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Abstract

Modern plant breeding methods and technologies in combination with improved crop
management practices enabled the great achievement of more than double the yield of
major cereal crops during the last hundred years. However, the annual increase of grain
yield in wheat and other crops feeding the world is currently insufficient at the given rate of
population growth and projection show that factors like climate change, pests and diseases
are hampering the goal of achieving another doubling of yield that is needed until 2050.
Hence, the development and applications of new technologies seems necessary to
accelerate the genetic improvement of crop plants, and with the advent of genomics two
decades ago the usage of molecular markers became one promising tool to support breeders
in achieving this aim. Numerous research studies have shown the large potential of using
genome-wide distributed markers for estimating genomic breeding values and genomically
selecting superior individuals in a breeding population in recent years, but most studies
utilized cross-validation within restricted germplasm sets and research investigating
genomic selection across multiple breeding cycles of years in applied plant breeding
programs were lacking. However, one main objective when applying genomic selection in
line breeding programs is the prediction of genotype performance in yet untested years in
order choose the most promising among the potential varietal candidates for thoroughly
testing in resource-demanding multi-environment trials. Hence, employing the example of
a commercial winter wheat breeding program the aims of this study were (i) to assess the
accuracy of genomic breeding values of non-phenotyped breeding lines to genomically
select them for grain yield, protein content and protein yield across yet untested years, (ii)
compare conventional phenotypic selection with various genomic selection approaches, and
(iii) integrating phenotypic information from preliminary vyield trials into the genomic

selection framework for enhancing line breeding schemes in general.

For this purpose all analyses of this study focus on a multi-family breeding population of
861 genotyped lines that was phenotyped in multi-environment trials under South-Eastern
European conditions from 2010 to 2015, whereas different subpopulations were tested in

each year as is characteristically of a line breeding program. The dataset was complemented



by a large quantity of additional phenotypic information of grain yield and protein content
obtained in single location preliminary yield trials. First, within-year 5-fold cross-validation
was compared to across-year predictions for 2010-2014, which revealed a substantial bias
of the prediction accuracy that was less pronounced for protein content and most for protein
yield. Cross-validation using the years as folds aimed to avoid this bias and reached a
maximum prediction accuracy of r = 0.51 for protein content, r = 0.38 for grain yield and r
= 0.16 for protein yield indicating the suitability of genomic selection for practical
applications in commercial wheat line breeding programs. Independent validation with
2015 resulted furthermore no advantage of removing outlier years or field trials from the
model training data, suggesting that careful consideration is necessary before any such
outlier correction is undertaken. Implementing genomic selection wheat in line breeding
programs at hand is economically feasible in parallel to single location preliminary yield
trials, thus a comparison between conventional phenotypic selection based on preliminary
yield trials and genomic selection was required for assessing the actual merit of the latter.
The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain
yield but could be improved by modelling genetic relationships in unreplicated preliminary
yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to
conventional phenotypic selection for predicting grain yield performance of lines across
years (r = 0.39). The problem of predicting untested lines in untested years to predicting
tested lines was subsequently simplified to predicting untested years by combining
breeding values from preliminary yield trials and predictions from genomic selection
models by an heritability index. This genomic assisted selection led to a 20% increase in
prediction accuracy, which could be further enhanced by an appropriate marker selection

for both grain yield (r = 0.48) and protein content (r = 0.63).

Given this strong advantage of genomic selection over conventional phenotypic selection
both for low and high heritable traits the former could support wheat breeders in
developing varieties that preferably combine high yield, quality, disease resistance and
tolerance against abiotic stresses. The tremendous decrease in genotyping costs in recent
years allow furthermore implementing genomic selection in line breeding schemes in an
economically feasible way even in medium sized breeding programs as revealed in this

study. Although appropriate strategies for fully harnessing the benefits of genomic



selection for both variety development and population improvement might differ between
breeding programs, the exchange of datasets and genomic selection knowledge across both
the public and private sector would contribute significantly to the enormous task of

doubling yield in wheat and other crops until 2050.



Zusammenfassung

Moderne Methoden und Techniken der Pflanzenziichtung haben es in Kombination mit
verbesserten pflanzenbaulichen Malinahmen ermdglicht, den Ertrag der wichtigsten
Getreidekulturen in den letzten hundert Jahren zu verdoppeln. Der jéhrliche
Ertragsfortschritt im Weizen und in anderen weltweit angebauten Kulturen ist derzeit
jedoch nicht in der Lage, mit dem weltweiten Populationswachstum und entsprechendem
Bedarf Schritt zu halten, wobei Prognosen zeigen, dass Einfliisse wie Klimawandel,
Schédlinge und Pflanzenkrankheiten der erneuten und notwendigen Verdoppelung des
Ertrags bis 2050 im Wege stehen. Die Entwicklung und Anwendung neuer Technologien
die das Potential haben den Zuchtfortschritt unserer Kulturpflanzen zu beschleunigen, wird
somit immer notwendiger. Mit dem Aufschwung genomischer Methoden vor zwei
Jahrzehnten versprach die Anwendung molekularer Marker ein wichtiges Werkzeug der
Pflanzenziichtung zu werden, um dieses Ziel zu erreichen. Zahlreiche Forschungsstudien
haben das grof3e Potential von genomweit verteilten Markern zur Schatzung genomischer
Zuchtwerte aufgezeigt, welche genutzt werden konnen, um vielversprechende
Zuchtstamme fruhzeitig zu selektieren. Die Ergebnisse der meisten Studien basieren jedoch
auf Kreuzvalidierungen mit eingeschrankter Genetik in wenigen Jahren, wohingegen
Forschungsarbeiten zu genomischer Selektion in angewandten Ziichtungsprogrammen Gber
mehrere Ziichtungszyklen und Jahre hinweg bisher fehlten. Eines der Hauptziele bei der
Anwendung genomischer Selektion in der Zichtung von Liniensorten bei Weizen und
anderen Kulturen ist jedoch die Vorhersage der Leistung Uber Jahre hinweg, um die
Selektion der vielversprechendsten Sortenkandidaten fir aufwendige mehrortigen
Versuchsserien zu ermdglichen. Diese Punkte sollen am  Beispiel eines
Winterweizenzuchtprogramm in der vorliegenden Studie starkere Beachtung finden wobel
zunéchst darauf abgezielt wurde (i) die Genauigkeit genomischer Zuchtwerte fir
Kornertrag, Proteingehalt und Proteinertrag Gber mehrere Jahre hinweg zu schétzen, (ii)
daraufhin das herkdbmmliche phanotypische Selektionsverfahren mit genomischer Selektion
zu vergleichen und schliellich (iii) die ph&notypische Information von Ertragsvorversuchen
in die Methodik der genomischen Selektion zu integrieren, um einen Beitrag zur

allgemeinen Verbesserung von Linienzuchtschemen zu leisten.



Zum Erreichen dieser Ziele wurden zundchst die phénotypischen Daten einer
Zuchtpopulation von 861 genotypisierten Weizenzuchtstimmen analysiert, welche in
mehrortigen Versuchen in Osterreich und Siid-Ost Europa tber den Zeitraum 2010 bis
2015 erhoben wurden. Verschiedene Subpopulationen unterschiedlicher GrofRe wurden
dabei, wie in einem Weizenzuchtprogram Ublich, in unterschiedlichen Jahren gepriift. Der
Datensatz wurde letztendlich durch zusatzliche Informationen uber Kornertrag und
Proteingehalt aus einortigen nicht-wiederholten Ertragsvorversuchen erganzt. Zunachst
wurde die Schatzung der Vorhersagegenauigkeit einer 5-fache Kreuzvalidierung innerhalb
eines Jahres mit der Vorsagegenauigkeit tber Jahre hinweg verglichen, wobei die
Verwendung des Ersteren Verfahrens, fir alle Jahre von 2010 bis 2014, zu einer deutlichen
Uberschatzung fihrte, die fiir den Proteingehalt weniger und fiir den Proteinertrag sehr
stark ausgepragt war. Eine Kreuzvalidierung welche jeweils ein einzelnes Jahr bzw.
Subpopulation auslasst, welches dann durch alle anderen Jahre vorhergesagt wird, zielte
darauf ab diese Uberschatzung zu vermeiden und ergab eine maximale
Vorhersagegenauigkeit von r = 0,51 fur der Proteingehalt, r = 0,38 fiir den Kornertrag und r
= 0,16 fur den Proteinertrag. Die Ergebnisse zeigten somit einiges Potential genomischer
Selektion fur die Linienziichtung von Winterweizen, was durch eine unabhédngige
Validierung mit Daten aus 2015 bestatigt werden konnte. Das Korrigieren von
Ausreilierjahren oder -feldversuchen ergab keinen Vorteil und zeigte, dass mit solche
Korrekturmafinahmen vorsichtig umzugehen ist. Der Einsatz genomischer Selektion in der
Linienzichtung von Weizen ist im Allgemeinen parallel zu Ertragsvorversuchen
realisierbar, womit ein Vergleich zwischen herkémmlicher phé&notypischer Selektion und
genomischer Selektion nétig ist, um den tatséchlichen Wert der Letzteren im praktischen
Zuchtprozess zu bestimmen. Der in dieser Studie durchgefuhrte Vergleich zeigte dabei eine
eher niedrige Vorhersagegenauigkeit fur den Kornertrag basierend auf phénotypischen
Daten (r = 0,21), welche jedoch durch die Modellierung genetischer
Verwandtschaftsverhaltnisse in den nicht-wiederholten Ertragsvorversuchen verbessert
werden konnte (r = 0,33). Die Vorhersage auf Basis genomischer Selektionsmodelle war
dennoch, bei der Vorhersage der Ertragsleistung der Zuchtlinien tber die Jahre, deutlich
uberlegen (r = 0,39). Das Problem der Vorhersage nicht-geprifter Zuchtlinien in nicht-

gepruften Jahren wurde schlieRlich, durch die Kombination von Zuchtwerten aus



Ertragsvorversuchen und genomischen Vorhersagen mit einen Heritabilitatsindex, zur
Vorhersage geprufter Zuchtlinien in nicht-gepruften Jahren vereinfacht. Die daraus
resultierende genomisch gestiitzte Selektion flhrte letztlich zu einer Steigerung der
Vorhersagegenauigkeit um 20%, welche durch eine entsprechende Markerselektion sowohl
fir den Kornertrag (r = 0,48) als auch den Proteingehalt (r = 0,63) noch weiter gesteigert

werden konnte.

Auf Grundlage des enormen Vorteils der genomischen Selektion im Vergleich mit
herkdmmlicher phanotypischer Selektion hat die Erstere groRes Potential Weizenziichter
bei der Sortenentwicklung zu unterstiitzen um Kornertrag, Qualitat, Krankheitsresistenz
und Stresstoleranz  effektiver zu kombinieren. Die stetige Abnahme der
Genotypisierungskosten in den letzten Jahren macht es zudem mdglich genomische
Selektion auch in mittelstdandischen Zuchtbetrieben, wie in der vorliegenden Studie,
einzusetzen. Gleichwohl sich der optimale Einsatz von genomischer Selektion zwischen
verschiedenen Zuchtprogrammen unterscheiden mag, wirde ein entsprechende
Wissensaustausch sowohl zwischen dem 6ffentlichen als auch privaten Sektor mafigeblich
dazu beitragen das Ziel zu erreichen den Ertrag im Weizen und anderen Kulturarten bis

2050 zu verdoppeln.
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Introduction

Selection through the years

Wheat (Triticum aestivum L.) originated from the hybridization between the wild species
Triticum turgidum and Aegilops tauschii around 10,000 years ago (Salamini et al. 2002).
While T. turgidum itself is a hybrid between T.uratu and Ae.speltoides that are the original
sources of the A and B wheat genomes respectively (Marcussen et al. 2014), the
hybridization events with Ae.tauschii provided the D genome and resulted in the
allopolyploid nature of wheat we know today (Becker 2010). The domestication of wheat
took place in the Middle Eastern region known as the Fertile Crescent around ten thousand
years ago (Feuillet et al. 2008), where the early plant breeders were farmers who
genetically improved their landrace cultivars mostly by phenotypic mass selection for
desired traits like non-brittle rachis, non-shattering of seeds, free threshing, and increased
grain size (Murhpy 2007). The selection for these domestication traits improved the value
of cultivation and use of wheat and its allopolyploid nature provided furthermore a broad
adaptation to various growing environments, yet it took several thousand years before the
cultivation of wheat spread in the Mediterranean Sea, Western Europe and South-East Asia
beginning the near unparalleled success story of this crop (Harlan 1981).

Wheat is grown on 2.5 Billion hectares worldwide nowadays and the grain yield average
was more than doubled during the last hundred years to 3 t ha'! (FAOSTAT 2017) by
improved crop management practices in combination with modern plant breeding methods
and technologies. The basis for this development was laid by the beginning of scientific
plant breeding in the end of the 19" century when the introduction of new selection
methods like pedigree or bulk breeding largely replaced traditional mass selection. These
advances were stimulated and accompanied by a growing interest and knowledge base
concerning the inheritance of traits in plants, animals and humans among which the
rediscovery of the Mendelian rules (Mendel 1866) by Erich von Tschermak-Seysenegg,
Carl Correns and Hugo de Vries in 1900 constituted a milestone for the scientific

community. The biological basis of the Mendelian rules was deciphered soon afterwards by
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Walter Sutton who discovered the meiotic behaviour of the chromosomes (Sutton 1903),
and was pivotal for the working group of Thomas Hunt Morgan for creating the first
genetic maps. This ground breaking basic research focused strongly on qualitatively
inherited traits, while others complemented these studies and built the link to quantitatively
inherited traits by demonstrating the additive gene action as well as the influence of the
environment on such traits (Johannsen 1903; Nillson-Eihle 1909).

The mathematical description of inheritance promoted furthermore a rapid evolution of
population and quantitative genetics theory and found also great resonance in practical
applications in wheat breeding, together with biometric approaches for field trial testing of
new potential varieties. These developments led finally the foundation for the Green
Revolution beginning in the 1940s with the development of stem rust resistance and short-
strawed high yielding wheat varieties, the promotion of high agrochemical input such as
mineral fertilizers and plant protection agents. Although the Green Revolution had also
negative impacts such as the reduction of biodiversity in farmers” fields many people
benefitted from the developments and it is commonly accepted that it most likely prevented
a hunger crisis in South-East Asia (Becker 2010).

The doubling of wheat grain yield in the last hundred years showed the tremendous
progress that can be achieved with classical phenotypic selection and can be attributed to
the knowledge and experience of the many involved breeders world-wide. However, the
annual increase of grain yield in wheat and other crops feeding the world is currently
insufficient at the given rate of population growth and projection show that factors like
climate change, pests and diseases are hampering the goal of achieving another doubling of
yield needed until 2050 (Ray et al. 2013). Hence, the development and applications of new
technologies seems necessary to accelerate the genetic improvement of crop plants, and
with the advent of genomics two decades ago the usage of molecular markers became one
promising tool in helping to cope with the large challenges that agriculture is facing in the

21% century.
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QTL mapping and marker-assisted selection

The application of a molecular marker-assisted selection requires first of all the detection of
marker-trait associations, which is classically done by linkage mapping employing one or
several genotyped bi-parental populations. These populations usually consist of either of
recombinant inbred or doubled haploids lines in self-compatible plant species like wheat,
which have to be tested in multiple environments i.e. locations and years to obtain reliable
phenotypic data. The obtained phenotypic records can subsequently be connected with the
genotypic data using statistical genomic models such as simple or composite interval
mapping (Zeng 1993; Zeng 1994)to identify molecular markers that are putatively linked
with quantitative trait loci (QTL) influencing the respective trait of interest.

