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Abstract

River Discharge is assumed to follow a stationary process. Engineers do calculate
design discharge for structures depending on that crucial assumption, but rarely take a
closer look on the length of time window and its effects on the variability of the flood
return value. Our goal was to find out, based on the guidelines used in Austria and
Germany, how much the length and point of time matters in flood estimation and that
the current minimum sample size of 30 years may be too short for a precise HQ value.
Moreover, even under strict stationarity, how many years are mandatory in order to
reduce the uncertainty and variability of the return level to an acceptable level.

Die zerstérenden Auswirkungen von Hochwasser sind unbestreitbar und wiederholen
sich - Ein hundert jahriges Hochwasser jagt das Néchste. Ingenieure berechnen Hoch-
wasserwelle mit Statistiken Hilfsmittel und der Annahme, dass sich das hydrologische
System stationér verhilt. Doch sind diese Annahmen haltbar? Wie gro8 ist der Ein-
fluss der Zeitreihenldnge auf den Hochwasserscheitel? In Osterreich und Deutschland
gelten Zeitreihen ab einer linge von 30 Jahre als geeignet fiir die statistische Berech-
nung - doch ist diese Linge gerechtfertigt? Das Zicl dieser Atrbeit ist es, die Linge
der Zeitreihe kritisch zu hinterfragen und die daJurch entstehenden Unsicherheiten
aufzuzeigen.
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Chapter 1

Introduction

1.1 Introduction and Research Question

Along with storms, floods account for the most devastating natural hazards in Europe
in terms of human losses and economic damage (Munich Re, 2013). But not only
their direct and tangible impacts are disastrous, but also their indirect and intangible
effects are tremendous as adverse influences go far beyond the flooded areas, such
as production losses caused by damaged transport or energy infrastructure as well as
adverse effects on human health, the environment and cultural heritage (FOEN, 2016,
Parliament and Comission, 2007, EEA, 2012).

River floods are mainly caused by intense precipitation events and or snow melt
within a catchment. Important criteria for precipitation are intensity, duration, amount
as well as spacial distribution and elevation. Moreover temperature as well as infiltra-
tion rate of the soil within the catchment, debris flow and condition of dams and levees,
which, if not maintained properly, can lead to structural failures and a possible increase
of the damage, as well as natural or artificial retention space, riparian vegetation and
land-use. So it is important to understand that there is not one criteria that makes a
flood but it is the complex interaction of different climatical, geological, anthropogenic
and biological factors which led to the most devastating floods people experienced in
Europe.

In general there is a long lasting, broad understanding that flood risk is increasing
throughout Europe and that its reasons are many-fold and complex and that it is of
crucial importance to look at the main drivers in order to be able to make assumptions
about the possible impacts and make predictions. (Merz et al., 2010, Hallegatte et al.,
2013, Alfieri, Feyen, Dottori et al., 2015, IPCC, 2014, Liu et al., 2013, Wentz et al.,
2007, Cai, Borlace and Lengaigne, 2014, Feyen, Jos. I. Barredo and Dankers, 2009,
Palmer and Riisénen, 2002, Milly et al., 2002, Munich Re, 2013). One of those drivers

1



Introduction

is Climate Change. As the IPCC, 2014 Report points out, the evidence for a change in
the earth’s climate is striking and the anthropogenic influence is "extremely likely"
to be the main cause for it. Moreover, by changing the climatic component, more
uncertainty is involved in the first part of the risk equation (Fuchs, 2014) - namely the
probability of the occurrence of a scenario or event with certain characteristics like
magnitude and frequency. As the temperature rises and the Greenland Antarctic ice
sheets as well as Glaciers around the world are loosing mass, sea levels are rising as
well as the energy level within the system is rising leading to a higher water vapor
concentration within the atmosphere, which might - according to the IPCC, 2014
Report - lead to the effect that extreme precipitation events become more intense and
frequent in many regions, including most of the mid-latitude land masses and the wet
tropical regions. Moreover, it is estimated that due to climate change, the variability
of occurrence of floods is higher in general (Jeneiovi et al., 2015). Due to changing
precipitation patterns or abnormal snow and or ice melt, parts of the hydrological
systems are being altered (Wentz et al., 2007, IPCC, 2014), which might lead to
climate-related extremes such as floods but also droughts, cyclones, heat waves and
wildfires, threatening ecosystems all around the world and in many respects posing
significant danger to humans (IPCC, 2014). Within the scientific community, climate
change is accepted as a mostly anthropogenic driven change of the earth’s climate,
however, its impacts are still basis of broad discussion and highly uncertain (Liu et al.,
2013).

Nevertheless, even though climate change is happening and there is an increase in
flood risk, climate change might play a less significant role than suggested on short
time scales, while on the long run, it does (Jha, Bloch and Lamond, 2012). And that
natural variability and other non-climatic risks are in fact expected to pose a higher
impact on flood risk than long term climate trends (Alfieri, Feyen, Dottori et al., 2015,
Schwerdtfeger, 1993, O’Connell et al., 2007, Genovese, 2006). J. I. Barredo, 2007
puts it like this :"... changes in climate cannot be understood as the main reason for
increasing flood damage in Europe ...". Which puts the short-term focus on other
drivers. Especially those of changes in socio-economic systems, land surface and
land-use (Pinskwar et al., 2012) e.g. population growth in combination with a fast
urbanization and its current implications Jha, Bloch and Lamond, 2012) which lead to
a higher vulnerability and susceptibility of society towards ever more extreme events
(IPCC, 2014, EEA, 2012). Alfieri, Feyen and Baldassarre, 2016 estimates that there
will be an increase on the impact on the population affected as well as in economic-
damage by an average of 220% till 2050 due to climate change alone. Moreover, that
when current socio-economic pathways are included in the assessment, the annually
affected population ranges between 500,000 and 640,000 and the annual flood damage
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will increase to 20 to 40 billion euros: Hallegatte et al., 2013 even goes as far as to
estimate the approximate global flood losses with projected socio-economic change
and climate change to approximately US$1 trillion for major coastal cities by 2050
per year. Those risks, however, are unevenly distributed and are generally greater
for disadvantaged people and communities in countries at all levels of development
with an overall increase of human casualties and financial losses (IPCC, 2014, Alfieri,
Feyen, Dottori et al., 2015). Also people who believe in a false sense of absolute
security, the so called "levee-effect” (Merz et al., 2010, Alfieri, Feyen and Baldassarre,
2016), are at higher risk to move to flood prone areas. This uneven rise of flood risk
and how to share this burden evenly is greatly debated (Penning-Rowsell and Priest,
2014). It is therefore easy to see that not only technical but also non-technical flood
mitigation measurements need to be broadly discussed and taken into account when
dealing with flood risk. Which was tried by introducing two major directives on an
European wide basis, namely the European Comission, 2000 and the Parliament and
Comission, 2007. Those two guidelines interact and complement each other (European
Commission, 2014) and are a major step towards an integrated flood risk management
by introducing flood risk maps and flood risk management plans for all river districts
within the MS of the European Union. Nevertheless, these two directives create "only"
a framework in which member states have a lot of ample scope in order to integrate
their own standards and measurements regarding floods, leaving dozens of inconsistent
national regulations and guidelines.

In Austria for example, the Federal Ministry of Agriculture, Forestry, Environment
and Water Management (BMLFUW) is responsible for the technical/structural flood
protection (RIWA-T, 2015) and is therefore issuing a guideline (BMLFUW, 2011)
for the calculation of the flood characteristics. It is mandatory to estimate the risk
for settlements and important economic structures as well as infrastructure. This risk
needs to be calculated for a flood with a return period of 30 (HQ3p), 100 (HQ1q0)
and 300 years (HQ3q). For a reservoir a return period of 5000 years is necessary to
calculate (RIWA-T, 2015). However, floods, as all extreme events, do have a high
variability in space and time and with respect to socio-economic changes and climate
change, face an even greater space of uncertainties. Moreover, there are periods with’
a higher appearance and periods with lower appearance of floods and therefore the
statistical and hydrological estimations can vary a lot in not only the quality but also
in the representativety. The BMLFUW, 2011 refers to those uncertainties as well as
it suggests that one needs to take the quality of the measured data, the experience of
the expert, statistical uncertainties, limited sample space as well as other hydrological
relevant Information into account. Most relevant are the quantification of the beak
discharge and the design flood discharge and their confidence interval. In Austria, the
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design flood discharge needs to be calculated for the three scenarios mentioned above,
namely HQ3o, HQjgo and HQ3g by estimating the return level of such a return period -
which is from a hydraulic-hydrological point of view quite arbitrary. Nevertheless, the
foundation for setting a certain return period are the potential damage to either life or
material values, the cost of implementation as well as the impact on the environment
e.g. for a settlement a HQyqp is defined. So in order to design, plan, construct, run,
maintain and or reconstruct a project related to e.g. flood protection, an analysis of the
flood events and the resulting flood characteristics need to be considered and therefore
calculated, which is done via extreme value statistics. According to the BMLFUW,
2011 several uncertainties in the process of data collection, specifically data accuracy
and plausibility, need to be checked for and eventually corrected. This is also true for
the assumptions of Independency, Homogeneity, Consistency and Representativety
regarding the sample as well as for outliers. The BMLFUW, 2011 explains these
procedures quite well and points out that time series longer than 30 years are usable
for these calculations (Table 1.2).

Table 1.1 Shows the statistical usability for different time series sample lengths according to
the BMLFUW, 2011 '

Sample Time [Years] | Statistical Applicability
<10 No
10-20 Weak
20-30 Limited
>30 Yes

The question if it is appropriate to assume stationarity, which is normally not the
case (Westra et al., 2015, Jain and Lall, 2001, Villarini et al., 2009) but is necessary for
any extreme value statistic (BMLFUW, 2011) is not being challenged in this thesis,
as people assume it and calculate return levels based on it. Nevertheless, even if the
assumption of stationarity was assumed to be true, are 30 years of sample length
enough in order to get a precise design flood return levels or is it more like throwing
a dice as Bloschl and Montanari, 2010 suggested? And if not, how many years are
necessary in order to get a stable return level?

As mentioned above, any kind of water related structure or simulation that is being
calculated using either the national guidelines of Germany (DWA, 2012) or Austria
(BMLFUW, 2011) suggests that under stationary conditions the assumption of 30
years of sample length is enough to calculate a reliable return value.

Therefore, the main research questions where:

1. Are 30 years enough to calculate a "precise" return level?
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2. How many years are necessary in order to get a "precise” return level? And,

3. how do 30, 40 and 50 years of time series length impact the return level with
regard to the variability of the estimate?

Those questions have been tried to answer by following the BMLLFUW, 2011 in
order to calculate a flood return level. The procedure described in this guideline and
used in this thesis is described in the following sections.

1.2 Flood Return-Level Calculation

There exist several ways of flood return level calculations (DWA, 2012, BMLFUW,
2011, Parliament and Comission, 2007). Nevertheless, this thesis fo]lows'strictly the
BMLFUW, 2011 in order to be in the position of an average user of this guideline. It
concurs most of the time with another prominent guideline, namely the DWA, 2012.
This section gives an overview of the procedure of how the BMLFUW, 2011 suggests
the user to calculate flood return levels, about the assumptions to be made and the
uncertainties of the calculation and how it was calculated.

1.2.1 Errors and Assumptions Regarding the Data-Set

In the beginning, a short introduction of the main errors of hydrological data in general
and the assumptions necessary for extreme value statistics are given. The BMLFUW,
2011 provides an overview of the most prominent errors within the hydrological
data and suggests proce-dures of how to detect them and correct them under certain
conditions. The assumptions necessary for the statistical analysis of the flood return
level calculation are according to the BMLFUW, 2011 the following: The data needs
to be

* Unbiased: The sample data-set needs to be unbiased
* Independent: The sample data-set needs to be independent

* Homogeneous: The gauging station should not be influenced by either natural
or anthropogenic disturbances during the sampling

* Representative: The data should show the (populations) discharge pattern
Some of these assumptions can be tested according to the BMLFUW, 2011:
* For Independence: Wald-Wolfowitz
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* For Trend: Mann-Kendall,Spermanns Rho, Sneyers

» For Homogeneity: Wilcoxon

In this thesis it was assumed that the data-set provided by the GRDC was unbiased.
Nevertheless, the data was checked for plausibility, the corrected values were used
and every gauging site with missing values was excluded. Furthermore, the "Annual
Maxima Series" -Methode was used in order to get the extreme values for the flood
return level estimation (See section 1.2.3 for more details), which is according to
the BMLFUW, 2011 another way to make sure, that the data set is independent.
As mentioned above, the corrected values were chosen so if there have been any
anthropogenic disturbances and they were detected and corrected by the provider of
the data, it was used.

The main focus, however, did lay on the time series length and the assumptions’
made by the BMLFUW, 2011 regarding it: "A sample length of 30 years is enough, to
estimate flood return levels".

Table 1.2 Shows the statistical usability for different time series sample lengths according to
the BMLFUW, 2011

Sample Time [Years] | Statistical Applicability
<10 _ " No
10-20 ' Weak
20-30 Limited
>30 Yes

Any further errors have been neglected, as the attention lay on the precision of the
repeated return level outcomes with different time window lengths and not so much on
the accuracy of the estimation.

