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Abstract 
Distributed hydrological models provide important contributions in understanding human 

impacts on water resources by analysing spatially variable hydrological behaviour. 

However parameterization of spatially distributed properties related to 

physical/hydrological behaviour exhibits some major difficulties in the models. A 

potential solution is the identification of heterogeneity of water related physical processes 

by displaying variances of thermal properties of surface and subsurface characteristics. 

Following the approach developed by Müller et al. (2014), Principal Component Analysis 

(PCA) has been applied to a time-series of Thermal Infrared (TIR) remote sensing data 

of the Ybbs and Traisen catchment. The spatiotemporal distributions of thermal properties 

with regard to the water/energy balance could be extracted within principal components. 

The first three principal components explain a cumulative proportion of 89% resp. 86% 

of the total variance inherent in the time-series of 12 resp. 11 Landsat 5 TM TIR-images. 

The remaining variance was attributed to transient effects, such as background noise or 

atmospheric disturbances. The relation between patterns of thermal variability in the first 

components and the most dominant landscape elements, exhibiting controls on thermal 

properties, is drawn. It was further assessed how sensitive the principal components are 

to the quality of the dataset. Spatial and temporal dimensions as well as shadowing effects 

affecting mountainous environment are discussed. PCA on TIR time-series was found 

useful in the deduction of patterns representing the variability of thermal properties at 

catchment scale. PCA represents a rigorous method in the deduction of physical 

meaningful hydrological patterns in the establishment of credible parameters. 
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Kurzfassung 
Diskretisierte hydrologische Modelle liefern wichtige Beiträge für das Verständnis 

menschlicher Einflüsse auf die Wasserressourcen durch die Analyse von räumlich 

verteiltem Verhalten hydrologischer Variablen. Jedoch ist die Parametrisierung von 

räumlich verteilten physikalischen und hydrologischen Eigenschaften eine der größten 

Herausforderung in der Entwickelung von solchen Modellen. Eine mögliche Lösung wird 

in der Identifikation der heterogenen Verteilung der wasserbezogenen physikalischen 

Prozesse gesehen, in dem Varianzen der thermischen Eigenschaften von ober- und 

unterirdischen Merkmalen im Wassereinzugsgebiet dargestellt werden. Im Anschluss an 

den von Müller et al. (2014) entwickelten Ansatz, wird eine Zeitreihe von TIR-

Fernerkundungsdaten mittels Hauptkomponentenanalyse für die Einzugsgebiete der 

Ybbs und Traisen untersucht. Es wird gezeigt, dass die raumzeitliche Verteilung der 

thermischen Eigenschaften mit Bezug auf den Wasser- und Energiehaushalt mittels 

Hauptkomponenten-analyse extrahiert werden kann. Die ersten drei Hauptkomponenten 

erklären einen kumulativen Anteil von 89% bzw. 86% der Gesamtvarianz der 

thermischen Eigenschaften in den 12 bzw. 11 Landsat 5 TM TIR-Bildern. Die 

verbleibende Differenz wurde vorübergehenden Effekten, wie Hintergrundrauschen oder 

atmosphärischen Störungen zugeschrieben. Den Zusammenhang zwischen den 

hervorgebrachten Mustern thermischer Variabilität und den dominierenden 

Landschaftselementen wird aufgezeigt. Zudem wurde die Empfindlichkeit der Methode 

gegenüber der Qualität des Datensatzes getestet. Die räumliche und zeitliche Verteilung 

der thermischen Ausprägung im Wassereinzugsgebiet sowie Schatten-effekte in den 

bergigen Regionen wird diskutiert. Die Hauptkomponentenanalyse stellte sich bei der 

Ableitung der Muster, welche die Verteilung direkter interner thermischer Eigenschaften 

darstellen, als hilfreich heraus. Hauptkomponentenanalyse von TIR-Bilder stellt eine 

gründliche Methode dar, welche durch die Ableitung von physikalisch aussagekräftigen 

Mustern, die Glaubwürdigkeit hydrologischer Parameter erhöht. 
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1 Introduction 
It is a well-accepted fact among scientists that human activities influence the hydrological 

cycle, for instance by altering the chemical constitution and as such the radiative 

properties of the atmosphere or by degrading environmental systems through pollution 

and land use transformations (Beighley et al., 2005; Kirchner, 2006). However the science 

of hydrology was long characterized by the development of predictive lumped models 

focussing on the reproduction of real events without the implementation of intrinsic 

functioning of hydrological processes. Since then, hydrological modelling has been 

evolved towards a more descriptive approach by developing distributed models which 

now also consider the heterogeneity of hydrological processes (Kirchner, 2006). Models 

are hence no longer meant to only produce knowledge about quantity and quality of the 

water but also about the spatial occurrence of environmental degradation and how to 

tackle these problems (Refsgaard, 1997). However, catchments are complex, dynamic 

and heterogeneous systems and the definition of hydrological processes represents one of 

the most difficult tasks in the derivation and evaluation of human impacts on the 

environment (Beven, 2001). Spatial variability in particular is a characteristic and 

intrinsic feature of natural hydrological systems and “the characteristics of that 

variability often have a substantial influence on the behaviour of the system” (Grayson 

et al., 1997). Hence, knowledge about interior water fluxes and state variables becomes 

the key aspect in integrated water resources management as the impetus for “getting the 

right answers for the right reasons” (Kirchner, 2006) is more than ever of actuality.  

Due to the complexity of these heterogenic systems, there exist substantial difficulties in 

the observation and the implementation of terrain data into distributed models. In order 

to describe the hydrological processes as accurately as possible, distributed model 

parameters are defined for every grid cell (Samaniego et al., 2010). These parameters act 

as indicators that can be inferred from measured data but are often optimised through 

calibration (Chang, 2012). While point measurements provide hydrological information 

for the parameterization at small scales, substantial problems arise when describing 

spatial variability at larger scales (Abbott & Refsgaard, 1996). When model parameters 

are estimated for a distributed model over a large catchment area, the ratio between 

unknown model parameters and the resolution of the model runs up. Hence, the linked 

computational effort grows considerably with a finer resolution and, as a consequence, 

the parameters risk to become ambiguous. This ambiguity effect during the 



    1 Introduction 

 

2 
 

parameterization process is called over-parameterization. Thus, the estimation of 

parameters, which calibrate the model to match the observed behaviour, one of the main 

challenges in scientific hydrological research. 

Consequently there have been several calls for the collection of new data in hydrological 

science allowing for a better hydrological understanding and an improvement in the 

predictive capability of hydrological models (Kirchner, 2006; Grayson et al., 2002; 

Beven, 2001; Rosso, 1994; Beven et al., 1993). 

Above all, the advancement of remote sensing data has brought substantial changes to 

Hydrological science. One of the most important aspects of remote sensing, is the 

capability of measuring information on a wide range of spatial scales, as opposed to point 

information (Rango & Shalaby, 1998). Such datasets provide information about the 

spatial and temporal variability of landscape elements that influence the hydrological 

processes (Grayson et al., 2002). The direct deduction of interior physical values is still 

in the early stages of development. Several approaches can be found in the literature, 

however, these are mostly published with respect to satellite sensors and bandwidths 

(Alcântara, 2013; Anderson et al., 2008; Sánchez et al., 2008). Nonetheless it is possible 

to deduce information about the spatial and temporal variability of controlling 

hydrological variables and conditions with remote sensing (Refsgaard, 1997). By putting 

the focus on the characterization of patterns rather than on the direct intrinsic physical 

properties, the spatial variability can be accounted for in hydrological models and the 

coupled parameterization process can be improved (Grayson et al., 2002).  

By implementing Thermal InfraRed (TIR) remote sensing in studies of landscape 

functioning there is the potential to “observe the states and dynamics of energy fluxes 

across and between landscapes, from patch to the regional levels” (Quattrochi & Luvall, 

1999). As TIR data is based on the physical principle of emitted radiation to determine 

thermal characteristics of the earth’s surface the derivation of patterns can be related to 

hydrological process heterogeneity with regard to the energy balance; and as such it can 

be used as surrogate for parameterization. Quattrochi et al. (1999) explain that knowledge 

about “energy balance characteristics (i.e., fluxes and redistribution of thermal energy 

within and across landscape elements) is an implicit and important aspect of landscape 

dynamics and landscape functioning”. Thus, thermal infrared data provide means of the 

distribution of all landscape elements influencing energy balance characteristics. The 

extraction of thermal energy variation leads to an understanding of how these complex 
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ecosystem state variables are distributed and connected across a catchment. Risser et al 

(1984) have shown that the understanding of flows and transfers among spatial 

components are especially important in understanding the interlinkages of these 

landscape elements. Thus, TIR data needs to be processed into surrogate patterns, in order 

to be further implemented in the parameterization process of hydrological models 

accounting for the heterogeneity of landscape characteristics and their interlinkage. 

One approach was shown by Müller et al. (2014), who extracted patterns of thermal 

dynamics with regard to internal energy fluxes by analysing time-series of TIR images 

with a principal component analysis. These patterns of energy balance variability imply 

information about the water balance characteristics related to landscape functioning and 

their contribution to the thermal energy response (e.g. latent energy fluxes controlled by 

soil moisture content). Consequently, information about the connections and relations 

between the landscape elements is inherent in the nominal principal component values 

producing the patterns of thermal variability. Through a further analysis they were able 

to relate the patterns to major landscape characteristics. Allowing them to extract 

continuous pixel based information of distinct hydrological behaviour with regard to the 

energy balance. These can further be classified into functional units or may serve as input 

in the parameterization process. Hence the approach should ultimately lead to an 

improvement of the credibility of hydrological models by providing a rigorous 

methodological framework for establishing parameters. 

Therefore this framework will be applied in the scope of this thesis. The performance of 

the methodology will be tested to a wider range of catchment characteristics. A time-

series of TIR Landsat 5 images of two pre-Alpine catchments, will be analysed using 

principal component analysis (PCA). The focus will be laid on the more pronounced 

topographical characteristic, which allows for an evaluation of the applicability of PCA 

in mountainous regions. The outputs will be analysed to assess the dominant landscape 

elements causing these patterns of spatial temperature variability. Before, an analysis of 

the differences between the catchments will help establishing a scientific statement on the 

inherent constraints. 
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1.1 Problem Definition and Relevance 
Over-parameterization means that the optimization and calibration process of the 

hydrological model evolves into such a high computational task, that the values of the 

results of the estimation software become numerically unrealistic. In the worst case the 

values don’t converge at all, which stops the parameterization process (Doherty, 2003). 

This may further evolve into parameters that can no longer be identified. This situation is 

called equifinality (Beven, 2001). This means that the set of parameters is decisive for the 

models performance, rather than the singular parameter being process defining at the cell. 

This results in different models displaying equally acceptable representations of 

hydrological behaviour due to high parameterization which comprises the predictive 

validity of a model (Kumar, 2009). To this fact the distributed hydrological models risk 

to become less reliant in producing new scientific insights on the intrinsic functioning of 

the water-balance system. 

One solution to this problem is to couple multiple variables controlling hydrological 

behaviour into several homogenous units and reduce the spatial complexity to groups of 

cells having analogical controlling variables, so-called Hydrological Response Units 

(HRU’s) (Flügel, 1995). Thus, they reduce the complexity in the parameterization process 

by assigning sets of parameters to spatially condensed units of identical hydrological 

behaviour (Flügel, 1995). Consequently, each HRU gets attributed one parameter 

independent of its location in the spatial domain of the model, equal HRU’s are assigned 

the same parameter values. The difficulty arises from HRU’s being defined as categorical 

classifications with explicit geographic delineations, this results in losing information 

about the interconnections in the parameters that should in reality be bound by local 

attributes (Doherty, 2003). Examples are the difficulties in estimating realistic variables 

displaying spatiotemporal variations for non-point source pollution or change within the 

catchment. Consequently, the need emerges to reduce complexity in the deduction of 

spatial heterogeneity, all by filling knowledge gaps of interconnectivity (Schulz et al., 

2006).  

Remotely sensed imagery might become a source of distributed data serving as surrogate 

patterns for the above mentioned issue of over-parameterization (Beven, 2012). Up to 

date, the main purpose of remotely sensed data in hydrological models is the estimation 

of precipitation, land cover types and vegetation parameters, or the derivation of 

information allowing vegetation and soil classification (Beven, 2012). Not all the 
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capacities within the available data are explored due to methodological obstacles, as for 

example unknown meteorological conditions with regard to atmospheric correction and 

incoherence’s in the datasets. Thus there is a lot of potential knowledge waiting to be 

exhausted from the available data (Clark, 2014).  

One of these datasets waiting for full exploration is TIR remote sensing. Even though TIR 

data are widely available, the time-series analysis of TIR data for example, is still a novel 

field, due to the low availability of temporally coherent datasets. An approach was 

introduced by Müller et al. (2014), who analyse TIR time series with principal 

components. The Hypothesis is that when orthogonally transforming a time-series of TIR 

data into principal components it becomes possible to extract dominant patterns of 

thermal variability that can be related to controls on sensible and latent energy fluxes, 

such as texture, vegetation and elevation. Thus these patterns might reveal interesting 

heterogenic structures of hydrological behaviour. As such PCA enables the deduction of 

distributions of physically-based nominal surrogate patterns on behalf of which 

hydrological behaviour might be numerically inferred. Thus they propose a new approach 

for the resolution of the over-parameterization problem. However this approach needs 

more testing under different landscape conditions. This thesis will give a supplementary 

analysis of TIR time-series for two catchments in Lower Austria, following the approach 

of Müller et al. (2014), in order to identify potential strengths and weaknesses of the 

method. 

1.2 Research Question and Research Objectives 
This thesis presents the results of a course of research designed to address the above 

mentioned problems by answering this question: 

What knowledge and information is inherent in the structures and spatial patterns 

represented by principal components of TIR time-series for two catchments in 

Lower Austria? 

To address these questions, the following research objectives were considered in this 

study: 

General:  Identify the information content and constraints of analysing spatial 

variability of physical patterns by analysing time-series of remotely sensed 

TIR images for two catchments. 
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Specific:  Process TIR remotely sensed images with principal component analysis to 

identify spatial patterns of physical thermal characteristics. 

Identify surface and subsurface characteristics of the spatial patterns 

represented in principal components of time-series of TIR images 

Analyse the differences in the information represented in the spatial 

patterns of the principal components between the catchments 

Analyse the influence of the seasonality and quantity of the thermal data 

on the spatial structures of the principal components. 

1.3 Thesis Outline 
The thesis comprises a general introduction, a theoretical background and a methods and 

materials part, before dealing with the applied methodology, the obtained results and the 

conclusion. 

The theoretical background is meant to introduce the reader into the technical context of 

the thesis and give an overview of the theoretical aspect of the literature review. Thus 

Chapter 2 deals with the basic principles of remote sensing focussing on the physical 

properties of TIR remote sensing. This allows screening the strength and weaknesses of 

TIR-data and finding reasons for the little exploitation of TIR-data in science. In the next 

step, the thermal dynamics of land surfaces will be exploited before underlining the 

possibilities and potentials evolving from the extraction of variations of thermal energy 

fluxes within time-series of TIR-data. 

The methods and materials describe the study area, the database and its manipulation and 

give the reader the necessary mathematical background of the principal component 

analysis. As such Chapter 3 gives detailed information about the study areas and displays 

major surface and subsurface characteristics of the catchments. The choice for the 

database will be elucidated and the further preparation of the data will be illustrated. Then 

the mathematical approach of the PCA-transform will be clarified.  

The results part shows the information drawn from the PCA. Chapter 4 presents the results 

of the pattern extraction from time-series with principal component analysis displaying 

thermal variability. The different weights of the images for the different components will 

be shown before getting to the analysis of the impact of the input data for the pattern 
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extraction. In a further step, the focus will be put on finding the sources explaining the 

thermal variability.  

Chapter 5 is the discussion part, considering the identification of the major surface and 

subsurface characteristics causing thermal variability and the analysis of the difference 

between the catchments as well as the impact of the quantity and seasonality of the initial 

input data on the PCA. The constraints encountered in the processing of the time-series 

will be illustrated. 

In the sixth chapter the conclusion of the thesis will be drawn. Here the significance of 

the here presented approach in the light of future developments in hydrological modelling 

will be explained. This will be done by screening some of the possibilities inherent to the 

method and by giving recommendations for further research. 
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2 Theoretical Background 

2.1 Definition and Principles of Remote Sensing 
In general terms, remote sensing is the technique of acquiring information about an object 

without actually being in contact with it (Jorgensen & Fath, 2008). Accurately speaking, 

we will understand remote sensing as the capturing information from a distance (rather 

than in situ) about the Earth’s terrestrial and aquatic ecosystems and atmosphere, by 

sampling reflected and emitted radiation (Kitchin & Thrift, 2008). 

Jensen (2007) defines remote sensing as:  

„the non-contact recording of information from the ultraviolet, visible, 

infrared, and microwave regions of the electromagnetic spectrum by means 

of instruments such as cameras, scanners, lasers, linear arrays, and/or area 

arrays on platforms such as aircraft or spacecraft, and the analysis of 

acquired information by means of visual and digital image processing“. 

The results of remote sensing are images with an abundance of information allowing us 

to “determine the composition and nature of the Earth’s surface and atmosphere from 

local to global scales” (Kitchin & Thrift, 2008). Through the repetitive nature of the 

remote sensing, these images hold information about changes at different points in time. 

Thus remote sensing is a powerful tool to assess information that would otherwise be 

difficult to obtain within the same scale of time and space. Consequently, remote sensing 

becomes “a multi-faceted, multi-disciplinary endeavour to acquire information from 

targets” (Clark & Rilee, 2010). 

