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ABSTRACT

As the host of choice for the production of biopharmaceuticals, Chinese hamster ovary
(CHO) cells have been in the spotlight for process optimization in recent years. In order
to design rational strategies to further increase protein yields, mechanistic, systems-wide

understanding of cellular processes is essential. Genome-scale metabolic network models together
with constraint-based analysis methods offer one framework for gaining such an understanding.
Moreover, they provide a rational basis for the integration of data from different biological sources
and for mathematical modelling of cellular metabolism. Since a community-built metabolic model
for CHO was recently published, the full potential of these modelling techniques is now at hand
to help us elucidate the complex mechanisms behind protein production in CHO.

The objective of this thesis was to apply constraint-based methods to study of CHO metabolism
and to identify potential metabolic engineering targets for efficient energy utilization and in-
creased protein production. Using biased approaches, I identified reactions which correlate with
protein production under different experimental conditions. Moreover, based on an unbiased
analysis of a medium-scale reconstruction of CHO’s central metabolism, I identified various
pathways that are prime engineering targets for optimized energy metabolism.

Additionally, I developed a new approach based on concepts of convex analysis for the char-
acterization of the phenotypic capabilities (production envelopes) of an organism. Contrary to
currently available methods, this algorithm can be applied simultaneously to several reactions of
interest to characterize all feasible steady-state flux distributions within a reduced computation
time.
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KURZFASSUNG

In den letzten Jahren standen Chinese hamster ovary (CHO) Zellen im Fokus der Prozes-
soptimierung, da sie die erste Wahl für die Herstellung von Biopharmazeutika waren. Um
rationale Strategien zur weiteren Steigerung der Proteinausbeute zu entwickeln, ist ein

mechanistisches, systemweites Verständnis der zellulären Prozesse unerlässlich. Metabolische
Netzwerkmodelle im Genommaßstab bieten zusammen mit auf Beschränkungen basierenden
Analysemethoden einen Rahmen, um ein solches Verständnis zu erlangen. Darüber hinaus
bieten sie eine rationale Grundlage für die Integration von Daten aus verschiedenen biologischen
Quellen und für die mathematische Modellierung des Zellstoffwechsels. Da kürzlich ein von einer
Community erstelltes Stoffwechselmodell für CHO veröffentlicht wurde, können wir jetzt das
gesamte Potenzial dieser Modellierungstechniken nutzen, um die komplexen Mechanismen für
die Proteinproduktion in CHO aufzuklären.

Ziel dieser Dissertation war es, Constraint-basierte Methoden anzuwenden, um den Stof-
fwechsel zu untersuchen und potenzielle metabolische Engineering-Ziele für eine effiziente
Energienutzung und eine erhöhte Proteinproduktion zu identifizieren. Mit voreingenomme-
nen Ansätzen identifizierte ich Reaktionen, die mit der Proteinproduktion unter verschiedenen
experimentellen Bedingungen korrelieren. Auf der Grundlage einer unvoreingenommenen Anal-
yse einer mittelgroßen Rekonstruktion des zentralen Stoffwechsels von CHO identifizierte ich
außerdem verschiedene Wege, die die wichtigsten technischen Ziele für einen optimierten En-
ergiestoffwechsel darstellen.

Zusätzlich entwickelte ich einen neuen Ansatz, der auf Konzepten der konvexen Analyse
zur Charakterisierung der phänotypischen Fähigkeiten (Produktionshüllen) eines Organismus
basiert. Im Gegensatz zu derzeit verfügbaren Methoden kann der Algorithmus gleichzeitig
auf mehrere interessierende Reaktionen angewendet werden, um alle möglichen stationären
Flussverteilungen innerhalb einer reduzierten Rechenzeit zu charakterisieren.
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All discoveries in art and science result from an accumulation of errors.

Marshall McLuhan
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INTRODUCTION

Mammalian cells have the unique ability to perform complex post-translational modifica-

tions on proteins in a way microbial systems are not able to [1]. Therefore, and despite

the low product yield and high process cost as compared to prokaryotic platforms [2],

they have become the leading platform for the production of biopharmaceuticals. These modifica-

tions (e.g. glycosylation) are crucial for serum half-life, therapeutic efficacy and immunogenicity.

More specifically, CHO cells are currently the host of choice due to several advantageous features

such as their virus resistance and their capability to grow in suspension in serum-free chemically

defined cultivation media [3]. Additionally, methods for gene manipulation and clone selection

are well characterized in CHO cells and they have a long, well-established history of approvals

for clinical applications [4, 5].

In order to meet the increasing demand for recombinant therapeutic proteins in a field worth

more than $360 billion in annual revenue [6], major efforts have focused on enhancing protein

yield by optimizing both the process and the host cell. However, most engineering strategies to

date are the result of time-consuming and costly clone screening processes and oftentimes lack a

mechanistic understanding of the underlying biological processes involved.

With the recent development of ‘omics’ technologies, it has become possible to gain a deeper

insight into cell metabolism in a more integrative manner. Towards this end, systems biology

relies heavily on mathematical representations of cell biology, such as stoichiometric models.

These models contain information about the mass balance relationships of the metabolites in a

biochemical network. First metabolic modelling approaches in CHO cells were carried out using

models from other animal cells such as baby hamster kidney or hybridoma cells [7, 8]. In 2011

the genome of CHO became available [3, 9, 10], marking a turning point for the development of

metabolic modelling approaches for CHO. For a brief summary of metabolic modelling applications
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CHAPTER 1. INTRODUCTION

therein, see subsection 1.4.

At the present time, there is a plethora of different models for mammalian cell growth and

protein production (empirical, mechanistic and stochastic) which apply different approaches

ranging from kinetic models to artificial neural networks [11]. The focus of this thesis lies on

metabolic modelling of CHO cells and, more specifically, on constraint-based modelling for the

characterization of metabolic capabilities of CHO and potential discovery of metabolic targets.

Constraint-based approaches have been developing for 30 years and have proven to be a

valuable tool to predict the metabolic behavior, most successfully in microorganisms, under

different experimental conditions [12]. The main advantage of these methods is that they do

not rely on kinetic parameters and therefore can be applied to genome-scale metabolic models.

The following sections of this thesis outline how I applied methods based on linear algebra

and computational geometry to explore the metabolic limitations of CHO cells under different

experimental conditions and to establish computational tools to find new potential engineering

targets.

1.1 CHO cells

Ever since the first CHO-produced therapeutic protein was approved in 1987 (Alteplase, Genen-

tech, Inc), innovations on the bioprocess have boosted protein yields from 10 to 50 mg/L to more

than 10 g/L [13]. Nowadays, top-selling drugs such as Humira, Rituxan or Avastin are produced

in CHO [14].

1.1.1 CHO cells as protein factories

The establishment of a new producer cell line encompasses transfection of selection and recom-

binant genes and screening for the clones of interest (typically high growth and productivity).

Genomic sequence analysis of the most commonly used CHO cell lines (CHO-K1, DG44 and

CHO-S) highlights the genetic diversity among them [10]. Moreover, CHO cells are known to be

genomically unstable [15], mainly due to copy number variations and chromosomal rearrange-

ments [16]. These variations cause clonal heterogeneity [17, 18] and might affect growth and

productivity, making the establishment of a producer clone even more challenging.

Genomic instability in CHO limits the applicability of in silico methods to different cell lines

and experimental conditions [19]. Nevertheless, the rapid increase in the available data sets

from different cell lines (e.g. those in CHOgenome.org [20]) enables the characterization of those

differences and helps building cell line specific models with the integration of transcriptomics or

proteomics data into the metabolic network reconstruction.

2
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1.2. GLYCOSYLATION OF RECOMBINANT PROTEINS IN CHO

FIGURE 1.1. Schematic representation of cellular metabolism. Source
molecules (substrates) are catabolized, generating energy (ATP and
NADPH) and precursors for anabolic pathways. Biomass and produc-
tion of the protein of interest will compete for these resources. Modified
from [21]

1.1.2 Metabolism

Protein production depends on the efficiency of the transcription-translation machinery and

secreting capabilities of the cell, but it also relies heavily upon cell metabolism, more specifically

on the production of the main building blocks (amino acids) of the protein as well as the energy

required for the biosynthesis (high-energy phosphates and electrons, primarily in the form of

ATP and NADPH, see Figure 1.1).

Like other mammalian cells, CHO cells exhibit high metabolic fluxes through glycolysis and

glutaminolysis with the collateral over-production of ammonia, lactate and alanine. Lactate

impacts pH and osmolarity [22] and consequently reduces cell growth [23, 24] and protein

production [25]. In addition, it is an indication of inefficient use of the main carbon sources,

since converting glucose to lactate only generates two molecules of ATP, whereas 36 molecules

are produced if glucose is completely oxidized in the tricarboxylic acid (TCA) cycle. Likewise,

high concentrations of ammonia severely impact cell growth, productivity and glycosylation

[26, 27, 28, 29]. In the past decades, bioprocess optimization strategies have successfully reduced

the accumulation of both ammonia and lactate by (i) control of of glucose and glutamine feeds in

fed-batch cultures [30, 31], (ii) using alternative substrates [32] and (iii) cell engineering [33, 34].

1.2 Glycosylation of recombinant proteins in CHO

Glycosylation is the most frequent and complex type of post-translational modification. It consists

in the addition of carbohydrates at specific protein sites and generates oligosaccharide structures
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CHAPTER 1. INTRODUCTION

that differ in length and branching points. This modification highly affects protein folding and

secretion, as well as proteins’ clinical properties such as clearance or antigenicity [35].

Glycan heterogeneity is known to be influenced by numerous factors. Among them, the

metabolic state (glutamine and glucose metabolism, flux through the TCA cycle) [36] and biopro-

cess conditions such as pH [37], temperature [38] or bioreactor operation [39].

More than twenty enzymes participate in glycosylation along the Endoplasmic Reticulum

(ER) and Golgi apparatus (Figure 1.2). Many of them have common substrates and can perform

the same enzymatic reaction on different glycans, hence the multiplicity of possible outcome

structures. This has challenged the application of glycoengineering techniques to a process once

thought to be a consequence of random biochemical effects.

Central carbon metabolism is linked to glycosylation via nucleotide-sugar metabolism; UDP-

N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) are the

main precursors of glycosylation. Protein folding and addition/removal of sugars occur along ER

and Golgi compartments. Finally, the proteins can stay in the cytoplasm or be transported to

the membrane for secretion. The biochemical process of protein glycosylation is summarized in

Figure 1.2.

1.3 Systems Biology

During the past decades, cell culture engineering has undergone a period of dramatic increase in

product yields [13]. The main trend has been to go from random mutagenesis and clone screening

to more targeted (rational) engineering approaches. Genes, transcripts and proteins are not

isolated components but show high levels of inter-connectivity in biological systems and are

thus better described as networks. In order to predict the effect of any genetic or environmental

changes on the phenotype in metabolic engineering, one must consider the system as a whole. In

this regard, systems biology aims to integrate different sources of biological information about

an organism and use computational approaches to predict and improve cell performance [40].

The significant rise in availability of omics data and analysis [41] has boosted the application of

systems biology approaches in CHO cells [42].

Understanding the basis of high productivity and final product quality is crucial in order to

establish proper bioprocess control. In recent years, pharmaceutical regulatory agencies such

as the Food and Drug Administration (FDA) are promoting the use of quality by design (QbD)

approaches for the development of new biopharmaceuticals [43]. These approaches aim to ensure

product quality by defining a quality profile based on therapeutic performance and identifying

critical parameters affecting product quality in order to be able to control the process and make it

more robust [44, 45]. Understanding the factors that influence protein quality implies biochemical

characterization of the process. Mathematical modelling facilitates this task and has become an

essential tool for rational experimental design and process control.

