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Abstract 

 

Modern plant breeding methods and technologies in combination with improved crop 

management practices enabled the great achievement of more than double the yield of 

major cereal crops during the last hundred years. However, the annual increase of grain 

yield in wheat and other crops feeding the world is currently insufficient at the given rate of 

population growth and projection show that factors like climate change, pests and diseases 

are hampering the goal of achieving another doubling of yield that is needed until 2050. 

Hence, the development and applications of new technologies seems necessary to 

accelerate the genetic improvement of crop plants, and with the advent of genomics two 

decades ago the usage of molecular markers became one promising tool to support breeders 

in achieving this aim. Numerous research studies have shown the large potential of using 

genome-wide distributed markers for estimating genomic breeding values and genomically 

selecting superior individuals in a breeding population in recent years, but most studies 

utilized cross-validation within restricted germplasm sets and research investigating 

genomic selection across multiple breeding cycles of years in applied plant breeding 

programs were lacking. However, one main objective when applying genomic selection in 

line breeding programs is the prediction of genotype performance in yet untested years in 

order choose the most promising among the potential varietal candidates for thoroughly 

testing in resource-demanding multi-environment trials. Hence, employing the example of 

a commercial winter wheat breeding program the aims of this study were (i) to assess the 

accuracy of genomic breeding values of non-phenotyped breeding lines to genomically 

select them for grain yield, protein content and protein yield across yet untested years, (ii) 

compare conventional phenotypic selection with various genomic selection approaches, and 

(iii) integrating phenotypic information from preliminary yield trials into the genomic 

selection framework for enhancing line breeding schemes in general.  

For this purpose all analyses of this study focus on a multi-family breeding population of 

861 genotyped lines that was phenotyped in multi-environment trials under South-Eastern 

European conditions from 2010 to 2015, whereas different subpopulations were tested in 

each year as is characteristically of a line breeding program. The dataset was complemented 
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by a large quantity of additional phenotypic information of grain yield and protein content 

obtained in single location preliminary yield trials. First, within-year 5-fold cross-validation 

was compared to across-year predictions for 2010-2014, which revealed a substantial bias 

of the prediction accuracy that was less pronounced for protein content and most for protein 

yield. Cross-validation using the years as folds aimed to avoid this bias and reached a 

maximum prediction accuracy of r = 0.51 for protein content, r = 0.38 for grain yield and r 

= 0.16 for protein yield indicating the suitability of genomic selection for practical 

applications in commercial wheat line breeding programs. Independent validation with 

2015 resulted furthermore no advantage of removing outlier years or field trials from the 

model training data, suggesting that careful consideration is necessary before any such 

outlier correction is undertaken. Implementing genomic selection wheat in line breeding 

programs at hand is economically feasible in parallel to single location preliminary yield 

trials, thus a comparison between conventional phenotypic selection based on preliminary 

yield trials and genomic selection was required for assessing the actual merit of the latter. 

The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain 

yield but could be improved by modelling genetic relationships in unreplicated preliminary 

yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to 

conventional phenotypic selection for predicting grain yield performance of lines across 

years (r = 0.39). The problem of predicting untested lines in untested years to predicting 

tested lines was subsequently simplified to predicting untested years by combining 

breeding values from preliminary yield trials and predictions from genomic selection 

models by an heritability index. This genomic assisted selection led to a 20% increase in 

prediction accuracy, which could be further enhanced by an appropriate marker selection 

for both grain yield (r = 0.48) and protein content (r = 0.63).  

Given this strong advantage of genomic selection over conventional phenotypic selection 

both for low and high heritable traits the former could support wheat breeders in 

developing varieties that preferably combine high yield, quality, disease resistance and 

tolerance against abiotic stresses. The tremendous decrease in genotyping costs in recent 

years allow furthermore implementing genomic selection in line breeding schemes in an 

economically feasible way even in medium sized breeding programs as revealed in this 

study. Although appropriate strategies for fully harnessing the benefits of genomic 
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selection for both variety development and population improvement might differ between 

breeding programs, the exchange of datasets and genomic selection knowledge across both 

the public and private sector would contribute significantly to the enormous task of 

doubling yield in wheat and other crops until 2050. 
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Zusammenfassung 

 

Moderne Methoden und Techniken der Pflanzenzüchtung haben es in Kombination mit 

verbesserten pflanzenbaulichen Maßnahmen ermöglicht, den Ertrag der wichtigsten 

Getreidekulturen in den letzten hundert Jahren zu verdoppeln. Der jährliche 

Ertragsfortschritt im Weizen und in anderen weltweit angebauten Kulturen ist derzeit 

jedoch nicht in der Lage, mit dem weltweiten Populationswachstum und entsprechendem 

Bedarf Schritt zu halten, wobei Prognosen zeigen, dass Einflüsse wie Klimawandel, 

Schädlinge und Pflanzenkrankheiten der erneuten und notwendigen Verdoppelung des 

Ertrags bis 2050 im Wege stehen. Die Entwicklung und Anwendung neuer Technologien 

die das Potential haben den Zuchtfortschritt unserer Kulturpflanzen zu beschleunigen, wird 

somit immer notwendiger. Mit dem Aufschwung genomischer Methoden vor zwei 

Jahrzehnten versprach die Anwendung molekularer Marker ein wichtiges Werkzeug der 

Pflanzenzüchtung zu werden, um dieses Ziel zu erreichen. Zahlreiche Forschungsstudien 

haben das große Potential von genomweit verteilten Markern zur Schätzung genomischer 

Zuchtwerte aufgezeigt, welche genutzt werden können, um vielversprechende 

Zuchtstämme frühzeitig zu selektieren. Die Ergebnisse der meisten Studien basieren jedoch 

auf Kreuzvalidierungen mit eingeschränkter Genetik in wenigen Jahren, wohingegen 

Forschungsarbeiten zu genomischer Selektion in angewandten Züchtungsprogrammen über 

mehrere Züchtungszyklen und Jahre hinweg bisher fehlten. Eines der Hauptziele bei der 

Anwendung genomischer Selektion in der Züchtung von Liniensorten bei Weizen und 

anderen Kulturen ist jedoch die Vorhersage der Leistung über Jahre hinweg, um die 

Selektion der vielversprechendsten Sortenkandidaten für aufwendige mehrortigen 

Versuchsserien zu ermöglichen. Diese Punkte sollen am Beispiel eines 

Winterweizenzuchtprogramm in der vorliegenden Studie stärkere Beachtung finden wobei 

zunächst darauf abgezielt wurde (i) die Genauigkeit genomischer Zuchtwerte für 

Kornertrag, Proteingehalt und Proteinertrag über mehrere Jahre hinweg zu schätzen, (ii) 

daraufhin das herkömmliche phänotypische Selektionsverfahren mit genomischer Selektion 

zu vergleichen und schließlich (iii) die phänotypische Information von Ertragsvorversuchen 

in die Methodik der genomischen Selektion zu integrieren, um einen Beitrag zur 

allgemeinen Verbesserung von Linienzuchtschemen zu leisten.  
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Zum Erreichen dieser Ziele wurden zunächst die phänotypischen Daten einer 

Zuchtpopulation von 861 genotypisierten Weizenzuchtstämmen analysiert, welche in 

mehrortigen Versuchen in Österreich und Süd-Ost Europa über den Zeitraum 2010 bis 

2015 erhoben wurden. Verschiedene Subpopulationen unterschiedlicher Größe wurden 

dabei, wie in einem Weizenzuchtprogram üblich, in unterschiedlichen Jahren geprüft. Der 

Datensatz wurde letztendlich durch zusätzliche Informationen über Kornertrag und 

Proteingehalt aus einortigen nicht-wiederholten Ertragsvorversuchen ergänzt. Zunächst 

wurde die Schätzung der Vorhersagegenauigkeit einer 5-fache Kreuzvalidierung innerhalb 

eines Jahres mit der Vorsagegenauigkeit über Jahre hinweg verglichen, wobei die 

Verwendung des Ersteren Verfahrens, für alle Jahre von 2010 bis 2014, zu einer deutlichen 

Überschätzung führte, die für den Proteingehalt weniger und für den Proteinertrag sehr 

stark ausgeprägt war. Eine Kreuzvalidierung welche jeweils ein einzelnes Jahr bzw. 