Nevertheless, creating such bi-parental mapping populations is often time-consuming and
the number of individuals within each population is limited, which is in most cases
hindering the precise mapping of QTL especially for traits with low or medium heritability
(Moreau et al. 1998; Melchinger et al. 2004). Another option for finding marker-trait
associations is thus the usage of genome-wide association mapping within a diverse panel
of genotypes (Yu et al. 2006; Kang et al. 2008; Kang et al. 2010; Zhang et al. 2010).
Genome-wide distributed markers are thereby tested individually for their significant
association with one or multiple traits exploiting linkage disequilibrium between markers
and the underlying QTL as well as ancient recombination within a target species
(Wirschum 2012). The latter often leads to a higher mapping resolution in comparison with
linkage mapping, and the usage of a diversity panel with current breeding material may
additionally allow the identification of marker-trait associations in germplasm that is more

relevant for an immediate deployment in applied plant breeding programs.

Although being theoretically very appealing, both linkage and disequilibrium mapping will
identify numerous false positive marker-trait associations especially the ones declared
significant near the detection threshold. Common strategies for dealing with this problem
are the introduction of stricter detection thresholds and accounting for family relationships
and a putative population structure in the mapping population e.g. by extending mixed

linear models used for genome-wide association mapping with an additional principal
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component effect (Kang et al. 2008; Stich et al. 2008). A major consideration for finding
interesting marker-trait associations is thus an appropriate balance between the false
positive and false negative rate, and the K-model that is modelling kinship between
individuals within the mapping population via a genetic relationship matrix is generally
recommended for achieving this purpose (Stich et al. 2008; Bernardo 2013). Aside from
specific experimental considerations, it is not feasible to detect low frequency alleles with
genome-wide association mapping, which though are of special interest to breeders, and
many studies merely validated already known QTL (Bernardo 2016a). Linkage mapping
with bi-parental populations has a higher chance to find such rare variants (Bernardo
2016a), while de novo found marker-trait associations should be validated in a different
genetic background i.e. a validation population that is independent from the discovery
population, before the markers can be deployed in a breeding program and used for a
routine marker-assisted selection to select genotypes with the desired combination of alleles
at several loci. Simulations showed furthermore a large benefit of integrating marker-
assisted selection into breeding programs (Knapp 1998; Lande and Thompson 1998;
Moreau et al. 1998), empirical studies showed however that previous reported QTL effects
were strongly overestimated when markers were retested in larger validation populations

and different genetic background (Melchinger et al. 2004).

Epistatic interactions between loci and marker by environment interaction might
additionally reduce the potential of candidate markers for a routine implementation. Hence,
there are few successful applications of marker-assisted selection strategies (Kuchel et al.
2007; Bernardo 2008) but they can have a large merit if a marker is associated with a major
QTL for a trait of high agronomic value (Miedaner 2011). Prominent examples are markers
linked with barley yellow mosaic virus resistance genes in European barley germplasm
(Werner et al. 2005) or marker-assisted selection for fusarium head blight resistance
conferred by the major QTL Fhbl in Northern American wheat breeding programs (Steiner
et al. 2017) where this fungal disease has a very high economic impact. Screening for such
major QTL in wheat might also include the Ppd photoperiodic sensitivity loci for flowering
date (Beales et al. 2007), the Rht dwarfing genes for plant height (Knopf et al. 2008), and
the Glu loci for baking quality (Payne 1987) though these are often undertaken only for

genotypes that are used as crossing paretnts in breeding programs. The latter mentioned
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markers that are associated with the composition of high molecular weight subunit
composition at the Glu-1 and Glu-3 loci might also serve for predicting laborious to
phenotype baking quality traits, however complementing small-scale test are often

necessary to achieve a high prediction accuracy (Oury et al. 2010).

The strategy of marker-assisted selection to target mostly single QTL or genes of high
interest is especially valuable when breeding for qualitative inherited traits, most traits in
wheat breeding are however quantitatively inherited and controlled by many QTL with
minor to medium effects. Indirect phenotypic selection is thus more often applied in wheat
breeding programs even when major QTL are known e.g. when selecting for baking quality
in wheat by using the highly heritable protein content or sedimentation values instead of
single marker assays, although the many underlying major QTL for gliadin and glutenin
and associated markers are known since the early 1990s (Payne 1987; Rogers et al. 1989).
An additional issue were high genotyping costs that hampered a broad application of a
marker-assisted selection strategy useful in the past, but in recent years genotyping costs
have strongly declined due to advances in next-generation sequencing technologies making
it nowadays economically feasible to a genotype large number of individuals every year
with a high marker density covering the entire genome (Elshire et al. 2011; Poland et al.
2012b; Heslot et al. 2013b).

A hitchhiker’s guide to genomic selection

The exploitation of genome-wide distributed markers for assessing breeding values of
selection candidates has originally been suggested by Meuwissen et al. (2001), who
concluded that the usage of such genomic breeding values could substantially accelerate the
rate of genetic improvement in both plant and animal breeding. The basic methodology of
such a genomic selection approach is relatively simple, which led to its tremendous success
in animal breeding (Hayes et al. 2009; Garcia-Ruiz et al. 2016), and in recent years

numerous studies have investigated the merit of introducing this procedure also for a
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routine application in plant breeding programs (Heffner et al. 2011a; Windhausen et al.
2012; Crossa et al. 2014; Lehermeier et al. 2014).

Firstly, a training population of thoroughly phenotyped individuals must be genotyped with
a large number of genome-wide distributed markers. This training population is
subsequently used to fit prediction models employing the marker genotypes as explanatory
variables (Heffner et al. 2009; Jannink et al. 2010). These prediction models can
subsequently be used to estimate genomic breeding values for genotyped selection
candidates of whom no phenotypic information about major agronomic traits like grain
yield is available yet by summing across all their estimated marker effects (Jannink et al.
2010). The genomic breeding values can in this way support breeders in their selection
decisions, by providing them in earlier phases of variety development with more
information about their breeding material at hand. A critical issue is thereby the reliability
of this additional information for each selection candidate (Clark et al. 2012) that is closely
linked to the prediction accuracy (He et al. 2016b). The latter is generally measured by the
correlation between the observed and predicted genotype performance; as the observed
genotype performance can only be determined after selection in the next growing session
many scientific studies as well as practical users simulate a genomic selection using
different cross-validation schemes in order to test the prediction models before
recommending them to breeders. Classically a larger part e.g. 80% of the genotypes in a
given dataset are thereby sampled into a training population that is used to fit genomic
selection models for predicting a validation population of left-out genotypes, of whom the
available phenotypic data is masked. The prediction accuracy can in this way be estimated
as the correlation between observed and predicted performance in the validation population,
which might be divided by the square root of the heritability (Dekkers 2007) for measuring
the proportion of maximal achieved prediction accuracy in comparison to conventional
phenotypic selection (Bernal-Vasquez and Mdohring 2014). The above-described algorithm
is usually repeated several hundred times with varying training by validation population
combinations and sometimes different sampling strategies in order to correct to
confounding effects with genotype by environment interaction, population structure, and
family relationships (Windhausen et al. 2012; Ly et al. 2013; Storlie and Charmet 2013;
Albrecht et al. 2014; Lehermeier et al. 2014).

16



The two latter are a major driving force for obtaining a high prediction accuracy, of which
an important portion can be attributed to family differences (Windhausen et al. 2012;
Warschum et al. 2017), whereas relatedness among genotypes can even be more important
than actual targeting marker-trait associations (Habier et al. 2013; He et al. 2016a). Early
research that focused on increasing the prediction accuracy assumed on the other hand that
the genome-wide distributed markers used for genomic selection are for a large part in
linkage disequilibrium with minor to major QTL and numerous models were developed
with varying assumptions about the underlying genetic architecture (Heslot et al. 2012).
Bayesian models assumed e.g. unique variances for each marker and some extensions like
the BayesB selected markers by assigning zero variance to them, which aimed to estimate
effects of major QTL more accurate (Heffner et al. 2009). However, at least in wheat
breeding scenarios the Bayesian models did not give an advantage over frequentistic
approaches (Heffner et al. 2011a; Heffner et al. 2011b; Rutkoski et al. 2012; Liu et al.
2016; He et al. 2016b; Moore et al. 2017) like the ridge-regression best linear unbiased
prediction (RR-BLUP) or its equivalent the genomic best linear unbiased prediction (G-
BLUP) (VanRaden 2008; Piepho 2009).

Further possibilities for estimating genomic breeding values are the usage models with
different weighting or selection of markers i.e. predictor variables like heteroscedastic ridge
regression (Shen et al. 2013; Hofheinz and Frisch 2014) and BayesC (Pérez and de los
Campos 2010), non-parametric models from the machine learning methodology (Ogutu et
al. 2011; Ogutu et al. 2012), and kernel methods like the Reproducing Kernel Hilbert Space
(RHKS) (de los Campos et al. 2010; Crossa et al. 2014). Although substantial effort was
put into developing these models a comparison of different datasets from several studies
revealed that all models show on average the same performance (Heslot et al. 2012), and
advantages of specific models are often differences often depending on traits and dataset
specific properties (Arruda et al. 2015; Tayeh et al. 2015; Battenfield et al. 2016; Spindel et
al. 2016). Hence, the basic G-BLUP has gained the largest popularity as a computational
fast and robust method for most practical applications of genomic selection, and quite some

research focused on its extensions to further increase the prediction accuracy.
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One of these possibilities that was especially interesting for product development in line
breeding is the modelling of additive x additive epistatic effects by including an additional
epistatic relationship matrix into the prediction model (Jiang and Reif 2015). This extended
genomic best linear unbiased prediction (EG-BLUP) has shown some potential to improve
the prediction accuracy for both disease resistance and grain yield compared to the baseline
G-BLUP model (Jiang and Reif 2015; Mirdita et al. 2015; He et al. 2016a; He et al. 2016b).
Using prior biological information by modelling known major QTL as fixed effects into
prediction models has turned out to be another valuable option for improving the G-BLUP
model (Bernardo 2014a; Zhao et al. 2014). The upweighting of specific markers in this
weighted best linear unbiased prediction (W-BLUP) (Zhao et al. 2014) has shown some
merit in several empirical studies (Arruda et al. 2016; Boeven et al. 2016; Losert et al.
2016; Juliana et al. 2017; Moore et al. 2017), verifying simulations that suggested an
advantage of this method if the underlying QTL explained more than 10% of the genetic
variance (Bernardo 2014a). The idea was extended by Spindel et al. (2016) who employed
de novo found marker-trait association that were identified by GWAS in order to increase
the prediction accuracy of highly heritable traits like flowering date in rice. However,
significant marker-traits associations for low heritable traits like grain yield are often not
repeatable across years even in large mapping populations (He et al. 2016a), and modelling
them as fixed effects might thus introducing an error putatively decreasing the prediction
accuracy (Michel et al. 2017a). Nevertheless, several major QTL that have already been
validated in different genetic backgrounds underpinning important traits in wheat breeding
can readily be targeted with single-marker assays (Rasheed et al. 2016), and model
prediction accuracy might benefit by integrating them into the genomic selection
framework thereby effectively using the experience and information gained in numerous

QTL mapping studies during the last decade.

An important driving force in precision of these QTL mapping studies was the trait
heritability, and in genomic selection this is likewise one of the major entry points that can
be influenced by breeders for increasing the prediction accuracy (Lorenz 2013;
Riedelsheimer and Melchinger 2013; Longin et al. 2014; Marulanda et al. 2016). Testing in
a larger number of trial locations is thereby a more appropriate strategy for enhancing the

data quality than increasing the number of replicates per location given the same available
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resources (Mohring et al. 2014), due to capturing a larger proportion of the genotype by
environment interaction and thus a higher correlation between the observed and true
breeding value of the selection candidates in such multi-environment trials. The data
quality of individual trials could be improved by using a sophisticated trial design that
enables corrections for spatial trends in the field and at the same time reducing the number
of replicates to spare phenotyping costs and enable testing in multiple locations (Cullis et
al. 2006; Williams et al. 2011) given an optimal resource allocation (Lorenz 2013;
Riedelsheimer and Melchinger 2013; Kleinknecht et al. 2016). The possibility to correct for
spatial trends by moving averages or spatial models with according variance-covariance
structures can furthermore improve the data quality from individual trials (Leiser et al.
2012; Lado et al. 2013; Bernal-Vasquez and Mohring 2014) and for all subsequent
downstream analysis, which is a major prerequisite for applying genomic selection where
the choice of environments can markedly influence the prediction accuracy (Heslot et al.
2013a).

The size and the composition of the training population tested within these environments is
yet another consideration that might influence the success of genomic selection in a
breeding program (Neyhart et al. 2017). An increase in training population size is
commonly accepted to increase the average and stability of the prediction accuracy (Lorenz
et al. 2012; Lund et al. 2016; Nielsen et al. 2016), however different approaches were
previously proposed for an optimal training population design among others the CDmean
(Rincent et al. 2012) that aims to minimize the prediction error variance while retaining
genetic diversity and an extension with stratified sampling taking the structure of the entire
population of a breeding program into account (Isidro et al. 2015). One major aim of these
criterion-based training population design strategies is the uniform coverage of the target
genetic space (Bustos-Korts et al. 2016), while (Marulanda et al. 2015) showed that the
main influence at least in bi-parental populations is the total phenotypic variance to capture

the effects of all QTL segregating within such a population.

Given the methods for deriving high quality phenotypic and genotypic data as well as
computational fast and robust tools for estimation genomic breeding values, genomic

selection has shown great promise for accelerating the genetic improvement of crops within
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all variety categories (Schnell 1982) such as clones (Ly et al. 2013; Habyarimana et al.
2017), population cultivars (Annicchiarico et al. 2015; Grinberg Nastasiya et al. 2016),
hybrids (Ziyomo and Bernardo 2013; Albrecht et al. 2014; Auinger et al. 2016; Philipp et
al. 2016) and lines (Jarquin et al. 2014b; Sallam et al. 2015; Spindel et al. 2015; Lado et al.
2016; He et al. 2016b; Duhnen et al. 2017). A pivotal consideration for the actual
implementation of genomic selection into a breeding program is its accuracy when
predicting across several years and in different genetic backgrounds. Wheat breeders are
e.g. interested in being informed about the future performance of their selection candidates,
which is tough complicated by genotype by environment interaction and according changes
in the ranking of genotypes across locations and years (Lynch and Walsh 1998). A
convenient option for handling these issues are finding repeatable patterns of genotype by
environment interaction and breed for specific adaptation to so-called mega-environments
(Atlin et al. 2000; Annicchiarico et al. 2005; Piepho and Moéhring 2005). Using genomic
selection in this framework did however result in hardly any benefit in prediction accuracy
(Dawson et al. 2013; Lado et al. 2016) as the effect of changing weather conditions across
years is often predominant and hardly predictable. Several studies tried thus to handle
genotype by environment interaction by using environmental covariates and crop growth
models (Heslot et al. 2014; Jarquin et al. 2014a; Cooper et al. 2016), which revealed even
for the difficult task to predict the performance of untested genotypes within yet untested
environments a small advantage. The underlying environmental covariates have though be
assessed by thoroughly environtyping and the underlying models are often computational
demanding but can deliver valuable information concerning the product placement of

newly developed varieties within fitting target regions.

