecosystem model Biome-BGC. Among the multiple input data needed for the model to run,
spatiotemporally consistent daily climate data is needed. Therefore, daily Tmin, Tmax and Prcp
data with 1 km spatial resolution is prepared using global and local weather data for the

Ambhara region.

3.4 Climate Data

3.4.1 Global Weather Data

Daily values of minimum (Tin) and maximum (Tmax) temperature and precipitation (Prcp) are
obtained from the Climate Forecast System Reanalysis data set (Saha et al., 2010) produced
by the NCEP. The NCEP data consists of various grids of different spatial and temporal
resolutions describing the state of the atmosphere, land, ocean and sea ice on a global scale.
The data is constructed using the assimilation of observed data and models which take all
available observations every 6-12 h over the period being analyzed. Climate variables are
available on a T382L64 horizontal resolution (Maraun et al., 2010; Saha et al., 2010) which is
about 38 km at the Equator (0.3125 decimal degrees). The weather data needed for our study
was extracted from a bounding box for 8.11° — 14.36° N latitude and 34.53° — 40.78° E
longitude from the Texas A&M University spatial sciences website (Globalweather, 2012) for
the years 1979-2010.

WorldClim (Hijmans et al., 2005) provides global long-term monthly mean, minimum and
maximum temperature values as well as precipitation. The resolution is 30 arc seconds, which
corresponds to 0.0083 decimal degrees. This resolution is commonly referred to as 1 km
spatial resolution. The data set also provides 19 bioclimatic variables derived from the
climate, but they are not used in this study. The data is based on climate stations from
different sources, such as the Global Historic Climate Network Dataset (Peterson et al., 1998)

or the WMO climatological normal (WMO, 1996). The station data were harmonized, which
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resulted in a data set of precipitation records from 47 554 locations, mean temperature from
24 542 stations and minimum and maximum temperature from 14 835 stations (Hijmans et
al., 2005). The data were interpolated using the thin plate smoothing splines procedure
(Hutchinson, 1995). The raster data for Tmin, Tmax and Prcp for our study was obtained from
the WorldClim website (WorldClim, 2005) for the same bounding box coordinates used for
the NCEP data. This resulted in raster files with 750 columns and rows. The raster files were
converted into GEOTIFF files, one file per variable with 12 raster bands (one per month).

3.4.2 Weather Station Data

According to the National Meteorology Agency of Ethiopia, meteorological stations in
Ethiopia are divided into four classes based on their meteorological observation parameters
(http://www.ethiomet.gov.et/stations/regional_information/2).  First class stations are
established for the purpose of synoptic meteorology. Observations are taken every full hour
for 24 h a day. They observe 18 meteorological parameters, amongst them Tmin, Tmax, Prcp,
relative humidity, wind speed and sunshine duration. Second class stations record
meteorological data for climatological purposes. These stations measure more than 13
meteorological variables not relevant for our study. Third class stations only record three
meteorological parameters every 24 h; Tmin, Tmax @and Prcp. Fourth class stations measure only
the total amount of precipitation in 24 h. Observations for the fourth class are taken at
0600GMT. For our analysis, we used data only from class 1 and 3 stations because we were
interested in daily Tmin, Tmax and Prcp. Although the stations are established based on the
aforementioned classes, some stations have stopped their operation for different reasons.
Some stations were also outdated and replaced by new ones while others were established
very recently. This makes acquisition of consistent data for the given time period difficult. In
addition, we limited the meteorological station data to the time span between 1979 and 2010
so that they match with the available NCEP data. In the Amhara region, 66 stations fulfilled
these criteria. For our analysis, we used 56 stations for calibration (early comparison and bias
correction) of the downscaled data. After the downscaling and the associated bias correction
were done, we obtained ten additional and independent weather stations from 1979 to 2010

for validation purposes (Sisay et al., 2016).
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4 Methods

4.1 Workflow

The papers in this study attempt to estimate the state of forests and the forest estimate in turn
used as an input for the modeling of the forest condition under different scenarios for our goal
to develop a conceptual framework for SFM in the Amhara region (see Figure 1 and
Appendix 9 .1). Paper | describes the analysis of the current state of forest resources and the
productivity of the Amhara region through a combination of terrestrial forest inventory and
land cover map. As the estimation of the forest conditions with this regional scale is the first
attempt, multiple data were lacking to produce a better result. Therefore, a forest ecosystem
modeling approach with a biogeochemical Biome-BGC is employed to model the forest
condition under different environmental and management scenarios. For the modeling
scheme, input data such as terrestrial forest condition and daily climate data are needed. Paper
Il produces 31 year gridded daily climate data with fine spatial resolution. The modeling
effort, which suggests a conceptual framework for SFM is under a manuscript preparation
(Belay et al., 2017).

4.2 Collate Forest Inventory Data

Terrestrial forest data was required for our study. Despite the importance of terrestrial forest
inventories for the estimation of the state of forest conditions, there are no national or regional
forest inventory schemes in Ethiopia. Hence, we designed an inventory plan for our five
different forest regions. Total numbers of plots were 198. A consistent plot level data
collection method was designed (see Figure 2) (Sisay et al., 2017). The data collected from

these forest inventories form the basis of analysis for this study.

4.2.1 Height ~ Diameter Function

Data for the height-diameter function was collected based on the DBH records on a given
sampling plot. We selected the so called “central” stem or tree - the 60 percentile of the DBH

distribution for each species on a given sampling plot and measured the height of the tree.

12



However, this needs a height-DBH function to derive the missing tree heights. For our work,

we chose the Petterson’s (Schmidt, 1956) height-DBH function and estimated the coefficients.

4.2.2 Form Factor Function

As there are no form factor functions for most Ethiopian tree species, we calibrated the F.
Evert’s Australian Function (Evert, 1968). Data for the form factor function calibration came
from the 400 trees belonging to 20 very common species. We selected 20 trees in each 5 most

common species in the inventory sites.

4.2.3 Standing Stock and Increment Rates

To develop and implement any forest management activities, it is necessary to first
understand the current state and the annual increment of the forests. The inventory is
necessary to understand the current timber volume, volume increment, aboveground carbon
stocks, carbon increment and NPP (Sisay et al., 2017). As part of this study, the increment
rate of important tree species in each site was estimated and their productivities quantified for
the first time ( see Figure 5, 6, and 7) (Sisay et al., 2017).

4.3 Extrapolation of Terrestrial Estimates to the Whole Amhara Region

To analyze the forests condition throughout the Amhara region, the terrestrial forest inventory
estimates are combined with remotely sensed land classification data. The digital land cover
classification map was obtained from the Amhara Bureau of Agriculture. The land cover map
consists of forests, shrubland, woodland and the non-vegetation classes. The map is further
classified by different agroecological zones based on elevation classes (Hurni, 1998). A
cluster was created by combining the terrestrial forest inventory estimates and the elevation
based land cover map. Therefore, clusters were used as a reference stand approach where the
terrestrial inventory information from the forest types are extrapolated into similar land cover

types within similar elevational ranges to the whole Amhara region (Sisay et al., 2017).

The result can be further improved by incorporating additional data to develop the SFM

framework. Given the severe data scarcity in the Amhara region, a modeling approach using a
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biogeochemical Biome-BGC model is implemented to assess the carbon flux within the

ecosystems under different scenarios and finally develop the SFM framework.

4.4 Forest Ecosystem Modeling

To analyze and model the forest ecosystems in the Amhara region, input data such as forest
characteristic and climate data is required. The required input data should meet the spatial and
temporal data requirements. Therefore, calibration of form factor and height-diameter
functions as well as terrestrial forest estimation of timber volume, carbon stock and NPP for
the forests in the Amhara region were undertaken (Sisay et al., 2017). A daily minimum
temperature, maximum temperature and precipitation with 1 km spatial resolution were
downscaled from global data (Sisay et al., 2016). The modeling work is still in progress
(Belay et al., 2017).

4.5 Downscale Climate Data

There hasn’t been spatially and temporally continuous climate data for the Amhara region.
We used two global raster data sets (NCEP and WorldClim), both on different spatial and
temporal resolutions, to obtain a 1 km daily climate grid consisting of minimum temperature,
maximum temperature and precipitation. We obtained the monthly high-resolution (1 km)
WorldClim dataset to adjust the daily low-resolution (38 km) NCEP values. We applied the
delta downscaling procedure, designed in the study (Sisay et al., 2016). A bias correction
factor was additionally applied to further improve the downscaled data. The downscaled
datasets include daily precipitation and minimum and maximum temperature all on a 0.0083°
resolution (approximately 1 km) from 1979-2010. Figure 3 shows the methodological steps of

the downscaling process conditions.
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Figure 3. Methodological flow of downscaling

4.6 Developing Sustainable Forest Management Framework

To develop a sustainable forest management framework for the Amhara region, the current
condition, their increment rate and projections for different scenarios are required. The type of
forest, their spatial coverage under different agroecological zones, the current timber volume
and carbon stock, the increment rates and productivities are important forest characteristics
for sustainable management. Form factor and height-diameter functions that operate at an
individual tree level are crucial models in the estimation of tree growth where there are no
such functions in place. Integrating the terrestrial inventory with the remote sensing
techniques provides the full picture at the regional scale. The other approach for the
development of the SFM is the implementation of a forest ecosystem modeling which is under
progress. The modeling approach is very important where the lack of input data is severe.
Therefore, forest ecosystem modeling using Biome-BGC is under progress to finally come up
with a framework for the sustainable management of forests in the Amhara region (see Figure

4).
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5 Analysis and Results

In order to develop the conceptual framework of the SFM for the forests in the Amhara
region, analyzing the current state of the forests as well as changes under different
environmental and social scenarios is essential. Two approaches are implemented in this
study. The first approach is assessing the state of the forests in the Amhara region by
collecting terrestrial inventory data from five different forest regions and three forest types:
forest, shrubland and woodland. Extrapolation of the terrestrial assessments for the whole
Ambhara region was done by combining with the land cover map of the Amhara region which
was obtained from ANRS. The land cover map was reclassified into 3 forest cover types: (i)
forests, (ii) shrublands, (iii) woodland and non-woody vegetation and five elevation classes:
(1) low land (500-1500 meters above sea level (m.a.s.l.)), (ii) mid-altitude (1500-2300
m.a.s.l.), (iii) high land (2300-3200 m.a.s.l.), (iv) sub-alpine (3200-3700 m.a.s.l.) and (V)
alpine (3700-4530 m.a.s.l.). Therefore, a cluster with forest type and elevation range was
created. A “reference stand approach” was employed where the regional inventory
information is used as a proxy for a given cluster, which enabled the extrapolation of the local
inventory results to the whole Amhara region (see Paper | of Appendix 9.1). To further
improve the results of the first approach and to assess the forests under different
environmental and management scenarios, the second approach, a forest ecosystem modeling,
is used. The modeling of the forest ecosystem approach is implemented using the
biogeochemical Biome-BGC flux model. Input data from terrestrial point data and gridded
climatic data are needed for the Biome-BGC model. Both data in the Amhara region were
unavailable. Therefore, various aspects of forest conditions, e.g. forest characteristics,
productivity and climate data are produced. A daily Tmin, Tmax and Prcp with 1 km spatial

resolution was downscaled for the Amhara region the years from 1979 — 2010.

5.1 Terrestrial Forest Inventory

Terrestrial forest inventory data is needed to spatially analyze forest characteristics of the
Ambhara region. We selected 5 different forest types spanning wide elevations and agro-
ecological zones of the Amhara region. To date, there has never been a dataset that contains
plot level information to such an extent. NFI data from 5 forest sites and 198 plots was
collated. The height-diameter and form factor functions were calibrated for the most

important tree species in the region for the first time. 1154 trees were used to calibrate a
17



height-diameter function for 24 tree species and 284 trees cover the species groups “other
trees” by region. The twenty height-diameter functions are developed for the most important
tree species in the four forest sites and the four functions are for the four forest sites. The
Petterson’s (Schmidt, 1956) height-diameter function was chosen to derive missing tree
heights. This dataset is used to calibrate species-specific height-diameter functions, which are
then in turn used to derive missing tree heights and calculate timber volume and carbon stock.
Combined with the core increment sample data, the annual volume increment, annual carbon
increment and NPP were calculated. Next, the plot values for the above parameters are
calculated (Sisay et al., 2017).