As the foundation of remote sensing lies within the measurement of reflected and emitted 

electromagnetic radiation from the Earth’s surface so this radiation is measured and 

categorized on a logarithmic scale of its wavelength (Jorgensen & Fath, 2008). Remote 

sensing uses this physical principle of radiation to determine characteristics of surface 

depending on the emitted or reflected wavelength (Kitchin & Thrift, 2008). These 

wavelengths are in the following categories: Ultraviolet, Visible, meaning visible to the 

human eye (VIR). In near-Infrared (NIR), where reflected radiance is measured. In the 

mid-IR, where reflected and emitted radiance can be measured and in the far-IR, where 

only emitted energy is measured in the form of thermal energy, here referred to as TIR 

(Clark & Rilee, 2010). The reason of multispectral remote sensing is that different types 

of materials can be distinguished on the basis of differences in their spectral signatures 

(Schowengerdt, 2007). The remote sensors are categorized into active and passive 

sensors. Active sensors generate their own signal which is sent to the Earth’s surface and 
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the reflection is measured, e.g. RADAR or LIDAR. Passive sensors measure emittance 

and reflection from the Earth’s surface of solar energy (Kitchin & Thrift, 2008).  

 

Figure 1: A typical remote-sensing system. Components and Energy Pathways (from Clark & Rilee, 2010) 

Figure 1 shows the basic components of a remote sensing systems: an energy/light source, 

an energy sink (Earth’s surface objects) and a sensor platform capturing the reflected and 

emitted radiance onto a recording medium (Schowengerdt, 2007). With respect to analog 

arial photography where a lens is focusing the light on photographic film, digital sensors 

record photons for a specific range of wavelength (Kitchin & Thrift, 2008), and these are 

stored as digital numbers representing brightness values as an array of pixels.  

Several characteristics distinguish the qualities and detail of a remotely sensed image, 

traditionally referred to as the four types of resolution (Jensen, 2007). First of all, there is 

spatial resolution, which defines the size of the pixel (smallest discrete picture element) 

if it were projected onto the earth’s surface.  

Spectral resolution refers to the range or bandwidth of wavelength that are detected in an 

image. This also refers to band placement, which defines the portion of electromagnetic 

wavelength captured for a specific domain, for example 9.5 to 12 µm for TIR.  

Radiometric resolution refers to the bandwidth of potential brightness values that can be 

stored in a pixel. Sensors with higher radiometric resolution capture more distinct 

differences in the brightness values, as opposed to lower radiometric resolution.  

Temporal resolution defines the repeat frequency, which is how frequently a sensor takes 

image of the same location. Another element of the temporal resolution is the date of the 
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acquisition, it refers to timing issues in order to remotely monitor effects or ecological 

events, e.g. floods.  

Every object that has a temperature greater than absolute zero, emits TIR energy. So all 

the features in a typical landscape emit TIR radiation, even though this radiation is not 

visible to the human eye. To understand these physical properties and the functioning of 

TIR remote sensing, the following chapter will explain the most important physical 

properties these functions.  

2.2 Thermal Infrared Remote Sensing 
Satellite sensors that can detect the TIR radiation emitted by the earth’s surface features 

are able to show information about the thermal properties of these materials. Like sensors 

measuring reflections, these sensors are passive systems measuring radiant emission, 

relying on the solar radiation as an energy source. 

When matter is in random motion, we can measure the energy of its particles in the form 

of kinetic heat (often also referred to as real, or true, heat). All objects are in motion at 

the molecular scale when having a higher temperature than absolute zero. When these 

particles in motion collide, they emit electromagnetic radiation, which is measured in 

watts. The amount, or sum, of electromagnetic radiation exiting an object is its radiant 

temperature. The radiant temperature is correlated to the kinetic temperature. Sensors that 

are responsive in the thermal domain are able to measure the TIR radiation. In contrast to 

other processes of heat/energy transfer (like conduction or convection where the energy 

is passed through matter by collision with, or physically moving, the heated particles) 

radiation is an energy transfer process that can take place in a vacuum through 

electromagnetic waves (Kuenzer & Dech, 2013). By implication TIR remotely sensed 

images are able to monitor the thermal radiation of objects on the earth’s surface. These 

images are able to display radiant temperatures of objects at the resolution of the 

measuring sensor. While the most commonly used derivations of TIR imagery are land 

and sea surface temperature, the thermal data can be used in manifold other ways than 

just the derivation of these standard products. As Kuenzer & Dech (2013) writes:  

“These data enable the assessment of thermal anomalies (forest fires, coal 

fires, thermal pollution, energy leaks in buildings, inflamed areas in thermal 

medical imagery), the analysis of moisture conditions, or even the monitoring 

of machine performance in industrial applications, and – depending on 

sensor and resolution – the assessment of thermal dynamics at different 

scales.”  
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2.3 The TIR Domain and Atmospheric Windows 
No strict or physical definition of the TIR domain exists (Quattrochi & Luvall, 1999). 

According to Kuenzer & Dech (2013), the TIR wavelength extends from “about 3 to 14 

µm”. Also needing consideration arte the atmospheric windows, which are wavelength 

domains of atmospheric transmittance (Alcântara, 2013). Atmospheric attenuation 

happens when radiation is passing though the atmosphere to the sensor and is interacting 

with particles and gasses in the atmosphere. This causes scattering of the radiation and so 

energy is redirected and/or absorbed at molecular scale (Chang, 2012). The main 

molecules responsible for absorption of electromagnetic radiation are H20, O2, O3 and 

CO. In Figure 2 below, we see the atmospheric windows of TIR at 3-5 µm and 8-14 µm. 

Within the domain of 8-14 µm, only Ozone interferes with the radiometric sensors, and 

so this band is used by most sensors. Within the 3-5 µm window the reflected sunlight 

can still be interfering with the radiation and needs to be taken into account when 

analyzing daytime TIR images, recorded at 3-5 µm. 

 

Figure 2: The TIR wavelength domain, typical adsorption domains induced by gases and water and atmospheric 
windows. (after Richter in Kuenzer & Dech, 2013) 

Even though different authors define the TIR domain differently, the main characteristic, 

which is common to all definitions, is that while multispectral remote sensing in the 

visible (VIS), near infrared (NIR) records reflected radiation, TIR remote sensing records 

emitted radiation.  
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2.3.1 Planck’s Law 
Planck’s law describes the electromagnetic radiation emitted by a blackbody (perfect 

emitter) at a given wavelength as a function of the blackbody’s kinetic temperature 

(Planck, 1900). A blackbody is a hypothetical, non-existant ideal radiator, which totally 

absorbs all the energy falling upon at every wavelength and re-emits the maximum 

radiation, whilst not reflecting or transporting the incident energy. The spectral radiance 

of a body Mλ describes the amount of energy that is emitted as radiation in terms of power 

(watts) per unit area of the body, per unit solid angle and per unit frequency. Hence, we 

can calculate the radiance emitted by a blackbody (Mλ) simply by specifying a certain 

wavelength:  

With:  

Mλ =spectral radiant exitance [W m-2 µm-1] 

h = Planck’s constant [6.626 x 10-34 J s] 

c = speed of light [2.9979246 x 108 m s-1] 

k = Boltzmann constant [1.3806 x 10-23 J K-1] 

T = kinetic temperature [K] 

Λ = wavelength [µm] 

 

How the temperature and energy radiated from a blackbody correlate, as well as the 

wavelength the blackbody emits the most, can be described by the Stefan Boltzmann’s 

law and Wien’s law.  
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2.3.2 Stefan-Boltzmann Law 
The Stefan-Boltzmann law states that the total spectral radiant flux exiting (MradBB) a 

blackbody is proportional to the fourth power of its kinetic temperature (T) (Kuenzer 

& Dech, 2013).  

With:  

TradBB= radiant flux exiting Blackbody [W/m2] 

T = absolute kinetic temperature [T] 

σ = Stefan-Boltzmann constant [5.6697 x 10-8 W m-2 K-4 ] 

 

The equation shows that the higher the temperature of the radiating blackbody the greater 

the total amount of radiation it emits.  

Figure 3: Blackbody radiation curves for different temperatures (after Planck's Law). The yellow shows the Stefan-

Boltzmann law, green line is Wien's Law. The blue bar shows the VIS wavelength domain. 

In Figure 3, the yellow marked area under the 300 K curve, which is the integration of all 

the area under the blackbody’s radiation curve, shows the total spectral exiting radiation 

at 300K. 
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2.3.3 Wien’s Displacement Law 
Wien describes that an object at a constant kinetic temperature has a characteristic peak 

of radiant power (Clark, 2014). The relationship between the true kinetic temperature of 

a blackbody (T) in Kelvin and its peak spectral exitance (dominant wavelength) is 

described by the Wien’s displacement law:  

With:  

λmax= dominant wavelength [µm] 

A = Wien’s constant [2898 µm K] 

T = absolute kinetic temperature [K] 

 

Illustrated by the green line in Figure 3, we see the maximum exitance λmax moves to shorter 

wavelength with increasing temperature. The higher the temperature the shorter the 

wavelength of the peak (Clark, 2014). As a conclusion, we understand that while the sun 

has an average kinetic temperature of 5.778 K (5.505 °C), the sun has its peak emission 

in the visible domain of the wavelength spectrum (Kuenzer & Dech, 2013). The earth 

with its peak temperature of 300 K, is much colder; thus its peak emission is in the TIR 

domain. 

2.3.4 The relevance of emissivity  
Through the chapters above we see that the kinetic temperature of an object and its 

emitted radiant temperature, are linked. So we can use remotely installed radiometers to 

measure radiant temperatures, and by these means get knowledge about the linked kinetic 

temperature, which can be seen as the idea standing behind TIR remote sensing. 

Nevertheless, the linked relationship between kinetic and radiant heat is not perfectly true, 

and the remotely measured radiant temperature is always less than the true temperature 

of an object. This is due to a physical property called emissivity. Emissivity is defined as:  

“the ratio of the energy radiated from a material’s surface to that radiated 

from a blackbody (perfect emitter) at the same wavelength and temperature 

and under the same viewing conditions” (Jensen, 2007). 
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As no object exists that is a perfect emitter, the result appears that the emissivity of an 

object and hence the remotely sensed radiant temperature is influenced by a number of 

factors (but is not dependent on kinetic temperature): 

Firstly there is the effect of colour. Darker coloured objects absorb radiance better than 

lighter coloured objects which tend to reflect more of the incident energy.  

Secondly the surface roughness has an effect on the emitted radiance. “The greater the 

surface roughness of an object relative to the size of the incident wavelength, the greater 

the surface area of the object and potential for adsorption and re-emission of energy” 

(Jensen, 2007).  

Another factor having effects on the emissivity is the moisture content. The more 

moisture an object contains the greater will be its ability to absorb energy and become a 

good emitter. Wet soil particles have a high emissivity similar to water (Kuenzer & Dech, 

2013). 

Linked to this effect is compaction. The degree of soil compaction can effect emissivity 

as compaction affects soil moisture content (Kuenzer & Dech, 2013).  

Knowledge of the effect of emissivity is crucial for thermal data analysis as we can have 

situations where two distinct materials have the exact same kinetic temperature (Tkin) but 

remotely we could observe very different radiance temperatures (Trad) (Kuenzer & Dech, 

2013). Depending on the situation and circumstances of the research prospective, a TIR 

image needs to be corrected for emissivity when true kinetic temperatures need to be 

calculated. This is especially crucial, within urban areas where the effect of emissivity is 

strong. As an example we could state the low emissivity of metal, hence industrial zones 

with high amount of metal buildings (aluminium, copper, and tin roofs) may appear much 

colder in radiance temperature than kinetic temperature. On the other extreme when 

remotely sensing kinetic temperatures of water surfaces, vegetation or under moist 

conditions, the emissivity effect is close to one, and thus a quite exact assessment of the 

kinetic temperature without emissivity correction is possible (Kuenzer & Dech, 2013).  
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2.4 Thermal dynamics of Land Surfaces 
The high information content stored within TIR remote sensing makes this sources of 

information able to generate knowledge of high potential for hydrological model 

development. The information of surface heat/energy fluxes inherent in TIR data is 

integral for understanding landscape related processes for a high variety of conditions and 

scales in space and time. This allows us to monitor surface energy fluxes and by 

implementing TIR data in landscape studies; it provides measurements of basic input to 

the energy budget and its distribution in a landscape ecosystem. Quattrochi and Luvall 

(1999) note:  

“Understanding how thermal energy is partitioned across a landscape, and 

the magnitude or variations in surface temperatures emanating from various 

landscape elements (e.g. forest, crops, pasture, water), is essential to 

defining the overall mechanisms that govern land-atmosphere interactions.”  

As such we may quickly describe the thermal dynamics driving the landscape interactions 

which we may derive from Thermal Remote Sensing. The energetic dynamics may be 

defined as (after Quattrochi & Luvall, 1999):  

- The coupling of extant energy balances with the environment 

- The level of energy inputs (and, hence outputs) 

- The kinds of energy transformations that occur 

- The mix of energy outputs, which can be regarded as yields 

TIR remote sensing data can hence be important, as it provides measurements of thermal 

energy fluxes. Thus, its usefulness is apparent for e.g. the parameterization of soil 

moisture or the better simulation of landscape energy exchanges over a variety of 

conditions on several scales of space and time. 

Let’s start with the most basic and broad equation of the energy flow through a natural 

system:  

This equation is valid for long time periods and for most of the natural systems. On shorter 

intervals, the energy balance differs significantly from equality. The reason is accounted 

for in energy accumulation or depletion in the system’s energy storage. For this example, 

see land-atmosphere system, if the energy storage is increasing, it is probably an increase 

in soil or air temperature. Consequently, there is an important link, between the process 

(energy flow) and its response (temperature change). Quattrochis and Luvall call this a 
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“process-response system” (1999), because it attempts to link causes with effects. In this 

case this would include the abilities to absorb, transmit and emit radiation and the ability 

of a system to conduct, convect and store energy (Oke, 1987). Consequently, with the use 

of TIR data we can infer soil moisture or evapotranspiration. To do so, we would need to 

write the general equation above into a more useful and specific form, by segmenting the 

net radiation (which represents the amount of energy available at the surface) into other 

energy balance and flux components. So we write  

Where RN being the net radiation, S is the total solar radiation available at the surface, 𝛼 

is the broad-band surface albedo, 𝐿𝑤𝑑 being the downwelling long-wave radiation, Ts 

being the surface temperature, 𝜖 being the emissivity and 𝜎 representing the Stefan-

Boltzmann constant. The RN on its turn can furthermore be explained by the equation 

below:  

With G being the soil heat flux, H the sensible heat flux and LE the latent heat flux. LE 

can be seen as ET, nevertheless it is often referred to as LE, simply as ET is measured in 

terms of water in mm/day and LE is measured in W/m2 (Schmugge, Kustas, Ritchie, 

Jackson, & Rango, 2002). It becomes clear that land surface temperature, can be 

understood as the result of “the equilibrium thermodynamic state dictated by the energy 

balance between the atmosphere, surface and subsurface soil and the efficiency by which 

the surface transmits radiant energy into the atmosphere (surface emissivity)” 

(Schmugge et al., 2002). As such, opposite to reflected solar radiation spatial temperature 

variations may also be caused by invisible processes and material properties below the 

surface, making the interpretation of TIR data a very complex discipline (Grayson & 

Blöschl, 2001).  

Temperatures of all land surface materials change in a cycle of cooling and heating, but 

the response of the materials towards heating and cooling may differ considerably (Smith, 

2012). For example darker materials absorb more incoming radiation/energy and heat up 

faster than reflective materials. Additionally if two materials absorb the same amount of 

temperature, the maximum temperatures may be differing (Kuenzer & Dech, 2013). All 

of these facts are results of the thermal capacities of materials. The properties of materials 

define the heat/energy required to induce a raise in temperature for example. As the land 
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surface heats up energy may be transferred to cooler levels in the vertical soil column by 

conduction. On cooler days the reverse effect can be observed. These temperature 

exchanges may extend as deep as 30 cm below the surface (Smith, 2012). Additionally 

these heat transfer rates strongly depend on material properties such as bulk density or 

thermal conductivity. These effects are summed up under the term of “thermal inertia” 

controlling, diurnal and seasonal surface temperature variations. Thermal inertia is a 

function of density, thermal capacity and thermal conductivity. These properties are 

strongly dependant on soil characteristics such as composition, porosity and is as such 

often related to soil moisture content (Pratt & Ellyett, 1979; Lu et al., 2009). 

Consequently, with TIR remote sensing we might not only observe land surface 

functioning with regard to hydrological processes, but also spatial variability. If 

observations are available for consecutive time-steps, we can gather information about 

the temporal variability. The link between hydrological process and energy balance 

characteristics can be translated through the ET-term in the above mentioned equation. 

Which in turn is closely linked to the water balance, which is simply written as (Smith, 

2012):  

Where     is the change in water storage in the soil, P is precipitation, ET is 

evapotranspiration and Q is runoff. From a hydrological point of view, it is hence possible 

to understand flows and transfers of water across and between landscapes by inferring 

them from these energy flux coefficients.  

Several studies have been done to deduct evaporation, evapotranspiration or soil moisture 

conditions from these coefficients (Grayson et al., 1997; Kalma, McVicar, & McCabe, 

2008; Pratt & Ellyett, 1979; Sánchez et al., 2008). However, difficulties arise as 

“technological means as well as analytical rational are needed to gain more knowledge 

about energetic processes for a specific landscape” (Quattrochi & Luvall, 1999). By this, 

they mean that direct point measurements are needed for validation. Additionally some 

meteorological constants need to be known for atmospheric corrections as well as several 

surface and subsurface characteristics in order to define the coefficients of the energy 

balance. Consequently, the focus of this thesis lies on the deduction of patterns 

representing direct internal states rather than inferring physically meaningful values from 

the radiation measured at the sensor.   
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3 Methods and Materials 

3.1 Study Areas 
Two Austrian study areas have been chosen to delineate patterns representing 

hydrological heterogeneity using principal component analysis. The catchments of the 

Rivers Ybbs and Traisen are part of the Danube basin in Lower Austria and drain the 

region towards the North into the Danube. The selection of the study area was done firstly 

on behalf of investigating the method under different landscape characteristics than those 

shown in the paper of Müller et al. (2014), i.e. elevation, soil types etc. Secondly the 

criteria of data availability played an important role in the process of choosing the 

appropriate study areas. As both catchments are being monitored and play roles in several 

research projects, datasets providing information on the landscape characteristics were 

available. 

