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Abstract 

The identification of ancestry origin of chromosomal segments in crossbred population, termed 

local genetic ancestry, has been widely investigated in population genetics, for genetic disease 

mapping, admixture mapping and population history inference. A genome-wide perspective on a 

recently admixed population reveals that the ancestral contributions vary along the genome. 

Important sources of variations in the genome of the admixed population are natural selection as 

well as sampling errors and evolutionary fluctuations due to genetic drift and gene flow. 

Selection targets specific gene regions in contrast to random genetic drift influencing the entire 

genome. Extreme deviations of local genetic ancestries from the average genome-wide ancestry 

can be detected as signatures of selection having happened after admixture. Therefore, recent 

admixed populations provide an excellent opportunity to study post-admixture selection 

signatures. The aim of this thesis was to study ancestral contributions at local level in order to 

detect recent selection signature and to estimate heterosis components in admixed Swiss 

Fleckvieh cattle, a young composite of the two parental breeds Red Holstein Friesian (RHF) and 

Swiss Simmental (SI). 

First, we estimated ancestry at both global and local level using Illumina
®
 BovineSNP50k 

genotypes on 485 bulls, including admixed and two ancestral populations. The global RHF and 

SI proportions of ancestry were estimated 0.70:0.30. Local genetic ancestry estimations were 

used to detect selection signals. To identify the significant threshold for the detected signals, two 

approaches were employed based on permutations test and Bonferroni correction for extreme 

deviations from normal distribution. Both approaches resulted in similar thresholds. Two notable 

peaks, one on chromosome 13 (46.3-47.3 Mb) and another region on chromosome 18 (18.7-25.9) 

were identified as the recent selection signatures, according to both thresholds. Applying 

extended haplotype homozygosity (EHH) to explore pre- and post-admixture signals, revealed a 

signal on chromosome 18 (25.5-26.4 Mb) based on iHS statistics in RHF ancestral population 

and a wide region on chromosome 18 (6.6-24.6) based on Rsb statistics between admixed bulls 

and SI ancestry populations. Moreover, no considerable signal was detected by Fst. Wide 

admixture selection signals indicated that 1) the limited numbers of generations after admixture 

(~ 10-15) were not enough to sharpen signals; 2) comparison of pre- and post-admixture signals 



Negar Khayatzadeh, PhD thesis                                                                                                                                 7 
 

was not very promising, and 3) vague candidates of genes under selection were found in the 

detected regions. 

Second, local ancestries were estimated using two other different software tools (LAMP-LD and 

MULTIMIX), which require assumption of a parametric population genetic model, unlike 

LAMP used in the previous study, which trusts on clustering algorithms for local ancestry 

deconvolution. Different parameter settings such as phased data and window lengths were 

defined. The relatively high correlations were observed between LAMP-LD and 

MULTIMIX_MCMCgeno, where both used same phased reference panel and unphased 

genotypes of admixed animals with window lengths were 15 SNPs (0.81) and 23 SNPs (0.85). 

The highest correlations were observed between the results MULTIMIX_MCMC, using 

haplotypes on both reference panel and admixed animals and MULTIMIX_MCMCgeno with 15 

SNPs (0.92) and 23 SNPs (0.85). Medium to low correlations between results of different 

software tools indicated that choosing the method of local ancestry inference and consequently 

inferred selection signals should be considered carefully and confirmation with alternative 

approaches is advised. 

Local ancestry estimates were used to estimate the effects of dominance and epistatic loss (two 

definitions) as components of heterosis for sperm quality traits in admixed Swiss Fleckvieh bulls. 

Dominance component of heterosis was very significant and improved model accuracies of three 

out of four evaluated semen traits. Dominance components of heterosis were estimated 1.24 ml, 

0.28 and 1.40 % for volume, transformed number of spermatozoa and percentage of live sperm. 

Although the epistatic effects have been reported in most of studies to have minor importance, 

we found significant levels for this effect for volume and transformed number of spermatozoa 

according to our new definition based on the extreme situation of losing breed specific epistatic 

combination. 

Finally, genome-wide mapping of the dominance component of heterosis for percentage of live 

sperm was performed using an appropriate model with SNP effect, genomic breed percent and 

dominance effect. Some significant regions were found on chromosomes 3, 4, 5, 7, 13 and 14 

hosted genes associated with spermatogenesis. 
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1-1 Introduction 

Livestock products as the important agricultural commodity for global food security supply 

about 26 % of the proteins and 13 % of the calories consumed worldwide (FAO 2011). The 

global human population is expected to grow to almost 10 billion by 2050. Rapid population 

growth and transition in dietary patterns, due to urbanization and growth of income and social 

rank, increase global demand for higher quality food and protein sources (FAO 2017). 

Effective management of farm animal genetic resources (FAnGR) requires understanding of 

population structure and genetic diversity within and among livestock populations as well as 

knowledge on geographical distribution and production environment. Insights to the genetic 

structure can contribute to improve the breeding programs (pure- and cross-breeding), 

understanding of environmental adaptation and conservation of the livestock breeds (Notter 

1999; Groeneveld et al. 2010). 

Crossbreeding is a promising strategy in modern livestock breeding programs to meet the food 

demand of the growing population. Considerable genetic improvement in economical traits (e.g., 

meat and milk) can be obtained by implementing of an optimized and efficient crossbreeding 

program. Applying crossbreeding rather than traditional straight-breeding programs is to 

establish new composite by combining the positive attributes of two or more different breeds to 

produce an end product that fits market requirements and takes advantage of heterosis (Gregory 

& Cundiff 1980; Bertram et al. 1993; Simm 1998). 

 

1-2 Genetic structure of crossbred populations 

The genome of crossbred (admixed) individual is a mosaic of ancestral haplotypes formed by 

recombination occurring at every generation (Sankararaman et al. 2008; Price et al. 2009a). In a 

recently admixed population, ancestral populations have been mixing for a relatively small 

number of generations, resulting in a new population with different proportions of the original 

populations. Due to recombination events, the genome of admixed individuals is fragmented into 

shorter genome regions of different ancestries (Figure 1-1). 
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Figure 1-1 Expected lengths of ancestral segments in a recent admixed population (left panel) and in an 

ancient admixed population (right panel) (Racimo et al. 2015). 

 

Estimation of the proportional contributions of ancestral populations in admixed (crossbred) 

individuals is important to clarify the population structure, historical background and pattern of 

admixture along the genome of admixed individuals. Recent advance in high-throughput 

genotype sequencing technology have provided unprecedented opportunities to learn about the 

evolutionary history of admixed populations at both global and local levels. 

 Global genetic ancestry establishes ancestral proportions averaged across the genome of 

an individual. 

 Local genetic ancestry is the identification of the ancestral origin of distinct 

chromosomal segments within an individual genome. 

There is a growing concern in association studies about confounding effects, due to considerable 

discrepancy between the allele frequencies in the cases and the controls. An accurate inference of 

locus-specific ancestry in admixed populations has improved the genetic disease (Parkinson, 

Diabetic disease, Alzheimer and other diseases) association studies in human genetics 

(Sankararaman et al. 2008; Rosenberg et al. 2010; Seldin et al. 2011; Hu et al. 2013). 
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Moreover, admixed populations provide the special opportunity for studying recent selection 

signatures happened after admixture. 

 

1-3 Selection signatures 

In contrast to demographic processes of mutation, genetic drift and gene flow, which influence 

the entire genome, natural selection influences specific functionally important parts of genome 

(Bamshad & Wooding 2003; Oleksyk et al. 2010). Selection tends to cause specific changes in 

the patterns of variation among selected loci and in neutral linked loci as well, leaving its 

footprints in the adjacent chromosomal regions. There footprints are known as selection 

signatures (Kreitman 2000; Moradi et al. 2012; Gouveia et al. 2014). 

The recent availability of high density single nucleotide polymorphism (SNP) markers and the 

development of analytical approaches offer the opportunity to screen the genome for evidence of 

selection. Analysis of Fst (Weir & Cockerham 1984), as the measure of genetic distance, was one 

of the first approaches to screen genome to detect the loci which exhibited high variation in allele 

frequency between populations. An alternative strategy is based on increased linkage 

disequilibrium (LD) and search for homozygous regions along the genome, where their 

frequency is more than expected (Voight et al. 2006; Tang et al. 2007b). This approach is called 

extended haplotype homozygosity (EHH) which is defined as the probability that two randomly 

chosen chromosomes carrying the core haplotype which are identical by decent (Sabeti et al. 

2002). 

In addition, the genome-wide distribution of ancestral segments in admixed individuals can be 

examined to detect selection signature happened after admixture (Tang et al. 2007a). Using 

admixed populations to study selection has a considerable history in human genetics, particularly 

analyzing African, Native American and Caucasian ancestries (Workman et al. 1963; Anderson 

& Reed 1969). 

Under neutral evolution we expect each admixed individual’s genome to represent an ensemble 

of ancestry blocks randomly sampled with a probability similar to genome wide average. 

However, ancestral contributions in the genome of recently admixed individuals vary at locus 

levels due to sampling error of the existing population, random evolutionary error of genetic drift 

and systematic biases of natural selection (Long 1991; Tang et al. 2007a; Oleksyk et al. 2010). 
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Extreme fluctuations in Δ ancestries, which are calculated by subtraction of the genome wide 

ancestry from locus-specific ancestry for each ancestry component, are unlikely to have occurred 

by chance and can exhibit a selection signature in admixed individuals (Tang et al. 2007a). 

 

1-4 Methodologies for local ancestry estimates 

The genome of an admixed individual comprises a mosaic of ancestral haplotypes formed by 

recombination occurring at every generation. The boundaries and origin of each ancestral 

segment can be reconstructed along each chromosome by statistical methods which can estimate 

ancestral allele and haplotype frequencies and their distribution in the admixed populations (Hu 

et al. 2013). Generally, the software tools for genetic ancestry estimates rely on multivariate 

statistical methods, using hidden Markov Models (HMM) and use the ancestral information as 

reference panel. 

The approaches for local ancestry inference rely either on Li and Stephens (Li & Stephens 2003) 

framework, using an approximation to the coalescent with recombination, or on model-based 

clustering algorithms with no need to information on parametric population genetic model. 

Examples of algorithm using Li and Stephens (2003) include HAPMIX (Price et al. 2009b), 

LAMP-LD (Baran et al. 2012) and MULTIMIX (Churchhouse & Marchini 2013). Other method 

for local ancestry deconvolution is fundamentally based on the breaking genome into windows 

and then clustering relative to the reference panels; this is applied in LAMP (Sankararaman et al. 

2008) and PCAdmix (Brisbin et al. 2012). 

 

1-5 Heterosis; benefit of crossbreeding 

Crossbred or admixed animals result from interbreeding, where sire and dam originate from 

different breeds or lines (Balding et al. 2007). An optimized crossbreeding program exploits the 

complementarity of the involved purebred parental populations based on breed additive genetic 

effects, termed “specific combining abilities” and makes use additional economic benefit of 

heterosis (Simm 1998; Gregory et al. 1999; Freyer et al. 2008). 
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Heterosis or hybrid vigor refers to the superiority in performance of the crossbreds compared to 

the average of their parents (Falconer & Mackay 1996). Heterosis and inbreeding depression are 

two manifestations of the same phenomenon, where the progenies of crossing of inbred lines 

show an increase of those characters suffering from inbreeding (Bourdon 1997; Lynch & Walsh 

1998). Heterosis, like inbreeding depression, is most pronounced for fitness traits; fertility and 

longevity, all with relatively low heritability (Kristensen et al. 2005; Maki-Tanila 2007). 

Heterosis effects are intermediate for milk production, weight gain, feed efficiency, and body 

size; and lowest in carcass traits. Reproduction and maternal traits have low heritability and the 

traditional response to selection in breeding program will generally be slower compared to high 

heritability traits. However, significant improvement can be made through crossbreeding 

programs that maximize heterosis. For growth traits and milk traits with moderate heritability, 

genetic improvement can be achieved by applying both selection and crossbreeding programs. 

The amount of general heterosis for production traits in dairy cattle is reported 3 to 4 percent, 

while higher levels of heterosis are observed for functional and reproductive traits (VanRaden 

2004; Freyer et al. 2008; Sorensen et al. 2008; Kargo et al. 2012). 

 

1-6 Genetic basis of heterosis 

The increased performance in crossbred animals is due to changes in non-additive genetic effects 

of dominance and epistasis components of heterosis. Dominance component of heterosis are 

caused by gene interaction within loci. The degree of heterosis for a specific breed combination, 

expressed in a crossbred animal, is equal to the chance that the animal, at a specific locus, has 

one gene from each of two breeds (Sorensen et al. 2008). 

Epistatic effects are caused by gene interaction between loci and epistatic loss is considered as 

unfavorable gene effect in crossbred offspring due to breakdown of parental epistatic complex. 

Under both natural and artificial selection, co-adapted positive gene complexes accumulate. 

However, favorable gene combinations established in the parental breeds may be lost by 

crossbreeding for traits that have been under selection. Different models for estimating effects of 

recombination caused by additive × additive (A×A) interaction have been proposed (Dickerson 

1973; Hill 1982; Kinghorn 1983). 
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Kinghorn (1980, 1983) modeled dominance and two locus interaction, using epistatic term to 

describe effects of breakdown of parental combination. He considered heterozygosity is 

synonymous with dominance and epistatic loss is proportional to the probability that two non-

allelic genes randomly chosen in diploid individual are of different breed origin. 

The observed heterosis in first-generation crosses (F1) is the sum of the dominance component of 

heterosis (normally positive) and the epistatic loss effects (normally negative). In a two breed 

crossbreeding program heterosis drops to 50% in the second-generation crosses (F2) and 

continuing crosses between 2 breeds, 67% of the F1 heterosis will, on average, be expressed 

(Table 1-1). Including more parental breeds causes the more heterosis maintained after F1 

generations, while it causes the cross to be diluted for desired traits. 

Amount of heterosis depends on degree of dominance and its direction, differences in allele 

frequencies of genetic variants contributed in heterosis between parents (genetic distance 

between parental population), number of involved parental populations and type of crossbreeding 

(Shull 1948; Falconer & Mackay 1996). 

 

Table 1-1 Heterosis as a percentage of full heterosis in first generation (F1) for different types of crosses 

Type of cross Heterosis % 

F1 (S×T) 100 

F2 (S×T) × (S×T) 50 

Back cross S × (S×T) or T × (S×T) 50 

Second generation of a rotational cross S × (T × (S×T)) 75 

Third generation of a rotational cross T × (S × (T × (S×T))) 62.5 

Rotational cross after many generations 66.6 

S and T denote on parental breeds, F1 and F2 denote first and second generations of crossbreeding 
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1-7 Crossbreeding and heterosis in dairy cattle 

Crossbred offspring of more divergent and distant populations show more increased heterosis in 

comparison with offspring of crossing between more closely related populations. The most 

prominent example of crossing distant populations is Bos Taurus × Bos Indicus. 

Results of designed studies in North America indicated that in crossbreeding programs involving 

the Holstein with Guernsey and Ayrshire, crossbred cows had better performance (e.g., milk fat 

and protein percentage, growth, survival, reproduction and lifetime yield) and exceeded pure 

Holsteins on the basis of income (Touchberry 1992; McAllister et al. 1994). Crossbreeding of 

Jersey cows in New Zealand and Australia, and Brown Swiss cow with Holsteins bulls are 

common, where breeders believe they can benefit from heterosis to increase protein and fat 

percentage with less calving difficulty and better morphology traits (leg and feet) in crossbred 

cows (VanRaden & Sanders 2003). 

European dual purpose breeds are also good candidates for crossbreeding with more adapted 

local breeds in tropical climate (Mcdowell 1985). Crossing of European dual purpose breeds 

(Normande, Montbeliarde and Scandinavian Red as three dominant European breeds) with 

Holstein causes extra interest due to heterosis for milk components and to combine the better 

reproduction traits of European breeds. European breeds are typically good in survival rates in 

the first lactation and have better calving ease, conception rate and overall health as well (Heins 

et al. 2004; Heins et al. 2012). 

Swiss Fleckvieh as a recent composite cattle breed is another example of crossbreeding between 

Holstein and European breeds. Swiss Fleckvieh, which is the case-study population in this thesis, 

is a dual-purpose cattle breed, with emphasis on milk production, as a composite of Red Holstein 

Friesian and Swiss Simmental. Its main breeding area is in Western and Northern Switzerland, 

suitable for grassland and grazing. The breeding program started with the purchase of Red 

Holstein Friesian bulls for artificial insemination of Simmental cows in the 1970s. The blood 

components of today's Swiss Fleckvieh population correspond to about 2/3 Red Holstein Friesian 

and 1/3 Simmental blood. Despite their similar origins with the Swiss Red Holstein population, 

Swiss Fleckvieh's focus is different. The basic objective is the combination of the economic 

advantages of the milk production of Red Holsteins Friesians as well as additional purposes such 
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as reproduction traits, beef value, fitness and longevity of Swiss Simmental origin 

(Swissherdbook Zollikofen, 2016). 

 

1-8 Aim and objectives 

The overall aim of this thesis was to analyze the genome of a composite cattle breed to detect 

selection signatures and estimate components of heterosis based on local genetic ancestries. 

Local genetic ancestries, using genomic markers and different software tools were estimated and 

compared. Local genetic ancestries were used to infer post-admixture selection signatures. 

Furthermore, local genetic ancestries were used to define coefficients of heterosis components 

(dominance and epistatic loss) to estimate these effects for semen traits in admixed Swiss 

Fleckvieh bulls. Finally, the dominance component of heterosis for percentage of live sperm was 

mapped to genomic regions contributing to heterosis. 

 

Objectives 

1) To perform a whole genome scan for selection signature in Swiss Fleckvieh bulls based on 

three different approaches: 

 Detection local excess or deficiency of ancestry from genome wide average ancestry 

 Examination of extended haplotype homozygosities (EHH) 

 Genetic distance between pure ancestral populations (Fst) 

2) To compare the results on local ancestry’s estimates from different approaches to investigate 

how much the choice of different methods as well as parameter setting of the applied 

software can influence the estimations. 

3) To define the heterosis components using local ancestries and estimate theses effects for 

semen traits in admixed bulls, using different models. 

4) To use heterosis mapping to investigate whether specific genomic areas, contributing to 

heterosis, are associated with spermatogenesis in admixed bulls. 
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Thesis outline 

This PhD thesis consists of four manuscripts (Chapters 2, 3, 4 and 5) with emphasis on study of 

genetic architecture of a composite cattle breed in order to: 1) detect selection signatures in 

admixed populations; 2) examine how much the choice of different algorithms can influence the 

local ancestry inferences; 3) estimate of non-additive genetic components of heterosis, and 4) 

perform heterosis mapping. The studied populations consisted of admixed Swiss Fleckvieh bulls 

and its two ancestral populations (e.g., Red Holstein Friesian and Simmental). 

Chapter 1 provides general introduction, including introductory parts, aims and outline of thesis. 

Chapter 2 focusses on the estimation of genetic ancestries at SNP level. Deviations of local 

genetic ancestries from genome-wide ancestry are calculated to detect extreme excess or 

deficiency along the genome, which were interpreted as selection signals in admixed population. 

To cope with defining the significant threshold for signals, permutation tests and extreme 

deviations from normal distribution for multiple hypotheses tests are performed. Extended 

haplotype homozygosity (EHH) was calculated to explore additional patterns of pre- and post-

admixture selection signals. Genetic differentiation between two ancestral populations (Fst) is 

used as an alternative indicator of pre-admixture selection signal to find overlap with local 

ancestry. 

In Chapter 3 the results of how applying various algorithms can influence local ancestry 

estimations are presented. Genotypes of reference panel and admixed bulls are phased with two 

different approaches, implemented by Shape-It (Delaneau et al. 2012) and AlphaPhase (Hickey 

et al. 2011). Total 361 analyses are performed, using different settings and input files by three 

software tools (LAMP, LAMP-LD and MULTIMIX). The results of these programs are 

compared with the results of Chapter 2 and used further to search for similar selection 

signatures in Chapter 2 and any other signals. 

Chapter 4 discusses about different models to estimate non-additive genetic components of 

heterosis. Genomic data based on local genetic ancestry, estimated by LAMP (Chapter 2) is 

used to define dominance and epistatic loss, with two definitions (Kinghorn, 1983 and our 

definition) for semen traits (volume, concentration, number of spermatozoa and percentage of 
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live sperm) in Swiss Fleckvieh bulls. Accuracy of different models of estimating heterosis 

components is compared. 

In Chapter 5 we use method suggested for inbreeding mapping (Ferencakovic et al. 2017) to 

study heterosis at genome-wide level for one of the semen traits (percentage of live sperm) in 

Chapter 4. Then we search for possible genes are associated with spermatogenesis in cattle. 

Chapter 6 provides a critical reflection of results of previous chapters as well as suggestions for 

future work in the fields of local admixture, admixture selection signatures and heterosis of 

crossbred livestock. 

 

References 

Anderson E.N., Jr. & Reed T.E. (1969) Caucasian genes in American Negroes. Science 166, 

1353. 

Balding D.J., Bishop M.J. & Cannings C. (2007) Handbook of statistical genetics. John Wiley, 

Chichester. 

Bamshad M. & Wooding S.P. (2003) Signatures of natural selection in the human genome. 

Nature Reviews Genetics 4, 99-111. 

Baran Y., Pasaniuc B., Sankararaman S., Torgerson D.G., Gignoux C., Eng C., Rodriguez-

Cintron W., Chapela R., Ford J.G., Avila P.C., Rodriguez-Santana J., Burchard E.G. & 

Halperin E. (2012) Fast and accurate inference of local ancestry in Latino populations. 

Bioinformatics 28, 1359-67. 

Bertram J., Carrick M., Holroyd D., Lake M., Lehman W., Taylor K., Thompson R., Tierney M., 

Tyler R., Sullivan M., White R., Davis G. & Burrow H. (1993) Breeding for Profit. The 

State of Queensland, Department of Primary Industries. 