1.2.2 Return Period

Before flood return levels can be calculated, the return period (T,) needs to be defined.
One can distinguish between either frequency of exceedance (Equation 1.1, P,), non-
exceedance (Equation 1.2, P,) or occurrence probability (Equation 1.3, P). In this
thesis it was defined as the number of years (e.g. 100 years), in which a certain event
occurs on average once or is exceeded. This means that within a discrete time interval
of 100 years, the return period for a hundred-year-flood is each year the same (P=0.01)
- this event does not return every 100 years, but on average it occurs or exceeds once
within 100 years. The BMLFUW, 2011 defines them as:
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P=P(X>x)= (L.1)
T,
1
Po=PX<x)=1-— (1.2)
T,
There is a simple relationship between the P, and the P,:
B,+P =1 (1.4)

According to the BMLFUW, 2011, the probability or "Statistical Security" (S) that
a flood (HQ) is greater or equal a flood with a certain return period (HQ,,) does not
occur within m years is:

1

=(1-—
S=( -1,

" (L.5)

and

1

b= 15t

(1.6)

1.2.3 Extraction of the Extreme Values

The next step of a flood return level estimation is to extract the extreme values of a
time series. Both, the German DWA, 2012 and the Austrian BMLFUW, 2011 for flood
estimation offer two different types of doing this. On the one side, there is the annual
maximum series (AMS) approach, and on the other side, there is the partial duration
series (PDS) method. Both have advantages and disadvantages and it is up to the user
to decide which one of them should be used. For the AMS method, one has to extract
the annual maximum of a time series whereas for the PDS method, one has to extract
all the values which exceed a certain threshold value (&).
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According to the BMLFUW, 2011, there are several ways to calculation the & e.g by
assuming a Poisson-Distributed occurrence or by extracting the five biggest events of
the time series first and afterwards add the next smaller event till a goodness of fit test
suggests that the fitted distribution cannot adequately fit the chosen subset of the data
anymore. This last event can then be seen as the &.

Furthermore, the guideline suggests, that the &y should be chosen in a manner, that
for each year there are around two extremes to be extracted - under the assumption of
independence (See Subsection 1.2.1). In practice, there will be two to three exceeding
events per year that are over the &. Therefore the PDS is assumed to be more powerful
than the AMS method, because with the AMS some information is lost and not all the
extreme events within one year are being taken into account or events that might not
be extreme are.

Nevertheless, results for very extreme return levels do not differ much (Table 1.3) but
one can assume that in general with lower return period, the difference gets higher and

vice versa.

Table 1.3 Comparison of the return period for a PDS and an AMS according to the BMLFUW,
2011.

T, in years

PDS AMS
0.50 1.16

1.00 1.58

1.40 2.00
2.00 2.54
5.00 552
10.00 10.50
20.00 20.50
50.00 50.50
100.00 100.50

For the conversion of the probabilities P into return periods the following functions
were used (BMLFUW, 2011):

for the AMS:

s = ———— 1.7
AMS = T By s 1.7)
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Puams=1——— 1.8
AMS Tonts (1.8)
or for the PDS:
n
Tpps = ZlMS; (1.9)
1 1 j
Pypps=1l—=1--——1 1.10
DS Tpps Tamsn (1.10)

j: Number of years
n: Number of samples

For T;, < 10 Years, the return levels differ significantly between the PDS and the
AMS method, and are better described by the PDS, however, for larger T, they are
assumed to be nearly even. In this thesis, only the AMS method has been taken into
account and the 7;, was always a 7,, =100, which means that the occurrence of such an
event is assumed to have a probability of p = 0.01.

1.2.4 Choosing the Extreme Value Distributions Function

The next step is to chose an extreme value distribution that fits the AMS or PDS of
the time series best. These distributions are described by extreme value functions.
There are several types of theoretical extreme value distribution functions for fitting
extreme events (BMLFUW, 2011). In general, functions with a higher number of
parameters are more flexible and adjustable than functions with fewer parameters,
however over-fitting due to too many parameters is not desirable, as it might lead to a
bigger influence of outliers.

According to the BMLFUW, 2011, the two most prominent families of extreme
value distributions are the Generalized Extreme Value distributions (GEV) and the
Generalized Pareto distributions (GPD). The GEV is more related to the AMS method,
whereas the GPD is more related to the PDS method. The GEV distribution family
consists of three distributions; the Frechet distribution (EV2), which has a lower
limit, the Weibull distribution, which has an upper one and the Gumbel distribution,
which is unlimited in both directions. Only the EV1 and EV3 distribution have been
used in this thesis, as well as the very commonly used, and also recommended by
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the DWA, 2012 and the BMLLFUW, 2011, Pearson-Type-3 (PE3) and Log-Normal-3
(LN3) distributions. All except the Gumbel distribution, use three parameters namely
{, a and k, which stand respectively for the location, the scale and the shape of the
distribution. The Gumbel distribution sets k = 0. The ordinary Weibull distribution sets
{ =0 and is rather used in reliability applications (Works, Technology and Statistics,
2002) - in the extreme value theory, § is > 0.

As the standard set by the BMLFUW, 2011 was used, the parameters were named as
listed above. This is important to know, as different sources use different mathematical
nomenclature for the parameters. They are described according to Jenkinson, 1955 as
following:

(exp(—(1-k=5)E) £+2>x k<0  (EV2))

F(x)=jexp(—exp(—‘%§—)) xeR k=0  (EV1)} (1.11)

lexp(—(1-k52)E) x>(+% k>0  (EV3))

24

According to the BMLFUW, 2011, the PE3 distribution contains the normal
distribution, the shifted three-parameter I" distribution with a finite lower bound
and positive skewness and the reverse three-parameter I" distribution with a finite
upper bound and negative skewness. The distribution’s parameters are the first three
ordinary moment ratios { as a location parameter, ¢ a scale parameter and ¥ a shape
parameter and is usually parametrized by a, B and . If a random variable x has a
PE3 distribution, then its probability density function (PDF) is described according to
the BMLFUW, 2011 as:

1 x—c
a1 (1.12)

The LN3 distribution is similar to the two-parameter Log-Normal distribution (BML-
FUW, 2011), except that x is shifted by an amount { which represents a lower bound.

fx) =

The distribution function, with a lower bound £, the mean on log scale i and the
standard deviation on log scale ¢ is defined according to Aristizabal, 2012 as

F(x) = ®(y), (1.13)
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X > 0, where

y={log(x—{)—u}\o (1.14)

and ®(y) is the distribution function of the standard normal distribution.

1.2.5 Estimation of the Parameters

After an extreme value function has been chosen, one needs to estimate its parameters.
Several possibilities for the parameter estimation exist (BMLFUW, 2011), each having
advantages and disadvantages, like the Method by KREPS, the Gumbel-Method, the
Method of Moments, the Probability Weighted Moments (PWM), the L-Moments
and the Maximum-Likelihood Estimation Method (MLE). The usefulness of different
estimators can be judged by looking at their properties such as consistency, efficiency,
asymptotic normality, robustness and being unbiased. In this thesis the L-Moment
Method (LMOM) were used because the MLE Method shows significantly bad results
with low sample size (BMLFUW, 2011, Subsection 1.2.5). In the following two
subsection a short overview of the most commonly used estimation methods following
the BMLFUW, 2011 guideline is given.

L-Moments Estimation Method (LMOM)

Introduced by Hosking (Hosking, 1990), the LMOM has several advantages over other
product moments, such as probability weighted moments or the simple method of
moments. They tend to be more robust against extreme values and exist whenever the
mean of the distribution exists. Furthermore, the estimators for the location, scale and
shape are nearly unbiased. The 7 LMOM is defined by Hosking (Hosking, 1990) as:

r—1
. = k r—l
A'r = ;kgo( 1) ( k )E(Xr—k:r) (1-15)

The theoretical LMOM for real valued random variables x with a quantile function
x(F) are derived from the expectations of order statistics (Hosking, 1990). The order
statistics of sample size r are formed by ascending order X;., < X5, < ... € Xpp.. From
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equation 1.6, the first four LMOM can be derived as:

A = E(X11) (1.16)
1
A = EE (X22 —Xi122) (1.17)
1
A3 = 3E(X33 ~ X3+ X13) (1.18)
1
Ay = iE (X4:4 — 3X3:4+ 3X2.4 — X1.4) (1.19)

The first four LMOM, A1, A2, A3 and A4, can be seen as the location, the scale, the
skewness and the kurtosis and are being used, depending on how many parameters are
needed, in order to calculate the desired function.

Maximum Likelihood Estimation Method

The Method of Maximum Likelihood tries to find the function parameters that max-
imize the likelihood function. Theoretically speaking, it has many advantages like
minimum variance, however, with values below 500, the error for such estimations
using the Generalized extreme value distribution (GEV) are bigger than with the
LMOM or PWM. Therefore, only the L.-Moment parameter estimation method was
used in this thesis. For reasons of completnes, however, a short overview over the
MLE is given as well. The first step for a parameter estimation with the MLE is to
specify the joint density function (JDF) for all observations - for an independent and
identically distributed sample the JDF is defined according to the BMLFUW, 2011 as:

Fx1, %2, 00, %|0) = f(x1(0) % f(x1|0) *...f (x1]6). (1.20)

0: Function Parameter
x1:n: Observed Values

Then the observed values xj, x3, - - -, x, need to be fixed, allow 8 to be the function’s
variable and let it vary freely. This function can be called likelihood and is defined
according to the BMLFUW, 2011 as:
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n

ZL(05x1,%2, ..., %) = [(x1,%2, ., %n|0) = H) (1.21)
i=1
In practice it is often more convenient to work with the logarithm of the likelihood
function, called the log-likelihood:

InZ(0;x1,%2,....%,) = Zn:lnf(xile) (1.22)
i=1

or the average log-likelihood:

[= %ln.?. (1.23)

An MLE parameter has to be found numerically using an optimization method.
For some problems, there may be multiple estimates, for others, no MLE exists.

1.3 Goodness-Of-Fit Tests

After the theoretical distribution has been fitted to the data sample extracted via the
AMS method and the parameters have been estimated, one should use some kind of
goodness of fit (GoF) test in order to evaluate, how well the function describes the
observed sample. Both, the DWA, 2C12 and the BMLFUW, 2011 suggest different test
like the Kolmogorov-Smirnow-Test (KS), the y2-Test, the nw2-Test, the probability
plot correlation coefficient test or the L-Momentratiodiagram - Test (LMRD). In
this thesis no GoF-Tests was used, nevertheless, as for reasons of completeness some
of them suggested by BMLFUW, 2011 are still mentioned.

1.3.1 Plotting Position Method

Another way is the Plotting Position, also called empirical Probability. It is a simple
way to visualize the relation between the CDF of the estimates versus the time using a
log-log scale. There are several different formulas, of which the following is generally
accepted (BMLFUW, 2011:

l1-o

XN = T

with (x1 >xp >,...,%,) (1.24)
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P.: Exceedance Probability
o: Parameter (0,...,1)
n: Total Number

1.3.2 L-Moment-Ratio Diagram Method

The L-Moment-Ratio diagram (L-MRD) uses the L-Moments coefficient of variation
(T, a scale parameter), the L-Skewness ratio (73, a shape parameter) and the L-
Kurtosis ratio (74, a shape parameter) as a measure of GoF by comparing them with
the theoretical distributions parameters. 73 is a dimensionless measure of asymmetry,
whereas the L-CV is dimensionless measure for variability. The best fitting function
lays closest to either the weighted-average regional 75 or 74 and can be visualized via
the LMRD. They ratios are being calculated according to BMLFUW, 2011 by:

T =Ly /L4 (1.25)
73 =Ls3/L (1.26)
T4 = Ls/Ly (1.27)
where:
Li=p (1.28)
L=2B - Bo (1.29)
Ly =6B—6B1+Bo (1.30)
Ly =20B3—30B,+128; — Bo (1.31)

and where the data (x;.,) are first ranked in ascending order from 1 to n and:

Bo=n"" )n:xj (1.32)
=1

By —n! i‘,zxj[(j— Dl/(n—1) (1.33)
J:

By —n! _isxj[(j— G-/~ 1)(n—2)] (1.34)
j=

By=n'Y 5l - V(-G -/ (- D-2)(n-3)]  (135)

=
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1.3.3 Kolmogorov-Smirnow Test (KS) and Anderson-Darling Test
(AD)

The KS-Test gives a measure of how well a certain function fits the sample data.
It uses the theoretical cumulative distribution function (CDF) of a certain function
with random values and plots it against the empirical cumulative distribution function
(ECDF) of the sample data and calculates the maximum distance between those two
curves - This distance is called the test statistic. Moreover, a critical value is being
calculated, which should not be exceeded by the test statistic. If that is the case, the
According to Chakravarti, Laha and Roy, 1967, there are several limitations to the test:

* It only applies to continuous distributions.
* it tends to be more sensitive near the center of the distribution than at the tails.

* If location, scale and shape parameters are estimated from the data, the critical
region of the KS Test is no longer valid.

The AD-Test tries to answer the same question, however, it gives more weight to
the tails of the distribution (Chakravarti, Laha and Roy, 1967).

1.4 Confidence Interval Method

The guidelines (BMLFUW, 2011) suggest several options in order to calculate con-
fidence intervals (CI). Two different processes are being used in the thesis, one is
a non-parametric technique (bootstrap - Method) and the other is a parametric one,
where a theoretical distribution function is being fitted to the sample data. The main
disadvantage of the bootstrap-method is that it cannot be reproduced exactly anymore.
The CI calculated in this thesis were done via the bootstrap method with a significance
level of 0.05 and 5000 repetitions (BMLFUW, 2011).
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Chapter 2

Methods

2.1 Calculation Environment and Data Source

The programming language R was the main tool for the calculations (Chambers, n.d.).
It is freely available under the "General Public License" (GNU) and mainly used
for statistical analysis.-Due to its package extensions, R can be used for multiple
purposes and offers a wide range of applications. During the calculations for this
thesis, numerous R-Packages have been used and can be viewed in the Appendix
(Chapter A).