4



1.3. SYSTEMS BIOLOGY

FIGURE 1.2. Glycosylation of proteins through the ER and Golgi. Nucleotide-
sugars precursor is transferred from dolichol to a Asn-X-Ser/Thr sequence
in the protein. Several glycosyltransferase-mediated steps of trimming,
elongation and terminal glycosylation will lead to the final folded, glycosy-
lated structure. Non-completion of the process gives rise to heterogeneity
in the final glycan structure.

5



CHAPTER 1. INTRODUCTION

1.3.1 Biochemical reaction networks

Reaction networks represent the genotype-phenotype relationship (genes to enzymes to substrate

and products) and are a key aspect of systems biology. These networks are the scaffold in which

omics data can be integrated and they allow for mathematical representation and, consequently,

computational modelling. These models allow us to predict phenotypic states based on the genetic

content of an organism [21].

The increased availability of high-throughput data in the past decades has enriched the

field of systems biology with the concomitant generation of high quality-curated genome-scale

metabolic models. These are network-based representations of cellular metabolism; they gather

all stoichiometric relationships (reactions or edges) between metabolites (nodes) known for a

given organism. They also contain information about reaction kinetics, compartmentalization,

reaction directionalities and capacities (flux bounds). When known, gene identifiers for each

reaction are also included. Exchange reactions allow uptake/secretion of metabolites from/to the

medium and transport between compartments.

1.3.2 Metabolic network reconstruction

Metabolic reconstructions rely on diverse sources of biological data (Figure 1.3) [46] and the steps

to follow are well-established in the form of a standard protocol [47]. Metabolic reactions can be

included in the model if there exists experimental evidence of the presence of an enzyme; in other

cases proteins can be assigned to genes based on homology to other genomes. Genome annotation

is essential for model building [21]. Other reactions are "inferred", such as the biomass reaction,

which represents the biosynthetic demands for cell growth. These are obtained experimentally

from the quantification of biomass components. Metabolic modelling also aids in the process of gap

filling, in which reactions that are necessary for a metabolite to be produced (or consumed) are

added for model completion. Several toolboxes are currently available for network reconstruction

in a semi-automatized way [48, 49]; followed by very labour- and time-intensive manual curation

[50].

Despite the avalanche of genomics, proteomics, transcriptomics, metabolomics, fluxomics and

lipidomics data which helps us improve our understanding of cell behavior, recent publications

highlight the need for standard methods for network reconstruction and quality control [51].

Discrepancies in data obtained from different public databases such as BiGG [52], KEGG [53]

or MetaCyc [54] should be removed to alleviate the process of network reconstruction and to

generate results which are reproducible and comparable within the scientific community [55, 56].

Metabolic models are generally available in Systems Biology Markup Language (SBML) [57].

There are currently hundreds of software applications that support the SBML format [58]. The

use of a standard format for metabolic models facilitates data exchange through the creation of

extensive model databases such as BioModels [59] or BiGG [52]. Many of the available toolboxes

6



1.3. SYSTEMS BIOLOGY

FIGURE 1.3. Genome-scale metabolic networks represent the available knowl-
edge on cell metabolism. These reconstructions derive from the integra-
tion of omics data together with biochemical and physiological informa-
tion. Computational modelling is then applied to develop new strategies
for cell line optimization. These strategies are validated with experiments,
new data collected, and the reconstruction is refined.

include software for network reconstruction, visualization and analysis (COBRA [60], RAVEN

[61]) as well as for in silico design of engineering strategies [62].

These reconstructions of all metabolic knowledge of an organism can then be represented as

mathematical models, which makes them amenable to computer simulation (Figure 1.3). In silico

methods have been widely applied to metabolic models of microorganisms [63, 64] and human

[65, 66, 67], and are now rapidly developing for CHO cells (see section 1.4).

Metabolic networks can be analyzed and modelled from distinct perspectives: some approaches

focus merely on the topology of the network (how nodes are connected, as in protein-protein

interaction networks); others aim to mechanistically predict the evolution of metabolic species

7



CHAPTER 1. INTRODUCTION

in time. However, kinetic information on reaction rates is scarce, limiting the applicability of

these methods to small networks. A third major area of network analysis focuses on additional

constraints other than topology to characterize the space of feasible metabolic phenotypes [68].

In this thesis, I have applied these so-called constraint-based methods to the recently published

metabolic model for CHO, iCHO1766 [69].

1.3.3 CHO metabolic model

Metabolic modelling of CHO cells has been carried out for more than 20 years [70]. Without a

metabolic network specific for CHO, first modelling approaches focused mainly on central carbon

metabolism [71] and were derived from other mammalian cells (e.g., mouse [72] or hybridoma

[8]). Following the sequencing of a CHO cell line in 2011 [3], the publication of a community-built

genome-scale metabolic model (GSMM) [69] has ushered in a new era of systems biology for CHO.

Transcriptomics and proteomics data were incorporated in the generic model to generate cell-type

specific versions for the most widely used cell lines (K1, S, DG44). The generic iCHO1766 model

consists of 6663 reactions distributed in 10 compartments (including "external" for exchange

reactions). In order to be able to represent transport reactions across compartments, metabolites

(2342 in total) are divided into "species" (4455), for example, M_atp_m and M_atp_c is ATP in

the mitochondria and in the cytosol, respectively.

1.4 Mathematical models of CHO metabolism and glycosylation

Section 1.4 is part of the review published by Sarah N.Galleguillos, David Ruckerbauer, Matthias

P. Gerstl, Nicole Borth, Michael Hanscho and Jürgen Zanghellini in Computational and Structural

Biotechnology Journal, January 2017 [73].

Here we will review recent progress in the computational modelling of CHO cells.

Specifically, we will focus on and analyze two main issues associated with recom-

binant protein production: (i) metabolic burdens affecting growth and thus protein

yield and (ii) understanding of the correct glycosylation process of the protein of

interest, which is one of the major criteria for product quality.

1.4.1 Modelling CHO metabolism

To gain mechanistic understanding of these processes, appropriate metabolic models

are required that allow one to estimate cellular flux distributions. This can be done

in two ways: (i) in a time-dependent or dynamic manner (kinetic analysis) or (ii) in

a constraint-based, steady-state analysis. The former approach aims to assess the

evolution of the concentrations of metabolites over time and requires a large number

of kinetic parameters. Due to the lack of accurate, quantitative data, this approach

is currently not feasible on a genome-scale level, but restricted to small-scale models

8



1.4. MATHEMATICAL MODELS OF CHO METABOLISM AND GLYCOSYLATION

that consider several tens of selected reactions and interactions. The latter approach,

on the other hand, avoids the need for detailed kinetic information by focusing on the

steady-state behaviour inside the cell. Disregarding dynamic processes makes this

approach, called metabolic flux analysis (MFA), scalable and suitable for genome-wide

analysis. For better understanding the modelling approaches are briefly reviewed in

Box 1.

Box 1: Common modelling approaches

MFA (Metabolic Flux Analysis): pathway analysis method based on the stoi-

chiometry of metabolic reactions and mass balances under pseudo-steady-state

assumption [74]. It can be implemented in several ways. Among them:

FBA (Flux Balance Analysis): an implementation of MFA based on

the optimization of a cellular function (such as growth) under specific

constraints (experimental metabolic uptake and secretion rates, thermo-

dynamic data, etc) [75, 76].

13C MFA: isotope-labelled substrates are added to the culture me-

dia and, once the isotopic steady-state is reached, the distribution

of the isotopes is measured via nuclear magnetic resonance or gas

chromatography—mass spectrometry [77].

Markov chain Monte Carlo sampling: the glycosylation process is described

as a series of states with transition probabilities from one state to the other.

In the references reviewed herein, it is used to overcome the lack of kinetic

parameters (metabolic and glycosylation enzymes) [78].

Artificial Neural Network models aim to predict the behaviour of complex,

non-linear systems by detecting and “learning” patterns and relationships

within a training set which can be applied then to the input data [79].

In the following section we review current advances in metabolic modelling of

CHO cells (listed chronologically in Figure 1.4), focusing on those that investigate

the accumulation of the two main metabolic by-products that are detrimental to cell

growth, i.e. lactate and ammonia.

1.4.1.1 The metabolic fate of lactate

Altamirano et al. [8] investigated the metabolic fate of lactate on a metabolic network

of CHO core metabolism. They argued that, when re-metabolized, lactate is not used

as an energy source, as their experimentally measured low oxygen uptake rate was

inconsistent with a full oxidation of lactate via the TCA cycle. Consequently, they

9



CHAPTER 1. INTRODUCTION

proposed alternative pathways for the non-oxidative decarboxylation of pyruvate,

which are known to exist in cancer cells [80], to be present in CHO cells too. Nev-

ertheless, the accumulation of the end product of these pathways, i.e. acetoin, was

not experimentally proven. In a more recent work, Martinez et al. [81] were able

to refute this hypothesis. In their study, they analyzed the metabolic switch from

lactate production to lactate uptake by means of FBA in a reduced mouse-derived

metabolic model. Contrary to Altamirano et al., Martinez et al. showed that their

oxygen uptake rate measurements were consistent with lactate oxidation in the TCA

cycle. This suggests that the metabolic network of Altamirano et al. might have been

too simplistic to capture the metabolic changes between the phases. Compared to

Martinez, Altamirano’s model lacked fatty acid, steroid and glycogen metabolism. In

addition, the prediction of the ATP yield per mol carbon identified lactate consump-

tion to be energetically more efficient than glucose consumption. Furthermore, they

showed that the estimation of ranges for the metabolic fluxes (due to the insufficient

amount of experimentally measured data in an underdetermined network) provides

a valuable, semi-quantitative description of the changes between the two metabolic

states. This concept was also supported by Zamorano et al. [82], who performed MFA

in an under-determined network containing 100 reactions of the core metabolism and

obtained narrow intervals for the fluxes with a relatively low amount of extracellular

measurements.

FBA can be combined with isotopomer analysis to improve the accuracy of the

predicted fluxes. Sengupta et al. [83] studied the main metabolic fluxes in a simpli-

fied network during the stationary phase of cell culture by 13C MFA. This phase is

typically characterized by reduced production of lactate and high protein yields. Like-

wise, Templeton et al. [84] performed 13C MFA to understand the metabolic changes

between growth and stationary phases in a producer CHO cell line. They found that,

during the antibody production peak (stationary phase), fluxes through the TCA

cycle were maximal while lactate was not produced. Moreover, this increased activity

of the TCA cycle correlated with increased fluxes through the oxidative pentose

phosphate pathway (PPP) when compared to the exponential phase, where high gly-

colytic fluxes predominate. They provide several explanations for the activation of the

oxidative PPP: to regenerate NADPH/NADP+, to compensate reduction during expo-

nential growth, to suppress oxidative stress or to cover NADPH requirements during

protein folding and secretion. Irrespective of the ultimate reason, these findings

point towards metabolic engineering to increase oxidative TCA cycle (CO2-producing

reactions) and PPP fluxes which would help achieve higher protein yields.
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1.4.1.2 Lactate as a beneficial medium component?

More recently, Chen et al. [85] even suggested that adding small amounts of lactate

at the beginning of the culture process increases the metabolic efficiency. They used

a kinetic model of the central carbon metabolism (i.e. glycolysis, PPP and TCA

cycle) coupled with a model of the population dynamics and computed the time-

dependent yield of lactate with respect to glucose. They found this yield decreased

with increasing (yet not toxic) initial extracellular concentrations of lactate, meaning

more efficient use of glucose. These findings were supported by Li et al. [86], who

found that lactate can be fed as a major carbon source when glucose concentrations

are kept low in culture.

Lactate uptake in the presence of galactose was also studied by flux balance

analysis (FBA) in tissue plasminogen activator producing CHO cells in batch cultures

[87]. Main changes were observed to occur in the pyruvate metabolism; the slow

utilization of galactose as compared to glucose does not provide enough pyruvate

to fulfill the energy requirements. This causes lactate dehydrogenase to reverse its

mode of operation, transforming lactate into pyruvate, which then enters the TCA

cycle. Consequently, intracellular pyruvate and lactate concentrations are reduced,

which activates the monocarboxylate transporter towards lactate uptake.