Bourdon R.M. (1997) Understanding animal breeding. Prentice Hall, Upper Saddle River, N.J. ; 

London. 

Brisbin A., Bryc K., Byrnes J., Zakharia F., Omberg L., Degenhardt J., Reynolds A., Ostrer H., 

Mezey J.G. & Bustamante C.D. (2012) PCAdmix: principal components-based 



Negar Khayatzadeh, PhD thesis                                                                                                                 22 

 

assignment of ancestry along each chromosome in individuals with admixed ancestry 

from two or more populations. Hum Biol 84, 343-64. 

Churchhouse C. & Marchini J. (2013) Multiway admixture deconvolution using phased or 

unphased ancestral panels. Genet Epidemiol 37, 1-12. 

Delaneau O., Marchini J. & Zagury J.F. (2012) A linear complexity phasing method for 

thousands of genomes. Nature Methods 9, 179-81. 

Dickerson G.E. (1973) Inbreeding and heterosis in animals. Proc. Anim. Breed. and Genet. 

Symp. in Honor of Dr. J. L. Lush, 24. 

Falconer D.S. & Mackay T.F.C. (1996) Introduction to quantitative genetics. Longman, Harlow. 

FAO (2011) World Livestock 2011 – Livestock in food security. Rome, FAO. 

FAO (2017) The future of food and agriculture - Trends and challenges. Rome. 

Ferencakovic M., Solkner J., Kaps M. & Curik I. (2017) Genome-wide mapping and estimation 

of inbreeding depression of semen quality traits in a cattle population. Journal of Dairy 

Science 100, 4721-30. 

Freyer G., Konig S., Fischer B., Bergfeld U. & Cassell B.G. (2008) Invited review: 

crossbreeding in dairy cattle from a German perspective of the past and today. Journal of 

Dairy Science 91, 3725-43. 

Gouveia J.J.D., da Silva M.V.G.B., Paiva S.R. & de Oliveira S.M.P. (2014) Identification of 

selection signatures in livestock species. Genet Mol Biol 37, 330-42. 

Gregory K.E. & Cundiff L.V. (1980) Crossbreeding in Beef-Cattle - Evaluation of Systems. 

Journal of Animal Science 51, 1224-42. 

Gregory K.E., Cundiff L.V., Koch R.M., United States. Agricultural Research Service. & 

University of Nebraska--Lincoln. Institute of Agriculture and Natural Resources. (1999) 

Composite breeds to use heterosis and breed differences to improve efficiency of beef 

production. U.S. Dept. of Agriculture, Available from National Technical Information 

Service, Washington, D.C.Springfield, VA. 

Groeneveld L.F., Lenstra J.A., Eding H., Toro M.A., Scherf B., Pilling D., Negrini R., Finlay 

E.K., Jianlin H., Groeneveld E., Weigend S. & Consortium G. (2010) Genetic diversity in 

farm animals--a review. Animal Genetics 41 Suppl 1, 6-31. 



Negar Khayatzadeh, PhD thesis                                                                                                                 23 

 

Heins B.J., Hansen L.B. & De Vries A. (2012) Survival, lifetime production, and profitability of 

Normande x Holstein, Montbeliarde x Holstein, and Scandinavian Red x Holstein 

crossbreds versus pure Holsteins. Journal of Dairy Science 95, 1011-21. 

Heins B.J., Hansen L.B. & Seykora A.J. (2004) Comparison of first-parity Holstein, Normande-

Holstein crossbred, Montbeliarde-Holstein crossbred and Scandinavian-Holstein 

crossbred cows for dystocia and stillbirths. Journal of Dairy Science 87, 282-. 

Hickey J.M., Kinghorn B.P., Tier B., Wilson J.F., Dunstan N. & van der Werf J.H. (2011) A 

combined long-range phasing and long haplotype imputation method to impute phase for 

SNP genotypes. Genet Sel Evol 43, 12. 

Hill W.G. (1982) Dominance and epistasis as components of heterosis. Zeitschrift Fur 

Tierzuchtung Und Zuchtungsbiologie-Journal of Animal Breeding and Genetics 99, 8. 

Hu Y.N., Willer C., Zhan X.W., Kang H.M. & Abecasis G.R. (2013) Accurate Local-Ancestry 

Inference in Exome-Sequenced Admixed Individuals via Off-Target Sequence Reads. 

American Journal of Human Genetics 93, 891-9. 

Kargo M., Madsen P. & Norberg E. (2012) Short communication: Is crossbreeding only 

beneficial in herds with low management level? Journal of Dairy Science 95, 925-8. 

Kinghorn B. (1980) The Expression of Recombination Loss in Quantitative Traits. Zeitschrift 

Fur Tierzuchtung Und Zuchtungsbiologie-Journal of Animal Breeding and Genetics 97, 

138-43. 

Kinghorn B. (1983) Genetic-Effects in Crossbreeding .3. Epistatic Loss in Crossbred Mice. 

Zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie-Journal of Animal Breeding and 

Genetics 100, 209-22. 

Kreitman M. (2000) Methods to detect selection in populations with applications to the human. 

Annual Review of Genomics and Human Genetics 1, 539-59. 

Kristensen T.N., Sorensen A.C., Sorensen D., Pedersen K.S., Sorensen J.G. & Loeschcke V. 

(2005) A test of quantitative genetic theory using Drosophila- effects of inbreeding and 

rate of inbreeding on heritabilities and variance components. J Evol Biol 18, 763-70. 

Li N. & Stephens M. (2003) Modeling linkage disequilibrium and identifying recombination 

hotspots using single-nucleotide polymorphism data. Genetics 165, 2213-33. 

Long J.C. (1991) The genetic structure of admixed populations. Genetics 127, 417-28. 



Negar Khayatzadeh, PhD thesis                                                                                                                 24 

 

Lynch M. & Walsh B. (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, 

Ma. 

Maki-Tanila A. (2007) More precise utilization of dominance variation. Journal of Animal 

Breeding and Genetics 124, 175. 

McAllister A.J., Lee A.J., Batra T.R., Lin C.Y., Roy G.L., Vesely J.A., Wauthy J.M. & Winter 

K.A. (1994) The influence of additive and nonadditive gene action on lifetime yields and 

profitability of dairy cattle. Journal of Dairy Science 77, 2400-14. 

Mcdowell R.E. (1985) Crossbreeding in Tropical Areas with Emphasis on Milk, Health, and 

Fitness. Journal of Dairy Science 68, 2418-35. 

Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K.G. & McEwan J.C. (2012) 

Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of 

candidate regions associated with fat deposition. Bmc Genetics 13. 

Notter D.R. (1999) The importance of genetic diversity in livestock populations of the future. 

Journal of Animal Science 77, 61-9. 

Oleksyk T.K., Smith M.W. & O'Brien S.J. (2010) Genome-wide scans for footprints of natural 

selection. Philos Trans R Soc Lond B Biol Sci 365, 185-205. 

Price A.L., Tandon A., Patterson N., Barnes K.C., Rafaels N., Ruczinski I., Beaty T.H., Mathias 

R., Reich D. & Myers S. (2009a) Sensitive Detection of Chromosomal Segments of 

Distinct Ancestry in Admixed Populations. Plos Genetics 5. 

Price A.L., Tandon A., Patterson N., Barnes K.C., Rafaels N., Ruczinski I., Beaty T.H., Mathias 

R., Reich D. & Myers S. (2009b) Sensitive detection of chromosomal segments of 

distinct ancestry in admixed populations. PLoS Genet 5, e1000519. 

Racimo F., Sankararaman S., Nielsen R. & Huerta-Sánchez E. (2015) Evidence for archaic 

adaptive introgressionin humans. Nature Reviews Genetics 16, 359-371. 

Rosenberg N.A., Huang L., Jewett E.M., Szpiech Z.A., Jankovic I. & Boehnke M. (2010) 

Genome-wide association studies in diverse populations. Nature Reviews Genetics 11, 

356-66. 

Sabeti P.C., Reich D.E., Higgins J.M., Levine H.Z., Richter D.J., Schaffner S.F., Gabriel S.B., 

Platko J.V., Patterson N.J., McDonald G.J., Ackerman H.C., Campbell S.J., Altshuler D., 

Cooper R., Kwiatkowski D., Ward R. & Lander E.S. (2002) Detecting recent positive 

selection in the human genome from haplotype structure. Nature 419, 832-7. 



Negar Khayatzadeh, PhD thesis                                                                                                                 25 

 

Sankararaman S., Sridhar S., Kimmel G. & Halperin E. (2008) Estimating local ancestry in 

admixed populations. American Journal of Human Genetics 82, 290-303. 

Seldin M.F., Pasaniuc B. & Price A.L. (2011) New approaches to disease mapping in admixed 

populations. Nature Reviews Genetics 12, 523-8. 

Shull G.H. (1948) What Is Heterosis. Genetics 33, 439-46. 

Simm G. (1998) Genetic improvement of cattle and sheep. Farming, Ipswich. 

Sorensen M.K., Norberg E., Pedersen J. & Christensen L.G. (2008) Invited review: 

crossbreeding in dairy cattle: a Danish perspective. Journal of Dairy Science 91, 4116-

28. 

Swissherdbook Zollikofen (2016). retrieved from https://www.swissherdbook.ch/unsere-

rassen/swiss-fleckvieh/ 

Tang H., Choudhry S., Mei R., Morgan M., Rodriguez-Cintron W., Burchard E.G. & Risch N.J. 

(2007a) Recent genetic selection in the ancestral admixture of Puerto Ricans. American 

Journal of Human Genetics 81, 626-33. 

Tang K., Thornton K.R. & Stoneking M. (2007b) A new approach for using genome scans to 

detect recent positive selection in the human genome. PLoS Biol 5, e171. 

Touchberry R.W. (1992) Crossbreeding effects in dairy cattle: the Illinois Experiment, 1949 to 

1969. Journal of Dairy Science 75, 640-67. 

VanRaden P.M. (2004) Invited review: selection on net merit to improve lifetime profit. Journal 

of Dairy Science 87, 3125-31. 

VanRaden P.M. & Sanders A.H. (2003) Economic merit of crossbred and purebred US dairy 

cattle. Journal of Dairy Science 86, 1036-44. 

Voight B.F., Kudaravalli S., Wen X. & Pritchard J.K. (2006) A map of recent positive selection 

in the human genome. PLoS Biol 4, e72. 

Weir B.S. & Cockerham C.C. (1984) Estimating F-Statistics for the Analysis of Population 

Structure. Evolution 38, 1358-70. 

Workman P.L., Blumberg B.S. & Cooper A.J. (1963) Selection, Gene Migration and 

Polymorphic Stability in a U. S. White and Negro Population. American Journal of 

Human Genetics 15, 429-37. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

 

 

Locus-specific ancestry to detect recent response 

to selection in admixed Swiss Fleckvieh cattle 

 

 

N. Khayatzadeh
*
, G. Mészáros

*
, Y. T. Utsunomiya

†
, J. F. Garcia

†‡
, U. 

Schnyder
§
, B. Gredler

§
, I. Curik

¶
 and J. Sölkner

* 

 

 

*
Division of Livestock Science, Department of Sustainable Agricultural Systems, University of 

Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, A-1180, Vienna, 

Austria. 

†
Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de 

Ciências Agrárias e Veterinárias, UNESP – Univ Estadual Paulista, Jaboticabal, São Paulo, 

Brazil. 

‡
Departamento de Apoio, Saúde e Produção Animal, Faculdade de Medicina Veterinária de 

Araçatuba, UNESP – Univ Estadual Paulista, Araçatuba, São Paulo, Brazil.  

§
Qualitas AG, Chamerstrasse 56, CH-6300, Zug, Switzerland. 

¶
Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska 

cesta 25, 10000 Zagreb, Croatia 

 

 

Animal Genetics (2016) 47(6):637-646 

https://www.ncbi.nlm.nih.gov/pubmed/27435758


Negar Khayatzadeh, PhD thesis                                                                                                                 28 

 

Summary 

Identification of selection signatures is one of the current endeavors of evolutionary genetics. 

Admixed populations may be used to infer post-admixture selection. We calculated local 

ancestry for Swiss Fleckvieh, a composite of Simmental (SI) and Red Holstein Friesian (RHF), 

to infer such signals. Illumina BovineSNP50 BeadChip data for 300 admixed, 88 SI and 97 RHF 

bulls were used. The average RHF ancestry across the whole genome was 0.70. To identify 

regions with high deviation from average, we considered two significance thresholds, based on 

permutation test and extreme deviation from normal distribution. Regions on chromosomes 13 

(46.3-47.3 Mb) and 18 (18.7-25.9 Mb) passed both thresholds in direction of increased SI. 

Extended Haplotype Homozygosity within (iHS) and between (Rsb) populations was calculated 

to explore additional patterns of pre- and post-admixture selection signals. The Rsb score of 

admixed and SI was significant in a wide region of chromosome 18 (6.6-24.6 Mb) overlapped 

with one area of strong local ancestry deviation. FTO, with pleiotropic effect on milk and 

fertility, NOD2 on dairy, NKD1 and SALL1 on fertility traits are located there. 

Genetic differentiation of RHF and SI (Fst), an alternative indicator of pre-admixture selection in 

pure populations, was calculated. No considerable overlap of peaks of local ancestry deviations 

and Fst was observed. 

We found two regions with significant signatures of post-admixture selection in this very young 

composite, applying comparatively stringent significance thresholds. The signals cover relatively 

large genomic areas and do not allow pinpointing the gene(s) responsible for the apparent shift in 

ancestry proportions. 

 

Keywords admixture, extended haplotype homozygosity, Fst, iHS, local ancestry deviation, 

permutation, Rsb, selection signature, SNP, Swiss Fleckvieh 
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2-1 Introduction 

Genetic exchange between two or more previously separated populations causes admixture of 

genetic material (Decker et al. 2009; Racimo et al. 2015). With limited number of 

recombinations taking place each generation, a mosaic of ancestral segments is formed in the 

genome of admixed individuals (Sankararaman et al. 2008; Hu et al. 2013; Zhang & Stram 

2014). 

Estimates of ancestry proportions at population and individual levels are widely used to study the 

population structure in many species and breed composition in livestock. Various methods have 

been developed to estimate global (genome-wide) ancestry. Principal component analysis (PCA) 

is frequently used to infer genetic structure in domesticated cattle breeds (Bovine Genome et al. 

2009; Gautier et al. 2010). Frkonja et al. (2012) estimated the global admixture proportions in 

Swiss Fleckvieh cattle with model-based clustering, partial least squares and Bayesian 

regression. McTavish et al. (2013) studied the population structure of some US cattle breeds 

using PCA and model-based clustering. Decker et al. (2014) investigated the population structure 

of domesticated cattle and calculated Asian indicine (Bos indicus), Eurasian taurine and African 

taurine (both Bos taurus) ancestry proportions using similar procedures. 

In global ancestry estimation, similar ancestry proportions contributed by each pure population 

on each locus are implicitly assumed (Long 1991). However, admixture proportions vary among 

loci and local ancestry of admixed individuals deviates from global admixture because of a very 

limited number of potential ancestral configurations (0, 0.5 and 1 for any ancestry) when 

considering the two alleles of a single locus. From an evolutionary perspective, the most 

important sources of variation in admixture estimates are genetic drift, gene flow and selection 

(Long 1991; Tang et al. 2007a; Jin et al. 2012; Jones & Wang 2012). In contrast to the 

demographic process of genetic drift and gene flow influencing the whole genome, selection 

targets only functional elements in specific gene regions (Oleksyk et al. 2010). 

When selection acts in an admixed population, selected alleles are expected to have higher 

frequencies after some generations of admixture, causing local ancestry to deviate from genome-

wide average (Bhatia et al. 2014). These deviations in the genome of admixed individuals 

(excess or deficiency) can be used to detect signals of recent selection response. The effect on 
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those regions is cumulative over several generations and therefore may be interpreted as signals 

of selection after admixture (Long 1991; Tang et al. 2007a). Genetic drift as a random source of 

variation after admixture may also produce large deviations in local ancestry (here considered as 

noise) and thus should be accounted for as a factor influencing the local ancestry (Tang et al. 

2007a; Oleksyk et al. 2010; Gautier & Naves 2011; Bhatia et al. 2014). 

Since the advent of high throughput single nucleotide polymorphism (SNP) genotyping, inferring 

selection signatures from differences in local admixture levels has received considerable 

attention in human genetics (Tang et al. 2007a; Jin et al. 2012; Bhatia et al. 2014). Similar 

studies in livestock investigated local ancestry levels of New World Creole cattle (Gautier & 

Naves 2011; Flori et al. 2014) and selection signatures in dairy cattle in East Africa, resulting 

from admixture of European breeds (Kim & Rothschild 2014), and in East African short horn 

Zebu (Bahbahani et al. 2015). The ancestry proportions of indicine Zebu, considered trypano-

susceptible, and taurine Baoule, trypano-tolerant, in trypanosoma tolerance candidate regions 

versus the background genome were calculated for admixed cattle in Burkina Faso (Smetko et al. 

2015). 

Crossbreeding is one of the key concepts of modern livestock breeding. Systematic breeding for 

distinct characteristics and classification of livestock species into breeds commenced only 

around 250-300 years ago (Felius et al. 2011). Systems of terminal crossbreeding, with first or 

second generation crossbreds producing the bulk of marketable livestock products, are very 

common, particularly in pig and poultry. Alternatively, breeders make use of heterosis and breed 

complementarity by forming composite populations by initially crossing parental breeds and then 

performing mating of the crosses (Felius et al. 2015). 

Swiss Fleckvieh is a composite breed of Simmental (SI) and Red Holstein Friesian (RHF) that 

was established over the last forty years in Switzerland with the emphasis on high milk 

production derived from the Holstein Friesian as well as additional purposes such as 

reproduction traits, beef value, fitness and longevity of the Simmental breed. 

In this study, we searched for post-admixture signals of selection by applying local ancestry 

deviation suggested by Tang et al. (2007a), Gautier and Naves (2011) and Bhatia et al. (2014). In 

addition, we estimated extended haplotype homozygosities (EHH) within each ancestral and 
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admixed populations, as well as between populations (RHF vs. SI, RHF and SI vs. admixed 

populations) to detect pre- and post-admixture signals of selection (Sabeti et al. 2002; Voight et 

al. 2006; Tang et al. 2007b). We also investigated whether regions with strong signals of post-

admixture selection coincided with pre-admixture signatures of selection, based on population 

differentiation (Fst) of the parental breeds. 

 

2-2 Materials and methods 

The genotype data from the Illumina Bovine SNP50 BeadChip were available for 101 pure RHF, 

91 pure SI and 308 admixed bulls, provided by Swissherdbook cooperative Zollikofen. Doses of 

sperm routinely collected for artificial insemination provided the tissue used for genotyping; 

therefore no ethics statement was required for collecting genetic material. Formally, animals are 

categorized Swiss Fleckvieh when their pedigree admixture level is 0.125-0.875 RHF, animals 

with < 0.125 RHF are part of the Simmental section of the herd book and those > 0.875 are in the 

Holstein Friesian section of the herd book. For the purpose of our study, we did not respect this 

definition and considered all admixed animals along the range of pedigree composition of 0.02-

0.99 RHF. Quality control of the data was performed with PLINK 1.07 (Purcell et al. 2007). The 

dataset was controlled to exclude monomorphic SNPs, those with call rate of < 95% and those 

that deviated from Hardy Weinberg Equilibrium with Fisher’s exact P-value < 10
-6

. Animals 

with more than 5% missing genotypes, SNPs on sex chromosomes and no location information 

were also removed. After applying the quality control criteria 39 525 SNPs and 485 (97 RHF, 

300 admixed, 88 SI) animals were left for the analysis. 

Unsupervised global ancestry estimation was performed with the full SNP set using the 

ADMIXTURE software (Alexander et al. 2009) with the number of ancestral populations fixed 

at two. To estimate local ancestry for admixed animals, the LAMP 2.5 program (Sankararaman 

et al. 2008) was used in LAMPANC mode. In LAMP configuration, we defined a constant 

recombination rate of 1e-8 based on the assumption that 0.01 recombination occur per Mb 

(equivalent to 1 cM), given that no accurate genetic map is currently available for cattle. As the 

SNP density is not very high in the 50k chip, we did not include Linkage Disequilibrium (LD) in 

this analysis. The locus-specific ancestry was estimated for each admixed individual with respect 

to pure breeds, representing the proportion of each involved ancestry (0, 0.5, and 1) for each 
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SNP. For 300 admixed animals, we computed the average locus-specific ancestry level across 

each chromosome separately. 

Furthermore, we searched for the excess and deficiency of local ancestry with respect to RHF 

breed using the approach proposed by Tang et al. (2007a), using LAMP similar to Gautier and 

Naves (2011). 

The ‘∆ ancestry’ was calculated by subtracting the genome wide ancestry as a baseline from the 

average locus-specific ancestry for each of the two ancestry components. The ∆ ancestry for 

ancestral population k at each SNP m is defined as: 

𝛿𝑘
𝑚 =  

1

𝐼
 ∑(𝑞𝑘

𝑖,𝑚 −  �̅�𝑘
𝑖 ) =  �̃�𝑘

𝑚

𝐼

𝑖=1

−  �̅�𝑘 

where 𝑞𝑘
𝑖,𝑚

 is the locus-specific ancestry of animal i at SNP m, estimated by LAMP, �̅�𝑘
𝑖  is mean 

of locus-specific ancestry for individual I, �̃�𝑘
𝑚 is the mean of ancestry at SNP m averaged over all 

admixed animals; and �̅�𝑘 is the mean of locus-specific ancestry across the whole genome for 

admixed population k. 

We scaled 𝛿𝑘
𝑚 values by their standard deviation (SD, 0.040). On the basis of the extent of 

admixture LD in admixed populations, we determined genome-wide threshold of signals of 

selection by correction for multiple hypothesis testing (based on Bonferroni correction) assuming 

5000 and 1000 independent segments along the whole genome. Local ancestry deviations > 4.42 

SDs (P-value < 1×10
-5

) corresponding to 5000 hypotheses and > 4.06 SDs (P-value < 5×10
-5

) 

corresponding to 1000 hypotheses tested were considered significant, following the study of 

human admixture by Bhatia et al. (2014). As LD is higher and therefore the number of 

independent segments of the genome is smaller in bovine populations compared to human 

populations, we consider these thresholds conservative (Hayes et al. 2003). 