A more simplistic approach regards genotype performance in different environments as
different correlated traits (Lynch and Walsh 1998) by modelling genotype by environment
interaction similar to a multivariate model including a genomic relationship matrix
(Burguefio et al. 2007; Schulz-Streeck et al. 2013). Implicitly modelling marker by
environment in this way did not reveal an appreciable increase in accuracy when predicting
untested genotypes in untested environments (Schulz-Streeck et al. 2013; Lopez-Cruz et al.
2015) but showed a substantial merit for predicting the performance of genotypes for field

trials in which they were not included (Lopez-Cruz et al. 2015; Crossa et al. 2016; Cuevas
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et al. 2016; Pérez-Rodriguez et al. 2017). Hence, the usage of prior information about line
performance in different environments seems worthwhile and further extension could
include vegetation indices obtained from high-throughput phenotyping (HTP) platforms.
They might be promising to deliver secondary correlated traits if grain yield cannot be
measured directly, as is the case in very early generations of line breeding schemes
(Rutkoski et al. 2016). The usefulness of multivariate models with secondary traits
generally depends on their heritability and genetic correlation with the target trait (Bauer
and Léon 2008; Jia and Jannink 2012), and the additional information can strongly increase
the prediction accuracy in cases where information of the secondary trait is already
available (Jia and Jannink 2012) e.g. for predicting baking quality associated dough
rheology in wheat, where high quality phenotypic data for the protein content is much
earlier available in the variety development process than e.g. dough rheological parameters
(Michel et al. 2017a). Summing up, the usage of additional information coming either from
prior knowledge of trait genetic architecture, correlated secondary traits or environments
have the potential to increase prediction accuracy in various genomic selection applications.
The primary requirements for the resulting prediction model are easy implementation,
robustness, and computational efficiency in order to cope with the large training and

selection populations in applied plant breeding programs.

Implementing genomic selection into a line breeding program

The first choice that a breeder must make when implementing genomic selection in his or
her breeding program is currently the usage of a classical chip-based system versus
genotyping-by-sequencing (GBS) for genotyping the breeding population. The latter uses
methylation sensitive enzymes for complexity reduction thereby increasing the efficiency
of sequencing by eliminating repetitive genome regions (Elshire et al. 2011), and has been
successfully applied in numerous plant species for identifying single nucleotide
polymorphisms (SNPs) (Poland et al. 2012a; Poland et al. 2012b). A couple of years ago,
the costs of genotyping with GBS were significantly lower than for a chip-based system,

however the costs for the latter technology have meanwhile strongly declined especially for
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major crops like wheat. This makes chip-based systems nowadays a reasonable alternative
for routine genotyping of the many selection candidates every year for conducting genomic
selection. Furthermore, breeders might prefer such a ‘key-lock-system’ with a
representative set of SNP markers, some of them with prior known linkage to major QTL
for important agronomic traits. Nevertheless, the deployment of a GBS-based routine for
genotyping is still cheaper and it does have a smaller ascertainment bias than chips, where
SNP markers with intermediate allele frequency will be overrepresented (Heslot et al.
2013b). While obtaining many genome-wide distributed markers that are rather a random
sample of polymorphism in a breeding population (Elshire et al. 2011; Heslot et al. 2013b)
the derived markers matrix contains usually lot of missing data points warranting further

imputation (Huang et al. 2014).

Once a decision concerning the marker system is reached a breeder has to determine at
which stage in his or her breeding program genomic selection should be implemented. Line
breeding programs that are based on doubled haploids (DH) e.g. many barley breeding
programs in Western Europe could genotype a broad population shortly after DH
production and pre-select the most promising lines with regard to grain yield and quality
for seed multiplication and subsequent yield trials by genomic selection (Longin et al.
2014). The pedigree method is on the other hand more prominent for breeding durum and
bread wheat cultivars and genotyping is more likely to be conducted with more
homozygous breeding lines after several generations of head row selection. Accordingly,
the main application of genomic selection in line breeding is until now to support breeders
in their decisions which subpopulation of lines from their selection candidates are advanced
for further testing in multi-environment trials (Heffner et al. 2010; Spindel et al. 2015;
Guzman et al. 2016; Marulanda et al. 2016). This decision is of foremost importance in the
development of new line varieties as multi-environment trials are costly and resource-
demanding and merely the best selection candidates should preferably enter this testing
stage. Genomic selection is for this reason currently often implemented in parallel to
preliminary yield trials in line breeding programs. Hence, breeders might consider the
replacement of traditional preliminary vyield trials by genomic selection to spare
phenotyping costs or even choose to integrate these trials into the genomic selection

framework, as they deliver a first insight into the future performance of the putative varietal
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candidates (Endelman et al. 2014). Employing the example of an applied winter wheat
breeding program the aims of this study were thus (i) to assess the accuracy of genomic
breeding values of non-phenotyped breeding lines to genomically select them for grain
yield, protein content and protein yield across yet untested years, (ii) compare conventional
phenotypic selection with various genomic selection approaches, and (iii) integrating
phenotypic information from preliminary yield trials into the genomic selection framework

for enhancing line breeding schemes in general.
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Abstract

Key message We evaluated genomic selection across
five breeding cycles of bread wheat breeding. Bias of
within-cycle cross-validation and methods for improv-
ing the prediction accuracy were assessed.

Abstract  The prospect of genomic selection has been fre-
quently shown by cross-validation studies using the same
genetic material across multiple environments, but stud-
ies investigating genomic selection across multiple breed-
ing cycles in applied bread wheat breeding are lacking.
We estimated the prediction accuracy of grain yield, pro-
tein content and protein yield of 659 inbred lines across
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five independent breeding cycles and assessed the bias of
within-cycle cross-validation. We investigated the influ-
ence of outliers on the prediction accuracy and predicted
protein yield by its components traits. A high average herit-
ability was estimated for protein content, followed by grain
yield and protein yield. The bias of the prediction accuracy
using populations from individual cycles using fivefold
cross-validation was accordingly substantial for protein
yield (17-712 %) and less pronounced for protein content
(8-86 %). Cross-validation using the cycles as folds aimed
to avoid this bias and reached a maximum prediction accu-
racy of rgs = 0.51 for protein content, rgs = 0.38 for grain
yield and rgs = 0.16 for protein yield. Dropping outlier
cycles increased the prediction accuracy of grain yield to
rgs = 0.41 as estimated by cross-validation, while dropping
outlier environments did not have a significant effect on
the prediction accuracy. Independent validation suggests,
on the other hand, that careful consideration is necessary
before an outlier correction is undertaken, which removes
lines from the training population. Predicting protein yield
by multiplying genomic estimated breeding values of grain
yield and protein content raised the prediction accuracy to
rgs = 0.19 for this derived trait.

Introduction

Originally suggested by Meuwissen et al. (2001), genomic
selection showed great promise to strongly increase the rate
of genetic improvement in both animal and plant breeding
programs. This new method allowed a comparative larger
gain from selection by estimating all marker effects simul-
taneously and subsequent selection of genetically supe-
rior individuals based on their genomic estimated breed-
ing value (GEBV) (Bernardo and Yu 2007; Piyasatian
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et al. 2007), instead of using a few significant markers as
in classical marker-assisted selection (Lande and Thomp-
son 1990). Genomic selection was readily integrated into
applied animal breeding programs due to a high accuracy
of breeding values and a previously existing similar system,
which employed pedigree instead of marker information
(VanRaden 2008; Hayes et al. 2009). Notwithstanding, the
relative simple methodology made genomic selection also
interesting for applied plant breeding: a training popula-
tion of phenotyped and genotyped individuals is utilized to
establish a statistical model that predicts breeding values
of non-phenotyped individuals from a selection or valida-
tion population by their genomic fingerprints (Heffner et al.
2009; Jannink et al. 2010).

Although methodologically simple the sparse knowl-
edge about its functionality made it initially difficult to
find starting points for increasing the prediction accuracy.
Theoretical studies thus laid the foundation for optimizing
breeding with genomic selection by trying to understand
the underlying mechanics of this ‘green box’ approach.
The driving forces of prediction accuracy that can be
most readily influenced by plant breeders are the train-
ing population size and heritability (Muir 2007; Hayes
et al. 2009), by adequately adjusting the resource alloca-
tion (Riedelsheimer and Melchinger 2013; Longin et al.
2015). Recent advances in sequencing technologies made
it possible to apply cost effective genotyping methods such
as genotyping-by-sequencing (GBS) in various crop spe-
cies (Elshire et al. 2011; Poland et al. 2012; Huang et al.
2014) yielding an appropriate large number of markers for
genomic selection (Hayes et al. 2009; Schulz-Streeck et al.
2011). The use of dense genome-wide markers increases
the chance of markers being in linkage disequilibrium (LD)
with QTL influencing the trait of interest (e.g. Meuwis-
sen et al. 2001), and determines to some extent how well
genetic relationship and genetic architecture are captured
by the genomic selection model (Daetwyler et al. 2010;
Heslot et al. 2013a). The importance of a close genetic
relationship between training and validation populations to
achieve a high prediction accuracy (Habier et al. 2013) has
been verified numerous times in plant breeding studies, e.g.
with sugar beet (Wiirschum et al. 2013); rapeseed (Wiir-
schum et al. 2014), maize (Zhao et al. 2012; Riedelsheimer
et al. 2013; Albrecht et al. 2014; Lehermeier et al. 2014),
and wheat (Charmet et al. 2014; Crossa et al. 2014), which
motivated investigations for an optimal training population
construction to reduce phenotyping costs (Rincent et al.
2012; Isidro et al. 2015).

Summing up, valuable insights into genomic selection
have been gained in relative short time opening up numer-
ous possibilities for its implementation into the frame-
work of plant breeding (Heslot et al. 2015). Notwithstand-
ing, most studies were conducted with the same genetic
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material across multiple environments or made use of his-
torical phenotypic data (Dawson et al. 2013; Storlie and
Charmet 2013; Ly et al. 2013; Rutkoski et al. 2015), while
few have focused on the problem of predicting across
breeding cycles in applied plant breeding programs. This
issue was addressed for the first time in sugar beet breed-
ing, where genomic selection showed great promise across
two subsequent breeding cycles especially for highly herit-
able traits (Hofheinz et al. 2012). A population of paren-
tal lines was employed to predict GEBVs for five succes-
sive years in a recent study with six-row barley by Sallam
et al. (2015), who reported varying degrees of prediction
accuracy depending both on the progeny set and trait. We
are not aware of any studies investigating genomic selec-
tion across multiple breeding cycles in applied bread
wheat breeding; thus the objectives of this study were (1)
to estimate the accuracy when predicting grain yield, pro-
tein content and protein yield of wheat inbred lines across
multiple independent breeding cycles; (2) compare within-
cycle and between-cycle prediction accuracy obtained
from different cross-validation schemes; and (3) investi-
gate model independent possibilities to increase the pre-
diction accuracy.

Materials and methods
Plant material and phenotypic data

We analyzed five breeding cycles from a commercial
winter wheat (Triticum aestivum L.) breeding program,
where breeding cycles correspond to the different starting
years. A total of 659 genotyped lines from multiple fami-
lies, either F,. or directly derived by the double haploid
method, were tested in multi-environment trials from 2010
to 2014. A balanced subset of trial locations was selected
for evaluating the merit of genomic selection across mul-
tiple breeding cycles. Within each breeding cycles a differ-
ent set of 64—176 lines was tested orthogonally across all
trial locations. Grain yield (dt ha™'), protein content (%)
and protein yield (dt ha™') were assessed in 2-8 trials per
breeding cycles. Protein content was determined by near
infrared spectroscopy (NIRS) directly at harvest and pro-
tein yield was derived by multiplication of grain yield and
protein content on a plot basis. An additional independent
set of 178 genotyped lines from the same breeding popula-
tion was tested in 2015 employing the same phenotyping
procedure as in 2010-2014. Trial locations spanned from
Austria over Serbia, Croatia, Hungary, and Romania to the
Central Anatolian High Plateau in Turkey, thus covering a
large diversity of target environments. Trials were designed
according to the standard procedure in plant breeding,
where non-replicated earlier generation lines are tested
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along with replicated checks, which allowed correcting for
spatial field trends and estimation of error variances.

Phenotypic analysis

We followed a two-stage analysis strategy of the pheno-
typic data, where each individual trial, i.e. location by
breeding cycle combination was analyzed separately in the
first stage. A baseline model without correction for spa-
tial trend was compared by Akaike’s Information Crite-
rion (AIC) with models correcting for row and/or column
effects, if feasible an autoregressive variance—covariance
structure of the residuals was additionally integrated (Bur-
gueno et al. 2000). The model with the smallest AIC was
chosen to derive best linear unbiased estimates (BLUE) for
each trial. The heritability was computed as suggested by
Piepho and Mohring (2007) by h* = 03/(0g + sMVD),
where 0(2; designates the genetic variance and MVD the
mean variance of a difference of the BLUEs. The analysis
at the first stage contained both checks and genotyped lines.

We retained only trials with a heritability larger than 0.3
and genotyped lines for the analysis across trials at the sec-
ond stage. A linear mixed model of the form

Yij =K+ g+ 1+ ghjte (1)

was fitted for all traits, where yj; are the BLUEs from the
first stage, p is the grand mean, and g; is the effect of the
ith inbred line. The effect of the jth trial ¢ was fixed, while
the line by trial interaction effect gfij was random. The
inverse of the squared standard errors of the means derived
from the first stage of analysis were used as weights in this
stage to take the varying accuracy of phenotypic records
into account (Mohring and Piepho 2009). The residual
variance was fixed to 1 for grain yield and 0.1 for protein
content and protein yield, which allowed the separation of
residual and line by trial interaction variances. Heritabil-
ity estimates across trials were computed using the stand-
ard formula h? = O'é/ (O‘é + t_laéT), dividing the line by
trial interaction variance o by the number of trials t. All
phenotypic analyses were conducted using the statistical
package ASReml 3 (VSN International 2015) for the R pro-
gramming environment (R development core team 2015).

Genotypic data

Leaves for DNA extraction were sampled from F,.5 plants
in small observation plots after phenotypic pre-selection
during early summer. DNA was extracted following the
protocol by Saghai-Maroof et al. (1984). All 659 lines
were genotyped with approximately 20 K SNP markers
using the DarT genotyping-by-sequencing (GBS) approach
(Diversity Array Technologies, 2015). Quality control was
applied by filtering out markers with a call rate lower than

90 %, a minor allele frequency smaller than 0.05, and more
than 10 % of missing data. Missing data of the remaining
9.5K SNP markers was imputed by the MVN-EM algo-
rithm by Poland et al. (2012) which was specially designed
for the use of GBS markers.

Genomic selection and genetic relationship

Genomic predictions of inbred lines were estimated using
a ridge regression best linear unbiased prediction (RR-
BLUP) model:

y=Xb+Zu+e 2)

where y is an N x 1 vector of BLUEs obtained in the pheno-
typic analysis, b is a vector of F fixed effects and X its corre-
sponding N x F design matrix. Z is a N x M matrix, which
coded the M markers as either +1 or —1 for homozygous
loci and O for heterozygous loci. Random marker effects
were assumed to follow a normal distribution u ~ N (0, 103)
and equally shrunken towards zero given the penalty param-
eter 12 = 062 /cru2 where aez is the variance of the residuals
which followed e ~ N (0, Icrez). The kinship between lines
was estimated by the genomic relationship matrix, which
was computed according to Endelman and Jannick (2012):

K =WW' 25 — Dp (3)

where W is a centered N x M marker matrix of the i lines
with Wi = Zjx — 2py and py being the allele frequency
at the kth locus. The derived variance—covariance matrix
was used to fit a genomic best linear unbiased prediction
(G-BLUP) model:

y=Xb+g+e 4)

where g is an N x 1 vector of genotypic effects with
g~ N(, Kaé). Model (4) has been shown to be equiva-
lent to (2) (VanRaden 2008; Piepho 2009) and allowed
estimating the accuracy of each individual line by

I'PEV = 1—(PEV/Giiaé) where PEV is the predic-

tion error variance, 0(2; the genetic variance explained by
the model and Gj; is the diagonal element of the genomic
relationship matrix for each line i (Clark et al. 2012). All
models for genomic selection were implemented with the R
package rrBLUP (Endelman 2011).