The Ybbs river catchment is characterized by warm temperate climatic conditions with 

an annual precipitation of up to 900mm and belongs to the northern limestone pre-Alps.  

The Traisen river catchment is similarly summarized with a warm temperate climate and 

reaching from the northern limestone pre-Alps northwards toward the Danube. 

Figure 4: Ybbs and Traisen Catchments in Lower Austria, showing Ybbs and Traisen Rivers, its outlets into the Danube 
River and its location relative to the Austrian Territory. 
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3.1.1 Ybbs River Catchment 
The upper Ybbs catchment is a mountainous region with high slopes and rocky 

underground (daNUbs, 2003). The lower Ybbs catchment is characterized by a large 

valley of pastures and floodplains. The main characteristics of the Ybbs river catchment 

are listed in the table below.  

Table 1: Main Characteristics of the Ybbs river catchment 

Ybbs 

Catchment area [Km²] 1370 

Mean annual Precipitation [mm/a] 862 

Average Terrain Slope [%] 23.71 

Population Density [inh/Km²] 68 

Landuse Characteristics  Arable land, Pastures, 

Forest 

In the following chapter the most important landscape defining the Ybbs catchment will 

be displayed and explained.  

Elevation Characteristics 

 

Figure 5: Digital Elevation Model of the Ybbs Catchment, showing 
the Ybbs River. Aster GDEM on a 30x30m grid 

The height differential in the 

Ybbs river catchment ranges 

from 250m to 1900m above sea 

level. The average slope of the 

catchment is 23%. Nevertheless 

approximately one third of the 

catchment, see the downstream 

region, is flat or hilly with mean 

elevations below 500 m above 

sea level. The upstream region is 

characterized by narrow valleys 

and steep slopes with elevations 

higher than 500 m above sea 

level.  
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Landuse characteristics 

  

 

 

Hydrogeological Characteristics 

 

 

Figure 6 Landuse characteristics for the Ybbs Catchment 

Landuse characteristics were 

derived from the Corine Land 

Cover maps issued by the 

European Environmental 

Agency. The grid resolution is 

100x100 m. The dominant land 

cover types in the Ybbs 

catchment are pastures, forestry 

and arable lands (European 

Environment Agency, 2007). 

The hydrogeological map of the 

hydrological Atlas of Austria 

(digHAO) was used to derive 

geological subsurface 

characteristics affecting 

hydrology. The three major 

geological characteristics are 

Flysch (46%), Dolomite (44%) 

and alluvial deposits (8%). 

Granite covers 2% of the total 

catchment area.  

Figure 7: Hydrogeology for the Ybbs Catchment 
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3.1.2 Traisen River Catchment 
The upper Traisen catchment is a mountainous region with high slopes and rocky 

underground. The lower Traisen catchment is characterized by larger floodplains. In 

direct relation to the the high elevation range (200m – 1800m) climate changes north to 

south (from pannonian to alpine). Below are listed the main characteristics for the Traisen 

river catchment. 

Table 2: Main Characteristics of the Traisen river catchment 

Traisen 

Catchment area [Km²] 911 

Mean annual Precipitation [mm/a] 600 - 1500 

Average Terrain Slope [%] 26.42 

Population Density [inh/Km²] 13 

Landuse Characteristics  Arable land, pastures, 

Forest, Floodplains 

 Elevation Characteristics 

 

 

 
Figure 8 Digital Elevation Model of the Traisen Catchment, showing 
the Traisen River. ASTER GDEM on a 30x30m grid 

We see the high altitudinal 

difference from the South being 

in the Pre-alpine environment to 

the lower North, where the 

Traisen River flows into the 

Danube. Remarkable for this 

catchment is the big expansion 

of the drainage area in the alpine 

environment, compared to the 

small drainage area in the valley 

of the catchment 
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Landuse Characteristics 

 

 

Hydrogeological Chararcteristics  

 

 

 

 

Figure 9: Landuse characteristics for the Traisen Catchment 

Figure 10: Hydrogeology for the Traisen River Catchment 

We can see the dominance of 

forestry in the southern part of 

the catchment and the 

agriculturally intense northern 

areas of the basin. Land cover 

characteristics were derived 

from the Corine Land Cover 

maps (100x100m) made 

available by the European 

Environmental Agency (EEA, 

2006). 

The hydrogeology of the basin is 

classified into five major zones, 

these being namely Dolomite 

(31%), Flysch (27%), Sandstone 

(24%), Calcerous Rock (3%) 

and Alluvial Deposits (15%). 

The dataset was derived from 

the digital hydrological Atlas of 

Austria.  
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3.2 TIR Database 
Tests using different satellite systems were completed. For example Landsat 7 only has 

usable products for a time range of 4 years. In 2003, a so called Scan Line Corrector 

(SLC), compensating the forward motion of Landsat 7 failed, and to date could not be 

repaired. The effect of this failure is that approximately 22 per cent are lost in an image 

and no-data gaps are as wide as 450 m. Hence Landsat 7 was rejected. 

Aster is a satellite system of Japanese and US American cooperation on board the TERRA 

satellite, and is an efficient remote sensing system producing images of high spatial and 

spectral resolution with 14 bands from visible to thermal infrared. However both 

catchments were laying between overflying zones, which made the use of ASTER 

impossible as it would need to interlock two images produced on two different dates and 

so giving different temperature values, this would be scientifically untenable   

As a consequence Landsat 5 was chosen as the satellite sensor system for this study. 

Landsat 5 was operated by NASA and USGS and launched in 1984. It was officially 

decommissioned in 2013 producing granules for a time span of 28 years, thus being the 

“longest-operating Earth observation satellite” (Betz, 2013). The satellite orbit is sun 

synchronous and mean solar overpass time is 9.45 am. It needs 99 minutes for one orbit 

(14 orbits a day). The temporal resolution is 16 days (16 days to scan the entire Earth) 

and granules are produced for 7 bands covering a spectral bandwidth from 0.45µm to 

12.50µm. Each TIR image covers an area of approximately 185km east to west and 170 

km north to south (Betz, 2013). Spatial resolution for the TIR band is 120 m which is 

resampled to 60 meter (since 2010 to 30 m) pixel size in the delivered data product 

(USGS, 2014). Landsat 5 operates at a height of 705 km. The TIR band of Landsat 5 

operates at the atmospheric window, between 10.4 µm and 12.5 µm (USGS, 2014).  

For the two different catchments, a total of 51 images were downloaded from the USGS 

Global Visualization Viewer (http://glovis.usgs.gov/) and the homepage of the USGS 

EarthExplorer (earthexplorer.usgs.gov), where Landsat 5 granules are freely available for 

a time period from 1984 to 2011. The pictures are composed of 23 images for the Ybbs 

river catchment and 28 images for the Traisen catchment. A further screening was done, 

in order to select only cloud-free images for the areas of the catchments of interest. In the 

end, a total of 11 images for the Ybbs catchment and 12 images for the Traisen catchments 

were retained.  
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3.3 Data Preparation 
The factors that needed to be accounted 

for temporal coherence, are common to 

all remote sensing. These include 

calibration, georeferencing and, 

depending on the atmospheric window, 

atmospheric correction. While 

calibration means the transformation of 

sensor counts, i.e. binaries, into 

brightness temperature on behalf of 

sensor specific calibration coefficient 

considering deterioration effects, 

georeferencing is the process of 

associating locations with the map, to 

assure spatial coherence (Alcântara, 

2013). Furthermore, atmospheric correction is the process of accounting atmospheric 

adsorption effects, to assure temporal coherence.  

In order to discriminate between product artefacts and land surface change in the 

information provided by the TIR time-series of Landsat 5, the granules need to be further 

processed. First of all, the images were “mosaicked” north to south in R-studio, using 

mean temperatures at overlapping raster cells (www.rstudio.com; R Core Team, 2014). 

The data lacked an accurate georeferencing. To counteract this effect which might 

influence the following principal component analysis, an automated georeferencing tool 

was implemented in R-studio. The tool was part of the “landsat” package provided by 

Goslee (2011) and uses the root mean square error as a simple routine providing relative 

georeferencing to one manually georeferenced image. Further the results were checked 

visually for coherence. In the next step, using an iterative model in the model-builder 

implemented in ArcMap-Tool of the ArcGis for Desktop software package 10.2.2 

(www.esri.com; Environmental Systems Research Institute, 2015) the TIR data was 

clipped to the relative catchment extents.  

Additionally, the data was converted from Binaries to At-Sensor radiance and from 

radiance to brightness temperature in Kelvin (see Figure 11). 

Figure 11: Left hand side shows the physical processes 
affecting the surface leaving spectral radiance, right-hand 
side explains the processing required to retrieve the surface 
kinematic temperature form the recorded digital numbers at 
the satellite-sensor (after Harris, 2013) 



    3 Methods and Materials 

 

26 
 

3.3.1 Conversion to At-Sensor spectral radiance 
In order to calculate the image data of the Landsat 5 granules into a physical meaningful 

common radiometric scale, the first step is to calculate at-sensor spectral radiance. As 

discussed above before the granules reach the distribution media, they are rescaled and 

calibrated from the raw digital numbers transmitted from the satellite system to calibrated 

digital numbers in order to standardize the scaling for all scenes (Chander et al., 2009). 

This initial radiometric calibration is done using 32-bit floating point calculations to 

convert the unprocessed image digital numbers to units of absolute spectral radiance 

(Chander et al., 2009). For Landsat 5 they are then rescaled to 8-bit (values range from 0 

to 255). When now converting the Digital Numbers to At-Sensor spectral radiance, 

knowledge of the lower and upper limit of the original rescaling factor is needed (Chander 

et al., 2009). The following equation is used to convert the calibrated digital numbers to 

at-sensor radiance:  

Where:  

Lλ= Spectral radiance at the sensor [W / (m2 sr µm)] 

Qcal= Quantized calibrated pixel value [DN] 

Qcalmin= Minimum quantized calibrated pixel value corresponding to LMINλ [DN] 

Qcalmax= Maximum quantized calibrated pixel value corresponding to LMAXλ [DN] 

LMINλ= Spectral At-Sensor radiance that is scaled to Qcalmin [W / (m2 sr µm)] 

LMAXλ= Spectral At-Sensor radiance that is scaled to Qcalmax [W / (m2 sr µm)] 

(Chander et al., 2009) 

3.3.2 Conversion to At-Sensor brightness temperature 
In the next step all thermal band data was converted from at-sensor spectral radiance to 

effective at-sensor brightness temperature. The at-sensor brightness temperature is a one-

to-one conversion from radiance to temperature, assuming that the earth’s body is a black-

body, hence a perfect emitter (spectral emissivity is 1)1. Due to the effects of emissivity, 

two different materials may have the same temperature but appear as different brightness 

temperatures in the TIR time-series. As emissivity is strongly linked with soil hydraulic 

properties (e.g. compaction), differences in temperature appearances are beneficial to 

assess units of the same hydrological behaviour. By using a reverse calculation of 

                                                           
1 As a consequence, brightness temperature may appear higher than the actual real temperature, as the 
effect of emissivity is not accounted for. 
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emissivity to get absolute land surface temperatures for example these advantageous 

effects visualizing patterns of hydrological behaviour would reduce considerably. Hence 

a conversion to at-sensor brightness is the adequate approach here when accentuating 

patterns of hydrological behaviour. 

The conversion from at-sensors spectral radiance to at-sensor brightness temperature is:  

Where:  

T= Effective At-Sensor brightness Temperature [K] 

K2= Calibration constant 2 [K] 

K1=Calibration constant 1 [W / (m2 sr µm)] 

Lλ= Spectral radiance at the sensor [W / (m2 sr µm)] 

(Chander et al., 2009) 

3.3.3 Atmospheric and Emissivity Correction 
 

Figure 12: Landsat 5 Band 6 (TIR) Relative Spectral Response Curve (after Barsi, Barker, & Schott, 2003) 

When applying atmospheric correction, parameters describing the atmospheric physical 

interception processes linked to water vapour content, need to be inserted into a radiative 
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transfer equation. However accurate data coherent with the overpass times of the satellite 

are often unavailable in reality. This uncertain atmospheric contribution is one of the main 

problems for the remote sensing of surface temperature at infrared wavelength (French et 

al., 2008). These key difficulties still represent considerable uncertainty about the 

accuracy in the derived land surface temperatures (Kalma et al., 2008). Which is the 

reason why the potential of TIR time-series has not been fully realized yet. The peak 

emissions for mean terrestrial surface temperatures (~300K) occur in the 8-12.5 µm range 

of the wavelength (Cracknell, 1997). Figure 12 shows the relative spectral response at 

this wavelength, the same range where the atmosphere allows peak atmospheric 

transmission. That being the range of the wavelength where the atmosphere is the most 

transparent, see Chapter 1.1. Hence the question arises as to whether one should carry out 

atmospheric correction of the data or not (Cracknell, 1997). Qin et al (2001) state that it 

is rational to assume that the part of the intercepted radiance that is reflected by the 

atmosphere can be set equal with the radiance emitted of the atmosphere for clear days 

(see Figure 11 L(λ) and τ(λ)). There is still some atmospheric attenuation due to water 

vapor. So the magnitude of the atmospheric adsorption will depend on the water vapor 

content in the atmosphere. The at-sensor brightness temperature may vary from the actual 

land surface temperature by as much as 5°C (Cracknell, 1997). Cracknell further writes: 

“While it would be naïve to regard the correction as a simple fixed offset over the whole 

scene, it is, nevertheless, reasonable to assume that the value of the correction varies 

relatively slow across the scene.” Furthermore, both Landsat 5 and 7, each with a single 

thermal band provide no coherent possibility of correcting atmospheric effects unlike 

multi-thermal band instruments (Barsi et al. , 2005). Hence additional meteorological data 

become indispensable for the conversion from Top of Atmosphere temperature to 

surface-leaving temperature (Barsi et al., 2003). Furthermore have Müller et al. (2014) 

done tests in comparing PC’s computed on extracted land surface temperature with initial 

binaries which showed almost identical results. They further state: “a proper conversion 

to LST is in our opinion not fundamentally needed”. In conclusion due to the above stated 

facts, and to the high relative spectral response of Band 6 of Landsat 5 the atmospheric 

correction was omitted at this place. Note that clear and cloud-free days need to be 

selected for the calculation due to this omission.  

Another interfering process when deriving land surface temperatures is the Emissivity. 

As stated in Chapter 2.3.4, Emissivity can be potentially very useful for distinguishing 

surface compositions. Salisbury et al. (1985) show for example that “emissivity’s of soil 
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and vegetation are commonly distinct and do not rely upon plant chlorophyll content”. 

Hence by back-calculation of emissivity to land surface temperatures, a potential 

supplementary tool for distinguishing hydrological patterns would be lost and hence 

emissivity was retained in the dataset, calculation was done on brightness temperature 

data.  

3.4 Principal Component Analysis 
In order to identify patterns of similar functional behaviour the TIR time-series are 

analysed using Principal Component Analysis (PCA). PCA is a multivariate statistical 

model which focuses on the variables. PCA generates new sets of components, which 

represent alternative descriptions of the data. PCA transforms the original pixel vectors 

previously related to temperature values into new components, which potentially make 

features visible that were not identifiable in the original data set. Further to this PCA can 

reduce the number of dimensions in a dataset without considerably reducing the 

information content. When we think of the specific example of this work, the information 

of interest (e.g. Landcover, geology, elevation) of one time-step is integrated within the 

other time-step and hence we see redundancy in the dataset. In order to get rid of the 

redundancy and reduce “noise”, principal component analysis transforms the original 

variables orthogonally into a new set of uncorrelated variables, called principal 

components. These are linear combinations of the original variables, whereas the idea of 

data reduction consists in trying to represent as much of the variation of the original 

variables through as less principal components as possible. 

3.4.1 The PCA-transformation 
The time-series of TIR remote sensing images will be understood as a multidimensional 

space, with as many dimensions as there are time-steps. For each pixel in the area under 

investigation a vector space with as many axes as there are time-steps is mapped. The 

measurements at different spatial locations (see pixels) are treated as variables and the 

time steps play the role of observations. Each pixel of each time-step within the image 

under investigation is plotted as a point in such a space with coordinates corresponding 

to the temperature values of the pixels. When applying PCA the “most dominant 

controlling factors for the temporal dynamics” (Müller et al., 2014) can be identified.  

In order to do so the position of the points (representing a pixel) in the multi-temporal 

space can be described by vectors, whose components represent the individual thermal 

response of each time-step. Assuming that the points (pixel values) correlate, and that the 
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assumption of the data not being completely independent holds true, so their axes of 

correlation are not orthogonal. The statistical test of dependence is covariance (Clark 

& Rilee, 2010). Small covariance indicates independence while the highest covariance 

indicates the most dependence. The task is now to find the strongest covariance 

relationship between the dates which derives the primary component axis. Each of these 

axes is created by a linear transformation-rotation and translation (Ng, 2008). 

Given a dataset of values representing temperatures, at each pixel we have:  

We can transform and reduce the dataset to a k-dimensional dataset (k ≤ n). After 

organizing the dataset in a matrix we need to do some pre-processing. First we need to 

centre our data. This means that for each temperature image we subtract the means of the 

images of themselves, so that each of the dimension in the dataset has zero mean (Ng, 

2008). 