Gelawdiwos and Katassi exhibited higher mean timber volume, annual volume increment
rate, aboveground carbon stock and annual carbon increment rate per plot followed by
Taragedam, Mahibereselassie and Ambober (Figure 5 and 6) (see Paper | of Appendix 9.1.).
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Figure 5. Standing volume (m® ha™) and annual volume increment (m® ha™* yr) by forest sites
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Figure 6. Standing carbon (Mg ha™) and Annual carbon increment (Mg ha™ yr™) by forest sites

The NPP, which is the amount of carbon remaining and allocated in the plant parts after
autotrophic respiration per growth period, is calculated as the sum of periodic carbon
accumulation in the fine root turnover, aboveground woody parts and litter fall (Hasenauer et
al., 2012). The NPP of each tree was calculated from 2005 — 2014 by using the core increment
data. Next, the tree values were converted into plot and forest site values. Gelawdiwos and
Katassi exhibited higher NPP followed by Taragedam, Mahibereselassie and Ambober
(Figure 7).
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Figure 7. NPP (gC m? year™) by forest sites

Identification of productive species is essential for a future harvesting plan and reforestation
activities. However, tree species identification based on their growth rate and productivity has
never been done in the Amhara region which would facilitate the forest management
activities. In order to aid the forest management plans and activities, we identified the top 20
tree species, from all the forest inventory regions, based on their NPP value (Figure 8).
Therefore, the most important tree species with high productivity are identified (Figure 8).
Schefflera abyssinca (0.0034 MgC m™yr?), Eucalyptus globulus (0.003 MgC m®yr™) and
Chionanthus mildbreadii (0.0019 MgC myr™) have exhibited the largest NPP compared to

other tree species in the Amhara region.
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NPP of Tree Species by Forest Site
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Figure 8. Net Primary Productivity (Mg C m™) of top 20 tree species by forest Site. K = Katassi, G =
Gelawdiwos, T = Taragedam

5.2 Extrapolation of Terrestrial Estimates to the Whole Amhara Region

The land cover map covers 12 classes with 200 m x 200 m pixel spatial resolution based on
Landsat satellite images. The 12 land cover classes are afro-alpine, bare land, cultivation,
grassland, highland bamboo, natural forest, plantation, shrubland, woodland, urban, wetland
and water. We aggregated the 12 land cover classes to six classes based on their vegetation
characteristics for fitting our terrestrial inventory as follows: plantation, highland bamboo and
natural forest are grouped as forest. Afro-alpine regions and shrubland are aggregated into
shrubland. Woodland remained as woodland. Bare land, cultivation, grassland and wetland
are grouped as non-woody vegetation. Water and urban classes remained as water and urban,
respectively. Our final land cover classes relevant for our analysis are (i) forest, (ii) shrubland,
and (iif) woodland. Figure 9 shows the spatial distribution of land cover classes within the
Amhara region.
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Figure 9. Land cover map of Amhara region after aggregation of the land cover classes

The accuracy of the regrouped land cover map was evaluated by performing stratified
sampling. In total, 607 stratified sample points were randomly selected and distributed over
the areas of the aggregated classes. The class of each of the 607 pixels was assigned with the
help of finer resolution reference data combined with visual interpretation (Morisette et al.,
2002). Bing and Google Earth images were used for the independent reference data. As the
pixels were often composed of multiple cover types, the main class (a land cover class with
largest coverage) of a pixel was assigned as the class of the pixel. The accuracy assessment
was applied by using the error matrix according to Olofsson et al.(2013), which compares the
known reference data to the corresponding results of automated classification (Liu et al.,
2007). Considering the coarse resolution (200 m x 200 m) of the map and the high land
fragmentation within the Amhara region, the accuracy of the land cover classification was

good.

Since elevational gradients are one of the main factors affecting the growing conditions and

thus the species distribution of Ethiopian mountains forests (Berhanu et al., 2016), we adopted
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Hurni's (1998) elevation classes for agro-ecological zonation resulting in five elevation
classes: (i) low land (500-1500 meters above sea level (m.a.s.l.)), (ii) mid altitude (1500-
2300 m.a.s.l.), (iii) high land (2300-3200 m.a.s.l.), (iv) sub-alpine (3200-3700 m.a.s.l.) and
(v) alpine (3700-4530 m.a.s.l.). Then, we further classified the land cover map in to each
vegetation type and elevation classes which resulted 15 clusters (3 vegetation types x 5
elevation classes). We assigned each of our forest inventory areas to their corresponding
clusters. The idea here was to create a kind of a “reference stand approach”, where we
assumed that regional forest inventory information could be used as a proxy for a given
cluster and thus allow us to extrapolate local inventory results (our regional sites) to the whole
Ambhara region. Based on the reference stand approach, the timber volume, annual volume
increment, aboveground carbon stock, annual carbon increment and NPP for the whole

Ambhara region was calculated (Table 1). The details can be found in Paper | of Appendix 9.1.

Table 1.Total timber volume, volume increment, total carbon stock, carbon increment and Net Primary
Production (NPP) of inventory regions and the whole Amhara region. Where x is mean and sd is
standard deviation.

Forest Shrubland Woodland

Variable (x £ sd) (x £ sd) (x £ sd)
Volume (m*ha) 65.7 + 61.6 3.7+3.4 27.6 +10.7
Volume increment (m* ha™ yr?) 1.2+05 0.9+0.9 1.2+05
Carbon (Mg ha™) 354+ 36.3 1.11+0.92 11.9+52
Carbon increment (Mg ha* yr?) 27+17 0.22+0.18 05+0.2
Total timber volume in the Amhara
region (million m?) 17.6 15.9 25.7
Total timber volume increment in the
Amhara region (million m3yr™) 0.71 3.9 1.12
Total carbon in the Amhara region
(million m?) 7.78 4.76 11.07
Carbon increment in the Amhara region
(million myr?) 0.34 0.95 0.47

463.1 + 1504 £

NPP (g C m2yr?) 343.2 554+46.0  62.9
NPP of the Amhara region (g C m?yr?) 4843 55.4 150.4
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5.3 Daily Climate Data

Climate data and terrestrial forest inventory estimates are key input data needed for running
the Biome-BGC model. In the Amhara region, meteorological stations record different
weather parameters such as minimum temperature, maximum temperature, precipitation, etc.
They form networks that are often irregularly spaced and do not provide a systematic grid of
parameters across larger areas. Meteorological station data frequently have problems with
data quality, inconsistencies and missing data values. Places which are far away from
meteorological stations would be left unobserved and often result in less accurate values if
estimated from surrounding stations. Because of these irregularities and inconsistencies of
climate data coverage, climate grids have been developed to fill the spatiotemporal gaps of
meteorological stations. Spatiotemporally consistent climate data is downscaled from global
datasets (WorldClim and NCEP) for the Amhara region, for the first time. The downscaled
climate data are daily Tmin, Tmax and Prcp, with a spatial resolution of 1 km from 1979 — 2010.
The downscaled climate data has ensured availability of weather data for places where
weather stations do not exist. This has also provided the ability to use the data in the Biome-

BGC model as an input data (Figure 10).
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Figure 10. Daily weather data for the Amhara region (@) NCEP Tmin, (b) downscaled corrected
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After downscaling, the global-scale distribution of precipitation and temperature values come
closer to the weather station values. However, the improved downscaled dataset was
subjected to biases. A delta change bias correction method is used to minimize the bias.
Validation parameters such as bias, mean absolute error (MAE) and root mean squared error
(RMSE) decrease for all the corrected variables when compared to the downscaled values.
Generally, temperature was improved better than precipitation (Figure 11). Better
improvement is seen in temperature because the major benefit of the downscaling
incorporates elevation into the data set, which has a larger impact on temperature than on

precipitation.
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The downscaled, corrected and the terrestrial inventory data were used as input data in the
Biome-BGC model. However, the error propagation associated with the precipitation data
considerably influenced the estimation of forest productivities in the Amhara region, which
demanded further improvement of the precipitation data. The reason for the error was that a
single bias correction factor was applied for the whole Amhara region regardless of the wide
environmental variability amongst sub-regions. This was done due to the lack of weather
station data. Therefore, a new scheme was developed to improve the precipitation data. A
mean annual precipitation map from the downscaled climate data is produced to look at the

precipitation pattern with in the Amhara region (Figure 12).
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Figure 12. Mean annual precipitation (mm yr™*) of the Amhara region

Besides the mean annual precipitation map, a daily precipitation difference between the
downscaled and weather station data was also calculated to facilitate the sub regionalization
of the Amhara region. Based on the pattern of the mean annual precipitation map and the
precipitation differences, the Amhara region is further classified into four homogenous sub-
regions (Figure 13).
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Figure 13. Climatic sub-regions of the Amhara region

The mean precipitation difference between downscaled and weather station data was
calculated for each sub-region. Next, a linear regression analysis was applied based on
elevation and mean precipitation difference within the sub-regions to produce the correction
factors. The correction factors are produced on the 10 day basis for each pixel based on the
elevation of the pixel and mean precipitation difference of the sub-region. Based on the 10
days groupings, a year would have 37 groups. A sample linear regression graph of the south

west region on the 3" tenth date is presented in Figure 14.
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Figure 14. A correction sample for regression analysis of the 3" tenth dates in the south west region.
CF is a correction factor of a pixel based on the precipitation difference and elevation; APrcp is a
difference between downscaled and observed precipitation; and Elev is elevation of a pixel in meters

The correction factors calculated for each pixel and all dates will be applied to the daily
downscaled data. The details of the application of the daily correction factors on the
downscaled data can be found in Appendix 9.2. Producing the improved downscaled data and
running the Biome-BGC model is in progress in another PhD work of the same project (Belay

etal., 2017).
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6 Discussion

6.1 Terrestrial inventory

The results from the forest inventory allows for the assessment of standing forest volume,
carbon stocks and NPP. Felling of trees in the Amhara region was not possible due to the
legal prohibition. As a result, DBH was used to derive tree heights and core increments were
used for the analysis of increment rates. The approach enabled us to calibrate the form factor
function and height-diameter function for the tree species in the Amhara region. This
establishes a new methodology for forest inventory in the Amhara region. It is now possible
to estimate the existing forest state, as well as the growth increment of trees where destructive
measurement is impossible (Figure 5, 6, and 7). Additionally, we could also be able to
identify growth rate and form factor functions of most important tree species. For example, it
is evident that Schefflera abyssinca, Eucalyptus globulus and Chionanthus mildbreadii
showed higher productivities compared with other tree species (Figure 8). This helps to easily
identify productive tree species for future plantation schemes and the management of forests
in the region.

The result shows that the estimations of timber volume, annual volume increments, carbon
stock, annual carbon increments and NPPs of the forest sites in the Amhara region are fairly
low (Sisay et al., 2017). Besides the climatic and topographical features, population pressure
considerably impacted the productivities of the forests (Lemenih and Kassa, 2014; Wondie et
al., 2016). The production increment and rapid rehabilitation witnessed in the Ambober
confirmed that minimizing and avoiding of human and animal activities is crucial in the forest
areas. Thus, the results showed that dry afromontane forests have lower timber volume,
carbon stock and NPP than moist afromontane forests (Mokria et al., 2015).

Based on the outcomes from this study, the current condition of the forests and their
increment rates in the Amhara region can now be provided for the first time (Sisay et al.,
2017). The general method presented, form factor and height-diameter functions developed
in this study are the first achievements and can be used as a prototype for the SFM schemes in
the Amhara region. Our methods and findings directly influence the process of developing
SFM frameworks in Ethiopia as well as the Amhara region, as there are no such schemes in

place (Sisay et al., 2017). Besides, the methods and findings can be converted in to simple

31



management guidelines and support SFM in the Amhara region. Moreover, the conceptual
methodological approach and finidngs presented will also fill the existing knowledge gap on
SFM in Ethiopia as well as in the Amhara region. Owing to the level of deforestation and
forest degradation in Ethiopia as well as in the Amhara region, a pragmatic forest
management scheme is imperative. Forest ecosystem modeling is very important where there
is a severe lack of data in the region. Therefore, our approach and information can be used as
an input for the ongoing modeling efforts in the region.

The United Nations Framework Convention on Climate Change’s Reducing Emissions from
Deforestation and Forest Degradation (REDD+) need reliable estimations of carbon stocks
and productivities of forests, especially in countries like Ethiopia where data is scarce, while
the impact of global changes are huge (UNFCCC, 2014). Thus, this work would be of
paramount importance to fill the methodological and information gap for the implementation
of REDD+ in the Amhara region. The forest ecosystem modeling efforts to develop a reliable
SFM framework will also be benefitted by getting the input data. Our findings, together with
the climate data, would be used for the ongoing forest ecosystem modeling efforts in the

Ambhara region (Belay et al., 2017).