The importance of taking compartments into consideration when modelling

metabolism has been demonstrated by analyzing enzyme localized activity together

with non-stationary 13C techniques. These allow a more accurate assessment of

metabolic fluxes [88], mostly for those pathways that cannot be resolved using steady

state approaches, such as cyclic or parallel pathways (e.g. glycolysis and PPP). In this

study, Nicolae et al. also discussed the sources of lactate production in both cytosol

and mitochondria. Taking into account not only the time-evolution of the metabolites,

but also their spatial localization, proved that there is an additional control factor of

precursor availability for both glycolysis and TCA cycle [89].

Likewise, Ahn et al. [90, 91] performed high precision 13C MFA on a network con-

taining 79 reactions and resolved metabolic fluxes accurately. During the exponential

phase, characterized predominantly by high fluxes through glycolysis, 70% of the

glucose was converted to lactate. They also observed a decrease in glycolytic fluxes

and an increase in the oxidative PPP in the stationary phase, as reported previously

[84].

1.4.1.3 What makes a “good” growth medium?

As already mentioned, the addition of alternative energy feedstocks can reduce

the accumulation of undesired by-products. The effects of these alternative carbon

sources on metabolism and protein production were studied with MFA on a reduced
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metabolic network by Altamirano et al. [92]. They showed that replacing glutamine

by glutamate indeed resulted in reduced accumulation of ammonia, although at

the price of a lower glucose uptake rate. This lowered metabolism has a negative

impact on the specific protein production rate, as carbon is predominantly captured

to sustain growth, leaving little for protein production.

In a follow-up work, Altamirano et al. [8] considered co-feeding strategies with

galactose added to the medium, as galactose-glutamate media are known to signif-

icantly reduce by-product formation, but unfortunately, also cell growth. However,

they showed that after glucose depletion, cells were able to maintain growth on galac-

tose by simultaneously utilizing previously produced lactate. Interestingly, CHO cells

do not metabolize lactate when it is offered as the sole carbon source.

MFA has also been applied for media optimization. Xing et al. performed MFA

in continuous culture to assess the metabolic demands (in terms of amino acids) of

antibody producing CHO cells [93], which resulted in a modified medium where final

concentrations of ammonia and lactate were reduced and higher viable cell densities

and higher productivities were achieved.

The steady state assumption might be problematic when modelling the inherently

time-dependent fed-batch processes [94]. Hence, several efforts have been made to

perform kinetic metabolic analysis while keeping a reduced, tractable set of reactions

to avoid dealing with too many kinetic parameters. One of the first attempts in

this direction was made by Nolan et al. [95], who included kinetic expressions

in a reduced, lumped model containing 34 reactions. They studied the metabolic

lactate switch by linking glucose concentration in the medium to cytosolic levels of

NADH and lactate metabolic rate (lower levels of cytosolic NADH leading to net

lactate consumption). This study also analyzed the intracellular concentrations of 24

metabolites in different cell lines and found that 20 of them either remained constant

during the process or that their concentration changes were negligible compared to

the fluxes, supporting the validity of the pseudo-steady state assumption [74] also

for fed-batch processes.

Goudar et al. [96] made remarkable progress towards quasi real-time estimation

of the metabolic rates in perfusion culture of CHO cells for optimal process control

based on metabolite balancing. They observed that reducing the initial concentrations

of glucose and glutamine resulted in an increased flux towards the TCA cycle and

decreased production of waste metabolites, mainly lactate.

Xing et al. [97] applied a Markov chain Monte Carlo method to develop a kinetic

model of fed-batch cultures and predicted optimal initial concentrations of glucose

and glutamine that minimized the production of ammonia and lactate.

The effects of decreasing concentrations of glutamine in the media, namely the

12
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increased uptake of other carbon sources and the reduction of secreted ammonia

and other products, was studied by dynamic MFA on fed-batch CHO cultures with

different glutamine concentrations [98]. They show how controlled feeding prevents

glutamine metabolism to be coupled to waste producing pathways and, moreover,

stabilizes the flux through the TCA cycle.

Similarly, Sheikholeslami et al. [99] used 13C MFA to compare two semicontin-

uous cultures grown on chemically defined media with 1mM and 5mM glutamine,

respectively, and found that low glutamine uptake (in the 1mM culture) was more

metabolically efficient in terms of the proportion of pyruvate that enters the TCA

cycle (and therefore is not converted to lactate). Furthermore, the CHO cell line

used in this study was found to be particularly efficient, mostly under hypothermic

conditions, as confirmed on their previous work [100]. In this case, the use of 13C

MFA was simplified by analyzing only extracellular 13C -labelled metabolites and

then performing MFA to predict the intracellular fluxes.

Another interesting feeding strategy was suggested by Naderi et al. [101]. In their

work, they used MFA to reduce the metabolic network to a set of significant reactions

and coupled them to a dynamic cell growth model to asses the differences between

growing and apoptotic cells. They highlighted the differences on the metabolic rates

for the different cell subpopulations (growing, resting and apoptotic cells) and sug-

gested a feeding strategy based on the “aging” of the cell culture: when glutamine is

in excess in late phases of the process (where the non-growing cells become predomi-

nant), there is a switch from glycolytic reactions towards deamination of glutamine

(and concomitant ammonia accumulation), which could be prevented by gradually

lowering the concentrations of glutamine in the feed as the culture ages.

Some other compounds, such as sodium butyrate, have shown to improve pro-

ductivity in CHO cells [102]; Ghorbaniaghdam et al. [103] used a kinetic model to

assess the effects of this compound on metabolism in a non-compartmentalized model

assuming Michaelis-Menten kinetics. They found cells to become more energetically

efficient (in terms of the lactate to glucose ratio) when sodium butyrate was added

at the mid-exponential phase. Moreover, they made noteworthy improvements in

describing energy metabolism (in terms of ATP) and redox potential (in terms of

NADH, NAD+, NADPH and NADP+). Adding sodium butyrate to the media generates

an increased flux through the TCA cycle and a high cell redox potential, while not

significantly changing the ATP production rates.

MFA has also been combined with statistical analysis methods (such as principal

component analysis) to determine key metabolites linked to the accumulation of

ammonia and lactate. In their study, Selvarasu et al. [72] analyzed profiles of extra-

cellular and intracellular species and integrated this information in a mouse-derived
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GSMR with the goal of finding pathways related to growth limitation. In addition

to glucose and glutamine, they identified asparagine to be correlated with the accu-

mulation of ammonia in the medium, most probably via its conversion to aspartate,

then glutamate and finally α-ketoglutarate.

1.4.1.4 The future starts now: iCHO1766, a comprehensive, genome-scale
metabolic reconstruction of CHO

As outlined above, the results derived from a model-based analysis have significantly

improved our understanding of the underlying metabolic processes. This is all the

more remarkable as, so far, a truly CHO-specific GSMR was missing. All the ap-

plications summarized above used either small-scale metabolic models or adapted

reconstructions developed for related organisms like mouse or humans. However,

after the complete genomic sequence of CHO-K1 was published in 2011 [3], several re-

search groups around the world joined forces in creating the first community-curated

GSMR of CHO, which just now became available [69]. This model consists of 4,455

metabolites participating in 6,663 reactions and contains 1,766 annotated genes. In

a first demonstration of possible applications of this CHO GSMR, typical process

engineering strategies were analyzed for their effects on the predicted maximum

product yield. In all tested cases, the model suggested that these processes are not

even close to tapping the full potential of CHO cells.

Furthermore, the transcriptome [104] and proteome [105] of CHO cells can be now

used to obtain cell-line specific models that provide a more precise characterization

of metabolic capabilities [106]. Metabolomics data can further refine these models to

make better predictions under the given culture conditions. Thus, given the advances

in high-throughput technology, we expect that the model based-analysis of systems-

level data like the transcriptome and proteome will help to further unravel the

complexity of CHO metabolism.

Regardless of these promising results, model performance has to be further

evaluated. Ever since the first modelling approaches appeared, the accuracy of

experimental measurements has been shown to be an important factor to obtain

meaningful results [107]. Moreover, it has been shown that biomass composition

varies among different cell lines [72]. It is also known that the biomass composition

has a great effect on model predictions [108]. Therefore, factors influencing the

robustness of CHO metabolic models is a question that still remains to be addressed.

1.4.2 Glycosylation

Modelling metabolism aims at reducing the metabolic burden on the cells induced

by the recombinant production of the protein of interest. It aims to increase the
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Figure 1.4: Metabolic modelling efforts in CHO listed in chronological order. Abbreviations: QRT,
quasi-real-time; dhfr, dihydrofolate reductase

protein yield. However, the biopharmaceutical industry is not only faced with the

problem of producing therapeutic proteins efficiently, but also to produce them

at high quality. A major quality attribute of many biopharmaceuticals is correct

glycosylation, as the correct function of most therapeutic proteins depends on it

[109]. Glycosylation consists of the addition of an oligosaccharide chain to an amino

acid residue, predominantly asparagine (N-linked) or serine/threonine (O-linked
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glycosylation) and takes place in the Endoplasmic reticulum and Golgi apparatus

along the protein secretory pathway. These sugar modifications play a fundamental

role in protein conformation, stability, solubility, receptor recognition and antigenicity

as well as cytotoxicity [110, 111, 112, 113]. Thus glycosylation essentially modifies

the pharmacological properties of a protein.

Glycosylation patterns are naturally and in general heterogeneous. There are

two main sources of variability in glycosylation: macroheterogeneity, which refers to

the fact that a particular site in the protein might or might not be glycosylated; and

microheterogeneity, when different glycan structures can be found on the same site.

However, this natural variability presents a particular challenge for the production

of biosimilars, were the glycosylation patterns of the primary drugs have to be

reproduced within tight tolerance regions defined by regulatory authorities.

1.4.2.1 Modelling glycosylation in CHO

Many factors are known to influence glycosylation in cell culture: concentration of

metabolites in the medium (both substrate and waste products), pH, temperature

and cell viability [114, 115]. The mechanisms by which these factors affect micro- and

macroheterogeneity remain, however, unclear. Thus a systematic analysis is called

for. Computational modelling provides a powerful framework for such an analysis.

In fact, there have been remarkable advances in the development of mathematical

models of glycosylation (listed chronologically in Figure 1.5), supported by the de-

tailed knowledge of the glycosylation pathways [116]. Generally, these models aim to

reduce the combinatorial explosion in the number of possible glycan distributions.

To this end, models make some general assumptions, while keeping compartmental-

ization (each compartment is modelled differently since they contain different sets

of enzymes) and finally linking glycosylation to metabolism. The complexity of the

process, together with the many intervening factors, makes modelling glycosylation

quite a challenging task.

One of the first attempts to deterministically describe protein glycosylation fo-

cused on macroheterogeneity. In 1996, Shelikoff et al. [117] proposed a mathematical

model to predict how site-occupancy is affected by different factors such as the

expression levels of glycotransferases, the protein production rate, the concentra-

tions of nucleotide sugars and the mRNA elongation rate. They used a plug-flow

reactor-based model and included protein folding as a competing event that occurs

concurrently with glycosylation.

Shortly after, Monica et al. [118] modeled sialylation of N-linked oligosaccharides

in a single, isotropic compartment (trans-Golgi). The predictions were in agreement

with experimental data of CD4 glycoprotein produced in CHO cells.
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Umaña and Bailey (1997) [119] presented the first attempt to model glycoform

microheterogeneity based on expression and spatial localization of the enzymes in-

volved in N-linked glycosylation. Parameters such as the half-life of the protein in

the Golgi, the protein productivity and the volume of the Golgi compartments were

also included in this model. Furthermore, they modified the model to take the compe-

tition for the glycosylation machinery between endogenous and recombinant proteins

into account. Kontoravdi et al. used this model of glycosylation and included it in a

simple dynamic mathematical model of cell growth, death and metabolism. With this

reduced model they predicted the evolution of oligosaccharide molar fractions over

time. However, these results could not be validated due to the lack of experimental

data [120].