Validation and accuracy

At first we estimated the correlation between the accuracy
of each individual line rpgy and the genetic relationship to
investigate this important driving force of prediction accu-
racy across several cycles of wheat breeding. The average
genetic relationship of the most related lines from the train-
ing population was computed for each line in the validation
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population and correlated with rpgy. The number of most
related lines was varied between 1 and 500, and one breed-
ing cycle was left out at a time using all other breed-
ing cycles as training population. A fixed year effect was
included into model (4) to account for the different yield
levels of the studied breeding cycles. Prediction accuracy
is generally defined as the Pearson correlation between pre-
dicted and true breeding values rvt = rGesv TBV- The true
breeding values were unknown in our study; so we esti-
mated prediction accuracy as the correlation between pre-
dicted and observed line performance rgs = 'GEBV,BLUE-
Across-cycle prediction accuracy was subsequently
assessed by computing marker effect estimates with the
RR-BLUP model of all possible pair-wise training and vali-
dation population combinations of the five breeding cycles.
Three cross-validation schemes each with fivefolds and 100
replicates were employed to cover different aspects of the
prediction accuracy rgs:

1. Within-cycle prediction accuracy was computed by
randomly dividing the data into equally sized folds
using 80 % of lines within each breeding cycle as a
training population and subsequent prediction of the
left-out fold. This procedure was repeated for every
fold and the resulting prediction accuracy was aver-
aged for each of the 100 replicates.

2. The same training populations as in the within-cycle
cross-validation were used to separately predict lines
of each other breeding cycle. The average prediction
accuracy was saved and utilized to estimate the bias of
within-cycle versus between-cycle cross-validation.

3. Fivefold cross-validation, where the breeding cycles
constituted the folds, was used to estimate the predic-
tion accuracy across cycles. An equal number of lines
were randomly sampled from each breeding cycle,
simulating a breeding scenario where training popu-
lations for genomic selection models are an assembly
of several mixed populations from multiple breed-
ing cycles. Training population sizes varied between
16 and 256 lines. An additional fixed year effect was
added to model (2) in order to account for the different
yield and protein levels in 2010 to 2014.

Furthermore we studied two possibilities for increas-
ing the prediction accuracy across breeding cycles. First
outliers were identified by approximating the genetic cor-
relation among environments by their pair-wise predic-
tion accuracies (Heslot et al. 2013b), and breeding cycles
or trials with a strongly deviating character were dropped
from the training population. The influence of these outliers
was subsequently investigated by comparing the prediction
accuracy with the full and outlier corrected dataset, using
the same across-cycle cross-validation approach as before.

@ Springer

Training population size was kept constant by randomly
choosing additional lines from each remaining breeding
cycle in the outlier corrected cross-validation. In addition
to cross-validation, the 178 lines from 2015 served as an
independent validation population and were predicted by
estimated marker effects using either the full or outlier cor-
rected dataset.

Finally we investigated the possibility to increase the
prediction accuracy of the derived trait protein yield by
multiplying GEBVs of its component traits grain yield and
protein yield. The prediction accuracy was estimated by
the above described across-cycle cross-validation approach
with 100 replicates for each training population size.

Results
Quantitative-genetic parameters

The plant material was tested in a broad spectrum of envi-
ronments ranging from the Pannonian Basin to the Central
Anatolian High Plateau. Despite the expected large geno-
type by environments interaction we observed a medium
to high heritability in each individual breeding cycle for
grain yield and protein content (Table 1). A relatively large
number of trials having at least a heritability larger than
0.3 were pre-selected for this study to achieve valid and
robust results. The excellent data quality was also reflected
by the medium to high heritability for protein yield in
all but one breeding cycle. Estimates of heritability were
lower for protein yield than grain yield except for 2013,
where it was 26 % larger. The protein content had on aver-
age the highest heritability followed by grain yield and
protein yield.

Genetic relationship and prediction accuracy
of genomic selection

The correlation between accuracy of each individual line
and the genetic relationship was strongly dependent on the
number of most related lines and the respective validation
population (Fig. S1). Optimal correlations for grain yield
were achieved using the 11-133 most related lines, while
choosing the 70 most related lines led to significant corre-
lations larger than » = 0.80 for all validation populations.
Similar patterns were observed for protein content and pro-
tein yield. The average of the top 70 genetic relationship
between lines range from 0.08 to 0.14 within the years, and
was smaller between years with an overall average genetic
correlation of 0.07 (Fig. S2).

Within-cycle prediction accuracy was compared to
between-cycle prediction accuracy by fivefold cross-val-
idation utilizing the same training populations for each
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Table 1 Mean, varifmc? . Trait Parameter Breeding cycles
components and heritability for
grain yield (dt ha 1), protein 2010 2011 2012 2013 2014
content (%) and protein yield
(dt ha™") of genotyped lines Grain yield Trials 5 6 4 S 8
across all trials in the respective o 228+1.28 460160 503+125 6.64+1.76 37.00+4.71
Bt 20201 o 2370+ 183 23.67+£199 1780+ 121 4098+236 54.48+2.26
" 0.32 0.54 0.53 0.45 0.84
Protein content  Trials 4 2 3 4 2
o 0.23+0.05 0.18+0.05 0.35+0.05 037+0.06 0.33+0.09
ot 036+0.04 0.07+0.03 027+003 0.65+0.05 0.65=+0.08
" 0.72 0.84 0.80 0.69 0.50
Protein yield Trials 4 2 4 4 3
o 0.04+£0.03 0.03+0.07 0.05+002 026+£0.05 0.76+0.14
oy 0.41£0.04 038+£0.09 034+003 0.69+0.05 1.30=£0.11
" 0.30 0.14 0.37 0.60 0.64
Lines 94 64 165 160 176

Genotypic variance (0(23), genotype by trial interaction variance (aér), and heritability (h°)

Fig. 1 Bias of the within- cycle

prediction accuracy in com- 800 Grain yield
parison with the between-cycle 750 1 Protei
prediction accuracy for grain 700 - mte!n cpntent
yield, protein content and pro- 650 - Protein yield

tein yield and using lines from
the years 2010-2014 as training
populations

Bias in prediction accuracy (%)

2010

cross-validation scheme. A strong upward bias of within-
cycle prediction accuracy was observed for 10 out of 15
traits by cycle combinations and was less than 25 % in
four instances (Fig. 1). The bias was especially pro-
nounced for 2014, where the predictive ability of grain
yield was overestimated by 130 % and even more for pro-
tein yield by 344 %. Protein yield had overall the largest
bias ranging from 17 % up to 712 %, while the prediction
accuracy of protein content was maximally overestimated
by 86 %. Within-cycle cross-validation underestimated
the prediction accuracy for grain yield by 47 % merely in
one case.

2011 2012 2013 2014
Breeding Cycle

The intention behind using the breeding cycles as
folds in a fivefold cross-validation was the avoidance
of this bias when estimating the prediction accuracy.
Sampling an equal number of lines from each breed-
ing cycle furthermore aimed to avoid a confounding
effect between training population sizes and breeding
cycle. According to expectation the prediction accuracy
increased with the number of lines in the training popu-
lation (Fig. S3). A maximum was reached for a training
population size of 240 lines at rgs = 0.51 for protein
content, rgs = 0.38 for grain yield and rgs = 0.16 for
protein yield.
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cross-validation on the diagonal

Fig. 3 Influence of removing
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Outlier correction and estimation of derived traits

Pair-wise prediction accuracies furthermore provided an
approximation of the genetic correlation between breeding
cycles. It was assumed that a breeding cycle with an overall
low predictive ability also had a low value of representa-
tiveness for the breeding program across several breeding
cycles, and was thus considered an outlier. The breeding
cycle 2012 clearly presents itself as such an outlier with
regard to grain yield. It achieved on average a much lower
prediction accuracy when utilized as a training population

@ Springer

(rgs = 0.26) in comparison with all other breeding cycles
(rgs = 0.36) (Fig. 2). Although the heritability was rela-
tively high for 2012, the phenotypic data was most likely
strongly influenced by frost damage and drought stress in
some trials. The low predictability and prediction accuracy
furthermore identified the breeding cycle 2011 as an outlier
for protein yield.

The influence of these outliers was investigated by
omitting the above described breeding cycles when select-
ing lines for the training population. Using this approach,
the prediction accuracy of protein yield increased from
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Fig. 4 Proportion of correctly selected lines when applying genomic selection for grain yield of either the best or worst lines in the independent

validation population of the year 2015

rgs = 0.15 to rgs = 0.25 at a training population size of
192 lines (Fig. 3). A similar pattern was observed for grain
yield at the same training population size, where the pre-
diction accuracy raised from rgs = 0.38 to rgs = 0.41 when
omitting phenotypic data from 2012. Strikingly a prediction
accuracy of rgs = 0.41 was estimated in the outlier cor-
rected dataset using a training population size of 144 lines,
surpassing the maximum of rgs = 0.38 with a much larger
training population of 256 lines in the complete dataset.
One of the trials suffered severe drought stress and showed
a negative phenotypic correlation with all other trials from
2012, and its mean prediction accuracy as a training popu-
lation for all other trials was negative (rgs = —0.15) and far
below the average of all trials (rgs = 0.16). Removing this
trial from the phenotypic analysis of grain yield increased
the heritability to 4> = 0.61 and the average prediction
accuracy of 2012 from rgs = 0.26 to rgs = 0.30, although
the prediction accuracy obtained by cross-validation was
not significantly higher than without outlier correction.
Grain yield was predicted with an accuracy of
rgs = 0.34 in the independent validation population of the
breeding cycle 2015 (h* = 0.57). Dropping the drought
stressed trial from the phenotypic analysis had no effect,
while removing the entire breeding cycle 2012 decreased
the prediction accuracy by 4 %. Removing 2011 from
the training population decreased the prediction accuracy

of protein yield by 3 % in the independent validation
(h* = 0.30). These minor changes in prediction accuracy
had only a slight influence when genomically selecting for
the top or against the worst lines tested in multi-environ-
ment trials in 2015 (Fig. 4).

The prediction accuracy of protein yield was rather low,
while its component traits grain yield and protein content
were estimated more accurately. The low estimated predic-
tion accuracy for protein yield was raised from rgs = 0.16
to rgs = 0.19 by multiplying GEBVs of its component
traits, instead of modeling protein yield directly, which cor-
responds to an increase of 19 %.

Discussion

Genomic selection has received attention in plant breed-
ing research and caused some excitement in the last years
(e.g. Heffner et al. 2009; Heslot et al. 2015). Neverthe-
less, results from practical applications in the framework
of applied breeding programs are still sparse. This study
focused on the problems and prospects of genomic selec-
tion in bread wheat. Five breeding cycles from an ongo-
ing commercial breeding program were used as a base for
assessing and enhancing the potential of genomic selection
in bread wheat breeding.
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Model selection

Since the introduction of genomic selection models from
both the Bayesian (e.g. Technow and Melchinger 2013) and
Frequentist methodology (Piepho 2009; Schulz-Streeck
and Piepho 2010; Hofheinz and Frisch 2014) as well as
machine learning methods (Ogutu et al. 2011, 2012) have
been applied in plant breeding. Although great effort was
put into developing these models no method showed clear
superiority over the others across species or traits (Heslot
et al. 2012). Hence we chose RR-BLUP as a computation-
ally fast and robust alternative in our study.

Bias of the prediction accuracy

Genomic selection of non-phenotyped genotypes based
on RR-BLUP is strongly dependent on the relationship
between training population and selection candidates
(Habier et al. 2007; Hayes et al. 2009). Empirical stud-
ies from plant breeding show a strong decline in accu-
racy when predicting distantly related populations (Rie-
delsheimer et al. 2013; Albrecht et al. 2014) and higher
accuracies within closely related families (Lehermeier et al.
2014). Hence, the genetic relationship between training and
selection population might introduce a bias in the estima-
tion of prediction accuracy depending on the cross-valida-
tion scheme (Ly et al. 2013; Wiirschum et al. 2013). Geno-
type by environment interaction effects furthermore led to
overestimations of the prediction accuracy, when genotypes
from the training and selection population were tested in
the same environment or year (Storlie and Charmet 2013;
Krchov et al. 2015).

Both effects play important roles when predicting
selection candidates across cycles in an ongoing breed-
ing program. Accordingly, Hofheinz et al. (2012) reported
an upward bias of the within-cycle prediction accuracy
computed by cross-validation in comparison with the
actual prediction accuracy across two subsequent breed-
ing cycles. This observation was verified by our analysis
and especially pronounced for protein yield, while the bias
was much smaller for protein content. The highly herit-
able traits fusarium head blight resistance and plant height
showed likewise less variation in the prediction accuracy
across several breeding cycles, than the complex and low
heritable trait grain yield in a dynamic barley breeding pop-
ulation (Sallam et al. 2015). A similar relationship between
heritability and across-cycle prediction accuracy was also
found in sugar beet (Hotheinz et al. 2012). Highly heritable
traits are expected to have a less complex genetic architec-
ture (Combs and Bernardo 2013), thus haplotype structures
and relatedness responsible for the prediction accuracy
(Daetwyler et al. 2010) might be preserved across breed-
ing cycles. These considerations are in accordance with
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the presented empirical results and suggest that prediction
accuracy estimates for highly heritable traits are quite sta-
ble even across multiple breeding cycles.

Cross-validation results

Genomic selection is though especially interesting for low
heritable traits and providing realistic estimates of trait-
specific parameters is crucial for optimizing the resource
allocations in an applied breeding program (Riedelsheimer
and Melchinger 2013; Longin et al. 2015). Implementa-
tion of genomic selection in a breeding program faces the
challenge of predicting a new set of genotypes with vary-
ing relatedness to previous generations or breeding cycles
every year. Using breeding cycles as folds in cross-valida-
tion takes this problem into account, by sampling non-over-
lapping sets of genotypes from multiple breeding cycles as
training populations and subsequent prediction of an inde-
pendent breeding cycle. Estimates for grain yield derived
from this across-cycle cross-validation scheme were on the
upper bound of what has been reported before in mixed
wheat populations (Heffner et al. 2011; Poland et al. 2012;
Combs and Bernardo 2013; Storlie and Charmet 2013;
Charmet et al. 2014; Isidro et al. 2015). Considering these
studies together with our results a prediction accuracy
between 0.3 (Longin et al. 2015) and 0.4 seems to be real-
istic for wheat grain yield across several breeding cycles.
Interestingly these values correspond to the broad-sense
heritability using variance components from Piepho et al.
(2014) who analyzed long-term trends of bread wheat in
the German official variety trials. A similar relationship
between heritability and prediction accuracy across breed-
ing cycles was previously observed by Hotheinz et al.
(2012) for sugar content and molasses loss in sugar beet
and several traits in barley (Sallam et al. 2015).

Particular with regard to the importance of phenotypic
data (Bernal-Vasquez et al. 2014) a high estimate of the
prediction accuracy was not unexpected in this study. First
we selected trials with a high heritability from a larger
population of target environments, as is common practice
in plant breeding. Additionally, we selected only pheno-
typic records of lines that were tested orthogonally across
all trials within a breeding cycle for building training popu-
lations. This allowed direct comparisons between all lines
and consequently an expected higher efficiency than par-
tial comparisons between lines or by using check varieties
(Piepho et al. 2006). Even if a balanced subset cannot be
extracted from existing data we recommend the use of the
very best of trials to compute GEBVs for pending selec-
tion decisions as the data quality, measured by the herit-
ability, is an important driving force of prediction accuracy
in genomic selection (Jannink et al. 2010; Combs and Ber-
nardo 2013).
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Outlier correction and estimation of derived traits

A high heritability suggests that the phenotypic accuracy is
high and gives good estimates of the underlying genotypes
and true breeding values of the selection candidates (Viss-
cher et al. 2008). Nevertheless, some years or trials have
a low predictability despite of high heritability estimates
(Dawson et al. 2013). Factors like biotic or abiotic stress
caused by heavy rain, frost damage or drought can result
in poor trial establishment and characterizes such environ-
ments as outliers (Heslot et al. 2013b). Although they give
breeders the opportunity to select for special traits e.g. win-
ter hardiness or resistance to a specific disease, dropping
such outlier environments is justified when breeding for
productivity and broad adaptation.