The data set used in this thesis was provided by the "Global Runoff Data Center"
(GRDC) in June 2015 for all European countries. The Center itself is seated in
Koblenz and hosted by the German Federal Institute of Hydrology (BfG). It is under
the supervision of the World Meteorological Organisation (WMO) and does not only
provide the largest database of the world’s river discharge and meta-data, but also
participate in research concerning climate variability and global change (GRDC, 2014).
Figure 2.2 shows the global distribution of the GRDC gauging stations and Figure 2.1
gives a short statistical overview. Its main objective is to support water and climate
related programs and projects of the United Nations (UN), its agencies as well as
scientific research on water and climatic related topics in general. It does not collect
the data itself but gets provided by national, trans-national and partner institutions
all over the world. Everyone can contribute to it, starting from national hydrological
survey institutions to private energy suppliers. Nevertheless, the national Hydrological
and Hydro-Meteorological Services of the WMO are the main contributors to the
"Global Runoff Database" (GRDB) (GRDC, 2014).

From the raw data provided by the GRDC, two lists have been extracted. The first
one consists of all the gauging sites with a daily available discharge of more than for
60 years starting with the 01.01.1948 - all in all 227 gauging stations. This list will
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be called Listygo from now on. The second list consists of all the gauging sites with a
daily available discharge of more than 100 years starting with the 01.01. 1908 - overall
45 gauging stations and it is called Listy19. For the gauging site details (GRDC. Nr,
Station-Names, River-Name, Country and coordinates) go to Table A.1 and A.2 in the
Appendix. As explained in Section 1.2 no gauging site with missing values has been
used but the corrected discharge. The spatial distribution of the two lists can be seen
in (Figure 3.1) and (Figure 3.2) in section 3.1.

WM O Hagion [dsia trom 9 countrme “smbm.' station-yaers |, oe mh::; record racord  [data [Imtest date mport
| EE N 1§ beem) o | bee) | bess) | bes] | bes] | obeed
all |World monthly data {total) 2442 00908 1080872 s7.y| 1 130 1877| 2013 2014
longmnal monthy cata 210 74374 856488 28 i 123 ie17| 20M
original dally datn i 04| 40548 14 800,385 38 1 28 1883 2013
1 {Africa monihly data {tola])
original monthly data
origlnal dafly ata _i
2 |Asla monthly data (total) 1.188| 42214 506.568 e 1 108 1801 2011 m;F
original monthly det 1,184 41.928 603.100 354 1 108 1891 2000,
originel dafly dan o8| 2870 1.047.550 23 1 (-] 1618| 2om
3 (South and Central monihty data (total),
[Amarica original monthly date
otigtnal dady dats
o monthly deta (total) [ 9465 WIAe0 X 1 15 1822| 2013 2013
g original monthly cete ) 16.525| 188,300 249 1 9% 1302 2001
) originat daily data [ 43.205 12.149.025 sa 1 18] 1802 2018
5 [Austral{a and imonthly daia (totel]
Ocsania original monthly data
original daky data
urope monthly data (total] 387 15237 8244 45 & 130 77| @3] 2014
original monthly data 344) 12824 185.088 37.8| 4 123 1877 2001
original daiy data ) - %0 4.384 1.803.810 48,8, 2z 128 1883 2013| |

Figure 2.1 Shows the GRDC gauging station distribution worldwide as of June 2015 (GRDC,
2014).

9213 GROC stations with monthly data, incl. date desived from daily data {Status: 27 May 2015} [;u,’@
Koblenz

: Global RunoXf Data Centre, 2015, QERDC¢

Figure 2.2 Shows the GRDC gauging station locations worldwide as of May 2016 with respect
to the ending of the time series - starting in red with 1919-1979. Then each 5 year interval is
marked with a different color till 2010-2015 in dark blue (GRDC, 2014).
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2.2 Window Shift over the 60 Year-Long Time-Series

2.2 Window Shift over the 60 Year-Long Time-Series

The Listygp is a list consisting of the 227 gauging sites shown in detail in Table A.1
in the Appendix and with a spacial distribution shown in Figure 3.1 in section 3.1.
Each Station has a daily discharge length of 60 years, starting with the 01.01.1948.
For every gauging site in the Listyso, a time window of 30 years, which begun with
the 01.01.1948 (Figure 2.3) has been sampled. For each time-window, the annual
maxima were extracted via the AMS-Method (See section 1.2.3 for details) and a
Weibull, Gumbel, Log-Normal-III and Pearson-III distribution (Shown in detail in
section 1.2.4, Figure 2.4 shows the graphical procedure) was fitted separately to the
annual maxima using the L-Moment parameter estimation method (See section 1.2.5
for more details regarding the L-Moment Method). From the cumulative distribution
function (CDF) of each fitted function, the return level 7;,=100 (HQ100) as well as the
confidence intervals were calculated as explained in subsection 1.2 and subsection 1.4
and afterwards standardized according to Kryszig, 1979 as:
zi= Xi;—pﬂp 2.1

z;: Standardized annual maxima i

X;: Extracted annual maxima i

Hp: The mean for the extracted annual maxima

O p: The standard deviation for the extracted annual maxima

The value calculated is called z-score, however, it can be used synonymously for
standard deviation. In this thesis standard devia.ions (sd) are being used for the scale
of the standardized values and not z-values. This procedure was repeated 30 times
(Figure 2.4) every 365.25 days for all 227 gauging sites until the time series reached the
window between 01.01.1979 to 01.01.2008. Overall 30 return values were calculated
for each of the four fitted distributions and put into a matrix. For each column of this
matrix, which stands for one of the four distributions, the mean of the 30 return levels
was taken (As it was standardized, the mean was { = 0, and the standard deviation
was sd = 1) as a reference of under- and overestimation within the 60 years of the time
series. Blue was taken as a signal for underestimation and red as overestimation. This
was done in order to get a quick overview of the flood return level spread.
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Figure 2.3 Shows at the bottom of the graph the time series of the daily discharge of the
Danube at the Bratislava Gauging Station (GRDC Nr. 6142200). There is a black bar above it,
which shows a 30 year time window for the annual maxima extraction and at the top of the
graph, the density for this time window’s annual maxima is shown.
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Figure 2.4 Shows the graphical procedure of how the HQ1gp return level were extracted and
put into a time series. At the bottom of the graph the time series of the daily discharge of the
Danube at the Bratislava Gauging Station (GRDC Nr. 6142200) is plotted. This graph shows
the method of how several HQ;go have been calculated separately for different time windows.
With each shift of one year, there is a recalculation of a HQ;gp, which are all shown in the top
line-graph. So each window stands for a point(=HQj00) in the upper line.
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2.2 Window Shift over the 60 Year-Long Time-Series

2.2.1 Comparison of all the return levels for all gauging sites

Afterwards a correlation matrix containing all 227 gauging sites using the standardized
HQ1 00 return levels calculated with the Weibull function was computed. Every gauging
sites 30 standardized return values for the 60 year of time series length was compared
with every other gauging stations 30 standardized return levels and correlations where
computed. Out of this matrix six correlating regions were derived with the method of
complete-linkage clustering (also called farthest neighborhood clustering) and mapped.
The clustering Method is described by Defays, 1977 as:

D(X,Y) = d 2.2

(X,Y) L d(x,y) 2.2)
X.,Y: Two sets of elements (cluster)

d(x,y): Distance Between Elements x € Xandy € Y

This clustering method puts each river is in its own cluster. Then, at any further
step, it joins the cluster with the shortest distance to its own cluster. The finite number
of clusters was 6, which is in this case an arbitrary number. These 6 clusters were then
named region one to region six, and a linear regression as well as a LOESS (Local
Regression) have been fitted. This was done in order to show that simply by the point
of time when the return period was calculated with a 30 year time window, one can
derive a tendency of an increase or decrease at certain gauging stations and merged
into regions.

2.2.2 Calculation of the overall variakLiiity of the window shift

In order to calculate the variation of each calculated time series of HQ;qg values, the
coefficient of variation (CoV), the inter quartile range (IQR) as well as the median
absolute deviation (MAD) were calculated and plotted. Each one of these variation
values was calculated out of all the HQ;gg values for both, the list containing all the
227 gauging sites with 60 years of time series length and its 30 year-long shift as well
as the 30, 40 and 50 year-long window shift for all the 45 gauging sites with 100 year
time series length. As for the CoV, the un-standardized values have been taken as
calculation basis. Whereas for the IQR and the MAD the standardized values have
been used, so their values always stand for the standard deviation (sd). This was done
for each river independently and each CoV, IQR and MAD value was then plotted
via a box-plot for each function separately. The CoV, also called the relative standard
deviation, is a useful tool in order to compare the variability of different scales with
each other. In Everitt, 1998, it is defined as the ratio of standard deviation to the mean
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and expressed as percentage of difference from whatever value is used (in this case
cubic meters of discharge per seconds) and calculated as:

c
G = E * 100 (2.3)

o: Standard Deviation
U: Mean

The IQR range is a robust measure of scale and defined according to Upton and
Cook, 1996 as:

IOR=03—- 01 (2.4)

Q1 : First Quartile of the Data
Qj3: Third Quartile of the Data

It always stands for 50% of the data points between the first and third quartile and if
normal distributed the IQR has a range of 1.345 standard deviations. The calculations
have been done using the standardized data sets so in order to compare the gauging
sites using the IQR and the MAD. The MAD, another robust measure of variability, is
defined by Venables and Ripley, 1999 as:

MAD = median(|X; — median(X;})|) ' (2.5)

X;: Data Point i

2.3 Window Shift over the 100 Year-Long Time-Series

The same procedure as for List,go (See Subsection 2.2 for the detailed method) was
applied for List,j00, except that there were three different time windows. The Listy10p
is a list consisting of the 45 gauging sites in Table A.2 in the Appendix with a daily
discharge length of 100 years, starting with the 01.01.1908 and an spatial distribution
shown in Figure 3.2 in section 3.1. The first window contained 30 years (365.25%30
days) and was shifted over the 100 years lasting time series starting with the 01.01.1908
(Figure 2.5) with overall 70 return values. The second window had 40 years (365.25%40
days) and 60 return values were calculated. The third window had 50 years (365.50*50
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2.4 Generation of a Stationary Annual Maxima Series

days) and 50 values were returned. For each time window heat maps were plotted
and the confidence intervals with a significance level of 0.05 were calculated with the
bootstrap method. As a representation for the measure of variability, the CoV, IQR
and MAD have been calculated as well (See Subsection 2.2.2) and plotted.
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Figure 2.5 Shows as in Figure 2.4 the daily discharge of the Danube at the Bratislava Gauging
Station (GRDC Nr. 6142200) on the bottom of the graph as well as the HQ;gg estimated return
level line of the Weibull function (black line) on the top. Moreover, it shows the Gumbel (red
line), Log-Normal III (blue line) and Pearson III (green line) estimated return levels with their
densities on the left side,

2.4 Generation of a Stationary Annual Maxima Series

In order to get a better understanding of how many years are necessary to calculate a
stable return level, a "gauging station" was created, which follows the assumptions
needed for extreme value statistics (See subsection 1.2.1) - Especially the assumption
of strict stationarity. The gauging site with the GRDC Nr. 6142200 (Danube River
- Bratislava) and the time series length of 100 years between the 01.01.1908 and
01.01.2008 was taken in order to fit a Weibull distribution function with the procedure
described in section 1.2 with the following parameter values: the location parameter
was 0, the scale parameter was 6230.387832 and the shape parameter was 4.553004.
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Then the fitted Weibull distribution was taken in order to generate 2000 random
values. This was done by setting the set.seed function of the "base" package in R
to 1 - in order to be reproduceable - and use the inverse of the Weibull distribution
function described in subsection 1.2.4. So an annual maxima series with a length of
2000 values and strict stationary conditions following a known Weibull distribution
was generated. On these random and stationary generated annual maxima, all four
distribution functions (Weibull, Gumbel, Pearson III and Log-Normal I1I distribution
function seen in subsection 1.2.4) have been fitted following the same procedure as
described in section 1.2 and tested with the One-sample Komogorov-Smirnov Test.
The annual maxima basis for each HQyqp value was provided by a cumulative shifting
window starting with a 30 year-long long window (=30 annual maxima), and then for
each further value, the next generated annual maxima was added to the 30 year-long
window until the calculation basis reached 2000 annual maxima, which leads to 1970
HQ1qo values in total. Therefore, the first HQqoo value was calculated using 30 annual
maxima, whereas the last HQ;go value has an annual maxima basis of 2000. For each
additional annual maxima, the confidence intervals (CI) were calculated using the
bootstrap method with 5000 repetitions and a significance level of 0.05. In order to
get a number for the variability of the CI-spread in relation to the mean, the lower
CI was subtracted from the upper CI, divided it by the mean and multiplied it by
100. Afterwards, as a measure of variability for the mean, the Coefficient of Variation
(CoV), the Inter Quartile Range (IQR) and the Median Absolute Deviation (MAD)
have been calculated starting with the HQ;gp window between the first and the 10"
HQqo value, then for each further 10 HQ; g values. So the second CoV, IQR and
MAD value was the range between the 11" and 20" HQj0p value. The third variation
value was for the range between the 21" and 30** HQqp value and so on. These
values have been calculated till it reached the end of the 1970 HQqp values - all in all
197 variation values for the CoV, IQR and MAD each. The IQR and MAD have been
calculated with the standardized values.
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Chapter 3

Results

3.1 Spatial Distribution of the Gauging Sites

This section shows the spatial distribution of the gauging sites used for the Listyeg and
Listyloo described in Section 2 and the Appendix A.

Figure 3.1 Spatial distribution of the 227 gauging sites with 60 year-long time series (List of
the gauging sites can bee seen in the Appendix A.1).
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Figure 3.2 Spatial distribution of the 45 gauging sites with 100 year-long time series (List of
the gauging sites can bee seen in the Appendix (A.2).