Moreover, we performed permutation tests (Doerge & Churchill 1996) to evaluate the 

significance level for the excess or deficiency of the SNPs over the whole genome of admixed 

animals for each pure ancestry proposed by Tang et al. (2007a), and implemented in cattle by 

Gautier and Naves (2011) and poultry by Qanbari et al. (2012). For each animal, we 

concatenated the local ancestry estimations of all 29 autosomes and then permuted the 

circularized genome by cutting at a random location and rearranging the two resulting pieces of 
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the genome for each individual independently. This type of permutation preserves the extent of 

LD, assuming that it is homogeneously distributed over the whole genome. We implemented 20 

000 permutations and further added a percentage quantile transformation step. In each 

permutation test, the SD of the distribution of the permuted statistics (trimming 0.05 end of each 

test) was multiplied by a scale factor to match with corresponding observed distribution. We 

further computed the minimum and maximum values of each permutation. The distributions of 

maximum and minimum over all permutations were then used to define 1% and 5% threshold 

levels that indicated significant deviation of the observed local ancestries from the genome-wide 

average ancestry (Tang et al. 2007a; Gautier & Naves 2011). 

For the next approach of finding the selection signals in admixed animals, we calculated iHS and 

Rsb statistics suggested by Sabeti et al. (2002); (Voight et al. 2006; Tang et al. 2007b). At first 

we phased our dataset with SHAPEIT v2.r790 (Delaneau et al. 2012) and then used REHH 

package in R developed by Gautier and Vitalis (2012) with some minor adaptations (Utsunomiya 

et al. 2013). The two scores measure the segments through the genome that show unexpected 

high levels of haplotype homozygosity within and between populations respectively. We 

standardized iHS to have mean 0 and variance 1. Moreover, in Rsb, the ratio of corresponding 

populations (RHF/SI, admixed/RHF and admixed/SI cluster at each SNP site was calculated and 

transformed to logarithmic form, then standardized with mean 0 and variance 1. Because we are 

interested in both tails of this distribution, two-sided P-values were calculated based on Gaussian 

cumulative density function. Following Bhatia et al. (2014) and extension of LD in the genome 

of admixed individuals, we decided to use two thresholds, using Bonferroni thresholds based on 

5000 and 1000 hypothesis tests as significance levels. 

Allele frequency differentiation between two original populations can provide information on 

selection before admixture. Fst statistics have been calculated to detect selection signatures in 

cattle (Mancini et al. 2014; Bahbahani et al. 2015; Zhao et al. 2015) and sheep populations 

(Moradi et al. 2012). We calculated locus-specific Fst (Weir & Cockerham 1984) using the 

DIVERSITY R package (Keenan et al. 2013). Fst values were averaged for 500-kb windows on 

each chromosome to identify candidate regions of high Δ ancestry after admixture and to check 

whether these regions were also regions of high differentiation in the ancestral breeds. 

 



Negar Khayatzadeh, PhD thesis                                                                                                                 34 

 

2-3 Results 

The individual admixture proportions using the full set of 39 525 SNPs were estimated for all 

pure and admixed animals. Individual admixture levels based on SNP chip data calculated by 

ADMIXTURE are presented in Fig. 2-1 with animals ordered from the highest to lowest RHF 

ancestry proportions according to the pedigree information. The average ancestry proportions 

were estimated at 0.68 RHF and 0.32 SI (SD = 0.19). 

 

 

Figure 2-1 Ancestry proportions for all animals with the full set of 39 525 single nucleotide 

polymorphisms (SNPs). 

 

The average ancestry estimation for every single SNP was performed across 29 autosomes 

separately with LAMP. In the body of this paper we show the results for 6 autosomal 

chromosomes (2, 3, 7, 13, 18 and 29) giving the most extreme patterns of ∆ ancestry; 

information for all chromosomes is provided in Fig. S2-1. The average ancestry across 

chromosomes 2, 3, 7, 13, 18 and 29 for all 300 admixed animals are shown in Fig. 2-2, keeping 

the same order based on the pedigree RHF ancestry as in Fig. 2-1. 

The average RHF ancestry along the whole genome was calculated to be 0.70 (SD = 0.04), 

taking the average of all SNPs across the 29 autosomes. The RHF ancestry was also calculated 

across each chromosome by averaging the ancestry proportions of all SNPs across each 

chromosome. 
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The average RHF ancestry proportion across chromosome 2 was estimated at 0.73, which is 

larger than average RHF ancestry across the whole genome (0.70). Average RHF ancestry 

estimates along chromosomes 3 and 7 were 0.71 and 0.70 respectively, close to the average 

genome-wide ancestry. On the other hand, the average RHF ancestry levels on chromosomes 13, 

18 and 29 were estimated 0.65, 0.63 and 0.67 respectively. 

 

 

Figure 2-2 Average ancestry proportions across chromosomes 2, 3, 7, 13, 18 and 29 for all 300 admixed 

animals as determined by LAMP. 
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Figure 2-3 Local ancestry deviations from average of genome-wide ancestry at the corresponding single 

nucleotide polymorphism (SNP) positions on chromosomes 2, 3, 7, 13, 18 and 29, averaged over all 300 

admixed animals. 

 

The average excess or deficiency of RHF local ancestry from the average locus-specific ancestry 

across the whole genome on chromosomes 2, 3, 7, 13, 18 and 29 for all admixed animals is 

shown in Fig. 2-3. On chromosome 2 some wide peaks of Δ ancestry in favor of RHF (0.07-0.08) 

are observable between 28.2-30.8 Mb, 41.7-45.9 Mb and 55.6-56.1 Mb. On chromosome 3, 

excess in favor of SI ancestry (0.09) around 68.8-69.1 Mb was detected. The excess level in 

favor of SI on chromosome 7 reached 0.10 at 42.4-43.3 Mb. 
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In comparison, most notable peaks were seen on chromosomes 13 and 18. On chromosome 13, 

excess of RHF ancestry (0.07-0.08) was detected in a wide region along the first part of the 

chromosome (1-11 Mb) and the excess of SI (i.e., deficiency in RHF) ancestry with a very wide 

peak (0.10-0.17) around 35.2-57.6 Mb was observed. The most extreme values (0.16-0.17) were 

located at 46.3-47.3 Mb. 

Likewise, a wide peak (0.10-0.18) on chromosome 18 between 8.0 and 26.1 Mb was detected. 

Extreme excess in favor of SI reached 0.17-0.18 on chromosome 18 at 20.4-23.1 Mb. Another 

relatively wide peak in excess of SI (0.10-0.13) was on chromosome 29 (39.9-45.1 Mb). 

Genome-wide graphs of ∆ ancestry (a) at the original scale and (b) scaled by SDs are provided in 

Fig. 2-4. The 5% and 1% genome-wide significance thresholds according to the permutation test 

are given in Fig. 2-4a. Considering the 1% genome-wide threshold (-0.174, 0.169), we found a 

significant region on chromosome 18. Based on a 5% genome-wide threshold (-0.157, 0.153) 

another region on chromosome 13 was also significant. Applying the alternative hypothesis test 

exploring extreme deviations from the normal distribution of local admixture deviations, based 

on multiple tests with 5000 and 1000 hypotheses (Bhatia et al. 2014), threshold lines are given in 

Fig. 2-4b. We found these two above-mentioned regions on chromosomes 13 and 18 to surpass 

the 1000 hypotheses significance line. 



Negar Khayatzadeh, PhD thesis                                                                                                                 38 

 

 

Figure 2-4 (a) Local ancestry deviations based on the permutation threshold. Green and Red lines signify 

5% and 1% genome-wide thresholds respectively. (b) Standardized local ancestry deviations based on 

normal distribution hypotheses tests. Green and red lines are threshold lines based on P-value < 5×10
-5

 

(4.06 SDs) and P -value < 1×10
-5

 (4.42 SDs) respectively. 

 

Manhattan Plots of iHS scores for admixed, RHF and SI and Rsb of RHF/SI, admixed/RHF and 

admixed/SI for 29 autosomes are illustrated in Fig. 2-5. We again used thresholds of 4.42 SDs 

and 4.06 SDs, considering normal distribution with 5000 and 1000 independent segments of the 

genome (Bhatia et al. 2014). Considering iHS graphs and based on normal distribution for 5000 

and 1000 independent tests, several regions displayed significant scores in RHF and SI ancestral 

populations. Regards to RHF with 5000 hypotheses, two SNPs on chromosome 18 (25.5 and 

26.4 Mb) and one SNP on chromosome 8 (61.9 Mb) passed the threshold. Based on 1000 

hypotheses, another SNP on chromosome 18 (23.5 Mb) passed the threshold. 

The SNPs passing significance level based on 5000 hypotheses regarding to SI were on 

chromosomes 5 (61.32 and 61.36 Mb) and 14 (12.5 Mb). Based on 1000 hypothesis, sporadic 

SNPs on chromosomes 3 (50.8 Mb), 5 (55.5 Mb) and 11 (90.3 Mb) passed the threshold. 
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The results for iHS in admixed animals showed that no regions across the genome passed the 

threshold. Yet some regions on chromosome 18 (22.5 to 23.5 Mb) were near the threshold line. 

Regarding Rsb between the two pure populations, a relatively wide region (9.06-23.2 Mb) passed 

the first threshold and another wide region along chromosome 18 (8.4-24.1 Mb) and two SNPs 

on chromosome 5 (55.5 and 65.9 Mb) passed thresholds based on 1000 hypotheses. Rsb scores 

between admixed and each ancestral population indicated that one SNP on chromosome 10 (13.8 

Mb) surpassed the first threshold line and others on chromosomes 1 (62.8 and 63.06 Mb) and 10 

(13.9 Mb) passed the second threshold line, related to RHF. 

 

 

Figure 2-5 Manhattan plots of 29 autosomes for iHS on admixed, RHF and SI populations. Rsb between 

RHF/SI, between admixed and RHF/SI respectively. Green and red lines represent two thresholds based 

on P-value < 5×10
-5

 (4.06 SDs) and P-value < 1×10
-5

 (4.42 SDs) respectively. 
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Based on Rsb scores calculated for SI and admixed, a wide region on chromosome 18 (6.6-22.8 

Mb) and one SNP on chromosome 10 (54.08 Mb) passed the threshold line regarding to 5000 

hypotheses. Another wide region on chromosome 18 (9.06-24.6 Mb) and some SNPs on 

chromosomes 2 (24.5, 26.2 and 29.2 Mb), 3 (66.9, 67.9 and 68.7 Mb) and 10 (52.1, 52.2 and 

52.7 Mb) passed the threshold related to 1000 hypotheses. 

The average ∆ ancestry, iHS and Rsb related to candidate genes over the two candidate regions is 

given in Table 2-1. 

Table 2-1 Description of the regions harboring signals of selection based on RHF ancestry proportion and 

extended haplotype homozygosities (EHH) values (iHS and Rsb). 

Chr 
∆ ancestry 

location (Mb) 

∆ancestry

(RHF) 

iHS 

admixed 

iHS 

RHF 

iHS 

SI 

Rsb 

RHF/SI 

Rsb 

admixed/RHF 

Rsb 

admixed/SI 

Genes of 

interest 

13 46.3-47.3 -0.16 

-0.17 

-1.21 

2.19 

-1.06 

1.49 

-1.94 

2.47 

-3.22 

-0.13 

1.17 

3.95 

(46.5 Mb) 

-1.56 

-0.79 

IDI1 

GTBP4 

ZMYND11 

18 18.7-25.9 -0.16 

-0.18 

-3.71 

2.36 
-4.56* 

(25.5 Mb) 

1.94 

-2.27 

2.60 
-4.76* 

(22.3 Mb) 

-1.39 

-0.09 

2.54 
-4.84* 

(18.9Mb) 

-0.73 

FTO 

NOD2 

NKD1 

SALL1 

18 6.6-18.7 -0.09 

-0.14 

-3.45 

2.17 

-3.29 

1.47 

-3.35 

3.15 
5.36* 

(16.4 Mb) 

-0.65 

-1.23 

2.40 
-6.01* 

(16.4 Mb) 

-1.51 

MC1R 

Significant Δ ancestries based on both permutation and hypotheses test are bold.  

*Significant EHH values based on P-value < 1×10
-5

 (4.06 SDs) 

 

Population differentiation between two pure populations along each SNP (Fst) was calculated 

(see Fig. S2-2), averaged over 500-kb windows, between pure RHF and SI, and absolute values 

of deviations of local ancestry were calculated for the six chromosomes inspected in detail. 

There was no strong overlap between results on Fst and local ancestry deviations. Pearson’s 

correlation of Δ ancestry and Fst was low (0.08). 

The most notable exception was a region on chromosome 7, where the highest admixture 

deviation (0.09) was at 42.2-43.7 Mb. Maximum Fst was 0.35 and is located at 44.4-44.8 Mb and 

another peak of Fst (0.27) was also detected at 43.2-43.7 Mb, which is near to the peak of local 

ancestry deviation. 
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2-4 Discussion 

In the current study, we performed locus-specific ancestry estimation across the chromosomes 

and calculated the excess and deficiency of RHF ancestry at SNP level, compared to the average 

RHF ancestry across the autosomal genome. As has been the case with many other studies using 

high throughput genomic data (Sham & Purcell 2014), determination of which regions of the 

genome deviate significantly from the average global ancestry levels was not straightforward. It 

was hard to determine how many independent tests should be considered, and there also were 

forces other than selection, such as drift, causing deviation of local ancestry from global ancestry 

levels. We applied two approaches of significance testing that have been suggested 

independently and that we considered appropriate. 

A permutation test of circularizing the genome by concatenating the SNPs of all autosomes in a 

single string, cutting this string once and rearranging the two resulting segments, as proposed by 

Tang et al. (2007a), was used. Distinguishing between the effect of natural selection and 

demographic events on the genome is difficult. Because the permutation approach destroys not 

only effects of selection, but also local effects of genetic drift, the threshold is considered to be 

non-conservative. Nevertheless, based on simulations (Tang et al. 2007a) outliers are unlikely to 

be due to genetic drift. Therefore, this procedure is considered robust to correct for multiple 

testing to find significant signals for selection. 

Bhatia et al. (2014) proposed a simple method, looking for extreme deviations from the assumed 

normal distribution of ∆ ancestry values, scaled by SDs. They considered the number of effective 

independent hypotheses in their analysis of data of African American humans to be somewhere 

in the range of 1000-5000, resulting in significance thresholds of 4.06 and 4.42 SDs. They 

reported that simulations with their data suggested a number of independent hypotheses in the 

range of 1000-1500. We applied the same thresholds in our study, considering this approach 

conservative, given the much smaller effective population sizes of cattle compared to human 

populations (Hayes et al., 2003). 

As visible in Fig. 2-4, both approaches of determining significance provided very similar 

thresholds. They indicated almost identical regions on chromosome 13 (46.3-47.3 Mb, based on 

permutation test, 5% genome wide significance level; and 46.3-46.8 Mb, based on deviation 
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from normal distribution test, 1000 hypotheses) and chromosome 18 (18.7-25.9 Mb, based on 

both tests, with significance levels as above) to be candidates for signals of selection after 

admixture. Both signals were in the direction of increased SI ancestry. 

We also identified selection signals using the EHH method, which relies on unexpected 

homozygous haplotypes within and between populations (iHS and Rsb statistics). Based on the 

results of iHS, in RHF, we found a region on chromosome 18 (23.5-26.4 Mb) that showed 

unexpected long haplotype homozygosity. Based on iHS value of admixed animals, no 

considerable signal was detected, which is consistent with the recent admixture of this 

population, not giving enough time to establish population specific homozygous haplotypes. On 

the other hand, we calculated Rsb scores, which is expected to be more powerful to identify 

selection based on variants that are close to fixation in one population (Gautier & Naves 2011). 

Related to Rsb scores between RHF and SI, a wide region on chromosome 18 (8.4-24.1 Mb) 

indicated a difference between the ancestral populations. This wide peak (6.6-24.6 Mb) was also 

observed based on the Rsb between admixed and SI. A significant deficiency of RHF was 

detected on chromosome 18 at 18.7-25.9 Mb based on the results from Δ ancestry. We searched 

for genes that are located in the region of overlap. FTO (fat mass and obesity associated) is a 

gene that is responsible for homeostasis and expenditure and reported mostly for obesity, with 

negative correlation with fertility and semen quality in human (Landfors et al. 2016). In German 

Holstein cattle, this gene was found to be responsible for milk composition, milk fat and protein 

yield, which represents a high amount of energy secreted during lactation. This is a gene with 

pleiotropic effects for milk yield, milk composition and fertility. In that region, there are also 

some other genes: NKD1, NOD2 related to fertility and SALL1, related to dairy traits 

(Rothammer et al. 2013). 

In the region of chromosome 13 significant for ∆ ancestry, IDI1 and ZMYND11 have been found 

to be related to fertility in bovine. IDI1 is responsible for nutrient transfer to milk secretion in 

mammary gland (Connor et al. 2008) and has regulatory role in follicle development (Liu et al. 

2009). ZMYND11 is also responsible for fetus and placenta development (Smith et al. 2009). 

Conserving a high proportion of SI segments in this region may have resulted in better fertility 

for the respective admixed animals. GTPBP4 on chromosome13 is a gene responsible for 
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morphology traits (Ramayo-Caldas et al. 2014). Patterns of Rsb and Δ ancestry for the two 

regions on chromosomes 13 and 18 are visualized in Fig. S2-3. 

For recent composites, like this population, admixture selection signals are necessarily wide. The 

limited numbers of recombination events in 10-15 generations of crossbreeding are not enough 

to sharpen the signals in such a way to point to any one particular gene responsible for the signal. 

This is also reflected by the chromosome-wide ∆ ancestry graphs for all chromosomes in Fig. 

S2-1. The genes reported here are therefore all comparatively vague candidates for being drivers 

of selection in this particular composite population. 

Analyzing Fst between ancestral populations is one way of investigating selection signals in these 

populations before admixture. We used average Fst and average ∆ ancestry within 500-kb 

windows to explore overlap of signals (see Fig. S2-2). The correlation of the two metrics across 

4997 windows was 0.079, indicating a very weak positive association. There was no obvious 

overlap in the two regions on chromosomes 13 and 18, significant for ∆ ancestry. Given the great 

width of ∆ ancestry signals, a comparison of selection signatures before and after admixture in 

recently admixed populations is not very promising (Jin et al. 2012). 

 

2-5 Conclusions 

In this study we explored the variability of local ancestry for detection of admixture selection 

signatures along the genome of a recent composite of two taurine cattle breeds. Based on two 

types of thresholds - a 5% genome-wide threshold according to a permutation test, and a 

hypothesis test exploring extreme deviations from the normal distribution of Δ ancestry, based 

on multiple testing with 1000 hypotheses - two regions on chromosome 13 and 18 were found to 

be significant and are regarded as recent selection signatures. The signals found were wide, 

which is consistent with the small number of generations since the start of crossbreeding and not 

enough generations having passed for narrowing the signatures of selection. 
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Figure S2-1 Local ancestry deviations from genome-wide ancestry at the corresponding SNP positions 

on all 29 autosomes averaged over all 300 admixed cattle.
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Figure S2-2 Genomic distribution for Fst of ancestral (RHF and SI) populations (Green) and 

absolute ∆ ancestry (Red) averaged across 500 kb window on 29 autosomes.
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Figure S2-3 Comparison of significance chromosome regions (13 and 18) as selection signals by ∆ 

ancestry deviations (red) and absolute value of Rsb (green). The significance region based on ∆ 

ancestry deviations are shown by vertical red lines and based on Rsb by dash black vertical lines. 
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Abstract 

Background The genome of a recently admixed individual resembles a mosaic of haplotypes 

from the ancestral populations. Variations in local ancestry proportions from genome-wide 

ancestry along chromosomal segments arise from demographic process of genetic drift and 

selection. Local ancestry estimations can be used to detect post-admixture selection signature in 

recent admixed cattle populations. Development of various software tools for estimation of local 

ancestries from genomic data provides the possibility of comparing different statistical methods. 

The main aim of this study was to apply different algorithms using both unphased and phased 

genotypes to examine how various methods influence local ancestry estimations and selection 

signature detections in Swiss Fleckvieh cattle. 

Results We performed 361 analyses, using three different methods implemented in LAMP, 

LAMP-LD and MULTIMIX for local ancestry estimations. Ancestral haplotypes phased by 

ShapeIt and AlphaPhase were used as the input files for LAMP-LD and 

MULTIMIX_MCMCgeno. MULTIMIX_MCMC applied phased admixed samples beside 

ancestral haplotypes. Correlations between estimations using haplotypes phased with different 

window sizes in ShapeIt were close to unity. Estimations from phased haplotypes using 

AlphaPhase with cores length 100 to 150 SNPs showed correlations > 0.95 which had also high 

correlations with ShapeIt results (0.99). Regards to local ancestry’s estimates with different 

parameters of each program, high correlations (0.98) were observed between local ancestry 

estimations of LAMP-LD using window lengths 15 to 30 SNP. The highest correlations between 

results of MULTIMIX software were observed between windows lengths 15 and 23 SNP, 23 and 

30 SNP for MULTIMIX_MCMCgeno (> 0.95) and MULTIMIX_MCMC (> 0.89). Comparison 

between analyses set by different methods showed highest correlation between 

MULTIMIX_MCMCgeno and MULTIMIX_MCMC with 15 (0.92) and 23SNP (0.85), LAMP-

LD and MULTIMIX_MCMCgeno with 23 SNP (0.85). Autosome-wise comparison ranged from 

negative correlations between estimations of LAMP and the other methods (chromosomes 3, 14, 

24 and 26) to correlations higher than 0.90 between LAMP-LD and MULTIMIX_MCMCgeno 

and MULTIMIX_MCMCgeno and MULTIMIX_MCMC (3, 4, 6, 8, 13, 14, 23 and 29). Two 

selection signals were detected by LAMP on chromosomes 13 and 18 based on multiple 

hypothesis tests, yet no similar signals were detected by the other approaches. 
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Conclusions Choosing the method for estimation of local genetic ancestries should be 

considered carefully. 