Set:  

We replace:  

In the next step we compute the variances of each of our time-steps and divide the centred 

data by the standard variation, so that our data set is represented in unit variance. This 

process is called scaling, or normalizing. It makes one scale of features of different scales. 

This process might not be necessary if we have only one scale within the dataset, as it is 

the case for this dataset. However, if this step is neglected the principal component 

analysis will tend to give more emphasis to those variables that have higher variances 

than to those variables that have very low variances. Then we speak of non-standardised-

PCA. This normalisation prevents certain features to dominate the analysis because of 
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their large numerical values. If this step is computed, we speak of standardised PCA. Thus 

we compute the normalization process:  

And replace 

Now as we have centred and scaled our data, in a next step we would find the axis of 

highest variation (Clark & Rilee, 2010). This could be translated as to find the axis or 

direction which the projected data to that direction are widely spaced out and vary as 

much as possible (Ng, 2008). PCA now consists of searching the direction of the vector 

u that maximises the variance when dataset is projected upon. Hence the need to 

compute a measure of covariance (if data was not scaled we speak of a measure of 

correlation), by calculating the covariance (or the correlation) matrix of the dataset. The 

covariance matrix is defined by:  

By definition, the direction u where the dataset should be projected on is computed by 

calculating the eigenvector of the covariance matrix (Richards & Jia, 2006). Eigenvectors 

are defined as:  

With:  

A being the covariance matrix Σ in this case.  

Λ being the eigenvalue 

µ being the eigenvector.  

And as such the principle eigenvector is the one that maximises the covariance matrix (in 

the old projection), or eigenvalue (covariance matrix in the new projection) that gives us 

the best direction onto which to project our data (Richards & Jia, 2006). This is also 

known as the Karhunen-Loève transform or Hotelling transform (Jolliffe, 2002). 

Generally, if we want a k-dimensional subspace onto which we want to project our data, 

we choose the {u, … , uk} to be the top k eigenvector of our covariance matrix Σ, and 

hence the top k eigenvectors corresponding to the top k eigenvalues, in descending order 
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(Jolliffe, 2002). These eigenvectors now give us the new basis onto which we can project 

our data. To do the projection we would simply represent the original dataset x (i) in the 

new {u (1)… x (k)} basis by multiplying:  

The figure below illustrates the orthogonal transformation in a 2-dimensional space. The 

initial data x1 and x2 are highly correlated. After the rotation, corresponding to the above 

explained Karhunen-Loève transform or Hotelling transform, the components y1 and y2 

are uncorrelated, with y1 explaining most of the information or variance of the dataset. 

 

  

Figure 13: Illustration of PCA rotation. y1 and y2 correspond to the 
eigenvectors of the covariance matrix of the initial dataset and 
form the new basis onto which the data is projected. (Source: 
Wikimedia Commons) 
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4 Results 
Thermal dynamics of land surfaces are controlled by their thermal properties which are 

strongly linked to the water balance through the latent heat fluxes that are inherent. To 

deduce functional units of similar hydrological behaviour, a principal component analysis 

was performed with a time-series of Landsat 5 TIR images for the catchments Ybbs and 

Traisen. For the Traisen catchment 12 cloud-free images were used as an input, whereas 

for the Ybbs catchment the PCA was calculated for 11 time-steps. The extent of the time-

step was clipped using ArcMap (Environmental Systems Research Institute, 2015) to the 

extent of the catchment. The choice of changing or widening the extent was limited due 

to the overpass area of the satellite being close to the western edges of the Ybbs 

catchment. As such, to not further reduce the dataset, this work is computed on the spatial 

extent of the catchments.  

Table 3 and 4 show the absolute and cumulative proportion of variance explained through 

the uncorrelated Principal Components. By definition the first principal component 

explains the most of the variance within the thermal time-series, whereas the second 

component explains the second most important uncorrelated variance, and so on. The 

principal component analysis was computed in Rstudio (R Core Team, 2014). The 

following components are centred in pre-processing and were further standardised (i.e. 

scaled) to give each image similar influence/weights on the components (Hirosawa et al., 

1996).  

Table 3: Importance of Components according to centred and standardized Principal Component Analysis of 11 
images displaying thermal variability in Ybbs Catchment 

Ybbs PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

Proportion 

of Variance 

0.792 0.074 0.024 0.021 0.017 0.016 0.014 0.012 0.012 0.010 0.009 

Cumulative 

Proportion 

0.792 0.866 0.890 0.911 0.928 0.944 0.958 0.970 0.982 0.991 1 

 

In the Traisen catchment, the first three components explain 86 % of the thermal 

variability in the 11 images. For the Ybbs catchment 86% of the variability can already 

explained through PC1 and PC2. 
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Table 4: Importance of Components according to centred and standardized Principal Component Analysis of 12 
images displaying thermal variablility in Traisen Catchment 

Traisen PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Proportion of 

Variance  

0.755 0.072 0.033 0.028 0.024 0.019 0.015 0.014 0.010 0.009 0.009 0.006 

Cumulative 

Proportion 

0.755 0.828 0.861 0.889 0.914 0.934 0.949 0.963 0.974 0.984 0.993 1 

 

Figure 14 shows the images generated by the principal component analysis. After a visual 

inspection we see that for the first two principal components, some patterns become 

apparent that might explain hydrological behaviour and/or thermal inertia characteristics 

of soil and land cover types. In the first component a strong spatial variability is visualized 

with the river Ybbs that can be differentiated as well as urban areas and of course relief 

characteristics in the south. Furthermore, forested areas can be distinguished visually 

from pastures, riverbeds and urban areas. For the second principal component, a first 

visual estimation of the represented source of variation is a more difficult task. From 

south to north, the mountainous region can be distinguished as well as some patterns in 

an east-west corridor can be seen in the valley in the north of the catchment. The third 

and the fourth images show only very short gradients of variations. The third principal 

component shows some patterns in the urban areas of the catchment. Furthermore, these 

images show already some noise as can be seen by the representation of small clouds in 

the alpine environment. Upon further inspection of the proportions of variance in Table 

3, we see that these images merely represent 2% of the total variance contained in the 

dataset.  
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Figure 15 below shows the first four principal components for the Traisen catchment 

explaining the sources of uncorrelated variance in decreasing order. While the first 

principal component shows the variation that is explained by spatial distribution, with 

land cover types and elevation characteristics being represented. Furthermore, the 

riverbed is represented as well as urban areas. Component number 2 shows a distinct 

pattern, with a less stringent distinction between the valley and the mountainous areas. 

Moreover, characteristics potentially representing underlying hydrological behaviour 

might be represented. The components 3 and 4 each represent approximately 3% of total 

variance comprised in the dataset. The third component shows some patterns strikingly 

Figure 14: First 4 Principal Components for the Ybbs Catchment explaining a Total of 91% of the variance in 
temperature values 
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on the areas that are known to be urbanized regions, similar to the Ybbs catchment’s 

principal component 3. 

 

Figure 15: First 4 Principal Components for the Traisen Catchment explaining a Total of 88% of the variance in 
temperature values 

To further deduct knowledge from the principal component analysis we should look at 

the component loadings, representing the weight/influence each of the time-steps has on 

the output produced by the PCA.   
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4.1 Component Loadings 

 

Figure 16: Brightness Temperature and Component Loadings (Y-axis) on the original TIR images (X-axis) of the first 
three principal components for the Ybbs Catchment. Mean Brightness Temperature for the catchment area was 
calculated for each acquisition date. 

 

Figure 17: Brightness Temperature and Component Loadings (Y-axis) on the original TIR images (X-axis) of the first 
three principal components for the Traisen Catchment. Mean Brightness Temperature for the catchment area was 
calculated for each acquisition date. 

Figure 16 and Figure 17 illustrate the correlation between each of the time-steps with the 

components being diagrammed. We see the influence of the time-steps to each of the 

components as well as the mean brightness temperature at each time-step. On the 

13.10.2006 in Figure 16, we see a negative correlation with PC2 and PC3, which indicates 
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that this time-step has a “latent” pattern in PC2 that is inverse to the one shown in PC3. 

Similarly, PC3 correlates positively with this time-step which indicates a similarity, even 

though it might be hidden or unapparent to some extent, of this time-step with the patterns 

in PC3. Analogical observations had been done in Figure 17, (i.e. time-step 27.05.2005). 

Another relationship that could be established is the one that becomes apparent by the 

loadings of Component 1. No seasonality can be observed, the loadings are consistent 

over the entire period. Furthermore, the relationship between principal component 1 and 

the major element explaining variability in temperature can be established, this being the 

one that occurs spatially. Nevertheless, before further analysing the patterns that are 

inherent in the components, the importance of a good distribution of the images for 

distinct conditions is shown in a sensitivity analysis, which is treated in detail in the 

following chapter. The idea was to analyse whether images with high influence on a 

component, show some special characteristics that might lead to a more profound 

interpretation of the components analysis. 

4.2 Sensitivity Analysis 
As shown in Chapter 4.1, specific images have specific influence on the different 

principal components. This raises the question what information within these images have 

these influences on the outcomes of the PCA and if more knowledge about the behaviour 

of PCA could lead to better results. This might point to a more efficient methodological 

approach, improving the representation of temperature variability in the first and more 

importantly in the consecutive components. To answer this question, a script was coded 

in R that automatically calculates principal components with lesser images and compares 

these with the initial principal component analysis calculated with 11, resp. 12 images. 

Absolute correlations of the means give a measure of similarity in information content 

between the consecutively calculated principal components ignoring images and the 

initial principal component.  
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Table 5: Mean absolute correlations and standard deviations between initial Principal Component Analysis and PCA 
with less input images. For each scenario, all possible variations of PCA’s were calculated and mean absolute 
correlations as well as standard deviations with the initial PCA are shown for the first and second component. 
Traisen catchment 

Traisen Principal Component 1 Principal Component 2 

Scenario Correlation SD Correlation SD 

1 Out 0.999 0.0003 0.968 0.0860 

2 Out 0.997 0.0006 0.933 0.1230 

3 Out 0.996 0.0009 0.892 0.1560 

4 Out 0.993 0.0013 0.845 0.1860 

5 Out 0.990 0.0019 0.790 0.2133 

6 Out 0.987 0.0028 0.727 0.2384 

 

Table 5 reveals a major behavioural aspect of the principal component analysis with time-

series of granules: with decreasing input the information content of the first principal 

component remains nearly identical for all possible variations of initial time-steps. 

However, the information content and the patterns represented differ from the initial 

second principal component when other combinations are used for PCA. Analogical 

behaviour can be seen when comparing the effects of the inputs on the represented 

structures for the first and second component analysis for the Ybbs in the table below. 

Table 6: Mean absolute correlations and standard deviations between initial Principal Component Analysis and PCA 
with less input images. For each scenario, all possible variations of PCA’s were calculated and mean absolute 
correlations, as well as standard deviations with the initial PCA are shown. Ybbs catchment 

Ybbs Principal Component 1 Principal Component 2 

 Mean Absolute Correlation SD Correlation SD 

1 Out 0.999 0.0003 0.979 0.0521 

2 Out 0.997 0.0007 0.953 0.0810 

3 Out 0.995 0.0012 0.919 0.1128 

4 Out 0.993 0.0020 0.876 0.1516 

5 Out 0.990 0.0031 0.820 0.1917 

6 Out 0.985 0.0049 0.750 0.2329 

 

A principal component analysis was calculated with 9 TIR images and then compared 

with the initial principal component that was calculated on 12 images. Thus the algorithm 

consecutively dropped 3 images and calculated all possible variations of images. This 

allowed an examination on the behaviour of the first principal component towards its 

inputs. The idea behind this computation was the identification of images with stronger 
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impacts on the patterns and structures represented in the first component. With further 

analysis, this would allow a better identification of the information content represented 

within PC1. Subsequently, we interpret that the first principal component shows nearly 

identical patterns when PCA is computed on 9 images or on 12. Comparing with Table 

5, we see that even for a principal component calculated with only 6 initial TIR images, 

see half original Input, the information content stored in the first principal components 

correlates for 98% with the first principal component calculated on 12 images.  

Figure 18 shows correlations and standard deviation between information stored in PC2, 

computed on 9 images, and the PC2, computed with the initial 12 images. When analysing 

Figure 18 we see that the second components of the PCA calculated without the first and 

second images of the initial image-stack merely correlate with about 50 % for the initial 

second component. When the second image of the initial image stack is used as an input 

for component analysis, the 

correlations rise to about 75%. 

As the further components only 

represented a proportion of 

variance of 2 to 3% of the total 

thermal variability, no further 

analysis was done on these 

components here. 

As a consequence of these 

observations, it will be further 

investigated in the following 

chapters whether the first 

principal components might be a 

combination of the major surface 

characteristics that are spatially varying and controlling temperature variability across the 

landscape. This might be an explanation for the above seen behaviour in the sensitivity 

analysis. If this holds true, it might be stated that the second component would be the first 

“change” component, displaying change in temperature variability. As such the 

expectation of the second component displaying properties like thermal inertia and such 

deductible subsurface characteristics is held up here. To examine these expectations, the 

distributions of the patterns represented in the components were compared to the patterns 

Figure 18 : Mean absolute correlations and standard deviations of 
all possible PCA’s with 9 time-steps) as input for PC2 compared to 
Initial PCA (12 time-steps). Traisen. 



    4 Results 

 

41 
 

represented in datasets of known surface and subsurface characteristics influencing 

hydrological behaviour.  

4.3 Characterising Structure and Heterogeneity 
Kernel densities were estimated using the density function provided by RStudio (R Core 

Team, 2014). This allows for a further interpretation of the patterns represented within 

the component values and whether these patterns fit the heterogeneity of a specific 

characteristic in the catchment, e.g. relationship with topography, land cover or 

geological variables. Furthermore the modal values of the distribution functions are 

displayed in the rug of the graphs allowing a better visualization and interpretation of 

clustered distributions. To calculate accurate kernel densities, the raster files displaying 

the specific surface and subsurface characteristics needed to be reprojected to match the 

resolution of the principal components. This was done using the reproject function of the 

raster package in R (Hijmans & van Etten, 2012; R Core Team, 2014). Several tests 

concerning the projection method were done. No significant difference could be observed 

in the resulting kernel densities except for the texture data. While all classified nominal 

values were interpolated using the nearest neighbour method, all continuous variables 

were reprojected with bilinear interpolation. All kernel densities were calculated on a 30 

m grid raster. Except the probability distribution functions of the soil texture file were 

calculated on a 10m grid cell size as too much information would have been lost through 

the interpolation process. 
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4.3.1 Principal Component 1 

Topography 

 

Figure 19: Density Plot for the Principal Component 1 and Digital Elevation Model for the Ybbs Catchment with mode 
displayed at the bottom. Bandwidth: 0.8. 

Figure 19 shows the kernel density distribution of the first Principal Component for the 

Digital Elevation Model. The DEM was classified with k-means, a clustering algorithm 

that is aiming a partitioning of observations into k clusters with each observation being 

classified into the cluster that has the closest mean (MacKay et al., 2003). We see the 

distinct peaks of the probability distribution functions, meaning that the component 

values of the first principal component are representing the temperature variability 

influenced by the heterogeneity of the digital elevation model. The patterns represented 

in the component values result from the highest proportion of variance explained, that are 

being assumed to be the temperature variability caused by the heterogeneity of the 

catchment landscape. The influence of the digital elevation model on the landscape 

heterogeneity causing temperature changes is graphically visualized by the well spread 

distribution functions.  
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Figure 20 shows the density plots for the Traisen catchment. We see the distinction of the 

first class of the DEM which reflects the valley of the catchment. Within higher regions 

the distinction of topographical characteristics within the first principal component is less 

apparent, but yet significant enough to reveal the importance of elevation on the 

variability of temperature.  

Land Cover Characteristics 

Figure 21 shows the kernel densities for the Ybbs catchment according to their land cover 

characteristics. The Corine Land Cover Map was clipped to the extent of the catchment 

and classified into the 6 most dominant classes. We see the distinct peaks of the densities, 

showing the strong relationship between PC1 and land use characteristics. 

Figure 20: Density Plot for the Principal Component 1 and Digital Elevation Model for the Traisen Catchment with 
mode displayed at the bottom. Bandwidth: 0.8. 
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Figure 21: Density Distributions and corresponding modal values of Principal Component 1 for Landuse 
characteristics of the Ybbs catchment. Bandwidth= 0.4. 

The strong influence of land cover characteristics on the temperature variability patterns 

becomes visible here: urban areas have a completely different behaviour than water 

related to temperature variability. The other patterns, in between these very distinct 

classes related to temperature change, are also well defined. Grassland and arable land 

are somewhat behaving similarly and the forested areas are less well distinguishable from 

each other. However the modal values indicate that land cover information is still 

extractable from the nominal values of the first component. 

The same estimation of distribution functions was computed for the first principal 

component and the land cover classification of Traisen catchment, displayed in Figure 

22. 
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Figure 22: Density Distributions and corresponding modal values of Principal Component 1 for Landuse 
characteristics of the Ybbs catchment. Bandwidth= 0.4. 

We can see in Figure 22, that for the Traisen catchment the distributions for the land cover 

characteristics are well distributed. Distributions for agriculture, urban areas and pastures 

are well distinguishable, whereas broadleaf forest and coniferous forests are clustered and 

strongly overlapping.  

Soil Texture Characteristics 

In the next step, it was tested whether soil hydraulic properties were identifiable. The 

dataset used for comparison was to a greater extent incomplete for both regions and only 

very dispersed point measurements were at hand. Consequently no patterns could be 

found due to these incomplete data. However a dataset with soil texture was at hand 

covering up to 44 % of the overall area of the Ybbs catchment and 30% of the Traisen 

catchment with soil texture characteristics information. This was the best dataset at hand 

for soil characteristics and can be seen in the ANNEXE II. Its interpretation should be 

done carefully due to the incompleteness of the dataset. However due to the assumed 

strong link between soils texture characteristics, its associated hydraulic properties and 

thermal properties of the soil (see Chapter 2.4), the inherent patterns are compared here.  
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Figure 23: Density Distributions and corresponding modal values of Principal Component 1 for Soil texture 
characteristics of the Traisen catchment. Bandwidth= 0.4. 