3.2 Window Shift Results for the 60 Year-Long Gauging
Sites

In this Section the overall spread of the list with 60 years of gauging site length is
presented. The details of this list can be viewed in Table A.1 in the Appendix A. This
section is separated in two parts. The first shows the individual spread of all the 227
gauging sites. This is done via heat-map plots. Each field in these heat-maps is a
HQqp value. The second part shows the overall spread of all the 227 gauging sites
with regard to different spread methods, which are described in detail in the Methods
in Chapter 2.
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3.2 Window Shift Results for the 60 Year-Long Gauging Sites

3.2.1 Graphical Results for the 30 Year-Long Window Shift

As described in Section 2.2, the shift of the 30 year window return levels have been
put in a matrix, standardized and colored according to the deviation from the mean of
the HQ1qp series for each function separately, ranging from blue to red - the darker
the color, the more it diverges from the mean of the series with a mean U=0anda
standard deviation sd = 1. The color scale for all the heat-maps is displayed in Figure
3.3 on the right side next to the biggest heat-plot. The scale on the left side shows
the value of the standard deviations (sd) from the mean of this gauging sites flood
return level. The scale is set for this and all the other heat-plots ranging from -4 to 4
sd. Each heat-map shows a gauging site of the Listygg (For the detailed overview see
Table A.1 in the Appendix), with its GRDC Nr. on top of it (e.g. 6119030), whereas
on the bottom, one can the see the functions used for the calculation. Each column
represents one of the four functions described in Section 1.2.4. They are always in
the same order, respectively Wei, Gum, Pell and LNIII, which stand for the Weibull,
Gumbel, Pearson III and Log-Normal III distribution function. The rows of each
heat-plot start with the year 1979, which means that this value stands for the 30 year
time window starting on the 01.01.1948 till the 01.01.1978. The next row is the time
window ranging from the 01.01.1949 to the 01.01.1979 and is named 1980, and so
on. The first big heat-plot is an example for all the other heat-maps and how they look
like in detail, but for a better overview, the small ones have been stripped off their row
and column names. Nevertheless, all the other heat-maps have the same structure as
the first one. In Figure 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 one can see the result for the
gauging sites of the Listygg. The Wei, Gum and LNIII functions most of the time show
very similar patterns, whereas the PEIII function does n~t. Overall one can see that
throughout the window shift, the HQ; o values change a lot. Often not only once from
" blue to red but several times within the window shift (e.g. gauging site with the GRDC
Nr. 6233700, 6233800 or 6335200 in Figure 3.4). Moreover, changes of more than
three sd within a few years are also not unusual (e.g. gauging site with the GRDC Nr.
16731140, 6731260 or 6401601 in Figure 3.6).
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Figure 3.3 Shows the standardized return flood levels for all the 227 gauging sites of the
Listyso. Each field represents a HQyqp return level for a 30 year time window starting with the
window from the 01.01.1948 to 01.01.1978 for each gauging site. The GRDC Nr. is displayed
as the header. The mean of each column has been taken and each deviation from it colored in
either red (increasing - see the legend on the top right) or blue (decreasing). The legend ranges
for all heat-maps from -4 to 4 standard deviations (sd). Wei, Gum, Pell and LNIII and stand
for the Weibull, Gumbel, Pearson III and Log-Normal IIT distribution function. The smaller
heat-maps have the same row and column names as the bigger upper one, however, dueto
reasons of representation, the row and column names have been deleted as well as the legend.
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Figure 3.4 See Figure 3.3 and Section 2.2 for further details.
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Figure 3.5 See Figure 3.3 and Section 2.2 for further details.
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Figure 3.6 See Figure 3.3 and Section 2.2 for further details.
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Figure 3.7 See Figure 3.3 and Section 2.2 for further details.
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3.2.2 Overall Variability of the Window Shift

In this Subsection the overall deviation of the standardized HQ g values with regards
to the function used for all 227 gauging sites combined is shown. In Figure 3.10 one
can see the overall spread of the flood return levels (HQ1qp) in standard deviations
(sd). As the standardized values have been used, it is not surprising that the mean as
well as thé median are located at around 0. The mean for all four functions is at 0 sd
(around 10_16), whereas the median for the Weibull distribution is -0.03 sd, for the
Gumbel distribution it is -0.02 sd, for the Pearson III distribution it is -0.05 sd and for
the Log-Normal III it is -0.03 sd. The first and third quartile for all four functions are
very similar as well, between around -0.73 and 0.74 sd. So on average, 75% of the
HQqo values for all the 227 gauging sites combined lie within 1.47 sd, independent of
the function being used.
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Figure 3.9 This box-whisker plot shows the spread of the standardized HQjqo values for all
the 227 gauging sites. On the x-axis one can see the standard deviations and on the y-axis the
function used for the HQjgp calculation.
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3.2 Window Shift Results for the 60 Year-Long Gauging Sites

3.2.3 Coefficient of Variation (CoV) Calculation Results

Figure 3.11 shows the CoV (For the exact calculation see at Subsection 2.2.2) for all
the gauging stations for the four functions separately. It gives an overview of how
the values can differ for each stations’ HQqo values and each function. Some sites
have very extreme CoV values, whereas others show almost no spread. The median
ranges from 5.23% for the Gumbel distribution, to 6.70% for the Pearson III function
(The Weibull distribution has a median of 5.31% and the Log-Normal distribution
of 6.01%). The Inter Quartile Range (IQR) of the CoV for the Weibull and Gumbel
is between 3.8% and 8%, the Pearson IH has a IQR between 4.8% and 10.9% CoV
and the Log-Normal III distribution one between 4% and 9.8%. Figure 3.10 shows
the range of the CoV for all the 227 stations combined for each of the four functions
separately. One can see that the Pearson III distribution has the highest variability of
the CoV values, whereas the Gumbel and Weibull function give similar results.
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Figure 3.10 This box-whisker plot shows the overall Coefficient of Variation (CoV) for the
Weibull (Wei), Gumbel (Gum), Pearson III (Pelll) and Log-Normal ITII (LNIII) distribution
function for all 227 rivers combined. The point within the first and third quartile is the median.
The CoV values on the x-axis are percentages.
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3.2 Window Shift Results for the 60 Year-Long Gauging Sites

3.2.4 Inter Quartile Range (IQR)

As described in Subsection 3.2.3, this has also been done for the IQR, but for the
standardized discharge, so the values stand for standard deviations (sd). The IQR
median for the Weibull distribution is 1.44 sd, for the Gumbel distribution it is 1.42
sd, for the Pearson III it is 1.44 sd and for the Log-Normal distribution it is 1.42 sd
(See Figure 3.12). In Figure 3.13, one can see the IQR for each gauging site separately.
Some sites have very extreme IQR values, whereas others show almost no spread.
Overall, one can see that the first and third quartile range of the Pearson III distribution
function has the highest spread, whereas the Log-Normal III function has the lowest.
Moreover, the upper limit for all functions are very similar, so there is almost no
gauging site with an IQR with more than 2 sd.
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Figure 3.12 This box-whisker plot shows the overall Inter Quartile Range (IQR) values for
the for the Weibull (Wei), Gumbel (Gum), Pearson III (PelIl) and Log-Normal III (1.NIIT)
distribution function for all 227 rivers combined. The point within the first and third quartile is
the median. The IQR values are standard deviations.
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Figure 3.13 Shows the IQR values (standard deviation on the y-axis) for each gauging station
(GRDC Nr. on the x-axis) separately for all four functions.
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3.2 Window Shift Results for the 60 Year-Long Gauging Sites

3.2.5 Median Absolute Deviation (MAD)

The same as described in Subsection 3.2.4 has been done for the MAD, so the values
stand for standard deviations (sd). The MAD median for the Weibull distribution is
0.95'sd, for the Gumbel distribution it is 0.95, for the Pearson III it is 0.91 and for the
Log-Normal distribution it is 0.96. This means that the median deviation of the median
flood return level for all four functions is more than 0.91 sd (3.14). In Figure 3.15, one
can see the MAD for each gauging site separately. Some sites have very extreme MAD
values, whereas others show almost no spread. Overall, the Pearson III distribution
function shows again the highest spread between the first and third quartile, however,
all the functions give‘ similar results. The Gumbel and Weibull distributions’ MAD
are almost identical, whereas the Log-Normal III function shows the smallest spread
between the first and third quartile.
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Figure 3.14 This box-whisker plot shows the Median Absolute Deviation (MAD) values for
the Weibull (Wei), Gumbel (Gum), Pearson III (Pelll) and Log-Normal III (LNII) distribution
function for all 227 rivers combined. The point within the first and third quartile is the median.
The MAD values are standard deviations.
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Figure 3.15 Shows the MAD values (standard deviation on the y-axis) for each gauging station
(GRDC Nr. on the x-axis) separately for all four functions.
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3.2 Window Shift Results for the 60 Year-Long Gauging Sites

3.2.6 Correlation Calculation for the Gauging Sites

As shown in Subsection 3.2, some heat-maps show similar patterns regarding their
increase or decrease throughout the time window shifts. These similar patterns were
tried to be extracted via a correlation matrix (For the exact procedure see Section
2.2.1). Each gauging sites’ HQqgp list of flood return levels calculated with the
Weibull distribution function was compared with each other - Positive correlations
were colored in blue whereas negative ones were colored in red. As one can see in the
overall correlation matrix in Figure 3.16, each of the regions is surrounded by a black
rectangle. However, as the first overall plot was too big in order to let the GRDC Nr.
for all gauging sites be displayed properly (See Figure 3.16), each of the six regions
was plotted separately in order to identify them properly in Figure 3.17, Figure 3.18,
Figure 3.19, Figure 3.20, Figure 3.21 and Figure 3.22. In Figure 3.23 the standardized
values of each gauging site within one of the 6 regions have been plotted separately in
order to identify certain tendencies regarding their HQ;q values and find geographic
similarities. The x-axis stands for the year when the calculation shift starts. So the
first value on the x-axis is named 1948, which stands for the HQjqg value for the time
window between the 01.01.1948 and 01.01.1978. The next year is 1949, which stands
for the HQqqp value for the time window between 01.01.1949 and the 01.01.1979 and
so on. Afterwards a linear regression and its R? value in black and a LOESS function
in orange have been calculated and plotted. The blue cloud shows the HQ;q values
density - the darker the cloud, the more HQ;gg values are there. The LOESS function
represents the "behaviour” of the Regions better than the regression line. Region one
tends to higher HQqg values, Region 2 to lower HQ1gp values, the HQ;go values in
Region 3 tend to increase slightly and then decrease, the HQyqg values in Region 4
decrease in the beginning and the increase whereas Region 5 decreases for more HQjqg
values and then increases again and the HQjqp values for Region 6 stays quite stable
and then increases. Region one has the highest gauging sites number, however, region
two has the highest R? value with 0.629. It is important to note, that all Regions have
gauging sites, which do not follow the overall tendency and sometimes even have a
negative correlation. Figure 3.24 shows the spatial distribution of these six Regions.
They are colored according to the Region Names underlying color in the density plots.
As mentioned above, Region two has the highest R? value, however, as one can see in
Figure 3.24, the gauging sites are spread throughout Europe.
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Figure 3.16 Shows all the 227 gauging sites of the Listygo. Each sites’ HQyqo values are com-
pared with every other station and grouped together (See Subsection 2.2.1 for the calculation
details). The colored dots show if one river has a high or low positive (blue) or negative (red)
correlation with this rivers’ HQ1gg values - the correlation scale is located on the right side.
The six regions are surrounded with black rectangles and plotted separately in the following
plots in order to have a better view on the GRDC Nrs. on the y-axis and upper x-axis in red.
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3.2 Window Shift Results for the 60 Year-Long Gauging Sites

,

Figure 3.17 Shows the correlations of region one as described in Figure 3.16 and Subsection
2.2.1. The GRDC Nirs. are plotted on the x-, and y-axis. The colored dots show if one river
has a high or low potive (blue) or negative (red) correlation with this rivers HQqg values - the
correlation scale is located on the right site.
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Figure 3.18 Shows the correlations of region two as described in Figure 3.17 and Subsection
22.1.
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Figure 3.19 Shows the correlations of region three as described in Figure 3.17 and Subsection
22.1.
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Figure 3.20 Shows the correlations of region four as described in Figure 3.17 and Subsection
22.1.
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Figure 3.21 Shows the correlations of region five as described in Figure 3.17 and Subsection
2.2.1.
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Figure 3.22 Shows the correlations of region six as described in Figure 3.17 and Subsection

22.1.
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Figure 3.23 Shows the tendency of the HQjqo values over time for all six regions. The R?
values for the black linear regression line are shown as well as the LOESS line in orange. The
y-axis shows the standardized HQ)qp values whereas the y-axis shows the first year of the 30
year-long window for the HQg calculation, starting with 1948 (See Subsection 3.2.6 for more
details). The blue cloud shows the densities of the values - the darker, the more HQj¢p values
and the more weight on the LOESS function.
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3.3 Window Shift Results for the 100 Year-Long Gauging
Sites

The same procedure as for the 60 year-long gauging sites calculations in section 2.2
has been done for the 100 year-long gauging sites. The difference, however, was the
length of the time series from which the annual maxima have been extracted and the
length of the time window for the flood return level. In this section the gauging sites
were 100 years long and three different time windows of 30, 40 and 50 years were
applied. The spatial distribution can be seen in Section 3.1.