Several years later, in 2005, Krambeck and Betenbaugh [121] extended Umaña’s

model (which contained 33 glycan structures and 33 reactions), by adding around

7,500 oligosaccharide structures and more than 22,000 reactions. Among these,

reactions for fucosylation and sialylation were included in the model, which are of

special relevance for recombinant proteins [122, 123]. In contrast to the model of

Umaña and Bailey, this model adjusts enzyme concentrations to fit an experimentally

observed glycopattern, thereby calibrating it to a specific protein. They argue that

the reason for having a case-specific, adjusted model is the inherent variability of

glycosylation: the glycan structures do not only depend on the specific protein, but

also on the glycosylation site. Their results were validated with N-glycan structures

observed in recombinant human thrombopoietin expressed in CHO cells [124]. This

model was then used as a prototype for further development by other research groups.

In 2009, Krambeck et al. applied the previously developed model to predict

enzyme expression that resulted in an observed mass spectrometry spectrum. Recip-

rocally, the model was used to automatically annotate spectra to the corresponding

glycan structures [125].

Both models (Umaña and Bailey, Krambeck and Betenbaugh) were combined in

two different studies to predict the sensitivity of N-Glycan branching with respect to

the hexosamine flux [126] and key enzymes involved in glycan branching [127].

Senger and Karim [128] used a plug-flow reactor model to describe the differences

in glycosylation of recombinant tissue plasminogen activator in CHO under shear

stress conditions. They found decreased site occupancy to be related to low residence

times of the protein in the Endoplasmic reticulum due to high protein production

rates, caused by increasing levels of shear stress.

In a follow-up study, Senger and Karim used artificial neural network models to

predict glycosylation from primary sequence information around the glycosylation

site (glycosylation window). The model was used to classify macroheterogeneity as ei-
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ther robust (invariant with culture conditions) or variable, according to this sequence

information [129]. They improved this approach further by using information about

the secondary structure and solvent accessibility, resulting in the prediction of two

main types of glycan branching: high mannose type and complex-type [130]. Artificial

Neural Networks had already been applied to predict glycosylation sites [131, 132].

The complexity of the impact of protein conformation in the surroundings of the

glycosylation site on glycotransferase activity hinders the creation of a mathematical

model that could describe the process deterministically. Therefore, they presented

the Neural-Network approach as a valuable workaround to construct prediction tools.

The main advantage of this approach with respect to the previous models is that it

does not require a large number of parameters, but only the protein sequence (from

which they predict the secondary structure). In addition, it highlights the influence

of protein secondary and tertiary structure on the accessibility of the enzymes. In

another instance, Gerken et al. [133] considered the inhibitory effect of the presence

of glycan structures on neighboring sites of glycosylation.

Built on the premise that glycan biosynthesis is controlled by the expression

of glycotransferases, Kawano et al. [134] predicted a set of glycan structures from

DNA microarray data. This set was further expanded by Suga et al. [135] with the

prediction of new structures (Kawano’s set of predicted glycans was limited to those

included in the database of known structures). This approach was refined several

years later with high-throughput RNA microarray data [136].

Hossler et al. [137] compared the prediction performance of two main models for

protein maturation in the Golgi: four continuous mixing-tanks (4CSTR) for vesicular

transport and four plug-flow reactors (4PFR) in series for the maturation model. They

claimed that the latter describes the process more accurately and they emphasised

the importance of the residence time in the Golgi and enzyme localization as key

parameters to be considered when modelling glycosylation.

The plug-flow reactor model was then used to describe monoclonal antibody (mAb)

glycosylation [138]. The major improvement over the previous model was to include

the transport of nucleotide sugar donors. This was the first step towards coupling

cellular metabolism (and therefore measurable variables like glucose uptake) to

glycosylation. Kaveh et al. [139] pursued this goal and performed a dynamic analysis

of extracellular metabolite concentrations via MFA and linked those of glutamine and

glucose to nucleotide sugar biosynthesis and glycolysis using the previous models (del

Val 2011 [138] and Hossler 2007 [137]). The model successfully predicted dynamic

trends of the glycopatterns of mAb produced in CHO batch culture. In another study

[140], they combined dynamic MFA with the GLYCOVIS software developed by

Hossler et al. [141] to predict, based on experimentally observed glycopatterns, how
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different concentrations of glutamine, glucose, ammonia and different pH values

affect the glycosylation process. Yet more progress was made by Jedrzejewski et al.

[142], who used a dynamic model for cell death and growth together with the dynamic

model from del Val [138] to predict glycosylation patterns. In this case, experimental

data from mAb producing mouse hybridoma cells was used for the calculations. A

similar study was applied to mAb producing CHO fed-batch cultures [143]. As a

result, recent models have succeeded in linking cell growth, metabolism, protein

production rate and glycosylation [144].

The majority of these models describe N-glycosylation. Liu et al. [145] presented

a reaction network for the formation of the O-glycosylation of the sialyl Lewis-X

epitope. In their work, they introduce the concept of “subset-modelling”, where the

whole set of reactions in the network is divided into “sub-networks” and then a search

is performed for the one that fits the experimental data best. Furthermore, they use

genetic algorithm-based optimization, hierarchical clustering and principal compo-

nent analysis to fit subsets of reaction networks to the observed glycan structure

distribution, thereby reducing the parameterisation of the model. Recently, the same

group developed a software for the automated creation, analysis and visualization

of glycosylation reaction networks, called GNAT (Glycosylation Network Analysis

Toolbox) [146, 147]. GNAT was further expanded to include a higher number of

enzymes [148].

Kim et al. [149] also exploited the modularity of the glycosylation pathways to

propose new engineering strategies based on targeting modules instead of specific

enzymes.

In a simpler approach, FBA was applied to assess the effect of low temperature

conditions on metabolism and nucleotide sugar availability for glycosylation in mAb

producing CHO cells [150]. A similar MFA-based method was applied to analyze

the effects of different concentrations of glutamine in the media on nucleotide sugar

intracellular concentrations and N-glycan content of recombinant human chorionic

gonadotrophin in CHO cells [151].

In the past year, a simple stoichiometric model was also used to compute the

nucleotide sugar demands for glycosylation of recombinant proteins in CHO for

rational feeding strategies [152].

In order to avoid the requirement of a high number of kinetic parameters, Spahn

et al. [153] used a Markov chain model to describe glycosylation as a stochastic

process in which each glycan state has a transition probability to reach the next

glycan state. These probabilities are linked to the steady state solution given by FBA

for a reduced network of the reactions contributing to the observed glycoprofile. By

using this protein-specific model, they successfully predicted the effect of an enzyme
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knock-down on an antibody producer CHO cell line [154].

1.4.3 Parameters and general assumptions

The parameters involved in glycosylation include reaction kinetic parameters, com-

partment residence times, enzyme distributions between compartments, compart-

ment volumes, total glycan concentration and donor cosubstrate concentrations.

These parameters are either obtained via optimization or taken from literature [155].

Imaging techniques for green fluorescent protein-labelled proteins can be used to

measure residence time and protein flux through the secretory machinery [156]. Ki-

netic parameters are commonly derived from independent enzymology experiments

[157], which are arduous and should be carried out for each enzyme. However, there

have been remarkable advances on high-throughput technologies that allow more

accurate assessment of kinetic parameters of glycosyltransferases [158].

Due to the sequential nature of glycosylation, models have to incorporate time-

dependent equations. The majority of the kinetic models reviewed herein assume

Michaelis-Menten Kinetics. Over time, more terms were included in these models’

equations, with increasing complexity, e.g. competitive inhibition terms in their

enzyme-kinetic expressions.

The main limitation of glycosylation models is the high grade of parameterisation

required to describe the process. Moreover, most of the parameters are derived from

in vitro experiments, even though they might be different in an intracellular environ-

ment. As previously mentioned, various factors influence glycosylation at different

points of the process [115] and the effects are cell line [159], glycoprotein [160] and

even glycosylation site specific [119], which reduces the general applicability of the

models. Thus, despite the tremendous advances achieved over the last years in this

field, the ultimate goal of predicting the effect of cell line specific behaviour of differ-

ent protein sequences or structures, or of process related changes, on glycosylation

still requires further work and optimisation to be fully achieved.
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Figure 1.5: Models for protein glycosylation in CHO listed in chronological order. Abbreviations:
MS, Mass-spectrometry;
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MATERIALS AND METHODS

2.1 Constraint-based analysis of metabolic networks

Cell metabolic behavior is limited by a multitude of constraints which reduce the set of potential

phenotypic states of an organism [161]. These constraints are determined by genetic, physico-

chemical laws (thermodynamics, maximum diffusion rates, mass balances) and environmental

factors (nutrient and oxygen availability) and can be represented mathematically as (in)equalities

for the reaction fluxes. In the following sections, we summarize the basic mathematical concepts

to represent and analyze metabolic networks.

2.1.1 Mathematical principles of constraint-based modelling

Stoichiometric matrix

The accumulation of any given metabolite in the network depends on its flow into or out of the

compartment (exchange reactions) and reactions generating and consuming the metabolite. This

can be described as:

(2.1)
dc
dt

= Nr−µc

where c is the vector of intracellular concentrations, r ∈Rr the vector of reaction fluxes and µ is

the growth rate. N is a matrix containing the net stoichiometric coefficients for each metabolite

and has dimensions m×n (see Figure 2.1 for an example of the stoichiometric matrix for a small

network). The dilution due to growth is generally small, so the term µc can be neglected.

In this way, the stoichiometric matrix translates the biochemical reactions into a mathematical

term in which computational methods can be developed.
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FIGURE 2.1. Small metabolic network and the corresponding stoichiometric
matrix. Dashed line represents the system’s boundary. All metabolites
inside this boundary are in steady state.

The flux polyhedron

Since the number of metabolites is typically less than the number of reactions (i.e., the number of

mass-balance equations is less than the number of unknowns), the system is under-determined,

that is, there exists an infinite number of solutions. In order to reduce this solution space to a

meaningful set of feasible flux distributions, one has to impose additional constraints.

If we consider that fluxes through metabolites in the cell are much faster than external

environmental changes (quasi-steady state assumption), all generating and consuming fluxes

(multiplied by the stoichiometric coefficient) for each internal metabolite are assumed to be in

equilibrium. This is represented as:

(2.2) Nr = 0

The set of reaction fluxes that satisfy the linear system (2.2) is the nullspace of N . If additional

information about reversibilities or enzyme allocation is considered, we obtain a subset of this

nullspace. The resulting solution subspace is given by intersecting the non-negative half-spaces

given by reversibility constraints (r irr ≥ 0) with the nullspace given by (2.2):

(2.3) FC = {r ∈Rn | Nr = 0, r i ≥ 0 for i ∈ irr}

In geometrical terms, this corresponds to a convex polyhedral cone. In the specific context of

metabolic networks, it is generally referred to as the flux cone (FC).

In some cases, additional constraints on upper and lower flux bounds are also known (e.g.

experimental uptake and secretion rates). They can be written as:

rl
i ≤ r i ≤ ru

i

Which gives:

(2.4) FP = {r ∈Rn | Nr = 0,r irr ≥ 0,Gr ≥ h}
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Where G is a matrix with coefficients for the reactions that are constrained by lower (coefficient

+1, corresponding to r i ≥ rlb
i ) and/or upper bounds (coefficient -1, corresponding to −r i ≥−rub

i ).

Vector h contains the upper and lower bounds on the rates. Equivalently, equation (2.4) can be

written in matrix form as: 
N
−N
I irr

G

x≥


0

0

0

h


These inhomogeneous constraints reduce the set of admissible fluxes from a cone to a poly-

hedron. In the specific case where a polyhedron is bounded, it is said to be a polytope (Figure

2.2).