Subpopulation auslässt, welches dann durch alle anderen Jahre vorhergesagt wird, zielte 

darauf ab diese Überschätzung zu vermeiden und ergab eine maximale 

Vorhersagegenauigkeit von r = 0,51 für der Proteingehalt, r = 0,38 für den Kornertrag und r 

= 0,16 für den Proteinertrag. Die Ergebnisse zeigten somit einiges Potential genomischer 

Selektion für die Linienzüchtung von Winterweizen, was durch eine unabhängige 

Validierung mit Daten aus 2015 bestätigt werden konnte. Das Korrigieren von 

Ausreißerjahren oder -feldversuchen ergab keinen Vorteil und zeigte, dass mit solche 

Korrekturmaßnahmen vorsichtig umzugehen ist. Der Einsatz genomischer Selektion in der 

Linienzüchtung von Weizen ist im Allgemeinen parallel zu Ertragsvorversuchen 

realisierbar, womit ein Vergleich zwischen herkömmlicher phänotypischer Selektion und 

genomischer Selektion nötig ist, um den tatsächlichen Wert der Letzteren im praktischen 

Zuchtprozess zu bestimmen. Der in dieser Studie durchgeführte Vergleich zeigte dabei eine 

eher niedrige Vorhersagegenauigkeit für den Kornertrag basierend auf phänotypischen 

Daten (r = 0,21), welche jedoch durch die Modellierung genetischer 

Verwandtschaftsverhältnisse in den nicht-wiederholten Ertragsvorversuchen verbessert 

werden konnte (r = 0,33). Die Vorhersage auf Basis genomischer Selektionsmodelle war 

dennoch, bei der Vorhersage der Ertragsleistung der Zuchtlinien über die Jahre, deutlich 

überlegen (r = 0,39). Das Problem der Vorhersage nicht-geprüfter Zuchtlinien in nicht-

geprüften Jahren wurde schließlich, durch die Kombination von Zuchtwerten aus 
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Ertragsvorversuchen und genomischen Vorhersagen mit einen Heritabilitätsindex, zur 

Vorhersage geprüfter Zuchtlinien in nicht-geprüften Jahren vereinfacht. Die daraus 

resultierende genomisch gestützte Selektion führte letztlich zu einer Steigerung der 

Vorhersagegenauigkeit um 20%, welche durch eine entsprechende Markerselektion sowohl 

für den Kornertrag (r = 0,48) als auch den Proteingehalt (r = 0,63) noch weiter gesteigert 

werden konnte.  

Auf Grundlage des enormen Vorteils der genomischen Selektion im Vergleich mit 

herkömmlicher phänotypischer Selektion hat die Erstere großes Potential Weizenzüchter 

bei der Sortenentwicklung zu unterstützen um Kornertrag, Qualität, Krankheitsresistenz 

und Stresstoleranz effektiver zu kombinieren. Die stetige Abnahme der 

Genotypisierungskosten in den letzten Jahren macht es zudem möglich genomische 

Selektion auch in mittelständischen Zuchtbetrieben, wie in der vorliegenden Studie, 

einzusetzen. Gleichwohl sich der optimale Einsatz von genomischer Selektion zwischen 

verschiedenen Zuchtprogrammen unterscheiden mag, würde ein entsprechende 

Wissensaustausch sowohl zwischen dem öffentlichen als auch privaten Sektor maßgeblich 

dazu beitragen das Ziel zu erreichen den Ertrag im Weizen und anderen Kulturarten bis 

2050 zu verdoppeln. 
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Introduction 

Selection through the years 

 

Wheat (Triticum aestivum L.) originated from the hybridization between the wild species 

Triticum turgidum and Aegilops tauschii around 10,000 years ago (Salamini et al. 2002). 

While T. turgidum itself is a hybrid between T.uratu and Ae.speltoides that are the original 

sources of the A and B wheat genomes respectively (Marcussen et al. 2014), the 

hybridization events with Ae.tauschii provided the D genome and resulted in the 

allopolyploid nature of wheat we know today (Becker 2010). The domestication of wheat 

took place in the Middle Eastern region known as the Fertile Crescent around ten thousand 

years ago (Feuillet et al. 2008), where the early plant breeders were farmers who 

genetically improved their landrace cultivars mostly by phenotypic mass selection for 

desired traits like non-brittle rachis, non-shattering of seeds, free threshing, and increased 

grain size (Murhpy 2007). The selection for these domestication traits improved the value 

of cultivation and use of wheat and its allopolyploid nature provided furthermore a broad 

adaptation to various growing environments, yet it took several thousand years before the 

cultivation of wheat spread in the Mediterranean Sea, Western Europe and South-East Asia 

beginning the near unparalleled success story of this crop (Harlan 1981).  

Wheat is grown on 2.5 Billion hectares worldwide nowadays and the grain yield average 

was more than doubled during the last hundred years to 3 t ha-1 (FAOSTAT 2017) by 

improved crop management practices in combination with modern plant breeding methods 

and technologies. The basis for this development was laid by the beginning of scientific 

plant breeding in the end of the 19th century when the introduction of new selection 

methods like pedigree or bulk breeding largely replaced traditional mass selection. These 

advances were stimulated and accompanied by a growing interest and knowledge base 

concerning the inheritance of traits in plants, animals and humans among which the 

rediscovery of the Mendelian rules (Mendel 1866) by Erich von Tschermak-Seysenegg, 

Carl Correns and Hugo de Vries in 1900 constituted a milestone for the scientific 

community. The biological basis of the Mendelian rules was deciphered soon afterwards by 
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Walter Sutton who discovered the meiotic behaviour of the chromosomes (Sutton 1903), 

and was pivotal for the working group of Thomas Hunt Morgan for creating the first 

genetic maps. This ground breaking basic research focused strongly on qualitatively 

inherited traits, while others complemented these studies and built the link to quantitatively 

inherited traits by demonstrating the additive gene action as well as the influence of the 

environment on such traits (Johannsen 1903; Nillson-Eihle 1909).  

The mathematical description of inheritance promoted furthermore a rapid evolution of 

population and quantitative genetics theory and found also great resonance in practical 

applications in wheat breeding, together with biometric approaches for field trial testing of 

new potential varieties. These developments led finally the foundation for the Green 

Revolution beginning in the 1940s with the development of stem rust resistance and short-

strawed high yielding wheat varieties, the promotion of high agrochemical input such as 

mineral fertilizers and plant protection agents. Although the Green Revolution had also 

negative impacts such as the reduction of biodiversity in farmers´ fields many people 

benefitted from the developments and it is commonly accepted that it most likely prevented 

a hunger crisis in South-East Asia (Becker 2010).  