3.3.1 Graphical Results for the 30 Year-Long Window Shift

As described in Section 2.2, the shift of the 30 year window return levels have been
put in a matrix, standardized and colored according to the standard deviation (sd)
ranging from blue to red - the darker the color, the more it diverges from the mean
(1t = 0). The color scale for all the heat-maps is displayed in Figure 3.25 on the upper
right side, next to the big heat-plot. The range was set to between -3 and 3 in order
to be comparable with the other two time windows (40 and 50 year-long ones). The
same has been done for the 40 year window shift as well as the 50 year window shift.
In Figure 3.25 and 3.26 one can see the results for the individual spread for the 30
year-long window shift for the gauging sites in the Listy190, which can be seen in Table
Overall one can see that throughout the window shift for the 100 year-long gauging
sites, the HQjoo values change a lot and more often from blue to red than the HQqp
values in the 60 year-long gauging sites list. 70 HQjqop values have been calculated.
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Figure 3.25 Shows the standardized return values for all the 45 gauging sites of the Listyqo.
Each field represents a HQyqo return level value for a 30 year-long time window starting with
the window from the 01.01.1908 to 01.01.1938 for each gauging site. The representing GRDC
Nr. is listed as the header. The mean of each column has been taken and each deviation from it
colored in either red (positive values - as shown in the legend on the top right) or blue (minus
values) - see Subsection 2.2 for more details.
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Figure 3.26 See Figure 3.25 for further details.
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3.3.2 Graphical Results for the 40 Year-Long Window Shift

The individual gauging sites’ HQjqg values spread for the 40 year-long window shift
can be seen in Figure 3.27 and Figﬁre 3.28. For the detailed description of the heat-
maps see subsection 3.3.1. The scale is between -3 and 3 standard deviations as
the heat-maps for the 30 year-long time window, which can be seen in the previous
subsection 3.3.1. The HQqp values differ for the individual gauging sites from minus
values to plus values very often and this change can happen within only a few years.
Nevertheless, as they use a longer time window for the HQj g calculation, they tend
to have a smoother change between the blue and red "phase” than the 30 year-long
window shift in the previous subsection 3.3.1. 60 HQ1op values have been calculated.
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Figure 3.27 Shows the standardized return values for all the 45 gauging sites of the Listy1qo.
Each field represents a HQ;op return level for a 40 year time window starting with the window
from the 01.01.1908 to 01.01.1948 for each gauging site. The representing GRDC Nr. is listed
as the header. The mean of each column has been taken and each deviation from it colored in
either red (positive values - as shown in the legend on the top right) or blue (minus values) -
see Subsection 2.2 for more details.
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Figure 3.28 See Figure 3.27 for further details.
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3.3.3 Graphical Results for the 50 Year-Long Window Shift

3.29 and 3.30 The individual gauging sites’ HQjgp values spread for the 50 year-long
window shift can be seen in Figure 3.29 and Figure 3.30. For the detailed description
of the heat-maps see subsection 3.3.1. They have the same scale between -3 and 3
standard deviations as the heat-maps for the 30 and 40 year-long time window, which
can be seen in subsection 3.3.1. The HQqqp values differ for the individual gauging
sites a lot and can change within a few years from minus to plus values. Nevertheless,
as they use a longer time window for the HQqqo calculation, they tend to have an
even smoother change between the blue and red "phase” than the 40 and 30 year-long
window shift in the previous subsections 3.3.1 and 3.3.2. 50 HQqo values have been
calculated.
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Figure 3.29 Shows the standardized return values for all the 45 gauging sites of the List;100.
Each field represents a HQ1qp return level for a 50 year time window starting with the window
from the 01.01.1908 to 01.01.1958 for each gauging site. The representing GRDC Nr. is listed
as the header. The mean of each column has been taken and each deviation from it colored in
either red (positive values - as shown in the legend on the top right) or blue (minus values) -
see Subsection 2.2 for more details.
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Figure 3.30 See Figure 3.29 for further details.



3.3 Window Shift Results for the 100 Year-Long Gauging Sites

3.3.4 Comparison of the Overall Spread of the 30, 40 and 50 Year-
Long Window Shift

In this section, the standardized 30, 40 and 50 year-long windows are compared with
regards to the function used. As the standardized flood return levels were used, the
mean for all three different window lengths for all functions are the same at around
0. Moreover, the median does not differ from 0 too much either as visible in Fi gure
3.31, Figure 3.32, Figure 3.33 and Figure 3.34. Nevertheless, there is a clear tendency,
that with a longer time window length, independent of which function has been used,
the overall spread does decrease. The first quartile for all the functions for the 30
year-long window shift is between -0.93 and -0.98 standard deviations (sd) and for the
third quartile between 0.93 and 0.95 sd (See Table 3.4). This means that on average,
the return levels spreads almost 2 sd between the first and the third quartile for the 30
year-long window shift. As for the 40 year-long window shift, this spread decreases
to between -0.72 and -0.80 sd for the first quartile and 0.71 and 0.74 sd for the third
quartile. The 50 year-long window shifts spread lays for the first quartile between
-0.47 and 0.49 sd and between 0.51 and 0.53 sd for the third quartile. So the spread
decreases from almost 2 sd for the 30 year window shift to 1 sd for the 50 year-long
window shift. When looking at the difference of the spread between the four different,
one can see that the functions do not influence the spread too much. They are all
at around the same level (See Table 3.4), nevertheless, the Pearson III distribution
function (df) shows the biggest spread for the 30 year-long window with 1.936 sd,
whereas the Log-Normal III df has the smallest spread with 1.878 sd. As for the 40
year-long window shift, the Pearson III df shows the biggest spread with 1.770 sd and
the Weibull df shows the smallesi spread with 1.44 sd. The biggest spread for the 50
year-long window shift shows the Gumbel df with 1.027 sd and the Log-Normal ITI df
has the smallest spread of 0.988 sd.
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Distribution Window || first Quart- | Median third Quart-
length ile | ile
[Years] [SD] [SD] [SD]
Weibull 30 - -0.933 -0.032 0.949
40 ‘ -0.721 0.067 0.719
50 -0.492 0.022 0.529
Gumbel 30 -0.950 -0.031 0.939
.40 -0.722 0.069 0.743
50 -0.488 0.023 0.539
Pearson III 30 -0.984 0.02 0.952
40 -0.802 0.108 0.748
50 -0.474 0.049 0.514
Log-Normal ITII || 30 -0.939 -0.055 0.939
40 . -0.73 0.059 0.718
50 -0.482 0.025 0.523

Table 3.1 Shows the results for the overall spread in standard deviations for all four functions
with respect to the length of the time window applied to the 100 year-long gauging sites time
series.
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Figure 3.31 Shows the overall HQ;qq value spread for the Weibull function, with respect to
the window length used. On the x-axis the standard deviation (sd) is plotted.
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Figure 3.32 Shows the overall HQ,qo value spread for the Gumbel function, with respect to
the window length used. On the x-axis the standard deviation (sd) is plotted.
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Figure 3.33 Shows the overall HQ;oo value spread for the Pearson III function, with respect to
the window length used. On the x-axis the standard deviation (sd) is plotted.
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Figure 3.34 Shows the overall HQgo value spread for the Log-Normal III function, with
respect to the window length used. On the x-axis the standard deviation (sd) is plotted.
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3.3 Window Shift Results for the 100 Year-Long Gauging Sites

3.3.5 Coefficient of Variation (CoV) Comparison of the 30, 40 and
50 Year-Long Window Shift

Figure 3.35 shows the CoV values as percentage for all the gauging stations separately.
Each value shows a CoV value calculated out of all the HQ1gp values for the 30, 40
or 50 year-long window shift over a 100 year-long time series of a gauging station
within the Listy109 (For more details regarding the calculation see subsection 2.2.2).
Afterwards, all the CoV values for all four functions separately are shown as box-
whisker plots, depending on the time window shift (30, 40 or 50 year-long window
shifts can be seen in Figure 3.36, Figure 3.37, Figure 3.38 and Figure 3.39). In Table
3.4 one can see the results for the comparison of the CoV between the 3 different
time window lengths. For the 30 year-long window shift, the highest spread can be
seen when using the Pearson II distribution function (df) of 14.42% CoV for the
third quartile. This value decreases for this df to 8.97% when using the 50 year-long
window shift. There is a clear tendency towards a smaller CoV with increase time
window length.

Distribution Window first Quart- | Median third Quart-
length ile ' ile
[Years] [%] [%] [%]
Weibull 30 5.40 747 11.07
40 4.20 5.94 9.10
50 2.79 434 6.18
Gumbel 30 5.54 7.87 10.24
40 4.24 6.20 8.70
50 2.84 443 6.09
Pearson III 30 | 6.87 10.27 14.42
40 5.97 7.79 11.54
50 : 3.90 6.44 897 .
Log-Normal Il || 30 _ 6.14 8.22 11.52
40 4.73 6.25 9.40
50 3.19 4.83 7.00

Table 3.2 Shows the results for the CoV in percentage for all four functions with respect to the
length of the time window applied to the 100 year-long gauging sites’ time series.
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Figure 3.35 Shows the difference of the CoV values for the 30, 40 and 50 year-long time
CoV values in percentage. The x-axis shows the GRDC Nr. for the gauging sites.
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Figure 3.36 Shows the CoV percentages on the x-axis and the function used on the y-axis
(Wei stands for Weibull). The dot between the 2 and 3 quartile is the median. The upper
box-whisker plot shows the 50 year, the middle stands for the 40 year and the lower for the 30

year-long shift.
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Figure 3.37 Shows the CoV percentages on the x-axis and the function used on the y-axis
(Gum stands for Gumbel). The dot between the 2 and 3 quartile is the median. The upper
box-whisker plot shows the 50 year-long, the middle stands for the 40 year-long and the lower
for the 30 year-long shift.
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Figure 3.38 Shows the CoV percentages on the x-axis and the function used on the y-axis
(Pelll stands for Pearson IIT). The dot between the 2 and 3 quartile is the median. The upper
box-whisker plot shows the 50 year-long, the middle stands for the 40 year-long and the lower

for the 30 year-long shift.
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Figure 3.39 Shows the CoV percentages on the x-axis and the function used on the y-axis
(LNIII stands for Log Normal III). The dot between the 2 and 3 quartile is the median. The
upper box-whisker plot shows the 50 year-long, the middle stands for the 40 year-long and the

lower for the 30 year-long shift. 64



3.3 Window Shift Results for the 100 Year-Long Gauging Sites

3.3.6 Inter Quartile Range (IQR) Comparison of the 30, 40 and
50 Year-Long Window Shift

‘The same as described in Subsection 3.3.5 has been done for the IQR, except that
the HQqqo values have been standardized. Figure 3.40 shows the IQR values (See
Subsection 2.2.2 for the calculation details) for all the gauging stations separately.
Each time series represents one of the four distribution functions. Afterwards, all the
IQR values (standard deviations, sd) for all four functions separately were plotted
as box-whisker plots, depending on the time window shift (30, 40 or 50 year-long
- Figure 3.41, Figure 3.42, Figure 3.43 and Figure 3.44). The same tendency as for
the overall spread (Subsection 3.3.4) as well as the CoV (3.3.5) can be seen for the
IQR - the longer the time window shift, the smaller the IQR gets. The biggest spread
between the first and the third quartile is reached when calculating with the Pearson III
distribution function (df) ranging from 1.69 to 2.20 sd whereas the Gumbel df has the
smallest spread between 1.56 to 2.14 sd for the 30 year-long window shift. The same
df have the biggest and smallest spread for the 40 year-long shift - the Pearson III df
between 1.28 and 1.76 sd and the Gumbel between 1.16 and 1.68 sd. Nevertheless, for
the 50 year-long shift the Pearson III df has the smallest spread between 0.69 and 1.20
sd and the Log-Normal III df the biggest between 0.72 and 1.24 sd.

Distribution Window first Quart- | Median third Quart-
' length ile ile
[Years] [SD] [SD] [SD]
Weibuli 30 1.62 . 1.96 2.12
' 40 1.21 1.51 1.72
50 072 0.98 1.21
Gumbel 30 1.56 1.96 2.14
40 1.16 1.52 1.68
- 50 0.68 : 1.01 1.24
Pearson III 30 1.69 1.99 2.20
40 - : 1.28 1.56 1.76
50 0.69 1.04 1.20
Log-Normal III || 30 1.61 1.87 2.18
40 1.26 151 1.70
50 0.72 0.98 1.24

Table 3.3. Shows the results for the IQR spread in standard deviations for all four functions
with respect to the length of the time window applied to the 100 year-long gauging sites’ time
series.
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Figure 3.40 Shows the difference of the IQR values for the 30, 40 and 50 year-long time
window shift. The name of the function used is displayed as header. The y-axis shows the IQR
values in standard deviations (sd). The x-axis shows the GRDC Nr. for the gauging sites.
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Figure 3.41 Shows the IQR values in standard deviations (sd) on the x-axis and the function
used on the y-axis (Wei stands for Weibull distribution function). The dot between the 2 and 3
quartile is the median. The upper box-whisker plot shows the 50 year-long, the middle stands
for the 40 year-long and the lower for the 30 year-long window shift.
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Figure 3.42 Shows the IQR values in

standard deviations (sd) on the x-axis and the function

used on the y-axis (Gum stands for Gumbel distribution function). The dot between the 2 and
3 quartile is the median. The upper box-whisker plot shows the 50 year-long, the middle stands

for the 40 year-long and the lower for

the 30 36/§7ar-long window shift.
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Figure 3.43 Shows the IQR values in standard deviations (sd) on the x-axis and the function
used on the y-axis (Pelll stands for Pearson III distribution function). The dot between the 2
and 3 quartile is the median. The upper box-whisker plot shows the 50 year-long, the middle
stands for the 40 year-long and the lower for the 30 year-long window shift.
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Figure 3.44 Shows the IQR values in standard deviations (sd) on the x-axis and the function
used on the y-axis (LNIII stands for Log-Normal ITI distribution function). The dot between
the 2 and 3 quartile is the median. The upper box-whisker plot shows the 50 year-long, the
middle stands for the 40 year-long and the lov6v§r for the 30 year-long window shift.