Keywords admixture, cattle, haplotype, local ancestry, phasing, selection signature, SNP, Swiss 

Fleckvieh 
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3-1 Background 

The genome of an admixed individual comprises a mosaic of ancestral haplotypes formed by 

recombination occurring at every generation [1-5]. Study of the patterns of DNA sequence 

variation shaped by admixture can be considered at both “global” (genome-wide) and “local” 

(locus-specific) levels. Global admixture is a relative proportion of ancestral haplotypes averaged 

across the entire genome of an individual, while local admixture deals with identification of the 

ancestral origin of distinct chromosomal segments within an individual [4, 6-8]. Local ancestry 

(LANC) proportions diverge from genome wide ancestries as a result of demographic processes 

of selection, small population size (random genetic drift) and sampling variability. The extreme 

deviations of local ancestries from genome wide ancestry are interpreted as selection signatures 

happened after admixture [9, 10]. Local ancestries as a measure of post-admixture selection 

signature have been estimated in recently admixed human [9, 11, 12] and livestock populations 

[13-18]. 

The assessment of fine-scale ancestry has been recently facilitated by the development of 

statistical methods implemented in different software tools to estimate admixture from genomic 

data [7, 19]. The approaches for local ancestry inference rely either on Li and Stephens [20] 

framework using an approximation to the coalescent and ancestral recombination graphs or on 

model-based clustering algorithms. 

The methods applied by LAMP-LD [21], HAPMIX [2] and MULTIMIX [22] model an admixed 

individual genome as a noisy mixture of the ancestral haplotypes using hidden Markov models 

(HMM). These algorithms can be applied to both unphased and phased data, provided that 

phased reference ancestral haplotypes are available. These phased haplotypes can be obtained by 

various specific software tools, such as PHASE [23, 24], fastPHASE [25], Beagle [26] or 

ShapeIt [27]. These programs use haplotype frequencies and identical by descent (IBD) segment 

probabilities to model linkage disequilibrium (LD) using HMM, which are computationally 

intensive and time-consuming. Among these software tools, ShapeIt has faster implementation in 

terms of run-time [28]. An alternative to HMM-based phasing is the use of deterministic 

algorithm based on long range haplotypes [29], which uses the concept of surrogate parents to 

determine chromosomal phased haplotypes. This method was expanded and combined by adding 
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haplotype library imputation, using pedigree information for livestock populations in 

AlphaPhase software [30]. 

In contrast to programs using genetic parameters model, an approximation of ancestral 

recombination graph, for LANC inference, there are other software tools such as LAMP (Local 

Ancestry in adMixed populations) which infer local ancestries by breaking the genome into 

sliding windows and clustering SNPs within each window based on allele frequencies of 

ancestry informative markers (AIMs). Optimal window size is selected internally based on the 

number of generations since admixture, recombination rate and SNP density [1, 7, 19]. 

Local ancestries as a measure of selection signature have been estimated using LAMP program 

in New World Creole cattle [13-15], East African short horn Zebu [17] and Swiss Fleckvieh 

cattle [18]. Kim and Rothschild [16] used LAMP-LD to estimate local ancestries in East African 

dairy cattle. 

In the present study, we took advantage of the availability of different phasing algorithms and 

LANC inference software tools to investigate how much the choice of different methods as well 

as parameter settings of the applied software tools can affect the estimations in Swiss Fleckvieh, 

a cattle population with ~ 10 generations of admixture history. Search for post-admixture 

selection signatures was performed by multiple hypothesis tests. LANC estimations from 

different approaches were compared to see the consistency of the results of different methods. 

 

3-2 Methods 

3-2-1 Animals 

Illumina® BovineSNP50k v2 (50k) genotypes of 91 Simmental, 101 Red Holstein Friesian and 

308 admixed bulls from Swissherdbook cooperative Zollikofen were used in this study. These 

genotypes build on previously published data [18, 31]. Swiss Fleckvieh is a composite breed of 

Simmental (SI) and Red Holstein Friesian (RHF) that was established in 1970 in Switzerland 

with the aim of combining the high milk production of the Red Holstein Friesian with the high 

fertility, beef value and longevity of the Simmental breed. According to the formal definition, 

animals with pedigree admixture levels of 0.125-0.875 RHF are categorized as Swiss Fleckvieh. 
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We considered all admixed animals along the range of pedigree admixture level of 0.02 to 0.99 

RHF in the current study. 

3-2-2 Quality control 

Quality control of the data was performed with PLINK 1.90 [32, 33]. Markers that were 

monomorphic, unmapped, non-autosomal, those presented call rate below 95% or deviated from 

Hardy Weinberg Equilibrium (Fisher’s exact P-value less than 10
-6

) were excluded. Animals 

with more than 5% missing genotypes were also removed. After applying these quality control 

criteria, 39525 SNPs and 485 (97 RHF, 300 admixed and 88 SI) animals were retained for 

analysis. 

3-2-3 Phasing 

We used two different algorithms, namely ShapeIt v2.r837 and AlphaPhase 1.2, to define 

haplotypes of admixed and ancestral samples. 

ShapeIt uses a hidden Markov model (HMM) and builds an imperfect mosaic of haplotypes (H) 

underlying genotypes (G). In the first step, all of K haplotypes in H are collapsed into a graph 

structure Hg by splitting haplotypes into J disjoint segments, which are considered as states. Each 

marker is labeled either with allele 1 or allele 0 (node) and at edges is weighed by the number of 

haplotypes in H that traverse it. All available haplotypes are kept in a compact HMM. In the 

second step, pairs of compatible haplotypes for G, with linear complexity are sampled from Hg. 

Genotypes in G are partitioned into disjoint segments, and the then all haplotypes which are 

compatible with G enumerated as the compatible haplotypes in each disjoints segment, putting 

into a graph structure Sg as a compact representation of the possible haplotypes. Then transition 

probabilities between segments are computed using a forward-backward algorithm, and pairs of 

compatible haplotypes can be sampled [27, 34]. 

Model parameters of ShapeIt are conditioning states and indicate the number of disjoint 

segments (J), window size (W), genetic map and effective population size. ShapeIt uses 100 

states by default, but in this study we have increased the number of states to 200 to achieve 

greater accuracy. Different lengths (0.5, 1, 1.5 and 2 Mb) of window sizes were used in these 

calculations, replacing the default value of 2 Mb. The effective population size (Ne) for admixed 
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animals and ancestral populations was computed using SNeP [35], estimated through LD. The Ne 

of RHF and SI ancestral populations were estimated at 137 and 188, respectively. Based on Ne 

for each ancestral population and considering the guidelines in the ShapeIt documentation, the Ne 

of the mixed sample was set to 153 depending on the proportion of each population in the data 

set. For genetic map we considered 1 Mb ≈ 1 cM and constant recombination rate of 1 cM /Mb. 

We increased default values for number of burn-in, pruning and main iterations from 7 to 10, 8 

to 10, and 20 to 50 iterations to increase accuracy. 

AlphaPhase employs the long range phasing algorithm of Kong et al. [29] to phase a string of 

consecutive SNPs, termed “core” in the program’s terminology, by identifying surrogate parents 

of each individual, termed “proband”. Surrogate parents share a haplotype with a proband with 

no opposing homozygote genotypes. These parents could be one degree (Erdös 1) or more than 

one degree (Erdös 2 or more) removed from the proband on the basis of haplotype identity. 

Layers older than Erdös 1 for surrogates do not have shared haplotypes with proband, but do 

have shared haplotypes with more recent layers. In a follow up step, the parental surrogates are 

partitioned to paternal and maternal gametes based on pedigree information. Inference of the 

phase for the proband is attempted by stepping through the surrogates until one is found that is 

homozygous at that locus. Adjacent tails to either end of each core are defined to provide 

additional information about surrogacy especially near the end of the core. For compensation of 

the lack of surrogate parents due to recombination, a haplotype library is built to impute phase 

for unphased individuals [30]. 

The authors recommended in AlphaPhase documentation, a core length of 100 SNP and a core 

and tail length of 300 to 500 SNP for 60K SNP density. However, as the AlphaPhase algorithm 

is robust to small variations in terms of core and tail length, we used longer cores (150, 200 and 

300 SNP) as we expected longer shared haplotypes in the recent admixed population to find 

optimum phasing length. A total of 7 different phasing analyses in terms of core and tail lengths 

were performed. Core and tail length settings were 1: (100, 100), 2: (100, 150), 3: (100, 200), 4: 

(300, 100), 5: (200, 200), 6: (150, 200) and 7: (250,200).The phasing analyses were run twice 

considering offset and not-offset between successive cores (50% overlap), which gave rise to 14 

phasing analyses in total. The threshold for disagreement between homozygous genotypes to 
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identify surrogate parents, due to genotyping error was set to 1%. The threshold for disagreement 

between surrogate parents haplotypes and proband genotypes was also set to 1%. 

3-2-4 Local genetic ancestry estimation 

LAMP 2.5 applies a clustering algorithm to infer locus-specific ancestries at the chromosome 

level in admixed individuals. It works based on allele frequencies of a reference panel with no 

need of individual genotypes from the ancestral populations. The idea is to select a suitable 

window length that is long enough to enable ancestry estimation but short enough such that the 

window on average does not contain recombinants of purebred haplotypes. We used LAMP in 

LAMPANC mode. The following configuration parameters were set: admixture proportions 

(alpha) = 0.68 RHF and 0.32 SI based on the global ancestry estimation using ADMIXTURE 

[36], number of generations since admixture (g) = 7, recombination rate (r) = 10
-8

, fraction of 

overlap between adjacent windows (offset) = 0.2. LAMP relies on a predefined set of AIMs that 

are in low LD (r
2 

< 0.1) for each pair of selected SNPs. Because of the sparsity of the 50k 

Beadchip, we did not exclude SNPs based on LD in this analysis. The locus-specific ancestry 

was estimated for each admixed individual with respect to pure breeds, representing the 

proportion of each involved ancestry (0, 0.5, and 1) for each SNP. For the 300 admixed animals, 

we computed the average locus-specific ancestry level across each chromosome separately. 

LAMP-LD models an admixed chromosome as a set of haplotypes from K ancestral populations 

after g generations, considering crossing over that occurs in each generation. The recombination 

with average rate ρ thorough g generations breaks the ancestries and inserts ancestry breakpoints. 

Each segment between break points is modeled as an independent draw from ancestral 

populations with probabilities given by the admixture fraction α. For the sake of simplicity, 

LAMP-LD assumes constant recombination rate and physical positions are scaled based on 1 Mb 

≈ 1 cM. The model consists of HMMs that emit genotypes in non-overlapping windows and 

models LD structure of ancestral segments. The hidden states are local ancestries on each 

chromosome within each window. The model structure is described by S in terms of number of 

states and constant window length L (S×L states in total), with emission and transition 

probabilities estimated from reference haplotypes. Intuitively larger S induces better modelling 

of haplotype with increase in runtime, but fixing state into moderately small numbers usually 

results in improvements in run time with very modest reduction in accuracy. Window lengths (L) 
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of 200-400 Kb, together with 10-15 numbers of states (S) are sufficient to estimate local 

ancestries with high accuracy. We defined different lengths 5 (~300 Kb), 8 (~500 Kb), 15(~1 

Mb), 23 (~1.5 Mb) and 30 (~2 Mb) in terms of number of SNP for windows, similar to windows 

sizes for phasing haplotypes by ShapeIt, and number of states 10 and 15 to analyze the influence 

of different lengths and states on local genetic ancestries. 

MULTIMIX similarly to LAMP-LD uses H source haplotypes from k ancestral populations to 

estimate local ancestries as hidden states. The chromosomes of the individuals in a recent 

admixed population is considered as a series of segments consisting of alleles with shared 

ancestry, as neighboring loci tend to be inherited together during meiosis. Therefore, it may be 

possible to carry out inference at a coarse scale (longer haplotypes) without noticeable loss of 

accuracy in the recent admixed population. Each chromosome was split into W = L/n contiguous 

windows (chunks) with the assumption that ancestry was constant within each window, 

considering the age of admixture. Within a given window due to difference in haplotype 

frequencies between populations an observed haplotype tends to be more likely from one source 

population than others. MULTIMIX models observed haplotype frequencies and allele 

frequencies in case of unphased genotypes, as a discrete multivariate distribution, using a 

coalescent model given fitted haplotype ancestries. Within the jth window, covariance matrix of 

SNPs from the kth ancestral population is estimated. Constant small value λ is added to the 

variances to ensure that covariance matrix is positive definite and invertible. MULTIMIX 

models breakpoint ancestries along a chromosome using Markov process. The other model 

parameter is misfitting probabilities to make a distinction between true and fitted ancestral 

populations to avoid spurious switches in ancestries. 

We applied MULTIMIX to both phased and unphased samples with phased references. We used 

MULTIMIX_MCMC algorithm for phased samples and MULTIMIX_MCMCgeno for unphased 

samples with misfitting probabilities equal to the estimation from MULTIMIX_CEM. The initial 

values for global ancestry estimations were set to 0.68 and 0.32 for RHF and SI, calculated by 

ADMIXTURE [36]. 
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3-2-5 Statistical analysis 

We searched for excess and deficiency of LANC with respect to RHF ancestry using the 

approach proposed by Tang et al. [9]. The ‘∆ ancestry’ was calculated by subtracting the average 

local ancestries at SNP m from the genome-wide ancestry for each of the two ancestry 

components, which is defined as: 

𝛿𝑘
𝑚 =  

1

𝐼
 ∑(𝑞𝑘

𝑖,𝑚 −  �̅�𝑘
𝑖 ) =  �̃�𝑘

𝑚

𝐼

𝑖=1

−  �̅�𝑘 

where 𝑞𝑘
𝑖,𝑚

 is the local ancestries of animal i at SNP m, �̅�𝑘
𝑖  is mean of local ancestries for 

individual I, �̃�𝑘
𝑚 is the mean of ancestry at SNP m averaged over all admixed animals; and �̅�𝑘 is 

the mean of local ancestries across the entire whole genome for population. We scaled 𝛿𝑘
𝑚 values 

by their standard deviation. Following Bhatia et al. [12] in their analysis of recent admixed 

human populations, we determined genome-wide threshold of signals of selection as LANC 

deviation greater than 4.42 SDs (P-value < 1 × 10
-5

), applying Bonferroni correction for 5000 

hypotheses and 4.06 SDs (P-value < 5 × 10
-5

) corresponding to 1000 hypotheses. As LD is 

higher and therefore the number of independent segments of the genome is smaller in bovine 

populations compared to human populations, we consider these thresholds conservative [37]. 

 

3-3 RESULTS 

3-3-1 Effect of phasing algorithms 

In order to assess the influence of different phasing algorithms on the estimates of LANC along 

the genome, we applied the ShapeIt and AlphaPhase with different set of parameters summarized 

in Table 3-1. Chromosome 2 was chosen as an example, since it consists of considerable number 

of SNPs in comparison with other chromosomes. We phased ancestral haplotypes using ShapeIt 

with different window sizes (0.5, 1, 1.5 and 2 Mb) and then calculated local ancestries using 

LAMP-LD (window length of 5 SNP (~300 Kb) with 10 states). 
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Table 3-1 Overview of parameters used for different phasing algorithms and methods to estimate local 

genetic ancestries. 

Phase.Alg
a
 Win.S (Mb)

b
 LANC.Alg

c
 States

d
 

Win.L (SNP)
e
 Offse

t
f
 

Analysis Numbers 

- - LAMP    A0 

ShapeIt 

0.5Mb 
LAMP-LD 10-15 5, 8, 15, 23, 30  A1-A10 

MULTIMIXgeno - 5, 8, 15, 23, 30  A11-A15 

MULTIMIX - 5, 8, 15, 23, 30  A16-A20 

1Mb 
LAMP-LD 10-15 5, 8, 15, 23, 30  A21-A30 

MULTIMIXgeno - 5, 8, 15, 23, 30  A31-A35 

MULTIMIX - 5, 8, 15, 23, 30  A36-A40 

1.5Mb 
LAMP-LD 10-15 5, 8, 15, 23, 30  A41-A50 

MULTIMIXgeno - 5, 8, 15, 23, 30  A51-A55 

MULTIMIX - 5, 8, 15, 23, 30  A56-A60 

2Mb 
LAMP-LD 10-15 5, 8, 15, 23, 30  A61-A70 

MULTIMIXgeno - 5, 8, 15, 23, 30  A71-A75 

MULTIMIX - 5, 8, 15, 23, 30  A76-A80 

 CTL
g
      

AlphaPhase 

100,100 
LAMP-LD 10-15 5, 8, 15, 23, 30 Both A81-A100 

MULTIMIXgeno - 5, 8, 15, 23, 30 Both A101-A110 

MULTIMIX - 5, 8, 15, 23, 30 Both A111-A120 

100,150 
LAMP-LD 10-15 5, 8, 15, 23, 30 Both A121-A140 

MULTIMIXgeno - 5, 8, 15, 23, 30 Both A141-A150 

MULTIMIX - 5, 8, 15, 23, 30 Both A151-A160 

100,200 
LAMP-LD 10-15 5, 8, 15, 23, 30 Both A161-A180 

MULTIMIXgeno - 5, 8, 15, 23, 30 Both A181-A190 

MULTIMIX - 5, 8, 15, 23, 30 Both A191-A200 

300,100 
LAMP-LD 10-15 5, 8, 15, 23, 30 Both A201-A220 

MULTIMIXgeno - 5, 8, 15, 23, 30 Both A221-A230 

MULTIMIX - 5, 8, 15, 23, 30 Both A231-A240 

200,200 
LAMP-LD 10-15 5, 8, 15, 23, 30 Both A241-A260 

MULTIMIXgeno - 5, 8, 15, 23, 30 Both A261-A270 

MULTIMIX - 5, 8, 15, 23, 30 Both A271-A280 

150,200 
LAMP-LD 10-15 5, 8, 15, 23, 30 Both A281-A300 

MULTIMIXgeno - 5, 8, 15, 23, 30 Both A301-A310 

MULTIMIX - 5, 8, 15, 23, 30 Both A311-A320 

250,200 
LAMP-LD 10-15 5, 8, 15, 23, 30 Both A321-A340 

MULTIMIXgeno - 5, 8, 15, 23, 30 Both A341-A350 

MULTIMIX - 5, 8, 15, 23, 30 Both A351-A360 

Note: Phase.Alg
a
 is phasing algorithms used for phasing haplotypes. Win.S (Mb)

b 
window size (Mb) used for 

phasing data with ShapeIt. LANC.Alg
c
 is algorithm used to estimate local genetic ancestries. States

d 
refers to 

number of states in LAMP-LD. Win.L (SNP)
e
 refers to window length for local genetic ancestry’s estimations. 

Offset
f
 refers to considering offset between consecutive cores for phasing data with AlphaPhase. CTL

g
 is general 

length of core together with its adjacent tails for phasing data with AlphaPhase. 
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The results indicated that applying different window sizes to phase haplotypes by ShapeIt did not 

substantially influence the estimation of local ancestries. Pearson’s correlations between local 

ancestries, using different window sizes for phasing ancestral haplotypes were close to unity (> 

0.99). 

Pearson’s correlations of LANC proportions, using the phasing algorithm implemented by 

AlphaPhase were in the range of 0.91 to 0.99. The method of phasing ancestral haplotypes with 

or without offset did not have any notable influence on the results (Pearson’s correlations of 0.98 

to 0.99 between analyses with and without offset). Correlations of less than 0.95 were observed 

in dataset with core length 300 and general core and tail length 500 SNPs, considering offset 

between cores. Figure 3-1a and 3-1b shows LANC proportions estimated by LAMP-LD at SNP 

level, using ShapeIt and AlphaPhase. 

Fig. 3-1 LANC proportions by LAMP-LD with window length 5 SNP (300 kb in average) and number of 

states 10, using ancestral panels phased a. by ShapeIt considering different window size (0.5, 1, 1.5 and 2 

Mb) b. by AlphaPhase considering different combinations of general core and tail lengths and not-offset 

and offset between cores. 

 

3-3-2 Effect of settings within algorithms applied for LANC prediction  

LAMP-LD 

In the second step, two different methodologies applied by LAMP-LD and MULTIMIX were 

used for estimation of local genetic ancestries. The different settings of LAMP-LD were 
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investigated, in terms of window length, number of states, and their influence on change of 

LANC estimations along the chromosome. 

Based on the setting in Table 3-1, the correlations between LANC estimations, using phased 

ancestral haplotypes with different window sizes in ShapeIt (0.5, 1, 1.5 and 2 Mb) and within 

each window length defined for LAMP-LD (5, 8, 15, 23 and 30 SNPs) were greater than 0.99. 

Moreover, increasing number of states to 15 did not change the results considerably and high 

pairwise correlations were observed between all comparisons (r ~ 0.99) (Additional file 3-1: 

Figure S3-1). The results showed that using different sets of phased ancestral haplotypes by 

ShapeIt does not have a remarkable impact on LANC estimations along different window 

lengths in LAMP-LD. We then compared the averaged LANC proportions through different 

window in LAMP-LD (Fig. 3-2.a). With regards to the length, highest correlations (> 0.98) were 

observed between windows with 15, 23 and 30 SNPs (Table 3-2). Since Swiss Fleckvieh is a 

recent composite with small number of generations after admixture, the expected length of 

ancestral haplotypes are relatively wide and choosing the segments with 5 to 8 SNP length can 

cause of noises in estimations. Therefore, we took the average of windows 15, 23 and 30 in order 

to have one set of local genetic ancestries estimated by LAMP-LD, using ancestral haplotypes 

phased by ShapeIt (Fig. 3-2.c). 

