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ABSTRACT 

Traditional soil surveys are conducted via in-situ measurements and provide among other 
uses information for soil maps. Satellite images and remote sensing data can help to 
enhance these maps by addressing different soil attributes and providing better spatial 
resolution. Their temporal and spatial availability enables users to assess any remote 
region, without prior or deeper knowledge about it. This thesis aims to evaluate the 
feasibility of soil mapping with free earth observation satellite data using open source 
software. It is conducted in the Marchfeld region in Lower Austria which is characterized 
by high soil variability. The author generates three bare-soil-reflectance based indicators 
(median over time of spectral reflectance, coefficients of a polynomial function fitted on 
the spectral reflectance of the pixel, intercept and slope of the soil line) on the basis of 16 
Landsat-7 images. They serve as input features for an unsupervised classification, using 
the "self-organizing map" (SOM) and the "kMeans" algorithm. The resulting maps are 
compared analytically and visually with an existing soil map of the area of interest. It is 
shown that the maps produced are more dependent on the input feature used, than on the 
algorithm applied, with one reflectance based indicator - the coefficients of a polynomial 
function fitted on the spectral reflectance of the pixel - outperforming the other indicators. 
Coarse patterns and shapes can be delineated from the results and a better spatial 
resolution compared to the existing soil map is provided. For an improvement of the 
results, additional soil specific information - like in-situ measurements - can be used as an 
input feature or for a supervised classification. 

Keywords: digital soil mapping, remote sensing, unsupervised classification, Marchfeld, 
Landsat, R 
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1. INTRODUCTION 

Earth's surface is under constant change in land use and land cover. Due to demographic 
pressure and climate change these environmental changes are likely to continue and have 
impact on the earth's pedosphere (cf. Mulder et al., 2011). Its importance for food security 
and for being under stress - mainly caused by human activities - has led to risen awareness 
from society in the last years - manifesting for example in the "International Year of Soils 
2015" (cf. “The International Union of Soil Sciences - IUSS,” n.d.). Soil sealing and 
agricultural practices are the main reasons for the loss of fertile soil. Environmental 
changes but also anthropological impacts have great influence on soils as they not only 
determine its physical and chemical composition and condition but also its availability for 
different uses. The first soil maps were published in the middle of the 19th century (cf. 
Hartemink et al., 2013) and since then soil maps provide information used for policy-
making, land resource management and for monitoring the environmental impact of 
development.  

The following chapters will give a short historic review on soil science in general and 
introduce theoretical background to soils, soil mapping and remote sensing.  

1.1.  Soils and Soil  Mapping 

The Russian Vasily Dokuchaev was one of the first prominent soil scientists in the 19th 
century and he is considered as the father of pedology. His main effort was classifying 
different soil categories and visualizing them in a map. He established pedology and soil 
science as an independent but interdisciplinary discipline within science, having strong 
relations to chemistry, physics, geology and microbiology for example. The first journal 
related to soil science was named "Pochvovedenie" (Russian for "soil science") and 
appeared in 1899 (cf. Hartemink et al., 2001, p. 218).  

In 1941, Hans Jenny - a Swiss scientist - introduced a new conceptual equation and 
paradigm which is still followed today: 

�	 = 	�	(��, 	, 
, �, �, . . . ) 
It states: soil (S) is a function of climate (cl), organisms (o), relief or topography (r), parent 
material (p), time (t), and unspecified factors (...) including human activities (cf. Jenny, 
1941). This concept was the first that treated the formation of soil as an aggregate of many 
interrelated physical, chemical and biological processes. The conceptual shift in those days 
could also be observed in the new focus on individual detailed soil attributes and grain-to-
grain relationships instead of gross attributes of the whole soil.  
Nowadays the three main topics (according to the number of published papers) in soil 
science are firstly: "soil genesis, classification and mapping"; secondly: "soil chemistry" 
and thirdly: "soil physics"(cf. Hartemink et al., 2001, p. 235). It shows that the main 
emphasis is still in soil classification and mapping.  

Soil forms part of the basic and crucial elements of life. It is a finite resource, meaning that 
its loss and degradation cannot be recovered in a human lifespan. As one of the key life 
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support systems it is responsible for the performance of major ecosystems services and 
functions such as: 

• climate regulation; 
• flood regulation; 
• nutrient cycling; 
• water purification and soil contaminant reduction; 
• carbon sequestration; 
• habitat for organisms; 
• source of raw materials; 
• archive of geological and archeological heritage;  
• biomass production in agriculture and forestry and 
• foundation for human infrastructure and activities (cf. Stolbovoy et al., 2008; FAO, 

2015). 

Soils are very much under pressure from different uses such as agriculture, forestry and 
through urbanization. As well the intensification of these uses is contributing to the loss of 
fertile soil. The FAO (Food and Agriculture Organization of the United Nations) evaluated 
that "33 percent of land is moderately to highly degraded due to the erosion, compaction, 
acidification and chemical pollution of soils" and further that the "projected growth in 
global population (to exceed 9 billion by 2050) are estimated to result in a 50 percent 
increase in demand for food, feed and fibre by 2050" (FAO, 2015, p. 1).  FAO also indicates 
that there is very little space left for agricultural expansion and emphasize that "soils need 
to be recognized and valued for their productive capacities as well as their contribution to 
food security and the maintenance of key ecosystem services".  As shown, the responsible 
institution does not give a very promising insight. Regarding these facts, it is surprising 
that until now soils were not considered as a highly valuable resource and were often 
overlooked (cf. Miehlich, 2009).  

In contrast to "climate", "air" and "water", "soil" has not been part of society's focus in the 
past and it is just in recent years - due to current efforts - gaining importance. According to 
Miehlich (2009) this little awareness might be caused by sociological aspects:  

• Soils are "invisible": in urban areas soils are mostly sealed and elsewhere they 
are covered by vegetation. The only exception are crops, where bare soil is visible 
after harvesting. 

• Soils are "uniform / equal": their qualitative attributes and monetary value 
cannot be retrieved via visual or sensual examination but has to be analyzed 
scientifically. This makes it hard to estimate its value and importance as they seem 
like a constant or a continuum, making it difficult to separate different soil classes 
visually.  

• Soils develop very slowly: soils change very little in a human life span - they 
seem static and constant to us.  

• Soils are not an "eye-catcher": other environmental issues can be shown very 
well using emotional aspects. "Dirty" soils cannot be illustrated as a cute, little 
thing which moves as you wave. As a result soil issues are very seldom in our 
media today.  

• The relation between human activities and soils is very complex: our lifestyle 
and demand for products has indirect relation to the impact we have on our soils. 
We often do not know about the provenience of our products and the role they 
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play for soil composition and soil conditions. This impact is indirect and not very 
obvious, leading to little awareness about the role of our activities.  

The European Commission for instance recognized this gap of soil consciousness and 
initiated various programs. For example, in 2006 it provided a "Thematic Strategy for Soil 
Protection" (TSSP) which includes an important focal point for soil research and 
awareness raising. Applying different methods and conducting different activities it tries 
to reach stakeholder groups and policy-makers. "Unfortunately, the TSSP has not yet been 
followed up with a legally binding Framework Directive mainly because of political 
barriers" (Bouma et al., 2012, p. 552). Nevertheless there is pinned big hope in soil atlases 
and soil maps presenting soil information to (partly) tackle the problem of unawareness. 
Soil monitoring and soil mapping are regarded as key factors to provide information on 
soils, as they are able to illustrate soil conditions and their spatial and temporal variations. 
They play a big role for soil protection and conservation, since the choice of the applied 
management techniques and preservation methods relies on the provided information. 
Therefore attention is being paid on its relevance to major environmental problems and to 
local socio-economic conditions, rather than focusing on soil information as such - as in 
traditional soil survey reports (cf. Bouma et al., 2012; European Commission - Joint 
Research Center, 2014).  

Soil mapping nowadays is working quite different than in its beginnings (cf. Bockheim et 
al., 2005). It still shows the diversity of soil types and its properties, but there are more 
attributes that can be assessed, so the maps are richer in content and have higher spatial 
resolution. This was made possible by better monitoring instruments such as earth 
observation satellite data and through advances in computer technology and processing of 
large data sets. In-situ measurements play a big role in successful soil mapping. Wulf et al. 
(2015) show in their work that they provide high accuracy and feasibility to obtain soil 
specific information and therefore outperform satellites in some uses. Their main 
disadvantages lie in the cost-effectiveness and their spatial availability. With digital 
development, information about soils is stored in rasters. They can be visualized in GIS 
(geographic information systems) like the desktop-based open source software "QGIS" (cf. 
QGIS, 2015) or proprietary products like "ArcGIS" (cf. ArcGIS, 2015) and "ERDAS 
IMAGINE" (cf. ERDAS IMAGINE, 2015). This software enables to combine data from 
different sources efficiently and perform spatial analysis (geostatistics, modelling,...) on 
the data set. Nowadays most of the mapping process is done remotely, instead of being at 
the area of interest. This is made possible through data either provided by in-situ 
measurements or by remote sensing techniques that collect data from above - from air or 
space.  

1.2.  Remote Sensing 

Remote sensing is the technique of data acquisition without making physical contact with 
the object. It can be divided into passive and active remote sensing. Passive remote 
sensing uses solar radiation that is reflected or emitted by the land surface. Active remote 
sensing on the other hand is "actively" emitting energy with wavelengths ranging between 
0.8 cm and 100 cm to detect the objects backscattered radiation (cf. Schowengerdt, 2007). 
Furthermore it can be distinguished between airborne and spaceborne remote sensing, 
differing in the platform which carries the instruments. As with many new technologies, 
the military sector was the driving force. First, remote sensing was mainly used to fulfill 
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national security missions, like using aerial photography during World War I. Later the 
first civil applications, such as mapping land cover and photogrammetry were introduced. 
In the 1950s multispectral sensors have been developed enabling further non-military 
applications. With the threat of cold war remote sensing was brought to new levels: The 
first satellites were launched and in 1960 the first photograph of the earth's surface from 
space was taken by a satellite of the US-Corona program. The most prominent and longest 
running program for civil uses of remote sensing is called Landsat. It was initiated in the 
U.S. in 1966 under the name "Earth Resources Technology Satellites Program" and 
renamed in 1975 to "Landsat" (cf. Estes, 2005). Since then eight satellites have been 
launched - latest being Landsat 8 in February 2013 - providing the most complete and 
continuous time series of images of the earth's surface for free. During the years there has 
been improvement in temporal, spatial and spectral resolution with the result that 
Landsat 8 has a spatial resolution of 30 meters in 8 spectral bands - four bands covering 
the visible and four bands the infrared spectrum. Landsat 8 also features a panchromatic 
band and two thermal infrared bands and the revisit time is 16 days. The availability of 
free and open source data is going to improve in the coming months thanks to the 
Copernicus program, an initiative of the European Commission in cooperation with ESA 
(European Space Agency) to provide a set of satellites "Sentinels" for monitoring the 
status of the land surface. With the launch of "Sentinel 1A" (radar domain) in 2014, 
"Sentinel 2A" (optical domain) in 2015, an upcoming launch of "Sentinel 3A" in 2016 and 
further launches from 2017 on of "Sentinel 1B", "Sentinel 2B" and "Sentinel 3B" it ensures 
good data quality for the future (cf. ESA, 2015a, 2015b). The Copernicus program shall 
provide data for several environmental and civil purposes. For example with "Sentinel 2A" 
and its high spatial and temporal resolution, a revisit time of up to 2-3 days at mid-
latitudes and its distribution policy (data use for free), there is big hope on broad use and 
lots of applications of this dataset. The monitoring of changes to vegetation within the 
growing season is one example (cf. ESA, 2015b, 2015c).  

The technological developments in remote sensing can enable advances in soil mapping. 
In-situ measurements can be combined with high spatial resolution remote sensing data 
to enrich models and soil maps - different approaches such as regression trees or 
generalized linear models are presented by Mulder et al. (2011). Small spatial patterns 
and soil variability are easy to detect and not only indicated well, but can also be extended 
to much larger regions than without the use of remote sensing data. It also gives the 
opportunity to do time series and analyze the development of the soils. Therefore the use 
of remote sensing for (digital) soil mapping can be quite evident: it has the advantage of 
being both time and cost efficient and retrieving better spatial variability compared to 
conventional soil sampling and mapping. Mulder et al. (2011) have evaluated the use of 
remote sensing in soil mapping and did a literature review. The study classifies the 
feasibility of soil mapping with remote sensing as "medium" with the main issues in the 
"spectral resolution being too coarse" and in finding pure bare soil pixels - not having a 
vegetation cover over 20 percent. However, using remotely sensed imagery as additional 
input data (secondary information), accuracy and efficiency show a significant increase. 
Especially the spatial segmentation can be improved (cf. Mulder et al., 2011, p. 12; Wulf et 
al., 2015, p. 22). With future development remote sensing will gain more importance and 
play a bigger role in the field of soil mapping. 
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1.3.  Objective 

Conventional soil mapping and especially the in-situ sampling of soil is considered to be 
very time-consuming and expensive (cf. Wulf et al., 2015). For this reason and as a result 
of this work the following question should be answered:  

Is it feasible to map soil types and soil patterns using Landsat time 

series data and an unsupervised classification algorithm approach? 