6.2 Daily Climate Data

Ethiopia and the Amhara region are characterized by the various climatic conditions,
heterogeneous topographic features and wide altitudinal ranges. Because of such features, the
Ambhara region is endowed with distinctively diverse vegetation types. Therefore, regional
scale forest management requires consistent regional scale input data. Climate data is one of
the most important features needed for the assessment of the climate’s effect on forest
structure and management. This requires gridded climate data along with the terrestrial forest
inventory data. Forests in the Amhara region are under different levels of pressure and
degradation. Quantifying the current condition, growth potentials and future reforestation and
afforestation efforts, the effects of climate on the forests should be studied. Therefore, through
climate, forest management as affected by climate can be quantified. This can then show how
a changing climate could affect forest management options in the future and the limit of forest
management has to change forest structure under different climate regimes. Forest ecosystem
modeling is the best approach in order to examine the forest ecosystem scenarios with regard

to climate and other affecting factors at larger scale and divers situations. Therefore, for our

32



ongoing modeling works on development of an SFM framework, climate data is downscaled
for the Amhara region. A daily Tmin, Tmax and Prcp with 1 km spatial resolution is downscaled
from the global data sources (Figure 10) (Sisay et al., 2016). Producing a spatiotemporally
consistent climate data with fine resolution at the regional scale is the first of its kind in
Ethiopia as well as in the Amhara region. This approach would also help to guide the
conceptual perspective of forest management as well as the modeling efforts undergoing in
the region. Our output would make modeling climate change and its effects on the forest

conditions possible. Additionally, the climate data can be used in the REDD+ endeavors.
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7 Conclusions and Outlook

The forest ecosystems in the Amhara region have been under tremendous pressure.
Implementing sustainable forest management is imperative to stop the downward spiral of
deforestation and forest degradation as well as to ensure a sustainable supply of the ecosystem
services. However, given the marked environmental heterogeneity and rich biodiversity,
providing sustainable forest management frameworks for the whole Amhara region is a major
challenge. The new datasets derived and methodological approaches presented through this
study allow for analyses of the state of forest resources across the Amhara region that have in
the past been limited to local and watershed level assessments. This study attempts to assess
the state of different forest types in the Amhara region by integrating terrestrial inventory
data, remote sensing data and a biogeochemical Biome-BGC forest ecosystem modeling. This
conceptual approach is the first of its kind in the Amhara region and provides a prototype to

develop a framework for the sustainable forest management in the region.

This work provides a calibrated height-diameter and form factor functions for the most
important species and different forest regions, which are essential for further forest resources
assessments and sustainable forest resource harvesting. The framework and methodology
documented here can be used to expand the height-diameter, form factor functions to other
important tree species and forest regions in the Amhara region as well as Ethiopia. The
“reference stand approach” enables inferring estimations for forest regions where there is no
data. The results of the empirical assessment can also be improved if more local forest

inventory data are available and/or by implementing the modeling approach.

This thesis is part of a larger activity. Thus, it fits into the next part of the forest ecosystem
modeling with Biome-BGC (Belay et al., 2017) to provide a full regional forest productivity
under different environmental and management scenarios in the Amhara region. Further, this
study allows for the preparation of gridded daily climate data at a regional scale with fine
spatiotemporal resolution, which will serve as input data for the ongoing forest ecosystem
modeling effort. The climate data is now on a resolution that allows the assessment of
differences in altitudinal ranges, forest types and land uses. These datasets allow for the large
scale studies of forests, forest productivity and how they relate to climate change and

management scenarios all throughout the Amhara region.
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Abstract: Sustainable forest management requires a continuous assessment of the forest conditions
covering the species distribution, standing tree volume as well as volume increment rates. Forest
inventories are designed to record this information. They, in combination with ecosystem models,
are the conceptual framework for sustainable forest management. While such management systems
are common in many countries, no forest inventory system and/or modeling tools for deriving forest
growth information are available in Ethiopia. This study assesses, for the first time, timber volume,
carbon, and Net Primary Production (NPP) of forested areas in the Amhara region of northwestern
Ethiopia by combining (i) terrestrial inventory data, and (ii) land cover classification information.
The inventory data were collected from five sites across the Amhara region (Ambober, Gelawdiwos,
Katassi, Mahiberesilasse and Taragedam) covering three forest types: (i) forests, (ii) shrublands
(exclosures) and (ii) woodlands. The data were recorded on 198 sample plots and cover diameter at
breast height, tree height, and increment information. In order to extrapolate the local terrestrial
inventory data to the whole Amhara region, a digital land cover map from the Amhara’s Bureau of
Agriculture was simplified into (i) forest, (ii) shrubland, and (iii) woodland. In addition, the forest
area is further stratified in five elevation classes. Our results suggest that the forest area in the
Ambhara region covers 2% of the total land area with an average volume stock of 65.7 m3ha; the
shrubland covers 27% and a volume stock of 3.7 m3-ha!; and the woodland covers 6% and an
average volume stock of 27.6 m3-ha. The corresponding annual volume increment rates are 3.0
m3ha!, for the forest area; 1.0 m3-ha’!, for the shrubland; and 1.2 m3-ha, for the woodland. The
estimated current total volume stock in the Amhara region is 59 million m3.

Keywords: volume; volume increment; carbon; Net Primary Production (NPP); forest inventory;
Ethiopia

1. Introduction

Forest ecosystems provide goods and services [1] and have a higher carbon sequestration
potential versus any other terrestrial ecosystems [2]. Deforestation leads to a loss of provided goods
and services, induces soil degradation effects and contributes to anthropogenic carbon emissions [3].
Global warming, due to the release of greenhouse gases, is causing unprecedented environmental
and social changes. Therefore, the idea of Reducing Emissions from Deforestation and forest
Degradation (REDD) was conceived by United Nations Framework Convention on Climate Change
(UNFCCC) as the main carbon emission reduction mechanism for developing countries such as
Ethiopia [4]. REDD was extended to REDD+ in 2014 by adding the carbon sink potential as well as
conservation and sustainable forest management issues [5]. Forest management plays an important
role in mitigating impacts of climate change and in sustaining the supply of ecosystem goods and
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services [6]. Thus, forest inventory data are essential to assess the available forest resources including
their productivity potential. They serve as the basic input data for implementing the REDD+
objectives [5].

Forest inventories collect data about forest conditions by estimating the volume, biomass, carbon
and net primary production (NPP) [7]. Based on a certain grid design, sampling plots are established
to record the forest data. Another option for deriving forest productivity estimates can be obtained
from remote sensing information in combination with ecosystem modeling theories. As a result,
several studies [8] combine both methods to assess the forest area, species distribution, volume,
carbon and NPP [7-12].

Sustainable forest management requires forest inventories. In combination with modeling tools,
forest growth information can be derived and sustainable harvesting or cutting plans are developed
[13]. While such systems are common in many parts of the world [9], Ethiopia has no standardized
forest inventory system in place and no information about the growing stock and increment rates of
the limited remaining forest areas available. This lack of information makes sustainable forest
management and harvesting difficult or even impossible. A few studies have analyzed the extent of
different forest areas and their changes as a result of land use changes [14-20]. These studies are
restricted to local forest areas and/or watersheds and provide no information on the forest conditions
(e.g., volume or biomass) and/or its change over time (increment rates). In addition, some studies
have estimated aboveground biomass and carbon stocks of specific savannah woodland, forest and
agroforestry areas [21,22]. However, up until this study, no information is available about the
stocking volume, volume increment rates, carbon stocks and NPP for the forest areas in northwestern
Ethiopia.

The purpose of this study is to provide a consistent methodology to derive such productivity
estimates of different vegetation types in the Amhara region in northwestern Ethiopia. We establish
local forest inventories covering different agro-ecological zones and extrapolate these inventory
results to the whole Amhara region by obtaining a remotely sensed land cover classification scheme
to provide total numbers for the stocking timber volume, volume increment, aboveground carbon,
and NPP estimates.

2. Materials and Methods
2.1. Forest Inventrory

2.1.1. Study Area

The Ambhara region, in northwestern Ethiopia, has a land area of 15.7 Mha, of which one-third
is covered with woody vegetation. For our analysis, we selected study areas covering different agro-
ecological zones with typical vegetation types: (i) forests, (ii) shrubland/exclosure, and (iii) woodland.

The selected study areas and vegetation types are Ambober (shrubland), Gelawdiwos (forest),
Katassi (forest), Mahibereselassie (woodland), and Taragedam (forest) (Figure 1).
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Figure 1. Location of study areas.

Even though the regional and/or local governments declared these forests as protected, human
activities and cattle grazing are still active and common. The Mahibereselassie woodland has the
highest cattle population and agricultural activities. The Ambober exclosure is guarded and
protected since its establishment in 2009. Human and animal activities are minor at the Gelawdiwos
and Katassi sites. The Taragedam forest has a minor anthropogenic disturbance history [18]. The most
common types of human activities occurring within these forest areas are cutting and harvesting trees
for energy, production of different household and farm implements and clearing for agriculture and
grazing activities [23].

2.1.2. Sampling Technique

Our five study regions (see Figure 1) cover the main ecological zones of the area and differ in
size: the largest area is the Mahibereselassie woodland with 19,162 ha followed by the forest areas in
Katassi (553 ha), Taragedam (324 ha) and Gelawdiwos (68 ha). The Ambober shrubland/exclosure
covers 6 ha.

The decision on the grid size, and thus the number of sample plots was derived based on
statistical principles by achieving a minimum number of inventory plots. After a number of pilot
studies in the different forest inventory areas and test calculations, we defined the following grid size
by study region: for the Mahibereselassie woodland area, a 3 km by 3 km grid size with 21 sampling
plots was established. For the forest areas in Katassi, a 300 m by 300 m with 63 sampling plots;
Taragedam 250 m by 250 m with 52 sampling plots; and for Gelawdiwos, 250 m by 250 m with 34
sampling plots were established. For the Ambober shrubland/exclosure, a 50 m by 50 m sampling
design with 28 sampling plots was established. This resulted in a total number of 198 sampling plots.
A typical example (Taragedam) is given in Figure 2. The data collection was carried out during the
summer 2014 (July to September).
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Figure 2. Sampling plot design and sample grid design (Taragedam site). A 10-m radius plot was used
in Ambober, Gelawdiwos and Taragedam. A 15-m radius plot was used in Katassi and
Mahibereselassie.

Each sample plot consists of two concentric circles and four rectangular plots (1 m x 2 m) (see
Figure 2). The plot area was corrected as a function of the slope angle [4]. The radius of the larger
circle records all trees with a DBH > 10 cm and exhibits a radius of 10 m for the study areas in
Gelawdiwos, Taragedam, and Ambober and 15 m for Katassi and Mahibereselassie. For each tree
found within the specified radial range, we recorded the tree species, diameter at breast height (DBH)
in cm, and the tree position on the plot.

One of the important goals of the study is to derive annual growth information. Since we have
no repeated tree records, increment cores are taken according to the following procedure: Based on
the DBH records on a given sampling plot, we selected the so-called “central” stem or tree—this is
the 60 percentile of the DBH distribution—on a given sampling plot. We follow here a procedure
suggested by [24], which showed in their studies that the “central” stem represents the “mean” tree
(= quadratic mean DBH) on a given plot, and cuts the basal area in two equal halves. The “mean” tree
dimension is derived from the per hectare values e.g., the tree represents the quadratic mean DBH
(basal area divided by the stem number/ha) and consequently approximately the average volume
(volume/ha divided by the stem number/ha). Thus, the growth rates of the “central” stem (60
percentile of the DBH distribution on a given plot) are proportional to the growth rates of the per
hectare values assuming that the stem number remains equal for the growth period.

One important precondition of this approach is that each tree ring represents one year.
According to Worbes [25] and Zhang et al. [26], distinct tree rings are formed in response to annual
precipitation pattern. Sisay et al. [27] confirmed this pattern by showing that the rainy season in the
Ambhara region is between June and August.

Based on the DBH distribution on a given inventory plot, for each tree species a “central” stem
according to the DBH distribution was selected. For this tree, the tree height (h (m)), the height to the
live crown base (HLC (m)), and an increment core was taken to derive the ten-year increment rate.
Although obtaining full cross-sectional discs may minimize the effect of false and/or missing tree
rings [28], destructive sampling (e.g., cutting trees and taking discs to the lab) is forbidden in the area.
Moreover, it is neither a requirement nor is it carried out within the scope of routine inventory data
collection [29].

For each central plot and species-specific “central” stem, an increment core sample was taken
towards the plot center at the DBH to address potential slope effects in the tree form (e.g., ellipse).
All sample cores were checked for potentially missing tree rings by comparing the increment core
with a so-called “standard” [30], which compares single increment rates of a given core versus so-
called “signal” years of the “standard” (>90% of the increment rates increase or decrease versus the
previous year). In total, 424 increment cores are available for our study (see Table 1).
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Table 1. Summary of the stand characteristics by region, where x is mean, Sd is standard deviation, min is minimum, max is maximum and show the range of the data,

and DBH is diameter at breast height.