The doubling of wheat grain yield in the last hundred years showed the tremendous 

progress that can be achieved with classical phenotypic selection and can be attributed to 

the knowledge and experience of the many involved breeders world-wide. However, the 

annual increase of grain yield in wheat and other crops feeding the world is currently 

insufficient at the given rate of population growth and projection show that factors like 

climate change, pests and diseases are hampering the goal of achieving another doubling of 

yield needed until 2050 (Ray et al. 2013). Hence, the development and applications of new 

technologies seems necessary to accelerate the genetic improvement of crop plants, and 

with the advent of genomics two decades ago the usage of molecular markers became one 

promising tool in helping to cope with the large challenges that agriculture is facing in the 

21st century. 
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QTL mapping and marker-assisted selection 

 

The application of a molecular marker-assisted selection requires first of all the detection of 

marker-trait associations, which is classically done by linkage mapping employing one or 

several genotyped bi-parental populations. These populations usually consist of either of 

recombinant inbred or doubled haploids lines in self-compatible plant species like wheat, 

which have to be tested in multiple environments i.e. locations and years to obtain reliable 

phenotypic data. The obtained phenotypic records can subsequently be connected with the 

genotypic data using statistical genomic models such as simple or composite interval 

mapping (Zeng 1993; Zeng 1994)to identify molecular markers that are putatively linked 

with quantitative trait loci (QTL) influencing the respective trait of interest. 

Nevertheless, creating such bi-parental mapping populations is often time-consuming and 

the number of individuals within each population is limited, which is in most cases 

hindering the precise mapping of QTL especially for traits with low or medium heritability 

(Moreau et al. 1998; Melchinger et al. 2004). Another option for finding marker-trait 

associations is thus the usage of genome-wide association mapping within a diverse panel 

of genotypes (Yu et al. 2006; Kang et al. 2008; Kang et al. 2010; Zhang et al. 2010). 

Genome-wide distributed markers are thereby tested individually for their significant 

association with one or multiple traits exploiting linkage disequilibrium between markers 

and the underlying QTL as well as ancient recombination within a target species 

(Würschum 2012). The latter often leads to a higher mapping resolution in comparison with 

linkage mapping, and the usage of a diversity panel with current breeding material may 

additionally allow the identification of marker-trait associations in germplasm that is more 

relevant for an immediate deployment in applied plant breeding programs.  

Although being theoretically very appealing, both linkage and disequilibrium mapping will 

identify numerous false positive marker-trait associations especially the ones declared 

significant near the detection threshold. Common strategies for dealing with this problem 

are the introduction of stricter detection thresholds and accounting for family relationships 

and a putative population structure in the mapping population e.g. by extending mixed 

linear models used for genome-wide association mapping with an additional principal 
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component effect (Kang et al. 2008; Stich et al. 2008). A major consideration for finding 

interesting marker-trait associations is thus an appropriate balance between the false 

positive and false negative rate, and the K-model that is modelling kinship between 

individuals within the mapping population via a genetic relationship matrix is generally 

recommended for achieving this purpose (Stich et al. 2008; Bernardo 2013). Aside from 

specific experimental considerations, it is not feasible to detect low frequency alleles with 

genome-wide association mapping, which though are of special interest to breeders, and 

many studies merely validated already known QTL (Bernardo 2016a). Linkage mapping 

with bi-parental populations has a higher chance to find such rare variants (Bernardo 

2016a), while de novo found marker-trait associations should be validated in a different 

genetic background i.e. a validation population that is independent from the discovery 

population, before the markers can be deployed in a breeding program and used for a 

routine marker-assisted selection to select genotypes with the desired combination of alleles 

at several loci. Simulations showed furthermore a large benefit of integrating marker-

assisted selection into breeding programs (Knapp 1998; Lande and Thompson 1998; 

Moreau et al. 1998), empirical studies showed however that previous reported QTL effects 

were strongly overestimated when markers were retested in larger validation populations 

and different genetic background (Melchinger et al. 2004).  

Epistatic interactions between loci and marker by environment interaction might 

additionally reduce the potential of candidate markers for a routine implementation. Hence, 

there are few successful applications of marker-assisted selection strategies (Kuchel et al. 

2007; Bernardo 2008) but they can have a large merit if a marker is associated with a major 

QTL for a trait of high agronomic value (Miedaner 2011). Prominent examples are markers 

linked with barley yellow mosaic virus resistance genes in European barley germplasm 

(Werner et al. 2005) or marker-assisted selection for fusarium head blight resistance 

conferred by the major QTL Fhb1 in Northern American wheat breeding programs (Steiner 

et al. 2017) where this fungal disease has a very high economic impact. Screening for such 

major QTL in wheat might also include the Ppd photoperiodic sensitivity loci for flowering 

date (Beales et al. 2007), the Rht dwarfing genes for plant height (Knopf et al. 2008), and 

the Glu loci for baking quality (Payne 1987) though these are often undertaken only for 

genotypes that are used as crossing paretnts in breeding programs. The latter mentioned 
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markers that are associated with the composition of high molecular weight subunit 

composition at the Glu-1 and Glu-3 loci might also serve for predicting laborious to 

phenotype baking quality traits, however complementing small-scale test are often 

necessary to achieve a high prediction accuracy (Oury et al. 2010).  

The strategy of marker-assisted selection to target mostly single QTL or genes of high 

interest is especially valuable when breeding for qualitative inherited traits, most traits in 

wheat breeding are however quantitatively inherited and controlled by many QTL with 

minor to medium effects. Indirect phenotypic selection is thus more often applied in wheat 

breeding programs even when major QTL are known e.g. when selecting for baking quality 

in wheat by using the highly heritable protein content or sedimentation values instead of 

single marker assays, although the many underlying major QTL for gliadin and glutenin 

and associated markers are known since the early 1990s (Payne 1987; Rogers et al. 1989). 

An additional issue were high genotyping costs that hampered a broad application of a 

marker-assisted selection strategy useful in the past, but in recent years genotyping costs 

have strongly declined due to advances in next-generation sequencing technologies making 

it nowadays economically feasible to a genotype large number of individuals every year 

with a high marker density covering the entire genome (Elshire et al. 2011; Poland et al. 

2012b; Heslot et al. 2013b). 

 

A hitchhiker´s guide to genomic selection  

 

The exploitation of genome-wide distributed markers for assessing breeding values of 

selection candidates has originally been suggested by Meuwissen et al. (2001), who 

concluded that the usage of such genomic breeding values could substantially accelerate the 

rate of genetic improvement in both plant and animal breeding. The basic methodology of 

such a genomic selection approach is relatively simple, which led to its tremendous success 

in animal breeding (Hayes et al. 2009; García-Ruiz et al. 2016), and in recent years 

numerous studies have investigated the merit of introducing this procedure also for a 
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routine application in plant breeding programs (Heffner et al. 2011a; Windhausen et al. 

2012; Crossa et al. 2014; Lehermeier et al. 2014).  

Firstly, a training population of thoroughly phenotyped individuals must be genotyped with 

a large number of genome-wide distributed markers. This training population is 

subsequently used to fit prediction models employing the marker genotypes as explanatory 

variables (Heffner et al. 2009; Jannink et al. 2010). These prediction models can 

subsequently be used to estimate genomic breeding values for genotyped selection 

candidates of whom no phenotypic information about major agronomic traits like grain 

yield is available yet by summing across all their estimated marker effects (Jannink et al. 