A polyhedron can be described by the intersection of half spaces [as in (2.4)] or by linear

combination of generators. If the flux polyhedron is pointed, which is often the case for metabolic

models [162], it can be shown that the set of extreme points (EPs) and extreme rays of the

polyhedron are a unique and minimal set of generators [163]. In this case,

(2.5) FP = {r ∈Rr | r = Pλ+Rµ, λ,µ≥ 0,
∑
λi = 1},

can be represented as a convex combination of EPs (represented by the columns of P) plus a

conical (i.e. nonnegative) linear combination of extreme rays (contained in the columns of R).

Geometrically, EPs and extreme rays are the vertices of the bounded part of the polytope

and edges of the unbounded part of the polytope, respectively. Thus, any element of a pointed

polytope can be represented by a non-negative linear combination of its boundary elements. For

instance, the point (2,1,1) represents a feasible flux distribution in the toy network in Figure

2.3a. It sits in the flux polyhedron and can be represented as e0/3+ e4/2+ e5/6= (2,1,1), i.e., as a

convex combination of the EPs listed in Figure 2.3c. However, this representation is in general

not unique. Note that the flux polyhedron in 2.3b is bounded and therefore does not contain

extreme rays.

An alternative set of generators, which are often used in biological applications, are known

as elementary flux vectors (EFVs) [162]. EFVs are the proper generalization of the classical

concept of elementary flux modes [164], which cannot handle linear, inhomogeneous constraints

in metabolic models. Here we only note that the set of EFVs is a super-set of the set of EPs

and extreme rays [163]. For instance, the point e3 = (2,0,2) sits at the edge of the polytope in

Figure 2.3b and is an EFV of the metabolic network in Figure 2.3a, but not an EP as it can be

represented as a combination of two vertices, i.e. (e3 = e2 + e4)/2.

With a set of generators at hand, projecting the flux polyhedron onto the reactions of interest

becomes straightforward, as the production envelope (PE) is simply the convex hull of the

projected generators. However, enumeration of generators, more specifically the enumeration

of EFVs in genome-scale metabolic models, is a long standing problem in systems biology, and

currently computationally intractable as the total number of generators grows combinatorially
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FIGURE 2.2. Reduction of the solution space to a flux polyhedron by linear
constraints in a small example network. In red, the constraint space of
feasible solutions. Pyr: pyruvate

with the size of the network [165]. To circumvent this issue, we adopt the convex hull method

(CHM) (section 3.2.2) to compute the PE spanned by multiple reactions of interest in a genome-

scale metabolic model.

The flux polyhedron represents all the feasible phenotypic states of the organism. The

potential optimal cell behavior lies within this polyhedron, and so does the actual cellular state

of the organism.

Constraints reduce the amount of possible flux distributions or phenotypic capabilities of

the organism. Methods to analyze this set of biochemically "allowed" fluxes are divided in two

main groups: the biased approaches, in which linear programming is applied to obtain a set of

optimal fluxes and unbiased approaches, which aim to analyze the whole set of steady-state flux

distributions [106]. In the following, we include a list of constraint-based methods (biased and

unbiased) that we have applied for the analysis of CHO metabolic model.

2.2 Biased approaches

2.2.1 Flux Balance Analysis

Flux balance analysis (FBA) uses linear optimization to find a steady-state flux distribution

within the flux polytope that gives an optimum for a given objective function [76]. If the objective
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function is also linear, this corresponds to a linear programming (LP) problem, expressed as:

(2.6)

Maximize
∑

cir i

s.t Nr = 0

r irr ≥ 0

rl
i ≤ r i ≤ ru

i

The most common objective function used in metabolic modelling is cell growth, which has

proven to be a compelling assumption mostly for bacteria and yeast [166, 167], the argument

being that, evolutionary speaking, organisms tend to maximize biomass. Other valid objective

functions are minimization of ATP production, maximization of metabolite production (such as

ethanol for E. coli or protein for CHO), minimization of nutrient uptake or minimization of redox

potential [168].

Despite its growing popularity, FBA has its limitations: there are multiple possible flux distri-

butions that result in the same objective optimum; FBA is not able to predict flux distributions in

the case of parallel metabolic pathways. Other quantitative approaches such as 13C Metabolic

Flux Analysis (MFA) [74] can be employed to estimate intracellular fluxes. Yet the complexity of

these methods in terms of experimental design and data analysis exclude genome-scale metabolic

models from the scope of application [169]. Other approaches solve this issue by minimizing

the overall flux through the network (see section 2.2.3 below). Omics data can also be used to

obtain flux distributions consistent with experimental observations: this is the case of the Gene

Inactivity Moderated by Metabolism and Expression (GIMME) algorithm, in which reactions are

considered to be inactive if gene expression values lie below a given threshold [170].

FBA is the oldest and most commonly used method for constraint-based analysis of metabolic

networks for its simplicity and utility [106], and provides the basis of the succeeding computa-

tional tools.

2.2.2 Flux Variability Analysis

In flux variability analysis (FVA), a particular metabolic state is fixed (by constraints on other

reactions) and fluxes are maximized and minimized [171]. Given a set of uptake and secretion

rates, FVA gives the feasible flux range for a reaction under those conditions. For this reason

it can be used to assess the metabolic capabilities of the constraint network, by sampling the

edges of phenotypic space (Phenotypic Phase Plane Analysis - see section 2.3.2). For instance, the

maximum and minimum protein production can be computed for fixed combinations of biomass

and ATP fluxes. Applications of FVA range from exploring alternative optima [172] to analyzing

network robustness [173] and redundancy [174].
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2.2.3 Parsimonious Flux Balance Analysis

As already mentioned, there are multiple flux distributions that satisfy maximal objective func-

tion in (2.6). FBA solution is one (arbitrary) flux distribution within this set. To address this

degeneracy, parsimonious flux balance analysis (pFBA) performs a step-wise linear programming

optimization: first, maximization of the objective function (as in 2.6), then this maximum, e.g.

biomass, is set as constraint and a second LP is performed in which all the fluxes in the network

are minimized. In the general implementation of the algorithm, the Manhattan Norm is mini-

mized. Since in our case some fluxes can be negative, we minimized the euclidean norm instead

and solved the following quadratic problem:

Minimize
∑

r2
i

s.t Nr = 0

r irr ≥ 0

rl
i ≤ r i ≤ ru

i

rbm = max(rbm)

pFBA is based on the concept of parsimonious enzyme usage [175], which assumes that the

cell will attempt to retrieve its optimal state (maximum growth in our case) while minimizing

the enzymatic cost (activity), therefore minimizing the metabolic flux through the network.

2.2.4 Flux scanning based on enforced objective flux

Flux scanning based on enforced objective flux (FSEOF) is one of the constraint-based methods

specifically developed for strain design [106]. Other approaches of this group are OptKnock,

which aims to find deletion strategies to couple metabolite production with cell growth [176];

RobustKnock, which improves the former by considering alternate optima [177]; or Optforce

[178], which compares experimentally measured fluxes of wild type Vs engineered strains for

overproduction of a given metabolite in order to identify reactions consistent with the high

producer phenotype.

In FSEOF, the objective function is maximized in successive LPs in which the flux towards

the product of interest (POI) is gradually (ε) increased from the experimental value to 90% of its

theoretical maximum (since theoretical maximum from FBA would be unrealistic and would only

occur at the expense of zero growth). FSEOF has been primarily applied for in silico identification

of metabolic targets [179].
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Minimize
∑

rbm

s.t Nr = 0

r irr ≥ 0

rl
i ≤ r i ≤ ru

i

rPOI = rPOI +ε

Those fluxes which decrease with increasing protein production will be suitable candidates

for knockout or knock down, whereas those increasing will be considered for overexpression.

2.3 Unbiased approaches

As already mentioned, the set of inhomogeneous constraints form the flux polytope, which is a

convex set of points (for this and other definitions related to convex analysis, see Box 2.3.1). Two

main methods for the analysis of this convex polytope have been developed in the past decades:

elementary modes and extreme pathways. Both methods aim to explore the full capabilities of

the metabolic network by applying concepts of computational geometry.

2.3.1 Elementary Flux Modes

Elementary flux modes (EFMs) are topologically feasible, minimal sets of reactions that support

a steady-state [180]. In other words, each EFM is defined by a set of active reaction that satisfy

(2.3). The set of all EFMs is a generating set of the flux cone, i.e., every flux distribution can be

expressed as a non-negative linear combination of EFMs. This approach analyzes the metabolic

capabilities of the network, both in terms of rates or yields [181] without introducing any biased

optimization process. Other applications are the quantification of the network robustness [182]

and the optimization of microbial strains [183]. Nevertheless, combinatorial explosion when

enumerating EFMs has limited the application to small to medium scale metabolic networks

[164, 184].

Elementary Flux Vectors (EFVs) were introduced by Urbanczick [185] and aim to extend the

concept of EFMs from flux cones to general flux polyhedra. Analogously to the cone and EFMs,

thorough examination of the flux polyhedra can be done by enumerating all EFVs or by random

sampling [186]. As for EFMs, this computation is restricted to small scale networks.
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Box 1: basic concepts

Convex set. Given points x1,x2,...,xm ∈R,
∑m

i=1λixi is said to be a convex set if

·
∑

iλi = 1 (it is affine)

· λi ≥ 0 (it is conical)

Convex hull of a set of points S is the smallest convex set containing all the points.

Hyperplane: set of all points x ∈Rn that satisfy aT x= b for some a ∈Rn and b ∈R.

Half-space: either of the two parts into which a hyperplane divides an affine space,

i.e., the set of all points x such that aT x≤ b for some a ∈Rn and b ∈R.

Polyhedron: is the intersection of finitely many half-spaces, i.e., the set {x ∈
Rn|Ax ≤ b} for a matrix A ∈ Rm×n and a vector b ∈ Rm×1. It can also be written

as a sum of a polytope Q and a cone C, i.e., P =Q+C = {x+ y | x ∈Q, y ∈ C}.

Polyhedral cone: the intersection of finitely many half-spaces that contain the

origin, i.e., {x ∈Rn|Ax≤ 0} for a matrix A ∈Rm×n.

Polytope: is a bounded polyhedron. Alternatively, it can be defined as the convex

hull of a finite set of points.

2.3.2 Phenotypic Phase Planes

Section 2.3.2 is part of Fast computation of multi-dimensional production envelopes in genome-

scale metabolic models by Sarah N.Galleguillos, Matthias P. Gerstl, Norbert Auer, Nicole Borth

and Jürgen Zanghellini to Scientific Reports

Phenotypic phase planes, sometimes called production envelopes, are an important

tool in the constraint-based analysis of metabolic networks. Geometrically, they

correspond to the projection of the flux polyhedron onto the reactions of interest.

They allow characterization of the full metabolic capabilities of an organism as a

function of a subset of reaction fluxes. Phase planes are most often evaluated for only

two reactions of interest (typically a product of interest as function of growth), as the

computational work load scales exponentially with the number of selected fluxes.

Consider the toy metabolic network in Figure 2.3a. One reversible and two

irreversible reactions produce or consume a metabolite A. The network is in steady

state (r1 − r2 − r3 = 0) and the enzyme capacities of the reactions are limited (flux

values are bounded). These constraints form the flux polyhedron, depicted as the

light blue area in Figure 2.3b. All feasible flux distributions sit in this area only. If

we want to know all feasible combinations of r1 and r2, then we are interested in the
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FIGURE 2.3. Constraint toy network (panel a), its flux polytope along with
its projection onto the plane r1, r2 (panel b), and a list of EFVs and EPs
(panel c) of the flux polytope.

FIGURE 2.4. Iterations in the convex hull algorithm. The minimal set of
extreme points (red circles) for the initial hull are computed for the
first two dimensions r1 and r2 (A). In the following iterations (B and C),
hyperplanes (lines) containing these vertices are mimimized/maximized
(indicated with dashed black arrows) until all facets of the projection are
terminal, i.e., optimization does not lead to a new extreme point.

projection of the flux polyhedron onto the plane spanned by those reactions, that is,

the PE of r1 and r2 (see dark blue area in Figure 2.3b). Note that (i) the projection

of a polyhedron is also a polyhedron and (ii) the components of an element in the

PE do not necessarily add up to zero (here r1 + r2 = r3 ≥ 0) although r1 and r2 are

components of a feasible steady-state flux distribution of the full network.