The approach is tested for a region of interest located in Lower Austria (Marchfeld). The 
results are evaluated using an existing soil map of the region of interest. Recognizing and 
emphasizing the importance of cost effectiveness, the thesis also tries to make a point with 
showing that it is possible to use only free open source software for processing, 
computation and illustration - the experience is reported in 4.2 Lessons learned.  
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2. MATERIALS AND METHODS 

The scope of the thesis is to evaluate the feasibility of automatic soil mapping using 
Landsat data. It is conducted in the Marchfeld region, which is known for its intensive 
agricultural use and is in need of spatial high resolution soil maps providing a good base 
for decision-making. The advantage of an automatic approach is that theoretically any 
(remote) area can be assessed no matter how much ground sampled data and knowledge 
about the area is available, as it looks for underlying structures and patterns in the dataset 
and maps them accordingly. The Marchfeld site was chosen to enable evaluation between 
the results of the thesis and the existing soil map. 

Various Landsat images from different dates over a period of four years are chosen to 
minimize the variability of each image. In remote sensing temporal variability can be 
caused by changes in atmospheric conditions, variations in soil moisture and has great 
influence on the recorded pixel reflectance. In this approach those effects are minimized 
by including 16 Landsat images, in order to show permanent soil patterns. They all 
capture the same area (test site) but have different acquisition dates and though differ in 
their recorded reflectance. This enables to delineate time-consistent patterns and 
minimize temporal variability. 

On the basis of the 16 Landsat images several masks (layers that mask and hide areas that 
are not of interest) are applied to generate a dataset only containing bare soil pixels. Those 
masks exclude Slovakian territory, urban areas, forests and crops from further processing 
with only agricultural bare soil being left. The following indicators are derived using the 
reflectance of bare soil pixels: 

1. The median over time (all 16 images) of each Landsat Band (Band 1:5, 7) was 
calculated - respectively the median of the temporal variability of each Landsat 
Band.  

2. The coefficients of a polynomial function fitted to the reflectance of each pixel offer 
additional information. The coefficients represent information lying in between 
the recorded reflectance values of the bare soil and can enable a better 
differentiation between soil types.  

3. The slope and intercept of the soil line concept which was introduced by 
(Richardson and Wiegand, 1977) are calculated. The concept is considered as a 
robust method which is influenced little by varying effects like soil roughness, soil 
moisture or higher reflectance values due to solar irradiation and angle and is 
therefore considered as a reliable parameter. 

These indicators derived from the spectral/temporal reflectance are used for automatic 
mapping. Two different mapping algorithms are applied leading to different results. They 
are evaluated and validated with the existing soil map.  

For most of the processing work the open source software "R" was used. It is designed for 
statistical computing, data mining and data analysis. As there are lots of powerful 
packages for different implementations and uses available, nearly everything can be 
computed and processed without leaving the R environment. Working in R enables the use 
of  the latest methods and algorithms but requires coding skills and knowledge about the 
structure of the R language. 
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For visual examination, data evaluation and plotting of maps the open source software 
"QGIS" was used. It is a geographic information system (GIS) comparable to ArcGIS 
providing a way better graphical user interface than R. Therefore it was mainly used for 
graphical design of the maps. Both R and QGIS are open source alternatives to 
conventional programs - like Matlab and ArcGIS. 

The next chapters introduce the test site and explain the methodology in detail - a 
methodological workflow is shown in Figure 14. 

2.1.  Site Description 

The Marchfeld region forms part of the Vienna Basin and it is one on the country's main 
agricultural regions. Its whole area - shown in Figure 1 - is about 900 km² and it stretches 
from Vienna in the West to Slovakia in the East and borders the Danube in the South. It is a 
flat area with minor variations in elevation, ranging from about 143 to 178 meter above 
sea level.  

 
Figure 1: Location of the Marchfeld agricultural region (BOKU, n.d.). 

Climate, agriculture and soil conditions: The region is influenced by a semi-arid 
climate, having cold winters with periods of frosts and limited snow cover. Summer is 
characterized by being very hot and dry. Marchfeld is one of the driest regions in Austria 
having an average annual precipitation of 550 mm. The average annual temperature is 
about 10 °C, and approximately 1.900 hours of sunshine are provided throughout the year.  

Despite of its dry climate and low precipitation, it is a very prominent region for 
agriculture and it is considered as the country's bread basket due to one of its main crops - 
winter wheat. Prognosis stress that with climate change winter wheat will gain 
importance in the region, because CO2 compensation overcomes the crops high sensibility 
to drought. It will be more favored in the future than maize for example - leading to 
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further increment and popularity of winter wheat among the farmers (cf. Thaler et al., 
n.d.). The area has a long tradition for intensive agriculture, as the topology enables an 
easy mechanization. It is affected by wind erosion and, due to high water demand, by 
sinking groundwater body. The first problem was treated with wind breakers and the 
latter with the construction of the Marchfeldkanal.  

The Marchfeldkanal is a channel that gives path to water from the Danube to the 
Marchfeld region, maintaining and improving the water supply of the area. It was 
constructed between 1986 and 2004 and is about 100 kilometers long (cf. 
“Marchfeldkanal,” n.d.). Figure 2 gives an overview of the area and shows the Marchfeld 
channel in the center. 

 

Figure 2: Overview of the area with the Marchfeld channel (“Marchfeldkanal,” n.d.). 

The channel maintains and improves the water quality and benefits the region as a 
recreational area. It is further used as a flood control and reestablishes the ground water 
body of the Marchfeld, which is suffering water loss due to intensive irrigation. Sprinkler 
systems and travelling gun systems are the most common irrigation systems (cf. Sommer 
et al., 2009). Soil conditions make irrigation systems indispensible. Due to the areas 
importance for agriculture, there is great need for reliable information on soil conditions 
and small-scale spatial variability. On the basis of this information different decisions 
concerning crops, fertilizer, amount of irrigation or management techniques can be taken 
in a more efficient way. They have great influence on the ecological development and 
sustainability of the region and on the profit of the farmers. Hence there is great need for 
better soil mapping in the Marchfeld region. 
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Around 90% of the soils of the region were formed by the Danube and this has an impact 
on the pedological conditions (cf. Sommer et al., 2009). Soils are mostly alluvial soils, 
Chernozems Fluvisols and colluvial soils with high humus content and very different loam 
and loess content. Generally a humus-rich A horizon and a sandy C horizon can be found. 
The effect of the soil being formed and influenced by the Danube can be seen in Figure 3. 
The characteristic meandering patterns of streams in their potamal are clearly visible in 
the satellite image. 

 

Figure 3: The meandering shapes of the Danube are clearly visible at the soil surface and have big 
impact on soil condition and composition. Bing Aerial Maps was used for the image on the left 

side. The right side is a panchromatic Landsat image of the 10th of October 2013. Both show the 
same spatial extent. 

Against a general opinion that considers the area as very productive, Rötzer (2004) just 
partly agrees on that, arguing that precipitation is very little and makes irrigation 
obligatory. Although Rötzer (2004) further claims that good soils in Marchfeld just get a 
value of 60 out of 100 from the "Finanzbodenschätzung" (estimation of the monetary 
value of the soil), a comparison with the corresponding map (see: 
gis.lebensministerium.at/eBod; layer: "Wertigkeit Ackerland") shows that there are 
indeed soils with very low values but nevertheless the major part of the region is classified 
between "medium" and "very good" in terms of the "Finanzbodenschätzung". A high 
spatial diversity even on a small scale is noticeable. 

To confirm the statement from Rötzer (2004) the following map (Figure 4) illustrates the 
field capacity.  It is an essential parameter as it indicates very well water availability for 
the plants. Large parts of the Marchfeld just are classified as "medium" or "low". 
Classification was done according to the standards of AG Boden (1994).  



 

Figure 4: Field capacity in the Marchfeld regio

Local conditions are very variable due to soil composition which ranges from sandy and 
gravel containing soils, having the lowest field capacity with around 70 mm, to colluvial 
Chernozem with over 300 mm field capacity.
for agriculture, according to 

• Class 1: area: 14 km² (1,9 % of agricultural area); very low field capacity; soil 
depth: 30 cm; clayey sand; soil type:
use. 

• Class 2: area: 112 km² (14,7 % of agricultural area); low field capacity; soil depth: 
30 - 60 cm; sandy clay; soil type
and gravel. inferior agricultural land.

• Class 3: area: 466 km² (61,4 % of agricultural area); medium field capacity; soil 
depth: 80 - 120 cm; sandy clay; soil type
high quality agricultural land.

• Class 4: area: 166 km² (21,9 % of agricultural area); high field 
80 - 120 cm; clayey silt; soil type
quality agricultural land.

• Class 5: area: 1,3 km² (0,2 % of agricultural area); very high field capacity; soil 
depth: 150 cm; clayey sand (from 70cm sandy 
Chernozem; medium to high quality agricultural land (due to big soil depth high 
field capacity - needs crops with long roots to take advantage of)
et al., 2007).  

Soil profiles of the five classes are illustrated in
5. 
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the Marchfeld region. Classification is done according to AG Boden 
(1994) standards. 

Local conditions are very variable due to soil composition which ranges from sandy and 
gravel containing soils, having the lowest field capacity with around 70 mm, to colluvial 

h over 300 mm field capacity. The five different main soil categories used 
, according to Kromp-Kolb et al. (2007), are:  

area: 14 km² (1,9 % of agricultural area); very low field capacity; soil 
depth: 30 cm; clayey sand; soil type: Parachernozem; unimportant for agricultural 

area: 112 km² (14,7 % of agricultural area); low field capacity; soil depth: 
60 cm; sandy clay; soil types: Parachernozems and Chernozem

and gravel. inferior agricultural land. 
area: 466 km² (61,4 % of agricultural area); medium field capacity; soil 

120 cm; sandy clay; soil types: Chernozems and Fluvisols
high quality agricultural land. 

area: 166 km² (21,9 % of agricultural area); high field capacity; soil depth: 
120 cm; clayey silt; soil types: Chernozems and Fluvisols; 

quality agricultural land. 
area: 1,3 km² (0,2 % of agricultural area); very high field capacity; soil 

depth: 150 cm; clayey sand (from 70cm sandy clay); soil type: cullovial 
Chernozem; medium to high quality agricultural land (due to big soil depth high 

needs crops with long roots to take advantage of)

five classes are illustrated in Figure 5. From left to right: Class 1 

 

according to AG Boden 

Local conditions are very variable due to soil composition which ranges from sandy and 
gravel containing soils, having the lowest field capacity with around 70 mm, to colluvial 

main soil categories used 

area: 14 km² (1,9 % of agricultural area); very low field capacity; soil 
Parachernozem; unimportant for agricultural 

area: 112 km² (14,7 % of agricultural area); low field capacity; soil depth: 
Chernozems above sand 

area: 466 km² (61,4 % of agricultural area); medium field capacity; soil 
Fluvisols; medium to 

capacity; soil depth: 
; medium to high 

area: 1,3 km² (0,2 % of agricultural area); very high field capacity; soil 
clay); soil type: cullovial 

Chernozem; medium to high quality agricultural land (due to big soil depth high 
needs crops with long roots to take advantage of) (cf. Kromp-Kolb 

. From left to right: Class 1 - Class 
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Figure 5: Soil profiles from Class 1 (left) to Class 5 (right) (Kromp-Kolb et al., 2007). 

This work is limited to the eastern boundaries of the Marchfeld region around the city of 
Gänserndorf. The test site is indicated in the red box in Figure 6. In the east - next to the 
river March, it limits with Slovakia. The following soil map shows five different soil types 
for the test site and is used as a reference map in the final validation. Slovakian territory is 
depicted by the non-colored area in the east, whereas the gaps in the soil map are forest or 
urban areas.  



 

Figure 6: Soil map of the test site. 

Zonal statistics of the soil map are shown in 

Table 

Soil type Number of Pixels
Feuchtschwarzerde 
Kolluvisol 
Kulturrohböden 
Paratschernosem 
Tschernosem 
 

2.2.  Data Acquisition & Preparation

As input data Landsat 7 images were used. The main advantage lies in their free access  
and their relatively high temporal resolution in comparison with other (mostly non
satellite datasets. Landsat 7 
interest - which are covered by two satellite paths are captured more frequently leading to 
a higher temporal resolution. The Landsat images consist of eight spectral bands, each one 
covering different wavelengths. 
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: Soil map of the test site. Five different soil types are distinguished

Zonal statistics of the soil map are shown in Table 1: 

Table 1: Zonal statistics for the soil map. 

Number of Pixels Area [in km²] 
78484 70.6 
22265 20.0 
29994 27.0 
51600 46.4 

253690 228.3 

Data Acquisition & Preparation 

images were used. The main advantage lies in their free access  
and their relatively high temporal resolution in comparison with other (mostly non

Landsat 7 has an 16 days revisit time, some areas - including the 
which are covered by two satellite paths are captured more frequently leading to 

a higher temporal resolution. The Landsat images consist of eight spectral bands, each one 
covering different wavelengths. Figure 7 shows the different bands of Landsat 7 and which 

 

distinguished.  