We estimated LANC proportions with window lengths and number of states similar to previous 

stage with LAMP-LD, using ancestral haplotypes phased with different general core and tail 

lengths by AlphaPhase (Table 3-1). Estimated local ancestries using different core and tail length 

have correlations in the range of 0.91 to 0.99, 0.94 to 0.99, 0.96 to 0.99, 0.97 to 0.99, and 0.96 to 

0.99 within window lengths 5, 8, 15, 23 and 30 SNPs respectively. Considering no offset and 

offset between pairwise comparisons, we found correlation greater than 0.95 between all 

comparisons. Correlations between estimations were decreased (< 0.95) by using cores with 

length longer than 100 SNP. (Additional file 3-2: Figure S3-2). 
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Fig. 3-2 LANC estimated by LAMP-LD averaged within each window .Ancestral haplotypes were 

phased by a) ShapeIt, b) AlphaPhase. c) Averaged of LANC estimations between windows with 15, 23 

and 30 SNP with different phase algorithm. 

 

Results of phasing haplotypes with core lengths 100 to 150 SNP represented highest correlations 

with each other. Increasing core length to 200 or 300 SNPs made deviations of estimations from 

results of haplotypes phased with core length 100 to 150 SNPs. Therefore, we took the average 

of these within each window, and we then compared the averaged local ancestries between 

different windows (Fig. 3-2.b). Comparisons between different window lengths in LAMP-LD 

showed that the highest correlations (0.99) were observed between estimations of window 

lengths bigger than 15 SNPs, where ancestral haplotypes phased by AlphaPhase (Table 3-2). As 
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the increasing number of states was not relevant (with 0.99 correlations), we selected only 

estimations with number of states 15 for comparing the results of LANC estimates by LAMP-

LD, applying different phasing algorithms. 

To compare LAMP-LD results when data were phased with different algorithms, we took the 

average between different windows, except windows lengths of 5 and 8 SNP. LANC estimates of 

differently phased sets by ShapeIt were in the range of 0.65 to 0.76 along the chromosome. Local 

ancestries averaged across different sets ranged from 0.65 to 0.75. The range of LANC 

estimations of different phased sets from AlphaPhase was 0.65-0.76 and their averages ranged 

from 0.66 to 0.75. Results showed there was high correlation between LANC estimations, when 

genotypes were phased with ShapeIt or AlphaPhase (Fig. 3-2.c). 

 

MULTIMIX_MCMCgeno 

Similar to LAMP-LD, we used the same set of haplotypes which were phased by different 

window sizes with ShapeIt to estimate LANC proportions. We used the 

MULTIMIX_MCMCgeno algorithm with unphased admixed samples and phased reference 

panel (RHF and SI) with misfitting probabilities equal to the estimation from 

MULTIMIX_CEM. We set length of the chunks similar to LAMP-LD in previous section to 5, 8, 

15, 23 and 30 SNPs per window. Local genetic ancestries which were estimated using different 

set of ancestral haplotypes by ShapeIt represented notably high correlation (0.99) comparing 

different chunk lengths (Additional file 3-3: Figure S3-3). Due to high correlations between 

estimations from different ancestral haplotype setting within each window in MULTIMIXgeno, 

we took the average of estimations within each window. Comparisons among different chunk 

lengths are given in Table 3-2. Correlations were 0.95 between chunk length 15 and 23 SNP, 23 

and 30 SNP. Misfitting probabilities matrix which were estimated using MULTIMIX_CEM were 

in the range of (
0.91 0.09
0.12 0.88

) for chunk length 5, 8 and 15 SNPs and (
0.96 0.04
0.16 0.84

) for chunks 

longer than 23 SNP. Lambda (λ) was 0.05 for all analysis. 

We used the same general cores and tail lengths, which were used by LAMP-LD, considering 

not-offset and offset between core ant tails to phase haplotypes. Correlations between local 
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ancestries calculated by MULTIMIX based on different sets for phasing ancestral haplotype 

were in the range of 0.90 to 0.99, 0.87 to 0.99, 0.86 to 0.99, 0.83 to 0.99, and 0.78 to 0.99 for 

chunk length 5, 8, 25, 23 and 30 SNPs respectively (Additional file 3-4: Figure S3-4). The 

correlations were lower when we used long general core and tail length (core length 300 SNP 

and general core and tail length greater than 500 SNP). Moreover, with increase in chunk length 

to 30, the cores longer than 150 SNPs showed deviation from shorter cores. In addition, only 

small differences were observed between offset and not-offset (0.99) among cores with 100 to 

150 SNP; with lower correlations belonging to long segments. Due to the more similarity 

between results of core lengths 100, we took the average of not-offsets for the first three phased 

lengths within each chunk. Correlations among different chunk lengths in 

MULTIMIX_MCMCgeno ranged between 0.67 and 0.95. Chunk length 5 and 8 had lower 

correlation with the other chunks and highest correlation (> 0.95) were observed between chunk 

length 15 and 30 SNP, 23 and 30 SNP (Table 3-2). Misfitting probabilities matrices, which were 

used for haplotypes phased by AlphaPhase, were (
0.90 0.10
0.10 0.90

) for chunks with length 5 to 15 

SNP and (
0.97 0.03
0.13 0.87

) for longer chunks. Value of λ increased to 0.1 for phased haplotypes 

with core length 200 and 300 SNP. 

The results from MULTIMIXgeno, with the ancestral haplotypes phased by ShapeIt and 

AlphaPhase, showed high correlations among the same window lengths (0.99, 0.99, and 0.97 

between chunk lengths 15, 23 and 30 SNPs, respectively). These high correlations indicated that 

different phasing algorithms do not influence the LANC estimation by MULTIMIXgeno (Fig. 3-

3). 

 

MULTIMIX_MCMC 

The same sets of haplotypes phased with ShapeIt were used to calculate LANC proportions with 

MULTIMIX. We used the MULTIMIX_MCMC algorithm to phased samples with phased 

reference panel with misfitting probabilities equal to the estimation from MULTIMIX_CEM. 

Local ancestries which were estimated using different set of ancestral haplotypes by ShapeIt 

represented notably high correlation (> 0.99) within different chunk lengths (5, 8, 15, 23 and 30 
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SNPs) (Additional file 3-5: Figure S3-5). Due to high correlations between estimations from 

different ancestral haplotype setting within each window in MULTIMIX, we took the average of 

estimations within each window. Comparisons between different chunk lengths are given in 

Table 3-2. The highest correlations which were observed were between chunk length 15 and 23 

SNP, 23 and 30 SNP (0.91). We used the same general core and tail lengths, which were used by 

LAMP-LD and MULTIMIX_MCMCgeno as well, considering not-offset and offset between 

core and tails to phase haplotypes. Correlations between local genetic ancestries calculated by  

 

Fig. 3-3 LANC estimated by MULTIMIXgeno averaged within each window. Data were phased by a) 

ShapeIt and b) AlphaPhase. 

 

MULTIMIX based on different sets for phasing ancestral haplotype were in the range of 0.84 to 

0.99, 0.68 to 0.99, 0.60 to 0.99, 0.53 to 0.97, and 0.31 to 0.95 for chunk length 5, 8, 25, 23 and 

30 SNPs respectively. The less correlated results emerged when we used cores longer than 300 

SNP. Moreover, with increase in chunk length to 30, the other long length (core length 250 and 

general core and tail length 650) showed the more deviations (Additional file 3-6: Figure S3-6). 

Correlations between not-offset and offset decreased, when the chunk lengths increased to 23 
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and 30 SNPs for the data set phased by longer general core and tail length. For the sake of 

convenience, we took the average of not-offsets for first 3 phased lengths (with core length 100 

SNP) along each chunk. Correlations between different chunk length were ranged from 0.30 to 

0.89 (Table 3-2). 

Comparison the results of different chunk lengths on MULTIMIX, which haplotypes were 

phased by ShapeIt and AlphaPhase, represented 0.95, 0.92, 0.92, and 0.90 correlations between 

chunk lengths 8, 15, 23 and 30 SNPs, respectively (Fig. 3-4). 

 

Table 3-2 Correlations among LANC estimated by different window lengths with LAMP-LD and 

MULTIMIX, phased haplotypes from ShapeIt and AlphaPhase. 

Correlations LAMP-LD 

ShapeIt 

LAMP-LD 

AlphaPhase 

MULTIMIXgeno 

ShapeIt 

MULTIMIXgeno 

AlphaPhase 

MULTIMIX 

ShapeIt 

MULTIMIX 

AlphaPhase 

5SNP & 8SNP 0.94 0.94 0.87 0.87 0.69 0.67 

5SNP & 15SNP 0.90 0.93 0.74 0.73 0.41 0.42 

5SNP & 23SNP 0.90 0.92 0.67 0.68 0.32 0.30 

5SNP & 30SNP 0.91 0.92 0.64 0.67 0.25 0.28 

8SNP & 15SNP 0.96 0.98 0.85 0.84 0.74 0.76 

8SNP & 23SNP 0.97 0.98 0.78 0.80 0.70 0.66 

8SNP & 30SNP 0.97 0.96 0.70 0.75 0.59 0.60 

15SNP & 23SNP 0.99* 0.99* 0.95 0.95 0.91 0.89 

15SNP & 30SNP 0.98* 0.99* 0.90 0.93 0.86 0.82 

23SNP & 30SNP 0.99* 0.99* 0.95 0.95 0.91 0.89 

* indicated correlations equal and greater than 0.99 
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Fig. 3-4 LANC estimated by MULTIMIX_MCMC averaged within each window. Data were phased by 

a) ShapeIt and b) AlphaPhas. 

 

3-3-3 Comparisons among LAMP, LAMP-LD and MULTIMIX 

The results of these comparisons are given in Table 3-3. The highest correlations were observed 

between MULTIMIX_MCMCgeno and MULTIMIX_MCMC with window lengths 15 SNP 

(0.92) and 23 SNP (0.85). Correlation between LAMP-LD and MULTIMIX_MCMCgeno with 

chunk length 23 SNP was 0.85. Correlations between LAMP and the LAMP-LD (0.76), LAMP 

and MULTIMIXgeno with 23 SNP (0.72) were moderate, but it was lower with the other models 

of MULTIMIX_MCMC. A second statistic applied for comparison was the maximum absolute 

difference between LANC estimations (abs_diff) derived from different methods, which were 

minimum between MULTIMIX_MCMC, with 15 and 23SNP chunk lengths (0.054 and 0.066), 

and LAMP and LAMP-LD (0.059), LAMP-LD and MULTIMIX_MCMCgeno with 23 SNP 

(0.068). Comparisons of maximum absolute values with mean of absolute difference were also at 

the minimum level for the mentioned analyses. The highest difference between absolute 

difference and mean of absolute difference was between LAMP and MULTIMIX_MCMC with 

15 and 30 SNP, LAMP-LD and MULTIMIX_MCMC with 15 and 30 SNP. Means of absolute 

difference were at minimum between LAMP-LD and MULTIMIX with 23 and 30 SNP, 

MULTIMIX_MCMC and MULTIMIX_MCMCgeno with 15 SNP, LAMP and LAMP-LD 

which showed 0.019 mean of absolute difference as a measure for least absolute error between 
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estimations of two compared methods. Comparison between the results of LAMP, LAMP-LD, 

MULTIMIX_MCMCgeno and MULTIMIX_MCMC with 23 SNPs are shown in Fig. 3-5. 

 

Fig. 3-5 LANC estimated by LAMP, LAMP-LD, MULTIMIXgeno and MULTIMIX_MCMC with 23 

SNP in terms of window size. Data were phased by AlphaPhase. 

 

3-3-4 Genome wide scale of local genetic ancestries 

Here we calculated local genetic ancestries along the autosomes using LAMP, LAMP-LD, and 

MULTIMIX. Haplotypes were phased by AlphaPhase with core length 100 SNP and general 

core and length 300 SNP. We chose for window length 23 SNPs and number of states 15 to 

calculate local genetic ancestries using LAMP-LD. In addition, we ran MULTIMIX setting 

chunk length 23 SNPs (Fig. 3-6). In Additional file 3-7: Figure S3-7, Δ ancestries without 

standardized with standard deviations are shown. Hypothesis tests for deviation of Δ ancestry 

from normality with Bonferroni correction tests were employed to find selection signatures 

happened after admixture. For this, we calculated genome wide ancestries (local genetic 

ancestries averaged along autosomes) and then we standardized local genetic ancestries by the 

respective means and standard deviations derived from each program separately. Mean genome 

wide RHF ancestry estimates were 0.70, 0.69, 0.66 and 0.67, and standard deviations were 0.042, 

0.027, 0.035 and 0.038 by LAMP, LAMP-LD, MULTIMIX_MCMCgeno and 

MULTIMIX_MCMC respectively (Fig.3-6). 



Negar Khayatzadeh, PhD thesis                                                                                                                 81 

 

The consistency of LANC estimation from different programs was not high, and different 

correlations were observed for different chromosomes. Comparisons between LAMP and 

LAMP-LD showed correlations > 0.80 for chromosomes 1, 17, 27 and 29, correlations of 0.70 to 

0.80 were for chromosomes 2, 6, 11, 13, 16, 21, 23 and 25. Correlations for the rest of 

chromosomes were < 0.60 and for chromosomes 3, 14, 24 and 26 negative correlations were 

identified (Table 3-4). 

Comparison of LAMP and MULTIMIX_MCMCgeno showed correlations > 0.80 for 

chromosomes 12, 20 and 29 and ranges from 0.7 to 0.8 for chromosomes 1, 2, 6, 16, 17, and 27. 

Correlations between Lamp and MULTIMIX_MCMC were at highest point for chromosomes 27 

(0.86), 17 (0.85) and 29 (0.78). Results on LAMP-LD and MULTIMIX_MCMCgeno in most 

cases were higher than 0.7, except for chromosomes 20, 21 and 25. Similarly high correlations 

were observed between LAMP-LD and MULTIMIX_MCMC except for chromosomes 1, 9, 10 

11, 16 19 to 26 and 28, but not as high as between LAMP-LD and MULTIMIX_MCMCgeno. 

Correlations between results on MULTIMIX_MCMCgeno and MULTIMIX_MCMC were high 

along most of the chromosomes except chromosomes 19 (0.50), 24 (0.66) and 28 (0.67) (Table 

3-4). In case of using MULTIMIX_MCMCgeno and MULTIMX_MCMC misfitting 

probabilities were in most cases similar with averaged values of (
0.96 0.04
0.20 0.80

). Lambda also was 

in the range of 0.005 to 0.016. 

Applying the hypothesis tests for deviation from normality with 5000 and 1000 hypotheses, two 

significant signals were detected on chromosomes 13 and 18 based on the results from LAMP 

program. 

The regions on chromosome 13 (46.3-47.3 Mb) and chromosome 18 (18.7-25.9 Mb) surpass the 

threshold lines based on 1000 and 5000 hypotheses tests respectively and were regarded as 

signals of selection [18]. No other significant signals were detected from the result of LAMP-LD 

and MULTIMIX. 
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Table 3-3 Comparison among different algorithm to estimate local genetic ancestries on chromosome 2. 

 
Correlatio

n
a
 

Max 

abs_diff
b
 

Mean 

abs_diff
c
 

LAMP,LAMPLD 0.76 0.059 0.019 

LAMP,MULTIMIX_MCMCgeno,15SNP 0.65 0.087 0.039 

LAMP,MULTIMIX_MCMCgeno,23SNP 0.72 0.084 0.042 

LAMP,MULTIMIX_MCMCgeno,30SNP 0.64 0.095 0.046 

LAMP,MULTIMIX_MCMC,15SNP 0.57 0.122 0.033 

LAMP,MULTIMIX_MCMC,23SNP 0.61 0.088 0.027 

LAMP,MULTIMIX_MCMC,30SNP 0.54 0.098 0.027 

LAMPLD,MULTIMIX_MCMCgeno,15SNP 0.81 0.075 0.025 

LAMPLD,MULTIMIX_MCMCgeno,23SNP 0.85 0.068 0.028 

LAMPLD,MULTIMIX_MCMCgeno,30SNP 0.79 0.069 0.033 

LAMPLD,MULTIMIX_MCMC,15SNP 0.67 0.094 0.024 

LAMPLD,MULTIMIX_MCMC,23SNP 0.72 0.081 0.017 

LAMPLD,MULTIMIX_MCMC,30SNP 0.65 0.086 0.017 

MULTIMIX_MCMCgeno,MULTIMIX_MCMC,15SNP 0.92 0.054 0.017 

MULTIMIX_MCMCgeno,MULTIMIX_MCMC,23SNP 0.85 0.066 0.023 

MULTIMIX_MCMCgeno,MULTIMIX_MCMC,30SNP 0.79 0.077 0.029 

Correlation
a 
is Pearson correlation. Max abs_diff

b
 is absolute difference between maximum values 

estimated from pairs comparing methods. Mean abs_diff
c is

 mean of absolute difference between values 

estimated from pairs comparing methods 
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Fig. 3-6 LANC standardized by its mean and standard deviations along whole 29 autosomes, estimated by 

a) LAMP, b) LAMP-LD, c) MULTIMIXgeno and d) MULTIMIX_MCMC with 23 SNP in terms of 

window size. Data were phased by AlphaPhase (100, 100, not-offset). Green and red lines are thresholds 

based on p-value < 5×10
-5

 (4.06 SDs) and p-value < 1×10
-5

 (4.42 SDs) respectively based on hypothesis 

tests. 
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Table 3-4 Comparison among whole 29 autosomes (should become smaller and more informative) 

Chromosomes C1 C2 C3 C4 C5 C6 

1 0.84 0.74 0.55 0.78 0.62 0.79 

2 0.74 0.71 0.63 0.84 0.76 0.85 

3 -0.45 -0.53 -0.40 0.93 0.93 0.95 

4 0.26 0.32 0.46 0.97 0.85 0.91 

5 0.23 0.56 0.43 0.78 0.84 0.89 

6 0.77 0.72 0.55 0.93 0.81 0.87 

7 0.67 0.48 0.37 0.89 0.74 0.85 

8 0.62 0.56 0.69 0.90 0.76 0.87 

9 0.14 0.16 -0.08 0.74 0.60 0.73 

10 0.36 0.32 0.54 0.87 0.68 0.80 

11 0.72 0.61 0.37 0.75 0.49 0.85 

12 0.66 0.89 0.64 0.79 0.78 0.76 

13 0.71 0.65 0.55 0.88 0.76 0.91 

14 -0.70 -0.72 -0.56 0.94 0.82 0.82 

15 0.54 0.67 0.54 0.87 0.86 0.93 

16 0.76 0.79 0.59 0.88 0.69 0.83 

17 0.86 0.78 0.85 0.89 0.85 0.89 

18 0.63 0.47 0.38 0.80 0.84 0.77 

19 0.68 0.53 0.02 0.86 0.32 0.50 

20 0.24 0.82 0.60 0.50 0.53 0.85 

21 0.79 0.18 0.07 0.30 0.00 0.76 

22 0.13 0.52 0.55 0.72 0.77 0.84 

23 0.71 0.67 0.42 0.90 0.63 0.83 

24 -0.35 -0.61 -0.39 0.71 0.25 0.66 

25 0.79 -0.04 0.12 0.24 0.48 0.78 

26 -0.42 -0.32 -0.50 0.77 0.56 0.72 

27 0.87 0.70 0.86 0.80 0.87 0.87 

28 0.68 0.31 0.47 0.77 0.69 0.67 

29 0.92 0.86 0.78 0.94 0.89 0.87 

Columns 1 to 6 are related to Pearson’s correlations between LAMP and LAMP_LD, LAMP and 

MULTIMIXgeno, LAMP and MULTIMIX_MCMC, LAMP_LD and MULTIMIXgeno, LAMP_LD and 

MULTIMIX_MCMC, MULTIMIXgeno and MULTIMIX_MCMC. 
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3-4 Discussion 

In the present study, we used three different software tools which apply different methods for 

LANC inference using whole-genome SNP genotypes in order to investigate the extent of 

overlap between estimations. Extreme deviations of LANC from average genome wide ancestry 

are interpreted as post-admixture selection signatures in recently admixed populations [9-11]. 

We applied developed analyses panel containing 361 different analyses. We ran LAMP with one 

set of parameters regarding recombination rate and number of generations since admixture. 

Window size is optimized internally with this software. LAMP-LD and 

MULTIMIX_MCMCgeno were applied to phased ancestral haplotypes and unphased samples 

genotypes whereas MULTIMIX_MCMC was run on both phased ancestral and admixed 

samples. Results from different methods were very comparable at the global level (> 0.99). 

However, there was considerable difference at local estimates [38, 39]. 

Correlations near to unity were observed between estimations when genotypes were phased 

using different length of windows by ShapeIt. Results of phasing with AlphaPhase had high 

correlations when data were phased by core lengths 100 to 150 SNPs and total core tail lengths 

of 300 to 500 SNPs. They were also highly correlated with ShapeIt results. 

Using MULTIMIX for LANC inference with haplotypes phased by longer cores gave deviations 

of phasing results and caused increase in λ, a quantity required for making covariance matrix 

invertible. Increasing λ reduces fitting the model and smooths errors [22]. Therefore the results 

were less correlated and we decided not to consider the longer cores further. 

Results of LAMP-LD showed consistency when window lengths were 15, 23 and 30 SNPs. 

Defining small windows with 5 and 8 SNPs produced noise in estimations. Since Swiss 

Fleckvieh is a crossbred population with small number of generations, very short haplotypes 

cannot be expected. 

Results of both MULTIMIX_MCMCgeno and MULTIMIX_MCMC showed high difference 

between chunk lengths. MULTIMIX estimates LANC at window level based on the fact that 

recently admixed individuals have long stretches of loci with same shared ancestry. Therefore 
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the results are different and very susceptible to changes in chunk length. Defining short chunk 

length (5 and 8 SNP) can cause noise as observed for LAMP-LD. 