Typically, PEs are computed by sampling their boundaries [187] using FVA

[188, 189]. This requires fixing all reactions of interest except for one, whose feasible
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range is then determined by minimizing and maximizing that reaction by FBA.

Although two- and three-dimensional PEs can be readily evaluated with standard

software packages [190], the calculation of higher dimensional PEs becomes quickly

intractable as the computational effort grows with pnR , where nR and p denote

the number of reactions of interest and the number of sampling points per reac-

tion, respectively. Furthermore, sampling approaches do not facilitate a compact

representation of a multi-dimensional PE.

In section 3.2.2, we present a new approach for the fast calculation of PEs. This

approach exploits geometric features of the bounded flux polyhedron and focuses

exclusively on the projection onto a particular set of dimensions. We have successfully

applied this method for the computation of phenotypic spaces for three metabolic

networks: Escherichia coli core (519 metabolites and 499 reactions) and genome-

scale (1805 metabolites and 2583 reactions) and CHO cells (4456 metabolites and

6663 reactions). Compared to the current approach based on FVA, this method

provides a simple and fast way to compute phenotypic spaces, broadening the scope

of application to genome-scale metabolic models.
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RESULTS

3.1 Biased approaches

3.1.1 FBA predictions on cell growth

CHO-K1 cells previously adapted to grow in glutamine-free media were cultivated in 0mM

and 8mM Glutamine CD-CHO medium in shaking flasks. Batch fermentations were performed

in-house and metabolite concentrations were measured in two independent facilities (Biocrates

and department of chemistry (DCH) of the University of Natural Resources and Life Sciences) in

one and three technical replicates respectively.

The resulting metabolic uptake and secretion rates were subsequently used as constraints on

the metabolic model to predict cell growth with FBA.

3.1.1.1 Estimation of metabolic rates

First, I established at which time points the cell is at metabolic steady steady state, choosing

cell growth as a reference. Figure 3.1 shows the Viable Cell Density (VCD) in a semi-log scale for

both 0mM and 8mM glutamine batch experiments. Time points were added or removed from the

exponential phase when the standard error of the regression did not increase significantly. The

resulting time intervals (data points 3-5 in 0mM and 1-5 in 8mM) were used for the computation

of metabolic rates.

Since fluxes during exponential phase are in a near steady-state (balanced growth), the

uptake and secretion rates are constant and can be derived by fitting an exponential function.

First, I obtain the growth rate µ and the initial biomass BM0 from the VCD by exponential
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FIGURE 3.1. Viable cell density (VCD) of CHO-K1 cells in 0mM (left) and
8mM (right) glutamine media. The exponential growth phase is shown in
red.

fitting:

(3.1) BM = BM0 exp(µt)

These parameters are used to compute the metabolic rates after exponential fitting of the

concentration profiles:

S = qS X0

µ

(
exp(µt)−1

)+S0(3.2)

In order to test the metabolic model of CHO with in-house experimental data, I run FBAs

for each set of uptake and secretion rates (Biocrates and DCH). Cysteine (not measured) is

an essential amino acid for CHO and uptake was chosen to be the minimum rate to support

experimental growth. Oxygen uptake rate is 1.41 mmol/gDW/h for both data sets (value taken

from similar batch experiments performed at our collaborators’ facilities).

The metabolic model iCHO1766 was downloaded from the BiGG database [52]. Linear opti-

mization problems with biomass production as the objective function were solved using GLPK

[191].

Ammonia and lactate production decrease in culture when cells are grown in 0mM glutamine

medium. In the presence of glutamine, aspartate is secreted since it is one of the byproducts of

glutaminolysis. On the other hand, when glutamine is not present, aspartate and glutamate are

consumed from the medium (see appendix A for the uptake and secretion rates).
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FIGURE 3.2. Concentration profiles for aspartate in 0mM (left) and 8mM glu-
tamine (right) experiments for DCH (upper plots) and Biocrates (bottom).
Exponential fit for the days selected as exponential phase is shown in
red. Despite the discrepancies between the data sets, the overall trend is
preserved.

I realized some concentration profiles from DCH and Biocrates differed on the values although

the overall trend was similar (see Figure 3.2), so I tried to minimize the experimental error

by merging the two data sets into a third one, given the fact that they correspond to the same

experiments. All rates for the three data sets are listed in appendix A.

Figure 3.3 shows FBA-predicted Vs experimental growth rates in iCHO1766 metabolic model

for the three data sets of constraints. Merging the data sets improved predictions on cell growth.

Nevertheless, we wanted to further analyze the effect of accurate measurements of supernatant

metabolite concentrations on model predictions.
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FIGURE 3.3. FBA-predictions on cell biomass with iCHO1766 metabolic model
for 0mM and 8 mM glutamine experiments using three data sets (DCH,
Biocrates, or both merged). Horizontal bars indicate experimental error.

3.1.1.2 Effects of the biomass composition and uptake rates on model predictions

I realized that small variations in metabolic rates had great effects on FBA results for predictions

on cell growth. I computed shadow prices for the uptake and secretion rates to determine how

those changes could affect the predictions (see Figure 3.5). The effects of uptake rates on biomass

are more visible for essential substrates with low uptake rates, for which catabolic reactions have

almost zero flux (most of the flux goes directly towards biomass generation). Experiments with

0mM and 8mM glutamine (one biological sample, three and one technical replicates for Biocrates

and DCH) show that fluxes for exchange reactions cannot be computed accurately with such

low number of samples and replicates. Therefore we decided to repeat these experiments with

CHO-K1 and add other cell lines. In this case, sampling time was reduced and all were done in

three biological replicates.

Figure 3.4 shows results for FBA predicted Vs experimental growth for 3-4 samples compared

to one sample per day in 13 batch processes. These results show that experimental error on the

rates can be significantly reduced by increasing the sample points per day, thereby improving

model predictions. Vertical error bars on predicted values result from sampling experimental

rates (1000 FBA runs) within the experimental standard error of the measurements.
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FIGURE 3.4. FBA prediction Vs measured growth rates for different cell
lines and different conditions. Vertical error bars on predicted values
result from sampling experimental rates (1000 FBA runs) within the
experimental standard error of the measurements.

Shadow prices

Shadow prices are the derivatives of the objective function with respect to an exchange flux, and

they can be used to assess the sensitivity of the objective function to the availability of a certain

substrate.

(3.3) πi = δZ
δbi

Figure 3.5 shows how phenylalanine and tryptophan uptake impacts biomass production in

0mM and 8mM experiments, respectively. This is another example of how obtaining accurate

rates is crucial for model predictions, mostly in the case of essential amino acids with lower

uptake rates.

3.1.2 FSEOF with literature data

I performed FSEOF with pFBA for 8 different sets of uptake and secretion rates with which

the model was originally tested in literature [69]. In Carinhas et al. [192], 4 experiments were

run with high and low producer CHO-K1 derived cell lines with and without sodium butyrate

treatment. Rates from early and late exponential phases in Selvarasu et al. [72] from CHO-DG44

were used separatedly for FBA predictions. In Martinez et al. [193], CHO-K1 producer cell lines
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FIGURE 3.5. Shadow prices: biomass production with respect to exchange
fluxes of phenylalanine in 0mM glutamine (left) and tryptophan in 8mM
glutamine (right) using Biocrates set of experimental constraints

Data set experiment IgGexp
[µM/gDW/h]

90% of IgGmax
[µM/gDW/h]

Carinhas (CHO-K1)

HP 0.02 0.1
HP + NaBu 0.03 0.11
LP 0.007 0.045
LP + NaBu 0.012 0.114

Selvarasu (CHO-DG44)
early 0.013 0.038
late 0.024 0.044

Martinez (CHO-K1)
Cold1 0.005 0.068
Cold2 0.005 0.142

TABLE 3.1. Data sets with which FSEOF was performed. HP: high producer;
LP: low producer; NaBu: sodium butyrate; IgGexp: experimental value
for protein production. IgGmax: maximum theoretical IgG production
computed with FBA.

were exposed to a temperature shift in 2 independent experiments (Cold1 and Cold2). All cell

lines were Immunoglobulin G (IgG) producers.

The cell lines, metabolic model and experimental conditions used are summarized in table

3.1.

I found some fluxes which vary with increasing protein production to be specific to the given

experimental constraints. These might reflect only limitations on substrate uptake that affect

protein production under those specific conditions. For instance, I found many reactions from the

TCA cycle to be negatively correlated to protein production in the case of Selvarasu et al. (early

exponential phase). This might be due to the fact that glucose uptake is the lowest of all data
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sets and it is not enough to cover pentose phosphate pathway (PPP) and TCA cycle demands. In

order to search for more general metabolic targets, I compared FSEOF results for all 8 data sets

to find reactions which were decreasing or increasing with protein production in all cases.

For those reactions which decrease with increasing protein production, I performed in silico

knockouts (by setting the flux to zero) to check if they are essential to sustain growth.

I found only few reaction candidates for overexpression. Among them, reactions associated to

valine, leucine and isoleucine metabolism and fructose and mannose metabolism. An interesting

reaction present in all data sets to be positively correlated with protein production is that

catalyzed by the phosphoglucomutase:

glucose-1-phosphate 
 glucose-6-phosphate

Glucose-6-phosphate is the main substrate for TCA and PPP. As already mentioned, several

reactions from the TCA were found to correlate inversely with flux towards protein production in

Selvarasu et al. Therefore, our assumption is that increasing the glucose-6-phosphate towards

the PPP could have positive effects in protein production, consistent to experiments performed in

yeast [194].

In agreement with these results for overexpression targets, I found the production of fructose

1,6-bisphosphate to inversely correlate with IgG production for all data sets. As one of the

compounds in early steps of glycolysis, downregulation of this pathway could imply that flux is

diverted towards the PPP.

I found the following pathways to decrease with higer flux towards protein:

D-Mannose 1-phosphate 
 D-Mannose 6-phosphate

D-Mannose 6-phosphate 
 D-Fructose 6-phosphate

D-Fructose 6-phosphate + UTP 
 UDP + H+ + D-Fructose 1,6-bisphosphate

And:

D-Fructose + dATP 
 H+ + D-Fructose 6-phosphate + dADP

The flux of the latter, identified as R_r0358 is plotted as an example of flux decreasing with

increasing protein production in Figure 3.6.

I did not find experimental validation for these reactions in literature; 3-phosphoglycerate

dehydrogenase, however, is a glycolytic enzyme and it was found to be down-regulated in two

different high producer CHO cell lines when compared to low producers [195, 196].

I found more targets to appear in all data sets for knockdown and knockout. Most of the reac-

tions found belong to cholesterol and lipid metabolism pathways. In terms of metabolic precursors,

these pathways could be "wasting" resources that could otherwise be used for IgG production.

However, several studies show that cholesterol and lipid metabolic pathways are overexpressed in

high producer CHO cell lines [195, 197], which agrees with the fact that organelles and cell mem-

brane play an important role in the synthesis and the transport of recombinant proteins. These
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FIGURE 3.6. Flux predicted by FSEOF to decrease with increasing IgG pro-
duction

results could point at possible limitations regarding the interpretation of metabolic modelling

simulations.

A complete list of the subsystems for the pathways found to be correlated with protein

production can be found in appendix B.

3.2 Unbiased approaches

3.2.1 EFM analysis for energetically efficient pathways

In order to be able to compute the EFMs, I reduced the metabolic model of CHO under a set of ex-

perimental constraints on minimal substrate uptake. I analyzed EFMs regarding NADH/NADPH

and ATP production, as fundamental determinants of metabolic performance. Our goal is to find

potential engineering targets which utilize energetically efficient pathways. In fact, NADPH has

been hypothesized to be limiting for proliferation and lipid biosynthesis [198].