This outlier correction increased the prediction accu-
racy of grain yield, estimated by cross-validation, by 16 %
in our study. We used pair-wise prediction accuracies and
breeder’s knowledge as an ad hoc measure to identify out-
liers for grain yield in wheat, though implementation of a
systematic search algorithm led to analogous results for
grain yield in barley (Heslot et al. 2013b). Dropping low-
quality data for protein yield had a similar effect by rais-
ing the prediction accuracy by 50 % underpinning again the
importance of phenotypic data. Independent validation sug-
gests on the other hand that careful consideration is neces-
sary before an outlier correction is undertaken. Dropping
all phenotypic records of a genotype might even have a
detrimental effect on the prediction accuracy in some cases
as a broad genetic base and maximizing the phenotypic
variance are essentials for optimizing a training population
(Rincent et al. 2012; Isidro et al. 2015).

Apart from outlier correction another convenient option
to improve the prediction accuracy for the derived trait pro-
tein yield was its prediction by component traits. The low
prediction accuracy of protein yield could be slightly raised
by multiplying GEBVs of the medium predictable traits
grain yield and protein content. This approach might also
be beneficial for other derived traits in plant breeding with
a low heritability or prediction accuracy.

Conclusions

Numerous genomic selection studies were conducted in
recent years, pointing out its large potential and several
applied plant breeding programs adopted this new technol-
ogy with high expectations. Hence results from multiple
genomically selected breeding cycles are becoming avail-
able now, bringing these expectations to a realistic level.
Genomic selection certainly opened up new opportunities
by predicting difficult or expensive to phenotype traits or the
estimation of derived traits by GEBVs of its components.

Furthermore the genomic selection framework helped to
shed light on old problems, such as handling phenotypic
data by approximating the genetic correlations among envi-
ronments by their pair-wise prediction accuracy. Finally it
also demands solutions to new problems such as optimiz-
ing training populations or redesigning breeding programs.
Supported by the vast ongoing research, genomic selection is
definitively becoming an integral part of modern bread wheat
breeding and the future genetic improvement of crop plants.
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Abstract

Key message Early generation genomic selection is
superior to conventional phenotypic selection in line
breeding and can be strongly improved by including
additional information from preliminary yield trials.
Abstract The selection of lines that enter resource-
demanding multi-environment trials is a crucial decision in
every line breeding program as a large amount of resources
are allocated for thoroughly testing these potential varietal
candidates. We compared conventional phenotypic selec-
tion with various genomic selection approaches across mul-
tiple years as well as the merit of integrating phenotypic
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information from preliminary yield trials into the genomic
selection framework. The prediction accuracy using only
phenotypic data was rather low (r = 0.21) for grain yield
but could be improved by modeling genetic relationships in
unreplicated preliminary yield trials (r = 0.33). Genomic
selection models were nevertheless found to be superior to
conventional phenotypic selection for predicting grain yield
performance of lines across years (r = 0.39). We subse-
quently simplified the problem of predicting untested lines
in untested years to predicting tested lines in untested years
by combining breeding values from preliminary yield trials
and predictions from genomic selection models by a herit-
ability index. This genomic assisted selection led to a 20%
increase in prediction accuracy, which could be further
enhanced by an appropriate marker selection for both grain
yield (r = 0.48) and protein content (r = 0.63). The easy to
implement and robust genomic assisted selection gave thus
a higher prediction accuracy than either conventional phe-
notypic or genomic selection alone. The proposed method
took the complex inheritance of both low and high heritable
traits into account and appears capable to support breeders
in their selection decisions to develop enhanced varieties
more efficiently.

Introduction

Selection and development of new varieties of autogamous
crops relies on a number of different breeding schemes
including the pedigree and bulk methods as well as breed-
ing acceleration using doubled haploids or single seed
descent with off-season generations. Notwithstanding, they
all share a step of conventional phenotypic selection based
on preliminary yield trials in their methodology. These
preliminary yield trials are for the larger part unreplicated
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as merely a limited amount of seed is available from each
selection candidate at this stage. Although the phenotypic
data obtained in this way allow only preliminary pre-
dictions of their final values they strongly influence the
selection of lines that enter the following more resource-
demanding multi-environment trials, a crucial decision in
every line breeding program as a large amount of resources
are allocated for thoroughly testing these potential varietal
candidates.

Genomic selection using genome-wide dense marker
maps has been suggested as a more efficient alterna-
tive to conventional selection methods (Meuwissen et al.
2001) and several studies have shown its great potential
in line breeding to enhance the selection for major agro-
nomic traits like yield both in legumes (Jarquin et al. 2014;
Burstin et al. 2015; Tayeh et al. 2015) and small grain cere-
als (Asoro et al. 2011; Sallam et al. 2015; Spindel et al.
2015; He et al. 2016; Michel et al. 2016). Additionally,
genomic selection could support the accumulation of many
small effect alleles to provide higher and more durable
quantitative disease resistance (Lorenz et al. 2012; Ornella
et al. 2012; Daetwyler et al. 2014; Arruda et al. 2015; Rut-
koski et al. 2015b), which could be subsequently combined
with labor-intensive and costly to assess quality traits (Hef-
fner et al. 2011b; Schmidt et al. 2015).

The broad range of possible applications has led to dif-
ferent strategies concerning the implementation of genomic
selection into line breeding schemes (Heffner et al. 2010;
Longin et al. 2015; Spindel et al. 2015; Marulanda et al.
2016), though it is generally suggested that a genomic
selection step is integrated before multi-environment tri-
als are being conducted. Breeders might thus consider
the replacement of traditional preliminary yield trials by
genomic selection to spare phenotyping costs or even
integrating them into the genomic selection framework as
they deliver a first insight into the future performance of
the putative varietal candidates (Endelman et al. 2014). An
additional concern of genomic selection is the choice of
lines that shall constitute the training population (Rincent
et al. 2012; Isidro et al. 2015; Marulanda et al. 2015) espe-
cially if breeders conduct selection, which is not always
optimal for genomic selection models (Zhao et al. 2012).
Nevertheless, high quality phenotypic data for multiple
traits is usually available for many advanced lines that were
already tested in multi-environment trials and could pos-
sibly be used to build more suitable training populations.
Hence, a comparison between conventional phenotypic
selection based on preliminary yield trials and genomic
selection together with an appropriate training population
design is needed to shed more light on this issue for the
optimization and enhancement of line breeding schemes.
The objectives of this study were thus to investigate (i) the
possibilities and merit of a posteriori training population
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designs, (ii) integrating phenotypic information from pre-
liminary yield trials into the genomic selection framework
and (iii) compare conventional phenotypic selection with
various genomic selection approaches in line breeding
schemes on the example of bread wheat.

Materials and methods
Plant material and phenotypic data

We analyzed a population of 861 genotyped lines from a
commercial winter wheat (Triticum aestivum L.) breed-
ing program that descend from multiple families and were
either in the F,.q generation or directly derived by the dou-
ble haploid method. Different subpopulations containing
64-192 lines were tested orthogonally in multi-environ-
ment trials from 2010 to 2015. Phenotypic data of these
lines was thus of high quality, as they were thoroughly
tested in all trial locations that spanned from Austria over
Serbia, Croatia, Hungary, and Romania to the Central Ana-
tolian High Plateau in Turkey. We also analyzed F,.5 gen-
eration preliminary yield trials where all lines in the pop-
ulation were pretested in one location and year in Austria
from 2011 to 2014 before multi-environment trials were
conducted.

Unreplicated earlier generation lines were tested along
with replicated check varieties in all trials. The replicated
check varieties allowed correcting for spatial field trends
according to standard procedure in plant breeding. The
entire population of genotyped earlier generation lines
from 2011 to 2014 comprised 1203 lines, with 731 lines
being unique to the preliminary yield trials. The number
of genotyped lines in these preliminary yield trials varied
accordingly between 151 and 539 lines as this study also
included historical data before genomic selection was rou-
tinely implemented into the winter wheat breeding program
at hand. Phenotypic records included grain yield (dt ha™")
and protein content (%), which was determined by near
infrared spectroscopy (NIRS) directly at harvest.

Statistical analysis of phenotypic data

We followed a two stage analysis strategy of the phenotypic
data, where each individual yield trial was analyzed sepa-
rately in the first stage. Various models correcting for row
and/or column effects as well as autoregressive variance—
covariance structure of the residuals were introduced (Bur-
guefio et al. 2000) and the best model was chosen by Akai-
ke’s information criterion (AIC) to calculate best linear
unbiased estimates (BLUE) for each trial. The heritability
was estimated by = aé / (0(2; + %MVD), where 0(2; des-
ignates the genetic variance and MVD the mean variance of
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a difference of the BLUEs (Piepho and Mohring 2007) and
trials with a heritability larger than 0.3 were forwarded for
further analysis.

Across trial analysis of the multi-environment trials
were conducted separately for each year using a linear
mixed model of the form:

Yi=pn+g+t+gtjte )

was fitted for all traits, where y;; are the BLUEs from the
first stage, w is the grand mean, and g; is the effect of the
ith line. The effect of the jth trial #; was fixed, while the line
by trial interaction effect gt;j% was random. The residual
variance was fixed and the inverse of the squared standard
errors of the means derived from the first stage of analy-
sis were used as weights in this stage to take the varying
accuracy of phenotypic records into account (Mohring and
Piepho 2009). Additionally, best linear unbiased predic-
tions (BLUP) were derived for preliminary yield trials by
modeling a random effect for the inbred lines in which the
heritability was estimated by h? = 1— (VDgLup/203)
with VDppyp being the mean variance of a difference of
the BLUPs (Cullis et al. 2006). The replicated check varie-
ties were thereby used to estimate row and column effects
as well as the error variance. The individual records of the
unreplicated lines could in this way be adjusted accord-
ingly, taking spatial trends in the preliminary yield tri-
als into account. All phenotypic analyses were conducted
using the statistical package ASReml 3 (VSN International,
2015) for the R programming environment (R development
core team 2016).

Genotypic data

DNA was extracted following the protocol by Saghai-
Maroof et al. (1984) using leaf samples that were col-
lected from F,.5 or doubled haploid lines by sampling
minimum ten plants per line during early summer. All
861 lines tested in multi-environment trials as well as the
731 lines unique to preliminary yield trials were geno-
typed using the DarT genotyping-by-sequencing (GBS)
approach (Diversity Array Technologies 2015). Quality
control was applied by filtering out markers with a call
rate lower than 90%, a minor allele frequency smaller
than 0.05, and more than 10% of missing data. Missing
data of the remaining 6.6 K SNP markers was imputed by
an MVN-EM algorithm (Poland et al. 2012). The same
marker data was again used for training genomic selec-
tion models with F,.¢ lines. The minor change in average
heterozygosity was expected to introduce a small error
which was nevertheless seen to be acceptable considering
the cost-benefit ratio of re-genotyping all lines in the F.¢
generation.

Genomic selection and estimation of breeding values
in preliminary yield trials

Marker effects were estimated using a ridge regression best
linear unbiased prediction (RR-BLUP):

y=Xb+Zu+e 2)

where y is an Nx1 vector of BLUESs obtained in the pheno-
typic analysis, b is a vector of F fixed effects and X its cor-
responding NxF design matrix. Z is a NXM matrix, which
coded the M markers as either +1 or —1 for homozy-
gous loci and O for heterozygous loci. Random marker
effects were assumed to follow a normal distribution
u~N (0, Iauz) with variance ouz and e ~ N ((), IU(;"). The
kinship between lines was estimated by the genomic rela-
tionship matrix, which was computed according to Endel-
man and Jannink (2012):

K =WWT25(p — i (3)

where W is a centered NxM marker matrix of the i lines
with Wi, = Zj — 2py and py being the allele frequency at
the kth locus. The derived variance—covariance matrix was
used to fit mixed linear models of the form:

y=Xb+Zg+e (4)

where y is an Nx1 vector of BLUEs obtained in the pheno-
typic analysis, g is an Nx1 vector of genotypic effects with
g ~ N(0,Kod) and the genetic variance o as well as its
corresponding random effect design matrix Z. The shrink-
age parameter was given by /2 = 03 /crg2 where aZ is the
variance of the residuals that followed e ~ N (0,102). The
mixed linear models were completed by F fixed effects,
which were contained in the vector b and its corresponding
NxF design matrix X. Fixed effects included years in the
case of prediction with multiple years and the grand mean
for preliminary yield trials.

Breeding values for all the lines tested in preliminary
yield trials were estimated by explicitly entering their phe-
notypic records i.e., BLUES for grain yield and protein
content into model (4). In this way, genetic relationship
between the lines were exploited to strengthen the predic-
tiveness of preliminary yield trials although most selection
candidates were tested unreplicated in just one plot (Endel-
man et al. 2014). We like to refer to this method as kinship
enhanced best linear unbiased prediction of phenotypic
breeding values (KBLUP) in this study to differentiate it
from the genomic best linear unbiased prediction (GBLUP)
model, where selection candidates are predicted purely on
their relationship with a training population without any
phenotypic records. Models for estimating marker effects
by RR-BLUP were implemented using the R package rrB-
LUP (Endelman 2011), whereas the GBLUP and KBLUP
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models for predicting future line performance were fitted
with the implementation of ASReml 3 (VSN International
2015) for R (R development core team 2016).

Cross-validation accuracy and training population
design

We first investigated the merit of a posteriori designing a
training population by picking a specific set from the entire
available population of lines. The phenotypic variance of the
training population is a major factor correlated with the pre-
diction accuracy (Isidro et al. 2015; Marulanda et al. 2015),
thus we aimed to maximize the phenotypic variance by
sampling the highest and lowest performing lines from each
respective year for entering into the training population.
The impact of this sampling method on the prediction
accuracy was tested by 6-fold cross-validation, where the
training and selection populations were built by randomly
sampling 20-60 lines from each year and every year con-
stituted a fold. GBLUP models were fitted with randomly
sampled training populations and the benefit of maximizing
the phenotypic variance was studied by equally sampling
lines from the tails of the distribution e.g., the 30 high-
est and 30 lowest performing lines from a given year. The
selection population was always equivalent in both cases
and the training population size varied accordingly between
100 and 300 lines. This entire approach corresponds essen-
tially to sampling both genotypes and environments for
estimating a less upward biased prediction accuracy of
genomic selection than obtained by sampling genotypes
alone (Albrecht et al. 2014; Michel et al. 2016). Further-
more, the prediction accuracy of the full data set was esti-
mated by leaving all lines from one year out as validation
population and training a GBLUP model with all lines from
the remaining 5 years at a time, which resulted in training
population sizes of approximately 700 lines and validation
populations that were on average composed of 140 lines.
The benefit of a posteriori training population design was
assessed by sampling 20-90% of the lines from each year
in the training population, either randomly or with half of
the lines coming again from either tail of the distribution.