Estimates of local ancestries using LAMP-LD and MULTIMIX were not highly correlated with 

LAMP estimations (Table 3-3). The most comparable analyses were MULTIMIX_MCMCgeno 

and MULTIMIX_MCMC with 15 SNP (0.92) and 23 SNP (0.85) as well as between LAMP-LD 

and MULTIMIX_MCMCgeno with 15 SNP (0.85). In general the correlations of 

MULTIMIX_MCMCgeno with MULTIMIX_MCMC and LAMP-LD with 

MULTIMIX_MCMCgeno results, they were not high, implying big deviations in LANC 

patterns. Unfortunately, computation under the coalescent model with recombination is difficult 

to find number of ancestral recombination graphs compatible with admixed samples. The other 

key limitation of these methods is that they assume uniformly exponential distribution of 

ancestral haplotypes along the genome of admixed individuals, which is a reasonable assumption 

for low rates of admixture. However, the admixture tracts are stochastically larger than expected 

under exponential distribution in the recent admixed populations [19, 40-41]. The advantage of 

LAMP and PCAdmix is that they do not require assumption of parametric genetic model 

(ancestral recombination graphs). Moreover the benefit of LAMP is that it chooses for the 

optimal window sizes internally based on assumed admixture parameters (admixture intensity 

and age of admixture) [19]. 

Finally we used multiple hypothesis tests for normality of local ancestry deviations, assuming 

1000 and 5000 independent segments to tag the entire genome. In our previous study [18], 

significant signals were detected for local genetic ancestries estimated with LAMP on 

chromosome 13 (46.3-47.3 Mb) and on chromosome 18 (18.7-25.9 Mb), where a similar signal 

but wider were found on chromosome 18 (9.06-24.6 Mb) based on extend haplotype 

homozygosity approach [18]. These signals were not confirmed by local ancestry deviation with 

LAMP-LD and MULTIMIX and no other significant signals were found with those two 

approaches in the current study. 

 

 

 



Negar Khayatzadeh, PhD thesis                                                                                                                 87 

 

3-5 Conclusions 

This study considered different methodologies to estimate local genetic ancestries as indicator of 

recent selection signature in Swiss Fleckvieh composite breed. The results of a recent study on 

the same data set [18] from clustering method applied by LAMP showed signals on 

chromosomes 13 and 18 which were some similar signals by EHH methodology. Using 

alternative methodology with phased haplotypes using coalescent model in LAMP-LD and 

MULTIMIX could not capture these or any other signals across the autosome. The results 

suggest that care should be taken when interpreting selection signature based on local ancestry 

detected by a single method and confirmation with alternative approaches is advisable. 
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Additional file 3-1: Figure S3-1. 

LANC proportions were estimated by LAMP-LD using different window size (5, 8, 15, 23 and 30 SNP) 

and 10 and 15 number of states. Ancestral haplotypes were phased by ShapeIt with different window 

lengths (0.5, 1, 1.5 and 2 Mb). 
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Additional file 3-2: Figure S3-2. 

LANC proportions were estimated by LAMP-LD using different window size (5, 8, 15, 23 and 30 SNP) 

and 10 and 15 number of states. Ancestral haplotypes were phased by AlphaPhase with different general 

core and tail lengths. 
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Additional file 3-3: Figure S3-3. 

LANC proportions were estimated by MULTIMIXgeno using different window size (5, 8, 15, 23 and 30 

SNP). Ancestral haplotypes were phased by ShapeIt with different window lengths (0.5, 1, 1.5 and 2 Mb). 
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Additional file 3-4: Figure S3-4. 

LANC proportions were estimated by MULTIMIXgeno using different window size (5, 8, 15, 23 and 30 

SNP). Ancestral haplotypes were phased by AlphaPhase with different general core and tail lengths. 
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Additional file 3-5: Figure S3-5. 

LANC proportions were estimated by MULTIMIX_MCMC using different window size (5, 8, 15, 23 and 

30 SNP). Ancestral haplotypes were phased by ShapeIt with different window lengths (0.5, 1, 1.5 and 2 

Mb). 
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Additional file 3-6: Figure S3-6. 

LANC proportions were estimated by MULTIMIX_MCMC using different window size (5, 8, 15, 23 and 

30 SNP). Ancestral haplotypes were phased by AlphaPhase with different general core and tail lengths. 
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Additional File 3-7: Figure S3-7. 

Δ ancestries along whole 29 autosomes, estimated by a) LAMP, b) LAMP-LD, c) MULTIMIXgeno and 

d) MULTIMIX_MCMC with 23 SNP in terms of window size. Data were phased by AlphaPhase (100, 

100, not-offset). Green and red lines are thresholds based on p-value < 5×10
-5

 and p-value < 1×10
-5

 

respectively based on hypothesis tests. 
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Summary 

The aim of this study was to estimate the non-additive genetic effects of the dominance 

component of heterosis as well as epistatic loss on semen traits in admixed Swiss Fleckvieh, a 

composite of Simmental and Red Holstein Friesian cattle. Heterosis is the additional gain in 

productivity or fitness of crossbred progeny over the mid purebred parental populations. Intra-

locus gene interaction usually has a positive effect while epistatic loss generally reduces 

productivity or fitness due to lack of evolutionarily established interactions of genes from 

different breeds. Genotypic data on 38,205 SNP of 818 admixed, as well as 148 Red Holstein 

Friesian and 213 Simmental bulls as the parental breeds were used to predict breed origin of 

alleles. The genome wide locus-specific breed ancestries of individuals were used to calculate 

effects of breed difference as well as the dominance component of heterosis while proxies for 

two definitions of epistatic loss were derived from 100,000 random pairs of loci. The average 

Holstein Friesian ancestry in admixed bulls was estimated 0.82. Results of fitting different linear 

mixed models showed including the dominance component of heterosis considerably improved 

the model adequacy for three of the four traits. Inclusion of epistatic loss increased the accuracy 

of the models only for our new definition of the epistatic effect for two traits while the other 

definition was so highly correlated with the dominance component that statistical separation was 

impossible. 

 

Keywords breed composition, breed heterosis, epistatic loss, semen traits, Swiss Fleckvieh 
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4-1 | INTRODUCTION 

Crossbreeding is widely used in animal and plant breeding to optimize average genetic merit of 

performance traits by introducing the favorable parental genes, decreasing inbreeding depression 

and maintaining the gene interactions that cause heterosis (VanRaden & Sanders, 2003). 

Systematic crossbreeding programs in dairy cattle have improved functional traits, which 

deteriorate with high selection pressure in pure breeding, inbreeding depression and antagonistic 

genetic correlations between functional and production traits (Ferencakovic et al., 2017; Freyer 

et al., 2008; Rauw et al., 1998; Sorensen et al., 2008). 

Heterosis is the opposite of inbreeding depression and results from an increase in heterozygosity. 

It measures the degree that offspring exceed the average of the performance of their parental 

populations (Falconer & Mackay, 1996; Shull, 1948). The extent of heterosis depends on the 

genetic distance between the parental populations, the number of involved parental populations 

and the type of crossbreeding program. The genetic mechanisms underlying heterosis are 

favorable non-additive gene effect due to dominance and over dominance which is attributed to 

advantageous combinations of alleles at heterozygous loci and epistasis as a result of interaction 

among loci (Amuzu-Aweh et al., 2013; Lynch & Walsh, 1998). 

The generally positive intra-locus component of heterosis is based on the relation 𝑑 × 𝑦2, d 

being the dominance effect and y the allele frequency difference between parental populations 

(Falconer & Mackay, 1996). Unfavorable gene effect due to the breakdown of the beneficiary 

associated parental gene complex, which accumulated within breeds through long-term selection 

in purebreds, is called “epistatic loss” (Koch et al., 1985). Kinghorn (1983) established the term 

epistatic loss (ex) as the probability that two non-allelic genes in diploid individuals (derived 

from either one or both parents) chosen at random originate from different breeds. 

The amount of general heterosis for production traits in dairy cattle was reported in the range of 

3 to 4 percent, while higher levels of heterosis were observed for functional and reproductive 

traits (Freyer et al., 2008; Kargo et al., 2012; Sorensen et al., 2008; VanRaden & Sanders, 2003). 

The objective of the present study was to develop animal mixed models with breed ancestry 

proportion, the dominance component of heterosis and epistatic loss effects as fixed covariates 

based on genome wide data on semen traits of bulls in a data set including admixed Swiss 
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Fleckvieh as well as the two pure parental breeds Simmental and Red Holstein Friesian. We 

compared different genetic models to find the most appropriate mixed model for semen traits in 

admixed Swiss Fleckvieh. 

 

4-2 | MATERIALS AND METHODS 

4-2-1 | Phenotypic data, herd and management description 

Swiss Fleckvieh is a composite cattle breed, which was introduced over the last 40 years in 

Switzerland with the aim of combining the strengths of both originating breeds, Simmental (SI) 

and Red Holstein Frisian (RHF). Swiss Fleckvieh breeding program relies on high milk yield 

derived from RHF ancestry as well as dual-purpose characters, functional and fitness traits of the 

SI breed. 

Animals with a pedigree-based Red Holstein blood share of 0.125-0.875 are registered as Swiss 

Fleckvieh. Animals with < 0.125 RHF are considered Simmental and those with > 0.875 RHF 

are categorized as Red Holstein Frisian in Swiss herd book. In the current study, we did not 

follow the formal definition of Swiss Fleckvieh and considered all of the bulls with a range of 

0.01-0.99 RHF blood proportion as admixed animals. 

Phenotypic records on semen production and semen quality traits were made available by 

Swissgenetics from Mülligen artificial insemination (AI) station in Switzerland. Bulls are 

generally kept in tie-stalls. Semen is collected twice a week, using a teaser bull to prepare bulls 

and then semen is collected with a dummy and artificial vagina. In this AI station, ejaculates are 

collected 1 or 2 times per day for the same bull. Records from 2000 to 2015 were considered. 

The routinely recorded traits for each ejaculate were volume (ml), concentration (10
9
/ml) and 

percentage of live sperm. Total number of spermatozoa for each ejaculate was calculated by 

multiplying volume with concentration. Percentage of live sperm is determined by visual 

assessment. In total 68,475 records were available from 1298 bulls (171 RHF, 226 SI and 901 

admixed Swiss Fleckvieh bulls) born between 1990 and 2014. Bulls with at least 10 records were 

kept for analysis. Ejaculates volumes in the range of 1-25 ml and concentrations in the range of 

0.1-3×10
9
/ml were kept for analysis. Ejaculates with interval less than three days since recent 
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ejaculation were removed. Since number of spermatozoa were not normally distributed, the 

following transformation was performed (Box & Cox, 1964). 

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑟𝑚𝑎𝑡𝑜𝑧𝑜𝑎 = (𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑟𝑚𝑎𝑡𝑜𝑧𝑜𝑎0.3 − 1)/0.3 

Observations on transformed number of spermatozoa and percentage of live sperm beyond the 

range mean ± 3 standard deviations were discarded. Number of records, means and standard 

deviations for semen traits are presented in Table 4-1. 

 

TABLE 4-1 Overall phenotypic mean (± standard deviation), number of bulls and number of records on 

semen traits. 

Semen traits Mean (±standard deviation) No. of bulls No. of records 

Ejaculate volume (ml) 5.56±2.50 1177 42442 

Ejaculate concentration (10
9
/ml) 1.39±0.46 1176 42355 

Number of spermatozoa(transformed)  2.62±0.94 1176 42270 

Live spermatozoa (%) 86.28±3.38 1169 41749 

 

4-2-2 | Genotype data 

Bulls were genotyped using Illumina
®
 Bovine SNP 50k, 150k and 777k BeadChip (1420 bulls). 

The genotypic data consisted of a subset of 44,999 SNP for 1411 bulls. 

The standard quality control for genotypic data was performed with PLINK 1.90 (Chang et al., 

2015; Purcell et al., 2007) to remove monomorphic SNP with call rate < 0.95 and those SNP 

deviated from Hardy Weinberg equilibrium with P-value < 10
-5

 from data set; 38,205 SNP for 

1179 (148 RHF, 213 SI and 818 admixed) bulls were used for the analyses. To estimate the 

locus-specific ancestry at each SNP position, we used LAMP 2.5 (Sankararaman et al., 2008) in 

LAMP ancestry mode with similar configurations applied in our previous study (Khayatzadeh et 

al., 2016). 

 

4-2-3 | Additive genetic (breed), heterosis effect and epistatic loss effects 

Breed composition for pure RHF bulls was coded as 1 and for pure SI bulls was coded as 0. 

Breed composition for admixed bulls was computed by taking the average RHF proportions for 

all SNPs across the 29 autosomes based on the LAMP results. For a single individual and a 
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single locus, values could be 0, 0.5 and 1. The intra-locus (“dominance”) component of heterosis 

as a fixed covariate was also calculated based on LAMP results, and was set to 1 where both 

alleles at each single SNP derived from different ancestral populations and 0 where both alleles 

came from the same breed origin. Values were averaged across the autosomes for admixed bulls 

while this quantity was set to 0 for purebred bulls. 

Epistatic loss was modelled following the definition of Kinghorn (1983) where the epistatic 

effect is proportional to the probability that two non-allelic genes randomly chosen in the diploid 

individual are of different breed origin. We randomly chose 100,000 times one allele each from 

two different SNP along the autosome, derived from either one or both parents, for each admixed 

bull. Epistatic loss was set to 0 when the two non-allelic genes had the same ancestral origin and 

were set to 1 when they came from different ancestral populations. 

In a second definition, to our knowledge not previously applied, we randomly sampled 100,000 

times two different SNP for every admixed bull. Epistatic loss was set to 1 only when both 

alleles of one SNP derived from one breed and both alleles of the second SNP derived from the 

other breed following the local ancestry algorithm. This setting reflects the extreme situation of 

losing breed specific epistatic combinations. In the case of Kinghorn’s definition described 

above, at least one favorable combination of non-allelic genes derived from the same population 

is possible. 

 

4-2-4 | Statistical analyses 

The fixed effects considered were age of bull (< 16 months, 16-72 months and > 72 months), 

assistant (semen collector), contemporary group (year-season of collection) and interval days 

between two consecutive ejaculates. The elapse between two consecutive ejaculations was also 

categorized into three different levels (3-6 days, 7-9 days and > 9 days interval). Season effect 

was defined as categorical variable (February to May, June to September and October to 

January). The four models considering different combinations of genetic effects were: 

(1) 𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  𝜇 + 𝛼𝑖 + 𝑎𝑔𝑒𝑗 + 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑔𝑟𝑜𝑢𝑝𝑘 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 + 𝑎𝑠𝑠𝑖𝑡𝑎𝑛𝑡𝑚 +  𝜀𝑖𝑗𝑘𝑙𝑚𝑛 

(2) 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 =  𝜇 + 𝛼𝑖 + 𝑎𝑔𝑒𝑗 + 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑔𝑟𝑜𝑢𝑝𝑘 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 + 𝑎𝑠𝑠𝑖𝑡𝑎𝑛𝑡𝑚 + 𝑏𝑟𝑒𝑒𝑑𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑛 +

 𝜀𝑖𝑗𝑘𝑙𝑚𝑛𝑜 
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(3) 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 =  𝜇 + 𝛼𝑖 + 𝑎𝑔𝑒𝑗 + 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑔𝑟𝑜𝑢𝑝𝑘 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 + 𝑎𝑠𝑠𝑖𝑡𝑎𝑛𝑡𝑚 + 𝑏𝑟𝑒𝑒𝑑𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑛 +

𝑑𝑜𝑚ℎ𝑒𝑡𝑜 +  𝜀𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 

(4a) 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞 =  𝜇 + 𝛼𝑖 + 𝑎𝑔𝑒𝑗 + 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑔𝑟𝑜𝑢𝑝𝑘 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 + 𝑎𝑠𝑠𝑖𝑡𝑎𝑛𝑡𝑚 + 𝑏𝑟𝑒𝑒𝑑𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑛 +

𝑑𝑜𝑚ℎ𝑒𝑡𝑜 + 𝑒𝑝𝑠𝑡𝑙𝑜𝑠𝑠1𝑝 +  𝜀𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞 

(4b) 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞 =  𝜇 + 𝛼𝑖 + 𝑎𝑔𝑒𝑗 + 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑔𝑟𝑜𝑢𝑝𝑘 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 + 𝑎𝑠𝑠𝑖𝑡𝑎𝑛𝑡𝑚 + 𝑏𝑟𝑒𝑒𝑑𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑛 +

𝑑𝑜𝑚ℎ𝑒𝑡𝑜  +  𝑒𝑝𝑠𝑡𝑙𝑜𝑠𝑠2𝑝 +  𝜀𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞 

where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛(𝑜𝑝𝑞) denotes observations for each bull in a population containing both purebred 

ancestral and admixed bulls, 𝜇 is the overall mean, 𝛼𝑖 is the random permanent environmental 

effect of each bull, 𝑎𝑔𝑒𝑗, 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑔𝑟𝑜𝑢𝑝𝑘, 𝑒𝑙𝑎𝑝𝑠𝑒𝑙, 𝑎𝑠𝑠𝑖𝑡𝑎𝑛𝑡𝑚 are the fixed effects related to 

age of bulls, year season (contemporary groups), ejaculate intervals and assistant. 

𝑏𝑟𝑒𝑒𝑑𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑛, 𝑑𝑜𝑚ℎ𝑒𝑡𝑜, 𝑒𝑝𝑠𝑡𝑙𝑜𝑠𝑠1𝑝 and 𝑒𝑝𝑠𝑡𝑙𝑜𝑠𝑠2𝑝are the regression coefficients for breed 

ancestry proportion (proportion of RHF), dominance component of heterosis, epistatic loss 

(Kinghorn, 1983), epistatic loss (our definition) and 𝜀𝑖𝑗𝑘𝑙𝑚𝑛(𝑜𝑝𝑞) is the random error associated 

with each observation in animal models. The analyses were performed using proc MIXED and 

maximum likelihood method in SAS (Garoia et al., 2007), following methodology applied by 

(Ferencakovic et al., 2017). 

The goodness of fit of each of the genetic models (including ancestral breed proportion, breed 

heterosis and different definitions of epistatic loss) was tested by likelihood ratio test (-

2logliklihood) which is asymptotically Chi-square. The degree of freedom is associated with 

ratio test is equal to the difference between number of parameters in two compared models 

(Wilks, 1938). Moreover, a second-order bias correction of Akaike information criterion is 

reported, which is corrected based on samples size (Anderson, 2008): 

𝐴𝐼𝐶𝑐 =  −2 log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 2𝑘(𝑘 + 1)/(𝑛 − 𝑘 − 1) 

where k is number of estimated parameters and n is the number of observations. The model with 

the smallest AICc value is usually the preferred model (Akaike, 1974).The difference of AICc of 

different models was calculated using (Burnham & Anderson, 2002) model selection. ΔAIC 

smaller than 2 indicates no substantial differences between models. There is less support for 
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models with ΔAIC between 3 and 7, while ΔAIC greater than 7 indicate substantially less fitting 

models. 

 

4-3 | RESULTS 

4-3-1 | Genomic breed proportions and general statistics 

In this study we applied genomic data to predict the ancestral breed proportions at both global 

and local (SNP) level in admixed Swiss Fleckvieh bulls. To specify the global ancestry 

proportions contributed from each ancestral population in admixed Swiss Fleckvieh bulls, 

unsupervised clustering analysis was performed by ADMIXTURE (Alexander et al., 2009). The 

average ancestry proportions were estimated 0.82 RHF and 0.18 SI (0.16 SD) which were highly 

correlated (0.97) with pedigree ancestry proportions with average 0.85 RHF and 0.15 SI, 

respectively. 

Descriptive statistics including phenotypic means, standard deviation, number of bulls and 

number of observations for the studied traits are summarized in Table 4-1. 

4-3-2 | Breed difference 

Differences between both RHF and SI ancestral populations were estimated for semen traits. 

Comparison between purebred bulls using univariate animal models revealed that there were 

significant differences for volume and transformed number of spermatozoa (p < 0.01) in favor of 

SI ancestry, and for percentage of live sperm (p < 0.05) in favor of RHF. No significant 

difference between purebreds was detected for concentration. Estimates of mean difference 

between parental purebreds are presented in Table 4-2. 

TABLE 4-2 F-value and means estimates for breed ancestry proportions between RHF and SI purebred 

bulls for semen traits. 

Semen traits F-value Estimates LS means ± standard errors  

RHF                        SI  

Volume (ml) 9.63 
**

 -0.63 (±0.20) 5.62±0.18             6.23±0.14 

Concentration (10
9
/ml)  3.55 

n.s
 -0.07 (±0.04) 1.38±0.03             1.45 ±0.03 

No. of spermatozoa (transformed) 8.39 
**

 -0.20 (±0.07) 2.70±0.07             2.90±0.05 

Live spermatozoa (%) 4.90 
*
 0.68 (±0.31) 85.79±0.27           85.11±0.22 

LS means denotes the least square means 
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4-3-3 | Fixed effects 

The analysis of variance of model 1 (base model) showed significant effects of bull age, 

contemporary group, time elapsed between ejaculations and semen collector on all evaluated 

traits (Table 4-4). 

4-3-4 | Models comparisons 

Breed ancestry proportions, dominance component of heterosis, epistatic loss1 (Kinghorn, 1980, 

1983) and epistatic loss2 were added as fixed genetic covariates in animal models for all 

evaluated semen traits in order to find the importance of the inclusion of these effects in the 

model. Table 4-3 shows likelihood ratio test results, AICc and ΔAIC between models with 

different fitted covariates. 

The base model (model 1) included fixed environmental effects and the random effect of bull. 

Breed ancestry proportion effect was included in model 2 by calculating the average genome-

wide RHF ancestry proportions estimated by LAMP along autosomes for each admixed bull. In 

model 3, the effect of the dominance component of heterosis was considered. In the last group of 

models, epistatic loss1 (model 4a) or epistatic loss2 (model 4b) were included as well. 