2010). The genomic breeding values can in this way support breeders in their selection 

decisions, by providing them in earlier phases of variety development with more 

information about their breeding material at hand. A critical issue is thereby the reliability 

of this additional information for each selection candidate (Clark et al. 2012) that is closely 

linked to the prediction accuracy (He et al. 2016b). The latter is generally measured by the 

correlation between the observed and predicted genotype performance; as the observed 

genotype performance can only be determined after selection in the next growing session 

many scientific studies as well as practical users simulate a genomic selection using 

different cross-validation schemes in order to test the prediction models before 

recommending them to breeders. Classically a larger part e.g. 80% of the genotypes in a 

given dataset are thereby sampled into a training population that is used to fit genomic 

selection models for predicting a validation population of left-out genotypes, of whom the 

available phenotypic data is masked. The prediction accuracy can in this way be estimated 

as the correlation between observed and predicted performance in the validation population, 

which might be divided by the square root of the heritability (Dekkers 2007) for measuring 

the proportion of maximal achieved prediction accuracy in comparison to conventional 

phenotypic selection (Bernal-Vasquez and Möhring 2014). The above-described algorithm 

is usually repeated several hundred times with varying training by validation population 

combinations and sometimes different sampling strategies in order to correct to 

confounding effects with genotype by environment interaction, population structure, and 

family relationships (Windhausen et al. 2012; Ly et al. 2013; Storlie and Charmet 2013; 

Albrecht et al. 2014; Lehermeier et al. 2014). 
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The two latter are a major driving force for obtaining a high prediction accuracy, of which 

an important portion can be attributed to family differences (Windhausen et al. 2012; 

Würschum et al. 2017), whereas relatedness among genotypes can even be more important 

than actual targeting marker-trait associations (Habier et al. 2013; He et al. 2016a). Early 

research that focused on increasing the prediction accuracy assumed on the other hand that 

the genome-wide distributed markers used for genomic selection are for a large part in 

linkage disequilibrium with minor to major QTL and numerous models were developed 

with varying assumptions about the underlying genetic architecture (Heslot et al. 2012). 

Bayesian models assumed e.g. unique variances for each marker and some extensions like 

the BayesB selected markers by assigning zero variance to them, which aimed to estimate 

effects of major QTL more accurate (Heffner et al. 2009). However, at least in wheat 

breeding scenarios the Bayesian models did not give an advantage over frequentistic 

approaches (Heffner et al. 2011a; Heffner et al. 2011b; Rutkoski et al. 2012; Liu et al. 

2016; He et al. 2016b; Moore et al. 2017) like the ridge-regression best linear unbiased 

prediction (RR-BLUP) or its equivalent the genomic best linear unbiased prediction (G-

BLUP) (VanRaden 2008; Piepho 2009).  

Further possibilities for estimating genomic breeding values are the usage models with 

different weighting or selection of markers i.e. predictor variables like heteroscedastic ridge 

regression (Shen et al. 2013; Hofheinz and Frisch 2014) and BayesC (Pérez and de los 

Campos 2010), non-parametric models from the machine learning methodology (Ogutu et 

al. 2011; Ogutu et al. 2012), and kernel methods like the Reproducing Kernel Hilbert Space 

(RHKS) (de los Campos et al. 2010; Crossa et al. 2014). Although substantial effort was 

put into developing these models a comparison of different datasets from several studies 

revealed that all models show on average the same performance (Heslot et al. 2012), and 

advantages of specific models are often differences often depending on traits and dataset 

specific properties (Arruda et al. 2015; Tayeh et al. 2015; Battenfield et al. 2016; Spindel et 

al. 2016). Hence, the basic G-BLUP has gained the largest popularity as a computational 

fast and robust method for most practical applications of genomic selection, and quite some 

research focused on its extensions to further increase the prediction accuracy.  
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One of these possibilities that was especially interesting for product development in line 

breeding is the modelling of additive x additive epistatic effects by including an additional 

epistatic relationship matrix into the prediction model (Jiang and Reif 2015). This extended 

genomic best linear unbiased prediction (EG-BLUP) has shown some potential to improve 

the prediction accuracy for both disease resistance and grain yield compared to the baseline 

G-BLUP model (Jiang and Reif 2015; Mirdita et al. 2015; He et al. 2016a; He et al. 2016b). 

Using prior biological information by modelling known major QTL as fixed effects into 

prediction models has turned out to be another valuable option for improving the G-BLUP 

model (Bernardo 2014a; Zhao et al. 2014). The upweighting of specific markers in this 

weighted best linear unbiased prediction (W-BLUP) (Zhao et al. 2014) has shown some 

merit in several empirical studies (Arruda et al. 2016; Boeven et al. 2016; Losert et al. 

2016; Juliana et al. 2017; Moore et al. 2017), verifying simulations that suggested an 

advantage of this method if the underlying QTL explained more than 10% of the genetic 

variance (Bernardo 2014a). The idea was extended by Spindel et al. (2016) who employed 

de novo found marker-trait association that were identified by GWAS in order to increase 

the prediction accuracy of highly heritable traits like flowering date in rice. However, 

significant marker-traits associations for low heritable traits like grain yield are often not 

repeatable across years even in large mapping populations (He et al. 2016a), and modelling 

them as fixed effects might thus introducing an error putatively decreasing the prediction 

accuracy (Michel et al. 2017a). Nevertheless, several major QTL that have already been 

validated in different genetic backgrounds underpinning important traits in wheat breeding 

can readily be targeted with single-marker assays (Rasheed et al. 2016), and model 

prediction accuracy might benefit by integrating them into the genomic selection 

framework thereby effectively using the experience and information gained in numerous 

QTL mapping studies during the last decade. 

An important driving force in precision of these QTL mapping studies was the trait 

heritability, and in genomic selection this is likewise one of the major entry points that can 

be influenced by breeders for increasing the prediction accuracy (Lorenz 2013; 

Riedelsheimer and Melchinger 2013; Longin et al. 2014; Marulanda et al. 2016). Testing in 

a larger number of trial locations is thereby a more appropriate strategy for enhancing the 

data quality than increasing the number of replicates per location given the same available 
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resources (Möhring et al. 2014), due to capturing a larger proportion of the genotype by 

environment interaction and thus a higher correlation between the observed and true 

breeding value of the selection candidates in such multi-environment trials. The data 

quality of individual trials could be improved by using a sophisticated trial design that 

enables corrections for spatial trends in the field and at the same time reducing the number 

of replicates to spare phenotyping costs and enable testing in multiple locations (Cullis et 

al. 2006; Williams et al. 2011) given an optimal resource allocation (Lorenz 2013; 

Riedelsheimer and Melchinger 2013; Kleinknecht et al. 2016). The possibility to correct for 

spatial trends by moving averages or spatial models with according variance-covariance 

structures can furthermore improve the data quality from individual trials (Leiser et al. 

2012; Lado et al. 2013; Bernal-Vasquez and Möhring 2014) and for all subsequent 

downstream analysis, which is a major prerequisite for applying genomic selection where 

the choice of environments can markedly influence the prediction accuracy (Heslot et al. 

2013a).  