% of the Area 
18.0 

5.1 
6.9 

11.8 
58.2 

images were used. The main advantage lies in their free access  
and their relatively high temporal resolution in comparison with other (mostly non-free) 

including the area of 
which are covered by two satellite paths are captured more frequently leading to 
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part of the electromagnetic spectrum they cover. Band 1, 2 and 3 cover the visible range, 
whereas Band 4 covers the Near Infrared and Band 5 and 7 cover the short wave Infrared 
spectrum. Band 8 is a panchromatic channel with better spatial resolution - 15 instead of 
30 meters seen in the other bands.  

 

Figure 7: Spectral response of Landsat 7. B1-B8 representing Landsat Band 1 - Band 8(“Spectral 
Response of Landsat 7,” n.d.). 

To mask bare-soil pixels only we used the following approach: One of the areas main crops 
is winter wheat, which is harvested in the summer months and seeded again in autumn - 
beginning at the end of September (cf. bmlfuw - Bundesministerium für Land- und 
Forstwirtschaft, Umwelt und Wasserwirtschaft, 2015). We can expect to capture bare soil 
pixels between End of July and September as the crops are cut and removed from the 
fields and bare soil is visible. Dematte et al. (2009) stressed the importance of the time 
period for bare soil delineation. Due to the knowledge of the composition of the crops - a 
successful delineation can be expected in this study. Data acquisition of Landsat images 
was limited to this period - exactly from the 29th of July until the 6th of September - from 
2010 to 2013 and led to 16 images in total. On these 16 "Landsat 7" images three masks  

1. Agricultural-Area 
2. Cloud Mask 
3. Vegetation Mask 

were applied partly following the concept of bare soil detection and discrimination by 
(Dematte et al., 2009). The first mask excludes all non agricultural land, the second mask 
excludes clouds and shadows and the third mask excludes the presence of green 
vegetation. After the application of the three masks the only observations left in the 
dataset are bare soil pixels. In the following part the three masks are described more in 
detail: 

1. Agricultural-Area: A shapefile representing the agricultural area of the region was 
used to exclude urban spaces, forests, rivers,... - short: the non-agricultural-area. As the 
test site also limits with Slovakian territory this part of the Landsat images was also 
excluded. After the application of the mask only agricultural area is left over. 
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2. Cloud Mask: this mask was used additionally to exclude all pixels covered by clouds 
and cloud shadows. It is provided by the USGS - U.S. Geological Survey (provider of the 
Landsat data). Being applied on each of the 16 Landsat images, it ensures that just 
agricultural area not representing clouds and shadows are left over in the dataset. 

3. Vegetation Mask: The Normalized Differenced Vegetation Index (NDVI) was used to 
mask green vegetation. This index helps to detect live green plant canopies in 
multispectral remote sensing data. It uses a relationship between the red (RED) and the 
near-infrared channel (NIR). The calculation of the NDVI index is done according to the 
following formula: 

���� = ��� − ���
��� + ��� 

Healthy, green vegetation absorbs a great amount of radiation in the red spectrum - its 
pigment chlorophyll uses it for photosynthesis. Vital plants on the other hand strongly 
reflect near-infrared light. This characteristic difference in reflectance between the red 
and the near-infrared channel helps to differentiate vital green plants from other land 
cover types such as water bodies, urban areas or soils (cf. Fox et al., 2004, p. 2). Figure 9 
shows the characteristic curve of green vegetation and its difference to other land cover 
types like soil.  

The NDVI index can take up values between -1 and 1. Negative NDVI values indicate water 
bodies, snow and ice, slightly positive ones soils and urban spaces and high NDVI values 
indicate vegetation - the higher the value the more vital, dense and "greener" the 
vegetation (cf. USGS, 2015). Therefore the index can be used to map bare soil pixels using 
a simple threshold. Various values of NDVI can be found in literature for bare soils. The 
range spans between a NDVI value of 0.05 and 0.3 (cf. Holben, 1986; “Institut Cartogràfic i 
Geològic de Catalunya,” n.d., “ArcGIS - Using the NDVI process,” n.d., “UW-Madison Satellite 
Meteorology,” n.d.). Most authors agree on the necessity and importance of an individual 
and site-specific assessment. Through visual examination and evaluation of our dataset, 
the range of the NDVI value of bare soil pixels was defined between 0.19 and 0.28. So 
every pixel not meeting the NDVI-threshold must not be considered "bare soil" and thus 
has to be excluded from further processing. After the application of this last mask the only 
area on the 16 Landsat images left is bare soil. 

2.3.  Reflectance based indicators 

Reflectance based indicators were generated starting from the multi-spectral and multi-
temporal reflectance to provide more reliable and soil specific information. Simple 
reflectance values may not illustrate enough the desired soil patterns as they are 
influenced by varying effects like atmospheric conditions, solar illumination angle and soil 
moisture. Band transformations instead can provide additional information that is more 
related to the goal of mapping soil classes. Different concepts are applied - as described in 
the following - trying to reduce undesired information and noise. The generated indicators 
are: 

Median of spectral reflectance: the median over time (all 16 images) of each Landsat 
Band (Band 1:5, 7) is calculated. Output are six layers (Band 1:5, 7) representing the 
median of all 16 images. Compared with the mean value, the median has the advantage of 
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being more robust and less sensitive to outliers. For one pixel (point 849) Figure 8 shows 
six box plots, each representing one Landsat Band. They show the variability of reflectance 
recorded over all 16 Landsat images. The median values - marked for point 849 by the 
thick horizontal lines inside the boxes - represent the reflectance based indicator.  

 

Figure 8: The box plots indicate the variability of the spectral reflectance over all 16 Landsat 
images for each Landsat Band of point 849. The thick line inside the box marks the median for the 

Landsat Band. 

Polynomial function fitted to reflectance data: The reason behind the calculation of 
this indicator lies in the idea of taking account of the information lying in between the 
bands. Spectral information of a pixel is just detected at the wavelength of each band (see 
Figure 7) and misses out the rest. The fitting of a polynomial function and the extraction of 
its coefficients, helps to describe the spectral signature of a pixel. The spectral signature is 
unique for each pixel and contains additional and more information than all the bands. 
Examples for typical spectral signatures can be seen in Figure 9. Different land cover types 
have different spectral signatures and thus can be discriminated. The six gray bars 
indicate the position of the Landsat bands. 
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Figure 9: Typical spectral signature of three land cover types (Water, Vegetation and Soil). The 
gray bars indicate the position of the Landsat bands (SEOS Project, n.d.). 

In Figure 10 the red curve represents a 3rd order polynomial function fitted on a pixels 
(point 28 and 849) detected spectral values. The dots mark the observed reflectance from 
Landsat Band 1 (left) to Band 7 (right). 

 

Figure 10: 3rd order polynomial function fitted on point 28 and point 849 based on their spectral 
reflectance (observed values in Landsat Band 1:5, 7). Dots represent Landsat Band reflectance 

from Band 1 (left) to Band 7 (right). 

� = 	−2513.31 

� = 601.33 

coefficients: 
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� = 	−4202.23  
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This computation is done for each day of acquisition. The results are 16 raster stacks (one 
respectively for every Landsat image), each containing the four coefficients (�, �, � and �) 
of the function. This is done according to the formula for a third degree polynomial 
function: 

$ = � + �% + �%& + �%' 

To reduce the dimension of the dataset (16 x coefficient �, �, � and �) and to cope with the 
problem of missing data values, as a last step of this computation the median values over 
time of each coefficient is calculated. This leads to a final raster stack of four layers 
representing the median of the coefficients of the polynomial function. 

Soil line - relation between Landsat Band 3 and Band 4: The soil line concept was 
introduced in 1977 (Richardson and Wiegand, 1977). It describes the linear relationship 
between the Red and Near-Infrared reflectance of bare soil as characterized by slope and 
intercept parameters (Fox et al., 2004, p. 1326): 

��� = () +	(*��� 

where () is the intercept and (* the slope of the function. It is considered as a robust 
concept which is influenced little by varying soil roughness, soil moisture or higher 
reflectance values due to solar irradiation and angle. Fox et al. (2004) further stress, that it 
"can be related to site-specific soil conditions within a field" and that "this relationship 
may provide a means for directing soil sampling" (Fox et al., 2004, p. 1326). The pixels 
considered for the soil line may change its reflectance (due to soil moisture, solar 
illumination angle,...) over time and thus move up and down the soil line, but their 
variability has no effects on the soil line coefficients - respectively the intercept () and the 
slope (*. Figure 11 shows that a pixel on the soil line moves upwards if it is dry and moves 
down the soil line if it is wet. The right figure also illustrates very well the possible 
migration of a pixel on the soil line over a season. It starts as a wet soil on the lower part of 
the soil line, moves away from it as it gains biomass and finally ends on the soil line again 
after harvesting - but this time more on the upper part as the soil is drier than in the 
beginning.  
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Figure 11: a) The grey shaded area represents a possible distribution of reflectance values in a 
remote sensing image plotted between the red and the near-infrared band. The greater the 

amount of photosynthetically active vegetation present, the greater the near-infrared reflectance 
and the lower the red reflectance. This condition moves a pixel’s spectral location in a 
perpendicular direction away from the soil line. b) The migration of a single vegetated 

agricultural pixel in red and near-infrared multispectral space during a growing season is shown. 
After the crop emerges, it departs from the soil line, eventually reaching complete canopy closure. 

After harvesting, the pixel will be found on the soil line, but perhaps in a drier soil condition 
(Jensen, 2007, p. 343). 

The soil line coefficients - intercept () and the slope (*	- can be used as input feature for 
the classification. The soil line will be calculated for each pixel for each Landsat image 
using a moving window of 3x3 and 7x7 pixels. As at least two data points are needed to 
calculate the soil line, the moving window approach includes neighbouring pixel values. 
The differences between the two window sizes will be evaluated. To reduce the dimension 
of the dataset (16 x coefficient () and (*) and to cope with the problem of missing data 
values - as a last step of this computation the median values over time of each coefficient 
are calculated. This leads to a final raster stack of two layers representing the median 
intercept and slope coefficients of the soil line.  

The generated datasets  

• "Median value of spectral reflectance",  
• "Fitted polynomial function" and the  
• "Soil line slope and intercept" 

serve as input variables for the classification algorithms.  
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Unsupervised classification 

Classification is a method to look for underlying patterns and structures in datasets and 
them accordingly. It identifies the class an observation belongs to and 

tries to group observations similar to one another. Different classification algorithms have 
a different design and look for different structures in the dataset, therefore
a classification is highly dependent on the data structure and the algorithm used. 
classification manages to maximize similarity of observations within a
maximizes the dissimilarity between the groups enabling good separability and 

Whether a classification is good or the result is satisfying, is a difficult task to 
determinate. There are several measures - many measuring class separability 

quality of the classification, but nevertheless a project specific, 
is often required as well (cf. Kaufman and Rousseeuw, 2005)

Unsupervised classification is not guided by knowledge of the user. It uses algorithms 
which structure the dataset according to underlying patterns. The only possibility to 

by choosing the desired algorithm, the input features
defining the number of output classes. Unsupervised classification has the advantage that 

specific information is needed and can be applied anywhere without 
concerning input variables and training samples - as 

Above all it should be mentioned, that algorithms are heuristic 
so there is no guarantee that the global optimum will be found and the result 

may be strongly influenced by the initial clusters. The following two unsupervised 
sification methods were applied: 

the kMeans algorithm is a popular method for cluster analys
partitions the observations into k clusters in which each observation 

belongs to the cluster with the nearest mean - the sum of squares from points to the 
assigned cluster centres is minimized. The process can be divided into four st
Kwedlo, 2011; “kmeans clustering,” 2015) shown in Table 2: 
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Step 2: k clusters are differentiated by 
assigning each observation with the 
nearest mean using  the euclidean distance 
measure. (Euclidean distances gives a 
metric distance between two points 
can be applied in 2- dimensional to 
dimensional space.  

Step 3: The centroid of each cluster 
becomes the new mean. 

Step 4: Step 2 and Step 3 are r
iterated until the predefined "convergence 
threshold" or the "maximum number of 
iterations" has been reached. 

 

There are various settings besides 
the initial means can either be random
artificial data point or randomly chosen from the dataset
Concerning this aspect Lu et al. 
convergence usually depends highly on
determination of initial cluster centers is very important for such algorithms" 
2008, p. 788). Pena et al. (1999)
initialization methods for the kMeans algorithm, that the random initialization 
outperformed the other methods with respect to the effectiveness and the robustness of 
the kMeans algorithm. In this study, we use random initialization
mentioned in Step 4 - the maximum number of iterations has to be defined. If the desired 
convergence is not reached, the algorithm stops after certain amount of iterations. 