Figure 23 shows the patterns in the component values, which are not well representing 

texture characteristics. Silt loam and loam are the most dominant soil textures in the areas 

covered by the dataset in both catchments. Nevertheless, while clay loam and loamy sand 

are the most dominant patterns identifiable in the first component, the rest of the 

classifications could not be determined nor classified using the first principal component. 

 

Figure 24: Density Distributions and corresponding modal values of Principal Component 1 for Soil texture 
characteristics of the Ybbs catchment. Bandwidth= 0.4. 

The component values show similar poor representations of soil characteristics for the 

Ybbs catchment. While silt loam and loam represent the majority of the textures 
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observable in the catchment, none of this information could be identified in the allocation 

of the component values.  

Hydrogeology 

 

Figure 25: Density Distributions and corresponding modal values of Principal Component 1 for Hydrogeological 
characteristics of the Ybbs catchment. Bandwidth= 0.4. 

Figure 25 shows the conjugated characteristics of hydrogeology and the first principal 

component for the Ybbs catchment. We see the relation of Flysch and alluvial deposits 

through the bounded distributions and the strong distinction towards dolomite. 

Noticeably, granite shows two peaks. 

 

Figure 26: Density Distributions and corresponding modal values of Principal Component 1 for Hydrogeological 
characteristics of the Ybbs catchment. Bandwidth= 0.4. 
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Figure 26 shows the density distributions for the component values of PC1 of the Traisen 

catchment and its hydrogeological characteristics. The distinction of the classes is a 

difficult task in this case, as only alluvial deposits can be significantly differentiated from 

the other classes. A strong tendency in representing valley and mountainous areas is 

observable. When visually inspecting the hydrogeological map, it is outstanding that the 

classes of dolomite, sandstone and calcareous rocks are the subsurface characteristics of 

the Pre-Alpine environment. While Flysch shows some distinguishable behaviour in the 

component values, the rest of the hydrogeological characteristics are not distinctly 

represented in the first principal component.  

Slope 

Suspicious about the influence of the mountainous regions of the catchments on the 

patterns represented in the component values, the slope in degree rise was calculated from 

the digital elevation model using the slope-tool in ArcMap. It was suspected that some 

agglomeration patterns might be represented in the patterns.  

 

Figure 27: Density Distributions and corresponding modal values of Principal Component 1 and slope in degree rise 
over run of the Traisen catchment. Bandwidth= 0.4. 

The classifications of the continuous slope variables were done with k-means in Rstudio 

using the “classINT” package (Bivand, 2015) and allowed for a comparison of the first 

principal components and slopes. For the Traisen catchment, we see the strong distinction 

of the valley to the Pre-Alpine environment in the component values. The valley shows 

vastly different hydrological behaviour than the Pre-Alpine environment. It can be 

noticed that throughout all the probability distribution functions that were done to this 
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point this behaviour in the spatial distribution of the component values holds true for the 

first principal components. 

In Figure 28 we see that the distinctions are similarly difficult for the first component of 

the Ybbs catchment. Here we have a bigger valley with more degradations in relief, 

resulting in a less abrupt rise in elevations. This is to some extent reflected in the first 

principal component, with the highest peak being a reflection of the flattest part of the 

valley in the north of the catchment. The modes of the other distribution might still 

represent a significant allocation of the slopes to the principal components. Nevertheless, 

when the slopes rise in the mountainous regions, a differentiation can no longer be done.  

 

Figure 28: Density Distributions and corresponding modal values of Principal Component 1 and slope in degree rise 
over run of the Ybbs catchment. Bandwidth= 0.4. 

Aspect 

To see whether patterns related to aspect and effects of shadowing could be found in the 

first principle components, aspect was calculated within ArcMap from the digital 

elevation model at hand. 
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Figure 29: Density Distributions and corresponding modal values of Principal Component 1 and Aspect for the Ybbs 
catchment. Bandwidth= 0.4. 

We can see in Figure 29 that there is a strong differentiation in the values of the first 

principal component for North-, and then South-facing areas of the Ybbs catchment.  

 

Figure 30: Density Distributions and corresponding modal values of Principal Component 1 and aspect for the Traisen 
catchment. Bandwidth= 0.4. 

The comparison of the patterns for the calculated aspects and the first principal 

component of the Traisen catchment, shows similar results to those of the Ybbs 

catchment. While north and south facing parts of the catchment are clearly identifiable in 

the values of the first components, it becomes apparent that the east and westward facing 

parts of the catchment are not distinctly represented in the component.  
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Intersections  

Further the experiment was done to separately calculate probability densities for land 

cover heterogeneity in the first PC in the valley and the alpine regions. Results can be 

seen in Figure 32, 33, 34 and 35. The distinction of the flat and mountainous region was 

done on behalf of the major changes in geology of the catchments, this being from Flysch 

to Dolomite. 

 

Figure 31: Density Distributions and corresponding modal values of Principal Component 1 and Land cover 
characteristics for the valley of the Traisen catchment. Bandwidth= 0.4. 

The probability distributions of Figure 31 show the good representation of all land cover 

classes for the flat area of the Traisen catchment. The main constraint is that no 

differentiation can be done between mixed/broadleaf forest and coniferous forest.  
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Figure 32: Density Distributions and corresponding modal values of Principal Component 1 and Land cover 
characteristics for the mountainous environment of the Traisen catchment. Bandwidth= 0.4. 

The most striking point to be addressed in this visualization of the pattern similarity is 

that no distinction can be made between arable land and forests. Furthermore, the land 

cover class “arable land” shifted from negative component values in the valley to positive 

component values in the mountainous environment.  

 

Figure 33: Density Distributions and corresponding modal values of Principal Component 1 and Land cover 
characteristics for the valley of the Ybbs catchment. Bandwidth= 0.4. 

The similarity in the patterns for the flat environment of the Ybbs catchment and the first 

component of the temperature variability analysis is striking. While all classes are well 

distinguishable, the distribution of the classes from negative values for urban and arable 
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land over grassland towards positive component values for less varying areas like forests 

and water shows that the patterns of the valley are strongly linked to land cover related 

changes. The first component of the mountainous area of the Ybbs catchment still shows 

some good variability in patterns. However, the patterns are less distinct as can be seen 

in Figure 34.  

 

Figure 34: Density Distributions and corresponding modal values of Principal Component 1 and Land cover 
characteristics for the mountainous environment of the Ybbs catchment. Bandwidth= 0.4. 

While the distribution of the classes is still well represented in the component in question, 

the class of the urban area is less well distinguishable in the mountainous region, which 

is a small class in comparison to the other classes in the mountainous area and the urban 

space of the valley. Strikingly, the arable land is again differently represented in the 

patterns of the mountainous environment of the component compared to the patterns in 

the flat areas.  

4.3.2 Principal Component 2 
The distributions were identically computed for the second principal component of the 

time-series analysis of the catchments in question. The best resemblance in the 

distribution of patterns could be found for major subsurface characteristics, as no other 

distributions showed a potential qualification for hydrological pattern differentiation. It 

should be added that the gradient of the component values of PC2 is considerably smaller 

than the gradient of the component showing highest proportion of variance. As a 

consequence, a well distinct distribution of probability functions is a difficult task. The 

first salient difference between the two second principal components is that the ranges in 



    4 Results 

 

54 
 

the component values are inverse to each other. As the sign of the eigenvectors is 

arbitrarily assigned there is no affect on the structures represented in the components 

(Soliman, Brown, & Heck, 2011).  

 

Figure 35: Density Distributions and corresponding modal values of Principal Component 2 for soil texture 
characteristics of the Traisen catchment. Bandwidth= 0.4. 

For illustration purposes, the densities of the texture classification being represented in 

the distributions of the values of PC2 are shown, as it was assumed that texture would 

show a high resemblance in the patterns due to the thermal characteristics emerging from 

soil texture and their hydraulic capacity. Nevertheless, no information could be deduced 

from PC2 allowing an extrapolation towards texture characteristics. The distributions of 

the Ybbs catchments with regard to pattern similarity can be seen in Figure 36. 
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Figure 36: Density Distributions and corresponding modal values of Principal Component 2 for Soil texture 
characteristics of the Ybbs catchment. Bandwidth= 0.4. 

We see that mainly clay, silt and silty clay are distinguishable. While clay is only 

represented in the dataset for 0.03 % of the covered area, silt and silty clay are merely 

representing 3 and 5% of the dataset respectively. As for the dominant soil texture classes, 

that being silt loam, loam and silty clay loam, no recognition can be found. Even though, 

Zaheer and Iqbal (2014) have recently displayed the potential of deducing percentages of 

silt and clay in the soil from TIR imagery, this could not be proven for PCA with TIR 

time-series. According to their study, a comparison with the content of organic matter in 

the soil could as well have been fruitful, but no data to validate this assumption could be 

found.  

Next to this, the structures represented in PC2 showed coherence with the patterns of the 

hydrogeological distributions. As illustrated by Figure 37, the probability distribution 

functions and their corresponding modal values, would allow an extrapolation from the 

hydrogeological characteristics to continuous pixel based values based on the structures 

represented in PC2. We see that the component values of the second component represent 

the features of hydrogeology. 
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Figure 37: Density Distributions and corresponding modal values of Principal Component 2 for hydrogeological 
characteristics of the Ybbs catchment. Bandwidth= 0.4. 

Figure 38 further displays the potential for an extrapolation of the hydrogeological 

characteristics from component values of PC2. As the hydrogeological data is to some 

extent interpolated and hence loses some of its physical relationship with reality, PC2 

could potentially become the more accurate indicator for hydrogeology with further 

development of TIR remote sensing techniques. However, field measurements would be 

needed to validate the assumption.  

 

Figure 38: Density Distributions and corresponding modal values of Principal Component 2 for hydrogeological 
characteristics of the Traisen catchment. Bandwidth= 0.4. 
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The visual inspection of the second component’s distribution showed some similarities 

with characteristics as aspect or slope. Hence, to validate these first visually assumed 

similarities, densities for aspect and slope were calculated for PC2. As it is assumed, that 

PC2 is the first component actually showing change in the spatial variability patterns, it 

was reasoned that some subsurface characteristics like agglomeration or soil water 

content, dependant on shadowing or/and inclination could be represented in the 

distribution of the component’s values.  

 

Figure 39: Density Distributions and corresponding modal values of Principal Component 2 and aspect for the Ybbs 
catchment. Bandwidth= 0.4. 

Figure 39 shows the distributions of aspect within the structures of the component values. 

The strong distinction in component values for north and south inclined mountain ridges 

is remarkable. Furthermore, east and west facing land surfaces are distinctly represented. 

Consequently, we can assume that some information about the aspect has an effect on 

change on temperature variance, as has been confirmed by Zaheer & Iqbal (2014). Figure 

40 shows similar patterns in the representation of aspect in PC2. The main difference is 

represented in the adverse component values. 
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Figure 40: Density Distributions and corresponding modal values of Principal Component 2 and aspect for the Traisen 
catchment. Bandwidth= 0.4. 

Though expected, the patterns of the slopes are not represented in the second principal 

component. The main distribution identifiable is the one representing the valley next to 

the clustered classes representing the mountainous environment as can be seen in 

ANNEXE III.  

4.3.3 Principal Component 3  

 

Figure 41: Density Distributions and corresponding modal values of Principal Component 3 for Landuse 
characteristics of the Traisen catchment. Bandwidth= 0.4. 

The slight consistence of patterns in the distribution of the component values of PC3 

could be found with land cover characteristics. The most notable effect that can visually 
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be recognized is that the patterns show a different behaviour for urban areas. As such 

urban areas are somehow distinctly represented in the third principal component.  

 

Figure 42: Density Distributions and corresponding modal values of Principal Component 3 for landuse 
characteristics of the Traisen catchment. Bandwidth= 0.4. 

The rest of the components account for less than 2% of total variance and no structures 

in the distributions of the component values could be identified. As of this reason, the rest 

of the components were considered to be representing noise in the dataset and were as 

such not further analysed. As a strong relationship between thermal inertia characteristics 

of the catchment soil and the second principal component was expected but the 

availability of the data wouldn’t allow for a good distribution of the thermal images for 

distinct meteorological conditions, this could not be shown in the distributions.  
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5 Discussion 
By processing TIR imagery with principal components it was possible to identify spatial 

patterns by relating them to the most dominant landscape elements known to be affecting 

the thermal characteristics at the surface and subsurface. As such the first component 

showed a mix of the major landscape characteristics in the catchments having an effect 

on temperature variability. These being the land cover characteristics and topography. It 

was further shown that relief properties like aspect are inherent in the patterns of PC1 and 

that the nominal values are differently related to landscape characteristics in mountainous 

areas as for flat areas. 

The results further show the patterns in the second component having similarities with 

the distributions of hydrogeological characteristics.  

The third component showed patterns revealing a “latent” influence of land cover 

characteristics, see urban areas. The deciding reason for this behaviour in PC3 is a matter 

of assumptions as no data for validation are available. However it can be discussed that 

some atmospheric attenuation could have been causing the signals in the urban areas. Or 

some change in temperature variations in the cities might have caused these patterns. It 

was shown that in the first principal component the influence of relief and shadowing was 

not to be neglected when analysing patterns of thermal variability. 

The rest of the components displayed less than 2% of the total variance and were, after 

no structures could be visually identified, considered as noise.  

The differences in the components between the catchments could mainly be revealed in 

the comparison of their patterns with their elevation properties. While the topography was 

immanent in the component values of the first component of the Ybbs, the distinction of 

elevation characteristics was less apparent for the first component of the Traisen 

catchment. This could be explained through the different geomorphological 

characteristics of the two catchments. The Ybbs catchment has a broad plain in the north 

potentially influencing the variances in temperatures distinctly from the Traisen 

catchment, characterised by a narrow floodplain towards the drainage in the north. 

5.1 Sensitivity Analysis 
The sensitivity analysis of the quantity of the input images towards the information 

content on the output, revealed the importance of well distributed images for the second 

component. The first component represented the same patterns when comparing the ones 



    5 Discussion 

 

61 
 

of computations with no more than 4 time steps, with the ones computed with the initial 

full dataset. It could be pointed out that the first principal component stays unaffected of 

the temporal thermal variance, i.e. seasonal changes, that are immanent in the time-series. 

Consulting the component loadings to this effect, it was shown that these stay consistent 

over the entire period and display no seasonality. To that effect it was revealed that the 

first component display patterns of thermal variability that occur spatially, rather than 

temporally. Consequently, the second component was the first component influenced by 

the seasonal distribution of the time-series.  

This effect can also be seen in fluctuations of the component loadings in contrary to the 

equally distributed loadings for PC1. As such the second component was considered as 

being the first “change” component, displaying temporal thermal variability. We further 

see, that the second components of the PCA calculated without the first and second 

images of the initial image-stack merely correlate with about 50 % for the initial second 

component. When the second image of the initial image stack is used as an input for 

component analysis, the correlations rise to about 75%. Nevertheless, the correlations of 

the information within PC2 are still lying below their standard deviation. As a result, an 

analysis of the first and second images needed to be done to further be able to correctly 

interpret these results. This showed that while the first image represents the coldest day 

of the whole dataset, the second image shows cold conditions on a small temperature 

gradient. Intuitively we understand the importance of seasonally well distributed images 

on the second component. The second component shows to be very sensible for variability 

in between images. When recapitulating that PC2 has the ability to explain the second 

highest proportion of variance in temperature, we might be able to identify the second 

component as a combination of major surface and subsurface characteristics being at the 

source for causing variability in between the time-steps. We can deduct that the influence 

of thermal variability within the landscape is equally represented within every TIR-stack 

composition having fewer time-steps than the initial time-series. As such a combination 

of patterns causing thermal variability between the major landscape elements, can be 

deducted with very few TIR images. Thus increasing the dataset would not increase the 

information content represented in the patterns of PC1. 

Furthermore, when analysing the mathematical background, we understand that through 

scaling the images before analysing them through the components, we expand or 

compress the gradients of the images to unit variance and hence account each image the 
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same importance with regard to variance within the components (Jolliffe, 2002). If we 

had standardized the dataset, the images with high variances (summer) would have had a 

higher influence on the outcome of the analysis than images with lower variances 

(winter). Contrary, when scaling the dataset to unit variance, the influence of cold thermal 

images within the dataset rises, as their correlation with the rest of the images is low. This 

means that when only a few “cold” images are at hand, scaling is recommended to ensure 

the influence of these images on the outcome and allow a more precise distinction of 

patterns in the second component.  

Furthermore, the comparison of the heterogeneity of known landscape characteristics 

with the pattern inherent in the components was made.  

5.2 Probability Density Functions 

5.2.1 DEM 
The influence of topography on temperature variability patterns could be very well 

represented. However it should be mentioned, that one major difference between the Ybbs 

and the Traisen river catchment was that for the Ybbs catchment the nominal values of 

the first principal component are representing distinct and well distributed classes of 

elevations, while the component values of the Traisen catchment only showed the main 

distinction between the valley and the mountainous areas. This effect was tracked in all 

the comparison of patterns. This is to be explained through the characteristic relief, with 

the Pre-alps playing a distinct role in hydrological behaviour in the upper catchment area. 

As a consequence, we see the clustered distributions of characteristic interrelated land 

cover types in Pre-Alpine environment, as for example forests in the mountainous areas 

and arable land in the valley. 