3.2.1.1 Model reduction

EFM analysis on the whole metabolic network (6663 reaction) is currently not computationally

feasible due to the combinatorial explosion in the enumeration of the complete set of steady

state pathways in the network. Thus, I generated a reduced version of CHO metabolic model.

Besides the central carbon metabolism, which encompasses all the major fluxes [74], the model

contains the fluxes to sustain growth and protein production with only the minimal substrate

requirements. Since our goal was to investigate energetically efficient pathways, I included
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glutamine (which is not essential for growth), since it is a major energy source in mammalian

cells [199, 200, 201].

I used NetworkReducer for the reduction of the metabolic network. The algorithm is included

in the CellNetAnalyzer toolbox for MATLAB [202].

Model pre-processing

In order to decrease computation time in the main reduction algorithm, I performed several

pre-processing steps to remove blocked reactions and generate a consistent metabolic model.

The starting network is the generic model iCHO1766, downloaded from the BiGG database

[52]. This generic model includes the biosynthetic pathway for arginine. This pathway was

removed from the model due to the lack of omics data on cell-line specific experiments (see [69]).

Following the assumption that both biomass and protein production are ultimately delim-

ited by essential metabolites, I simplified the constraints on the uptake to glucose, glutamine,

oxygen and essential amino acids (arginine, histidine, isoleucine, leucine, lysine, methionine,

phenylalanine, threonine, tryptophan and valine). The values for the uptake rates were taken

from experimental data in exponential phase of CHO-DG44 batch experiments [72]. Since the

experimental rate of protein production is no longer feasible under minimal media conditions, I

set a value for IgG production so that the flux ratio protein/biomass is the same as in the original

set of constraints (r I gG = 0.0075 mmol/gDW/h).

In the first steps, transport reactions that are inactive due to missing metabolites in the

media are removed from the model. Transport reactions are often coupled to cofactors such as

Na+ or Cl-. These cofactors are considered to be in excess in the cell environment, so I artificially

set exchange reactions to be cofactor independent.

The following step requires running FVA with the above-mentioned minimal experimental

constraints. This method computes the feasible flux range of each reaction under the given

conditions. "Blocked" reactions with rmax = rmin = 0 (inactive under these conditions) are removed

from the model. Reactions that always occur in one direction are set to be irreversible. The

resulting model is said to be "consistent" and will be the input for the NetworkReducer algorithm

[203].

NetworkReducer

These are the main inputs required by the algorithm:

The metabolic model (pre-processed)

Protected phenotypes: constraints on uptake rates; minimal biomass and protein production

required

List of protected reactions
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Other parameters: which solver to use (CPLEX); minimal degree of freedom (1); minimal

number of reactions remaining in the reduced model (1) and whether or not the protected

reactions should be feasible (yes).

Protected reactions are those that are considered to be part of the core metabolism of CHO and

must not be removed. These were taken from [7] and include glycolysis, TCA cycle, glutaminolysis,

amino acid metabolism, PPP, biomass and protein production. Reactions in literature were in

most cases lumped and had to be mapped into CHO metabolic model to obtain the complete

pathway. The final list of protected reactions can be found in appendix C.

Protected phenotypes: additionally to uptake and secretion rates from [72], I included min-

imum cell growth (at least 99% of maximal biomass as of FBA) and adenosine triphosphate

(ATP) maintenance energy. The latter (catabolism of ATP in ADP and Pi) accounts for energy

consumption not associated with cell growth. I set a lower bound of 3mmol/gDW/h. Although I

can assume this value is higher in mammalian cells, I could not find a valid experimental value

for CHO cells in literature. Our working group is currently running continuous fermentations to

determine maintenance energy and experimental values will soon be available.

The NetworkReducer algorithm iteratively removes reactions based on FVA. It is assumed

that if a reaction has a small flux range under the given conditions, it can be removed from the

network without highly affecting the overall flux variability of the system. These candidates will

be removed only if the protected phenotypes and the protected reactions remain feasible. Figure

3.7 shows a summary of the main steps taken for reducing the genome-scale metabolic network.

The resulting reduced model consists of 291 metabolites (415 species) and 405 reactions.

It reproduces the FBA results for biomass and protein production in the generic model (6,663

reactions).

3.2.1.2 Computation of EFMs on the reduced model

CellNetAnalyzer also incorporates efmtool [204] for the enumeration of EFMs. Enumeration of

the whole set of EFMs took ≈ 6 minutes, and returned 529,329 EFMs. Distribution of NAD(P)H

and ATP yields in the whole set of modes is very similar (see Figure 3.8 for the correlation of ATP

Vs NAD(P)H yields), therefore only EFMs with ATP yield distributions are shown (Figure 3.9).

Only those modes in which protein production and biomass were higher than 40% of theoretical

maximum were selected for further analysis of energetically efficient pathways (modes in which

energy but neither biomass nor protein is produced are of no biological interest). This subset of

modes is shown in gray in Figures 3.10 and 3.11.

This subset of EFMs with biomass and protein production higher than 40% was then sorted

with respect to moles of 1) ATP and 2) NADPH/NADH carbon yield. I then compared the union

of the supports (active reactions in each EFM) of the two most efficient EFMs against the

intersection of the sets of reactions in the two least efficient modes; idem for the three most and

least efficient modes, and so forth (up to 20). The top 20 most and least efficient modes are shown
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FIGURE 3.7. Main steps of the process for network reduction. "Hairball"
representations of the generic (top) and reduced (bottom) models were
done with Cytoscape.

in green and red in Figures 3.10 and 3.11. Our goal was to find reactions which are linked to

an efficient use of the metabolic substrates and which could be potentially used as metabolic

engineering targets.

I found no reactions in the most and not in the least efficient modes for ATP-producing EFMs.

On the other hand, when ranked according to NAD(P)H carbon yield, I found 3 pathways that

appear only in the most efficient modes:

Glycolysis/gluconeogenesis
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FIGURE 3.8. ATP and NADPH/NADH yields for the total set of EFMs

FIGURE 3.9. Total set of EFMs of the reduced metabolic model. Values corre-
spond to biomass and protein production (normalized by uptake). They
are colored according to the sum of the fluxes over ATP consuming reac-
tions (normalized).
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FIGURE 3.10. EFMs in which protein and biomass production are higher than
40% of the maximum. 20 most and least efficient EFMs in terms of ATP
are shown in green and red, respectively

3-Phospho-D-glycerate → D-Glycerate 2-phosphate

D-Glycerate 2-phosphate → H2O + phosphoenolpyruvate

phosphoenolpyruvate + ADP + H+ → ATP + pyruvate

Tyrosine metabolism

α-ketoglutarate + tyrosine → glutamate + 3-(4-hydroxyphenyl)pyruvate

3-(4-hydroxyphenyl)pyruvate + O2 → CO2 + homogentisate

homogentisate + O2 → 4-maleylacetoacetate + H+

4-maleylacetoacetate → 4-fumarylacetoacetate(2-)

4-fumarylacetoacetate(2-) + H2O → H+ acetoacetate + fumarate

Urea cycle

arginine + H2O → ornithine + urea

ornithine + α-ketoglutarate → glutamate + L-Glutamate 5-semialdehyde

Two of these pathways contain α-ketoglutarate, which is key metabolite of the TCA and it

is known to have a crucial role in cellular energy metabolism. However, the pathways that I

found to be energetically efficient are not part of the TCA but of phenylalanine and tyrosine
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FIGURE 3.11. EFMs in which protein and biomass production are higher
than 40% of the maximum. 20 most and least efficient EFMs in terms of
NAD(P)H are shown in green and red, respectively

catabolism; fumarate is not produced via succinate but via homogentisate. This alternative

pathway could generate fumarate to be incorporated to the TCA cycle (with the concomitant

increase in production of NAD(P)H).

The second pathway from α-ketoglutarate belongs to the urea cycle. This pathway is also

coupled with the TCA via the glutamate synthase which catalizes the following reaction:

L-glutamine + 2-oxoglutarate + NADPH + H+ 
 2 L-glutamate + NADP+

3.2.2 The convex hull method

Section 3.2.2 is part of Fast computation of multi-dimensional production envelopes in genome-

scale metabolic models by Sarah N.Galleguillos, Matthias P. Gerstl, Norbert Auer, Nicole Borth

and Jürgen Zanghellini to Scientific Reports.

The CHM is an established algorithm used in computational geometry for projecting

multi-dimensional polytopes onto lower-dimensional spaces. As a formal description

of the algorithm is available elsewhere [205], I will introduce the CHM by way of

example.

Suppose we want to calculate the PE spanned by r1 and r2 for the toy network

in Figure 2.3a, i.e., I want to compute the projection of the three-dimensional flux
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polyhedron in Figure 2.3b onto r1 and r2. We assume that the matrices and vectors

are sorted such that the first nR = 2 columns and elements correspond to the reactions

of interest that span the PE and that the PE is full-dimensional. Then the algorithm

proceeds as follows:

Initialization phase. The coordinates of the first EP (point 1 in Figure 2.4a) are

obtained by maximizing the first flux of interest [max(r1) = 3] in a standard FBA

problem; then the maximum of the second reaction of interest is computed by FBA

with r1 = 3 fixed to its maximum [max(r2) = 3 if r1 = 3]. Similarly, the coordinates

of the second EP are obtained by minimization. Next, the line containing the initial

points is drawn outwards by solving the associated FBA problem. This defines a new

EP, point 3 in Figure 2.4a. To make sure that the point is a vertex and does not sit

on a line between two adjacent vertices, its coordinates are successively optimized

as described above (this step is not necessary in the toy example as point 3 is not

degenerated). The three points now define a plane, which is again moved to obtain a

new vertex. This process is repeated until nR+1 initial vertices are computed (in the

toy example, nR +1= 3).

Iteration phase. The initial EPs represent an approximation of the convex hull

(CH). They define a smaller polytope that sits completely inside the projection of

the flux polytope (see blue area in Figure 2.4a). The projection is confined by (hyper-

)planes (or lines as in 2.4a). Some of these hyperplanes (HPs) might be “terminal”,

which means that they cannot be pushed further outward (see the line segments

between the points 2-3 and 1-3 in 2.4a). The idea of the iteration phase is to shift

all confining, non-terminal HPs (line segment 2-4 in 2.4b) outward as far as possible

(dashed line in 2.4a), which then defines a new vertex (point 4 in 2.4b). As above, the

coordinates of this point are obtained by successive optimization. With the new EP,

the CH is updated, i.e., new confining HPs are added for all possible combinations of

existing points. Previously confining HPs that now sit inside the CH are removed

(compare Figures 2.4a and 2.4b). This incremental refinement of the CH continues

until all HPs are terminal, i.e., until they correspond to the confining HPs of the

wanted projection; see 2.4c. The flowchart in 3.12 summarizes the procedure.

Implementation

An implementation of the CHM based on exact, rational arithmetic is available [206].

However, I found that the program terminated with a segmentation fault if run

with the genome-scale metabolic model iJO1366 [207]. I implemented two different

versions of the CH algorithm: double-precision MATLAB version (64-bit, ≈ 16 digits)
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Start

N, G,
h, nR

Find nR + 1
initial EPs

Compute/update
Convex Hull

Can any HP be
further maximized

or minimized?
Find new EP

Convex Hull in
nR dimensions

yes

no

Initialization phase

Iteration phase

Figure 3.12: CHM flowchart. The inputs for the algorithm are the stoichiometric matrix N , linear
constraints Gr ≤ h, and nR dimensions onto which the flux polytope is to be projected. The
initial CH is given by the EPs in the first dimensions. This initial hull is refined by maximiz-
ing/minimizing the HPs containing the EPs until all the facets of the projection are terminal.

and exact, rational arithmetic version in Python3. For the linear optimization, I used

CPLEX and Qsopt_ex [208] respectively. The source codes of both implementations

are available under the GNU General Public License at https://bokubox.boku.

ac.at/index.php/#200f56a1ab47d20a3f4e3718d0872981 (A GitHub link will be
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Parameter Use Value
Precision general 12 decimals
Precision ≤, ≥, = 6 decimals
ε if | x |< ε, then x = 0 1×10−5

τ aT r ≥ b−τ, aT r ≤ b+τ 1×10−5

Table 3.2: List of parameters used in the double-precision implementation of the CHM.

provided upon acceptance.)