Forest Woodland Shrubland
. Gelawdiwos Katassi Taragedam Mahibereselassie Ambober
Variable
x + Sd x + Sd x +Sd x + Sd x +Sd
(min-max) (min-max) (min-max) (min-max) (min-max)
Number of sample plots 34 63 52 21 28
Number of increment cores 106 196 58 84 -
314.5+197.6 207.1 £119.8 175.1£131.0 191.4 + 89.5
Number of trees (ha™) (63.7-859.4) (14.1-509.3) (31.8-541.1) (70.7-410.3) NA
Number of sapling (ha™) 4231.7 + 3195.8 1954.3 +£ 1988.6 3447.7 + 3893.1 660.9 + 878.1 3676.5 +2679.7
(0.0-11586.5) (0.0-9294.7) (0.0-16297.5) (0.0-3310.4) (127.3-16170.1)
. 293 +12.8 28.6+14.4 251+134 225+4.1 34+09
Quadratic mean DBH (cm) (13.7-73.7) (14.4-111.9) (11.5-69.9) (13.6-31.8) (1.9-6.9)
) 10.2+3.6 11.0+4.9 10.5+2.9 7.7+1.6 1.9+05
Tree height (m) (5.1-27.5) (3.5-29.1) (4.2-23.5) (5.0-12.1) (1.7-4.8)
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Trees with a tree height >1.3 m and a DBH of <10 cm are considered as saplings and were
recorded on the smaller circle with a radius of 5 m. The 5-m radius was applied to all our study areas
for recording saplings. Due to the large number of trees, we simplified the design by creating DBH
classes ranging from <4 cm, 4-6 cm and 7-9.9 cm. We counted all individuals by species and assigned
the numbers according to the DBH classes. We selected one representative tree by species and DBH
class and recorded the tree height.

All trees with a tree height of <1.3 m are seedlings and are recorded on the four 1 m by 2 m
rectangular (total 8 m?) (see Figure 2). Again, the seedlings were grouped in two classes according to
tree height: Group 1 (<50 cm) and Group 2 (50 cm to 1.3 m). The numbers were recorded by species
and height class (Table 1).

We recorded the DBH for each tree on a given plot but only the tree height from the central trees.
This is a common procedure within routine inventory designs to enhance data collection activities
especially in difficult terrain [13,31,32]. However, this approach requires DBH-height functions to
derive missing tree heights [31,33]. We also defined the five most frequent tree species within each
study area plus a species group “others” and collected at least 20 trees per species, within the study
areas (not limited to the plots) covering the full DBH and height range. The only exception was
Ambober, where no DBH-tree height data were recorded because the area was covered with shrubs
and thus the trees were too small. The Petterson’s [34] height-diameter function was chosen to derive
missing tree heights:

1

= 2
(ap + al/DBH)

where h is the tree height (m) and DBH is the diameter at breast height (cm), a0 and a1 are the resulting
parameter estimates. We used R standard software package [35] to run non-linear regressions. The
results are given in Table 2.

h +1.3

Q)

Table 2. Estimated coefficients of Petterson [34] height-diameter function, where N is the number of
inventory plots, and R? is coefficient of determination.

DBH (cm) Height (m) Coefficients

Species N x = Sd (min-max) x = Sd (min-max) a0 a1 R

Acacia abyssinica 50 27.8+10.0 (10.0-55.0) 9.8+3.1(2.9-20.0) 0.2000 3.8238 0.60
Ameja 28 17.2+42(11.0-29.0) 7.4+1.8(3.8-10.5) 0.2343 2.8516 0.45

Boswellia papyrifera 33  235+4.8(17.1-37.0) 8.8=+1.3(6.4-12.0) -0.3113 -1.2048 0.09
Combretum hartmannianum 27  185+3.9(10.0-27.6) 89+1.7(5.2-11.6) 0.2162 2.6838 0.54
Croton macrostachyus 94 18.7+79 (10.0-56.0) 10.3+4.4(43-28.3) 0.1818 2.6777 043
Eucalyptus camaldulensis 72 24.0+12.8(10.0-60.0) 16.4+7.8(4.0-36.3) 0.1589 2.0771 0.60
Juniperus procera 52 27.0%7.3(11.0-39.0) 12.5+2.8(4.3-18.5) 0.2473 1.3106 0.19
Lannea fruticose 30 18.3+3.8(12.0-30.0) 7.6+1.8(4.7-11.8) -0.3196 -1.4110 0.08

Olea europaea 27 34.0+21.9(10.2-103.0) 9.7 +4.6 (2.5-28.5) 0.1937 4.6001 0.61
Sterculia setigera 28 28.7+5.7(16.0-43.0) 8.2+1.0(6.2-10.3) -0.3274 -1.4856 0.17
Albizia schimperiana 116 23.1+13.2 (10.0-86.0) 13.0+6.2(5.3-30.7) 0.1633 2.7559 0.53
Allophylus abyssinicus 35 29.2+12.2(13.0-54.5) 13.4+4.7(6.0-23.1) 0.2110 2.0123 0.33
Bugtsi 27  20.6+6.0(11.0-37.0) 10.8+2.7 (5.7-17.4) 0.2351 1.7723 0.28
Chionanthus mildbraedii 38 49.3+15.8(11.9-95.0) 14.2+3.9 (4.0-24.2) -0.2123  -3.0405 0.29
Gimblitini 37 22.0+83(11.0-38.0) 9.2+25(4.6-13.0) 0.2531 2.0776 0.47
Kanabal 37 15.7+4.7(10.0-285) 79+21(3.4-11.3) 0.2746 1.7087 0.26

Nuxia congesta 48 15.6+4.1(10.0-29.0) 8.8+3.2(3.1-23.1) 0.3273 0.5572  0.01
Podocarpus falcatus 24 20.8+4.9(12.0-27.0) 13.1+1.7(9.9-16.2) -0.2244  -1.3208 0.67
Prunus Africana 42 39.5+20.8(13.0-132.0) 18.1+6.2 (6.6-34.7) 0.1781 22629 047
Teclea nobilis 25 21.3+10.5(10.0-44.0) 9.3+1.7(7.0-144) -0.3169 -0.6551 0.17

Other Species Gelawdiwos 121 26.0 +£22.7 (10.0-108.0) 10.4+5.3 (3.5-29.9) 0.2170 22612 0.17
Other species Katassi 58 24.1+16.7(10.0-102.0) 11.1+7.6(3.8-33.8) 0.1772 3.0084 0.46
Other species Taragedam 33 215+17.8(11.0-114.0) 10.7+4.9 (4.4-28.8) 0.1894 2.6257 0.39
Other species Mahibereselassie 72 21.4+9.5(10.0-50.0) 8.0+2.7(3.5-15.9) 0.2514 2.6596 0.33
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This dataset is used for calibrating species-specific diameter-height functions for deriving
missing tree heights. In total, we recorded more than 1154 trees, of which 870 trees cover the 20 tree
species, and 284 trees cover the species groups “other trees” by region.

Timber Volume

Based on the results of Table 2, we calculated the missing tree heights and the corresponding
standing timber volume on a given inventory plot. The general formula for deriving standing timber
volume for each tree (V) (m?) can be expressed as [24]:

_DBH?*x m
N 4

where fis the form factor addressing the shape of the tree, and all other parameters are as previously
defined. Since no form factor functions for the tree species in the region exist, we decided to follow

X hx f 2)

the suggestions by [36-38] and use a form factor of 0.5.

Volume Increment

Within sustainable forest management, the assessment of annual volume increment rates is
important to ensure sustainable harvesting [13,39]. Up until this point, no such information exists for
the forest areas in the Amhara region of northwestern Ethiopia. For our work, we have systematically
collected increment cores for all our study regions. As outlined in the sampling technique section,
these increment cores were taken from the “central” stem (the mean tree which is approximately the
60 percentile of the DBH distribution) by species on a given plot [24].

After determining the 10-year increment rates (2005 to 2014) with a 0.01 mm precision using the
Velmex TA measuring system (Velmex Inc. Bloomfield, New York, NY, USA), the DBH of the “central”
stem and inventory plot can be calculated for the year 2005. Applying the DBH-height function
(Equation (1)) using the species parameter estimates of Table 2, and inserting in the volume function
(Equation (2)), the corresponding volume in 2005 was calculated.

With this information, the volume ratios by plot and tree species can be calculated as:

V2005,
T V2014

inc; 3)
where inci refers to the individual tree volume increment ratio, V2005; and V2014: are the timber
volume derived from the “central stem” in 2005 and 2014, respectively. Since this tree volume
increment ratio is equal to the total volume increment ratio of a given plot, we can multiply the total
plot volume Vo014 with inci to derive the plot volume in 2005. With these numbers, we can calculate
the 10-year periodic mean annual volume increments (IV) (m?® h™' year™) by inventory plot:

_ (V2014 — V2005)
10

where V2o and Vs are the tree volumes (md) in 2014 and 2005, respectively; 10 is the 10-year
increment interval. Dead trees due to mortality are included if recorded.

v 4)

Aboveground Carbon and Carbon Increment

The aboveground carbon estimations through destructive sampling is the most recommended
and accurate method [40-42]. Given the small amount of forest resources, the high species diversity
and the current forest conservation policy by the state, it is nearly impossible to undertake destructive
sampling for the development of allometric functions in Ethiopia as well as for the Amhara region.
Thus, we considered existing allometric functions developed for commercial tree species in Ethiopia
[43-46]. Since Sileshi [47] has shown that these functions introduce a potential source of uncertainty,
especially if applied in a very diverse structured of natural forests, we decided to use the mixed
species allometric biomass function developed for tropical forests by Chave et al. [48], which has the
following form:
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In(AGB) = —2.922 + 0.99 X In(DBH? x h X p), (5)

where In(AGB) is the natural logarithm of the aboveground biomass (kg) and p is wood density
(ton-m=3).

A wood density of p = 0.614 ton m= developed for Africa is used [49,50]. A total of 50% of the
resulting aboveground biomass (AGB) of Equation (5) provides the final carbon estimates [51,52].

Similar to the volume calculation, we calculated the aboveground biomass and carbon estimates
for each tree then at the plot level and finally for each study area. Similar to the periodic mean annual
volume increment rates, the periodic mean annual carbon increment rates for the period 2005 to 2014
can be derived. Again, we use here the approach of the “central” tree with the corresponding tree
dimensions as outlined in the previous section.

Net Primary Production (NPP)

NPP is the amount of carbon remaining and allocated in the plant parts after autotrophic
respiration (cellular and maintenance respiration) per growth period [12,53,54]. The growth period
is determined depending on the interval between the repeated measurements which usually vary
from 5 to 10 years [12,55]. We calculated NPP (gC-m=2-year™) as the sum of periodic (2005-2014)
carbon accumulation in the fine root turnover, aboveground woody parts and litter fall (Equation (6))
[55,56].

NPP = Cwoody + Cfineroot + Ciitter (6)

where Cuwooty (C-m2-year) is the dry carbon increment of the woody biomass resulting from repeated
plot observations between timez and timei. Cineroots and Ciirter (§C-m2-year™) are the carbon flow in to
fine roots and litter, respectively.

The annual aboveground dry carbon in the woody part of the tree (Cuwooty) is calculated as follows:

(52014—92005)
Cwoody = {¢} X €014, (7)

92014

where g2014 and 2005 are the tree basal area (m?2 ha™) in 2014 and 2005, respectively, 10 is the 10-year
increment interval. Cao14 (§C-m™2) is the aboveground woody dry carbon content in 2014.

For Ethiopia, a reliable model for estimating the proportion of fine root turnover and litter fall
does not exist. Malhi [57] and Raich and Nadelhoffer [58] found that for a given time period, the
proportion of dry carbon turnover through fine roots and litter fall comprises 60% of the total dry
carbon accumulation and that the carbon uptake by fine roots and litter is equal. The proportion of
the increment of aboveground dry carbon in the woody part of the tree also comprises 40% of the
total dry carbon increment. With this information, we assume that the dry carbon increment in the
fine roots and foliage turnovers can be calculated from the dry carbon increment of the aboveground
woody biomass. For all trees (DBH > 10 cm) and saplings (DBH < 10 cm), the procedure was applied.