Comparison between conventional phenotypic
and genomic selection

The accuracy of conventional phenotypic selection was
estimated by correlating the line performance in prelimi-
nary yield trials in 2011-2014 and BLUEs from multi-envi-
ronment trials the following year. This estimate was based
on 96145 retested lines that formed the selection popula-
tions and despite a certain selection pressure still covered
a broad range of both protein content and grain yield (Fig
S1). Line performance per se was thereby predicted by
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classical BLUP as well as the above described KBLUP that
took genetic relationships among lines within preliminary
yield trials into account.

Pure genomic selection is on the other hand undertaken
without prior knowledge of line performance from prelimi-
nary yield trials. We compared this approach with conven-
tional phenotypic selection by predicting the performance
of the same 96145 retested lines but excluded all their
phenotypic data from both the year of the preliminary yield
trial and the multi-environment trials to fit GBLUP models.
The influence of the training population constitution was
studied by setting up a cross-validation scheme, using alter-
natively all possible three-way combinations of the remain-
ing four years in which lines from the selection population
did not occur (Fig S2). Hence, every one of the four selec-
tion populations was predicted by four different training
populations. The training population size was fixed at 180
lines and constructed by sampling an equal number of 60
lines from each one of the training population years. The
prediction accuracy of the different selection populations
was finally obtained by correlating the genomic estimated
breeding values (GEBV) with the BLUEs from the across
trial analysis of the multi-environment trials.

Genomic assisted selection and marker selection

Although genomic selection is a relatively new approach
the implementation of preliminary yield trials has been
part of most line breeding schemes for a long time. We
like to simplify the problem of predicting untested lines
in untested years to predict tested lines in untested years
in this study by integrating phenotypic information from
preliminary yield trials into the genomic selection frame-
work. Therefore, we first estimated the line breeding values
by the KBLUP model for every preliminary yield trial and
GEBVs from the GBLUP model for every one of the previ-
ously described training by selection population combina-
tions. The heritability for the GBLUP model was estimated
via the shrinkage parameter /2 = af/og which could be
written as: )

o2/ol = (1/1*) =1 ©)

This approximation by Hofheinz et al. (2012) also
allowed us to estimate the heritability 4” for the unrepli-
cated preliminary yield trials via both the genetic variance
0!? and the residual variance a} as computed by the KBLUP
model. The estimated heritabilities were subsequently used
as weights in a heritability index, which was built with pre-

dictions from both the GBLUP and KBLUP models:

GEBVingex = GBLUPscaled * WGBLUP

6
+ KBLUPsa1ed * WKBLUP g
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where GEBVpygex are the GEBVs obtained for genomic
assisted selection, GBLUPg¢y1eq and KBLUPg g are the
scaled predictions from the GBLUP and KBLUP models,
and the weights wgprLup and wxppLup are equivalent to the
heritabilities computed by (5). The scaling of the prediction
was done as appropriate for index selection by subtracting
the mean of the predictions and subsequent division by the
variance for each GEBV. It should be note that only the
selection candidates were involved in the scaling process.

Prior knowledge of line performance from preliminary
yield trials enabled furthermore a knowledge-based and
more sophisticated selection of markers actually associated
with the trait of interest. For this purpose, marker effects
were first estimated by fitting RR-BLUP models separately
for the preliminary yield trial and the training population
of lines in each fold i.e., training by validation population
combination of the employed cross-validation scheme.
Markers whose effect showed a change of sign between
these two models were considered to rather introduce
errors into the prediction model and were removed from
the marker and genomic relationship matrix before GEBVs
were estimated by GBLUP. All phenotypic data involved in
the validation of the models was explicitly excluded from
this process. RR-BLUP models were also refitted with the
selected markers to investigate the proportional change of
markers with the same and different sign. We like to high-
light at this point that this marker selection approach was
only undertaken on the side of the training population from
multi-environment trials as no beneficial effect of marker
selection was observed when estimating breeding values
in preliminary yield trials by KBLUP (data not shown).
Assuming larger information content of the GBLUP model
in this case the index weight was accordingly adjusted:

WGBLUP = héBLUp/ (1 — |reBLup;kBLUP|) 7

where wgpLup is the index weight, héBLUP the herit-
ability estimated from the GBLUP model following (5)
and |rGBLUp;KBLUp‘ the absolute value of the correlation
between predicted breeding values of lines in selection
population based on multi-environment (GBLUP) and pre-
liminary yield trial (KBLUP) data. The adjustment was
undertaken as after the marker selection the heritability
estimated in the GBLUP model by (5) was reduced, yet a
dynamic index with a larger weight on the GBLUP that is
based on phenotypic data obtained from several years and
locations was seen to be beneficial.

Selection decision inferences and a one-year selection
experiment

After this comparison between selection methods in
terms of prediction accuracy we continued by studying

their influence on actual selection decisions. An appropri-
ate selection decision by either conventional phenotypic,
genomic or genomic assisted selection could be made
if lines from preliminary yield trials that are predicted to
be among the highest performing lines would also show
a superior performance in multi-environment trials. We
recorded thus the 5-50% of lines from each training pop-
ulation combination (Fig S2) that were predicted to be
among the highest and lowest performing ones by the dif-
ferent selection methods. A comparison was then made
whether the conventional phenotypic, genomic or genomic
assisted selection approach correctly identified the actual
highest and lowest performing lines with a higher fre-
quency averaged over all training by selection population
combinations.

Finally, a selection experiment was conducted to test the
efficiency of genomic selection compared to conventional
phenotypic selection. A set of 60 lines was purely genomi-
cally selected in 2013, while the involved wheat breeder
selected 70 lines using all available phenotypic information
from preliminary yield trials and beyond without genomic
information. Among the 60 genomically selected lines 10
lines were chosen for their excellent predicted grain yield,
whereas the other 50 were advanced due to superior pre-
dicted performance based on a genomic selection index
that took grain yield, protein yield as well as fusarium head
blight and stripe rust resistance into account (Ametz 2015).
The tested set was completed by the five worst performing
lines according to the genomic selection index and 31 ran-
domly sampled lines, which were all retested in the multi-
environment trials of 2014.

Results

Maximizing the phenotypic variance of the training
population

We found a classical relationship of higher prediction
accuracy with increasing training population size using
the 6-years as folds for cross-validation, while this effect
was more pronounced for protein content than grain yield
(Fig. 1a). The benefit of maximizing the phenotypic vari-
ance by sampling the highest and lowest performing lines as
training population from each year was minimal in compar-
ison to the full training population when leaving one year
out as a validation population at a time (Fig. 1b), while for
the 6-fold cross-validation an average increase in prediction
accuracy of 7% was observed for both traits. A prediction
accuracy of r = 0.37 could be reached for example using a
randomly sampled training population of 300 lines but was
already surpassed when we fitted prediction models with
150 lines from the two tails of the distribution (r = 0.38).
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Fig. 1 Effect of the training population design on the prediction
accuracy for grain yield and protein content. The lines in the train-
ing population were either randomly sampled or taken from the tails
of the distribution, while the selection population was the same set
of randomly sampled lines in both designs using a 6-fold cross-
validation in which the years constituted the folds (a). Leaving all

The impact of the training population design was also
preserved at maximal training population sizes of 300
lines where the accuracy was r = 0.55 in comparison to
r = 0.53 with a random sample for predicting the protein
content. Likewise, grain yield was slightly (5%) better
predicted using the highest and lowest performing lines
for training (r = 0.39). The mean accuracies for both
sampling methods were furthermore significant different
according to a Wilcoxon rank sum test (p < 0.01), thus
we chose to design training populations consisting of 60
lines from each year with 30 coming from either tail of
the distribution to provide a high prediction accuracy with
equally sized training populations for all folds in the com-
parison between conventional phenotypic and genomic
selection.

Predicting the performance of tested and untested lines
across years

It is of foremost importance in applied plant breeding pro-

grams to select the most promising lines which should
enter resource demanding multi-environment trials with a
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lines from 1 year out as validation population sampling 20-90% of
the lines from each year in the training population either randomly
or with half of the lines coming again from the tails of the distribu-
tion, where the dotted horizontal line designates the average accuracy
when training with the entire set of lines of the remaining 5 years (b)

high accuracy to develop successful varieties. We accord-
ingly assessed the correlation between the predicted perfor-
mance in the year of this selection decision and the actual
performance in the following year, utilizing lines that were
retested in multi-environment trials 2012-2015.

Classically, lines that will enter more thoroughly testing
are selected purely on the basis of phenotypic information
from preliminary yield trials. A rather low average predic-
tion accuracy of r = 0.21 was found for grain yield using
this method, while the highly heritable protein content
could be predicted with a reasonable accuracy of r = 0.45
(Table 1). The predictive ability of preliminary yield trials
could be further enhanced by introducing a genomic rela-
tionship to estimate breeding values employing the KBLUP
model. Grain yield strongly profited from this method as
the accuracy increased by 50% taking the genomic rela-
tionships among lines in the unreplicated preliminary yield
trials into account.

Genomic selection on the other hand predicted the
performance by the genetic relationship between thor-
oughly tested lines from multi-environment trials and
the younger lines i.e., selection candidates without using
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Table 1 Comparison between

N 4 Selection method Model Information source Prediction accuracy
different selection methods by
the prediction accuracy for grain MET PYT GRM  Grain yield Protein content
yield and protein content across
years, using multi-environment Phenotypic BLUP X 021 £0.09  0.45+£0.08
trials (MET), preliminary yield Phenotypic’ KBLUP X X 0.33£027 052+0.14
trialg (PRR.L) i 1 Benofnio Genomic GBLUP x x 0394007 050 £0.06
relationship matrix (GRM) as &
complementing information Genomic assisted* GBLUP + KBLUP  x X X 0.46 +£0.07  0.61 £0.04
sources Genomic assisted® GBLUP + KBLUP  x X X 048 +£0.05 0.63 +£0.04

 Breeding values based on genetic relationships among lines in unreplicated preliminary yield trials

* Genomic and phenotypic predictions were merged by a heritability index

$ Markers were pre-selected before fitting the prediction models

any of their phenotypic records. Genomic selection
was clearly superior to conventional phenotypic selec-
tion and nearly twice the accuracy (r = 0.39) could be
achieved when predicting grain yield across years with
the GBLUP model, whereas approximately the same
accuracy was estimated using either GBLUP or KBLUP
for protein content.

Both selection methods tackle though different prob-
lems: Genomic selection by the GBLUP model is pre-
dicting untested lines in untested years with high quality
information, while the enhanced phenotypic selection by
KBLUP is predicting preliminary tested lines in untested
years. Merging the information sources by a heritability
index gave a strong advantage over both methods alone,
which was 18 and 40% over the GBLUP and KBLUP,
respectively, for the low heritable trait grain yield. Even the
highly heritable and well predicted protein content benefit-
ted from using this genomic assisted selection approach,
resulting in an average prediction accuracy of r = 0.61
which was 18-22% better than either the best phenotypic
or genomic selection model.

Most astonishing though was the advantage over the
conventional phenotypic selection (BLUP). With a predic-
tion accuracy of r = 0.46 genomic assisted selection was
119% higher than conventional phenotypic selection for
grain yield and gave with r = 0.61 also 36% more accu-
rate predictions for the future performance of lines with
respect to their protein content. Additionally, this approach
gave a higher stability of the prediction accuracy than pure
genomic selection by GBLUP as reflected by the lower
standard error, and thus narrower confidence interval
(Table 1).

Prior knowledge from preliminary yield trials gave fur-
thermore the opportunity for a pre-selection of markers
associated with the trait of interest in the selection popu-
lation. Estimation of marker effects by RR-BLUP for both
multi-environment and preliminary yield trials separately
revealed that around 50% of the marker effects changed
their sign between both models, and thus putatively

Marker effect multi-envrionment trials

Marker effect preliminary yield trials

Fig. 2 Marker effect estimates before (grey) and after (red) pre-
selection of markers. Marker effects were scaled and centered to
allow a comparison between different training by selection population
combinations

introduced noise when predicting GEBVs (Fig. 2). Remov-
ing these markers from the computation of the genomic
relationship matrix gave an additional slight increase in
prediction accuracy when employing a genomic assisted
selection (Table 1).

Interestingly, we found though merely an advantage
for pre-selecting markers when it was conducted before
fitting GBLUP models but not for the KBLUP which uti-
lized phenotypic records from preliminary yield trials. A
noteworthy observation was that after refitting RR-BLUP
models with pre-selected markers, some marker effects
still showed a change of sign (Fig. 2). Nevertheless, this
percentage of putatively noisy markers decreased to 10%
resulting in a majority of markers to estimate effects in the
same direction.

@ Springer



370

Theor Appl Genet (2017) 130:363-376

o o o o o ©
N w ES o o ~
h 1 f d f B

®e
.
°
°
° °

Prediction accuracy genomic assisted selection
o
b

® Grain yield
® Protein content

o
o
T

00 01 02 03 04 05 06 07
Prediction accuracy genomic selection

Fig. 3 Comparison between the prediction accuracy of genomic and
genomic assisted selection for every training by selection population
combination to predict grain yield and protein content across years

Genomic assisted selection with additional marker selec-
tion also turned out to be a robust approach, which gave
constantly higher prediction accuracy than pure genomic
selection for all validation by training population combina-
tions (Fig. 3). According to a Wilcoxon rank sum test, the
average prediction accuracy of this approach was also sig-
nificantly higher both for grain yield (p < 0.05) and protein
content (p < 0.01) than what could be achieved by predict-
ing with standard GBLUP alone.

The influence of genomic assisted selection on selection
decisions

The observed high and robust prediction accuracy of the
genomic selection approaches promised a reasonably good
identification of the highest performing lines in preliminary
yield trials for further testing in multi-environment trials. We
tested this prospect by examining whether or not the best

10-50% lines according to their prediction were indeed
among the best in multi-environment trials. Genomic selec-
tion did especially well in this scenario at high selection
intensities as applied in typical line breeding schemes and
could be improved using a genomic assisted selection with
marker selection (Fig. 4).

Assuming a breeder would select the best 200 from
a total population of 1000 lines (20%), approximately 60
(30%) of these are correctly identified by conventional
phenotypic selection but 90 (45%) by genomic assisted
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Fig. 5 Performance of lines chosen by different selection methods in
the selection experiment during the vegetation period 2014

selection following the estimates in this study. It is moreo-
ver of interest to be informed about the worst lines to dis-
card them by negative selection. This scenario gave nearly
orthogonal results to the characterization of the highest per-
forming lines, and the ability to identify the lines from the
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lower tail of the distribution was verified by the selection
experiment (Fig. 5).

Conventional phenotypic selection by the breeder and
the genomic selection index performed equally well and
surpassed the grain yield of randomly selected lines by
3 dt ha™!, which corresponded to a 3% gain by selection.
This could be achieved even though the selection index
gave a large weight to protein yield i.e., a trait with low
prediction accuracy (Michel et al. 2016). Aside from grain
yield, the breeder took also a multitude of morphologi-
cal, quality as well as disease resistance traits into account
that are associated with high and stable performance of the
selected lines.

Discussion

This study focused on the prospect of enhancing the effi-
ciency of selection decisions by implementing genomic
selection into line breeding schemes. Integrating pheno-
typic information from preliminary yield trials into the
genomic selection framework was combined with a poste-
riori training population design and resulted in a superior
genomic assisted selection. The practical application in
commercial bread wheat served as a representative example
of this new selection approach.