5.2.2 Land Cover Characteristics 
The densities comparing land cover characteristics with patterns of thermal variability 

showed some effects needing consideration. So for example is Grassland and arable land 

somewhat behaving similarly for the Ybbs catchment, which might be reasoned by the 

time-series as the majority of the images are in summer and spring due to low cloud 

coverage, with crop growth being strong on arable lands, behaving comparably to 

grasslands when related to temperature variability. The influence of gardens and roof tiles 

within urban areas might explain the close positioning of the distribution function of the 

urban areas to the classes of grass- and arable lands. Forested areas are less well 

distinguishable from each other, which might be affected by the amount of conifers in 
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mixed forests or the few images representing broadleaf forests under winter conditions. 

Evergreen and broadleaf in summer and spring might show similar behaviour in 

temperature variability with both having closed canopies. Complementary no knowledge 

about the amount of conifers within the mixed forests located in the catchments under 

investigation could be gained. However it is known the amount of conifers does not 

exceed 25% of the canopy closure for the class of mixed forests in Corine Land Cover 

maps (European Environment Agency, 2007). Further distinguishable are the water areas 

in the components, which shows the good emission properties of water with respect to 

thermal radiance and the low variability in temperature. 

5.2.3 Hydrogeology 
The most striking point here is the double peak of Granite in the density functions. When 

comparing the number of pixels of the distributions and the hydrogeological distribution 

of Granite, we discover, that the group is small compared to the other three classes and 

covers a mere 3% of the catchment. Furthermore the extent of the granite is exactly 

covered by a broadleaf forest which might indicate some problems with the representation 

of the granite class in the hydrogeological dataset or in the patterns of thermal variability. 

5.2.4 Aspect and Slope 
Zang and Kuenzer (2007) demonstrated the high influence of aspect and slope on thermal 

data of land TIR imagery. They showed that at the overpass time of Landsat 5 (+-10am) 

“the same object/surface can differ by up to 10°C” due to aspect. As such it was tested 

whether the influence of the overpass-time of the satellite, solar altitude and aspect was 

comprised in the first principal component and if some shadowing affects could be 

identified in the distributions of the component values. 

While the overpass time of the Landsat 5 satellite system is in the morning, the 

expectation was that the east-exposed surfaces would show up stronger in the signals than 

they actually do in this case (see Zhang & Kuenzer, 2007). No heating or cooling patterns 

for eastern or westwards facing surfaces could be found in the first component’s values. 

Nevertheless, the southern-facing areas are behaving remarkably different than the 

northern-facing areas. So this might represent the effect of shadowing. One reason for 

this relief induced behaviour might be the importance of the sun-sensor-object 

geometries, as the alignment of the Pre-Alpine mountains and the overpass route of the 

satellite being from north to south. Hence, some patterns of apparent similar temperature 
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variability might emerge from these shadowing effects caused by imperfections in the 

alignment of the triangle between the sensor, the earth’s surface and the sun. 

Similar behaviour was observed for the Ybbs catchment: while the satellite is overpassing 

the catchments from south to north at approximately 10 am and the mountain ridge is 

mainly aligned to face south, respectively north, the patterns represented here might 

similarly be caused by some varying sun-sensor-object geometries. In further research it 

should thus be experimented whether an “hillshade-effect” is represented in the 

components, this being a function of slope, aspect and sun-sensor-object geometry (Hais 

et al., 2009).  

5.2.5 Intersections 
The above mentioned problems raised questions on the influence of the alpine region on 

the calculated densities. Thus it was necessary to test whether behaviour of component 

values changed between valley and mountainous regions. The results show, that 

differences in the patterns between the valley and mountainous areas could be observed. 

So was for example no differentiation between coniferous and mixed forest possible 

within the environment of the valley. The influence of conifers on the temperature 

patterns of the mixed forest class is assumed to be the reason. The problem of the 

imperfectly distributed images throughout the seasonality of the year potentially causes a 

similar temperature variability for all forest classes. As the closed canopies and the related 

micro-climate remain similar. More strikingly however was that patterns in the first 

component of the mountainous areas showed no differentiation between arable land and 

forested areas. The land cover class “arable land” shifted from negative component values 

in the valley to positive component values in the mountainous environment. While the 

majority of arable land is in the valley, the remaining area of arable land being at the foot 

of the alpine region is extremely small and neighbouring a vineyard which is classified 

as evergreen grassland. As such it might be possible that through this small amount of 

pixels and the resolution of the land cover data, the pattern of arable land is not 

representable.  

However the Traisen catchment showed similar behaviour when comparing different 

regions of the components with patterns of different land uses: arable land was again 

distinctly represented. The reasons for this distinct representation in patterns might be 

numerous - it could be different stages of ripeness, combined with different cultivation 

methods, i.e. different harvesting times or simply different subsurface characteristics 
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inherent in the mountainous soils causing the shift of the arable land’s distribution 

function. The effect might be caused by different saturations of the grassland. The soil 

layer of the grassland in the mountainous areas might be less thick and dispersed with 

bare rock, which affects the temperature variability and makes it behave differently 

between the environments. 

5.2.6 Aspect in the Second Components  
For the second components, patterns were similarly being related to issues of Aspect. As 

explained above the correlating results might be reasoned from shadowing, i.e. heating 

effects and sun-sensor-object geometry. Consequently, we can assume that while the 

main spatially varying patterns remain land cover and topography (see PC1), the main 

change in this spatial variability (see PC2) is a result of a mixture of hydrogeological and 

elevational characteristics. In effect, flow patterns, soil water content and agglomeration 

patterns could potentially be represented in the configuration of the component values. 

However, these assumptions would need to be confirmed with field measurements. 

5.2.7 Third Principal Component 
In the comparison between the third components values and the heterogeneity of the land 

cover characteristics, correlations between urban areas and component values were found. 

This leads to the assumptions, that the third principle component might translate into 

specific characteristics affecting the signal strength received at the satellite. As an 

example, one might state the possibility of ozone and other greenhouse gases interfering 

with the signals being represented here. Similarly PC3 might potentially represent 

patterns of air water content or relative humidity which is known for intercepting and 

absorbing the emitted wavelength and therefore influencing the temperature variability 

received at the satellite sensor. A further explanation for these patterns, might be that 

throughout the time span of the selected series of images, the several land use 

characteristics are subject to temperature change. As an example; an explanation for the 

patterns in PC3 revealing urban areas, could be that there has been a change in the 

temperature variation in the cities. Thus showing that the cities have become warmer or 

temperature variation decreased throughout the investigated time range (e.g. due to 

increased surface sealing) (Kuenzer & Dech, 2013). Nevertheless, to derive a real trend, 

the images would need to be atmospherically corrected and the cities would need to be 

remotely sensed each year at the same date. Unfortunately, this is not possible due to 

restrictions of many causes in the availability of the data needed. Eventually, these 
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assumptions would further need to be validated through comparison with actual field 

measurements. 

The performance in the deduction of patterns of land surface functioning using PCA on 

TIR time series with regard to energy balance shows some limitations which have to be 

considered when interpreting the results. The main points of criticism will be shown in 

the next passage. 

5.3 Cloud-Coverage in the TIR Datasets 
The first limitation in the use of the method is that clouded images cannot be processed 

without further modification. Clouds appear as soon as in the second component, 

disturbing the extraction of patterns. By masking them and interpolating temperature 

values for these areas, it might be possible to solve the above mentioned issue. This could 

result in a higher availability, and a larger, better distributed dataset. However this might 

in return revoke the extraction of the interpretation of the patterns considering the 

interpolation process of temperature values and as such thermal variability and/or 

landscape functioning.  

Secondly there is a lack of well distributed images due to cloud coverage. The database 

has considerably less images for winter and autumn than for summer and spring. As 

shown in Chapter 4.2 the method is depending on seasonally well distributed images, 

especially for the extraction of subtle patterns in the second component. If more cloud-

free winter and autumn images were available, the information content in the components 

following PC1 would be of higher significance with more pronounced patterns allowing 

a better determination of the thermal properties that are displayed. At the current state of 

technology available, i.e. with overflight times of up to 16 days, there is a difficulty to 

gather images that show the desired meteorological conditions (cloud-free) and are well 

distributed in the seasons. To extract the full potential of this method, for example by 

displaying thermal inertia of the soils and as such extract knowledge about soil texture 

characteristics or percentage of organic matter, one would need to apply a principal 

component analysis on a diurnal remotely sensed TIR time-series. Remotely sensing a 

catchment day and night would result in an additional gain of information. Further 

analysing the consequent temperature variability of the diurnal time-steps would 

potentially establish connections between thermal variability and intrinsic soil properties, 

as shown by Soliman et al. (2011).  
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5.4 Image Size and Resolution 
The resolution, the scene size and the resulting swath that the satellite is monitoring at 

each time-step needs consideration. The size of the units displaying thermal variance is 

limited to the resolution of the initial TIR data. Moreover a catchment lying in between 

two orbits cannot be analysed without further manipulation of the data. It is obvious, that 

at each overpass the sensor is sensing the thermal characteristics under different 

meteorological conditions. This is limiting the principal component analysis to the field 

of view of the satellite system. Though for analysing areas larger than the field of view 

of the satellite several PCA’s are needed, and need distinct consideration as they are 

potentially analysing different conditions, i.e. images of different time-steps and/or cloud-

coverage. 

5.5 Interpretation of Principal Components  
Validation of the patterns is problematic. To identify the drivers of thermal variance 

displayed in the principal components, data for validation is needed. Hence it was only 

possible to compare the patterns in the components with the ones of the major landscape 

elements at hand. If it could be further shown that the thermal variances displayed in the 

components are connected to other surface and subsurface characteristics i.e. organic 

matter content, bulk density, porosity, the component analysis of TIR time series might 

become a substantial part as Input, in hydrological modelling. As such complete datasets 

explaining hydraulic soil properties and/or hydrothermal physical properties are needed 

for comparison with the outcomes of the PCA. Thus more research and monitoring is 

needed on the pattern-process relationship of the PC’s as well as on their explanatory 

power with regard to surface energy characteristics. 

Accordingly, the orthogonal transformation-process that is part of the principal 

component analysis, makes an interpretation of the patterns inherent in the principal 

components a difficult and intricate task. Through the Karhunen-Loève- or Hotelling- 

transform, the deduction of direct internal physical principles becomes impossible (Page 

et al., 2012). The PCA shows patterns of thermal variability of TIR time series, but 

through the reduction of dimensionality and reprojection towards a new space, the 

interpretation of the patterns as a linear combination of all landscape characteristics needs 

to be handled with care (Jolliffe, 2002). As such the interpretation of the heterogeneity 

represented in the components becomes difficult as the patterns represent spatial and 

temporal variance of rotated, and as such unidentifiable, physical thermal properties. 

While on one hand this seems as a constraint it is on the other one of the strength of the 
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approach. Through the rotational transformation, PCA allows the extraction of patterns 

of landscape functioning with all existing TIR datasets and is not sensor-specific. 

Complementary through the rotational transform of time series, maps can be produced 

incorporating all dominant landscape characteristics affecting thermal properties.  

Through the constraint of orthogonality, an interpretation of the consecutive components 

might pose a problem. As such, rotation of the consecutive components is influenced by 

the maximized variance of the first component, with its position not always being 

unambiguous in the new projection. Thus small changes in the first components might 

have considerable effects on the interpretation of the consecutive components. Spinning 

this thought further, we encompass the importance of well distributed images on the 

distinguishability of the patterns within the first component for good interpretation of 

patterns in the second component. One way to aid interpretation is the manual rotation of 

the components as is done with factor loadings in factor analysis (Jolliffe, 2002). However 

also factor analysis knows several drawbacks. PCA for example is consecutively 

maximizing variance. In factor analysis which is proportions of variances are more evenly 

redistributed throughout the factor components. This compromises the further 

interpretation of factor components. 
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6 Conclusion 
In this work, the approach proposed by Müller et al (2014) was applied to two 

mountainous catchments. In contrast to the Attert catchment analysed by Müller et al. 

(2014), the here revealed patterns of thermal variability show strong influences of 

topographic characteristics. Energy fluxes controlled by landscape characteristics are 

shown to be affected by topography. The differences in the components values, when 

comparing the mountainous regions with the flat areas of the catchments, have been 

displayed. Furthermore, patterns representing shadowing effects are shown to play an 

important role in the distribution of temperature variability throughout the here analysed 

catchments. Consequently, the topographically induced temperature variability also 

represented the most dominant differences between the catchment’s components. These 

ambiguities need further research to be evaluated. The question arises whether these 

patterns are effective differences in temperatures caused by topography or if a bias, 

caused by sun-sensor-object geometries of the remote sensing system, is being 

represented. These features show the necessity to expand research by providing in situ 

measurement on the influence of shadowing on hydrological processes or by applying 

this methodological framework to catchments under known meteorological conditions 

and environmental stresses. 

Nonetheless, unlike any other approach extracting energy balance characteristics at 

catchment scale, the PCA on TIR time-series is able to extract patterns displaying high 

proportions of thermal variability, all while reducing “noise” in the dataset. The patterns 

incorporate all temperature-dominating landscape characteristics. Thus it has its main 

strength in a general, sensor-unspecific approach able to extract land surface functioning 

with regard to the energy balance, see thermal variability. The approach proposed by 

Müller et al. (2014) provides a practical tool that identifies the functional behaviour of 

catchments, following the calls for an increased use of surrogate patterns in future 

hydrological models (Western et al., 2001). As Grayson et al. (2001) write: “These [the 

surrogate patterns] provide rigorous tests of the ‘behavioural’ nature of simulations of 

catchment response […]”.  

Over the last decades there was little exploitation for TIR datasets. The determination of 

the quantitative precision in the deduction of TIR remote sensing based hydrological 

fluxes is difficult through the lack of in situ validation datasets. Consequently there was 

a particular chance for data errors in deducing absolute variables from TIR images (i.e. 
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bias in atmospheric corrections, unknown emissivities of land surface elements) (Kuenzer 

& Dech, 2013). Here however potential data errors are efficiently extracted and can even 

be visualized through the rotational transform into principal components. Thus contraire 

to conventional deductions of catchment dynamics which require extensive field work or 

are sensor-specific, the here illustrated method becomes generally applicable on all 

available TIR-datasets. As such TIR remote data should be reconsidered with focus on 

the underlying patterns representing thermal variability. These patterns are useful for 

many applications in hydrological research, such as validation, classification and 

parameterization. 

Simulations of hydrological quantities at the outlet of the catchment might not necessarily 

be enhanced with this new input in hydrological models. However the observed patterns 

of catchment dynamics can be used to improve the understanding of processes within and 

between landscape elements (Stisen et al., 2011). The use of the underlying patterns (as 

represented by the first PC for example) is intrinsically valuable for assessment of 

distributed modelling approaches (Stisen et al., 2011). One example for the future use 

could be the validation of simulated interior fluxes. The principal components might thus 

be used as surrogate patterns for a comparison between simulated and observed 

hydrological heterogeneity with regard to energy controls (Grayson et al., 2002).  

Another potential use for the components might be the deduction of a classification 

scheme based on the principal components. As shown in the results and discussion, the 

component values are to be understood as parameters for a combination of landscape 

characteristics influencing landscape functioning with regard to energy balance. Thus a 

classification scheme might be applied to the component values to order and group grid 

cells of similar thermal behaviour into several functional units. These functional units 

might be used in upcoming hydrological modelling approaches. Further this time-series 

analysis allows for a distinction between seasonal changes in thermal variability. For 

example, PC’s of TIR time-series could be analysed into distinct functional units 

representing functional behaviour for different seasons. Expanding the understanding of 

the effects of different meteorological conditions and seasonal changes on hydrological 

behaviour, it would allow a more accurate prediction of the effects of climate change on 

the catchment behaviour. 

Furthermore becomes the potential of the method apparent when the question is raised of 

how to scale up descriptions of hydrological responses from small (where they are 
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developed) to large scales. The here extracted patterns could potentially validate such 

issues of scaling and parameterization as they provide a measure of heterogeneity of the 

combined variables exerting controls on the energy balance. PCA on TIR time series 

allows for a derivation of direct indicators of hydrological response. As such they could 

be implemented in a parameterization approach like the disaggregation-aggregation 

model proposed by Viney and Sivapalan (2004) for example. The approach might provide 

a way of linking the catchment-scale variables with catchment-scale responses all while 

retaining some “essence” of small scale physics (Viney & Sivapalan, 2004).Or how 

Müller et al (2014) state: “The strongest impact of the approach presented is expected 

when the derived component values from the PCA analysis will be incorporated into 

model parameter regionalization schemes (e.g. the multi-scale parameter regionalization 

(MPR) scheme presented by Samaniego et al., 2010)”. In other words, the PC’s can be 

used as “proxy” or “soft” data in the deduction of for example connectivity functions. As 

the patterns provide continuous pixel based values, rather than nominal data (see HRU’s), 

by representing thermal variability of the landscape, the patterns in the PC’s could be 

used as “natural skeleton” onto which hydrological response is projected (Müller et al., 

2014). Consequently they reduce the ambiguity in the calibration process and thus 

potentially increase the predictive value of hydrological models. It can therefore be 

shown, that PCA on TIR time-series provides a rigorous methodology that might be 

minimising the problems what Kirchner (2006) described as “right results for wrong 

reasons”.  

Research might further be expanded to other datasets such as active and passive radar or 

the near-infrared wavelengths. Considering near-infrared datasets it might become 

possible to extract distinct catchment hydrological characteristics. As it is shown by 

Zaheer & Iqbal, (2014), near-infrared Landsat5 TM data, has information about soil 

properties inherent. They approximated soil organic matter content through remote 

sensing with a combination of near-infrared and far-infrared wavelengths. When 

considering radar data, it is assumed to enhance the information content stored in the 

principal component’s patterns, for example through a higher temporal resolution. As 

such better representations of specific soil hydraulic conditions is expected through a 

direct comparison between patterns of temperature variability and meteorological 

conditions. Thus the extraction of e.g., soil moisture content might become feasible. 