2.2. Land Cover Data

The Ambhara region in northwestern Ethiopia covers a land area of 15.7 Mha, of which
approximately 35% are either forests, shrublands or woodlands. The area is characterized by highly
fragmented land use forms and a large variety of growing conditions due to the elevational gradients
and the different agro-ecological zones. Mekonnen [17] and Gizachew et al. [59] carried out a land
cover classification of the entire Amhara region, however, they failed to provide their methodology
and digital data. Therefore, their study could not be verified. Other studies on land use and land
cover classification of the Amhara region are limited to small scale areas within the region [14,60-62].
Finally, we obtained the land use and land cover map produced by the office of Amhara National
Regional State (ANRS) covering 12 classes with 200 m x 200 m pixel spatial resolution, based on
Landsat satellite images (Figure 3). The 12 land cover classes are afro-alpine, bare land, cultivation,
grassland, highland bamboo, natural forest, plantation, shrubland, woodland, urban, wetland and
water.
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We aggregated the 12 land cover classes to six classes based on their vegetation characteristics
for fitting our terrestrial inventory land cover types as follows: plantation, highland bamboo and
natural forest are grouped as forest. Afro-alpine and shrubland are aggregated into shrubland.
Woodland remained as woodland. Bare land, cultivation, grassland and wetland are grouped as non-
vegetation. Water and urban classes remained as water and urban, respectively. Our final land cover
classes relevant for our analysis are (i) forest, (ii) shrubland, and (iii) woodland. The remaining land
cover classes are (iv) non-vegetation areas, (v) water and (vi) urban areas, which are not relevant for
our analysis. Figure 3 shows the spatial distribution of land cover classes within the Amhara region.
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Figure 1. Land cover map of Amhara region (a) before land cover aggregation and (b) after
aggregation of the land cover classes.

The accuracy of our regrouped classified map was evaluated by performing stratified sampling.
For land cover classifications, the calculation of the appropriate sample size was computed using the
multinomial distribution [63]. With an expected accuracy of 90% and an error probability of 5%, the
numbers of samples were determined. In total, 607 stratified sample points were randomly selected
and distributed over the areas of the aggregated classes. The class of each of the 607 pixels was
assigned with the help of finer resolution reference data combined with visual interpretation [64].
Bing and Google Earth images were used for the independent reference data. Due to the low spatial
resolution (200 m x 200 m) of the land cover map and the high land fragmentation in the Amhara
region, single pixels are often composed of multiple land cover types. Therefore, we assigned the
main (largest areas) class of a pixel as the class (land cover type) of the pixel. Table 3 provides a
detailed description of the characterizations of the land cover classes.
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Table 3. Land cover classes and characterization features.

Land Cover Class Characterization Features

More than or equal to half of the pixel should be first covered with vegetation. The
Forest vegetation part was checked for its relative density, color and consistency. If the
ores

vegetation is relatively dense and consistently became greater than or equal 1 ha,

the class of the pixel is assigned as a forest cover.

Scattered shrubs, bushes: If the half or larger part of the pixel is vegetation with
Shrubland scattered, light green and inconsistent pattern, the class of the pixel is assigned as a
shrubland.

Woodlands are mainly situated in the northwestern low land parts of Amhara

Woodland region. The agricultural fields and grass lands in the lowland parts are clearly and
oodlan
easily detectable due to their distinct color and pattern. Woodlands have green and

grey color. Unlike to woodlands, shrubs lands have bright color.

Cultivation: Agricultural fields can be identified with their patterns, proximity to
rural resident areas and dark to grey color.

Non-Vegetation
(Culti 8 y Grassland: Grasslands appear from bright grey to white areas. It is often between
ultivation, ) . .

vegetation and agriculture fields.

Grassland, bare land) — - - - -
Bare land: Similar to grassland but remain grey to white during even the rainy

season unlike grasslands.

Urban Built ups, main roads, bright reflectance.

Lake Tana consists of more than 95% of the water bodies in the Amhara region. The
Water lake is easily detectable. Pond-like structures. Rivers are not included as a water
body as they often cover small parts of the 4-ha pixel.

We defined the three simplified forestry relevant land cover classes (see Table 3): (i) forest, (ii)
shrubland, and (iii) woodland plus the non-vegetated area. Since elevational gradients are one of the
main factors affecting the growing conditions and thus the species distribution of Ethiopian
mountains forests [65,66], we adopted Hurni’s [67] elevation classes for agro-ecological zonation
resulting in five elevation classes: (i) low land (500-1500 meters above sea level (m.a.s.l.)), (ii) mid
altitude (1500-2300 m.a.s.1.), (iii) high land (2300-3200 m.a.s.l.), (iv) sub-alpine (3200-3700 m.a.s.l.)
and (v) alpine (3700-4530 m.a.s.l.). Then, we assigned the land area derived from Landsat data to
each vegetation type and elevation classes.

3. Results
3.1. Terrestrial Inventory

Timber Volume, Aboveground Carbon and NPP

We began our analysis by estimating the height diameter coefficients of the Petterson [34]
function using the available tree data (DBH and height measurements) (see Table 1). The results by
tree species are presented in Table 2. Next, the plot values for timber volume, aboveground carbon
and NPP are calculated and the mean values per hectare plus the corresponding standard deviation
by study region are calculated. The mean timber volume ranges from 3.7 m*ha (Ambober) to
92.4 m>ha (Gelawdiwos). The corresponding mean aboveground carbon values are between 1.11
Mg-ha™ (Ambober) and 54.6 Mg-ha™! (Gelawdiwos). Table 4 provides the results of the stand situation
in 2014, the year of the data recording.
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Table 4. Results of the stand situation in 2014.

Volume (m3-ha-) Carbon (Mg-ha™)

X * sd (min-max) x + sd (min—-max)
92.4 +68.1 (6.0-317.4) 54.6+43.6 (2.3-175.4)
75.9 +60.2 (2.5-270.1) 37.7 +32.6 (0.0-144.7)
28.9 +56.5 (0.0-352.8) 13.8 +32.7 (0.0-210.4)

3.7+3.4(0.3-18.2) 1.11 £ 0.92 (0.1-4.6)
27.6 +10.7 (7.1-48.5) 11.9 £5.2 (2.1-23.7)

Region N

Gelawdiwos 34
Katassi 63
Taragedam 52
Ambober 28
Mabhibereselassie 21

The volume increment rates are 3.5 m3-ha! (Gelawdiwos), 3.6 m3-ha (Katassi) and 1.0 m3-ha™!
(Taragedam). The mean annual aboveground carbon increments of inventory regions are between
0.22 Mg-ha™ year (Ambober) and 1.9 Mg-ha™ year (Gelawdiwos).

The mean NPP of Gelawdiwos forest is 597.2 gC-m2year! followed by Kattassi (486.8
gC-m2year') and Taragedam (305.4 gC-m=2-year™). The NPP at the Ambober shrubland is very low
with 55.4 gC-m2year~ while the Mahibereselassie woodland NPP exhibited 150.4 gC-m=2-year. The
values for the annual volume and carbon increments and NPP are presented in Table 5.

Table 5. Annual volume increment, carbon increments and Net Primary Production (NPP) of
inventory plots by region.

Volume Increment Carbon Increment NPP
Region N (m3-ha-l-year?) (Mg-ha-year?) (gC-m2-year?)
x + sd (min-max) x + sd (min-max) x + sd (min—-max)
Forest
Gelawdiwos 34 35+2.7(0.2-11.3) 1.9+1.5(0.1-6.5) 597.2 +393.8 (101.4-1705.5)
Katassi 63  3.6+2.6(0.0-11.2) 1.7 £1.3 (0.0-5.6) 486.8 + 322.7 (46.5-1306.5)
Taragedam 52 1.0+ 1.4 (0.0-6.2) 0.5+0.7 (0.0-3.7) 305.4 + 313.2 (0.0-1506.8)
Shrubland
Ambober 28 0.9 +0.9 (0.0-4.6) 0.22 +0.18 (0.02-0.93) 55.4 +46.0 (4.8-231.2)
Woodland

Mahibereselassie 21  1.2+0.5 (0.3-2.6) 05+02(0.1-1.1) 150.4 + 62.9 (61.4-296.2)

3.2. Land Cover Classification

After we have assigned the land cover classes of the 607 pixels, based on the independent
reference images, we assessed the accuracy of the map by comparing the land cover map produced
by ANRS (Amhara National Regional State) with our independent reference data. The accuracy
assessment was applied by using error matrix, according to Olofsson et al. [68], which compares the
known reference data with the corresponding results of automated classification [68,69]. Considering
the coarse resolution (200 m x 200 m) of the map and the highly land fragmentation within the
Ambhara region [18], the accuracy of the land cover classification was good (Table 6).

Table 6. Land cover classification accuracy assessment.

Automated Result Independent Data Total
Forest Shrubland Woodland Non-Vegetation Water  Urban
Forest 23 1 11 8 1 1 45
Shrubland 19 45 29 28 - - 121
Woodland 1 20 33 3 - - 57
Non-vegetation 56 72 27 123 - - 278
Water 1 - - - 99 100
Urban - - - - - 6 6
Total 100 138 100 162 100 7 607

3.3. The Forest Conditions of the Amhara Region

Fifteen forestry relevant clusters (five elevational classes and three vegetation types) are created.
The summary of the results is shown in Table 7.
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Table 7. Land cover classes and their respective area by agroecological zones of Amhara region.

Agroecological Elevation Forest Shrubland Woodland Non-Vegetation Inventory
Zones (m.a.s.l.) (ha) (ha) (ha) (ha) Sites
L‘zllvoha;)‘d 500-1500 25,098 1,855,284 780,448 1,752,212 Mahibereselassie
Mid Altitude 000 0300 115,838 1,845,350 131,030 4,643,435 Ambober, Katassi
(Weyna Dega) and Taragedam
Hl(%:e ;:)“d 2300-3200 100,692 473,927 13,621 3,169,069 Gelawdiwos
Sub-Alpine 3200-3700 9354 52,847 5192 355,661 -
(Wurch)
Alpine (High 25, 1530 104 60,111 93 10,088 -
Wurch)
Total 251,088 4,287,519 930,384 9,930,464
Grand Total 15,399,456

We assigned each of our forest inventory areas to the corresponding clusters. The idea here is
that we created a kind of a “reference stand approach”, where we assumed that regional forest
inventory information can be used as a proxy for a given cluster and thus allows us to extrapolate
local inventories results (our regional sites) to the whole Amhara region. Considering our regional
sites, Mahibereselassie is located in the low land —woodland (500-1500 m.a.s.l.) cluster, Ambober
belongs to the mid altitude—shrubland area (1500-2300 m.a.s.l.), Katassi and Taragedam to the mid
altitude—forest (1500-2300 m.a.s.l.) and Gelawdiwos to the high land —forest area (2300-3200
m.a.s.l.). Most of the woodland is located in the low land and most of the shrubs are in the elevation
class low land and mid altitude. Thus, for the total woodland, we decided to use the results of the
forest inventory in Mahibereselassie and for the total shrubland, we decided to use the results of the
inventory in Ambober as reference stand information. Most of the forest area is located in the mid
altitude and the high land area where our forest inventories in Katassi and Taragedam as well as
Gelawdiwos are located. Thus, we decided to create reference productivity values according to the
following procedure. We averaged the forest inventory productivity estimates of Katassi and
Taragedam. We used these numbers for the low land and the mid altitude clusters. For the remaining
elevational classes (high land, sub-alpine and alpine), we used the inventory results of Gelawdiwos
as reference numbers. Obtaining the number presented in Tables 5 and 6 and multiplying these
numbers with the corresponding land area by vegetation type and elevation class, provides the total
productivity estimates for the forested area of the Amhara region (see Table 8).

Table 8. Total volume stock, annual increment, carbon stock, annual increment, and NPP for the
Ambhara region. The results are obtained through: Total Volume/Carbon = the size of forest areas in
elevation classes (Table 7) x corresponding to the mean terrestrial forest inventory volume/carbon
estimates (Table 5). We used the mean volume/carbon estimates of Mahibereselassie woodland and
Ambober shrubland to extrapolate to the total volume/carbon estimates of woodland and shrubland,
respectively found in all elevation classes of the Amhara region.

Land Cover Volume Volume Increment Carbon Carbon Increment NPP
(million m®)  (million m®year™) (Tg) (Tg-year™?) (gC-m2year?)
Forest 17.56 0.71 7.78 0.34 484.32
Shrubland 15.86 3.86 4.76 0.95 55.4
Woodland 25.68 1.12 11.07 0.47 150.40

4. Discussion

The Ambhara region in northwestern Ethiopia consists of a forested area of about 251,000 ha or
2% of the total land area (15.7 Mha); 4,287,000 ha or 27% of shrubland; and 930,000 ha or 6% of
woodland. The total stocking tree volume is 59 million m? or 19.1 Tg stored carbon (Tables 7 and 8).
Gibbs et al. [70] estimated a total aboveground carbon stock for Ethiopia within a range of 153 to 867
Tg. Note that the total land mass of Ethiopia is about seven times the size of the Amhara region and
most of the forest areas are located in the southwestern part of Ethiopia [23].