Likelihood ratio results indicated considerably high significant differences between models 2 and 

1 for percentage of live sperm (p < 0.0001). Comparatively less improvement in model accuracy 

was observed for volume (p < 0.01) and transformed number of spermatozoa (p < 0.05) by 

involving breed proportion effect in the model. There was no improvement for concentration. 

Comparison of models 3 and 2 for volume, transformed number of spermatozoa and percentage 

of live sperm represented significant improvement in model accuracy (p < 0.0001), while 

concentration was not significantly affected by the dominance component of heterosis. 

Inclusion of the effect of epistatic loss 1, model 4a (Kinghorn, 1983) yielded no substantial 

increase in the accuracy for any of the traits considered. 

For model 4b, we used our definition for epistatic loss. Including epistatic loss 2 improved 

considerably the model accuracy for volume (p < 0.0001). Significant improvement was also 
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observed for transformed number of spermatozoa (p < 0.05), while no improvement was detected 

for percentage of live sperm and concentration. 

With AICc model comparison, model 4b including epistatic loss 2 clearly outperformed all other 

models for volume. The lowest ΔAIC was 11.4, for model 3. For concentration, models 

including genetic effects related to crossbreeding did not improve the model fit, compared to the 

base model 1. Model 4b was identified as the best fitting for transformed number of 

spermatozoa. The model including breed proportion and heterosis was still reasonable (ΔAIC = 

3.8), better than model 4a (ΔAIC = 5.5). Models with breed proportion only (model 2) or the 

base model (model 1) fitted substantially worse (ΔAIC >13). For percentage of live sperm, 

models with the dominance component of heterosis (model 3) and epistatic effects (models 4a 

and 4b) showed all similar fit, substantially improved over the base model and the model 

including breed proportion only (ΔAIC > 13). 
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TABLE 4-3 Model comparisons based on likelihood ratio tests and AICc for by including different 

covariates in the model. 

Traits Models Log likelihood L.Ratio AICc ΔAIC 

Volume Model 1 -88279.31  176692.80 38.20 

(ml) Model 2  -88275.35 7.92
**

 176686.90 32.30 

 Model 3  -88263.96 22.78
****

 176666.20 11.40 

      

 Model 4a -88263.96 0.0028 
n.s

 176668.20 13.60 

 Model 4b -88257.19 13.55
****

 176654.60 0 
Concentration Model 1 -17096.00  34325.90 0.20 
(10

9
/ml) Model 2  -17095.00 2.22

 n.s
 34325.70 0 

 Model 3  -17094.74 0.01
 n.s

 34327.70 2.00 
      
 Model 4a -17094.53 0.41

 n.s
 34329.30 3.60 

 Model 4b -17094.61 0.26
 n.s

 34329.40 3.70 
No. of spermatozoa Model 1 -48862.53   97859.30 18.10 
(transformed) Model 2  -48859.38 6.30

*
  97855.00 13.80 

 Model 3  -48853.38 12.00
****

  97845.00 3.80 
      
 Model 4a -48853.25 0.26

 n.s
  97846.70 5.50 

 Model 4b -48850.48 5.81
*
 97841.20 0 

Live sperm Model 1 -98750.00  197634.90 30.60 

(%) Model 2  -98741.93 16.85
****

 197620.10 15.80 

 Model 3  -98733.05 17.76
****

 197604.30  0 

      

 Model 4a -98732.88 0.33
 n.s

  197606.00 1.70 

 Model 4b -98732.96 0.18
 n.s

 197606.20 1.90 

- L.Ratio is likelihood ratio values  

- AICc is the Akaike information criteria (second order bias correction)and ΔAIC is the difference 

of the model with minimum AICc with the other models 

- **** 
p < 0.0001, 

*** 
p < 0.001,

** 
p < 0.01, 

* 
p <

 
0.05, 

n.s
 p > 0.1 

 

4-3-5 | Estimates of genetic effects 

Mean estimates (± standard error) for all models including different fixed genetic effects are 

represented in Table 4-4. 

Based on model 2, breed ancestry proportion were significant for volume, transformed number 

of spermatozoa and percentage of live sperm and regression coefficients for breed ancestry 

proportions were estimated -0.40 (0.14), -0.11 (0.04) and 0.76 (0.18), similar to breed difference 

estimates using purebred animals only (see Table 4-2). 
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Including the dominance component of heterosis in the model was highly significant for volume, 

number of spermatozoa and percentage of live sperm. It increased the volume 1.24 (±0.26) ml, 

transformed number of spermatozoa 0.28 (±0.08) and live spermatozoa 1.40 (±0.33) %. 

Considering epistatic loss 1 in the model did not significantly improve the model and the 

estimates for these effects were not significant for any of the traits. This effect in the model was 

confounded with dominance component of heterosis. Epistatic loss 2 in the model was estimated 

significant for volume and transformed number of spermatozoa. Regression coefficients of 

epistatic loss 2 for these two traits were -7.6 (±2.05) and -1.57 (0.66), respectively which 

indicated 7.6 ml less volume and 1.58 less transformed number of spermatozoa are expected in 

admixed population, due to epistatic loss. 
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TABLE 4-4 Analysis of variance and mean estimates for breed ancestry proportion, dominance 

component of heterosis, and epistatic loss for (a) volume, (b) concentration, (c) no. of spermatozoa and 

(d) percentage of live spermatozoa 

(a) Volume (ml) 

Models Fixed effects Df F-value Estimates Standard error 

Model 1 Age 2 1406.81
****

   

 Contemporary group 47 25.06
****

   

 Elapse 2 95.19
****

   

 Assistant 13 4.41
****

   

Model 2 Breed proportion 1 7.97
**

 -0.40 0.14 

Model 3 Breed proportion 1 14.37
****

 -0.55 0.14 

 Dominance 1 22.95
****

 1.24 0.26 

      

      

      

Model 4a Breed proportion 1 13.45
***

 -0.55 0.15 

 Dominance 1 1.48
 n.s

 1.30 1.06 

 Epistatic loss (1) 1 0.00
 n.s

 -0.07 1.28 

Model 4b Breed proportion 1 15.73
****

 -0.57 0.14 

 Dominance 1 36.44
****

 2.03 0.34 

 Epistatic loss (2) 1 13.55
***

 -7.56 2.05 

 

(b) Concentration (10
9
/ml) 

Models Fixed effects df F-value Estimates Standard error 

Model 1 Age 2 204.11
****

   

 Contemporary group 47 7.88
****

   

 Elapse 2 14.52
****

   

 Assistant 13 1.83
*
   

Model 2 Breed proportion 1 2.22
 n.s

 -0.04 0.03 

Model 3 Breed proportion 1 2.18
 n.s

 -0.04 0.03 

 Dominance 1 0.01
 n.s

 0.00 0.05 

      

      

      

Model 4a Breed proportion 1 2.51
 n.s

 -0.04 0.03 

 Dominance 1 0.36
 n.s

 -0.11 0.19 

 Epistatic loss (1) 1 0.41
 n.s

 0.15 0.23 

Model 4b Breed proportion 1 2.10
 n.s

 -0.04 0.03 

 Dominance 1 0.07
 n.s

 -0.02 0.06 

 Epistatic loss (2) 1 0.26
 n.s

 0.19 0.37 
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(c) Transformed no. of spermatozoa 

Models Fixed effects Df F-value Estimates Standard error 

Model 1 Age 2 1802.51
****

   

 Contemporary group 47 14.96
****

   

 Elapse 2 20.11
****

   

 Assistant 13 3.92
****

   

Model 2 Breed proportion 1 6.31
*
 -0.11 0.04 

Model 3 Breed proportion 1 10.21
**

 -0.15 0.05 

 Dominance 1 12.01
***

 0.28 0.08 

      

      

      

Model 4a Breed proportion 1 10.39
**

 -0.15 0.05 

 Dominance 1 0.12
 n.s

 0.12 0.34 

 Epistatic loss (1) 1 0.26
 n.s

 0.21 0.41 

Model 4b Breed proportion 1 10.95
***

 -0.15 0.04 

 Dominance 1 17.68
****

 0.45 0.11 

 Epistatic loss (2) 1 5.81
*
 -1.57 0.65 

 

(d) Percentage of live sperm 

Models Fixed effects df F-value Estimates Standard error 

Model 1 Age 2 626.10
****

   

 Contemporary group 47 14.13
****

   

 Elapse 2 136.70
****

   

 Assistant 13 1.88
*
   

Model 2 Breed proportion 1 16.96
****

 0.76 0.18 

Model 3 Breed proportion 1 10.31
**

 0.60 0.19 

 Dominance 1 17.91
****

 1.40 0.33 

      

      

      

Model 4a Breed proportion 1 10.61
**

 0.62 0.19 

 Dominance 1 2.53
 n.s

 2.16 1.36 

 Epistatic loss (1) 1 0.33
 n.s

 -0.95 1.64 

Model 4a Breed proportion 1 10.16
**

 0.59 0.19 

 Dominance 1 12.43
***

 1.52 0.43 

 Epistatic loss (2) 1 0.18
 n.s

 -1.12 2.63 

- **** 
p < 0.0001, 

*** 
p < 0.001,

** 
p < 0.01, 

* 
p <

 
0.05, 

n.s
 p > 0.1  

- df is degree of freedom 

- Dominance represents the dominance component of heterosis 
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4-3-6 Relationships of levels of heterosis and different definitions of epistatic loss 

To evaluate the potential confounding of genetic effects related to crossbred performance, we 

calculated the correlations between the dominance components of heterosis and the two 

definitions of epistatic loss. The correlations between breed heterosis effects and epistatic loss 1 

and epistatic loss 2 were estimated 0.97 and 0.64, respectively. The relationship is graphically 

represented in Figure 4-1). 

 

Figure 4-1 Scatter plot and Pearson’s correlation of epistatic loss 1 and 2 with breed heterosis 

 

4-4 | DISCUSSION 

In the present study, contributions of non-additive genetic components of heterosis were tested 

for semen traits in admixed Swiss Fleckvieh bulls with different mixed models. We used 

genomic information to define these effects in the model. For this, we worked exclusively with 

breed ancestry information of SNPs, not the actual genotypes. This means that a SNP may be 

homozygous in state but “breed-heterozygous” in our definition because the two alleles were 

derived from different breeds, and vice versa. Including this definition of the dominance 

component of heterosis improved significantly the model accuracy for volume, number of 

spermatozoa and percentage of live sperm with very clear positive effects. The two definitions of 

epistatic effects yielded considerably different results. Applying the definition of Kinghorn 
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(1983) yielded non-significant effects. Considering the proportion of pairs of loci with one locus 

having both alleles derived from one breed and the other with both alleles with ancestry origin 

from the opposite parental population, significant negative effects were found for volume and 

number of spermatozoa. 

Please note that we did not include Dickerson’s (1973) classical definition of epistatic effects, 

which he called recombination loss, in this study. Deriving the corresponding values requires 

knowledge of the parental phase at each locus and across chromosomes, which we could not 

derive with accuracy. 

Some experimental studies involving crossbred beef cattle (Dillard et al., 1980) and dairy cattle 

(Robison et al., 1981) which exclusively used purebred sires concluded that epistatic effects are 

of little or no importance. Moreover, exclusive use of purebred sires set up a relationship 

between the coefficient of dominance and the coefficient of epistatic loss. 

We estimated the correlations of the dominance component of heterosis with the two definitions 

of epistatic loss. It was extremely high (0.97) for epistatic loss based on Kinghorn’s definition 

(Figure 4-1), not allowing statistical separation. Confounding of these effects was also reported 

by (Fries et al., 2002). The correlation was lower (0.64), but still high, with our new parameter of 

epistatic loss. 

The consequence of these dependencies is that much of the variation in epistatic effects is 

explained by the dominance component of a regression model fitting dominance alone. Thus 

having accounted for epistatic effect, it could equally be concluded that dominance or 

heterozygosity effects are of little or no importance (Kinghorn, 1983). We are not aware of any 

recent studies considering genomic predictors of genome-wide epistatic loss in crossbred 

livestock populations. 

The concept of epistasis is important for understanding the genetic architecture of traits. Recent 

studies applying genetic models (e.g., Maki-Tanila & Hill, 2014) indicate only small 

contributions of epistatic effects to the genetic variance of traits in outbred populations. Our 

study did not estimate non-additive variances but estimated effects of components of heterosis in 

a crossbred population by regression. While epistatic loss was significant for two of the four 

traits investigated, it is hard to tell how this transforms into non-additive genetic variance. 
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4-5 | CONCLUSION 

Crossbred populations provide the unique opportunity to study the effects of components of 

heterosis on traits potentially influenced by these effects. In this study, we used genomic 

information to replace the traditional probabilistic interpretation of non-additive genetic effects 

of heterosis in a crossbred population. For ejaculate volume, transformed number of spermatozoa 

and percentage of live sperm in admixed Swiss Fleckvieh bulls, estimates of the dominance 

component of heterosis were 1.24 ml, 0.28 and 1.40 %. We therefore expect more volume, 

number of spermatozoa and percentage of live sperm compared with bulls of the parental breeds. 

Epistatic effects, applying a new genome-wide definition, were significant and negative for 

volume (-7.56 ml) and transformed number of spermatozoa (-1.57). Separation of the dominance 

component of heterosis and genome-wide indicators of epistatic effects is difficult. Significant 

effects were found for a definition of proportion of pairs of loci derived from the opposite 

parental populations.  
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Summary 

 

Heterosis is the superiority of the crossbred offspring compared with the average of parental 

population due to favorable non-allelic gene interactions. Ignoring epistatic interactions, the 

extent of heterosis depends on degree of dominance and its direction, difference in allele 

frequencies of contributing loci. In this study we analyzed the possible association of heterosis 

with a sperm quality trait (percentage of live sperm) in bulls of admixed Swiss Fleckvieh, a 

composite of Simmental and Holstein Friesian, applying genome-wide mapping with genetic 

markers (SNP). Total of 41,749 phenotypic records of percentage of live sperm for both purebred 

and admixed bulls were used. After quality control of genotypes, 1169 bulls with 38,205 SNP 

remained for analyses. The model for single locus mapping consisted of genetic effect of bulls, 

fixed effects (age, contemporary groups, ejaculate intervals and semen collector), additive SNP 

effect, genomic breed percent and genomic breed heterosis. For percentage of live sperm 10 

significant signals on chromosomes 3, 4, 5, 7, 13 and 14 were detected. Four of these regions 

contained genes related to spermatogenesis. 

 

Keywords: local genetic ancestry, heterosis, genome-wide mapping, sperm quality, Swiss 

Fleckvieh 

 

 

5-1 Introduction 

 

Crossbreeding is a widely used mating system in livestock which is the result of interbreeding of 

purebred parental lines from at least two distinct breeds or lines. Systematic crossbreeding 

optimizes genetic merit of crossbred offspring by introducing favorable genes, decreasing 

inbreeding depression and benefits of gene interaction of heterosis. Heterosis or hybrid vigor is 

the complementary and opposite phenomenon of inbreeding depression, where the progeny of 

crossing inbred lines shows an increase of those characters suffering from inbreeding (Falconer 

& Mackay, 1996). The amount of heterosis depends on the degree of dominance and its direction 

in the contributed loci for the special trait, the difference of allele frequency between parental 
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populations for the special trait and epistatic interaction between loci (Falconer & Mackay, 

1996).  

Following the recent advances in genotyping technology and single nucleotide polymorphisms 

(SNP), the animal breeding research community has largely focused on using the genomic 

markers to study of population structure, genomic inbreeding and associated phenomena.  

In this study, we aim to map heterosis effects with single locus models, using breed ancestry of 

the two alleles of a locus. Mixed ancestry is considered as dominant (single locus heterosis) gene 

action, while the additive breed effect on a locus as well as the additive of the actual SNP 

genotype are also included. The trait investigated is percentage of live sperm in pure Simmental 

and Red Holstein Friesian as well as the admixed Swiss Fleckvieh bulls from an AI station in 

Switzerland. 

 

5-2 Materials and methods 

 

5-2-1 Phenotypes and Genotypes 

 

For 1298 Red Holstein Friesian (RHF), Simmental (SI) and admixed Swiss Fleckvieh bulls, 

68,475 records on ejaculate volume (ml), concentration (10
9
/ml) and percentage of live sperm 

from 2000 to 2015 were received from an artificial insemination (AI) station in Mülligen, 

Switzerland. For this study we used percentage of live sperm. The ejaculate records for 

percentage of live sperm which were in the range of the mean ± 3 standard deviation were kept 

for the analyses. After phenotypes filtering 41,749 records for 1296 bulls remained. 

Both pure and admixed bulls were genotyped by Illumina
®
 Bovine SNP 50k, 150k and 777k 

BeadChip. The imputed genotype data using FImpute software (Sargolzaei et al., 2014) to a 

subset of 44,999 SNP was received from Swissherdbook cooperative Zollikofen. The standard 

quality control was performed with PLINK (Chang et al., 2015; Purcell et al., 2007) to exclude 

monomorphic SNPs, those with call rate of < 0.95 and those deviated from Hardy-Weinberg 

equilibrium (P-value < 10
-6

), and finally 38,205 SNPs for 1169 bulls remained for analyses. 
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5-2-2 Prediction of local ancestry 

 

We used LAMP 2.5 (Sankararaman et al., 2008) in LAMPANC mode to infer locus-specific 

ancestry at each SNP position along the genome of admixed bulls. Configurations for LAMP 

were as in our previous study (Khayatzadeh et al., 2016). Ancestry origin of each SNP was 

estimated for each admixed bull with respect to two pure ancestral populations, representing the 

proportion of each ancestry (0, 0.5 and 1). 0 and 1 values indicate that two alleles at have the 

same origin and 0.5 indicates that each allele originate from different ancestral population at 

corresponding locus.  

 

5-2-3 Genome-wide heterosis mapping model 

 

A linear regression model for heterosis mapping similar to Ferencakovic et al. (2017) was used. 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 =  𝜇 + 𝛼𝑖 + 𝑎𝑔𝑒𝑗 + 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑔𝑟𝑜𝑢𝑝𝑘 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 + 𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡𝑚 + 𝑆𝑁𝑃𝑛

+ 𝐵𝑟𝑒𝑒𝑑𝑃𝑒𝑟𝑐𝑜 + 𝐵𝑟𝑒𝑒𝑑𝐻𝑒𝑡𝑞 + 𝜀𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 

This model was run for each SNP, using MIXED procedure and applying restricted 

maximum likelihood (REML) in SAS(SAS/STAT user's guide). 

Where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 denotes the phenotypic value, μ is the overall mean, 𝛼𝑖is the random bull 

effect by 𝑁(0, 𝑰𝜎𝑎
2), where I is the identity matrix and 𝜎𝑎

2 is the bull variance. 

𝑎𝑔𝑒𝑗, 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑔𝑟𝑜𝑢𝑝𝑘, 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 and 𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡𝑚 are the fixed effects on bull age (< 16, 

16-72 and > 72 months), year and season (Feb-May, June-Sep and Oct-Jan) of collection, 

ejaculate interval days between consecutive ejaculates (3-6, 7-9 and > 9 days) and semen 

collector, respectively. 

SNPn, 𝐵𝑟𝑒𝑒𝑑𝑃𝑒𝑟𝑐𝑜 and 𝐵𝑟𝑒𝑒𝑑𝐻𝑒𝑡𝑞 were the regression coefficients for SNP additive genetic 

effect, locus-specific breed percent and breed heterosis according to LAMP results described 

above. 

 

5-3 Results and discussion 

 

Average percentage of live sperm was 86.28±3.38%. Breed difference and breed heterosis were 

estimated at global level by taking the average of breed ancestry and breed heterosis for all 
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incorporated loci for each individual. These breed percent estimates indicated +0.60% in favor of 

RHF compared to SI and a global heterosis effect of 1.40 %. 

Single SNP analysis for mapping of genomic regions with effect on heterosis was performed as 

described above. Genome wide significance according to a threshold of p = 10
-6 

was considered. 

A total of 10 regions on chromosomes 3, 4, 5, 7, 13 and 14 with positive effects of heterosis were 

identified (Table A5-1). Manhattan plot for breed heterosis on percentage of live sperm is shown 

in Figure A5-1. 

The NCBI (https://www.ncbi.nlm.nih.gov/), Uniprot (http://www.uniprot.org) and GeneCards 

(http://www.genecards.org) were used for gene identification in the significant regions. 

Description of the genes with their physical positions on chromosomes and their function are 

given in the appendix. 

PKDREJ is a protein coding gene on chromosome 5 which encodes a member of the polycystin 

protein family. This protein plays a role in human reproduction and fertilization by generating a 

calcium
2+

 transporting channel involved in initiating the acrosome reaction of the sperm (Fischer 

et al., 2015; Hamm et al., 2007). THEG gene is also a protein coding gene detected on 

chromosome 7 and is expressed in a nucleus of haploid male germ cells which involved possibly 

in spermatogenesis (Mannan et al., 2000). ODF3L2 gene (Nuhrenberg et al., 2013) is also 

detected on chromosomes 7, which is paralog with ODF3L1 and SPAG4 is a protein coding gene 

on chromosome 13, involved in spermatogenesis and maintenance of the general polarity of the 

sperm head. It may also assist the organization and assembly of outer dense fibers (ODFs), a 

specific structure of the sperm tail (Fischer et al., 2015).  

 

5-4 Conclusions 

 

In this study we modeled single locus heterosis effects for percentage of live sperm along 

autosomes in admixed Swiss Fleckvieh bulls. Additive SNP effect, breed percent and breed 

heterosis were taken into account. Significant signals for heterosis were detected on 

chromosomes 3, 4, 5, 7, 13 and 14. Several of these regions hosted genes with function in 

spermatogenesis. 