When analysing high-resolution active radar sensor data with principal components, one 

might be able to extract thermal variability in deeper soil layers as these radar systems 
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are ground-penetrating. As such it might become possible to show spatial and temporal 

temperature variability adding a vertical representation of variances in soil depths. For 

example has been shown that soil moisture content can be estimated using active radar 

systems for a depth of up to 1.3m (Gacitúa, et al., 2012; Lunt et al., 2005) as well as 

freezing and thawing processes from spaceborne passive radar (Mironov & Muzalevsky, 

2013). The here presented method would hence further introduce a temporal dimension 

to the above mentioned monitoring processes by displaying these processes within a time-

series analysis using principal components.  

All in all, this method provides a measure of connectivity between landscape elements 

with regard to internal energetic fluxes. Thus the approach encourages the development 

of the hydrological science through the implicit knowledge of the distribution of 

hydrological process with regard to the distribution of thermal characteristics. The state 

of the art of hydrological modelling is advanced in providing a new idea, new data and 

new experimental work. Through knowledge about interior water fluxes by deducing 

patterns of thermal variability, new data for parameterization based on direct physical 

principles rather than computational optimization, is provided. If implemented in 

hydrological models, a more profound understanding of the spatial distribution of 

hydrological behaviour is provided. The derivation and evaluation of human impacts, see 

knowledge about how and where degradation will affect water resources, can be deduced 

from knowledge about spatial variability (Grayson et al., 1997). Thus given the predicted 

climate change and the observed intensification of environmental degradation, the here 

provided information about the distribution of spatial variability of landscape elements 

having controls on the energy balance, is enhancing integrated water resources 

management through an improved assessment of interior water fluxes.  
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ANNEXE I. TIR-Imagery and Principal Components 

  

Figure: TIR Time-Series for Traisen River Catchment 
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Figure: TIR Time-Series for Ybbs Catchment 
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Figure: Principal Components of TIR Time-series Analysis for Traisen Catchment 
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Figure: Principal Components of TIR Time-series Analysis for Ybbs Catchment 
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ANNEXE II. Soil Texture Characteristics 

 

Figure: Soil Texture Characteristics for Ybbs and Traisen. 
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ANNEXE III. Probability Distribution Functions 

 

Figure: DEM and PC2. Traisen. Bandwith=0.8

 

Figure: DEM and PC2. Ybbs. Bandwith=0.8 
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Figure: Landuse and PC2. Traisen. Bandwith=0.4 

 

Figure: Landuse and PC2. Traisen. Bandwith=0.4 



   ANNEXE III - Probability 
Distribution Functions 

85 
 

 

Figure: Slope  and PC2. Traisen. Bandwith=0.4 

 

Figure:  Slope and PC2. Ybbs. Bandwith=0.4 
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ANNEXE IV. R-scripts 

Georeferencing 

This script was coded in the “landsat”-Package to georeference the TIR imagery 

towards one initially manually georeferenced image.  
#####Packages##### 

require(raster) 

require(sp) 

require(rgdal) 

require(landsat) 

 

#######################GEOREFERENCING####################### 

 

R1 <- raster(paste(refpath,file[1],sep="/"),band=1) 

TARGET=as(R1, "SpatialGridDataFrame") 

stats_DF=data.frame() 

Name_DF=c() 

stats_x=c() 

stats_y=c() 

for (i in 1:length(files)) { 

   

  Ri <- raster(paste(refpath,file[i],sep="/"),band=1) 

  Df_ri=as(Ri, "SpatialGridDataFrame") 

  shift_georef=georef(TARGET, Df_ri, maxdist=50) 

  shifted_Df_ri=geoshift(Df_ri, padx=10, pady=10, shiftx=shift_georef$shiftx, 

shifty=shift_georef$shifty, nodata=NA) 

  Name=paste(substr(file[i],1,16),"G.tif",sep="") 

  Name_DF=append(Name_DF, Name) 

  stats_x=append(stats_x, shift_georef$shiftx) 

  stats_y=append(stats_y, shift_georef$shifty) 

  

writeGDAL(shifted_Df_ri,fname=paste(Savepath2,Name,sep="/"),drivername="GTiff"

) 

  print(Name) 

} 

 

plot(Df_ri, shifted_Df_ri) 

stats_DF=data.frame(Name_DF, stats_x, stats_y) 

write.table(stats_DF, "Directory/gref_stats.csv") 

 

Raster Calculator 

This script was coded to transform the raw TIR images from Binaries to Radiance 

values and from Radiance to Brightness Temperature. 
#####Rastercalculator##### 

 

refpath="Directory" 

SavePath1="Directory/Radiance" 

SavePath2="Directory/Kelvin" 

files=list.files(refpath,pattern="M.tif") 

files=files[which(apply(as.matrix(files),2,nchar)==16)] 

nchar(files[1]) 

 

#####Needed R-Packages##### 

require(raster) 

require(sp) 

require(rgdal) 

 

######FUNCTIONS####### 

 

funradiance=function (x) {(0.055376*(x)+1.18)} 

 

FunToA=function (x) {1260.56/(log((607.76/x)+1))} 

 

  ####First PART DN-to-Rad##### 
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for (ind in 1:length(files)) { 

  R1=raster(paste(refpath,files[ind],sep="/")) 

  Name=paste(substr(files[ind],1,11),"Rad.tif",sep="") 

  Rrad=R1   

  Rrad[]=(funradiance(Rrad[])) 

  writeRaster(Rrad, filename=paste(SavePath1,Name,sep="/"), format="GTiff",                       

overwrite=T) 

  print(Name) 

} 

 

 

  ####Second PART Rad-to-ToA###### 

  Name2=paste(substr(files[ind],1,12),"Kelv.tif",sep="") 

  RToA=Rrad 

  RToA[]=(FunToA(RToA[])) 

  writeRaster(RToA, filename=paste(SavePath2,Name2,sep="/"), format="GTiff", 

overwrite=T) 

  print(Name2) 

} 

print("done") 

 

Principal Component Analysis 
##### Create PCA, stack Components, create Multilayer RasterFile ##### 

 

##### Packages ##### 

require(raster) 

require(sp) 

require(rgdal) 

 

##### Sort Files ##### 

refpath="Directory/Kelvin " 

savepath="Directory/PCA " 

nchar(files[1]) 

 

##### Stack ##### 

 files=list.files(refpath,pattern="KelvG.tif") 

 files=files[which(apply(as.matrix(files),2,nchar)==21)] 

stackdasma=stack() 

 

 for (i in 1:length(files)) { 

 Ri <- raster(paste(refpath,files[i],sep="/"),band=1)# raster einlesen 

 #Ri = projectRaster(Ri, R1, method='bilinear') 

  stackdasma=stack(stackdasma,Ri) 

  print(nlayers(stackdasma)) 

 } 

 

##### PCA ##### 

  

## Ri=raster(paste(savepath,file[1],sep="/")) TIR imagery 

nlayers(stackdasma) ##number of layers 

DF=as.data.frame(stackdasma) ##data frame 

DF=na.omit(DF) ##NA`s raus 

PCA=prcomp(DF, scale=T, center=T) # PCA MAGIE 

summary(PCA, loadings=F) 

 

PCAval=predict(PCA) # PCA on Coordinate System 

loadings_PCA=as.data.frame(PCA$rotation) 

write.table(loadings_PCA, file=paste(savepath, "Loadings.csv",sep="/")) 

rownames(PCAval) # ... 

PCABlanko=mean(stackdasma, na.omit=T) # Blanc Raster with equal resolution and 

extent as TIR imagery 

PCABlanko[][as.numeric(rownames(PCAval))]=PCAval[,1]  

plot(PCABlanko) 

 

##### Stack Principal Components ##### 

PClist=list() 

for (i in 1:nlayers(stackdasma)){ 

  PCABlanko[][as.numeric(rownames(PCAval))]=PCAval[,i] 



   ANNEXE IV - R-scripts 

88 
 

  PClist[[i]]=PCABlanko 

  print(i) 

} 

 

PCAStack=stack(PClist) 

 

### create Multilayer RasterFile ##### 

plot(PCAStack) 

summary(PCA, loadings=T) 

writeRaster(PCAStack, 

filename=paste(savepath,"PCA_stack_scaled_center",sep="/"), format="GTiff", 

overwrite=T, bandorer="BIL") 

 

### create Single-layer RasterFiles ##### 

 

d2=unstack(PCAStack) 

outputnames <- paste(seq_along(d2)) 

Name="PCscaled" 

for(i in seq_along(d2)){writeRaster(d2[[i]], 

filename=paste(savepath,(paste(substr(Name,1,8),outputnames[i],sep="")),sep="/

"),format="GTiff", overwrite=T, bandorer="BIL")} 

 

 

labels1=as.character(files) 

#####Plot Loadings ##### 

plot(loadings_PCA$PC2, loadings_PCA$PC3, pch=19, col=4, xlim=c(-1, .5), 

ylim=c(-.5, 1), xlab="Loadings PC3", ylab="Loadings PC2", main="DOY ~ 

Loadings", sub="Traisen") 

text(loadings_PCA$PC2, loadings_PCA$PC3, 

labels=paste(substr(row.names(loadings_PCA), 2, 8)), pos=2, srt=50) 

 

plot(loadings_PCA$PC2, loadings_PCA$PC1, pch=19, col=4, xlim=c(-1, .5), 

ylim=c(-.5, 1),  xlab="Loadings PC2", ylab="Loadings PC1",  main="DOY ~ 

Loadings", sub="Traisen") 

text(loadings_PCA$PC2, loadings_PCA$PC1, 

labels=paste(substr(row.names(loadings_PCA), 2, 8)), pos=2, srt=45) 

 

Density Calculations 

This exemplary R-script file was used to estimate the densitiy estimations for the 

textural classes. However, it can be used for all densitiy estimations. See CD-Rom for 

all scripts used. 
##### Needed Packages ##### 

require(raster) 

require(sp) 

require(rgdal) 

 

#####Input###### 

Input=raster("directory.tif") 

 

PC1=raster("Directory_PC1.tif") 

projectRaster(PC1, Input, filename="Directory_PC1.tif", overwrite=T, 

method='bilinear') 

PC1=raster("Directory.tif") 

 

OR 

 

PC1=raster("Directory/PC1.tif") 

 

projectRaster(Input, PC1, filename="Directory/Input.tif", overwrite=T, 

method='bilinear') 

Input=raster("Directory/Input.tif") 

 

####DataFrame### 

 

DF=as.data.frame(PC1) 

head(DF) 
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DF=cbind(DF, (as.data.frame(Tex))) 

head(DF) 

 

####Selection of Attributes (HGEO)#### 

 

silty_clay_loam=(DF$PC1_Traisen_repr_Tex[which(DF$NUM==5)]) 

sandy_loam=(DF$PC1_Traisen_repr_Tex[which(DF$NUM==9)]) 

silty_clay=(DF$PC1_Traisen_repr_Tex[which(DF$NUM==2)]) 

loam=(DF$PC1_Traisen_repr_Tex[which(DF$NUM==7)]) 

silt_loam=(DF$PC1_Traisen_repr_Tex[which(DF$NUM==8)]) 

clay_loam=(DF$PC1_Traisen_repr_Tex[which(DF$NUM==4)]) 

loamy_sand=(DF$PC1_Traisen_repr_Tex[which(DF$NUM==11)]) 

 

D1=density(silty_clay_loam,bw=0.4, na.rm=T) #die bandwidth (bw) muss t du f?r 

alle gleich einstellen. Bisschen probieren, was gut aussieht 

D2=density(sandy_loam,bw=0.4, na.rm=T) 

D3=density(silty_clay,bw=0.4, na.rm=T) 

D4=density(loam,bw=0.4, na.rm=T) 

D5=density(silt_loam,bw=0.4, na.rm=T) 

D6=density(clay_loam,bw=0.4, na.rm=T) 

D7=density(loamy_sand,bw=0.4, na.rm=T) 

 

OR ######Selection of Attributes (DEM with K-means Intervals)#### 

 

######classes k means ########## 

 

require(classInt) 

classes=as.list(c(classIntervals(na.omit(DF$DEM_Ybbs_reproj_PCscaled1), n=6, 

style="kmeans"))) 

classes$brks 

 

 

DEM_214to449=DF$PCscaled1[which(DF$DEM_Ybbs_reproj_PCscaled1>=classes$brks[1] 

& DF$DEM_Ybbs_reproj_PCscaled1<classes$brks[2])] 

DEM_450to667=DF$PCscaled1[which(DF$DEM_Ybbs_reproj_PCscaled1>=classes$brks[2] 

& DF$DEM_Ybbs_reproj_PCscaled1<classes$brks[3])] 

DEM_668to908=DF$PCscaled1[which(DF$DEM_Ybbs_reproj_PCscaled1>=classes$brks[3] 

& DF$DEM_Ybbs_reproj_PCscaled1<classes$brks[4])] 

DEM_909to1211=DF$PCscaled1[which(DF$DEM_Ybbs_reproj_PCscaled1>=classes$brks[4] 

& DF$DEM_Ybbs_reproj_PCscaled1<classes$brks[5])] 

DEM_1212to1841=DF$PCscaled1[which(DF$DEM_Ybbs_reproj_PCscaled1>=classes$brks[5

] & DF$DEM_Ybbs_reproj_PCscaled1<classes$brks[6])]#TEST 

DEM_1100to1746=DF$PCscaled1[which(DF$DEM_Ybbs_reproj_PCscaled1>=classes$brks[6

] & DF$DEM_Ybbs_reproj_PCscaled1<=classes$brks[7])] 

 

OR ######Selection of Attributes (Corine Land Cover) #### 

 

Stadt=(DF$PC2[which(DF$clc2000_Ybbs_reproj_pc2==7 | 

DF$clc2000_Ybbs_reproj_pc2==8 | DF$clc2000_Ybbs_reproj_pc2==10 | 

DF$clc2000_Ybbs_reproj_pc2==13 | DF$clc2000_Ybbs_reproj_pc2==14 | 

DF$clc2000_Ybbs_reproj_pc2==18)]) 

Ackerbau=(DF$PC2[which(DF$clc2000_Ybbs_reproj_pc2==3 | 

DF$clc2000_Ybbs_reproj_pc2==4 | DF$clc2000_Ybbs_reproj_pc2==15)]) 

Meadow=(DF$PC2[which(DF$clc2000_Ybbs_reproj_pc2==16)]) 

Wald=(DF$PC2[which(DF$clc2000_Ybbs_reproj_pc2==2 | 

DF$clc2000_Ybbs_reproj_pc2==5 | DF$clc2000_Ybbs_reproj_pc2==9)]) 

Gebüsch=(DF$PC2[which(DF$clc2000_Ybbs_reproj_pc2==12 | 

DF$clc2000_Ybbs_reproj_pc2==19)]) 

#Wasser=(DF$PC2[which(DF$clc2000_Ybbs_recl_reproj==4)]) 

Wasser=(DF$PC2[which(DF$clc2000_Ybbs_reproj_pc2==5 | 

DF$clc2000_Ybbs_reproj_pc2==11)]) 

 

OR ########Selection of Attributes (CLC for mountaineous and Flat 

Terrain)##### 

 

Ackerland=DF$PCscaled1[which((DF$DEM_Ybbs_r_PC1>=200 & DF$DEM_Ybbs_r_PC1<=600) 

& (DF$Ybbs_clc_pro==2 | DF$Ybbs_clc_pro==4))] 
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LaubundMischwald=DF$PCscaled1[which((DF$DEM_Ybbs_r_PC1>=200 & 

DF$DEM_Ybbs_r_PC1<=600) & (DF$Ybbs_clc_pro==3 | DF$Ybbs_clc_pro==7))] 

Grunland=DF$PCscaled1[which((DF$DEM_Ybbs_r_PC1>=200 & DF$DEM_Ybbs_r_PC1<=600) 

& (DF$Ybbs_clc_pro==9 | DF$Ybbs_clc_pro==8 | DF$Ybbs_clc_pro==12 | 

DF$Ybbs_clc_pro==13))] 

Nadelwald=DF$PCscaled1[which((DF$DEM_Ybbs_r_PC1>=200 & DF$DEM_Ybbs_r_PC1<=600) 

& (DF$Ybbs_clc_pro==5))] 

Fels=DF$PCscaled1[which((DF$DEM_Ybbs_r_PC1>=200 & DF$DEM_Ybbs_r_PC1<=600) & 

(DF$Ybbs_clc_pro==14 | DF$Ybbs_clc_pro==18))] 

Wasser=DF$PCscaled1[which((DF$DEM_Ybbs_r_PC1>=200 & DF$DEM_Ybbs_r_PC1<=600) & 

(DF$Ybbs_clc_pro==1 | DF$Ybbs_clc_pro==15 | DF$Ybbs_clc_pro==17 | 

DF$Ybbs_clc_pro==16))] 

Urban=DF$PCscaled1[which((DF$DEM_Ybbs_r_PC1>=200 & DF$DEM_Ybbs_r_PC1<=600) & 

(DF$Ybbs_clc_pro==6 | DF$Ybbs_clc_pro==10 | DF$Ybbs_clc_pro==11))] 

 

 

#########DENSITY Calculations###### 

D1=density(“ATTRIBUTE“,bw=0.8, na.rm=T) #die bandwidth (bw) muss t du f?r alle 

gleich einstellen. Bisschen probieren, was gut aussieht 

D2=density(“ATTRIBUTE“,bw=0.8, na.rm=T) 

D3=density(“ATTRIBUTE“,bw=0.8, na.rm=T) 

D4=density(“ATTRIBUTE“,bw=0.8, na.rm=T) 

D5=density(“ATTRIBUTE“,bw=0.8, na.rm=T) 