One of the main disadvantages of the kMeans algorithm are its dependency on parameter 
k, and that it tends to seek clusters of 
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Step 2 and Step 3 are repeated and 
until the predefined "convergence 

threshold" or the "maximum number of 
iterations" has been reached.  

besides k that can be defined throughout the process. In Step 1 
the initial means can either be randomly generated (as shown in the figure)

or randomly chosen from the dataset - being an observation.
Concerning this aspect Lu et al. (2008) claim that "for most of the clustering algorithms 
convergence usually depends highly on the choice of the initial cluster centers. Thus the 
determination of initial cluster centers is very important for such algorithms" 

Pena et al. (1999) conclude in their research on a comparison of four 
initialization methods for the kMeans algorithm, that the random initialization 

ethods with respect to the effectiveness and the robustness of 
In this study, we use random initialization. Furthermore 

the maximum number of iterations has to be defined. If the desired 
eached, the algorithm stops after certain amount of iterations. 
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, and that it tends to seek clusters of similar size due to its spherical concept
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SOM algorithm: The SOM (self-organizing map) algorithm is one of the most popular 
artificial neural network models. It is also called "kohonen networks" after their inventor 
Teuvo Kohonen. The SOM algorithm describes a mapping from a higher-dimensional input 
space to a lower-dimensional map space. The process is similar to the kMeans algorithm 
shown in Table 2. The terminology is different: calling the centroids "neurons" and the 
iterative process where the neurons are adjusted according to their input data points is 
called "training". Before training the neurons are randomly initialized (like in Step 1 of 
Table 2) and with each data point presented to all the neurons, the neurons change their 
position toward the data point (see Step 3). This changing parameter - which is called 
learning parameter - determines how much to adjust and is also defined initially. 
Adjusting too much will cause the neuron to not "learn" about other data points, whereas 
adjusting too little will cause the neuron to not "learn enough" about the data points. SOM 
has the characteristic that neurons not only adjust themselves to the data, but also adjust 
the neighboring neurons as well - this is called cooperative learning: 

The neuron closest to the data point is the "winning" neuron and gets to move "the most" 
toward the data point. The neighboring neurons get to move toward the point but with a 
lesser distance.  

Cooperative learning explains why similar neurons in the SOM tend to be grouped 
together at the end of the process (see Figure 12). Cooperative learning decreases with 
each iteration until it finally stops - at this point only competitive learning is performed. 
When a neuron wins in the competitive part, it becomes closer to its data point but doesn't 
adjust its neighbor neurons anymore (cf. Green, 2010).  

The following input parameters for the SOM algorithm can be defined (Wehrens and 
Buydens, 2007): 

rlen the number of times the complete data set will be presented to the network. 

alpha 
learning rate, a vector of two numbers indicating the amount of change. 
Default is to decline linearly from 0.05 to 0.01 over rlen updates. 

radius 

the radius of the neighborhood, either given as a single number or a vector 
(start, stop). If it is given as a single number the radius will run from the given 
number to the negative value of that number; as soon as the neighborhood 
gets smaller than one only the winning unit will be updated. The default is to 
start with a value that covers 2/3 of all unit-to-unit distances. 

init 
the initial representatives, represented as a matrix. If missing, chosen 
(without replacement) randomly from input data. 

 
While SOM with small number of neurons (clusters) performs similar to kMeans - it also 
uses the Euclidean distance - the additional advantage is that it preserves information 
about the similarity between neurons giving the possibility to merge neurons.  

Figure 12 shows two example plots of a self organizing map. Each circle represents a 
neuron (class) - in total the SOM algorithm was run with 25 neurons represented on the 
grid. By default similar neurons are mapped next to each other. The left plot illustrates the 
differences between the neuron and its neighbors - where red indicates "strong similarity" 
between the neuron and its surroundings and white "strong difference". These indicators 
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can also be delineated in the right plot - showing the characteristics (magnitude and 
composition) of each neuron regarding its four dimensions. 

 
 

  

Figure 12: Example plots of self organizing maps. Each circle represents a neuron (class). The left 
map shows the difference between neighboring circles from red (very similar) to white (very 

different). The right map shows the four dimensions and its magnitude and composition of each 
class - the differences from the left plot can be delineated. 

2.5.  Post-processing and Analysis 

The maps produced with both classification algorithms are further processed by using a 
Majority Filter implemented in QGIS. It reduces local, pixel-wise dissimilarities by looking 
in the neighborhood for a more general pattern. The radius defining the neighborhood to 
assess can be defined. Figure 13 shows how the algorithm is implemented in ArcGIS, 
where "InRas1" is the input and "OutRas" the output after majority filtering. Small local 
dissimilarities are reduced. 

 

Figure 13: Example Majority Filtering as it is implemented in ArcGIS (ESRI, n.d.). 

The resulting classification maps of the area of interest are compared and evaluated 
analytically. This is divided into internal and external cluster analysis. An overview of the 
evaluation methods is given in Table 3. 
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Table 3: Overview of the evaluation methods. 

Analytical Evaluation 

Internal Cluster analysis External Cluster analysis 

mean Silhouette widths adjusted Rand Index (ARI) 

 

2.5.1.  Internal Cluster Analysis 

The internal cluster analysis measures the homogeneity of the clusters within the 
classification without any reference to additional external information. It gives high rates 
to classifications with low similarity between clusters but with high similarity within 
clusters. The Silhouette Index introduced by Peter Rousseeuw is such a measurement (cf. 
Rousseeuw, 1987). It is defined as: 

+(,) = -�(,) − 	�(,).
max	(�(,), �(,)) 

where �(,) is the average dissimilarity of the observation with its corresponding cluster 
(to which , belongs) and �(,) the minimum average dissimilarity of observations to 
another cluster. So �(,) can be interpreted as how good , is assigned to its cluster and �(,) 
gives information about neighboring clusters - clusters which are similar to one another. 
In comparison to other internal evaluation indices like the Dunn Index (cf. Dunn, 1974) or 
the Davies Bouldin Index (cf. Davies and Bouldin, 1978), the Silhouette Index holds the 
advantage of normalizing its rating between - 1 and 1. This enables to compare different 
input data sets. With other indices which may start with 0 and range to infinity this is 
made difficult as different input data sets itself may have a better "starting score" not 
regarding its clustering technique. Silhouette widths of 1 indicate a perfect classification, 
values around 0 a weak classification and negative values a misclassification (cf. Kaufman 
and Rousseeuw, 2005). A value less than 0.25 is considered as poor by Kaufman and 
Rousseeuw. For computation the silhouette function from the cluster package in R 
was used. 

2.5.2.  External Cluster Analysis 

In the external cluster analysis the classification maps are compared with the soil map 
shown in Figure 6. The adjusted Rand Index (ARI) - a measure of agreement between two 
data clusterings - is calculated. It bases on the publication of William M. Rand in 1971 
where he introduced the Rand Index. The Rand Index is defined "as the percent of pairs of 
instances that locate in either the same or different clusters in both [...] clustering" (Bento 
et al., 2005, p. 311). The ARI - introduced by Hubert and Arabie in 1985,  is the corrected-
for-agreement-by-chance version of the Rand Index. Its use is recommended if the sizes of 
the clusters are not uniform - which is usually the case (cf. Hubert and Arabie, 1985). 
Santos and Embrechts (2009) further recommend it as "the index of choice for measuring 
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agreement between two partitions in clustering analysis with different number of 
clusters" (Santos and Embrechts, 2009, p. 4). 

To calculate the ARI, the labels of the two clusterings don't have to correspond to one 
another - an important point for the evaluation of unsupervised classification, where the 
label can change from one classification run to another. The number of clusters and cluster 
sizes can differ between the two clusterings - but the number of classified objects has to be 
the same.    

An example of application of the ARI is given following the tutorial from BelVecchioUK, 
(2012) and according to the publication from Rand (1971): Clustering A and B represent 
two different clustering of same size but with different assignment and labeling. 

23456789:;	< = [�, �, �, �, �]	
23456789:;	? = [%, @, %, @, @]	

To calculate the ARI, pairs have to be compared according to the following four options: 

a) ≠	and	≠:	pair assigned to different cluster in A and in B. 	
b) ≠	 and	 =: pair assigned to different cluster in A and pair assigned to the same 

cluster in B.	
c) =	 and	 ≠: pair assigned to the same cluster in A and pair assigned to different 

cluster in B.	
d) =	and	=: pair assigned to the same cluster in A and in B.		

With a classification of 5 values there are 10 possible pairs: 

[1,2], [1,3], [1,4], [1,5], [2,3], [2,4], [2,5], [3,4], [3,5], [4,5]	
Starting with the first pair [1,2] leads to the following: 

C = +D	 E	Cluster	A	[1,2] → (c, d) 	→ c ≠ d
Cluster	B	[1,2] → (x, z) → x ≠ z T 

The second pair [1,3]: 

U = +D	 E	Cluster	A	[1,3] → (c, d) 	→ c ≠ d
Cluster	B	[1,3] → (x, x) → x = x T 

The third pair [1,4]: 

V = +D	 E	Cluster	A	[1,4] → (c, c) → c = c
Cluster	B	[1,4] → (x, z) → x ≠ zT 

... 

The last pair [4,5]: 

W = +D	 E	Cluster	A	[4,5] → (c, c) → c = c
Cluster	B	[4,5] → (z, z) → z = zT 
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If this procedure is done for all the 10 pairs it leads to the following confusion matrix: 

Table 4: Confusion matrix. 

 Pairs assigned to different 
cluster (A) 

Pairs assigned to the 
same cluster (A) 

Pairs assigned to different 
cluster (B) 

a = 3 c = 3 

Pairs assigned to same 
cluster (B) 

b = 3 d = 1 

 

The ARI finally is calculated by: 

A�� = -X&.(� + �) −	 [(� + �)(� + �) +	(� + �)(� + �)]
-X&.² − [(� + �)(� + �) + (� + �)(� + �)]  

where Z is the number of classified objects. It leads to the following result:  

A�� = -[&.(3 + 1) −	[(3 + 3)(3 + 3) +	(3 + 1)(3 + 1)]
-[&.² − [(3 + 3)(3 + 3) + (3 + 1)(3 + 1)] = 	−0.25 

The ARI is bounded between ±1 - with expected value 0 and total accordance between the 
two clusterings as 1. Reference ARI values for map comparison indicating a good, 
moderate or a bad classification could not be found. Nevertheless the ARI is a good method 
to compare the different classification results and highlight the best map. In this work the 
comPart function from the flexclust package in R was used to retrieve the ARI. 

An overview of the methodological workflow is given in Figure 14. 
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Figure 14: methodological workflow 

 

post-processing and analysis  

internal evaluation external evaluation

unsupervised classification

algorithm SOM - algorithm

input features

reflectance based indicators

median value of spectral 
fitted polynomial function soil line slope and intercept

bare soil dataset

Satellite data pre-processing

cloud mask agricultural mask vegetation mask

 

external evaluation

algorithm

soil line slope and intercept

vegetation mask



 

3. 

In the following chapter the results of the work are described and appear in the same 
order as listed in the methodo
processing of the Satellite data
finishing with the evaluation of the 

3.1.  Satellite data pre

Figure 15 shows NDVI values of
five color categories, where the brown category represents bare soil pi
value ranging from 0.19 to 0.28 as indicated in the lege
different green intensities and lower 
values in 2010 can be seen 
of June 2010 until the 22nd 
with a first peak on the 21st 
processing (29th of July - 6
defined. 

Figure 15: The big map shows 
soil pixels, whereas green and blue 

urban spaces, forests and clouds
10.06.2010 until the 22.08.2010 

maps. It matches the natural development of NDVI values over a season with the raise in spring, 
where crop and biomass 
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 RESULTS AND ANALYSIS 

In the following chapter the results of the work are described and appear in the same 
in the methodological workflow (see Figure 14) - starting with the 

processing of the Satellite data, moving on with the reflectance based indicators 
with the evaluation of the classified maps. 

Satellite data pre-processing 

NDVI values of four different acquisition dates. The values are grouped in 
five color categories, where the brown category represents bare soil pi

from 0.19 to 0.28 as indicated in the legend. Higher NDVI values appear in 
different green intensities and lower NDVI values in blue. The development of the NDVI 

 well at the four images covering the time period from the 10
 of August 2010. The amount of bare soil increases 
 of July 2010, a week before Landsat images were included 
6th of September). It indicates that the time period was well 

The big map shows NDVI values on the 22.08.2010. The brown area 
, whereas green and blue areas have higher or lower NDVI values. Slovakia

clouds have not yet been masked. The decline of the 
10.06.2010 until the 22.08.2010 is shown by the increase of brown areas depicted 

the natural development of NDVI values over a season with the raise in spring, 
and biomass development is high and a decline in the late season.

In the following chapter the results of the work are described and appear in the same 
starting with the pre-

reflectance based indicators and 

four different acquisition dates. The values are grouped in 
five color categories, where the brown category represents bare soil pixel, with NDVI 

Higher NDVI values appear in 
The development of the NDVI 

well at the four images covering the time period from the 10th 
e amount of bare soil increases with time 

were included into 
that the time period was well 

 

rown area represents bare 
Slovakian territory, 

cline of the NDVI from the 
depicted in the four 

the natural development of NDVI values over a season with the raise in spring, 
gh and a decline in the late season. 



[28] 
 

The study was limited to the period 2010 to 2013, where only images between the 29th of 
July and the 6th of September of each year were included. This led to 16 Landsat-7 images 
with the following dates of acquisition: 

1. 22.08.2010 
2. 29.08.2010 
3. 09.08.2011 
4. 16.08.2011 
 

5. 17.08.2011 
6. 24.08.2011 
7. 25.08.2011 
8. 02.09.2011 
 

9. 03.08.2012 
10. 10.08.2012 
11. 19.08.2012 
12. 04.09.2012 
 

13. 06.08.2013 
14. 13.08.2013 
15. 22.08.2013 
16. 29.08.2013 
 

The selection of the bare soil pixels is illustrated in Figure 16, that shows a scatter plot of 
an example Landsat image (on the 22.08.2010) before (left) and after (right) the exclusion 
of non-bare soil pixels. The same resulting bare soil pixels are plotted in red in both plots. 
The scatter plot represents the feature space obtained with Band 3 (red) and Band 4 (nir). 
This band combination enables to differentiate between vegetated surfaces and bare soil. 
As the NDVI is also calculated using this band combination, it is possible to identify higher 
NDVI values (> 0.28) representing shrub land, grass land and forests above the red path. 
Lower NDVI values (< 0.19) such as water are found on the data points beyond the red 
path. 