The size and the composition of the training population tested within these environments is 

yet another consideration that might influence the success of genomic selection in a 

breeding program (Neyhart et al. 2017). An increase in training population size is 

commonly accepted to increase the average and stability of the prediction accuracy (Lorenz 

et al. 2012; Lund et al. 2016; Nielsen et al. 2016), however different approaches were 

previously proposed for an optimal training population design among others the CDmean 

(Rincent et al. 2012) that aims to minimize the prediction error variance while retaining 

genetic diversity and an extension with stratified sampling taking the structure of the entire 

population of a breeding program into account (Isidro et al. 2015). One major aim of these 

criterion-based training population design strategies is the uniform coverage of the target 

genetic space (Bustos-Korts et al. 2016), while (Marulanda et al. 2015) showed that the 

main influence at least in bi-parental populations is the total phenotypic variance to capture 

the effects of all QTL segregating within such a population.  

Given the methods for deriving high quality phenotypic and genotypic data as well as 

computational fast and robust tools for estimation genomic breeding values, genomic 

selection has shown great promise for accelerating the genetic improvement of crops within 
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all variety categories (Schnell 1982) such as clones (Ly et al. 2013; Habyarimana et al. 

2017), population cultivars (Annicchiarico et al. 2015; Grinberg Nastasiya et al. 2016), 

hybrids (Ziyomo and Bernardo 2013; Albrecht et al. 2014; Auinger et al. 2016; Philipp et 

al. 2016) and lines (Jarquín et al. 2014b; Sallam et al. 2015; Spindel et al. 2015; Lado et al. 

2016; He et al. 2016b; Duhnen et al. 2017). A pivotal consideration for the actual 

implementation of genomic selection into a breeding program is its accuracy when 

predicting across several years and in different genetic backgrounds. Wheat breeders are 

e.g. interested in being informed about the future performance of their selection candidates, 

which is tough complicated by genotype by environment interaction and according changes 

in the ranking of genotypes across locations and years (Lynch and Walsh 1998). A 

convenient option for handling these issues are finding repeatable patterns of genotype by 

environment interaction and breed for specific adaptation to so-called mega-environments 

(Atlin et al. 2000; Annicchiarico et al. 2005; Piepho and Möhring 2005). Using genomic 

selection in this framework did however result in hardly any benefit in prediction accuracy 

(Dawson et al. 2013; Lado et al. 2016) as the effect of changing weather conditions across 

years is often predominant and hardly predictable. Several studies tried thus to handle 

genotype by environment interaction by using environmental covariates and crop growth 

models (Heslot et al. 2014; Jarquín et al. 2014a; Cooper et al. 2016), which revealed even 

for the difficult task to predict the performance of untested genotypes within yet untested 

environments a small advantage. The underlying environmental covariates have though be 

assessed by thoroughly environtyping and the underlying models are often computational 

demanding but can deliver valuable information concerning the product placement of 

newly developed varieties within fitting target regions. 

A more simplistic approach regards genotype performance in different environments as 

different correlated traits (Lynch and Walsh 1998) by modelling genotype by environment 

interaction similar to a multivariate model including a genomic relationship matrix 

(Burgueño et al. 2007; Schulz-Streeck et al. 2013). Implicitly modelling marker by 

environment in this way did not reveal an appreciable increase in accuracy when predicting 

untested genotypes in untested environments (Schulz-Streeck et al. 2013; Lopez-Cruz et al. 

2015) but showed a substantial merit for predicting the performance of genotypes for field 

trials in which they were not included (Lopez-Cruz et al. 2015; Crossa et al. 2016; Cuevas 
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et al. 2016; Pérez-Rodríguez et al. 2017). Hence, the usage of prior information about line 

performance in different environments seems worthwhile and further extension could 

include vegetation indices obtained from high-throughput phenotyping (HTP) platforms. 

They might be promising to deliver secondary correlated traits if grain yield cannot be 

measured directly, as is the case in very early generations of line breeding schemes 

(Rutkoski et al. 2016). The usefulness of multivariate models with secondary traits 

generally depends on their heritability and genetic correlation with the target trait (Bauer 

and Léon 2008; Jia and Jannink 2012), and the additional information can strongly increase 

the prediction accuracy in cases where information of the secondary trait is already 

available (Jia and Jannink 2012) e.g. for predicting baking quality associated dough 

rheology in wheat, where high quality phenotypic data for the protein content is much 

earlier available in the variety development process than e.g. dough rheological parameters 

(Michel et al. 2017a). Summing up, the usage of additional information coming either from 

prior knowledge of trait genetic architecture, correlated secondary traits or environments 

have the potential to increase prediction accuracy in various genomic selection applications. 

The primary requirements for the resulting prediction model are easy implementation, 

robustness, and computational efficiency in order to cope with the large training and 

selection populations in applied plant breeding programs. 

 

Implementing genomic selection into a line breeding program 

 

The first choice that a breeder must make when implementing genomic selection in his or 

her breeding program is currently the usage of a classical chip-based system versus 

genotyping-by-sequencing (GBS) for genotyping the breeding population. The latter uses 

methylation sensitive enzymes for complexity reduction thereby increasing the efficiency 

of sequencing by eliminating repetitive genome regions (Elshire et al. 2011), and has been 

successfully applied in numerous plant species for identifying single nucleotide 

polymorphisms (SNPs) (Poland et al. 2012a; Poland et al. 2012b). A couple of years ago, 

the costs of genotyping with GBS were significantly lower than for a chip-based system, 

however the costs for the latter technology have meanwhile strongly declined especially for 
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major crops like wheat. This makes chip-based systems nowadays a reasonable alternative 

for routine genotyping of the many selection candidates every year for conducting genomic 

selection. Furthermore, breeders might prefer such a ‘key-lock-system’ with a 

representative set of SNP markers, some of them with prior known linkage to major QTL 

for important agronomic traits. Nevertheless, the deployment of a GBS-based routine for 

genotyping is still cheaper and it does have a smaller ascertainment bias than chips, where 

SNP markers with intermediate allele frequency will be overrepresented (Heslot et al. 

2013b). While obtaining many genome-wide distributed markers that are rather a random 

sample of polymorphism in a breeding population (Elshire et al. 2011; Heslot et al. 2013b) 

the derived markers matrix contains usually lot of missing data points warranting further 

imputation (Huang et al. 2014).  

Once a decision concerning the marker system is reached a breeder has to determine at 

which stage in his or her breeding program genomic selection should be implemented. Line 

breeding programs that are based on doubled haploids (DH) e.g. many barley breeding 

programs in Western Europe could genotype a broad population shortly after DH 

production and pre-select the most promising lines with regard to grain yield and quality 

for seed multiplication and subsequent yield trials by genomic selection (Longin et al. 