Forests 2017, 8, 122 13 of 18

In our analysis, we estimated, for the forested area (251,000 ha), a stocking timber volume of
approximately 17.6 million m? and a total carbon of 7.8 Tg with annual volume and carbon increment
rates of 0.7 million m?® and 0.34 Tg, respectively (Table 8). These numbers show that the stocking
timber volume and annual productivity rates are fairly low: For example, the volumes of our
investigated forests range from 28.9 + 56.5 m>ha' in Taragedam to 92.4 + 68.1 m>ha~" in Gelawdiwos
and 75.9 + 60.2 m*ha! in Katassi (Table 5). Mokria et al. [40] reported much lower carbon stocks for
similar dry afro-montane forests in northern Ethiopia. Compared to other moist afro-montane forests
in Southwest Ethiopia [71,72] and Mozambique woodlands [73], our numbers are low. Since the forest
sites are highly sensitive, any removal of forest plants leads to erosion problems [18,74], which
suggests that careful planning of any harvesting operation is essential to ensure sustainability.

The shrubland area of the Amhara region covers 27% or 4,287,000 ha of the land area in the
Ambhara region. The estimated total stocking volume is 15.9 million m? with an average annual
volume increment of 3.86 m*ha-'. The total carbon stock stored in the shrublands is 4.8 Tg with 0.95
Tg annual increment (Table 8). The shrubland may be seen as a result of deforestation and cattle
grazing activities. In our assessment, the Ambober site provided the reference area for the shrubland
assessment. Although the forest inventory covered a rather small area, it may be seen as a typical
shrubland in northwestern Ethiopia with an estimated volume stock of 3.7 + 3.4 m3ha! and a mean
annual volume increment rates of 0.9 m3 + 0.9 m3-ha! (Tables 5 and 6).

The Amhara woodland area covers 6% (930,000 ha) of the land area with an estimated total
volume and carbon stock of 25.68 million m? and 11.1 Tg, respectively. The shrublands exhibited
annual volume and carbon increments of 3.86 million m?® and 0.21 Tg. The inventory in
Mahibereselassie served as the reference with a volume stock of 27.6 + 10.7 m*ha-! and a mean annual
volume increment rate of 1.2 + 0.5 m>-ha! (Tables 5 and 6). Comparing the woodland inventory in
Mabhibereselassie with the forest inventories in Gelawdiwos, Katassi, and Taragedam (Table 5), one
can see that the forest area in Taragedam exhibits a similar stoking volume as the woodland area in
Mabhibereselassie. This suggests that the historic and current forest management impacts in
Taragedam must be high. Wondie et al. [18] showed a strong relationship between population growth
and deforestation in the Taragedam area since 1957.

The mean NPP of forests in the Amhara region is 484.3 gC-m=-year'. The NPP of the shrubland
is estimated with 55.4 gC-m~-year~!, while the woodland NPP estimates are with 150.4 gC-m2year
(Table 8).

A literature search revealed that studies in Ethiopia related to biomass and carbon stock are
concentrated in the southwestern part of the country where most of the country’s larger undisturbed
moist montane forests are growing [1,21,45,75]. In contrast, the vegetation types in the Amhara region
are fragmented dry-afromontane evergreen forests [40,76-78]. The forest carbon stock decreases from
moist to dry vegetation types [70]. Climate, topography and human and animal activity are the main
factors for our low productivity estimated numbers versus the moist afro-montane forests [79]. For
example, Muluken et al. [65] and Mokria et al. [35] reported carbon stocks above 278.03 MgC-ha™ and
19.3 + 3.9 MgCha' in southwestern moist-montane community forests and northern dry-
afromontane forests in Ethiopia, respectively.

Our aboveground carbon estimations are consistent with estimates provided by Mekuria et al.
[80]. The protection of shrublands (= exclosures) from livestock appears to have an important
potential to improve vegetation cover and aboveground productivity [23,81,82].

One important result of our study is the development of height-DBH (Diameter at Breast Height)
functions for more than 20 tree species in the area for deriving missing tree heights (Table 2) and thus
resulting in an easy estimation of tree volume. This substantially improves the data collection in the
future, however, we suggest that our calibrated height-DBH functions should be used only within
the area where we obtained data for calibration (the Amhara region, Figure 3).
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5. Conclusions

For the first time, this study provides forest growth information for the Amhara region as it is
essential for sustainable forest management decisions. We developed diameter—height functions for
all major tree species in the region. The regional forest inventory data also exhibited tree volume and
carbon stocks in combination with the volume and carbon increment data. Prior to this study, no
forest productivity information was available and the data collection in the area is extremely difficult.
Hence, we selected only five local forest inventories and based our approach on a “reference stand”
concept. This assumes that our five established forest inventories cover the key regions and are
representative of the remotely sensed vegetation classes (Table 7). With this procedure, we are able
to combine regional forest inventory information and remote sensing techniques to provide estimates
of the forest productivity in the Amhara region. The methodology is simple and can be easily
improved if more local forest inventory data are available. Therefore, this study is critical in
pioneering a full forest inventory system in the Amhara region.
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ABSTRACT: Many spatial vegetative physiological and environmental impact studies demand consistent as well as fine
resolution daily meteorological data, which is often unavailable. This problem is evident when studies and applications
focus at the regional and local scale. Meteorological stations cannot provide the needed data due to their irregular locations
and several associated shortcomings such as missing data. Climate data from global sources like the National Centers for
Environmental Prediction (NCEP) and WorldClim are provided at a coarse resolution which makes them inappropriate to
use directly at regional and local scales. In order to circumvent this problem, we downscaled daily WorldClim and NCEP
global climate grids to produce weather data sets using a delta method to 0.0083 (approximately 1 X 1 km) spatial resolution
for the Amhara region of northwestern Ethiopia. The downscaled data set includes daily precipitation, and minimum and
maximum temperature from 1979 to 2010. The drizzle effect in the downscaled data set was first eliminated by using a rain
threshold that removed values of <1 mm per day. We compared the downscaled values with our calibration data from 56
meteorological stations in the Amhara region. The comparison between the downscaled and the calibrated data from weather
stations showed biases in the downscaled values. A delta-change bias correction technique on a 10-day average basis was
used to correct the biases associated with the downscaled data. Simple additive and multiplicative bias correction methods
were used for temperature and precipitation, respectively. We then validated the corrected downscaled daily weather data
using ten independent weather stations from the region. We found that the downscaling and the bias correction methods have
improved the NCEP values. The validation exhibited no bias. The full data set can be accessed freely under the following link:

ftp://palantir.boku.ac.at/Public/ClimateDataEthiopia/.

KEY WORDS

precipitation; temperature; downscaling; Amhara; WorldClim; NCEP

Received 30 November 2015; Revised 22 July 2016, Accepted 1 August 2016

1. Introduction

Daily weather measures the atmospheric conditions at a
given location and time, while climate is the measure
of average weather conditions at a location for a longer
time period. Weather conditions strongly affect vegeta-
tive physiological and ecological processes (Liittge and
Scarano, 2004; Longa et al., 2008; Grimm et al., 2013)
such as photosynthesis and respiration, as well as the
flux dynamics of ecosystems, including carbon, nitrogen,
water and energy cycles (Bakkenes et al., 2002; Liittge
and Scarano, 2004; Nekola and Brown, 2007; Longa et al.,
2008). The demand of daily weather data for different eco-
logical applications has increased in the past decades since
they are used for modelling purposes (Walther et al., 2002;
Cavanaugh et al., 2015). Net primary production of for-
est ecosystems (Running et al., 2004; Zhao and Running,
2010; Hasenauer et al., 2012; Neumann et al., 2015), agri-
cultural productivity (Tesso et al., 2012; Fitsume et al.,
2015) and hydrological modelling (Sennikovs and Bethers,
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2009; Dile and Srinivasan, 2014; Fuka et al., 2014) are
some of the applications which strongly depend on weather
data. Therefore, recording daily weather data by installing
meteorological stations is crucial to produce accurate out-
comes and predictions for ecological and other environ-
mental studies.

Meteorological stations record different weather param-
eters such as temperature, precipitation, humidity, atmo-
spheric pressure, solar radiation, wind speed, etc. They
form networks that are often irregularly spaced and do
not provide a systematic grid of parameters across larger
areas. Meteorological station data frequently have prob-
lems with data quality, inconsistencies and missing data
values. Places which are far away from meteorological
stations would be left unobserved and often result in
less accurate values if estimated from surrounding sta-
tions (Haylock et al., 2008; Van Den Besselaar ef al.,
2011). Simple climate interpolation tools like MT-CLIM
(Thornton and Running, 1999) were developed to esti-
mate meteorological variables from the nearest weather
station, but the validity of the outcomes decreases with
the distance to the station, especially in mountainous
areas.
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Climate grids have been developed at different spatial
and temporal resolutions to fill the spatial gaps of meteoro-
logical stations and are used as a data source for areas with-
out meteorological records. They are often based on inter-
polation techniques from surrounding stations. Examples
are DAYMET (Thornton ef al., 1997) and PRISM (Daly
et al., 2008) for the USA, or E-OBS (Haylock et al., 2006)
for Europe. The interpolation algorithms can be used only
in regions with enough climate stations available (e.g.
DAYMET for Austria; Petritsch and Hasenauer, 2011).

Global data sets combining observations with a meteo-
rological forecast model to produce gridded data sets of
many atmospheric and oceanic variables, with a tempo-
ral resolution of a few hours, are commonly referred as
reanalysis data. Amongst these data sets, the National Cen-
ters for Environmental Prediction (NCEP) Climate Fore-
cast System Reanalysis data (Maraun et al., 2010; Saha
etal., 2010) is one of the most commonly used climate
data (Winkler et al., 2011; Dile and Srinivasan, 2014; Fuka
et al., 2014; Rose and Apt, 2015). NCEP provides mul-
tiple data sets with different spatial and temporal reso-
lutions, amongst them, the daily climate data from 1979
to 2010 with a ~38km (0.3125 decimal degrees) spatial
resolution. Another global data set that provides spatial
and temporal information is WorldClim (Hijmans et al.,
2005). It is solely based on interpolation and provides
long-term monthly mean values of precipitation, minimum
and maximum temperature at a 1 X 1 km (0.0083 decimal
degrees) grid.

The coarse resolution of global data sets, either spatial
(NCEP) or temporal (WorldClim), is not an ideal solu-
tion for regional and local-scale applications. A gridded
climate data set with <1km? spatial resolution is often
needed for applications to capture environmental variabil-
ity (Justice et al., 2002; Hijmans et al., 2005). Addition-
ally, many ecological studies rely on daily climate input
variables that may be interpolated from daily weather sta-
tion data. Often such data sets are not available due to a
lack of weather stations. A possible way to circumvent this
problem is to downscale available global climate grids to
the required spatial and temporal resolution.

Different climate downscaling techniques are commonly
used to address the spatiotemporal mismatch between the
globally available coarse resolution climate data and the
regional and/or local-scale application demands (Schmidli
etal., 2006; Fowler and Wilby, 2007; Jakob Themef31
etal., 2011; Abatzoglou, 2013; Hennemuth et al., 2013;
Moreno and Hasenauer, 2015). A typical downscaling
method is the spatial delta method which addresses the
spatiotemporal discrepancies between different climate
data sets (Mosier et al., 2014). In this study, we derive
daily weather data for the Amhara region of northwestern
Ethiopia by applying a spatial delta method with bilinear
interpolation and correct regional weather anomalies with
observed data from meteorological stations. We produce
a 1x1km daily precipitation, minimum and maximum
temperature grid based on the NCEP and WorldClim data
sets, similar to the methodology presented by Moreno and
Hasenauer (2015) and Mosier et al. (2014).
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The mountainous Amhara region of Ethiopia covers an
area of about 156 000 km?. The area is highly productive
and consistent daily climate data are important for various
impact studies. Existing studies which involve the study
of weather and climate suffer from insufficient weather
data which restricts them to rather small areas (Bewket and
Conway, 2007; Ayalew, 2012; Ayalew et al., 2012; Taye
and Zewdu, 2012). For example Taye et al. (2011) used
data from coarse global and regional climate models for
the assessment of effects of climate change on the Lake
Tana catchment (15000km?). Setegn et al. (2008) used
weather data from ten sparsely and irregularly situated
stations for large catchment (15096 km?) in the Amhara
region and had to use a weather generator for the missing
values. In the case of Seleshi and Zanke’s (2004) study of
changes in rainfall and rainy days for the entire country,
they could only use 11 weather stations due to the lack of
weather data. Kebede et al. (2013) assessed temperature
and precipitation change projections.