D6=density(“ATTRIBUTE“,bw=0.4, na.rm=T) 

 

#####Plotting#### 

png(filename="D:/MASTERARBEIT/El 

Texto/Figures/ANALYSE/Texture_PC1_Traisen.png", antialias = "cleartype", 

pointsize=10, width=3000, height=1600, res=300) 

par(mfrow=c(1,1)) 

 

colors1 = c("red", "yellow", "darkolivegreen4", "violet", "orange", "blue", 

"darkorchid3", "cyan", "black", "brown")  

 

plot(D1, lwd=2, xlim=range(DF$PC1_Traisen_repr_Tex, 

na.rm=T),ylim=c(0,max(c(max(D1$y),max(D2$y),max(D4$y), max(D5$y), max(D7$y), 

max(D8$y), max(D9$y), max(D10$y)))),col=colors1[1], 

     main="PC1 vs Texture", 

     sub="Traisen", 

     xlab="") 

lines(D2,col=colors1[2], lwd=2) 

lines(D3,col=colors1[3], lwd=2) 

lines(D4,col=colors1[4], lwd=2) 

lines(D5,col=colors1[5], lwd=2) 

lines(D6,col=colors1[6], lwd=2) 

lines(D7,col=colors1[7], lwd=2) 

 

rug((D1$x[D1$y == max(D1$y)]), col=colors1[1], lwd=2) 

rug((D2$x[D2$y == max(D2$y)]), col=colors1[2], lwd=2) 

rug((D3$x[D3$y == max(D3$y)]), col=colors1[3], lwd=2) 

rug((D4$x[D4$y == max(D4$y)]), col=colors1[4], lwd=2) 

rug((D5$x[D5$y == max(D5$y)]), col=colors1[5], lwd=2) 

rug((D6$x[D6$y == max(D6$y)]), col=colors1[6], lwd=2) 

rug((D7$x[D7$y == max(D7$y)]), col=colors1[7], lwd=2) 

 

 

classes=as.list(c("ATTRIBUTE1", “ATTRIBUTE2”…etc)) 

legend("topleft",legend=paste(classes[1:7]),col=colors1,lwd=2)  

classes 

dev.off() 

 

Sensitivity Analysis 
 

##### Sort Files ##### 

refpath="Directory" 

savepath="Directory" 

 

##### Built Stack ##### 
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files=list.files(refpath,pattern="KelvG.tif") 

files=files[which(apply(as.matrix(files),2,nchar)==21)] 

 

stackdasma=stack() 

 

for (i in 1:length(files)) { 

  Ri <- raster(paste(refpath,files[i],sep="/"),band=1)  

stackdasma=stack(stackdasma,Ri) 

  print(nlayers(stackdasma)) 

} 

 

DF=as.data.frame(stackdasma) ##data frame 

 

DF=na.omit(DF) ##NA`s raus 

 

PCA=prcomp(DF, scale=T, center=T)  

 

summary(PCA, loadings=F) 

 

ALL.mean_Traisen_pc1=c() 

ALL.mean_Traisen_pc2=c() 

ALL.sd_Traisen_pc1=C() 

ALL.sd_Traisen_pc2=C() 

 

 

################1 OUT############################## 

 

cors1.1=c()  

loadings=c() 

loadings1=c() 

Name_out=paste(seq_along(DF)) 

 

for (i in 1:11){ 

  #Spalte i wird ausgelassen 

  PCA.i=prcomp(DF[,-i], scale=T, center=T) 

  #Correlation berechnet 

  cors1.1[i]=abs(cor(PCA$x[,1],PCA.i$x[,1]))  

  loadings1=append(loadings1,loadings$PC1) 

} 

stats_DF=data.frame(Name_out, cors1.1) 

write.table(stats_DF, "E:/Thesis/Landsat-

5/No_CloudCover/Traisen/Method_Analysis/One-Out_Pc1_cors.csv") 

 

ALL.mean_Traisen_pc1=mean(cors1.1) ALL.sd_Traisen_pc1=sd(cors1.1)  

 

####Plot#### 

png(filename="Directory", width=3000, height=3000, units="px", res=300) 

plot(cors1.1, xlab="dropped images",ylab="absolute correlation",ylim=c(0,1)) 

abline(h=0) 

abline(h=mean(cors1.1),col="red") 

abline(h=mean(cors1.1)+c(1,-1)*sd(cors),lty=2,col="red") 

dev.off() 

 

cors1.2=c() #Initialisierung des Speichers fuer Ergebnisse 

loadings=c() 

loadings1=c() 

Name_out=paste(seq_along(DF)) 

 

for (i in 1:11){ 

  #Spalte i wird ausgelassen 

  PCA.i=prcomp(DF[,-i], scale=T, center=T) 

  #Correlation berechnet 

  cors1.2[i]=abs(cor(PCA$x[,2],PCA.i$x[,2]))  

loadings=as.data.frame(PCA.i$rotation) 

  loadings1=append(loadings1,loadings$PC1) 

} 

stats_DF=data.frame(Name_out, cors1.2) 

write.table(stats_DF, "directory.csv") 
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ALL.mean_Traisen_pc2=mean(cors1.2)  

ALL.sd_Traisen_pc2=sd(cors1.2)  

 

png(filename="Directory", width=3000, height=3000, units="px", res=300) 

plot(cors1.2, xlab="dropped images",ylab="absolute correlation",ylim=c(0,1)) 

abline(h=0) 

abline(h=mean(cors1.2),col="red") 

abline(h=mean(cors1.2)+c(1,-1)*sd(cors1.2),lty=2,col="red") 

dev.off() 

 

#################2 OUT############################# 

 

cors2.1=list() 

for (i in 1:11){ 

  for (j in (i+1):11){  

    if(j<=11 & i!=j){ 

      PCA.ij=prcomp(DF[,-c(i,j)], scale=T, center=T) 

      #Correlation berechnet 

      cors2.1[[paste(i,j,sep="-")]]=abs(cor(PCA$x[,1],PCA.ij$x[,1])) 

}}} 

 

mean(unlist(cors2.1)) 

sd(unlist(cors2.1))  

write.table(cors2.1, "directory.csv") 

 

png(filename="directory.csv", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors2.1), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors2.1),names(cors2.1)) 

abline(h=0) 

abline(h=mean(unlist(cors2.1)),col="red") 

abline(h=mean(unlist(cors2.1))+c(1,-1)*sd(unlist(cors2.1)),lty=2,col="red") 

dev.off() 

 

cors2.2=list() 

for (i in 1:11){ 

  for (j in (i+1):11){ #hier ist der Trick, dass du von i weiter laeufst. 

Damit ist keine Kombi doppelt. 

    if(j<=11 & i!=j){ #und damit du dann nicht ueber die Anzahl der Spalten 

rauslaeufst, solltest du das hier eintragen. 

      #Spalte i und j wird ausgelassen 

      PCA.ij=prcomp(DF[,-c(i,j)], scale=T, center=T) 

      #Correlation berechnet 

      cors2.2[[paste(i,j,sep="-")]]=abs(cor(PCA$x[,2],PCA.ij$x[,2])) 

    }}} 

 

mean(unlist(cors2.2)) #mittlere Korrelation (gross ist gut) 

sd(unlist(cors2.2)) #Standardabweichung (klein ist gut) 

write.table(cors2.2, "E:/Thesis/Landsat-

5/No_CloudCover/Traisen/Method_Analysis/Two-Out_PC2_cors.csv") 

 

png(filename="directory.png",width=3000, height=3000, units="px", res=300) 

plot(unlist(cors2.2), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors2.2),names(cors2.2)) 

abline(h=0) 

abline(h=mean(unlist(cors2.2)),col="red") 

abline(h=mean(unlist(cors2.2))+c(1,-1)*sd(unlist(cors2.2)),lty=2,col="red") 

dev.off() 

#####################3 OUT############################ 

 

cors3.1=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11) 

    if(j<=11 & i!=j & k<=11 & k!=j & k!=i){ 

       

      PCA.ijk=CA.ij=prcomp(DF[,-c(i,j,k)], scale=T, center=T) 
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      cors3.1[[paste(i,j,k,sep="-")]]=abs(cor(PCA$x[,1],PCA.ijk$x[,1])) 

    }}} 

 

mean(unlist(cors3.1)) 

sd(unlist(cors3.1)) 

write.table(cors3.1, "directory.csv") 

 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors3.1), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors3.1),names(cors3.1)) 

abline(h=0) 

abline(h=mean(unlist(cors3.1)),col="red") 

abline(h=mean(unlist(cors3.1))+c(1,-1)*sd(unlist(cors3.1)),lty=2,col="red") 

dev.off() 

 

cors3.2=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11) 

      if(j<=11 & i!=j & k<=11 & k!=j & k!=i){ 

         

        PCA.ijk=CA.ij=prcomp(DF[,-c(i,j,k)], scale=T, center=T) 

         

        cors3.2[[paste(i,j,k,sep="-")]]=abs(cor(PCA$x[,2],PCA.ijk$x[,2])) 

      }}} 

 

mean(unlist(cors3.2)) 

sd(unlist(cors3.2)) 

write.table(cors3.2, "directory.csv") 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors3.2), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors3.2),names(cors3.2)) 

abline(h=0) 

abline(h=mean(unlist(cors3.2)),col="red") 

abline(h=mean(unlist(cors3.2))+c(1,-1)*sd(unlist(cors3.2)),lty=2,col="red") 

dev.off() 

###############################4 

OUT############################################## 

 

 

cors4.1=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11){ 

      for (l in (k+1):11) 

      if(j<=11 & i!=j & k<=11 & k!=j & k!=i & l<=11 & l!=j & l!=i & l!=k){ 

         

        PCA.ijkl=prcomp(DF[,-c(i,j,k,l)], scale=T, center=T) 

         

        cors4.1[[paste(i,j,k,l,sep="-")]]=abs(cor(PCA$x[,1],PCA.ijkl$x[,1])) 

      }}}} 

 

mean(unlist(cors4.1)) 

sd(unlist(cors4.1)) 

write.table(cors4.1, "directory.csv") 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors4.1), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors4.1),names(cors4.1)) 

abline(h=0) 

abline(h=mean(unlist(cors4.1)),col="red") 

abline(h=mean(unlist(cors4.1))+c(1,-1)*sd(unlist(cors4.1)),lty=2,col="red") 

dev.off() 
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cors4.2=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11){ 

      for (l in (k+1):11) 

        if(j<=11 & i!=j & k<=11 & k!=j & k!=i & l<=11 & l!=j & l!=i & l!=k){ 

           

          PCA.ijkl=prcomp(DF[,-c(i,j,k,l)], scale=T, center=T) 

           

          cors4.2[[paste(i,j,k,l,sep="-")]]=abs(cor(PCA$x[,2],PCA.ijkl$x[,2])) 

        }}}} 

 

mean(unlist(cors4.2)) 

sd(unlist(cors4.2)) 

write.table(cors4.2, "directory.csv") 

 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors4.2), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors4.2),names(cors4.2)) 

abline(h=0) 

abline(h=mean(unlist(cors4.2)),col="red") 

abline(h=mean(unlist(cors4.2))+c(1,-1)*sd(unlist(cors4.2)),lty=2,col="red") 

dev.off() 

 

##############################5 OUT############################# 

 

cors5.1=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11){ 

      for (l in (k+1):11){ 

        for(m in (l+1):11) 

        if(j<=11 & i!=j & k<=11 & k!=j & k!=i & l<=11 & l!=j & l!=i & l!=k & 

m<=11 &m!=j & m!=i & m!=k & m!=l){ 

           

          PCA.ijklm=prcomp(DF[,-c(i,j,k,l, m)], scale=T, center=T) 

           

          cors5.1[[paste(i,j,k,l,m,sep="-

")]]=abs(cor(PCA$x[,1],PCA.ijklm$x[,1])) 

        }}}}} 

 

mean(unlist(cors5.1)) 

sd(unlist(cors5.1)) 

write.table(cors5.1, "directory.csv") 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors5.1), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors5.1),names(cors5.1)) 

abline(h=0) 

abline(h=mean(unlist(cors5.1)),col="red") 

abline(h=mean(unlist(cors5.1))+c(1,-1)*sd(unlist(cors5.1)),lty=2,col="red") 

dev.off() 

 

cors5.2=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11){ 

      for (l in (k+1):11){ 

        for(m in (l+1):11) 

            if(j<=11 & i!=j & k<=11 & k!=j & k!=i & l<=11 & l!=j & l!=i & l!=k 

& m<=11 &m!=j & m!=i & m!=k & m!=l){ 

               

              PCA.ijklm=prcomp(DF[,-c(i,j,k,l,m)], scale=T, center=T) 

               

              cors5.2[[paste(i,j,k,l,m,sep="-

")]]=abs(cor(PCA$x[,2],PCA.ijklm$x[,2])) 
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            }}}}} 

 

mean(unlist(cors5.2)) 

sd(unlist(cors5.2)) 

write.table(cors5.2, "E:/Thesis/Landsat-

5/No_CloudCover/Traisen/Method_Analysis/Five-Out_PC2_cors.csv") 

 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors5.2), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors5.2),names(cors5.2)) 

abline(h=0) 

abline(h=mean(unlist(cors5.2)),col="red") 

abline(h=mean(unlist(cors5.2))+c(1,-1)*sd(unlist(cors5.2)),lty=2,col="red") 

dev.off() 

 

##############################6 OUT############################# 

 

cors6.1=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11){ 

      for (l in (k+1):11){ 

        for(m in (l+1):11){ 

         for(n in (m+1):11) 

            if(j<=11 & i!=j & k<=11 & k!=j & k!=i & l<=11 & l!=j & l!=i & l!=k 

& m<=11 &m!=j & m!=i & m!=k & m!=l & 

                 n<=11 & n!=j & n!=i & n!=k & n!=l & n!=m){ 

               

              PCA.ijklmn=prcomp(DF[,-c(i,j,k,l,m,n)], scale=T, center=T) 

               

              cors6.1[[paste(i,j,k,l,m,n, sep="-

")]]=abs(cor(PCA$x[,1],PCA.ijklmn$x[,1])) 

            }}}}}} 

 

mean(unlist(cors6.1)) 

sd(unlist(cors6.1)) 

write.table(cors6.1, "directory.csv") 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors6.1), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors6.1),names(cors6.1)) 

abline(h=0) 

abline(h=mean(unlist(cors6.1)),col="red") 

abline(h=mean(unlist(cors6.1))+c(1,-1)*sd(unlist(cors6.1)),lty=2,col="red") 

dev.off() 

 

cors6.2=list()  

for (i in 1:11){ 

  for (j in (i+1):11){  

    for (k in (j+1):11){ 

      for (l in (k+1):11){ 

        for(m in (l+1):11){ 

          for(n in (m+1):11) 

            if(j<=11 & i!=j & k<=11 & k!=j & k!=i & l<=11 & l!=j & l!=i & l!=k 

& m<=11 &m!=j & m!=i & m!=k & m!=l & 

                 n<=11 & n!=j & n!=i & n!=k & n!=l & n!=m){ 

               

              PCA.ijklmn=prcomp(DF[,-c(i,j,k,l,m,n)], scale=T, center=T) 

               

              cors6.2[[paste(i,j,k,l,m,n, sep="-

")]]=abs(cor(PCA$x[,2],PCA.ijklmn$x[,2])) 

            }}}}}} 

 

mean(unlist(cors6.2)) 

sd(unlist(cors6.2)) 

write.table(cors6.2, "directory.csv") 



   ANNEXE IV - R-scripts 

96 
 

 

 

png(filename="directory.png", width=3000, height=3000, units="px", res=300) 

plot(unlist(cors6.2), xlab="dropped images",ylab="absolute 

correlation",ylim=c(0,1),xaxt="n") 

axis(1,1:length(cors6.2),names(cors6.2)) 

abline(h=0) 

abline(h=mean(unlist(cors6.2)),col="red") 

abline(h=mean(unlist(cors6.2))+c(1,-1)*sd(unlist(cors6.2)),lty=2,col="red") 

dev.off() 

 

ALL.mean_Traisen_pc1=c(mean(cors1.1), mean(unlist(cors2.1)), 

mean(unlist(cors3.1)), mean(unlist(cors4.1)), mean(unlist(cors5.1)), 

mean(unlist(cors6.1))) 

ALL.mean_Traisen_pc2=c(mean(cors1.2), mean(unlist(cors2.2)), 

mean(unlist(cors3.2)), mean(unlist(cors4.2)), mean(unlist(cors5.2)), 

mean(unlist(cors6.2))) 

ALL.sd_Traisen_pc1=c(sd(cors1.1), sd(unlist(cors2.1)), sd(unlist(cors3.1)), 

sd(unlist(cors4.1)), sd(unlist(cors5.1)), sd(unlist(cors6.1))) 

ALL.sd_Traisen_pc2=c(sd(cors1.2), sd(unlist(cors2.2)), sd(unlist(cors3.2)), 

sd(unlist(cors4.2)), sd(unlist(cors5.2)), sd(unlist(cors6.2))) 

 

write.table(ALL.mean_Traisen_pc1, "directory.csv") 

write.table(ALL.mean_Traisen_pc2, "directory.csv") 

write.table(ALL.sd_Traisen_pc1, "directory.csv") 

write.table(ALL.sd_Traisen_pc2, "directory.csv") 
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ANNEXE V. CD-ROM 
 

This work and supplementary materials can be found in digital form on an attached CD-

ROM:  

 Master’s Thesis (PDF) 

 TIR-Datasets (TIFF) 

 PCA-Maps (TIFF) 

 PCA Loadings and Proportions of variance (XLSX) 

 Landscape Characteristics (TIFF) 

 Sensitivity Analysis - Quantitative Results (CSV) 

 Probability Distribution Functions (PNG) 

 R-scripts (R) 
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