2014). The pedigree method is on the other hand more prominent for breeding durum and 

bread wheat cultivars and genotyping is more likely to be conducted with more 

homozygous breeding lines after several generations of head row selection. Accordingly, 

the main application of genomic selection in line breeding is until now to support breeders 

in their decisions which subpopulation of lines from their selection candidates are advanced 

for further testing in multi-environment trials (Heffner et al. 2010; Spindel et al. 2015; 

Guzmán et al. 2016; Marulanda et al. 2016). This decision is of foremost importance in the 

development of new line varieties as multi-environment trials are costly and resource-

demanding and merely the best selection candidates should preferably enter this testing 

stage. Genomic selection is for this reason currently often implemented in parallel to 

preliminary yield trials in line breeding programs. Hence, breeders might consider the 

replacement of traditional preliminary yield trials by genomic selection to spare 

phenotyping costs or even choose to integrate these trials into the genomic selection 

framework, as they deliver a first insight into the future performance of the putative varietal 
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candidates (Endelman et al. 2014). Employing the example of an applied winter wheat 

breeding program the aims of this study were thus (i) to assess the accuracy of genomic 

breeding values of non-phenotyped breeding lines to genomically select them for grain 

yield, protein content and protein yield across yet untested years, (ii) compare conventional 

phenotypic selection with various genomic selection approaches, and (iii) integrating 

phenotypic information from preliminary yield trials into the genomic selection framework 

for enhancing line breeding schemes in general.  
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Discussion 

 

This study showed some of the benefits that might arise by implementing genomic 

selection into a line breeding program taking the example of winter wheat. The prediction 

of line performance across multiple breeding cycles and years resulted in more realistic 

estimates of genomic selection in breeding programs than were available beforehand, 

thereby bridging the gap between more theoretical results with restricted germplasm from 

research studies and empirical results from applied plant breeding. The comparison 

between conventional phenotypic selection and genomic selection revealed furthermore the 

high potential of genomic selection if implemented in early generations of a line breeding 

scheme. Previous comparisons were often made with high quality data from multi-

environment trials where genomic selection showed rather similar performance, while it 

was more than twice as good as phenotypic selection based on preliminary yield trials that 

is the actual competitor of genomic selection in line breeding.  

Enhancing phenotypic selection by modelling genetic relationship among the selection 

candidates revealed to be an additional important component with substantial benefit given 

the large amount of marker data is generated in a line breeding program with genomic 

selection. This method was until now mostly ignored in the genomic selection literature, 

although being a convenient spin-off product and several studies already highlighted the 

importance of phenotypic data. Combining genomic breeding values with enhanced 

phenotypic performance estimates from preliminary yield trials further simplified the 

across-year prediction problem to predicting tested lines in untested years, and this usage of 

additional phenotypic information presented in this study could readily be converted to a 

routine procedure in applied plant breeding. A new two-tailed training population design 

was proposed to complement this method, which could find some use both in a streamlined 

variety development pipeline but also in a recurrent genomic selection, where a regular 

training population update is pivotal. The advantage of the suggested training population 

design has meanwhile been independently validated in a recent simulation study 

investigating recurrent genomic selection in barley (Neyhart et al. 2017), where the two-

tailed training population design outperformed other previously proposed methods based on 
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genetic distance and reliability. The selection experiment comparing response to selection 

of phenotypic selection by the breeder and a genomic selection index gave further insight 

into the response to selection that can be expected by both methods. Moreover, it 

demonstrated that genomic breeding values should be used as an additional information 

source to support breeders during variety development instead of conducting a pure 

genomic selection based on indices, and in this way come to an integrated selection 

decision in combination with observations in field. 

Notwithstanding, a remaining key question is if the routine usage of genomic selection 

would be generally worthwhile when breeding line cultivars in wheat as well as other small 

grain cereals and legumes. Therefore, the cost-benefit ratio must be carefully evaluated by 

managers of breeding programs together with the involved breeders in order to find an 

economically feasible strategy for an optimal integration of a genomic selection step into 

the respective breeding scheme. The necessary investments for this endeavour include 

thereby the genotyping costs for several hundred to thousand lines every year as well as the 

associated logistics. However, genotyping costs have strongly declined in recent years and 

can be expected to further decline, while the fee of genotyping service providers are 

additionally dependent on the number of samples sent every season or in the foreseeable 

future. Furthermore, larger breeding programs might consider developing chip-based 

genotyping procedures in-house to further reduce their costs.  

GBS is a cost-effective alternative to chip-arrays and several genotyping service providers 

are offering this technology at the moment. Its low technical error rate i.e. high 

reproducibility of allele calls highlights the robustness of GBS for obtaining genetic 

fingerprints of the numerous selection candidates in applied plant breeding, nevertheless 

the typical large proportion of missing marker data that associated with this method 

demands the usage of sophisticated imputation algorithms (Poland et al. 2012b; Rutkoski et 

al. 2013; Gorjanc et al. 2017). Map-based imputation have been shown as being highly 

accurate and can be recommended if reliable information about the marker order is 

available e.g. for GWAS studies (Howie et al. 2009; He et al. 2015). The applications of 

such map-based algorithms also improved the accuracy of genomic selection and can be 

generally recommended for GBS-like marker datasets. Map-independent algorithms for 
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unordered markers like missForest (Stekhoven and Bühlmann 2012) show on the other 

hand a lower imputation accuracy, although they have a similar beneficial impact on 

genomic selection like map-based imputation and none of the available algorithms displays 

a clear advantage (Poland et al. 2012b; Rutkoski et al. 2013; He et al. 2015). Imputation 

algorithms have also revealed their merit when applied to marker datasets from chip-based 

genotyping, a major difference is though that the amount of missing data points is several 

magnitudes smaller (He et al. 2015). Research and development for this genotyping 

technology focuses on having a representative set of markers on the chip so that e.g. at least 

one SNP per haplotype group in the European winter wheat germplasm is present. This 

could improve the identification of candidate markers for agronomic traits by GWAS if 

complemented with the necessary large mapping population size and facilitate the selection 

of marker subsets for a genomic selection routine. Notwithstanding, such marker selection 

proved to be difficult if no prior phenotypic information of the selection candidates was 

available (Schulz-Streeck et al. 2011), and it would be especially difficult to find a marker 

subset that is representative for an entire breeding population.  

With the wheat reference genome sequence being briefly before completion (IWGSC 

2017), it might be possible in the future to obtain whole-genome sequence information of 

each selection candidate or at least from the most prolific crossing parents in a breeding 

population. Application of whole-genome sequencing as genotyping routine would 

facilitate an enormous increase in marker number that could theoretically be associated 

with an increase in prediction accuracy (Heffner et al. 2011a; Lorenz et al. 2012; Nielsen et 

al. 2016; Moore et al. 2017). Nonetheless, the advantage of an increasing marker number 

usually reaches a plateau after several thousand markers have entered prediction models 

(Jarquín et al. 2014b; Spindel et al. 2015). Empirical results from animal breeding where 

whole-genome sequence data is already available e.g. for dairy cows show accordingly 

rather low advantages for the prediction accuracy using such information for enhancing 

genomic selection (VanRaden et al. 2017), thereby verifying results from simulation studies 

(Pérez-Enciso et al. 2015). The latter studies already predicted a marginal benefit as a huge 

number of SNPs serving as predictor variables are in strong linkage disequilibrium in 

whole-genome sequence data, thus not delivering additional information to prediction 

models. Furthermore, the enormous computational load requires again the selection of 
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marker subsets for any practical breeding applications but would then lead at least in 

animal breeding to a substantial economic benefit even with marginal increases in the 

reliability of genomic breeding values (VanRaden et al. 2017). Prior biological information 

would be ideal for fully harnessing the potential of whole-genome sequence data. The 

highest prediction accuracy could possibly be achieved when all casual polymorphisms 

would be known, while the next best information would be prior knowledge about 

underlying genes (Pérez-Enciso et al. 2015). Given the resources needed to clone a single 

gene even when phenotype is clear like for monogenic disease resistance (Thind et al. 

2017), such scenarios are though unrealistic for quantitative traits like grain yield with 

complex genetic architecture at the moment, however the rapid advances biotechnology 

might open-up this information source for plant breeders in the future. 