The aim of this study is to prepare spatially and tempo-
rally consistent daily weather data for the whole Amhara
region by:

e downscaling available global climate grids to daily
1 X 1km climate raster for the whole Amhara region
between 1979 and 2010;

e applying regional bias corrections of the climate grid
based data using locally available weather stations; and

e validating the downscaled data.

2. Materials and methods
2.1.

2.1.1.  National Centers for Environmental Prediction
(daily 38 km climate data)

Data

Daily values of minimum (7, and maximum (7,,)
temperature and precipitation (Prcp) are obtained from the
Climate Forecast System Reanalysis data set (Saha et al.,
2010) produced by the NCEP. The NCEP data consists
of various grids of different spatial and temporal resolu-
tions describing the state of the atmosphere, land, ocean
and sea ice on a global scale. The data is constructed using
assimilation of observed data and models which take all
available observations every 6—12 h over the period being
analysed. Climate variables are available on a T382L.64
horizontal resolution (Maraun et al., 2010; Saha et al.,
2010) which is about 38 km at the Equator (0.3125 dec-
imal degrees). The weather data needed for our study was
extracted from a bounding box for 8.11°—14.36°N latitude
and 34.53°-40.78°E longitude from the Texas A&M Uni-
versity spatial sciences website (Globalweather, 2012) for
the years 1979-2010. They extract the hourly temperature
TMP2M and precipitation PWAT fields from the NCEP
grid and provide the daily minimum and maximum tem-
perature and precipitation sum (Dile and Srinivasan, 2014;
Fuka et al., 2014). The 400 climate files contained within
the bounding box were converted to GEOTIFF raster files
with 20 columns and 20 rows each. Based on this data,
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we created one raster file per variable and year containing
one raster band per day (365 for normal and 366 for leap
years). Although the resolution of the data is not exactly
38 km, for simplicity we will refer to a 38 km resolution
throughout the study.

2.1.2.  WorldClim (monthly 1 km climate data)

WorldClim (Hijmans et al., 2005) provides global
long-term monthly mean, minimum and maximum
temperature values as well as precipitation. The reso-
Iution is 30 arc seconds which corresponds to 0.0083
decimal degrees. This resolution is commonly referred
as 1 km spatial resolution. The data set also provides 19
bioclimatic variables derived from the climate but they
are not used in this study. The data is based on climate
stations from different sources such as the Global Historic
Climate Network Dataset (Peterson et al., 1998) or the
WMO climatological normal (WMO, 1996). The station
data were harmonized which resulted in a data set of
precipitation records from 47 554 locations, mean temper-
ature from 24 542 stations and minimum and maximum
temperature from 14 835 stations (Hijmans et al., 2005).
The data were interpolated using the thin plate smoothing
splines procedure (Hutchinson, 1995). The raster data
for T in» Tmax @and Prep for our study was obtained from
the WorldClim website (WorldClim, 2005) for the same
bounding box coordinates used for the NCEP data. This
resulted in raster files with 750 columns and rows. The
raster files were converted into GEOTIFF files, one file
per variable with 12 raster bands (one per month).

2.1.3.  Meteorological station data

According to National Meteorology Agency of
Ethiopia, meteorological stations in Ethiopia are
divided into four classes based on their meteorologi-
cal observation parameters (http://www.ethiomet.gov.et/
stations/regional_information/2). First class stations are
established for the purpose of synoptic meteorology.
Observations are taken every full hour for 24h a day.
They observe 18 meteorological parameters, amongst
them T, Tyax. Prcp, relative humidity, wind speed
and sunshine duration. Second class stations record
meteorological data for climatological purposes. These
stations measure more than 13 meteorological variables
not relevant for our study. Third class stations only record
three meteorological parameters every 24 h; T .., Tpax
and Prcp. Fourth class stations measure only the total
amount of precipitation in 24h. Observations for the
fourth class are taken at 0600 GMT. For our analysis, we
used data only from class 1 and 3 stations because we
were interested in daily 7', 7 nax and Prep.

Although the stations are established based on the afore-
mentioned classes, some stations have stopped their opera-
tion for different reasons. Some stations were also outdated
and replaced by new ones while others were established
very recently. This makes acquisition of consistent data
for the given time period difficult. In addition, we limited
the meteorological station data to the time span between
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1979 and 2010 so that they match with the available NCEP
data. In the Amhara region, 66 stations fulfilled these cri-
teria (Figure 1). For our analysis, we used 56 stations for
calibration (early comparison and bias correction) of the
downscaled data. After the downscaling and the associated
bias correction were done, we obtained ten additional and
independent weather stations from 1979 to 2010 for vali-
dation purposes.

2.2.  Methods
2.2.1. Downscaling

We used two global raster data sets (NCEP and World-
Clim), both on different spatial and temporal resolutions
to obtain a 1 km daily climate grid consisting of 7'i., T'ax
and Prcp. We obtained the monthly high-resolution World-
Clim data set to adjust the daily low-resolution NCEP val-
ues. We applied the delta downscaling procedure, similar
to the methods described in Moreno and Hasenauer (2015)
and Mosier et al. (2014). Figure 2 shows the methodolog-
ical steps of the downscaling process.

As a first step, we up-scaled the daily 1 km WorldClim
data to the 38 km NCEP resolution by averaging all World-
Clim pixel values that fall into the respective 38 km cell. In
this way, we generated two raster data sets at the same spa-
tial resolution, the daily NCEP and the up-scaled World-
Clim raster, with differing temporal scales. In the next step,
we calculated the anomalies between the two data sets
by calculating the differences of the up-scaled WorldClim
data to the NCEP value of the appropriate month for every
day in the NCEP data set. We used additive anomalies for
temperature and multiplicative anomalies for precipitation.
This was done to avoid possible negative precipitation val-
ues. The temperature anomaly is defined as the up-scaled
WorldClim minus the respective NCEP value, whereas
the precipitation anomaly is the ratio of the NCEP to
the up-scaled WorldClim value of the appropriate month.
This was done for every day included in the NCEP data
set. We obtained the anomaly rasters for 7., T\« and
Prcp on a 38 km resolution for every day included in the
NCEP data.

The downscaling modifies the 1 km WorldClim data set
by the daily anomaly values created in the previous step.
Using the 38 km anomaly raster would have created strong
edge effects in the resulting 1 km raster at the barriers of
each 38 km cell since the values of the anomalies change
abruptly. Thus, we first downscaled the anomaly raster
to the 1km resolution by interpolating the values before
we used them to adjust the WorldClim raster. We applied
a bilinear interpolation for that step (step 3 in Figure 2)
because it avoids over and undershooting of the calculated
values (Mosier et al., 2014) and ensures that all values
of the interpolated data set are within the borders of the
original data.

This resulted in a 1 km anomaly raster for 7', T, and
Prcp on a daily time step and the same spatial resolution as
the WorldClim raster. As mentioned earlier, the final step
of the downscaling process was to apply daily anomaly
values to the WorldClim data (step 4).

Int. J. Climatol. (2016)
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Figure 1. Map showing the meteorological stations in the Amhara region, Ethiopia. Fifty-six weather stations plots are available for calibration and

We used Python programming language to implement
the downscaling algorithm. The Geospatial Data Abstrac-
tion Library (GDAL) module for Python was used for pro-
cessing the raster data sets. The GDAL function Reprojec-
tImage was used for the bilinear interpolation.

2.2.2.  Bias correction procedures

2.2.2.1. Precipitation: The total number of rainy days
observed from the calibration weather stations (observa-
tions used for correcting the biases created after down-
scaling) versus downscaled data was calculated for each
month of the reference period. Several very low precipita-
tion intensities occurred in our downscaled data set leading
to an overestimation of rainy days as compared to the cal-
ibration weather station data sets. A precipitation rate of
<1 mm of rainfall per day is considered low intensity pre-
cipitation (Schmidli et al., 2006; Feldmann et al., 2008;
Piani et al., 2010; Berg et al., 2012; Chen et al., 2013;
Teutschbein and Seibert, 2013). Therefore, rainy days with
<1 mm of rain in the downscaled data set were set equal
to O mm to suppress the overestimation (New et al., 1999;
Manton et al., 2001; Seleshi and Zanke, 2004; Haylock
et al., 2006; Ines and Hansen, 2006; Hadgu et al., 2013).

© 2016 Royal Meteorological Society

2.2.3. Delta-change correction

We calculated arithmetic means of the climate variables
for each of the 366 days within the available years. Next,
we compared observed data from the calibration weather
stations and downscaled values similar to Legates and
McCabe (1999). Common systematic model biases were
detected during the comparison of observed data from
the calibration weather stations with the downscaled data
(Charles et al., 2007; Leander et al., 2008; Chen et al.,
2013; Teutschbein and Seibert, 2013). There are different
bias correction methods that help to adjust the global data
on a regional scale (Gellens and Roulin, 1998; Schmidli
etal., 2006; Graham etal., 2007b; Lenderink et al.,
2007; Block et al., 2009; Berg et al., 2012; Teutschbein
and Seibert, 2013). We used the delta-change correction
method due to its popularity, simplicity, and its good
performance in the field (Lenderink et al., 2007; Johnson
and Sharma, 2011; Berg et al., 2012; Teutschbein and
Seibert, 2012). We split the 366 days in 37 groups (each
group with 10 days except the last or the 37th group). We
calculated the arithmetic mean of each group to get the
correction factors. The corrections were applied to daily
values of the whole Amhara region (Lenderink et al.,

Int. J. Climatol. (2016)
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downscaled data is the grey shaded box. Intermediate raster data that are created during the downscaling algorithm are represented by white boxes.

Each box holds information about the temporal and spatial resolution. The round boxes depict processes that transform the raster data sets during
the downscaling algorithm.

2007). Simple additive and multiplicative correction
techniques were used for temperature and precipitation,
respectively (Equations (1) and (2)).

* (Pi)bS/Piiown>

P =P

corr down

ey

Téorr = Tcllown + ( Tcl)bs - T(llown) (2)
where Pém is the corrected daily precipitation of day i,
P, . is the downscaled daily precipitation of day i and

P and P,  are the 10-day mean values of observed
data from the calibration weather stations and down-
scaled precipitation, respectively. Téorr is the corrected
daily temperature of day i, 7 is the downscaled daily

temperature of day i and 7', and T)  are the 10-day
mean values of observed data from the calibration weather
stations and downscaled temperature, respectively.

2.2.4. Validation

Validation of the corrected downscaled data with indepen-
dent weather station observations was performed by com-
paring corrected versus observed values of the validation
weather stations. Statistics from Hasenauer et al. (2003),
Hofstra et al. (2008, 2009), Moreno and Hasenauer (2015),
Pietsch and Hasenauer (2002) and Willmott and Matsuura
(2006) were applied for validation of the corrected values.
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We calculated the mean, minimum and maximum values,
the mean absolute error (MAE), the coefficient of determi-
nation (R?), the linear error in probability space (LEPS),
the critical success index (CSI), the confidence, predic-
tion and tolerance intervals of the climatic variables. We
calculated LEPS to assess the potential error in probabil-
ity space. It shows the deviation of predicted values from
observed values. Its resistance to outliers is an advantage.
Normal distribution is a prerequisite to calculate LEPS.
Therefore LEPS for Prcp is not calculated. The LEPS is
calculated as:

|pv - 05| - ‘pf — Dy
0.25

LEPS = 3)
where p, is the probability of occurrence of the weather
station value in the weather station data’s cumulative distri-
bution function (CDF). p, is the probability of occurrence
of the downscaled corrected data value in the weather sta-
tion data’s CDF. This particular LEPS equation gives val-
ues from —1 (no skill) to 1 (prefect skill). A O value is given
if the median value (p =0.5) of the weather station data is
given as a derived value on every data point.

We calculated CSI for our Prcp data to check the match-
ing success in capturing rainy days. We also calculated the
CSI for all climatic variables for extreme high and extreme
low values. Above 95th and below 5th percentile of the
weather station CDF are the extreme high and extreme low
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values, respectively. A CSI value of 1 means perfect skill
and 0 means no skill. The CSI is calculated as:
hits

CSI = — -
hits + misses + false alarms

“

where hits represent the number of days when rain was
observed in the weather station data and predicted in the
downscaled data. Misses are the number of days when rain
was observed but not predicted, and false alarms are the
number of days when rain was predicted but not observed.