A two-tailed training population design

A main driving force of prediction accuracy in genomic
selection is the relationship between training and selection
population (Clark et al. 2012; Habier et al. 2013; Wientjes
et al. 2013). Accordingly, genomic selection is expected to
give more accurate predictions if lines included in the train-
ing population are closely related to (Asoro et al. 2011;
Lehermeier et al. 2014; Lorenz and Smith 2015) or even
come from the same population as the selection candi-
dates (Windhausen et al. 2012; Charmet et al. 2014). The
underlying population structure can be readily deciphered
when multiple large bi-parental populations (Heffner et al.
2011a; Schulz-Streeck et al. 2012; Riedelsheimer et al.
2013; Lehermeier et al. 2014) or larger heterotic groups
(Technow et al. 2013; Lehermeier et al. 2014; Spindel
et al. 2015) are directly involved in the development of
varietal candidates. Training and selection populations
in line breeding schemes on the other hand, are usually
pre-selected by usage of the pedigree method resulting in
small families with varying degree of relatedness. Further-
more, breeders frequently introgress foreign material in
their breeding pools and lines are often derived by crosses
between introduced and their own germplasm, resulting in
an unclear population structure in such mixed line breed-
ing populations (Sallam et al. 2015; He et al. 2016; Michel

et al. 2016). Simulation (Habier et al. 2013) and empirical
(Lorenz and Smith 2015) studies clearly showed that add-
ing distant relatives to prediction models can have detri-
mental effects on the accuracy, thus there is serious need
for an appropriate training population design to achieve
high prediction accuracies with genomic selection in line
breeding.

A straightforward approach is the maximization of
genetic diversity in the training population on the basis of
marker data, which additionally enables to choose a subset
of lines before phenotyping and saving costs for field trials
(Huang et al. 2013). While this method is applicable to var-
ious genomic studies, the choice by the average expected
reliability of contrast of lines (CDmean) was especially
recommended for genomic selection (Rincent et al. 2012).
It was further fine-tuned by Isidro et al. (2015) who inte-
grated breeders’ knowledge about the population structure
into their choice of training populations. These approaches
as well as the usage of a genetic algorithm based on reli-
ability measures (Akdemir et al. 2015) have shown superior
performance for a multitude of traits and crops in compari-
son to randomly choosing a training population (Rincent
et al. 2012; Akdemir et al. 2015; Isidro et al. 2015; Rutko-
ski et al. 2015a; Tayeh et al. 2015). Marulanda et al. (2015)
finally compared more than 21 indices corresponding to
eight factors putatively correlated with prediction accuracy
in a vast simulation study and found the phenotypic vari-
ance to be a major criterion for training population design.
Hence, picking individuals from a two-tailed distribution to
maximize the phenotypic variance as suggested by Isidro
et al. (2015) seems to be a very suitable training popula-
tion design strategy which was empirically verified in this
study.

Notwithstanding, designing training populations a pri-
ori based on phenotypic variance might be difficult if the
breeding material was not thoroughly tested yet. Moreo-
ver, in applied line breeding programs the major goal is to
develop new and better performing varieties irrespective of
any prediction accuracies. Selecting a posteriori training
populations from the numerous potential line varieties in
advanced generations might for this reason be a more con-
venient strategy. Such training populations should prefer-
ably include well phenotyped lines that are related to the
current selection population and come from both tails of
the distribution to ensure a large phenotypic variance. We
also recommend to specifically tailoring them for each trait
of interest separately, a procedure which is readily real-
ized as the necessary phenotypic data is most cases already
available. Even though the beneficial effect of a higher
prediction accuracy due to a large phenotypic variance
might diminish with increasing training population sizes
(Marulanda et al. 2015), models will be computational less
burdening but at the same time keeping a high prediction
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accuracy. Likewise, a two-tailed training population design
could guide the choice which lines with historical pheno-
typic data should be sent to genotyping and might be very
useful if few phenotypic records are available for labor-
intensive and costly traits such as brewing quality in barley
(Schmidt et al. 2015).

Attention should nevertheless be taken if selection is
conducted before training populations are built, a com-
mon situation in all plant breeding programs that can lead
to a strong bias in prediction accuracy of genomic selec-
tion approaches (Zhao et al. 2012). The accompanied loss
in prediction accuracy could be substantial when carrying
out unidirectional selection (Zhao et al. 2012) but usually
a broad range of products is developed in line breeding; so
even though the population mean is shifted upwards when
going into the phase of testing experimental varieties in
multi-environment trials a lot of variance from preliminary
yield trials is still kept (Fig S1).

Merging conventional phenotypic and genomic
selection

One of the most critical decisions in variety development is
the selection of lines that should enter multi-environment
trials. The limited phenotypic data that are available for
this purpose in early generations led to the suggestion of
supporting conventional phenotypic selection by marker
assisted selection (Knapp 1998; Lande and Thompson
1990). The implementation of classical marker assisted
selection was, however, of limited success for quantita-
tively inherited traits that are controlled by many loci,
while with the advent of genomic selection handling these
complex genetic architectures became a much more feasi-
ble task in recent years (Jannink et al. 2010; Crossa et al.
2014; Heslot et al. 2015). Although genomic selection has
been found to be superior to conventional phenotypic selec-
tion and gave outstanding results in several selection exper-
iments (Combs and Bernardo 2013; Beyene et al. 2015;
Rutkoski et al. 2015b), genomic predictions rely strongly
on genetic relationships and not on physical measurements
on the selection candidates.

Hence, preliminary yield trials have the clear advan-
tage of generating solid phenotypic data of which qual-
ity can be strongly improved by modeling genetic rela-
tionships among the tested lines (Endelman et al. 2014).
Integrating pedigree or marker data into the estimation of
breeding values has been shown to achieve much higher
accuracies when selecting already phenotyped lines in
several scenarios (Bauer et al. 2006; Oakey et al. 2007a;
Viana et al. 2010; Endelman et al. 2014; Cowling et al.
2015), and was accordingly a very valuable option for
enhancing the prediction of line performance across

@ Springer

years in this study. The usage of this enhanced pheno-
typic data from preliminary yield trials for estimating
breeding values tackled the problem of predicting tested
lines in untested years, while genomic selection usually
addresses the more challenging problem of predicting
untested lines in untested years.

Merging the before-mentioned merits of genomic
selection based on high quality phenotypic data from
multi-environment trials with phenotypic selection in pre-
liminary yield trials resulted in a genomic assisted selec-
tion that performed much better than either phenotypic
or genomic selection alone. The benefits of this approach
have also been indicated in bi-parental maize populations
for predicting phenotyped doubled haploid lines across
years (Lorenz 2013; Riedelsheimer and Melchinger 2013).
Krchov et al. (2015) could empirically verify these pros-
pects by combining genomic predictions and phenotypic
records with the index weights suggested by Lande and
Thompson (1990) for a more accurate prediction of grain
yield and moisture in maize hybrids across years. A sim-
ple heritability index gave a 12% higher prediction accu-
racy than the former suggested method in our study, most
likely as the additional modeling of a genomic relationship
matrix significantly improved the phenotypic data from
the preliminary yield trials. The attained genomic assisted
selection method resulted furthermore in a higher predic-
tion accuracy for both grain yield and protein content than
the other selection approaches, highlighting its superior
ability to address the complex inheritance of both low and
high heritable traits.

Various marker selection approaches have been pro-
posed for taking the genetic architecture of such traits into
account (Heslot et al. 2012; Ogutu et al. 2012; Resende
et al. 2012). These efforts are often obstructed by different
genetic backgrounds (Schulz-Streeck et al. 2011, 2012) and
linkage phase change between the training and selection
population (Riedelsheimer et al. 2013; Lorenz and Smith
2015). The incorporation of preliminary yield trials into the
genomic selection framework could promote a more tar-
geted pre-selection of marker sets due to prior knowledge
of the genetic variation in different selection populations.
Hence, we tried to tailor the set of markers fitting the popu-
lation of selection candidates to account for these altering
genetic backgrounds by dropping markers whose effect
changed in sign between the training and selection popu-
lation. Although, we suggest here a rather rough approach
that dropped half the markers from the corresponding
matrix, the direct pulling of information from preliminary
yield trials gave a high and stable average prediction accu-
racy in combination with genomic assisted selection.

High and stable prediction accuracies are obviously
desirable but often very difficult to acquire due to the
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presence of huge genotype by environment interactions in
plant breeding. The prediction of individual trials or loca-
tions across years is an especially difficult task (Dawson
et al. 2013) and we observed a large variation in prediction
accuracy for this undertaking in our study (Fig S3), fitting
the results of other studies with autogamous crops (Heslot
et al. 2014; Lado et al. 2016). Once multi-environment tri-
als are being conducted, more options open up for enhanc-
ing the selection of variety parents like imputing untested
lines in tested locations (Burguefio et al. 2011; Jarquin
et al. 2014; Crossa et al. 2016; Lopez-Cruz et al. 2015) or
enhancing the reliability of breeding values by a relation-
ship matrix (Bauer et al. 2006; Oakey et al. 2007b; Bauer
et al. 2009; Miiller et al. 2015). Hence, predicting lines for
the entire target population of environments might be a
better strategy to select candidates that should enter multi-
environment trials. These multi-environment trials could
afterwards guide selection decisions in breeding for local
adaptation to specific regions and variety registration.

Genomic assisted selection for more sophisticated
breeder’s decisions

The chance of selecting the highest performing lines for
multi-environment trials was much higher by genomic
selection than conventional phenotypic selection in our
study, and could be further increased by implementing
genomic assisted selection. Depending on the breeding
scheme it has been suggested to conduct positive genomic
selection for the best lines (Bassi et al. 2016) or discarding
the worst lines by negative selection (Longin et al. 2015),
while we observed no difference of any genomic selection
approach to correctly identify lines from either tail of the
distribution. Nevertheless, these considerations are valid
for single traits only and it is generally not recommended
to sequentially select for one trait after another as a lower
gain in selection is expected by such tandem selection
(Hazel and Lush 1942). Different multivariate models have
been developed to take this problem of simultaneous selec-
tion for several traits at the same time into account (Bauer
and Léon 2008; Viana et al. 2010; Jia and Jannink 2012).

A computational less demanding alternative could be
the usage of genomic selection indices (Ceron-Rojas et al.
2015; Schulthess et al. 2015), and even a simple index
based on grain yield, protein content and disease resistance
gave a similar gain as conventional phenotypic selection by
the breeder in our selection experiment. Genomic selection
approaches are thus enabling more sophisticated selection
decisions but the knowledge and experience of breeders is
still the best guarantee for success, while genomic selec-
tion indices can be an additional tool to ease their decisions
given the multitude of traits to consider.

Conclusions

This study showed the strong advantage of genomic selec-
tion over conventional phenotypic selection in line breed-
ing schemes on the example of bread wheat. The advantage
was further enhanced by a posteriori selecting a training
population that maximized the phenotypic variance and
the integration phenotypic information from preliminary
yield trials into the genomic selection framework. Conduct-
ing preliminary yield trials is a common procedure in most
line breeding programs, thus we suggested exploiting their
information by merging phenotypic and genomic selection
for genomic assisted selection. The easy to implement and
robust genomic assisted selection gave a higher prediction
accuracy than either one of the other methods alone and
allowed a more sophisticated selection decision with regard
to lines entering multi-environment trials. The proposed
method took the complex inheritance of both low and high
heritable traits into account and could support breeders in
developing varieties that preferably combine high yield,
quality, disease resistance and tolerance against abiotic
stresses.
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Discussion

This study showed some of the benefits that might arise by implementing genomic
selection into a line breeding program taking the example of winter wheat. The prediction
of line performance across multiple breeding cycles and years resulted in more realistic
estimates of genomic selection in breeding programs than were available beforehand,
thereby bridging the gap between more theoretical results with restricted germplasm from
research studies and empirical results from applied plant breeding. The comparison
between conventional phenotypic selection and genomic selection revealed furthermore the
high potential of genomic selection if implemented in early generations of a line breeding
scheme. Previous comparisons were often made with high quality data from multi-
environment trials where genomic selection showed rather similar performance, while it
was more than twice as good as phenotypic selection based on preliminary yield trials that

is the actual competitor of genomic selection in line breeding.

Enhancing phenotypic selection by modelling genetic relationship among the selection
candidates revealed to be an additional important component with substantial benefit given
the large amount of marker data is generated in a line breeding program with genomic
selection. This method was until now mostly ignored in the genomic selection literature,
although being a convenient spin-off product and several studies already highlighted the
importance of phenotypic data. Combining genomic breeding values with enhanced
phenotypic performance estimates from preliminary yield trials further simplified the
across-year prediction problem to predicting tested lines in untested years, and this usage of
additional phenotypic information presented in this study could readily be converted to a
routine procedure in applied plant breeding. A new two-tailed training population design
was proposed to complement this method, which could find some use both in a streamlined
variety development pipeline but also in a recurrent genomic selection, where a regular
training population update is pivotal. The advantage of the suggested training population
design has meanwhile been independently validated in a recent simulation study
investigating recurrent genomic selection in barley (Neyhart et al. 2017), where the two-

tailed training population design outperformed other previously proposed methods based on
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genetic distance and reliability. The selection experiment comparing response to selection
of phenotypic selection by the breeder and a genomic selection index gave further insight
into the response to selection that can be expected by both methods. Moreover, it
demonstrated that genomic breeding values should be used as an additional information
source to support breeders during variety development instead of conducting a pure
genomic selection based on indices, and in this way come to an integrated selection

decision in combination with observations in field.

Notwithstanding, a remaining key question is if the routine usage of genomic selection
would be generally worthwhile when breeding line cultivars in wheat as well as other small
grain cereals and legumes. Therefore, the cost-benefit ratio must be carefully evaluated by
managers of breeding programs together with the involved breeders in order to find an
economically feasible strategy for an optimal integration of a genomic selection step into
the respective breeding scheme. The necessary investments for this endeavour include
thereby the genotyping costs for several hundred to thousand lines every year as well as the
associated logistics. However, genotyping costs have strongly declined in recent years and
can be expected to further decline, while the fee of genotyping service providers are
additionally dependent on the number of samples sent every season or in the foreseeable
future. Furthermore, larger breeding programs might consider developing chip-based

genotyping procedures in-house to further reduce their costs.

GBS is a cost-effective alternative to chip-arrays and several genotyping service providers
are offering this technology at the moment. Its low technical error rate i.e. high
reproducibility of allele calls highlights the robustness of GBS for obtaining genetic
fingerprints of the numerous selection candidates in applied plant breeding, nevertheless
the typical large proportion of missing marker data that associated with this method
demands the usage of sophisticated imputation algorithms (Poland et al. 2012b; Rutkoski et
al. 2013; Gorjanc et al. 2017). Map-based imputation have been shown as being highly
accurate and can be recommended if reliable information about the marker order is
available e.g. for GWAS studies (Howie et al. 2009; He et al. 2015). The applications of
such map-based algorithms also improved the accuracy of genomic selection and can be

generally recommended for GBS-like marker datasets. Map-independent algorithms for
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unordered markers like missForest (Stekhoven and Bihlmann 2012) show on the other
hand a lower imputation accuracy, although they have a similar beneficial impact on
genomic selection like map-based imputation and none of the available algorithms displays
a clear advantage (Poland et al. 2012b; Rutkoski et al. 2013; He et al. 2015). Imputation
algorithms have also revealed their merit when applied to marker datasets from chip-based
genotyping, a major difference is though that the amount of missing data points is several
magnitudes smaller (He et al. 2015). Research and development for this genotyping
technology focuses on having a representative set of markers on the chip so that e.g. at least
one SNP per haplotype group in the European winter wheat germplasm is present. This
could improve the identification of candidate markers for agronomic traits by GWAS if
complemented with the necessary large mapping population size and facilitate the selection
of marker subsets for a genomic selection routine. Notwithstanding, such marker selection
proved to be difficult if no prior phenotypic information of the selection candidates was
available (Schulz-Streeck et al. 2011), and it would be especially difficult to find a marker

subset that is representative for an entire breeding population.