Restricted to the present possibilities, genomic selection is mainly used to assist selection 

for quantitative traits in early stages of breeding program (Heffner et al. 2010; Heslot and 

Mark 2015; Spindel et al. 2015; Guzmán et al. 2016). Consequently, the usage of genomic 

selection already represents a first paradigm shift in contrast to classical breeding schemes 

were such difficult and low heritable traits are selected at much later stages of variety 

development. Genomic selection might in this way guide decisions concerning which 

selection candidates will enter multi-environment trials, and the proposed genomic assisted 

selection performed much better for identifying the correct lines for this task in this study. 

Combined with the higher prediction accuracy, genomic assisted selection can thus be 

expected to additionally lead to higher realized responses to selection. Given the higher 

confidence of these predictions a breeder might also intensify selection to spare 

experimental plots in multi-environment trials for balancing out some of the necessary 

additional investments for genotyping. Lines with a superior genomic breeding value based 

on models that were fitted with phenotypic data from multiple years and numerous 

environments, and additionally show high performance if tested in multi-environment trials 

might also have a higher probability to be among the highest and stable performing lines in 

future yet untested years. Assessing this and similar studies (Sallam et al. 2015; Auinger et 

al. 2016; Sallam and Smith 2016; He et al. 2016b) one could infer that one stage of 

genomic selection is roughly equivalent to one year of multi-environment trials. Classical 

breeding schemes need at least two years of multi-environment trials before variety 
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registration trials could be considered, thus assuming the same time is needed for deriving 

homogeneous material of a promising varietal candidate the data used to select them for 

official trials will have very high confidence as information from a lot more than 2-3 years 

are integrated with genomic selection. 

Aside from improving major agronomic traits like yield, genomic selection would be useful 

for predicting laborious to phenotype traits in early generations. The genetic improvement 

of baking quality is e.g. a specific challenge in the development of new line cultivars in 

bread wheat breeding as the assessment of associated traits often involve time-consuming, 

labour-intensive, and costly testing and too less plant material i.e. grains are available from 

each selection candidate in early generations, forcing breeders to postpone thoroughly 

quality testing into later generations of variety development. Genomic selection showed 

great promise for pre-selecting lines with superior bread baking quality in early 

generations, several years ahead of labour-intensive, time-consuming, and costly quality 

analysis both in line and hybrid wheat breeding (Battenfield et al. 2016; Liu et al. 2016). 

The prediction models could finally guide in combination with rapid tests the choice of 

material that is send for baking quality test to the laboratory (Michel et al. 2017b), and 

depending on the accuracy of these models breeders might also consider the option of 

reducing the sample number for saving costs. Aside from quality improvement, breeding 

for biofortification is another difficult task, where genomic selection had great potential to 

enhance the concentration of zinc and iron in wheat to combat hidden hunger caused by 

deficiency of these micro-nutrients foremost in resource poor regions of the world (Velu et 

al. 2016). Abiotic stress tolerances comprise another set of difficult to phenotype traits, 

where genomic selection could greatly support breeding programs as e.g. drought stress 

must often be assessed under special labour-intensive and costly management conditions 

(Ziyomo and Bernardo 2013; Beyene et al. 2015; Vivek et al. 2016). Finally, some traits 

like frost tolerance (Zhao et al. 2013) or Fusarium head blight in central Europe (Jiang et al. 

2014; Mirdita et al. 2015) cannot be observed every year making it necessary to conduct 

special tests (Sieber et al. 2014; Sieber et al. 2016) and establish nurseries for disease 

screenings. Depending on their importance in the respective breeding programs, these 

screenings are mostly conducted in advanced generations. Accordingly, a genomic 

selection approach would give a higher chance of selecting lines with desired trait 
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combinations earlier in the breeding scheme, showing a better performance in the future 

through higher yield stability under abiotic and biotic stress conditions (Wang et al. 2015; 

Huang et al. 2016).  

Apart from improving accuracy of selection, the usage of genomic estimated breeding 

values has been proposed for a couple of breeding acceleration methods (Bernardo 2010; 

Hickey et al. 2014; Neyhart et al. 2017). This represents the second and major paradigm 

shift in plant breeding with genomic selection, by dividing the program into separate 

product and population improvement cycles (Bernardo 2010; Hickey et al. 2014). The latter 

takes mostly additive effects i.e. actual breeding values into consideration, while for the 

former additive x additive epistasis plays an also important role as the final performance of 

newly developed varieties in line breeding is the sum of both additive and epistatic effects. 

Hence, modelling epistasis for training genomic selection models has been shown to give a 

significant advantage for predicting future performance of the varietal candidates (Jiang 

and Reif 2015). Considering both additive and epistatic effects in the phenotypic analysis 

of field trials enhanced by marker data could possible further improve phenotypic data 

quality (Moreau et al. 1999; Müller et al. 2015) especially if many lines are unreplicated as 

in preliminary yield trials (Endelman and Jannink 2012; Endelman et al. 2014). Great merit 

was observed for such practice in this study, and the usage of such high density marker 

could additionally enable the assessment of data quality in multi-environment trial series 

and the application of spatial models even for unreplicated trials. Resource allocations 

might accordingly be adjusted for achieving a higher response to selection by employing 

partially or unreplicated trials with testing in a higher number of environments (Möhring et 

al. 2014). Alternatively, breeders could not only consider reducing the number of replicates 

per trial but due to the increase in phenotypic data accuracy also reduce the number of trial 

locations to compensate for the additional genotyping costs with genomic selection. The 

improvement of phenotypic data is furthermore not restricted to the training population 

(Müller et al. 2015), but will likewise provide a more accurate reference for validating 

genomic selection models. 

While the previous section referred to product development cycle, the population 

improvement cycle is generated by shortening the time between initial crossings to the next 
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crossing for starting new breeding cycles. Classically, the product development and 

population improvement cycles are largely overlapping and successful lines which have 

shown superior performance entering official trials to be released as new varieties will 

often serve as crossing parents. Notwithstanding, some breeding lines with insufficient 

yield level might though show interesting characteristics such as disease resistance, and 

will thus be retained in the breeding population as crossing parents due to their high 

breeding value for some specific traits. The estimation of marker effects with models like 

RR-BLUP within the genomic selection framework has been suggested to predict superior 

progeny values for the multitude of parental combinations in order to support the planning 

of crosses (Zhong and Jannink 2007; Poland et al. 2012b). Superior progeny values enable 

therefore a crossing in earlier generations of line development for starting a new breeding 

cycle much sooner than it was possible beforehand. Promising lines of the current cycle are 

thereby further advanced in multi-environment trials and finally enter official variety 

registration trials. The superior progeny value is closely related to the usefulness concept 

(Utz et al. 2001), whose essential part is the mid-parent value that has been shown to 

correlate well with the population average of bi-parental crossing populations. Further 

extensions include predicting the segregation variance that is of great importance as from 

populations with large variance lines with higher performance may theoretically be selected 

than from a population with a higher average performance though smaller variance. 

However, the accurate estimation of this variance is very cumbersome (Bohn et al. 1999; 

Utz et al. 2001), and although some research focused on this problem resulted in promising 

approaches (Bernardo 2014b; Lian et al. 2015; Mohammadi et al. 2015; Lado et al. 2017) 

the issue is still unresolved. One of the major obstacles thereby is the empirical proof of 

concept of different segregation variance estimation methods, which would require a large 

effort e.g. at least several dozen unselected bi-parental population with 30-100 advanced 

recombinant inbred lines per population tested for grain yield in multi-environment trials.  