The confidence, prediction and tolerance intervals were
calculated to determine the limits and ranges of errors
in future predictions of the downscaled data (Reynolds,
1984). The confidence interval (CI) shows the degree
of uncertainty around common population estimators
such as mean and standard deviation. The D (pre-
dicted — observed), can be used to evaluate discre@ncies
between the expected difference and the estimator D. The
Cl is calculated as:

Sp

Cl=D+ —1t_4/51) &)
n

The prediction interval (PI) gives the range of the resid-
uals for each observation (D;) between the predicted and
observed values for future observations. The PI is calcu-

lated as:
— / 1
Pl=D+4/14+ -=Syt,_ _
5o Dli=a/2(n-1)

The tolerance interval (TI) provides the limit that con-
tains a specified portion (e.g. 95%) of the distribution of
the differences when the model is used repeatedly. The TI
is calculated as:

(6)

)

where D; is the difference between predicted and observed
values of an observation, D is the mean of D;, Sp the
standard deviation of the D;, n is the sample size and ¢ is
the 1 — a/2 quantile of the 7-distribution with n — 1 degrees
of freedom, g,_, ,;_, is a tolerance factor for normal
distribution inferring for the probability that (1 — y)100 %
of the distribution D is within the probability of (1 — a)
which can easily be found from statistical tables.

TI = Bi SDg]—y, n,l-a

3. Analysis and results

3.1. Downscaling

We downscaled the NCEP and WorldClim global data sets
and produced a 1 X 1km grid of daily T ;, ... and Prcp
from 1979 to 2010 for the Amhara region of Ethiopia. For
determining the precipitation threshold, we first compared
the rainy days of the downscaled data to the station data
and found a large number of rainy days in the downscaled
data sets; much higher than in the observations (Figure 3).
We then set a 1 mm precipitation threshold and made a
comparison between the downscaled number of days, with
and without the threshold, and the observed number of
rainy days. Changing the days with rainfall intensities of

© 2016 Royal Meteorological Society
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Figure 3. The total number of rainy days from 1979 to 2010 for all

the 56 calibration weather stations by month. Black indicates the total

number of observed rainy days; light grey indicates the total number of

the downscaled rainy days; white indicates the downscaled total rainy
days with a rain threshold >1 mm per day.

<1 mm to no rainy days (0 mm per day) in the downscaled
data showed an improvement in results that became closer
to the observed number of rainy days (Figure 3).

After applying the precipitation threshold, we compared
the downscaled with the observed calibration data. Even
though the downscaled data exhibited an improvement
versus the NCEP values, a bias in the downscaled data is
still evident (Figure 4).

3.2. Bias correction

The comparison was performed between the correspond-
ing downscaled and calibration weather station data. The
downscaled values for T, are higher than the observed
values from March to early June, which is the dry sea-
son in Ethiopia. However, the downscaled 7' ;, values are
lower than the observed value from July to December, in
Ethiopia’s typical rainy and spring seasons (Figure 4). The
downscaled T, improved, and the differences between
predicted and observed T, during the dry season con-
verged towards zero. However, the T, values diverged
during the spring season. From June to August, the rainy
season in the region, the downscaled 7', are lower than
the observed T, values but remained higher for the rest
of the year. Values for T, and T ;, show no similar pat-
tern. The downscaled Prcp has higher rainfall records than
the observed values from June to August in the Ethiopian
rainy season. The bias corrections with weather stations
from calibration data were done to correct these biases in
the downscaled data (Figure 4).

3.3.

After applying the bias correction by using calibration
weather station data, we validated each climatic variable
with independent weather station data. Using ten inde-
pendent weather stations for validation we obtained the

Validation
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Figure 5. A 10-day moving average for observed data, downscaled and
corrected data: (a) T, (b) T, and (c) Prcp.

The observed mean daily maximum temperature of is
23.7°C. The mean value of daily T, of all stations
is 26.8°C in the NCEP, 24.8 °C in the downscaled and
23.6°C in the corrected values. The MAE of T, consis-
tently improved from 4.05 (NCEP), to 2.28 (downscaled),
to 1.96 (corrected). R? value for T, is 0.87.

The LEPS value for T, and 7', stations are 0.13 and
0.41, respectively. The Prcp CSI value is 0.59. The CSI for
extreme high values for T ;,,, T,,.x and Prcp are 0.18, 0.25
and 0.11, respectively. The CSI for extreme low values for
T in> Trmax and Prcp are 0.94, 0.90 and 1.0, respectively
(Table 1).

We have also checked the differences between daily
values of NCEP, downscaled and the corrected downscaled
values with the observed values by plotting a CDF for daily
T mins Trmax and Prep (Figure 6). The CDF plots showed
that the bias correction as well as downscaling of NCEP
improved for all climatic variables.

The results of confidence, prediction and tolerance inter-
vals for T, T . and Prcp in the NCEP, downscaled

© 2016 Royal Meteorological Society
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Figure 6. CDF for the observed, NCEP, downscaled and corrected data:
(@) T yin> () Tax and (c) Prep.

and corrected data sets are presented in (Table 1). With
a 95% probability, we are confident that the mean of
residuals between corrected and observed T, T« and
Prcp fall between —0.43 and 0.37 °C per day, —0.13 and
0.08 °C per day and 1.50—1.64 mm per day, respectively.
T, and T, . are therefore unbiased from zero. The CI
of Prcp is different from zero and biased. With the proba-
bility of 95%, we can be confident that the single future
residual between corrected and observed for 7., will
be between —5.83 and 5.03°C, T, will be between
—5.19 and 4.98 °C and Prcp will be between —17.39 and
20.53 mm per day, respectively. In repeated model appli-
cations, the TI of residual between corrected and observed
T s Tinax @0d Prep will be between —5.86 and 5.07 °C per
day, —5.22 and 5.01 °C per day and —17.47 and 20.61 mm
per day, respectively.

3.4. Daily climate data

We created a 1 X 1km climate raster data set as the final
product of our analysis containing minimum (7',,;,) and
maximum (7,,,) temperature as well as precipitation
(Prcp) for the Amhara region. Figure 7 gives an example
of the created raster for 7 ;,, T ,.x and Prcp. The data
are available for the years 1979-2010. For each year and
climate variable, a GEOTIFF file was created containing

Int. J. Climatol. (2016)
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Figure 7. Daily weather data for the Amhara region: (a) NCEP T';,, (b) downscaled corrected T',;,, (c) NCEP T ..., (d) downscaled corrected T’
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(e) NCEP Prcp and (f) downscaled corrected Prep.

one rectangular raster (band) for each day. The extent of
the raster has the following coordinates: top: 14.36°, left:
34.53°, right: 40.78° and bottom: 8.11°. The exact reso-
lution is 0.0083 degrees, which is approximately 1km at
the Equator. Each raster file contains 750 columns and
rows, in total 562500 cells, and 96 files were created.
One file has a size of 391 MB which results in about
37 GB of weather data. The data can be downloaded from:
ftp://palantir.boku.ac.at/Public/ClimateDataEthiopia/

4. Discussion

We demonstrate the downscaling procedure based on the
global WorldClim and NCEP climate data sets to produce
daily T, Tpax @nd Prep with a 1 km? spatial resolution
(Figure 7) for the Amhara Region in Ethiopia. The delta
downscaling procedure is capable of producing fine reso-
lution data sets. However, the downscaled global data set

© 2016 Royal Meteorological Society

is associated with biases when used for regional applica-
tions (Teutschbein and Seibert, 2012). Thus, bias correc-
tions were necessary to provide a consistent and unbiased
data set for different impact applications. In our analysis,
we have corrected the bias with the help of 56 regional
climate stations based on a 10-day average. We then vali-
dated the corrected values with data from ten independent
weather stations. The improvements resulted from down-
scaling and bias correction achieved are in agreement with
Graham et al. (2007a), Lenderink et al. (2007) and Piani
et al. (2010).

The methodology used here is based on global data sets.
It is simple and can be applied everywhere in the world.
In our study, we showed that the downscaled data (with-
out correction) was biased as compared to regional climate
stations (Figure 4). Correcting the data by observed val-
ues from regional climate stations data strongly improved
the results (Figure 5). This shows the limitations of the
downscaling approach if no regional climate stations are

Int. J. Climatol. (2016)
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available for a potential bias correction. Moreno and Hase-
nauer (2015) applied a similar downscaling algorithm on
the European E-OBS data set to produce a 1 x 1 km cli-
mate grid across Europe. They did not apply any correction
since the downscaling results were unbiased. E-OBS cov-
ers Europe and the data were produced and calibrated for
Europe. In our study, we used two global data sets and
downscaled them for a specific area, and this may have
introduced a bias, which can be easily corrected for by
obtaining local climate data as we showed in our analysis.

Availability of sufficient data at the appropriate scale
is a precondition for many environmental impact studies,
including climate change and ecosystem modelling appli-
cations. Itis nearly impossible to get weather station cover-
age everywhere in the Amhara region, and so far all studies
done in the region have suffered from the lack of sufficient
climate data with the required coverage and information
quality. For example, Ayalew et al. (2012) studied vari-
ability of rainfall for the whole Amhara region by using
only ten meteorological stations. (Taye et al., 2013) char-
acterized the climate of Amhara region with the data of
only five stations. Bewket and Conway, 2007 evaluated
Ambhara region’s temporal and spatial variability of rainfall
with 12 stations. Thus our product provides a consistent,
long-term (1979-2010) and fine resolution climate data
set (1 X 1 km) for similar studies of the whole region.

In our study, we consistently improved the bias for the
T ins Tmax» and Prep from NCEP to downscaled and to
corrected data sets. The MAE for Prcp decreased from
5.46 (NCEP) to 5.08 by downscaling, and further declined
to 4.85 after we applied bias correction. The R? value of
precipitation improved from 0.31 to 0.54.

The LEPS values of T, and T,,, both improved with
downscaling and bias correction of the NCEP data set from
0.1 to 0.13 and from —0.02 to 0.41, respectively. This
increase in LEPS values along with the decrease in MAE
values due to downscaling and bias correction, showed
that the corrected values not only more accurately captures
mean temperature values, but also captures extreme values
than the NCEP values.

The CSI low score for T,;,, did change from 0.93 to 0.94
after downscaling and bias correction. The 7' ;, CSI high
score decreased from 0.2 to 0.18. Both CSI scores for 7',
changed from 0.92 to 0.90 for the CSI low, and from 0.14
to 0.25 for the CSI high. The reason for the decline of the
CSI values could be because of warmer temperatures at the
validation stations than at the calibration stations. The CSI
score for Prcp remained constant at 0.59. The Prcp CSI low
score also remained constant at 1. The Prcp CSI high score
decreased from 0.12 to 0.11 (Table 1). The rugged and
complex topography of the Amhara region in combination
with the lack of sufficient weather station data might be the
reason for the small improvements in the Prcp predictions.
The Cl of T';, and T, for both NCEP and downscaled
data sets are biased. The downscaling and bias correction
of T and T, resulted in unbiased estimates. The
CI of Prcp remained biased because of the lower Prcp
values evident in the validation data as compared to the
calibration data, which were used for the bias correction.

© 2016 Royal Meteorological Society

The PI and TI show that we can expect unbiased and
consistent estimates (Table 1).

Many studies showed that a delta-change bias cor-
rection considerably improved the quality of the down-
scaled global data (Graham et al., 2007a; Johnson and
Sharma, 2011; Berg et al., 2012; Rasmussen ef al., 2012;
Teutschbein and Seibert, 2012; Hawkins et al., 2013). In
our study, the corrected Prcp exhibited the highest MAE
(4.85) compared to T, and T, . This makes precip-
itation the lowest performing climatic variable during
downscaling and the bias correction processes. Down-
scaling of precipitation to a fine resolution of 1 X 1 km
using a global data set is highly affected by the complex
mountainous topography, which often results in unsatis-
factory improvements (Hijmans et al., 2005; Dinku et al.,
2007; Wondie et al., 2011; Enyew and Steeneveld, 2014).
Improved results may be achieved by better representation
of complex mountainous topographies by installing more
weather stations (Maraun et al., 2010).

5. Conclusion

This article presents downscaled data for three climatic
variables: T';,, T,.« and Prcp from the NCEP and World-
Clim data sets, using a bias correction based on 56 local
weather stations for the Amhara Region in Ethiopia.
Our work has produced daily precipitation and minimum
and maximum temperature data sets for the time period
between 1979 and 2010 with 1 X 1 km spatial grid for the
156 000 km? Ambhara region. The data set was produced to
provide consistent spatial and temporal analysis and inter-
pretation of weather data and to provide a full climate data
set required for ecosystem modelling tools. Our results, in
combination with soil, vegetation productivity and ecosys-
tem modelling tools, will provide a powerful data set for
climate change impact studies and carbon cycle assess-
ments needed for the Amhara region.
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