 

Figure 16:Relationship between Band 3 and Band 4. Bare soil pixels are plotted in red. Black data 
points are excluded from the original dataset (left) leading to the right plot representing the bare 

soil dataset. 

The 16 images of the resulting dataset have different spatial distribution and amount of 
bare soil pixels: Landsat image 1 is differing from Landsat image 2, 3,..., 16 regarding cloud 
coverage and reflectance values. Figure 17 shows the variable distribution of bare soil 
pixels (mapped in green) and the excluded pixels (in grey) over four different Landsat 
images.  
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Figure 17: Landsat images on different dates of acquisition represent bare soil pixels in green and 
excluded pixels in grey. The four different maps give an impression of the spatial and temporal 

variability of bare soil pixels in the dataset. 

To illustrate the amount of bare soil observations available for each pixel - Figure 18 
shows the spatial divergence of data density. Dark red areas provide high data density and 
light red areas have low data density. Slovakian territory, urban spaces and forests are 
shown in grey. Geometrical shapes that can be seen on the map are caused by agricultural 
field-wise management. Fields are managed individually causing a recently harvested field 
to lie next to a field being at the late season stage. The main explication for these 
geometrical patterns is that some fields were just more often harvested (and though 
represent bare soil) during end of June and beginning of September than other fields lying 
next to them. The average number of observations of bare soil pixels at the test site over 
all 16 images is 3.37. 
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Figure 18: Number of bare soil pixels over all 16 images (layers). Spatial divergence of data 
density is visualized in this map with the average number of values over the whole area of 

interest being 3.37.  

This heterogeneity of the dataset - concerning the number of bare soil pixels over time - 
implicates certain difficulties with respect to the clustering algorithm. Many clustering 
algorithms are sensitive to missing values (NA values) - datasets with data gaps are mostly 
reduced to some observations having full data coverage over time. Part of the dataset is 
represented as a matrix in Figure 19. Each pixel (23 pixels - represented as rows) 
containing NA values in only one of the 16 Landsat images (3 images / days - represented 
as columns) will be excluded from clustering. For some of the pixels (urban spaces, forests 
or Slovakian territory) this is the intention, but for the rest of the dataset it implies, that a 
major part of the area is excluded from clustering due to maybe one NA value over those 
16 Landsat images. In the case of the example matrix this would result in pixel (row) 6, 7, 
13, 14 and 15 being used as an input for clustering. To deal with this characteristics of the 
dataset, the median value of the pixel for the 16 days is calculated. In the example matrix 
this would lead to an exclusion of only 4 pixels (1, 2, 3 and 17) from the clustering.  
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Figure 19: Example matrix of the dataset, where each row represents a pixel and each column a 
different Landsat 7 image. 

Table 5 shows how many pixels are excluded from the original Landsat 7 image each date. 
The second column shows the percentage of the excluded pixels of the total amount of 
pixels (750204 pixels per Landsat image). The third column indicates the absolute amount 
of excluded pixels. The high number mostly result from the agricultural-area mask which 
already excludes 452628 pixels (60,3 %) itself - cloud coverage and vegetation contribute 
the rest. 
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Table 5: Excluded pixels per date. Total amount of pixels per image is 750204. 

day of acquisition % of excluded pixels amount of excluded pixels 

22.08.2010 83,4 625636 
29.08.2010 98,0 735212 
09.08.2011 94,8 711376 
16.08.2011 94,4 708160 
17.08.2011 88,6 664662 
24.08.2011 89,1 668625 
25.08.2011 81,0 607300 
02.09.2011 87,6 657158 
03.08.2012 99,4 745727 
10.08.2012 99,0 742589 
19.08.2012 90,9 682016 
04.09.2012 98,2 736354 
06.08.2013 84,6 634341 
13.08.2013 99,2 744094 
22.08.2013 87,9 659179 
29.08.2013 90,5 679237 
 

The structure of the reflectance based indicator datasets - which serve as an input for 
classification - is described in Table 6. 

Table 6: Structure of the input datasets. 

Input datasets Structure of the dataset  

Band medians 

6 raster: each raster represents one Landsat 
band and its pixels median values of the 16 
images (- the median value over time is 
calculated). Each Landsat band is computed 
separately: Band 1, Band 2, Band 3, Band 4, 
Band 5, Band 7. 

Fitted polynomial function 

4 raster representing the median values of the 
16 images of four polynomial coefficients: 
intercept, slope coefficient 1, slope coefficient 2, 
slope coefficient 3 

Soil line slope and intercept 

• 2 raster representing the median values of 
the 16 images of the intercept and the slope 
computed on a 3x3 window 

• 2 raster representing the median values of 
the 16 images of the intercept and the slope 
computed on a 7x7 window 
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3.2.  Input features for classification 

The following three figures show the density plot for the three different input features 
used for classification. Density plots are calculated using the existing soil map and each of 
the input features - the different lines represent the five soil types present in the area (see 
Figure 6). In Figure 20 the density plot is calculated using the "Band medians - dataset". It 
helps to study the distribution of the dataset and delineate how many classes can be 
expected. Major visual distinctions between the soil classes can mostly be delineated in 
Band 4 and Band 5.  

 

Figure 20: Density plot of the five soil classes mapped in the existing soil map and the "Band 
medians - dataset". 
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In Figure 21 - the density plot is computed with the "Fitted polynomial function - dataset" - 
a similar result is shown. The difference - compared with the "Band medians - dataset" lies 
in the distinction of the classes, which seems better than in Figure 20.  

 

Figure 21: Density plot of the five soil classes mapped in the existing soil map and the "Fitted 
polynomial function - dataset". 
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A totally different density plot is drawn when the "Soil line - dataset" is used. A good 
separability between classes would be indicated by the plot but with further analysis and 
as Figure 23 - Figure 25 show, the values have very little variation and do not show clear 
shapes as the other datasets. Nevertheless the differences between the 3x3 and the 7x7 
window are noticeable. In the upper two plots (3x3 window) all classes show volatile 
density distributions, whereas in the 7x7 window only soil type 4 and 5 show the same 
pattern. The volatile density distributions of the four plots, where each class forms a peak 
mainly without other overlapping classes, would be promising for classification.  

 

Figure 22: Density plot of the five soil classes mapped in the existing soil map and the "Soil line - 
dataset". 

In order to assess the differences shown in Figure 22 a look was taken on the soil line 
slope and intercept dataset. It clearly seems that the 3x3 window was too small as it has a 
strong "salt and pepper" effect and no clear patterns can be observed over the area. In 
Figure 23 a comparison between the soil line parameter slope is shown, using a 3x3 
window and using a 7x7 window for calculation. 



 

Figure 23: Comparison of the same 

To illustrate the homogeneity of the 
axis indicate the number of data points falling into this b
just one main bar is visible in each plot).

Figure 24: Histogram of the two 
It shows very well the homogeneity of the dataset.

"Soil line 7x7 - dataset" shows little less homogeneity 
homogeneity both "Soil line 
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: Comparison of the same coefficient (slope of the Soil line) calculated in a 3x3 window 
(left) and a 7x7 window (right). 

To illustrate the homogeneity of the 3x3 dataset see Figure 24. The number above the x
axis indicate the number of data points falling into this bar (as the numbers are very low, 
just one main bar is visible in each plot).  

: Histogram of the two coefficients (intercept and slope) of the "Soil line 3x3 
It shows very well the homogeneity of the dataset. 

dataset" shows little less homogeneity - see Figure 25
"Soil line - datasets" don't offer good basis for clustering. 

 

lope of the Soil line) calculated in a 3x3 window 

The number above the x-
ar (as the numbers are very low, 

 

lope) of the "Soil line 3x3 - dataset". 

25. Due to their 
don't offer good basis for clustering.  



 

Figure 25: Histogram of the two 

In order to illustrate strong local patterns 
("Band medians - dataset" and the 
Figure 26. In contrast to the 
visually be detected above all in the right plot
for clustering.  

Figure 26: Comparison of the Band 5 m
fitted polynomial function. Both layers show strong 
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: Histogram of the two coefficients (intercept and slope) of the "Soil line 7x7 

In order to illustrate strong local patterns for comparison, two raster of the other 
and the "Fitted polynomial function - dataset"

. In contrast to the "Soil line - dataset" (see Figure 23) shapes and pat
ted above all in the right plot - both datasets offer a better 

: Comparison of the Band 5 median raster and the median of the 3rd coefficient of the 
fitted polynomial function. Both layers show strong local patterns. 

 

 

lope) of the "Soil line 7x7 - dataset". 

of the other datasets 
dataset") are depicted in 

) shapes and patterns can 
better input feature 

 

edian of the 3rd coefficient of the 
patterns.  



[38] 
 

In order to guarantee equal weighting in the classification between the datasets, they are 
normalized according to the following formula: 

@] = %] −min(%)
max(%) − min(%) 

where %  represents the whole dataset and %]  one individual observation. @]  is the 
normalized value. After normalization each dataset ranges from 0 to 1. This is done to take 
account of the different range of the parameters.  

The two classification algorithms are performed using following R packages and 
parameters: 

kMeans: For computation the function kmeans from the R package stats was used. 

kmeans_classification <- kmeans(data, algorithm="Lloyd", 3, iter.max=1
000, nstart=500) 

 
algorithm="Lloyd": the Lloyd algorithm was used as it does not specify the initial 
placement of centers (cf. Kanungo et al., 2002). Pena et al. (1999) conclude in their 
research that the random initialization outperformed the other methods, motivating the 
choice of this algorithm. 

iter.max=1000: the maximum number of iterations is set to 1000, which is by far above 
the number of iterations the algorithm needed. 

nstart=500: the number of initial random sets chosen is set to 500 (- this parameter has 
high influence on computation time). The number was chosen in order to ensure a good 
result and to keep computation time on an acceptable level. 

 

SOM: For computation the function som from the R package kohonen was used. 

som_classification <- som(data, grid=somgrid(xdim=2, ydim=2, topo="hex
agonal"), rlen=500, keep.data=TRUE, n.hood="circular") 

 
grid=somgrid(xdim=2, ydim=2, topo="hexagonal"): specifies the grid, i.e. the 
number of output classes. A grid of 2x2 gives 4 nodes (output classes). 
topo="hexagonal" indicates the shape of the nodes, having influence on the number of 
neighboring nodes. An hexagonal or a square shape can be chosen. The hexagonal shape 
causes up to 6 neighbouring nodes.  

rlen=500: the number of times the complete dataset will be presented to the network. 
The number is equal to the nstart parameter of the kmeans algorithm to ensure 
comparability between the two algorithms. 

keep.data=TRUE: saves the information of the neigbouring nodes. 

n.hood="circular": indicates the neighbourhood, based on the shape of the nodes. 
"circular" is default for hexagonal maps.  
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As the learning rate alpha was not specified in the command above it was kept on the 
default value: Default is to decline linearly from 0.05 to 0.01 over rlen updates (cf. 
Wehrens and Buydens, 2007). 

3.3.  Maps and Cluster Evaluation 

The following paragraph reports the output for the unsupervised classification algorithms 
after applying the majority filter with radius=1. The order of the maps will be dataset-wise 
as this has greater influence on the maps than the algorithm applied. After each map the 
corresponding table will show the results of the analytical evaluation. The internal 
evaluation criteria - Silhouette Index - bases on a distance matrix which is a very computer 
intensive process. In order to deal with this, a bootstrapping method was applied. 500 
times a sample of 10.000 observations was taken to calculate the distance matrix and the 
corresponding Silhouette width. The mean value of those 500 Silhouette widths is 
reported in the analytical evaluation table. 

  



 

3.3.1.  "Band m

The classification in Figure 
algorithm. The red area delineate
included Tschernosem and Paratschernosem in the south. For a better distincti
Kolluvisol and Kulturrohböden an extra class would be needed as both are classified now 
within one class: blue. The green 
patterns and shapes can be delineated
in the classification compared to the reference map.

Figure 27: kMeans classification using 

Band Medians 
Internal analysis mean S
External analysis adjusted 
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"Band medians - dataset" 

Figure 27 shows three classes and was computed using
algorithm. The red area delineates very well Feuchtschwarzerde in the east but has also 
included Tschernosem and Paratschernosem in the south. For a better distincti

den an extra class would be needed as both are classified now 
within one class: blue. The green area is mostly representing Tschernosem.

can be delineated from the map and spatial variability is a lot higher 
in the classification compared to the reference map. 

: kMeans classification using "Band medians - dataset" - 3 classes.

Band Medians - kMeans 3 classes 
mean Silhouette width 
adjusted Rand Index 

 

using the kMeans 
zerde in the east but has also 

included Tschernosem and Paratschernosem in the south. For a better distinction of 
den an extra class would be needed as both are classified now 

senting Tschernosem. Coarse 
spatial variability is a lot higher 

 

3 classes. 