Considering all the mentioned benefits that are standing against the costs, the question if 

genomic selection is worthwhile in line breeding cannot readily be answered. Although 

there are some entry points to reduce costs by intensifying selection, reducing sample size 

for quality analysis, and optimizing field trials designs as well as resource allocations, for 

most breeding programs genomic selection would likely be an additional investment. 
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Finally, the implementation of genomic selection is primarily a management decision, and 

it has to be decided if the cost-benefit ratio of genomic selection is favourable for the 

respective breeding program. Further considerations might involve at which stage and for 

what purpose i.e. negative versus positive selection genomic breeding values should be 

employed. Another issue that must be taking into account is if redesigning the entire 

breeding program is necessary or even adequate. Radical changes like this could e.g. 

involve the switch from a pedigree breeding scheme to a fully doubled haploid or single-

seed descent based program, where a lot of mostly unselected lines are genotyping and 

genomically selection so that merely seed from the selected lines is multiplied for 

conducting multi-environment trials. The described very fast breeding scheme has a high 

potential but is also very costly as in addition to genotyping costs, facilities like 

greenhouses and laboratories have to be vastly extended.  

Another approach would be creating larger bi-parental populations of which merely a part 

is phenotyped in field trials, while all lines are genotyped for estimating genomic breeding 

values. First suggested for hybrid breeding in maize, where less topcross progeny is then 

actually tested in the field (Krchov and Bernardo 2015), this strategy could also be used in 

wheat breeding to exploit the high prediction accuracy within bi-parental populations 

(Lorenzana and Bernardo 2009; Heffner et al. 2011b). Different options involving such a 

scheme have been proposed (Bassi et al. 2015); nevertheless a lot of lines have to be 

phenotyped and genotyped to achieve a sufficient prediction accuracy including lines that 

would probably be discarded a priori due to deficits like lodging, too late heading or plant 

type in head rows. High prediction accuracies within bi-parental populations can be 

achieved with small training populations by maximizing the phenotypic variance 

(Marulanda et al. 2015), however it is hardly feasible to priori determine which lines will 

show values at the lower and upper tails of the distribution. While this strategy might thus 

be interesting in maize breeding due to low correlations between per se and hybrid 

performance, it might be less suitable for line breeding where the per se performance is 

decisive. Accordingly, several breeding programs followed a rather conservative approach 

by conducting genomic selection in parallel to preliminary yield trials as is currently done 

e.g. in the CIMMYT spring wheat program (Guzmán et al. 2016) or in the winter wheat 

program investigated in this study. Hence, instead of radical redesigning the breeding 
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program for genomic selection it was conveniently integrated in the existing variety 

development pipeline. The use of genome-wide distributed markers at various stages in the 

breeding program and taking advantage of various possibilities for enhancing selection as 

well as the above-described method for breeding acceleration makes genomic selection a 

valuable tool to support in their selection decisions, and accompanied by well-considered 

changes in resource allocation it has the potential to optimize breeding programs in an 

unprecedented way during modern plant breeding history. 

The optimization of breeding programs with genomic selection also involves aiming for a 

high long-term response to selection, for which the appropriate management of genetic 

diversity in breeding programs is a central point (Cowling 2013). Although genomic 

selection has a similar performance as one-year phenotypic selection, the former targets 

directly marker alleles and has the potential to alter allele frequency more rapidly especially 

at loci with large effect (Sallam and Smith 2016). Accordingly, the loss of genetic variance 

is more pronounced when using genomic selection (Bastiaansen et al. 2012) due to the 

increased relationship between selected individuals (Jannink 2010). With respect to a long-

term strategy, increasing the frequency of rare favourable alleles will be of high interest and 

upweighting these rare alleles in prediction models could counteract the loss of such alleles 

by phenotypic selection and led in the end to an overall higher response to selection 

(Jannink 2010; Liu et al. 2015). The routine genotyping of breeding lines when applying 

genomic selection has thus the convenient side-effect that it gives breeders the ability to 

actively monitor diversity in their breeding population on a molecular genetic level.  

Aside from maintaining diversity, broadening the genetic base is of large interest in 

breeding programs. This generally includes the introduction of adapted elite plant material 

from other breeding programs by crossings with native germplasm according to breeders´ 

rights, but in a wider sense also introduction from non-adapted material in the framework 

of pre-breeding. Genomic selection has the potential to support these efforts by a more 

rapid introgression of exotic germplasm into the elite gene pool of applied breeding 

programs. Simulation studies thereby suggest that genomic selection should start in the F2 

generation instead of backcross generations when using a recurrent selection scheme for 

improving populations from elite x exotic crosses (Bernardo 2009), and F2 training 
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populations were even preferable in a backcross strategy to transfer favourable alleles for a 

quantitative inherited trait from exotic to elite germplasm (Bernardo 2016b). This approach 

could be verified by an empirical study aimed to development short statured maize 

population with higher density tolerance than currently available by crossing non-dwarf 

elite lines with semi-dwarf lines from an exotic population, where predicted and observed 

gains generally agreed resulting in a higher gain by genomic than by phenotypic selection 

(Combs and Bernardo 2013). The application of genomic selection for this endeavour has 

the additional advantage that it allows the usage of multiple glasshouse or off-season 

generations per year, making it an especially interesting method for accelerating pre-

breeding programs. These programs will in this way be strengthened for effectively 

harnessing the genetic variation of landraces and other germplasm from gene banks 

(Gorjanc et al. 2016; Yu et al. 2016) that is currently severely underused, although there is 

some need to unlock their potential for achieving the aim of doubling the world-wide grain 

yield until 2050 (Longin and Reif 2014). The exchange of datasets and genomic selection 

knowledge worldwide (Spindel and McCouch 2016) across both the public and private 

sector would finally contribute significantly to this enormous task. 
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Appendices 

 

Supplementary material of Genomic Selection across Multiple Breeding Cycles in 

Applied Bread Wheat Breeding 

 

 

 

Fig. S1 Correlation between the accuracy of each individual line and the genetic 

relationship, varying the number of the most related lines from the training population. One 

breeding cycle was left out at a time using all other breeding cycles as training population. 
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Fig. S2 Heatmap of the genomic relationship matrix displaying the genetic correlation 

among all lines. 

 

 

 

Fig. S3 Relationship between prediction accuracy and training population size for grain 

yield, protein content and protein yield using a 5-fold cross-validation with the breeding 

cycles 2010-2014 as folds. 
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Supplementary material of Genomic Assisted Selection for Enhancing Line Breeding: 

Merging Genomic and Phenotypic Selection in Winter Wheat Breeding Programs 

with Preliminary Yield Trials 

 

 

 

 

Fig. S1 Variation of grain yield and protein content in preliminary yield trials 2010–2014. 
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Fig. S2 Cross-validation scheme used for comparing the different selection methods. 

Genomic selection models were fitted with training populations of 180 lines, where 60 lines 

of this training population came from 3 different years (green). Phenotypic and genomic 

assisted selection included additional data from the year of a preliminary yield trial 

(orange). All models were validated with a validation population of lines retested in multi-

environment trials following the year of a preliminary yield trial (red). 
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Fig. S3 Comparison between the prediction accuracy of genomic and genomic assisted 

selection for every training by selection population combination to predict grain yield and 

protein content of individual trials across years. 
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