3.3 Window Shift Results for the 100 Year-Long Gauging Sites

3.3.7 Median Absolute Deviation (MAD) Comparison of the 30,
40 and 50 Year-Long Window Shift

The same as described in Subsection 3.3.5 has been done for the MAD, except that the
HQ100 values have been standardized. Figure 3.45 shows the MAD values in standard
deviations (sd) for all the gauging stations separately. Each time series represents one
of the four functions (See subsection 2.2.2 for the calculation details). Afterwards, all
the MAD values (sd) for all four functions separately are shown as box-whisker plots,
depending on the time window shift (30, 40 or 50 year-long - Figure 3.46, Figure 3.47,
Figure 3.48 and Figure 3.49). The same tendency as for the overall spread as well as
CoV and IQR can be seen for the MAD as well - the longer the time window shift, the
smaller the MAD gets. The biggest spread between the first and the third quartile is
reached when calculating with the Log-Normal III distribution function (df) ranging
from 1.22 to 1.53 sd whereas the Gumbel df has the smallest spread between 1.14 to
1.54 sd for the 30 year-long window shift. As for the 40 year-long shift - the biggest
spread is reached when using the Weibull df between 0.87 abd 1.22 sd whereas the
Pearson III df has the smallest spread between 0.71 and 1.18 sd. Nevertheless, for the
50 year-long shift the Pearson III df has again the smallest spread between 0.36 and
0.84 sd and the Gumbel df the biggest between 0.57 and 0.83 sd.

Distribution Window first Quart- | Median third Quart-
length ile ile

[Years] [SD] [SD] [SD]
Weibull 30 1.19 1.39 | 1.52
40 0.87 | 1.02 1.22
50 0.50 0.64 0.85
Gumbel || 30 1.14. 1.37 1.54
o 40 0.85 1.05 -1 1.20
: 50 0.57 0.64 0.83
Pearson III 30 1.08 1.44 1.64
40 0.71 : 0.99 1.18
o 50 0.36 0.60 0.84
Log-Normal ITT || 30 1.22 1.34 1.53
40 0.89 1.06 1.19
50 0.49 0.66 -1 0.81

Table 3.4 Shows the results for the MAD spread in standard deviations for all four functions
with respect to the length of the time window applied to the 100 year-long gauging sites’ time
series.’
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Figure 3.45 Shows the difference of the MAD values in standard deviations (sd) for the 30,
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Figure 3.46 Shows the MAD values in standard deviations (sd) on the x-axis and the function
used on the y-axis (WEI stands for Weibull distribution function). The dot between the 2 and 3
quartile is the median. The upper box-whisker plot shows the 50 year-long, the middle stands
for the 40 year-long and the lower for the 30 year-long window shift.
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Figure 3.47 Shows the MAD values in standard deviations (sd) on the x-axis and the function
used on the y-axis (GUM stands for Gumbel distribution function). The dot between the 2
and 3 quartile is the median. The upper box-whisker plot shows the 50 year-long, the middle
stands for the 40 year-long and the lower for t7hle 30 year-long window shift.
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Figure 3.48 Shows the MAD values in standard deviations (sd) on the x-axis and the function
used on the y-axis (Pelll stands for Pearson III distribution function). The dot between the 2
and 3 quartile is the median. The upper box-whisker plot shows the 50 year-long, the middle
stands for the 40 year-long and the lower for the 30 year-long window shift.
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Figure 3.49 Shows the MAD values in standard deviations (sd) on the x-axis and the function
used on the y-axis (LNIII stands for Log-Normal III distribution function). The dot between
the 2 and 3 quartile is the median. The upper box-whisker plot shows the 50 year-long, the
middle stands for the 40 year-long and the lov’}/gr for the 30 year-long window shift.



3.4 Results for the Generated Stationary Annual Maxima Series

3.4 Results for the Generated Stationary Annual Max-
ima Series

In this section one can see the results of the generated annual maxima (See Section
2.4 for more details regarding the calculation procedure). Figure 3.50 shows the
cumulative HQgq values, starting with a time window length of 30 years and ending
with a window length of 2000 years for all four functions with their corresponding
confidence intervals (CI) - all in all 1970 HQ;qo values.

The straight black line in Figure 3.50 is the HQ o return level calculated with
a time window length of 2000 annual maxima - so always the last value. This line
can be seen as some kind of reference HQp value for a gauging site with a known
distribution which fulfills strict stationary conditions. The most precise distribution
seems to be the Weibull distribution, however, some HQqo values with their CI do
not include the reference value. The relative spread of the CI in relation to the mean
of each distribution separately can be seen in Figure 3.51 and 3.52 (See Section 2.4
for the calculation details). There, as one can see in the upper part of Figure 3.51, the
Weibull distribution shows the sharpest decrease of the CI spread in relation to the
mean. After around 100 years this spread is below 10% and after around 500 years
of annual maxima length, it falls below 5%. As for the Gumbel distribution, it falls
below 10% of CI spread after roughly 300 years and below 5% after around 1550
years (Lower part of Figure 3.51). The Log-Normal III distributions’ CI spread can be
seen in the lower part of Figure 3.52, and after around 500 years it decreases below
10% and after around 1550 years, it falls under 5%, despite that it starts with more than
40%, whereas the Gumbel only has a bit more than 30% of CI spread. In the context of
CI spread relative to the mean, the Pearson III distribution shows the highest numbers.
As one can see in the upper part of Figure 3.52, in the beginning it starts with almost
80% of spread, however, after around 500 years its spread falls below 10% but even
after 2000 years of annual maxima length, it does not fall below 5%.
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Figure 3.50 Shows the discharge for the calculated HQ;gp on the y-axis and the length of the
years taken into account for the calculation on the x-axis. The gray area is the confidence
interval (CI) with a significance level of 0.05 and repetition of 5000. The straight black line is
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the last value calculated for the whole 2000 years and plotted through the graph.
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Figure 3.51 Each point shows the CI spread relative to the mean in percentage for the gen-
erated annual maximas’ HQ;qp calculated with the Weibull (above) and the Gumbel (below)
distribution function. For the calculation details see Section 2.4.
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Figure 3.52 Each point shows the CI spread relative to the mean in percentage for the generated
annual maximas’ HQqp calculated with the Pearson Il (above) and the Log-Normal III (below)
distribution function. For the calculation details see Section 2.4.
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3.4.1 Results for the Cumulative Coefficient of Variation (CoV)

In this Subsection, one can see the results of the CoV results for the generated annual
maxima series as described in Section 2.4. Each point on the x-Axis shows a 10 year
window of the generated 2000 cumulative years. So basically the first value is the CoV
of the 10 HQ¢p values between the 31 and 40 year windows. The second value stands
for the CoV of the 10 HQgp values between the 41 and 50 year window. This means
that the CoV for the window of 31 to 40 years is for the Weibull distribution 1.08%,
for the Gumbel distribution 1.26%, for the Pearson III distribution 0.95% and for the
Log-Normal II Distribution 1.61%. The next window between 41 and 50 years is the
one with the highest CoV with 5.37% for the Pearson III distribution. After the time
window between 131 and 140 the CoV value drops below 0.6% (Figure 3.53).
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Figure 3.53 Shows the CoV values as percentage on the y-axis. The x-axis shows the modified
cumulative year-range as described in Section 2.4. Each 10 years, the CoV has been calculated
for the four functions standing in the legend. The CoV value range differs for each row.
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3.4.2 Results for the Cumulative Inter Quartile Range (IQR)

In this Subsection, one can see the results for the IQR calculations for the generated
annual maxima series. The same as described in the previous Subsection for the CoV
has been done for the IQR. The detailed procedure is being described in Section 2.4.
The HQ1gp values have been standardized and then the IQR values (standard deviation
(sd)) have been calculated for the same time windows as in the previous Subsection.
The IQR for the window of 31 to 40 years is for the Weibull distribution 0.45 sd, for
the Gumbel distribution 1.04 sd, for the Pearson III distribution 0.37 sd and for the
Log-Normal II Distribution 1.56 sd. The fourth window between 61 and 70 years is
the one with the highest IQR values with 2.66 sd for the Gumbel distribution. After the
time window between 171 and 180 the IQR value drops below 0.5 sd (Figure 3.54).
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Figure 3.54 Shows the IQR values (sd) on the y-axis. The x-axis shows the modified cumulative
year-range as described in Section 2.4. Each 10 years, the IQR has been calculated for the four
functions standing in the legend. The IQR value range differs for each row.
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3.4 Results for the Generated Stationary Annual Maxima Series

3.4.3 Resuits for the Cumulative Median Absolute Deviation (MAD)

In this Subsection, one can see the results for the MAD calculations for the generated
annual maxima series. The same as described in the previous Subsection for the IQR
has been done for the MAD. The detailed procedure is being described in Section
2.4. The HQqqp values have been standardized and then the MAD values (standard
deviation (sd)) have been calculated for the same time windows as in the previous
Subsection. This means that the MAD for the window of 31 to 40 years is for the
Weibull distribution 0.57 sd, for the Gumbel distribution 0.86 sd, for the Pearson III
distribution 0.45 sd and for the Log-Normal II Distribution 0.96 sd. The fourth window
between 61 and 70 years is the one with the highest MAD values with 2.10 sd for the
Gumbel distribution. After the time window between 131 and 140 the MAD value
drops below 0.5 sd (Figure 3.55).
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Figure 3.55 Shows the MAD values (sd) on the y-axis. The x-axis shows the modified
cumulative year-range as described in Section 2.4. Each 10 years, the MAD has been calculated
for the four functions standing in the legend. The MAD value range differs for each row.
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Chapter 4
Discussion

As mentioned in the Introduction (Section 1.1), the main research questions were:

1. Are 30 years enough to calculate a "precise" return level?
2. How many years are necessary in order to get a "precise” return level? And,

3. how do 30, 40 and 50 years of time series length impact the return level with
regard to the variability of the estimate?

According to the BMLFUW, 2011, 30 years of time series length are enough for
extreme value statistic estimations, namely flood return levels. But is that really the
case? Are 30 year-long time series enough in order to get a precise return level in
a statistical sense under the assumptions of stationarity? By simply looking at the
heat-maps in Section 3.2, one can see that the standardized return levels for a HQjq
can differ at several gauging sites by more than 2 standard deviations (sd), going up to
almost 3 within only a few years - So by simply calculating the HQ1o 5 years later,
one can get return levels, which can differ substantially from the previous ones and 5
years later one could get a similar result as 10 years before e.g. Figure 3.4 GRDC Nr.
6233366, 6233600, 6335125 or 6335410 or Figure 3.6 GRDC Nr. 6343100, 6357500,
6731150 or 673125. Overall, it is quite obvious that the individual gauging sites’ shift
HQ0p values do vary quite substantially. However, what about the average spread for
all the 227 gauging sites? By looking at the first and third quartile for all the gauging
sites’ HQ100 values combined (Figure 3.10), independent of the function being used,
is shows that it is between -0.73 and 0.74 standard deviations (sd). So 50% of the
HQqo values are within 1.47 sd. This variability is supported by the results of the
inter quartile range (IQR) and the median absolute deviation (MAD) of the HQjqo
values for the 30 year-long window shift over the 60 year-long time series. The IQR
results show (3.12), that for all functions the median of the 50% range of the IQR is
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expected to be between 1.42 standard deviations (sd) and 1.44 sd, which exceeds the
IQR of a normal distribution (1.345), despite being standardized. As for a less robust
measure, the Coefficient of Variation (CoV) results in Subsection 3.2.3 show, that the
relative variability can go up as high as 20% (Figure 3.10). Of course these extreme
examples might already have been identified as not appropriate for the calculation
(By either goodness of fit tests, as outliers or by the assumptions necessary (e.g. no
anthropogenic influence, etc.)). But still, the overall CoV for the 227 gauging sites
shows, that depending on the function, the median for the relative standard deviation
to the mean for all 60 year-long time series combined is between 5 and 6.5% of the
discharge estimated. The range between the first and third quartile of the CoV for the
Weibull and Gumbel is between 3.8% and 8%, the Pearson III has a range between
4.8% and 10.9% CoV and the Log-Normal III distribution one between 4% and 9.8%.
So a HQqp return level calculation by a Pearson III distribution and a L-moment
parameter estimation method follows a spread with a relative standard deviation of
up to almost 11% for the range between the first and third quartile. Nevertheless,
as I did use four different functions and no goodness of fit, these variability values
might be less prominent, if I would have taken only the HQqqp value of the best fit
distribution function. However, by looking again at the heat-maps, we see that the
Weibull, Gumbel and Log-Normal III distribution function do almost always follow
similar patterns and we see that despite maybe a less overall spread of the HQqp
values, the pattern of variability and changing of the flood return levels depending
on the time would still be the very similar. Moreover, I did not want to calculate the
HQ10p as accurate as possible, but I wanted to show the variability of them. And all
these either robust or non robust measures of variability show us, that when a HQqgp
is calculated with a 30 year-long time series using the AMS-Method as well as the
L-Moment estimation method suggested by the BMLFUW, 2011, the expected return
value is a random value, that is somewhat distributed and can vary significantly by
up to 3 sd, simply by calculating at a different point of time for the same gauging
site. These different HQ1qg values within only a few years can have several different
reasons. Maybe there have been structural changes along the river like dams, dikes or
hydro-power plants as well as sealing off the surface, changing the discharge pattern
or simply climatic extremes, leading to very extreme floods or draughts, which in turn
influence the fitted distribution and leading to higher or lower probabilities for certain
return values. Nevertheless the reason for this variability, it is there and the individual
as well as overall results shown in this thesis underlines it. This dependency of the
length and point of time when the calculation was done, as well as all the implications
this does have on a HQjgo estimation value, needs to be examined more closely and
any kind of guideline should point out such an additional uncertainty.
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As for the third question - how do 30, 40 and 50 years of time series length impact
the return level - we need to look at Section 3.3.1. In order to understand this question,
the Listy199 has been used for the calculations. Its 45 gauging sites have been taken
into consideration, which might be the reason why the values for the 30 year-long
shifts’ CoV, IQR and MAD are higher than for the 227 gauging sites long Listygg 30
year-long shift. Nevertheless, we can see a clear tendency towards a less spread return
level with an increased time window length. The robust measures (median absolute
deviation (MAD) and the inter quartile range (IQR)) do decrease more prominently
than the non-robust measures (Coefficient of Variation (CoV)) between the 30, 40 and
50 year-long window shift, moreover, the decrease between the 40 and 50 year-long
window is higher than the one between the 30 and 40 year-long window. This indicates
that there is no linear decrease of the variability with longer time windows, but a rather
non-linear one. Moreover, this behaviour can also be seen in the generated annual
maxima series’ HQqop values. The decrease of the variability in the first 500 years
is much higher than the decrease over the following 1500 years. It is interesting to
see that some gauging sites (e.g. site with the GRDC Nr. 6731200 in Figure 3.45)
show contradictory behaviours. So the 50 year-long window lengths’ MAD is higher
than the 40 year-long window and both of them are even higher than the 30 year-long
window for the Weibull, Gumbel and Log-Normal III distribution function. The reason
for this might be the distribution of the annual maxima itself and its extraction method.
But such a behaviour is very unusual and the overall trend is quite obviously to a
more stable return value with a higher window length. Overall the results indicate that
especially with only a few year-long (e.g. 30 to 50 years) times series, the variability
decrease is very effective and therefore, it is of crucial importance to use as many
years as possible for the flood estimation extreme value statistics, especially between
30 and 50 years. But are 50 years already enough in order to decrease this variability?
And if not, how many years are necessary? This was the second research question,
and by looking at the results in Section 3.4, we can see that the first 100 to 200 years
of the generated time series, the HQjqo return level is very variable but decreases
very quickly. However, the longer the times series gets, the more stable and more
precise the calculation and its corresponding confidence intervals (CI) do become. And
according to the results in Figure 3.53, 3.54 and 3.55 with a length of more than 120
years, the CoV stays below 1%, which is already very stable. The IQR is permanently
under 1 sd with a length of 130 years and drops below 0.7 sd after 170 years. The
MAD gets below 0.6 sd after already 130 years, which is already quite precise. So
under strict stationary conditions and roughly 140 years of river discharge length, the
variability decreases substantially for at least this example. If we add more years,
this decrease slows down and almost stops. Nevertheless, as one can see in Figure
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3.50 as well, simply by being less variable, the last HQjgp return level is sometimes
even out of the CI for previous calculations. So being statistically precise does not
necessarily lead to good estimation, especially in a statistical accuracy sense. Overall
one can see a tendency towards a more stable discharge level after 1500 years in terms
of accuracy and precision for this example, however, this is under strict stationary
conditions and cannot necessarily be applied for existing rivers. Moreover, the CI
decreases with respect to the mean also shows that with an time length increase, the
spread of the CI decreases quite sharply in the beginning with all four functions and’
then, after around 200 to 400 years, depending on the function used, the decreases
slows down (See Figure 3.51 and 3.52). The Weibull distribution function has the
best fit and highest decrease in the CI spread, however, as the underlying function
is also a Weibull distribution function, this might be the reason for it. Nevertheless,
one can see by looking at the four Figures, that after 100 years of window length,
the CI for the Weibull already drops below 10% of spread relative to the mean. 200
years are necessary for the Gumbel, and around 500 for both, the Pearson III and
Log-Normal III distribution function. Those two might do worse, because they both
use 3 parameters and are therefore more susceptible to minor changes of the annual
maxima. However, the CI spread with regard to the mean of the Pearson III distribution
function is unnatural high in the beginning with almost 80%. Nevertheless, throughout
almost any of the calculations, the Pearson III distribution did produce the highest
variability. This might again be because of the 3 parameters and it is the only one, as
the Gumbel has only 2 parameters and the Weibull and Log-Normal III distribution
have both a lower bound at 0. The exact reason for this is, however, unknown for the
author.