 

 

https://www.ncbi.nlm.nih.gov/
http://www.genecards.org/
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Appendix 

 

Table A5-1 Physical positions on detected signals for percent of live sperm and annotated genes 

names with their functions 
Chromosome Signals positions (Mb) Genes names Functions 

3 10.95-15.99 

119.00-119.29 

120.77 

121.37 

- - 

4 77.10-88.46 - - 

5 113.43-117.86 PKDREJ 

(117.25-

117.27) 

Polycystin family receptor 

for egg jelly 

 

7 43.05-47.38 THEG (44.63-

44.66) 

ODF3L2 

(44.75-44.77) 

Spermatid protein 

 

 

Outer dense fibre of sperm 

tail 3like 2 

13 32.06 

62.49-73.90 

SPAG4 (65.49-

65.51) 

Sperm associated antigene 4 

14 27.03-29.99   
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Figure A5-1. (a) Genome-wide heterosis mapping for percent of live sperm. (b)Significant 

signals together with gene name for chromosomes 3, 4, 5, 7, 13 and 14 for percent of live sperm 
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General discussion and conclusions 
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6-1 Introduction 

Identification of selection signature in admixed populations is one of the endeavors in 

evolutionary genetic studies. Genome of admixed animals in a recent admixed population is 

fragmented into ancestral segments with different proportions, due to limited number of 

recombination taking place each generation. Therefore, the ancestral contributions vary along the 

genome due to sampling error and genetic drift as the most prominent sources of random error 

and systematic biases caused by selection for or against some alleles. 

In Chapter 2, we used LAMP program (Sankararaman et al. 2008) to estimate local genetic 

ancestries along autosome in admixed Swiss Fleckvieh cattle. We studied post- admixture 

selection signature using local genetic ancestries by three the results of three different 

approaches. We determined two genome-wide thresholds for signals of selection by 1) correction 

for multiple hypothesis testing and 2) permutation tests, where both provided very similar 

thresholds. 

In Chapter 3 we took advantage of the availability of various phasing algorithms and local 

ancestry estimation approaches. The same genotypes on two pure ancestral populations, RHF 

and SI, and admixed Swiss Fleckvieh bulls in Chapter 2 were used for this study. Local 

ancestries in Chapter 2 were estimated by LAMP. In this study we used two other approaches, 

implemented by LAMP-LD (Baran et al. 2012) and MULTIMIX (Churchhouse & Marchini 

2013), to examine how inferences influence the local ancestry estimations. Reference haplotype 

panels and admixed bulls’ haplotypes, as input files for LAMP-LD and MULTIMIX, were 

phased by Shape-It (Delaneau et al. 2012) and AlphaPhase (Hickey et al. 2011). Correlation of 

local ancestries, using different phasing algorithm were ~ > 0.91. Results on total 361 analyses, 

implemented by different parameter settings, showed inferences of local ancestries were 

susceptible to windows lengths and input data format (unphased or phased genotypes). 

Crossbreeding is the mating of more distantly related animals, where sires of one breed or line 

mate with dams of another breed or line. The primary effect of crossbreeding is an increase in 

heterozygosity. The result of crossbreeding for polygenic traits is a gain in gene combination 

value, called hybrid vigor or heterosis, which is important to production with major effects on 

fertility and survivability. The gene combination value consists of favorable combinations of 
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dominance and unfavorable combinations caused by gradual breaking up of desirable epistatic 

blocks of linked loci in advanced generations of certain crosses. Different animal models were 

investigated for estimation of the non-additive genetic components of heterosis for semen traits 

in admixed Swiss Fleckvieh bulls in Chapter 4. The local genetic ancestry estimates for a bigger 

sample size (1179 bulls) in comparison with population studied in Chapter 2 (485 bulls) were 

used to estimate local genetic ancestries. Local ancestry inferences were then used to define 

dominance and epistatic loss as the components of heterosis. Results of comparing model based 

on likelihood ratio test and Akaike Information Criteria (AICc) were presented in Chapter 4. 

In Chapter 5, the result of genome-wide mapping of dominance component of heterosis (breed 

dominance) for percentage of live sperm (as one of the evaluated traits in Chapter 4) was 

presented. Genomic regions which contain genes associating with spermatogenesis and influence 

spermatogenesis were presented as well. 

 

6-2 Local genetic ancestry to detect post-admixture signals 

Availability of high density SNP markers provides the opportunity of estimation of ancestry 

proportions at genome-wide level. Moreover, various proposed statistical approaches exist for 

local ancestry estimates. Study of patterns and distribution of local ancestries at genome-wide 

level in admixed populations offers unique opportunities for the detection of selection signature. 

Extreme deviations of local genetic ancestries from genome-wide average ancestry (excess or 

deficiency) can be used to infer signals of post-admixture selection in crossbred populations 

(Tang et al. 2007) (Chapter 2). 

𝛿𝑘
𝑚 =  

1

𝐼
 ∑(𝑞𝑘

𝑖,𝑚 −  �̅�𝑘
𝑖 ) =  �̃�𝑘

𝑚

𝐼

𝑖=1

−  �̅�𝑘 

where 𝑞𝑘
𝑖,𝑚

 is the locus-specific ancestry of animal i at SNP m, estimated by LAMP, �̅�𝑘
𝑖  is mean 

of locus-specific ancestries across the genome for individual I, �̃�𝑘
𝑚 is the mean of ancestry at 

SNP m averaged over all admixed animals; and �̅�𝑘 is the mean of locus-specific ancestry across 

the entire whole genome for admixed population k. This method of inferring selection signals has 
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been performed for Creole cattle (Gautier & Naves 2011a; Flori et al. 2014a), African cattle 

(Kim & Rothschild 2014; Bahbahani et al. 2015) and chickens (Qanbari et al. 2012) as well as 

human (Tang et al. 2007; Jin et al. 2012). 

Using the most suitable significance threshold in genome-wide studies is a major challenge. It 

should account for multiple comparisons based on the number of the markers and provide a good 

balance of false positive and false negative results. A variety of statistical approaches accounting 

for multiple testing, such as Bonferroni correction and false discovery rate (Panagiotou et al. 

2012). 

Permutation tests (Doerge & Churchill 1996) in a specific way proposed by Tang et al. (2007), 

have also been used to define any significant deviations of local ancestries. According to the 

results of a simulations study (Tang et al. 2007), this type of permutation method maintains the 

original structure of dataset and is robust to demographic process of genetic drift. Finding very 

similar thresholds (Figure 2-4, Chapter 2) for detection of significant signals of selection in our 

study, using both permutation tests and extreme deviations of scaled local ancestries from normal 

distribution, correcting for multiple hypothesis tests, provided confidence in the thresholds 

chosen. 

Results of 20,000 permutation tests, 5% genome-wide threshold and extreme deviations from 

normal distribution by correction for 1000 hypotheses (Bhatia et al. 2014), on the basis of higher 

admixture LD in admixed populations, identical regions on chromosomes 13 (46.3-47.3 Mb by 

permutation tests, 5% genome-wide threshold and 46.3-46.8 Mb by deviations from normal 

distribution, 1000 hypotheses) and on chromosome 18 (18.7-25.9 Mb by both genome-wide 

thresholds) detected as candidates of selection signature. 

Width of detected signals in the recent crossbred population indicated that 1) selection did not 

have enough number of generations of crossbreeding to sharpen the signals; 2) finding similar 

pre- and post-admixture selection signature is not promising (Fst and Δ ancestries), and 3) vague 

candidate genes can be associated with selection signature in recent admixed Swiss Fleckvieh 

cattle, associated with fertility and reproduction traits, milk composition and morphology traits. 
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6-3 Different algorithms for the inference of local ancestry; opportunities and 

constraints 

Recent advance in genotyping technology together with development of statistical methods 

facilitated the assessment of fine-scale ancestry along the genome of admixed individuals. In 

Chapter 3 we took advantage of the availability of different phasing algorithms and local 

ancestry inference software tools to investigate how much the choice of different methods as 

well as parameter settings of the applied software tools can affect the estimations. In Chapter 2, 

we used LAMP for local ancestry estimations. In Chapter 3 we applied two other different 

software tools (LAMP-LD and MULTIMIX) to estimate local ancestries. LAMP-LD and 

MULTIMIX model genetic ancestries by window length and genetic map which should be 

defined by users. Although all require some form of reference panel, LAMP uses clustering 

algorithm for local ancestry deconvolution, while the other two programs use an approximation 

to coalescent with recombination for inference of local ancestries (Li & Stephens 2003). 

The key limitation of such programs is that they assume the admixture tract lengths can be 

modeled as independently and identically distributed and are considered as (iid) exponential 

random variables. Nevertheless, this assumption does not hold in recently admixed populations, 

leading false positives. Admixture tracts are stochastically and not evenly distributed along the 

genome of admixed individuals (Pool & Nielsen 2009; Liang & Nielsen 2014). Limitations of 

the existing models are: 1) need of large inference panels; 2) need to explicitly model linkage 

disequilibrium, and 3) computational time demand. Choosing small window lengths produced 

noise with LAMP-LD and MULTIMIX, since we expected larger windows in recent admixed 

population. The most comparable results were with window lengths 15-23 SNP, between LAMP-

LD and MULTIMIX_MCMCgeno and between MULTIMIX_MCMCgeno and 

MULTIMIX_MCMC (Chapter 3, Table 3-3). 

On the other hand, LAMP works based on breaking the genome into windows and decides for 

optimal window size internally based on information on the number of generations after 

admixture and admixture intensity and does not require assumption on parametric population 

genetic model. Most of studies of local ancestry patterns for selection signature use LAMP, since 
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it is faster, decides internally for optimum window size, does not need to phased data reference 

genotype panels (Qanbari et al. 2012; Flori et al. 2014b; Bahbahani et al. 2015). 

Phasing haplotypes using Shape-It by different window length does not considerably change the 

phasing results, since the important parameters are genetic map or effective population size. 

AlphaPhase as another phasing algorithm is robust to small variation in terms of core- and tail-

length. Therefore, choosing for different algorithms of phasing haplotypes and different setting 

did not change drastically the local ancestries estimations. The highest correlations between 

shape-It and AlphaPhase results were observed, when total core- and tail-length were in the 

range of 300 SNP for AlphaPhase. 

In Chapter 2 significant signals were detected for local genetic ancestries estimated with LAMP. 

These signals were not confirmed by local ancestry deviation with LAMP-LD and MULTIMIX 

and no other significant signals were found with those two approaches. The results suggest that 

care should be taken when interpreting selection signature based on local ancestry detected by a 

single method and confirmation with alternative approaches is necessary and advisable. 

 

6-4 Heterosis components for semen traits in a composite cattle breed 

Crossbreeding is an important tool to increase the efficiency of livestock productions through 

heterosis and complementarity of breeds. Additive (breed proportion) and non-additive genetic 

(breed heterosis) coefficients need to be considered in a model statistically analyzing the effects 

of crossbreeding. Non-additive genetic coefficients consist of intra locus interaction (dominance) 

and non-allelic gene interaction (epistasis). If heterosis is primarily due to dominance with no 

epistasis, then it is proportional to heterozygosity (proportion of heterozygotes at individual loci). 

Confounding of the genetic effects (Figure 4-1, Chapter 4) complicates the estimation of 

dominance effects separately from epistatic effects, such that most of the animal models for 

multiple breed evaluations are only based on dominance effects (Kinghorn 1983). Accurate 

prediction of crossbred cattle performance is key-factor for running successful breeding 

programs which are very important to produce protein rich food. The accurate predictions require 
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to estimate the breeding values of crossbred animals considering all possible genetic effects 

(non-additive as well as additive genetic effects (Cardoso & Tempelman 2004). 

For our study in Chapter 4, we defined heterosis components based on genomic data, where 

according to our knowledge no previous study used local ancestries to define these effects. In 

order to study the contribution of non-additive genetic effects of heterosis in admixed Swiss 

Fleckvieh bulls using genomic data, we applied different mixed models by including dominance 

and epistatic loss step-wise. Rather than genotypes at SNP level, we used locus-specific 

ancestries estimated by LAMP to define the dominance and epistatic loss.  

Epistasis effect is important for understanding the genetic architecture of different traits. Recent 

studies applying genetic models (Maki-Tanila & Hill 2014) indicate only small contributions of 

epistatic effect to the genetic variance in outbred populations. Epistatic loss was significant for 

two important sperm quality traits, number of spermatozoa and percentage of live sperm (Table 

4-4, Chapter 4). The current study estimated regression coefficients for epistatic effects, not 

genetic variances, and it is not clear how these results translate into non-additive variance. 

 

6-5 genome-wide mapping of heterosis 

In previous chapter (Chapter 4), we estimated the global effects of heterosis components. In 

Chapter 5, we focused on monitoring local heterosis across the genome, to use benefits of 

genomic data to find regions along genome associated with heterosis for one of the traits 

evaluated in Chapter 4 (percentage of live sperm). A linear regression model for heterosis 

mapping, similar to the one applied by Ferencakovic et al. (2017) for mapping of inbreeding 

depression, was used. 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 =  𝜇 + 𝛼𝑖 + 𝑎𝑔𝑒𝑗 + 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑔𝑟𝑜𝑢𝑝𝑘 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 + 𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡𝑚 + 𝑆𝑁𝑃𝑛

+ 𝐵𝑟𝑒𝑒𝑑𝑃𝑒𝑟𝑐𝑜 + 𝐵𝑟𝑒𝑒𝑑𝐻𝑒𝑡𝑞 + 𝜀𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 

Where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 denotes the phenotypic value, μ is the overall mean, 𝛼𝑖is the random bull 

effect by 𝑁(0, 𝑰𝜎𝑎
2), where I is the identity matrix and 𝜎𝑎

2 is the bull variance. 
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𝑎𝑔𝑒𝑗, 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑔𝑟𝑜𝑢𝑝𝑘, 𝑒𝑙𝑎𝑝𝑠𝑒𝑙 and 𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡𝑚 are the fixed effects on bull age, year 

and season of collection, ejaculate interval days between consecutive ejaculates and semen 

collector, respectively. SNPn, 𝐵𝑟𝑒𝑒𝑑𝑃𝑒𝑟𝑐𝑜 and 𝐵𝑟𝑒𝑒𝑑𝐻𝑒𝑡𝑞 are the regression coefficients for 

SNP additive genetic effect, locus-specific breed percent and breed dominance as a component 

of heterosis. Modeling the dominance component of heterosis for percentage of live sperm gave 

several significant signals on chromosomes 3, 4, 5, 7, 13 and 14. Genes, responsible for sperm 

fertilization, spermatogenesis and structure of sperm tail, were identified on the detected regions. 

We did not include genomic relationship matrix and any correction for population stratification 

and polygenic effects as well, because it was assumed that corrections for population 

stratification can smooth heterosis effects. 

Since considering epistatic effects between all SNP genome-wide demands a lot of computation, 

we did not consider this effect for heterosis mapping. Heterosis mapping has been performed in 

plant (sorghum, cotton and rice) and epistatic effects using two or three loci theory as well as 

dominance components of heterosis were defined (Ben-Israel et al. 2012; Guo et al. 2013). 

Because we found significant levels for epistatic loss, according to our new definition in 

Chapter 4, future work will include such epistasis mapping for the semen data included in this 

thesis. 

 

6-6 Conclusions and recommendations 

1) One of the key findings of this thesis was the detection of significant signals of selection post-

admixture, based on local differences in average ancestry of a population of admixed individuals 

(Chapter 2). In a subsequent step (Chapter 3), we tested how sensitive these results are to 

choice of tools for phasing and estimation of local admixture. Surprisingly, differences were big 

and the significant signals of the previous study were not confirmed with alternative tools and 

settings. While simulation may bring light into this conundrum, the advice derived from the 

results of this thesis is to study local genetic ancestry with at least two different software tools. 

Also, new approaches, particularly machine learning, should be tested and compared. 

2) This thesis has used high density genetic marker data to estimate components of heterosis that 

were previously derived from expected values of heterozygosity and levels of ancestry (Chapter 
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4). Effects of the dominance component of heterosis were positive, as expected and epistatic 

effects -when significant- were negative, also as expected. This approach should be used in other 

studies of crossbred populations because it provides valuable information about the 

crossbreeding system implemented. The models may be expanded to include not only additive × 

additive, but also the other combinations of epistatic effects (additive × dominance and 

dominance × dominance) to fully accommodate the definition of epistatic loss. 

3) Search for regions of the genome responsible for heterosis is a very exciting endeavor that has 

only been explored for crops, including maize and rice, so far (Ben-Israel et al. 2012; Guo et al. 

2013). In this thesis, one sperm quality trait was investigated, considering only the dominance 

component of heterosis. It is strongly suggested to include epistatic effects with two or three 

locus theory. This may be done for many crossbred populations with animals that are routinely 

SNP-Chip genotyped.  
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Zusammenfassung 

Die Identifikation des Abstammungsursprungs von chromosomalen Segmenten in Kreuzungs-

Populationen, lokale genetische Abstammung genannt, wurde bislang in Assoziationsstudien für 

Erbkrankheiten und quantitative Merkmale sowie zur Aufklärung von Populationsstrukturen 

untersucht. Eine genom-weite Perspektive von Kreuzungspopulationen zeigt auf, wie sich die 

Abstammungsbeiträge entlang des Genoms ändern. Die wichtigsten Quellen der Variation im 

Genom von gekreuzten Populationen sind Selektion und evolutionäre Fluktuationen durch 

genetische Drift. Anders als genetische Drift betrifft Selektion spezifische Regionen des 

Genoms. Die extremsten Abweichungen der lokalen genetischen Abstammungen von der 

durchschnittlichen genom-weiten Abstammung können als Selektion-Signaturen entdeckt 

werden. Kürzlich entwickelte Kreuzungspopulationen bieten eine ausgezeichnete Gelegenheit, 

um solche Selektions-Signaturen post Admixtur zu studieren. Das Ziel dieser Dissertation war, 

Abstammungsbeiträge auf lokalem Niveau zu studieren, um Selektions-Signaturen zu entdecken 

und um Effekte der Heterosis einzuschätzen. Swiss Fleckvieh (SWF), eine Schweizer 

Rinderrasse, die durch Kreuzung der lokalen Rasse Simmental (SI) mit Red Holstein Friesian 

(RHF) seit 1970 entstand, wurde dazu untersucht. 

Zunächst wurde die Abstammung auf globalem und lokalem Niveau von 485 Stieren aller drei 

Rassen, davon 300 SWF, durch Analyse von Illumina
 ®

 BovineSNP50k Genotypen ermittelt. Die 

globalen RHF und SI Abstammungen der SWF Tiere wurden 0.70:0.30 geschätzt. Die 

Schätzungen der lokalen genetischen Abstammungen wurden verwendet, um Selektions-

Signaturen zu entdecken. Zwei Methoden basierend auf Permutationen und Bonferroni-

Korrektur für extreme Abweichungen von Normalverteilung wurden eingesetzt um die Schwelle 

der Signifikanz von starken Abweichungen der lokalen von globalen Herkunftsniveaus zu 

ermitteln. Beide Methoden führten zu ähnlichen Schwellen. Zwei bemerkenswerte Spitzen, eine 

auf Chromosom 13 (46.3-47.3 Mb) und ein anderes Gebiet auf Chromosom 18 (18.7-25.9) 

wurden als Selektion-Signaturen identifiziert. Erweiterte Haplotypen-Homozygotie (EHH), die 

Signale des Prä-und Post-Admixtur zu untersucht, offenbarte ein Signal auf Chromosom 18 

(25.5-26.4 Mb) durch iHS Statistik für RHF und ein breites Gebiet auf Chromosom 18 (6.6-24.6) 

durch Rsb Statistik zwischen SWF und SI. Die breiten Post-Admixtur Selektion-Signaturen 

zeigten, dass 1) die beschränkte Zahl von Generationen nachdem Kreuzung (~ 10-15) nicht 
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genug war, um Signale zu schärfen; 2) Vergleich der Prä-und Post-Admixtur Signalen nicht 

vielversprechend war, und 3) vage Kandidaten von kausalen Genen gefunden wurden. 

In einer nächsten Untersuchung wurden die lokalen Abstammungen zusätzlich zur in der vorigen 

Studie angewandten Methode LAMP auch durch zwei andere Software-Tools (LAMP-LD und 

MULTIMIX), welche die Annahme eines parametrischen genetischen Modells benötigen, 

ermittelt. Verschiedene Parameter-Einstellungen zum Phasing der Daten und Fensterlängen 

wurden definiert. Relativ niedrigen Korrelationen zwischen den Resultaten von verschiedenen 

Software-Tools zeigten, dass die Wahl der Methode zur Ermittlung lokalen Abstammungen 

einen sehr starken Einfluss auf die Ergebnisse hat und folglich Selektions-Signale nach 

Untersuchung mit einer Methode vorsichtig betrachtet werden müssen. Bestätigung mit 

alternativen Annäherungen wird empfohlen. 

Schließlich wurden die lokalen Abstammungsschätzungen für eine große Zahl von 1179 Stieren 

verwendet, um die Effekte von Dominanz und epistatischem Verlust (zwei Definitionen) als 

Bestandteile von Heterosis für Sperma-Eigenschaften bei gekreuzten Stieren von Swiss 

Fleckvieh zu schätzen. Der Dominanz-Bestandteil von Heterosis war sehr wichtig und 

verbesserte die Genauigkeiten des Modells von drei von vier untersuchten Sperma-

Eigenschaften. Effekte der Gen-Interaktion (Epistasie) wurden für zwei der vier untersuchten 

Sperma-Eigenschaften gefunden, wenn diese mit einer hier erstmals verwendeten Definition 

ermittelt wurde. Im letzten Teil der Arbeit wurde genom-weites Mapping des von Dominanz 

verursachten Anteils von Heterosis für Prozentsatz der lebenden Spermien im Ejakulat 

durchgeführt Das statistische Modell enthielt neben Umwelteffekten und dem globalen Effekt 

des Stieres für jeden SNP separat den additiven Effekt, den Rasse-Anteil und den Effekt der 

Dominanz aufgrund von gemischter Rasse-Herkunft. Signifikante Signale wurden auf 

Chromosomen 5, 7 und 13 ermittelt und es wurden in diesen Regionen Gene mit Bezug zu 

Spermiogenese gefunden. 

Stichwörter: Admixtur, Kreuzung, Heterosis, Dominanz, Epistasie, genetische Abstammung, 

genomweites Mapping, Haplotyp, Permutation, Selektions-Signatur 
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