0,356 
0,057 



 

The classification in Figure 
algorithm. The green area represents 
problem as the two soil types are very similar to one another. It also includes big areas of 
Feuchtschwarzerde, where the green area lacks better separability.
Figure 27 an extra class led to a better separability between the classes in the northern 
third of the region. Coarse patterns and shapes can be delineated from the map
the north matches better the reference m
higher in the classification compared to the reference map.

Figure 28: kMeans classification using 

Band Medians 
Internal analysis mean S
External analysis adjusted 
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Figure 28 shows four classes and was computed using
The green area represents well Tschernosem and Paratschernosem, which is no 

problem as the two soil types are very similar to one another. It also includes big areas of 
Feuchtschwarzerde, where the green area lacks better separability. In com

an extra class led to a better separability between the classes in the northern 
Coarse patterns and shapes can be delineated from the map

the north matches better the reference map than the south. Spatial variability is a lot 
higher in the classification compared to the reference map. 

: kMeans classification using "Band medians - dataset" - 4 classes.

Band Medians - kMeans 4 classes 
mean Silhouette width 
adjusted Rand Index 

 

using the kMeans 
well Tschernosem and Paratschernosem, which is no 

problem as the two soil types are very similar to one another. It also includes big areas of 
In comparison to 

an extra class led to a better separability between the classes in the northern 
Coarse patterns and shapes can be delineated from the map, although 

patial variability is a lot 

 

4 classes. 

0,345 
0,048 



 

The classification in Figure 
algorithm. Compared with 
produce very similar results
differences, which is also indicated by their close internal and external evaluation values

Figure 29: SOM classification using 

Internal analysis mean S
External analysis adjusted 
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Figure 29 shows four classes and was computed
algorithm. Compared with Figure 28, it shows that the two classification algorithms 
produce very similar results. The two maps are nearly equal and do not have major 

which is also indicated by their close internal and external evaluation values

SOM classification using "Band medians - dataset" - 4 classes.

Band Medians - SOM 4 classes 
mean Silhouette width 
adjusted Rand Index 

 

computed using the SOM 
that the two classification algorithms 

and do not have major 
which is also indicated by their close internal and external evaluation values. 

 

4 classes. 

0,348 
0,045 



 

3.3.2.  "Fitted polynomial function 

The classification in Figure 
algorithm. The red area indicates very well Feuchtschwarzerd
differentiate it with Tschernosem and Paratschernosem in the south. 
Tschernosem and Paratschernosem 
northern part indicates well the diversity as it is shown in the reference map.
variability is higher in the classification compared to the reference.

Figure 30: kMeans classification using "F

Fitted polynomial function 
Internal analysis mean S
External analysis adjusted 
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Fitted polynomial function -  dataset"

Figure 30 shows three classes and was computed using
algorithm. The red area indicates very well Feuchtschwarzerde in the east but does not 

with Tschernosem and Paratschernosem in the south. Both soil types
Tschernosem and Paratschernosem - are classified green in the classification. 

well the diversity as it is shown in the reference map.
variability is higher in the classification compared to the reference. 

: kMeans classification using "Fitted polynomial function - dataset

Fitted polynomial function - kMeans 3 classes 
mean Silhouette width 
adjusted Rand Index 

" 

using the kMeans 
in the east but does not 

Both soil types - 
are classified green in the classification. The 

well the diversity as it is shown in the reference map. Spatial 

 

dataset" - 3 classes. 

0,484 
0,059 



 

The classification in Figure 
algorithm. In comparison with 
- the latter matching quite well with Fe
fourth class (yellow) is mostly present in the north
in that region. Shapes and coarse patterns can be delineated very well from the 
classification. Higher spatial variab
reference map. 

 

Figure 31: kMeans classification using "Fitted polynomial function

Fitted polynomial function 
Internal analysis mean 
External analysis adjusted 
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Figure 31 shows four classes and was computed using
algorithm. In comparison with Figure 30 the blue class expanded and the red area declined 

matching quite well with Feuchtschwarzerde from the reference map.
(yellow) is mostly present in the north, contributing to higher class variability 

Shapes and coarse patterns can be delineated very well from the 
igher spatial variability is visible in the classification compared with 

: kMeans classification using "Fitted polynomial function - dataset

Fitted polynomial function - kMeans 4 classes 
ean Silhouette width 

adjusted Rand Index 

using the kMeans 
the red area declined 

eference map. The 
contributing to higher class variability 

Shapes and coarse patterns can be delineated very well from the 
compared with the 

 

dataset" - 4 classes. 

0,468 
0,075 



 

The classification in Figure 
algorithm. In comparison with the classification in 
the two classifications can be delineated.
of the analysis. 

Figure 32: SOM classification using 

Fitted polynomial function 
Internal analysis mean S
External analysis adjusted 
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Figure 32 shows four classes and was computed 
algorithm. In comparison with the classification in Figure 31 no major differences between 
the two classifications can be delineated. This is proven by the almost equal output values 

: SOM classification using "Fitted polynomial function - dataset" - 4 classes.

Fitted polynomial function - SOM 4 classes 
mean Silhouette width 
adjusted Rand Index 

 

shows four classes and was computed using the SOM 
no major differences between 

equal output values 

 

4 classes. 

0,467 
0,075 



 

3.3.3.  "Soil  line 

The classification in Figure 
algorithm. Visually there are just two classes distinguishable, as the algorithm just 
assigned very few separated 
the map. The algorithm apparently does not find mor
differentiations in the homogeneous dataset
classification does not provide good information
as well by a low Rand Index value of 0,031.

Figure 33: kMeans classification using "Soil Line 3x3

Internal analysis mean S
External analysis adjusted 
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Soil  line -  dataset" 

Figure 33 shows three classes and was computed using
algorithm. Visually there are just two classes distinguishable, as the algorithm just 

separated observations to the third class - therefore being 
The algorithm apparently does not find more spatial patterns and 

differentiations in the homogeneous dataset to classify them extra
classification does not provide good information on spatial shapes and patterns 

by a low Rand Index value of 0,031. 

: kMeans classification using "Soil Line 3x3 - dataset" - 3 classes.

Soil Line 3x3 - kMeans 3 classes 
mean Silhouette width 
adjusted Rand Index 

using the kMeans 
algorithm. Visually there are just two classes distinguishable, as the algorithm just 

being invisible on 
e spatial patterns and 

to classify them extra. Hence this 
on spatial shapes and patterns - indicated 

 

3 classes. 

0,538 
0,031 



 

The classification in Figure 
algorithm. In comparison with the classification in 
importance but according to the reference map, 
well. This is proven by a low Rand Index value of 0,015.

Figure 34: kMeans classification using "Soil Line 7x7

Internal analysis mean S
External analysis adjusted 
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Figure 34 shows three classes and was computed using
In comparison with the classification in Figure 33 the third class gains 

according to the reference map, spatial shapes are still not 
This is proven by a low Rand Index value of 0,015. 

kMeans classification using "Soil Line 7x7 - dataset" - 3 classes.

Soil Line 7x7 - kMeans 3 classes 
mean Silhouette width 
adjusted Rand Index 

using the kMeans 
the third class gains 

spatial shapes are still not represented 

 

3 classes. 

0,502 
0,015 



 

The classification in Figure 
algorithm. Analog to Figure 
better split of observations on the four classes as again just three classes are visible.
fourth - invisible class - has very few and separated observations 
impossible to delineate on the map.
has  no reliable information regarding spatial shapes and patterns.

Figure 35: kMeans classification using "Soil Line 3x3

Internal analysis mean S
External analysis adjusted 
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Figure 35 shows four classes and was computed using
Figure 33 the homogeneous dataset apparently does not

better split of observations on the four classes as again just three classes are visible.
has very few and separated observations assigned, 

impossible to delineate on the map. The low Rand Index indicates that the classification 
information regarding spatial shapes and patterns. 

kMeans classification using "Soil Line 3x3 - dataset" - 4 classes.

Soil Line 3x3 - kMeans 4 classes 
n Silhouette width 

adjusted Rand Index 

using the kMeans 
the homogeneous dataset apparently does not allow a 

better split of observations on the four classes as again just three classes are visible. The 
assigned, which makes it 

tes that the classification 

 

4 classes. 

0,469 
0,008 



 

The classification in Figure 
algorithm. Spatial shapes cannot be delineated well
region, where spatial variability in the reference map is high as well.
underlines the low quality of the classification concerning the representation of the spatial 
shapes of the soil map. 

Figure 36: kMeans classification using "Soil Line 7x7

Internal analysis mean 
External analysis adjusted 
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Figure 36 shows four classes and was computed using
Spatial shapes cannot be delineated well, except for the north

where spatial variability in the reference map is high as well. 
underlines the low quality of the classification concerning the representation of the spatial 

kMeans classification using "Soil Line 7x7 - dataset" - 4 classes.

Soil Line 7x7 - kMeans 4 classes 
ean Silhouette width 

adjusted Rand Index 

using the kMeans 
, except for the northern part of the 

 The Rand Index 
underlines the low quality of the classification concerning the representation of the spatial 

 

4 classes. 

0,480 
0,022 



 

The classification in Figure 
algorithm. The classifications in 
Line 3x3 - dataset" is too homogeneous to succe
classification just two major classes are visible.
few and spatially separated observations assigned

Figure 37: SOM classification using "Soil Line 3x3

Internal analysis mean S
External analysis adjusted 
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Figure 37 shows four classes and was computed 
The classifications in Figure 33 and Figure 35 already have shown that the "Soil 
dataset" is too homogeneous to successfully delineate various classes. In this 

classification just two major classes are visible. As the other two classes have again very 
separated observations assigned, it is hard to visually detect them

SOM classification using "Soil Line 3x3 - dataset" - 4 classes.

Soil Line 3x3 -SOM 4 classes 
mean Silhouette width 
adjusted Rand Index 

shows four classes and was computed using the SOM 
already have shown that the "Soil 

fully delineate various classes. In this 
he other two classes have again very 

ly detect them.  

 

4 classes. 

0,538 
0,028 



 

The classification in Figure 
algorithm. Its classes are distributed 
and hence do not represent well 
Rand Index proves this point.

Figure 38: SOM classification using "Soil Line 7x7

Internal analysis mean S
External analysis adjusted 
 

3.3.4.  "Fitted polynomial 
automatic / 

As the "Fitted polynomial function
used for further SOM classification. In this approach 25 classes (neurons) were calculated 
and merged to 4 or 5 classes
of the attributes of the neurons, or automatically using a hierarchical clustering approach.
The latter was done by clustering the 
dendrogram (see Figure 40
assessment of the SOM clustering can be seen in 
assigned to each neuron (upper left plot) an
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Figure 38 shows four classes and was computed 
Its classes are distributed equally over the area without major agglomerations 

not represent well the coarse spatial patterns of the reference map.
this point. 

SOM classification using "Soil Line 7x7 - dataset" - 4 classes.

Soil Line 7x7 -SOM 4 classes 
mean Silhouette width 
adjusted Rand Index 

Fitted polynomial function - 
automatic / manual merge 

"Fitted polynomial function - dataset" outperformed the other two 
used for further SOM classification. In this approach 25 classes (neurons) were calculated 
and merged to 4 or 5 classes. The merging was done either manually by visual assessment 

of the neurons, or automatically using a hierarchical clustering approach.
latter was done by clustering the attributes of the 25 neurons and plott

40), enabling to delineate 4 or 5 different classes.
assessment of the SOM clustering can be seen in Figure 39. Beside the number of pixels 

ach neuron (upper left plot) an assessment of the quality of the 25 neurons is 

shows four classes and was computed using the SOM 
without major agglomerations 

spatial patterns of the reference map. A low 

 

4 classes. 

0,479 
0,024 

 dataset" -  

" outperformed the other two datasets, it was 
used for further SOM classification. In this approach 25 classes (neurons) were calculated 

. The merging was done either manually by visual assessment 
of the neurons, or automatically using a hierarchical clustering approach. 

neurons and plotting them in a 
), enabling to delineate 4 or 5 different classes. A first 

Beside the number of pixels 
ssessment of the quality of the 25 neurons is 
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illustrated (upper right plot). The upper right plot shows the mean distance of objects 
mapped to their corresponding neuron. The smaller the distances, the better the objects 
are represented by the neurons. The lower plot indicates the similarity between 
neighboring neurons - a low value indicates high similarity to one another. 

  
 

 
Figure 39: Upper left plot illustrates the number of pixels assigned to each neuron. The upper 

right plot shows the quality (homogeneity) of each neuron - where the lower the value the better 
the quality. The lower plot indicates the similarity between neighboring neurons. 

The automatic merging approach - via hierarchical clustering - led to the following 
dendrogram - with the red line indicating the cut of the 4-class clustering (see Figure 42) 
and the blue line the cut of the 5-class clustering (see Figure 43). 
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Figure 40: Dendrogram of the hierarchical clustering of the 25 neurons. 

The merged neurons of the 4-class, and the 5-class clustering are shown in Figure 41. The 
merged classes are illustrated by the colour of the circles, which change from 4- to 5-class 
clustering. The neurons' attributes depicted in the pie charts are the same between the left 
and the right plot (they represent the same dataset and SOM clustering). 

  
Figure 41: Automatically classified neurons and their attributes shown as pie charts inside the 

circles. 