During this thesis, 1 calculated numerous HQ1qo time series with the 30 year-long
window shift for the 60 year-long gauging sites - all in all 27240 HQ1go values. These
generated HQ; oo time series do have certain behaviours regarding their tendency over
time. In order to find similarities of increased or decreased HQqqgg values, I compared
them and put gauging sites with similar tendencies in different regions (Subsection
2.2.1). These regions do show that throughout the gauging sites I used (227 in total
throughout Europe), most rivers tend to have an increased HQqg value, if calculated
with the last 30 year-long time window than HQqgp values with the first 30 year-
long window. The reason for this is unknown, but it might be due to anthropogenic
influences as structural changes along the river or land sealing. It is interesting to see,
that most gauging sites do have an increased HQjq9 value if calculated today than 30
years ago with the same time series length. Nevertheless, the regions need to be split
up more in order to generate higher R? values (the highest value is within region two,
with 0.629) and eliminate all unfit gauging sites. The information value is therefore
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limited and to make any significant conclusions, more research needs to be done on
this topic.

Overall, the main takeaway message should be that return levels are distributed and
the spread of this distribution is also depending on the time lengths of the time series
being used. This behaviour exists and even 2000 years of time series length cannot
get rid of it indefinitely. Therefore, this effect needs to be addressed more often and
peoples’ awareness towards it should be raised. Moreover, the additional uncertainty
arising from it for any statistical outcome depending on finite time series needs to be
accounted for and taken into consideration.
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Appendix A

Calculation List & Packages

A.1 List for the 227 and 45 Gauging Sites with 60 and
100 years of time series length

This list was extracted from the GRDC’s database and consists of the gauging sites,
which were used in the calculations.
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Calculation List & Packages

Table A.1 Summary of the streamflow dataset containing the years between 1948
and 2009.

Country  River Station ' Lat Long Area [km?] GRDC-Na.
FR GAVE D’OLORON OLORON-SAINTE-MARIE (OLORON-SNCF) ~ 43.2 —0.61 1085 6119030
FR CHER TEILLET-ARGENTY . 46.24 267 1600 6123370
FR ANCE DU NORD SAINT-JULIEN-D' ANCE (LAPRAT) 4531 394 354 6123760
FR DUNIERE SAINTE-SIGOLENE (VAUBARLET) 4521 421 228 6123770
FR AUDE PUYVALADOR 4282 212 134 6128101
FR VERDON DEMANDOLX (CASTILLON) 4388  6.54 655 6139201
FR DURANCE ESPINASSES (SERRE-PONCON) 4447 628 3580 6139280
FR AIN CERNON (VOUGLANS) 46.4 5.67 1120 6139501
FR TORRENT LE FIER VALLIERES 459 5.92 1350 6139850
cz ELBE RIVER DECIN 5079 1423 51123 6140400
cz LOUCNA DASICE 5004 1591 624 6140600
CZ DIVOKA ORLICE NEKOR 5007 1655 182 6140700
cz MORAVA STRAZNICE 4893  17.32 9146 6142120
czZ ODER RIVER BOHUMIN 4992  18.33 4665 6157100
SK MORAVA MORAVSKY JAN 48.6 16.94 24129 6142150
SK DANUBE RIVER BRATISLAVA 4814 17.11 131331 6142200
SK NITRA NITRIANSKA STREDA 4852  18.17 2094 6142520
SK VAH SALA 48.16 17.88 11218 6142620
SK HRON BANSKA BYSTRICA 48.73 19.13 1766 6142650
SK HRON BREHY 4841 18.65 3821 6142660
SK VAH LIPTOVSKY MIKULAS 4909  19.61 1107 6142680
SK SAIO LENARTOVCE 4831 2031 1830 6144100
5K TORYSA KOSICKE OLSANY 48.73 21.34 1298 6144350
SK TOPLA HANUSOVCE 49.03 215 1050 6144400
SK POPRAD CHMELNICA 4929 2073 1262 6158100
SE ENNINGDALSAELVEN  VASSBOTTEN 58.88 11.54 624.1 6229100
SE GOETA AELV VARGOENS kRV 5836  12.37 46885.5 6229500
SE TORNETRAESK ABISKO 68.36  18.82 3345.5 6232101
SE VISKAN ASBRO3 5724 1231 2160.2 . 6233100
SE FYLLEAN SIMLANGEN 5672 13.12 259.7 6233150
SE " LAGAN AENGABAECKS KRV 5649  13.51 5479.5 6233170
SE GROETSJOEN GROETSJOEN 61.81 1244 565 6233200
SE VAESTERDALAELVEN  ERSBO 61.31 13.01 1103.8 6233205
SE TAENNAN TAENNDALEN 6254  12.35 2266 6233220
SE TAENNAN LILLGLAEN 6264 1213 64.6 6233222
SE LYUSNAN LIUSNEDAL OEVRE 62.55 12.6 340.3 6233227
SE VESANKANALEN HALABAECK 56.12  14.62 47 6233240
SE HELGE A TORSEBRO KRV (POWERSTATION) 56.1 14.13 3664.5 6233250
SE MOSSAN VELEN2 58.71 14.31 45 6233300
SE MOTALA STROEM HOLMEN 5859 1617 15384 6233301
SE ALSTERAN GETEBRO 57.01 16.16 13327 6233350
SE SOLGENAN SKAERSBODA 57.58  14.36 6233366
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A.1 List for the 227 and 45 Gauging Sites with 60 and 100 years of time series

length
Country River Station Lat Long Arealtm?] GRDC-No.
SE FYRSJOEN FYRAS 6352 1539 24284 6233400
SE NYKOEPINGSAN HALLBOSIOEN 58.86 167 1992.3 6233440
SE ANKARVATTNET ANKARVATTNET 64.88 1422 4278 6233450
SE AECKLINGEN AECKLINGEN 63.74 13.01 1558 6233460
SE HARKAN RENGEN 64.07 141 11101 6233470
SE UMEAELVEN STORNORRFORS KRV 63.85 20.05 26567.8 6233502
SE VINDELAELV_EN GRANAKER 6424 19.67 118505 6233510
SE VATTHOLMAAN VATTHOLMA 2 60.02 17.73 293.8 6233600
SE ANGERMANAELVEN SOLLEFTEA KRV 63.17 17.27 30638 6233650
SE VINDELAELVEN SORSELE 2 65.54 17.51 6056.3 ) 6233680
SE MOAELVEN VAESTERSEL 6343 183 1465.2 6233700
SE PITEAELVEN SIKFORS KRV 65.53 21.21 10816.1 6233710
SE LULEAELVEN BODENS KRV (+ VATTENVERK, TRANGFORS) 65.81 21.67 24923.5 6233750
SE RANEAELVEN NIEMISEL 66.02 21.97 3780.8 6233780
SE ROERAN YTTERHOLMEN 66.17 21.81 1012 6233800
SE KALIXAELVEN RAEKTFORS 66.17 22.82 231029 6233850
SE MUONIOAELVEN, MUONIONJOKI © KALLIO 2 67.22 2354 14477.1 6233901
SE TORNEAELVEN, TORNIONIOKI KUKKOLANKOSKI OEVRE 6598 24.06 33929.6 6233910
DE RHINE RIVER REES 51.76 6.4 159300 6335020
DE RHINE RIVER DUESSELDORF 5123 677 147680 6335050
DE RHINE RIVER KOELN 5094 6.96 144232 6335060
DE RHINE RIVER ANDERNACH 5044 739 139549 6335070
DE RHINE RIVER KAUB 5009 7.76 103488 6335100
DE NAHE GROLSHEIM 4991 791 4013 6335115
DE KINZIG SCHWAIBACH 4839 803 954 6335125
DE RHINE RIVER MAINZ 50 8.28 = 98206 6335150
DE RHINE RIVER WORMS 4964 8.38 68827 6335180
DE RHINE RIVER MAXAU 49.04 831 50196 6335200
DE KOCHER NEUENSTADT / KOCHER 4923 933 1410 6335300
DE MAIN SCHWEINFURT - NEUER HAFEN 50.03 10.22 12715 6335301
DE LAHN LEUN (NEU) 5055 836 3571 6335350
DE RHINE RIVER RHEINFELDEN 4756 78 34550 6335400
DE WUTACH OBERLAUCHINGEN 4762 833 627.13 6335410
DE ARGEN GIESSEN 4763 9.6 639.34 6335450
DE SCHUSSEN GERBERTSHAUS 4767 953 782.01 6335460
DE MAIN ‘WUERZBURG 498 993 14031 6335500
DE NECKAR PLOCHINGEN 4871 942 .3995 6335602
DE MOSELLE RIVER COCHEM 50.14 7.17 27088 6336050
DE WESER VLOTHO 52.18 8.86 17618 6337100
DE WESER INTSCHEDE 5296 9.12 37720 6337200
DE ALLER RETHEM 5279 938 14730 6337250
DE WESER HANN.-MUENDEN 5143 9.64 12442 6337400
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Country River Station Lat Long Area [km?] GRDC-No.
DE LEINE GREENE 5186 9.94 216 6337500
DE ALLER MARKLENDORF 5268 97 7209 6337501
DE ALLER CELLE 52.62 1006 4374 6337502
DE DIEMEL HELMINGHAUSEN 5138 873 103 6337503
DE EDER SCHMITTLOTHEIM 5116 89 1202 6337504
DE EDER AFFOLDERN 5117 9.09 1452 6337505
DE FULDA GUNTERSHAUSEN 5123 947 6366 6337507
DE FULDA ROTENBURG 51 9.72 2523 6337508
DE LEINE HERRENHAUSEN 5239 9.68 5304 6337509
DE LEINE SCHWARMSTEDT 5268 96 6443 6337510
‘DE WERRA ALLENDORF (BAD SOODEN) 5127 997 5166 6337511
DE WERRA LETZTER HELLER sta1 971 5487 6337513
DE WESER BODENWERDER 5197 952 15924 6337514
DE WESER KARLSHAFEN 5165  9.44 14794 6337516
DE WESER PORTA 5225 892 19162 6337518
DE WESER WAHMBECK 5162 9.52 1299 6337519
DE EMS VERSEN - GESAMT 5274 124 8369 6338100
DE EMS GREVEN 5209 76 2842 6338120
DE EMS RHEINE UNTERSCHLEUSE UP 5229 743 3740 6338130
DE ELBE RIVER NEU-DARCHAU 5323 1089 131950 6340110
DE ELBE RIVER DRESDEN 5106 1374 53006 6340120
DE ELBE RIVER BARBY 5199 1188 94060 6340140
DE ELBE RIVER WITTENBERGE 5290 1176 123532 6340150
DE ELBE RIVER AKEN 5186 1206 70093 6340170
DE ELBE RIVER MAGDEBURG-STROMBRUECKE 5213 1164 94942 6340180
DE ELBE RIVER TORGAU 1 51.56 1301 55211 6340190
DE UNSTRUT LAUCHA 5123 1168 6218 6340200
DE SAALE CALBE-GRIZEHNE 5192 1181 23719 6340300
DE HAVEL KETZIN 5248 1285 16173 6340510
DE ILLER KEMPTEN 773 1032 9546 6342200
DE DANUBERIVER  INGOLSTADT 4875 1142 20001 6342500
DE ALTMUEHL EICHSTAETT 488 112 1400 6342520
DE DANUBERIVER  REGENSBURG/SCHWABELWEIS 4902 1214 35399 6342600
DE DANUBERIVER  HOFKIRCHEN 4868 1312 474% 6342800
DE DANUBERIVER ~ ACHLEITEN 4858 135 76653 6342000
DE DANUBERIVER  OBERNDORR 4895 1201 26448 6342910
DE DANUBERIVER  PFELLING 4888 1275 37687 6342920
DE ISAR LANDAU 4867 1269 8467 6342925
DE ISAR MITTENWALD-KARWENDELSTEG 144 127 4 6342928
DE LOISACH KOCHEL 4767 1136 6849 6342930
DE LOISACH GARMISCH BELOW PARTNACH (UDP)  47.5 1106 3935 6342931
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A.1 List for the 227 and 45 Gauging Sites with 60 and 100 years of time series