With the wheat reference genome sequence being briefly before completion (IWGSC
2017), it might be possible in the future to obtain whole-genome sequence information of
each selection candidate or at least from the most prolific crossing parents in a breeding
population. Application of whole-genome sequencing as genotyping routine would
facilitate an enormous increase in marker number that could theoretically be associated
with an increase in prediction accuracy (Heffner et al. 2011a; Lorenz et al. 2012; Nielsen et
al. 2016; Moore et al. 2017). Nonetheless, the advantage of an increasing marker number
usually reaches a plateau after several thousand markers have entered prediction models
(Jarquin et al. 2014b; Spindel et al. 2015). Empirical results from animal breeding where
whole-genome sequence data is already available e.g. for dairy cows show accordingly
rather low advantages for the prediction accuracy using such information for enhancing
genomic selection (VanRaden et al. 2017), thereby verifying results from simulation studies
(Pérez-Enciso et al. 2015). The latter studies already predicted a marginal benefit as a huge
number of SNPs serving as predictor variables are in strong linkage disequilibrium in
whole-genome sequence data, thus not delivering additional information to prediction

models. Furthermore, the enormous computational load requires again the selection of
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marker subsets for any practical breeding applications but would then lead at least in
animal breeding to a substantial economic benefit even with marginal increases in the
reliability of genomic breeding values (VanRaden et al. 2017). Prior biological information
would be ideal for fully harnessing the potential of whole-genome sequence data. The
highest prediction accuracy could possibly be achieved when all casual polymorphisms
would be known, while the next best information would be prior knowledge about
underlying genes (Pérez-Enciso et al. 2015). Given the resources needed to clone a single
gene even when phenotype is clear like for monogenic disease resistance (Thind et al.
2017), such scenarios are though unrealistic for quantitative traits like grain yield with
complex genetic architecture at the moment, however the rapid advances biotechnology

might open-up this information source for plant breeders in the future.

Restricted to the present possibilities, genomic selection is mainly used to assist selection
for quantitative traits in early stages of breeding program (Heffner et al. 2010; Heslot and
Mark 2015; Spindel et al. 2015; Guzman et al. 2016). Consequently, the usage of genomic
selection already represents a first paradigm shift in contrast to classical breeding schemes
were such difficult and low heritable traits are selected at much later stages of variety
development. Genomic selection might in this way guide decisions concerning which
selection candidates will enter multi-environment trials, and the proposed genomic assisted
selection performed much better for identifying the correct lines for this task in this study.
Combined with the higher prediction accuracy, genomic assisted selection can thus be
expected to additionally lead to higher realized responses to selection. Given the higher
confidence of these predictions a breeder might also intensify selection to spare
experimental plots in multi-environment trials for balancing out some of the necessary
additional investments for genotyping. Lines with a superior genomic breeding value based
on models that were fitted with phenotypic data from multiple years and numerous
environments, and additionally show high performance if tested in multi-environment trials
might also have a higher probability to be among the highest and stable performing lines in
future yet untested years. Assessing this and similar studies (Sallam et al. 2015; Auinger et
al. 2016; Sallam and Smith 2016; He et al. 2016b) one could infer that one stage of
genomic selection is roughly equivalent to one year of multi-environment trials. Classical

breeding schemes need at least two years of multi-environment trials before variety
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registration trials could be considered, thus assuming the same time is needed for deriving
homogeneous material of a promising varietal candidate the data used to select them for
official trials will have very high confidence as information from a lot more than 2-3 years

are integrated with genomic selection.

Aside from improving major agronomic traits like yield, genomic selection would be useful
for predicting laborious to phenotype traits in early generations. The genetic improvement
of baking quality is e.g. a specific challenge in the development of new line cultivars in
bread wheat breeding as the assessment of associated traits often involve time-consuming,
labour-intensive, and costly testing and too less plant material i.e. grains are available from
each selection candidate in early generations, forcing breeders to postpone thoroughly
quality testing into later generations of variety development. Genomic selection showed
great promise for pre-selecting lines with superior bread baking quality in early
generations, several years ahead of labour-intensive, time-consuming, and costly quality
analysis both in line and hybrid wheat breeding (Battenfield et al. 2016; Liu et al. 2016).
The prediction models could finally guide in combination with rapid tests the choice of
material that is send for baking quality test to the laboratory (Michel et al. 2017b), and
depending on the accuracy of these models breeders might also consider the option of
reducing the sample number for saving costs. Aside from quality improvement, breeding
for biofortification is another difficult task, where genomic selection had great potential to
enhance the concentration of zinc and iron in wheat to combat hidden hunger caused by
deficiency of these micro-nutrients foremost in resource poor regions of the world (Velu et
al. 2016). Abiotic stress tolerances comprise another set of difficult to phenotype traits,
where genomic selection could greatly support breeding programs as e.g. drought stress
must often be assessed under special labour-intensive and costly management conditions
(Ziyomo and Bernardo 2013; Beyene et al. 2015; Vivek et al. 2016). Finally, some traits
like frost tolerance (Zhao et al. 2013) or Fusarium head blight in central Europe (Jiang et al.
2014; Mirdita et al. 2015) cannot be observed every year making it necessary to conduct
special tests (Sieber et al. 2014; Sieber et al. 2016) and establish nurseries for disease
screenings. Depending on their importance in the respective breeding programs, these
screenings are mostly conducted in advanced generations. Accordingly, a genomic

selection approach would give a higher chance of selecting lines with desired trait
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combinations earlier in the breeding scheme, showing a better performance in the future
through higher yield stability under abiotic and biotic stress conditions (Wang et al. 2015;
Huang et al. 2016).

Apart from improving accuracy of selection, the usage of genomic estimated breeding
values has been proposed for a couple of breeding acceleration methods (Bernardo 2010;
Hickey et al. 2014; Neyhart et al. 2017). This represents the second and major paradigm
shift in plant breeding with genomic selection, by dividing the program into separate
product and population improvement cycles (Bernardo 2010; Hickey et al. 2014). The latter
takes mostly additive effects i.e. actual breeding values into consideration, while for the
former additive x additive epistasis plays an also important role as the final performance of
newly developed varieties in line breeding is the sum of both additive and epistatic effects.
Hence, modelling epistasis for training genomic selection models has been shown to give a
significant advantage for predicting future performance of the varietal candidates (Jiang
and Reif 2015). Considering both additive and epistatic effects in the phenotypic analysis
of field trials enhanced by marker data could possible further improve phenotypic data
quality (Moreau et al. 1999; Muiller et al. 2015) especially if many lines are unreplicated as
in preliminary yield trials (Endelman and Jannink 2012; Endelman et al. 2014). Great merit
was observed for such practice in this study, and the usage of such high density marker
could additionally enable the assessment of data quality in multi-environment trial series
and the application of spatial models even for unreplicated trials. Resource allocations
might accordingly be adjusted for achieving a higher response to selection by employing
partially or unreplicated trials with testing in a higher number of environments (Mdéhring et
al. 2014). Alternatively, breeders could not only consider reducing the number of replicates
per trial but due to the increase in phenotypic data accuracy also reduce the number of trial
locations to compensate for the additional genotyping costs with genomic selection. The
improvement of phenotypic data is furthermore not restricted to the training population
(Mdller et al. 2015), but will likewise provide a more accurate reference for validating

genomic selection models.

While the previous section referred to product development cycle, the population

improvement cycle is generated by shortening the time between initial crossings to the next
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crossing for starting new breeding cycles. Classically, the product development and
population improvement cycles are largely overlapping and successful lines which have
shown superior performance entering official trials to be released as new varieties will
often serve as crossing parents. Notwithstanding, some breeding lines with insufficient
yield level might though show interesting characteristics such as disease resistance, and
will thus be retained in the breeding population as crossing parents due to their high
breeding value for some specific traits. The estimation of marker effects with models like
RR-BLUP within the genomic selection framework has been suggested to predict superior
progeny values for the multitude of parental combinations in order to support the planning
of crosses (Zhong and Jannink 2007; Poland et al. 2012b). Superior progeny values enable
therefore a crossing in earlier generations of line development for starting a new breeding
cycle much sooner than it was possible beforehand. Promising lines of the current cycle are
thereby further advanced in multi-environment trials and finally enter official variety
registration trials. The superior progeny value is closely related to the usefulness concept
(Utz et al. 2001), whose essential part is the mid-parent value that has been shown to
correlate well with the population average of bi-parental crossing populations. Further
extensions include predicting the segregation variance that is of great importance as from
populations with large variance lines with higher performance may theoretically be selected
than from a population with a higher average performance though smaller variance.
However, the accurate estimation of this variance is very cumbersome (Bohn et al. 1999;
Utz et al. 2001), and although some research focused on this problem resulted in promising
approaches (Bernardo 2014b; Lian et al. 2015; Mohammadi et al. 2015; Lado et al. 2017)
the issue is still unresolved. One of the major obstacles thereby is the empirical proof of
concept of different segregation variance estimation methods, which would require a large
effort e.g. at least several dozen unselected bi-parental population with 30-100 advanced

recombinant inbred lines per population tested for grain yield in multi-environment trials.

Considering all the mentioned benefits that are standing against the costs, the question if
genomic selection is worthwhile in line breeding cannot readily be answered. Although
there are some entry points to reduce costs by intensifying selection, reducing sample size
for quality analysis, and optimizing field trials designs as well as resource allocations, for

most breeding programs genomic selection would likely be an additional investment.
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Finally, the implementation of genomic selection is primarily a management decision, and
it has to be decided if the cost-benefit ratio of genomic selection is favourable for the
respective breeding program. Further considerations might involve at which stage and for
what purpose i.e. negative versus positive selection genomic breeding values should be
employed. Another issue that must be taking into account is if redesigning the entire
breeding program is necessary or even adequate. Radical changes like this could e.g.
involve the switch from a pedigree breeding scheme to a fully doubled haploid or single-
seed descent based program, where a lot of mostly unselected lines are genotyping and
genomically selection so that merely seed from the selected lines is multiplied for
conducting multi-environment trials. The described very fast breeding scheme has a high
potential but is also very costly as in addition to genotyping costs, facilities like

greenhouses and laboratories have to be vastly extended.

Another approach would be creating larger bi-parental populations of which merely a part
is phenotyped in field trials, while all lines are genotyped for estimating genomic breeding
values. First suggested for hybrid breeding in maize, where less topcross progeny is then
actually tested in the field (Krchov and Bernardo 2015), this strategy could also be used in
wheat breeding to exploit the high prediction accuracy within bi-parental populations
(Lorenzana and Bernardo 2009; Heffner et al. 2011b). Different options involving such a
scheme have been proposed (Bassi et al. 2015); nevertheless a lot of lines have to be
phenotyped and genotyped to achieve a sufficient prediction accuracy including lines that
would probably be discarded a priori due to deficits like lodging, too late heading or plant
type in head rows. High prediction accuracies within bi-parental populations can be
achieved with small training populations by maximizing the phenotypic variance
(Marulanda et al. 2015), however it is hardly feasible to priori determine which lines will
show values at the lower and upper tails of the distribution. While this strategy might thus
be interesting in maize breeding due to low correlations between per se and hybrid
performance, it might be less suitable for line breeding where the per se performance is
decisive. Accordingly, several breeding programs followed a rather conservative approach
by conducting genomic selection in parallel to preliminary yield trials as is currently done
e.g. in the CIMMYT spring wheat program (Guzman et al. 2016) or in the winter wheat

program investigated in this study. Hence, instead of radical redesigning the breeding
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program for genomic selection it was conveniently integrated in the existing variety
development pipeline. The use of genome-wide distributed markers at various stages in the
breeding program and taking advantage of various possibilities for enhancing selection as
well as the above-described method for breeding acceleration makes genomic selection a
valuable tool to support in their selection decisions, and accompanied by well-considered
changes in resource allocation it has the potential to optimize breeding programs in an

unprecedented way during modern plant breeding history.

The optimization of breeding programs with genomic selection also involves aiming for a
high long-term response to selection, for which the appropriate management of genetic
diversity in breeding programs is a central point (Cowling 2013). Although genomic
selection has a similar performance as one-year phenotypic selection, the former targets
directly marker alleles and has the potential to alter allele frequency more rapidly especially
at loci with large effect (Sallam and Smith 2016). Accordingly, the loss of genetic variance
is more pronounced when using genomic selection (Bastiaansen et al. 2012) due to the
increased relationship between selected individuals (Jannink 2010). With respect to a long-
term strategy, increasing the frequency of rare favourable alleles will be of high interest and
upweighting these rare alleles in prediction models could counteract the loss of such alleles
by phenotypic selection and led in the end to an overall higher response to selection
(Jannink 2010; Liu et al. 2015). The routine genotyping of breeding lines when applying
genomic selection has thus the convenient side-effect that it gives breeders the ability to

actively monitor diversity in their breeding population on a molecular genetic level.

Aside from maintaining diversity, broadening the genetic base is of large interest in
breeding programs. This generally includes the introduction of adapted elite plant material
from other breeding programs by crossings with native germplasm according to breeders’
rights, but in a wider sense also introduction from non-adapted material in the framework
of pre-breeding. Genomic selection has the potential to support these efforts by a more
rapid introgression of exotic germplasm into the elite gene pool of applied breeding
programs. Simulation studies thereby suggest that genomic selection should start in the F>
generation instead of backcross generations when using a recurrent selection scheme for

improving populations from elite x exotic crosses (Bernardo 2009), and F. training
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populations were even preferable in a backcross strategy to transfer favourable alleles for a
quantitative inherited trait from exotic to elite germplasm (Bernardo 2016b). This approach
could be verified by an empirical study aimed to development short statured maize
population with higher density tolerance than currently available by crossing non-dwarf
elite lines with semi-dwarf lines from an exotic population, where predicted and observed
gains generally agreed resulting in a higher gain by genomic than by phenotypic selection
(Combs and Bernardo 2013). The application of genomic selection for this endeavour has
the additional advantage that it allows the usage of multiple glasshouse or off-season
generations per year, making it an especially interesting method for accelerating pre-
breeding programs. These programs will in this way be strengthened for effectively
harnessing the genetic variation of landraces and other germplasm from gene banks
(Gorjanc et al. 2016; Yu et al. 2016) that is currently severely underused, although there is
some need to unlock their potential for achieving the aim of doubling the world-wide grain
yield until 2050 (Longin and Reif 2014). The exchange of datasets and genomic selection
knowledge worldwide (Spindel and McCouch 2016) across both the public and private

sector would finally contribute significantly to this enormous task.
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Appendices

Supplementary material of Genomic Selection across Multiple Breeding Cycles in
Applied Bread Wheat Breeding
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Fig. S1 Correlation between the accuracy of each individual line and the genetic
relationship, varying the number of the most related lines from the training population. One
breeding cycle was left out at a time using all other breeding cycles as training population.
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Fig. S2 Heatmap of the genomic relationship matrix displaying the genetic correlation
among all lines.
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Fig. S3 Relationship between prediction accuracy and training population size for grain

yield, protein content and protein yield using a 5-fold cross-validation with the breeding
cycles 2010-2014 as folds.
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Supplementary material of Genomic Assisted Selection for Enhancing Line Breeding:
Merging Genomic and Phenotypic Selection in Winter Wheat Breeding Programs
with Preliminary Yield Trials
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Fig. S1 Variation of grain yield and protein content in preliminary yield trials 2010-2014.
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Fig. S2 Cross-validation scheme used for comparing the different selection methods.
Genomic selection models were fitted with training populations of 180 lines, where 60 lines
of this training population came from 3 different years (green). Phenotypic and genomic
assisted selection included additional data from the year of a preliminary yield trial
(orange). All models were validated with a validation population of lines retested in multi-
environment trials following the year of a preliminary yield trial (red).
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