 

The automatic approach led to the 
classification in Figure 42 shows four classes and was computed by the SOM algorithm. 
Four classes (red, blue, green and yellow) are visible but the yellow and green class have 
very few observations assigned to it. 
promising - due to the fact that the red class spans over the whole area and represents 
every soil type shown in the reference map.
results in comparison with the other classifications
point. 

Figure 42: SOM automatic merge 

Fitted polynomial function 
Internal analysis mean 
External analysis adjusted 
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The automatic approach led to the maps presented in Figure 42 and 
shows four classes and was computed by the SOM algorithm. 

Four classes (red, blue, green and yellow) are visible but the yellow and green class have 
very few observations assigned to it. Visually the classification does not seem very 

fact that the red class spans over the whole area and represents 
every soil type shown in the reference map. A Rand Index of 0,087 is one of the best 
results in comparison with the other classifications and therefore does not prove

automatic merge classification using "Fitted polynomial function
classes. 

Fitted polynomial function - SOM automatic merge 4 classes
ean Silhouette width 

adjusted Rand Index 

and Figure 43. The 
shows four classes and was computed by the SOM algorithm. 

Four classes (red, blue, green and yellow) are visible but the yellow and green class have 
Visually the classification does not seem very 

fact that the red class spans over the whole area and represents 
Rand Index of 0,087 is one of the best 

nd therefore does not prove this 

 

Fitted polynomial function - dataset" - 4 

SOM automatic merge 4 classes 
0,452 
0,087 



 

The classification in Figure 
algorithm. Analog to the red area in 
all soil types of the reference map. 
shown in the reference map, whereas in the south coarse shapes visually do not agree with 
those depicted in the reference map.
result and indicates that the best analytical agreement between the reference soil map and 
the classification is obtained with this classification

Figure 43: SOM automatic merge classification using 

Fitted polynomial function 
Internal analysis mean S
External analysis adjusted 
 

The manual merging of the neurons to 4 or respectively 5 classes was done visual
assessing the neurons attributes. 
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Figure 43 shows five classes and was computed 
algorithm. Analog to the red area in Figure 42, the green area is very prominent, covering 

of the reference map. The northern part matches well with the variability 
shown in the reference map, whereas in the south coarse shapes visually do not agree with 
those depicted in the reference map. On the other hand a Rand Index of 0,104 is the best 

sult and indicates that the best analytical agreement between the reference soil map and 
the classification is obtained with this classification.   

SOM automatic merge classification using "Fitted polynomial function 
classes. 

Fitted polynomial function - SOM automatic merge 5 classes
mean Silhouette width 
adjusted Rand Index 

The manual merging of the neurons to 4 or respectively 5 classes was done visual
assessing the neurons attributes. Figure 44 shows the classification. 

classes and was computed using the SOM 
prominent, covering 

The northern part matches well with the variability 
shown in the reference map, whereas in the south coarse shapes visually do not agree with 

On the other hand a Rand Index of 0,104 is the best 
sult and indicates that the best analytical agreement between the reference soil map and 

 

"Fitted polynomial function - dataset" - 5 

SOM automatic merge 5 classes 
0,390 
0,104 

The manual merging of the neurons to 4 or respectively 5 classes was done visually by 
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Figure 44: Manually classified neurons and their attributes shown as pie charts inside the circles. 

The manual approach led to the following maps: Figure 45 and Figure 46.  

  



 

The classification in Figure 
algorithm. Coarse shapes can be delineated be
although the Rand Index is nearly the hal
balanced distribution of observations over all four classes 
with few assigned pixels. The green area does a good job in delineating Paratschernosem 
and Tschernosem. 

Figure 45: SOM manual merge classification using "Fitted polynomial function

Fitted polynomial function
Internal analysis mean 
External analysis adjusted 
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Figure 45 shows four classes and was computed 
Coarse shapes can be delineated better than in the classification in 

although the Rand Index is nearly the half of it. Again the classification is lacking a 
distribution of observations over all four classes - as one class (blue) 

The green area does a good job in delineating Paratschernosem 

: SOM manual merge classification using "Fitted polynomial function
classes. 

Fitted polynomial function - SOM manual merge 4 classes
ean Silhouette width 

adjusted Rand Index 

shows four classes and was computed using the SOM 
tter than in the classification in Figure 42 

Again the classification is lacking a 
as one class (blue) only counts 

The green area does a good job in delineating Paratschernosem 

 

: SOM manual merge classification using "Fitted polynomial function - dataset" - 4 

SOM manual merge 4 classes 
0,461 
0,063 



 

The classification in Figure 
algorithm. It depicts very well coarse shapes and patterns of the soil map
higher spatial variability. The red area mostly represents Feuchtschwarzerde from the soil 
map, which visually seems very accurate.
variability is depicted well in the classification.
Tschernosem are hardly to distinguish from the classification
among the classifications, prove

Figure 46: SOM manual merge classification using "Fitted polynomial function

Fitted polynomial function 
Internal analysis mean S
External analysis adjusted 
 

An overview of the evaluation 
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Figure 46 shows five classes and was computed 
ery well coarse shapes and patterns of the soil map

. The red area mostly represents Feuchtschwarzerde from the soil 
map, which visually seems very accurate. As well the northern area 

ted well in the classification. The soil types Paratschernosem and 
distinguish from the classification. The second best

proves the good result. 

merge classification using "Fitted polynomial function
classes. 

Fitted polynomial function - SOM automatic manual 5 classes
mean Silhouette width 
adjusted Rand Index 

luation results of all classification maps is given in Table 

 

shows five classes and was computed using the SOM 
ery well coarse shapes and patterns of the soil map and shows 

. The red area mostly represents Feuchtschwarzerde from the soil 
As well the northern area and its spatial 

The soil types Paratschernosem and 
The second best Rand Index 

 

merge classification using "Fitted polynomial function - dataset" - 5 

SOM automatic manual 5 classes 
0,442 
0,094 

Table 7. 
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Table 7: Overview of the Cluster analysis. 

Input dataset - algorithm & number of 
classes 

Internal 
analysis 

External 
analysis 

 

mean Silhouette 
width 

adjusted Rand 
Index 

Band Medians - kMeans 3 classes 0,356 0,057 

Band Medians - kMeans 4 classes 0,345 0,048 

Band Medians - SOM 4 classes 0,348 0,045 

Fitted polynomial function - kMeans 3 classes 0,484 0,059 

Fitted polynomial function - kMeans 4 classes 0,468 0,075 

Fitted polynomial function - SOM 4 classes 0,467 0,075 

Soil Line 3x3 - kMeans 3 classes 0,538 0,031 

Soil Line 7x7 - kMeans 3 classes 0,502 0,015 

Soil Line 3x3 -kMeans 4 classes 0,469 0,008 

Soil Line 7x7 -kMeans 4 classes 0,480 0,022 

Soil Line 3x3 -SOM 4 classes 0,538 0,028 

Soil Line 7x7 -SOM 4 classes 0,479 0,024 

Fitted polynomial function - SOM automatic 4 
classes 

0,452 0,087 

Fitted polynomial function - SOM automatic 5 
classes 

0,390 0,104 

Fitted polynomial function - SOM manual 4 
classes 

0,461 0,063 

Fitted polynomial function - SOM manual 5 
classes 

0,442 0,094 

 

At this point three maps were chosen to be investigated more in detail. The two best 
performing classifications according to the adjusted Rand Index and one more map 
("Fitted polynomial function - SOM 4 classes") which visually, from the authors point of 
view, seems to be a good classification as well. Zonal statistics were computed for those 
three maps (see Figure 32, Figure 45 and Figure 46), where histograms show if the soil 
types from the reference soil map mostly belong to one clustering class or not. Figure 47 
shows the histogram of the "Fitted polynomial function - SOM 4 classes" - classification. As 
the bars indicate, it is not a very clear classification, as most of the class numbers from the 
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classification cannot be assigned to one soil type and vice versa no soil type can be 
assigned to one class number. 

 

Figure 47: Zonal statistics of the "Fitted polynomial function - SOM 4 classes" - classification, 
colored according to the legend in Figure 6. 

Figure 48 shows the histograms computed for the "Fitted polynomial function - SOM 
manual 5 classes" - classification. A similar result is drawn like in Figure 47, with no clear 
separability, when the classification is compared with the reference soil map. 
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Figure 48: Zonal statistics of the "Fitted polynomial function - SOM manual 5 classes" - 
classification, colored according to the legend in Figure 6. 

Figure 49 shows the histograms computed for the "Fitted polynomial function - SOM 
automatic 5 classes" - classification. Soil types Feuchtschwarzerde and Tschernosem can 
mostly be found in class number 1, keeping in mind that class 1 is present in each soil type. 

 

Figure 49: Zonal statistics of the "Fitted polynomial function - SOM automatic 5 classes" - 
classification, colored according to the legend in Figure 6.  
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4. DISCUSSION AND CONCLUSIONS 

A ranking of both evaluation indices (mean Silhoutte width, adjusted Rand Index) shows 
that the different clustering outputs are mostly ranked according to their input dataset - 
the algorithm used has less influence (see Table 8 and Table 9). 

Table 8: Ranking according to the mean Silhouette width. 

Ranking according to the mean Silhouette width Internal analysis External analysis 

 
mean  

Silhouette width 
adjusted  

Rand Index 

Band Medians - kMeans 4 classes 0,345 0,048 

Band Medians - SOM 4 classes 0,348 0,045 

Band Medians - kMeans 3 classes 0,356 0,057 

Fitted polynomial function - SOM automatic 5 classes 0,390 0,104 

Fitted polynomial function - SOM manual 5 classes 0,442 0,094 

Fitted polynomial function - SOM automatic 4 classes 0,452 0,087 

Fitted polynomial function - SOM manual 4 classes 0,461 0,063 

Fitted polynomial function - SOM 4 classes 0,467 0,075 

Fitted polynomial function - kMeans 4 classes 0,468 0,075 

Soil Line 3x3 -kMeans 4 classes 0,469 0,008 

Soil Line 7x7 -SOM 4 classes 0,479 0,024 

Soil Line 7x7 -kMeans 4 classes 0,480 0,022 

Fitted polynomial function - kMeans 3 classes 0,484 0,059 

Soil Line 7x7 - kMeans 3 classes 0,502 0,015 

Soil Line 3x3 - kMeans 3 classes 0,538 0,031 

Soil Line 3x3 -SOM 4 classes 0,538 0,028 

 

In the ranking according to the best mean Silhouette width the "Soil line - dataset" 
performed best, second the "Fitted polynomial function - dataset" and last the "Band 
medians - dataset". Regarding the adjusted Rand Index a different result is drawn: the 
"Fitted polynomial function - dataset" outperformed the "Band medians - dataset" as the 
second and the "Soil line - dataset" as the last - as it can be seen in Table 9. 
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Table 9: Ranking according to the adjusted Rand Index. 

Ranking according to the Rand Index Internal analysis External analysis 

 
mean  

Silhouette width 
adjusted  

Rand Index 

Soil Line 3x3 -kMeans 4 classes 0,469 0,008 

Soil Line 7x7 - kMeans 3 classes 0,502 0,015 

Soil Line 7x7 -kMeans 4 classes 0,480 0,022 

Soil Line 7x7 -SOM 4 classes 0,479 0,024 

Soil Line 3x3 -SOM 4 classes 0,538 0,028 

Soil Line 3x3 - kMeans 3 classes 0,538 0,031 

Band Medians - SOM 4 classes 0,348 0,045 

Band Medians - kMeans 4 classes 0,345 0,048 

Band Medians - kMeans 3 classes 0,356 0,057 

Fitted polynomial function - kMeans 3 classes 0,484 0,059 

Fitted polynomial function - SOM manual 4 classes 0,461 0,063 

Fitted polynomial function - SOM 4 classes 0,467 0,075 

Fitted polynomial function - kMeans 4 classes 0,468 0,075 

Fitted polynomial function - SOM automatic 4 classes 0,452 0,087 

Fitted polynomial function - SOM manual 5 classes 0,442 0,094 

Fitted polynomial function - SOM automatic 5 classes 0,390 0,104 

 

We can claim that most of the classification result (different soil maps) depends on the 
input dataset used and not on the clustering algorithm applied nor its number of classes. 
In some cases the similar clustering technique between the kMeans algorithm and the 
SOM algorithm can be delineated: Two nearly identical maps - "Band Medians - SOM 4 
classes" (shown in Figure 28) and "Band Medians - kMeans 4 classes" (shown in Figure 
29) - base on the same input dataset but have different algorithms applied. Their similarity 
is proven by their almost equal evaluation values. But there are still some major 
differences that can be shown in the performance of the two algorithms. The SOM 
algorithm, above all in the homogeneous "Soil line 3x3 - dataset" (see Figure 38), seeks to 
group its data points in mostly two major classes (although four are available). With the 
same input feature the kMeans algorithm (see Figure 35 for comparison) instead provides 
a slightly better distribution of data points over the four classes - still nearly leaving out 
one class. This performance of both algorithms is caused by the composition of the dataset 
which is very homogeneous (as shown in Figure 23, Figure 24 and Figure 25).  