length
Country ~ River Station Lat Long Area [km?]  GRDC-No.
DE DANUBE RIVER HUNDERSINGEN 4807 94 2647.01 6342970
DE INN WASSERBURG 4806 1223 11983 6343100
DE SALZACH BURGHAUSEN 4816 1283 6649 6343500
DE TRAUN STEIN 4799 1254 3674 6343530
DE RAMSAUER ACHE ILSANK 762 1295 1225 6343555
DE SAALACH UNTERJETTENBERG 4768 1282 9273 6343560
DE TIROLER ACHEN / GROSSACHE ~ STAUDACH 4778 12.48 951.9 6343570
DE NN PASSAU-INGLING 4856 1344 26084 6343900
DE ODER RIVER HOHENSAATEN-FINOW AP 5287 1414 109564 6357010
DE ODER RIVER EISENHUETTENSTADT 5215 1469 52033 6357500
DE NEISSE RIVER GOERLITZ SL16 14.99 1621 6357502
Is THIORSA THIORSARTUN 6393 —2064 7380 6401120
Is SVARTA, SKAGAFIROL REYKJAFOSS 6549 —1939 393 6401601
NL RHINE RIVER LOBITH 5184 611 160800 6435060
sl SAVA RADOVLIICA [ 4634 1417 908 6545190
51 KRKA PODBOCIE 4586 1546 2238 6545200
SI LIUBLJANICA MOSTE 4605  14.55 1763 6545400
SI MUR GORNJA RADGONA 1 4668 16 10197 6546610
s SOCA / INSONZO SOLKAN I 4598 13.66 1573 6549100
st SOCA /INSONZO KOBARID 4625 1359  437.02 6549101
s SOCA / INSONZO LOG CEZSOSKI 4631 1349 325 6549180
GB DEE WOODEND 5705 -26 1370 6604800
GB LEVEN NEWBY BRIDGE FMS 5421 -297 247 6605390
GB BEDFORD OUSE BEDFORD 5213 —046 1460 6606400
GB THAMES KINGSTON 5141  —031 9948 6607650
GB THAMES . KINGSTON (NATURALISED DISCHARGE) 5141  —031 9948 6607651
GB THAMES DAYS WEIR 5164 -118 3445 6607701
GB LEERIVER FEILDES WEIR 5176 0.01 1036 6607830
GB DEE MANLEY HALL 5297  -297 10193 6608100
GB WYE REDBROOK 518  —268 4010 6608501
GB AVON EVESHAM 5200 ~194 2210 6609400
GB SEVERN BEWDLEY 5238 —232 4325 6609500
NO TANA (NO, FI) POLMAK NYE 7007  28.02 14160 6730501
NO ENGESETELV ENGESETVATN 6253  6.62 47 . 6731010
NO STIORDALSELVA HOGGAS BRU 6349 1132 491 6731050
NO NORDELVA KRINSVATN 679 1023 205 6731070
NO ETNEELY STORDALSVATN 5068  6.02 127 6731130
NO KINSO HOLEN 6038 674 29 6731140
NO OSELV ROYKENES 6025 543 50 6731150
NO GAULAR VIKSVATN 6133 587 505 6731165
NO EIDSELV HORNINDALSVATN 6192 609 378 6731175
NO VOSSO BULKEN 6063 628 1102 6731200
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Calculation List & Packages

Country River Station Lat Long Area [km?] GRDC-No.
NO LYGNA TINGVATN 58.4 7.23 266 6731250
NO OTRA HEISEL s8.25 195 3689 6731260
NO AUSTENA AUSTENA 58.85 8.1 286 6731280
NO JONDALSELV JONDAL 59.7 9.55 150 6731320
NO GLAMA LANGNES 59.61 i1z 40540 6731400
NO GLAMA SOLBERGFOSS 59.64 11.15 40540 6731403
NO LOSNA LOSNA 61.33 1028 11210 6731450
NO ARGARDSELV OEYUNGEN 64.25 108 237 6731550
NO KLARA NYBERGSUND 61.26 1223 4410 6731570
NO FUSTA FUSTVATN 65.9 133 520 6731610
NO KJERRINGA VASSVATN 66.4 13.18 16.1 6731650
NO SALTELV JUNKERDALSELV - 66.82 1543 422 6731680
NO MAALSELV MALANGSFOSS 69.03 18566 3239 6731907
RO DANUBE RIVER HARSOVA 4468 2709 709100 6742800
FI KOKEMAENJOKI ~ HARJAVALTA 6134 2211 26117 © 6854101
FI LAPUANJOKI KEPPO 6336 227 3949 6854200
FI LESTUOKI LAKE LESTIJARVI OUTLET 6358 2472 363 6854300
FI KIIMINGINJOKI HAUKIPUDAS 6519 2541 3814 6854400
Fi OULUIOKI LAKE LENTUA OUTLET 6419 2958 2045 6854590
FI IJOKI RAASAKKA (NEAR THE MOUTH) 6533 2541 14191 6854600
FI KYRONIOKI SRATILA (LANSORSUND) 63.09 2188 4833 6854900
FI VANTAANJOKI OULUNKYLA (NEAR THEMOUTH) 6023  24.98 1680 6855100
FI VUOKSI KALLAVESI - KONNUS + KARVIO 6255 2177 16270 6855402
FI VUOKST - LATOSUONOJA 6137 2869 534 6855403
FI KARJAANJOKI LOHJANIARVI-PELTOKOSKI 60.15 2383 1935 6855500
CH AARE BERN-SCHOENAU 4693 745 2945 6935020
CH RHINE RIVER BASEL, RHEINHALLE 4756 162 35897 6935051
CH RHINE RIVER * RHEINFELDEN, MESSSTATION 4156 18 34526 6935053
CH RHINE RIVER REKINGEN 457 833 14718 6935054
CH BIRSE MONTIER (LA CHARRUE) 4728 738 183 6935060
cH ERGOLZ LIESTAL 4749 173 261 6935070
CH GUERBE BELP 4689 15 117 6935080
CH RHINE RIVER DOMAT/EMS 46.84 946 3229 6935145
CH AARE UNTERSIGGENTHAL, STILLI 4752 823 17601 6935300
CH AARE BRUGG 47.48 8.19 11726 6935301
CH AARE MURGENTHAL 421 783 10119 6935302
CH REUSS MELLINGEN 4142 827 3382 6935310
CH EMME EMMENMATT 4695 175 443 6935320
CH SIMME OBERWIL 4666 144 344 6935330
CH SIMME OBERRIED / LENK 4643 147 357 6935331
CH SENSE THOERISHAUS 4689 735 352 6935350
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A.1 List for the 227 and 45 Gauging Sites with 60 and 100 years of time series

length

Area [km?]

Country River Station Lat Long GRDC-No.
CH BROYE PAYERNE 46.84 6.94 392 6935390
.CH THUR ANDELFINGEN 416 8.68 1696 6935400
CH SITTER APPENZELL 47.33 9.41 74.2 6935412
CH HINTERRHEIN HINTERRHEIN 46.53 9.2 53.7 6935510
CH LANDQUART FELSENBACH 46.97 9.61 616 6935540
CH TOESS NEFTENBACH 47.52 8.65 342 6935560
CH MUCTA INGENBOHL 47 86 316 6935590
CH RHONE CHANCY, AUX RIPES 46.15 597 10323 6939050
CH RHONE PORTE DU SCEX 46.35 6.89 5244 6939200
CH GRANDE EAU AIGLE - 46.32 6.97 132 6939205
CH RHONE BRANSON 46.13 7.09 3752 6939500
CH MASSA BLATTEN BEI NATTERS 46.39 8.01 195 6939510
CH LUETSCHINE GSTEIG 46.66 7.87 379 6939540
CH WEISSE LUETSCHINE ZWEILUETSCHINEN 46.63 79 164 6939541
CH INN MARTINSBRUCK 46.89 10.47 1945 6943100
CH TICINO BELLINZONA 46.19 9.01 1515 6948100
CH POSCHIAVINO LE PRESE 46.3 10.08 169 6948110
RU NEVA NOVOSARATOVKA 59.84 30.53 281000 6972430
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Calculation List & Packages

Table A.2 Summary of the streamflow dataset containing the years between 1908
and 2009.

Country  River Station Lat Long Area[km®]  GRDC-No.
cz ELBE RIVER DECIN 5079 1423 51123 6140400
cz DIVOKA ORLICE ~ NEKOR . 5007 1655 182 6140700
SK DANUBE RIVER BRATISLAVA 48.14 1711 131331 6142200
SE GOETA AELV VARGOENS KRV 5836 1237 468855 6229500
SE HELGE A TORSEBRO KRV (POWERSTATION) 56.1 1413 3664.5 6233250
SE LULEAELVEN BODENS KRV (+ VATTENVERK, TRANGFORS) 6581  21.67  24923.5 6233750
DE RHINE RIVER REES. 5176 64 159300 6335020
DE RHINE RIVER KOELN 5094 696 144232 6335060
DE MAIN SCHWEINFURT - NEUER HAFEN 5003 1022 12715 6335301
DE MAIN WUERZBURG g 4938 9.93 14031 6335500
DE MOSELLERIVER  COCHEM ) 50.14 717 27088 6336050
DE WESER VLOTHO 5218 8.6 17618 6337100
DE WESER INTSCHEDE 5296 912 37720 6337200
DE WESER HANN.-MUENDEN 5143 9.64 12442 6337400
DE ALLER CELLE 5262 1006 4374 6337502
DE WESER BODENWERDER 5197  9.52 15924 6337514
DE EMS GREVEN : 5209 76 2842 6338120
DE ELBE RIVER NEU-DARCHAU 5323 1089 131950 6340110
DE ELBE RIVER DRESDEN 5106 1374 5309 6340120
DE ELBE RIVER BARBY 5199 1188 94060 6340140
DE ELBE RIVER WITTENBERGE 5299 1176 123532 6340150
DE ILLER KEMPTEN 47173 1032 9546 6342200
DE DANUBE RIVER HOFKIRCHEN 4868 1312 47496 6342800
DE DANUBE RIVER ACHLEITEN 4858 135 76653 6342900
DE INN ‘WASSERBURG 4806 1223 11983 6343100
DE SALZACH BURGHAUSEN 48.16  12.83 6649 6343500
DE SAALACH UNTERJETTENBERG . 4768 1282 9213 6343560
NL RHINE RIVER LOBITH 5184  6.11 160800 6435060
GB THAMES KINGSTON 5141 -031 9948 6607650
GB THAMES KINGSTON (NATURALISED DISCHARGE) 5141 -031 9948 6607651
GB LEE RIVER FEILDES WEIR 5176 001 1036 6607830
NO GAULAR VIKSVATN 6133 , 587 505 6731165
NO EIDSELV HORNINDALSVATN 6192 609 378 6731175
NO VOSSO BULKEN 6063 628 1102 6731200
NO GLAMA LANGNES 5961 1112 40540 6731400
NO GLAMA SOLBERGFOSS 5964 1115 40540 6731403
NO LOSNA LOSNA : 6133 1028 11210 6731450
NO MAALSELV MALANGSFOSS 69.03 1866 3239 6731907
CH RHINE RIVER BASEL, RHEINHALLE 4156 162 35897 6935051
CH REUSS MELLINGEN 4742 827 3382 6935310
CH THUR (CH) ANDELFINGEN 476 8.68 1696 6935400
CH RHONE CHANCY, AUX RIPES 46.15 597 10323 6939050
CH RHONE PORTE DU SCEX . 4635  6.89 5244 6939200
CH LUETSCHINE GSTEIG 4666 187 ‘379 6939540
CH INN MARTINSBRUCK 4689 1047 1945 6943100
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A.2 R-Packages

A.2 R-Packages

The following R-Packages have been used at any point during the Thesis:

1

2.

10.

11.

12.

13.

14.

15.

16.

. boot
corrplot
evd
extRemes
. grid
gtable
hexbin

. Hmisc
ismev
lattice
latticeExtra
Imom
MASS
NMF
plyr

scales
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