According to Kaufman and Rousseeuw (2005) none of the classifications has a poor 
internal evaluation value (mean Silhouette width <0.25). In order to select the best 
classification the focus can be put on the ARI, which is more relevant. The ARI evaluates 
the agreement between the existing soil map (considered as the truth) and the clustering 
output maps. The best obtained classifications according to the ARI were the merged SOM 
classifications (input feature: "Fitted polynomial function - dataset"), where the automatic 
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(hierarchical clustering) approach performed best. Although the ARI classifies Figure 43 as 
the best map, from the authors point of view it lacks two important points. First: in 
contrast to other maps the shapes on a coarse scale are not very well delineated. Second: 
the "green" class gained too much importance and other classes are under-represented. 
The author agrees that the "Fitted polynomial function - dataset" performed best, but 
wants to highlight the "SOM manual merge - 5 classes" classification (see Figure 46) and 
the 4-class kMeans and SOM classification (Figure 31 and Figure 32), as they visually make 
the best result. Those three maps show the shapes of the different soil types best, although 
all have problems with overestimating the "blue" area. Regarding this overestimation the 
"SOM manual merge - 5 classes" does the best job - having in mind that the other two maps 
have just 4 output classes and though automatically more data points fall into the "blue" 
class. The soil type "Feuchtschwarzerde" (see "red" area in Figure 6) was delineated best. 
"Kulturrohböden" wasn't very successful in its separation to other soil types. As well the 
"Paratschernosem" and the "Tschernosem" classes were difficult to distinguish. This last 
case is not very problematic as those two soil types are very similar to one another and are 
even merged together in different soil maps of the region (as it is done in other layers of 
the reference shape file for example). Regarding the separability of the soil types the zonal 
histograms (Figure 47 - Figure 49) didn't show a very successful result, with the "Fitted 
polynomial function - SOM automatic merge - 5 classes" classification (having the best ARI 
as well) leaving the best impression.  

For unsupervised classification of soil maps, the use of bare soil reflectance based 
indicators, such as the fit of a polynomial function on the spectral bands, is recommended. 
This indicator obtains the best results and hence proves the point that it represents soil 
specific information better than other indicators. A classification algorithm - like the SOM 
algorithm - which offers the possibility to assess class-characteristics and merge similar 
classes, enables more sophisticated ways of cluster assessment and though can be 
recommended. Coarse patterns of soil types can be delineated from the resulting maps. All 
the classifications show more spatial variability than the reference soil map, which is a 
good sign that soil classification using remote sensing techniques contributes more 
detailed spatial information than traditional in-situ soil mapping techniques. This factor is 
important above all in the Marchfeld region due to its small scale soil variability. The use 
or additional integration of remote sensing information into traditional in-situ soil 
surveys, therefore offers the possibility to enhance the quality and spatial resolution of 
soil maps.  

4.1.  Outlook 

The applied methodology enables to gain an overview of the distribution, the amount of 
soil types and their shapes. On its basis, maps can be delineated on a coarse scale at low 
costs. The use of additional information and combinations with other methods - such as 
regression trees and generalized linear models - are recommended to improve map 
accuracy (Mulder et al., 2011, p. 12; cf. Wulf et al., 2015). As there always has to be a trade-
off between cost-effectiveness and map-accuracy, the presented methodology will be 
adequate for some purposes. For other uses, more detailed and accurate needs, additional 
information (such as digital elevation models or higher spectral resolution data - which 
might not be for free) will be necessary to fulfill this purpose. In this case the presented 
methodology will be insufficient. Overall remote sensing techniques will gain importance 
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in the future, being a crucial technology for a lot of environmental issues and agricultural 
uses - a lot of development can be expected in this field of science.  

4.2.  Lessons learned 

All of the work was done with the open source software "R" and "QGIS". The first program 
requires coding skills. Having no coding experience before, this was quite a challenging 
task in the beginning, but with time more and more insights were gained and it became 
easier. A very important factor was the fast and good help of several internet platforms 
and tutorials. The author really learned to appreciate R as a very stable and powerful tool 
for everything dealing with any kind of data. Concerning this aspect QGIS also promises to 
fulfill a lot of needs (above all with its open-source toolboxes) and as it has an user-
friendlier interface than R, some of the processings were initially intended to be done 
there. Unfortunately over the time there were several functions which weren't working as 
they should and help or solutions were not found easily. That is why everything - except 
for the visualization of the maps - was done in the R environment in the end.  

 

 

  



[66] 
 

BIBLIOGRAPHY 

AG Boden, 1994. Bodenkundliche Kartieranleitung. Hannover. 

ArcGIS, 2015. ArcGIS [WWW Document]. URL https://www.arcgis.com/features/ (accessed 
20.9.15). 

ArcGIS - Using the NDVI process [WWW Document], n.d. URL 
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Using_the_NDVI_process 
(accessed 24.7.15). 

BelVecchioUK, 2012. Rand Index in Statistics - A Worked Example - Cluster Analysis. 

Bento, C., Cardoso, A., Dias, G., 2005. Progress in Artificial Intelligence: 12th Portuguese 
Conference on Artificial Intelligence, EPIA 2005, Covilha, Portugal, December 5-8, 2005, 
Proceedings. Springer Berlin Heidelberg. 

bmlfuw - Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 
2015. Getreideanbau und Getreidearten in Österreich [WWW Document]. URL 
http://www.bmlfuw.gv.at/land/produktion-maerkte/pflanzliche-
produktion/getreide/Getreide.html (accessed 21.7.15). 

Bockheim, J.G., Gennadiyev, A.N., Hammer, R.D., Tandarich, J.P., 2005. Historical development of 
key concepts in pedology. Geoderma 124, 23–36. doi:10.1016/j.geoderma.2004.03.004 

BOKU, n.d. MUbiL [WWW Document]. URL http://mubil.boku.ac.at/?page_id=5 (accessed 
22.7.15). 

Bouma, J., Broll, G., Crane, T.A., Dewitte, O., Gardi, C., Schulte, R.P., Towers, W., 2012. Soil 
information in support of policy making and awareness raising. Curr. Opin. Environ. Sustain. 4, 
552–558. doi:10.1016/j.cosust.2012.07.001 

Davies, D.L., Bouldin, D.W., 1978. Cluster separation measure 1, 224–227. 

Dematte, J.A.M., Huete, A.R., Ferreira Jr, G., Nanni, M.R., Alves, M.C., Fiorio, P.R., others, 2009. 
Methodology for bare soil detection and discrimination by Landsat TM image. Open Remote 
Sens. J. 2. 

Dunn, J.C., 1974. Well-Separated Clusters and Optimal Fuzzy Partitions. J. Cybern. 4, 95–104. 
doi:10.1080/01969727408546059 

ERDAS IMAGINE, 2015. ERDAS IMAGINE [WWW Document]. URL 
http://www.hexagongeospatial.com/products/producer-suite/erdas-imagine (accessed 
20.9.15). 

ESA, 2015a. Sentinel-1 - Overview - Sentinel Online [WWW Document]. URL 
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview (accessed 17.7.15). 

ESA, 2015b. Sentinel Data Access Overview - Sentinel Online [WWW Document]. URL 
https://sentinel.esa.int/web/sentinel/sentinel-data-access (accessed 17.7.15). 

ESA, 2015c. Sentinel-2 - Missions - Sentinel Online [WWW Document]. URL 
https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed 11.5.15). 



[67] 
 

ESRI, n.d. Majority Filter [WWW Document]. URL 
http://resources.esri.com/help/9.3/arcgisengine/java/Gp_ToolRef/spatial_analyst_tools/maj
ority_filter.htm (accessed 3.8.15). 

Estes, J., 2005. The History of Remote Sensing (By John E. Estes 1999, Last Updated 2005) 
[WWW Document]. URL http://www.geog.ucsb.edu/~jeff/115a/remotesensinghistory.html 
(accessed 17.7.15). 

European Commission - Joint Research Center, 2014. Soil Awareness Raising [WWW 
Document]. URL http://eusoils.jrc.ec.europa.eu/Awareness/ (accessed 16.7.15). 

FAO, 2015. Soil is a non-renewable resource 4. 

Fox, G.A., Sabbagh, G.J., Searcy, S.W., Yang, C., 2004. An automated soil line identification 
routine for remotely sensed images. Soil Sci. Soc. Am. J. 68, 1326–1331. 

Green, P., 2010. Self Organizing Maps (Part 1). 

Hartemink, A.E., Krasilnikov, P., Bockheim, J.G., 2013. Soil maps of the world. Geoderma 207-
208, 256–267. doi:10.1016/j.geoderma.2013.05.003 

Hartemink, A.E., McBratney, A.B., Cattle, J.A., 2001. Developments and trends in soil science: 
100 volumes of Geoderma (1967–2001). Geoderma 100, 217–268. 

Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal 
AVHRR data. Int. J. Remote Sens. 7, 1417–1434. doi:10.1080/01431168608948945 

Hubert, L., Arabie, P., 1985. Comparing partitions. J. Classif. 2, 193–218. 
doi:10.1007/BF01908075 

Institut Cartogràfic i Geològic de Catalunya [WWW Document], n.d. URL 
http://www.icc.cat/eng/Home-ICC/Mapes-escolars-i-divulgacio/Preguntes-frequeents/Que-
es-NDVI (accessed 24.7.15). 

Jenny, H., 1941. Factors of soil formation. N. Y. McGraw-Hill. 

Jensen, J., 2007. Remote Sensing of the Environment: An Earth Resource Perspective., 2nd ed. 
Prentice Hall, New Jersey. 

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y., 2002. An Efficient 
k-Means Clustering Algorithm: Analysis and Implementation. Pattern Anal. Machiine Intell. 
881–892. 

Kaufman, L., Rousseeuw, P.J., 2005. Finding Groups in Data: An Introduction to Cluster 
Analysis, Wiley Series in Probability and Statistics. 

kmeans clustering, 2015.  Wikipedia Free Encyclopedia. 

Kromp-Kolb, H., Formayer, H., Eitzinger, J., 2007. Potentielle Auswirkungen und 
Anpassungsmaßnahmen der Landwirtschaft an den Klimawandel im Nordosten Österreichs 
(Weinviertel-Marchfeld Region). 

Kwedlo, W., 2011. A clustering method combining differential evolution with the K-means 
algorithm. Pattern Recognit. Lett. 32, 1613–1621. doi:10.1016/j.patrec.2011.05.010 

Lu, J.F., Tang, J.B., Tang, Z.M., Yang, J.Y., 2008. Hierarchical initialization approach for K-Means 
clustering. Pattern Recognit. Lett. 29, 787–795. doi:10.1016/j.patrec.2007.12.009 



[68] 
 

Marchfeldkanal [WWW Document], n.d. URL http://www.marchfeldkanal.at/home.htm 
(accessed 30.9.15). 

Miehlich, G., 2009. Bodenbewusstsein - ein Schlüssel zur Förderung des Bodenschutzes (No. 
22), NNA-Berichte. Alfred Toepfer Akademie für Naturschutz. 

Mulder, V.L., de Bruin, S., Schaepman, M.E., Mayr, T.R., 2011. The use of remote sensing in soil 
and terrain mapping — A review. Geoderma 162, 1–19. doi:10.1016/j.geoderma.2010.12.018 

Pena, J.M., Lozano, J.A., Larranaga, P., 1999. An empirical comparison of four initialization 
methods for the K-Means algorithm. 

QGIS, 2015. QGIS [WWW Document]. URL http://www.qgis.org/de/site/ (accessed 20.9.15). 

Rand, W.M., 1971. Objective Criteria for the Evaluation of Clustering Methods. J. Am. Stat. 
Assoc. 66, 846. doi:10.2307/2284239 

Richardson, A.J., Wiegand, C.L., 1977. Distinguishing Vegetation from Soil Background 
Information. Photogramm. Eng. Remote Sens. 43. 

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation. 

Santos, J.M., Embrechts, M., 2009. On the use of the adjusted rand index as a metric for 
evaluating supervised classification, in: Artificial Neural networks–ICANN 2009. Springer, pp. 
175–184. 

Schowengerdt, R.A., 2007. Remote Sensing: Models and Methods for Image Processing. 
Academic Press. 

SEOS Project, n.d. Spectral signatures of soil, vegetation and water, and spectral bands of 
LANDSAT 7. 

Sommer, E., Reinthaler, D., Höbaus, E., 2009. Marchfeld Gemüse. 

Spectral Response of Landsat 7, n.d. 

Stolbovoy, V., Maréchal, B., Jones, A., Rusco, E., Montanarella, L., 2008. Climate change - soil can 
make a difference! Presented at the Climate change - can soil make a difference?, Brussels. 

Thaler, S., Eitzinger, J., Dubrovsky, M., Trnka, M., n.d. Climate change impacts on selected crops 
in Marchfeld, Eastern Austria. 

The International Union of Soil Sciences - IUSS [WWW Document], n.d. URL 
http://www.iuss.org/index.php?article_id=22 (accessed 14.7.15). 

USGS, 2015. Remote Sensing Phenology [WWW Document]. URL 
http://phenology.cr.usgs.gov/ndvi_foundation.php (accessed 1.10.15). 

UW-Madison Satellite Meteorology [WWW Document], n.d. URL 
http://profhorn.meteor.wisc.edu/wxwise/satmet/lesson3/ndvi.html (accessed 24.7.15). 

Wehrens, R., Buydens, L.M.C., 2007. Self- and Super-organising Maps in R: the kohonen 
package. 

Wulf, H., Mulder, T., Schaepman, M.E., Keller, A., Jörg, P.C., 2015. Remote Sensing of Soils. 