Specifics of the double precision implementation. The general precision of

the double precision CHM was set to 12 decimal places. This setting affect matrix

multiplications, generating HPs or EPs.

During the iterative phase of the algorithm, I encountered some infeasible linear

programs caused by accumulation of rounding-off errors. For instance, once a HP

aT r = b is computed, it should be added as an equality constraint to the problem in

order to find a new EP. However, equality constraints in linear programs sometimes

cause numerical issues for solvers. For this reason, I allow for an explicit tolerance τ

in the double-precision implementation. Rather than adding an equality constraint

aT r = b, I add aT r ≤ b+τ, and aT r ≥ b−τ.

On the other hand, I reduced the number of decimal digits when comparing

numerical values in order to increase the robustness of the method against round-off

errors. This applies, for example, to removing hyperplanes if extreme points lie on the

right and left. This is, a hyperplane h = aT r is removed from the convex hull if there

are extreme points e such that h(e)< b and h(e)> b, where b is the distance from the

origin to the plane (see Hesse normal form equation of the plane in table 3.3). The

final values of the parameters used in the double-precision implementation of CHM

are listed in Table 3.2 and are the result of several rounds of parameter optimization,

with the main goals of removing infeasibilities and keeping a consistent set of EPs

when the reactions in nR were sorted differently.

Escherichia coli

I used the core metabolic model EColiCore2 [209] and the genome-scale metabolic

model of iJO1366 [207] – downloaded from the BIGG database [52] and simulated

growth on glucose minimal medium under oxygen-limited conditions. Maximum

oxygen and glucose uptake were constrained to 5 and 10 mmol/gDW/h, respectively.

The lower bound on the rate for ATP (accounting for maintenance energy) was 3.15

mmol/gDW/h.
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Figure 3.13: PE for acetate as function of growth in EColiCore2. Blue-gray dots represent the
complete set of EFVs computed with efmtool; vertices of the convex hull encompassing the EFVs
as computed by MATLAB convhull function are shown in blue filled circles. EPs computed with
CHM (double and exact implementations) are depicted as crossed red circles.

Validation on a core metabolic model

I computed the PE for acetate with respect to growth in EColiCore2 [209] with our

implementations of the CHM. Both computed an identical set of EPs, see the red

points in Figure 3.13. Next, I computed the complete set of EFVs via the CellNetAna-

lyzer toolbox, version 2019.1 [190], projected them onto acetate and cell growth (light

blue dots in Figure 3.13) and calculated the EPs of the resulting convex hull with the

MATLAB function convhull (dark blue filled circles). All vertices that were found by

our CHM were also found by MATLAB. However, convhull found additional vertices

that visually appear to sit on line segments between the red points in Figure 3.13. In

fact, these additional points not true EPs but caused by inaccuracies of convhull as

all of them sit on line segments spanned by the red vertices in Figure 3.13.

Application to a genome-scale metabolic model

Next, I computed the PE for the five main fermentative products (succinate, lactate,

formate, acetate and ethanol [210]) in iJO1366 [207]. In this case, I find that the

double precision implementation misses some EPs compared to the exact imple-
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Figure 3.14: Number of extreme points found in the exact implementation (open circles) compared
to double (filled circles) for the CHM for increasing number of nR.

mentation, see Figure 3.14. This discrepancy becomes more prominent for higher

dimensions. However, I verified that the EPs found by the exact but not by the double

precision CHM are within the algorithm specific error margin of ε and sit either close

to a terminal HP or another EP. Thus I conclude that the missing points are due to

the limited accuracy of the double precision method.

I compared run times of our implementations of the CHM with current alterna-

tives such as sampling the CH with FVA [187]. Results are shown in Figure 3.15. FVA

was performed at equally spaced flux values along each dimension i of interest with

40 or 60 supporting points between max(r i) and min(r i). CPLEX was used to solve

the associated FBA problems. CHM in double-precision was found to be significantly

faster and scaled better (with respect to the number of reactions of interest) than all

other methods. The performance of CHM however, is dependent on the order of the

reactions of interest, see Figure 3.15. For instance, consider again the network in

Figure 2.3. Suppose you were to start the iteration phase with the EPs 1, 3, and 5

instead of 1, 2, 3 (see Figure 2.4), then all EPs of the projection would be retrieved

already during the first iteration, which results in run times differences, see Figure

3.15.

Despite the run time differences, I verified that our implements always get the

same set of EPs independent of the order of the reactions of interest.
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Figure 3.15: Run time distribution for all possible permutations of nR in rational arithmetic
(upper boxplot, in orange) and double-precision (purple). Run times for FVA with 40 and 60
sampling values per dimension are plotted as squares and triangles respectively. For 6 dimensions,
one particular set of nR is shown (circle). Note that all computations timed out after 105 s.

CHO cells

Next to the product, CHO cells secret lactate and ammonia during the fermentation

process, both of which have a detrimental effects on growth and product quality

[29, 211]. Thus I computed the PE for cell growth, production of IgG, lactate and

ammonia in CHO.

CHO was represented by the genome-scale metabolic model iCHO1766 [69] and

downloaded from the BiGG database [52]. This model includes bounds on all uptake

reactions used.

Two 3D projections of the four dimensional PE are shown in Figure 3.16. The

terminal (hyper-)planes of the CH are referenced according to the lists in Tables

3.3 and 3.4. I observe that for secretion rates below 0.5 mmol/gDW lactate and

0.23 mol/gDW ammonia neither of these is a metabolic burden for growth and IgG

production. Thus, reducing typical secretion rates (0.1208 mmol/gDW for lactate and

0.083 mmol/gDW for ammonia [72]) frees no additional metabolic resources, but only

reduces the toxic side effects of these products.
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Figure 3.16: Projection of the phenotypic space for iCHO1766 onto three reactions of interest:
IgG and lac (left) and ammonia (right) production with respect to growth. In different shades of
blue, the HPs (facets) of the projection, listed in Tables 3.3 and 3.4

HP a b c d
1 -1000 0 0 0
2 0 -1000 0 0
3 0 0 -1000 0
4 0 999.9956 2.9523 0.0924
5 0 999.9826 5.9011 0.1511
6 0.4476 999.9796 6.3516 0.3863
7 0.4616 999.9772 6.7308 0.4009
8 0.5942 999.9799 6.2863 0.4825

Hesse Normal form (×103)

Table 3.3: Coefficients for the Hesse Normal form equation of the hyperplane (a r lactate+b r I gG +
c rgrowth = d) obtained with the CHM applied in iCHO1766 for the production of IgG and lactate
with respect to cell growth.
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HP a b c d
1 -1000 0 0 0
2 0 -1000 0 0
3 0 0 -1000 0
4 -999.9999 0.2696 0.0009 0
5 0 999.9956 2.9523 0.0924
6 0 999.9826 5.9011 0.1511
7 0.6053 999.9861 5.2377 0.2776

Hesse Normal form (×103)

Table 3.4: Coefficients for the Hesse Normal form equation of the hyperplane (a rammonia +
b r I gG + c rgrowth = d) obtained with the CHM applied in iCHO1766 for the production of IgG and
ammonia with respect to cell growth.
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DISCUSSION

The complexity of mammalian cells is a double-edged sword: on the one hand, it allows production

of recombinant proteins with complex post-translational modifications, unlike prokariotic expres-

sion systems [212]. On the other hand, the intricate interactions among all components hinder our

control over the production process. In order to convert CHO cells into efficient biopharmaceutical

factories, we need to fight against natural genetic evolution; we need to rewire the components

of the network to make cells divert resources from cell growth to production of the recombinant

protein of interest. Strategies followed in the past years for cell line engineering were based on

modification of single targets identified in basic research [213] and labour and cost intensive clone

screening [214], with limited success rate [215]. This long process can be drastically reduced if

we understand cell behaviour in order to modify it to meet our demands. Significant strides have

been made in developing computational and analytical tools to gather information from every

level of the cell systems, from genes to phenotypic traits. Systems biology aims to integrate this

information and build mathematical models to be able to predict cell behavior.

In the present work, I have focused in constraint-based analysis of metabolic networks. These

methods have long been applied in microbial systems [216, 64] and are rapidly developing for

CHO since the full genome sequence became available [3, 42]. One example of application of these

methods is the identification of potential candidates for gene overexpression and downregulation

using FSEOF, which I applied in this thesis for 8 literature data sets on experimental constraints

using CHO metabolic model. Results for downregulation suggest that decreasing the flux through

the TCA cycle would improve protein production, consistent with proteomics analysis in high

producer CHO cell lines [195, 196]. I foresee these methods will be successfully applied to

CHO as they have been to bacteria [217] and yeast [218]. These reaction candidates will be

further evaluated experimentally by our research group. On the other hand, downregulation

of lipid synthesis which contradicts biological evidence, and reflects limitations of the model in
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representing additional processes other than metabolism such as protein secretion.

I have reviewed the numerous applications of mathematical modelling to describe CHO

metabolism. However, I am aware that this field is still in its infancy for CHO and there are still

important limitations of in silico methods to be overcome in the near future. In the following, I

mention some of those which are relevant to my work.

I already mentioned that correct annotation of the genome is crucial for metabolic net-

work reconstruction [21]. Compared to other metabolic models, iCHO1766 still lacks gene

annotation for many of the metabolic reactions (only 1,766 out of 6,663 have a gene ID

associated). Some potential targets predicted with metabolic modelling were not associated

to any gene ID which poses a challenge for experimental validation of those targets.

Proper assignation of reactions reversibilities, which is essential for performing constraint-

based metabolic modelling [216] or metabolic flux analysis [77].

Also problematic are transport reactions between compartments, which need to be described

more accurately, even more if we take glycosylation, a highly compartimentalized process,

into account.

Improved cell-type specific models should be generated and validated for better predictions

[219]. In our research group, we are currently working on assessing the impact of the

biomass composition on modelling output. Currently, all cell line specific metabolic models

for CHO (K1, DG44 and S) share the same biomass equation. Preliminary results on

biomass composition show that protein and lipid content vary significantly among CHO

cell lines (manuscript in preparation).

In addition to the above-mentioned improvements on the metabolic model, we emphasize

the importance of biological replicates and sampling intervals for the accuracy of the

experimental data to be integrated in the model. Our results show that uncertainties on

uptake and secretion rates impact model predictive capabilities and consequently any

potential biological interpretation of the modelling output. In the era of high-throughput

technology, coverage of different experimental setups often prevails at the expense of the

number of replicates for a given experimental study. In order for systems biology to achieve

the goal of reducing the number of experiments required, data-driven hypotheses should

rest upon statistically significant results, more specifically in the case of CHO cells, which

are known to be genetically unstable and batch-to-batch variations are observed.

Major improvements are still required in the incorporation of recombinant protein glycosy-

lation and secretion in iCHO1766. In our results, we saw an example in which metabolic

modelling (FSEOF in this case) yielded results that were inconsistent with membrane-

associated changes that come along with protein production and secretion. Recent develop-

ments in metabolism with gene expression (ME) models include protein translocation and
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compartmentalization [220], in addition to enzyme expense to operate a metabolic pathway

[221]. CHO metabolic model should also aim to integrate this kind of information for better

predictions.

Constraint-based methods such as FBA overcome the drawbacks of kinetic models, but

rely heavily on the definition of an objective function. One can find reasonable arguments to

assume maximization of cell growth in microbial systems growing exponentially [168], but it

may not be a suitable (or the only) objective function for engineered cells. FBA variants have

been developed to address this issue, such as MOMA (minimization of metabolic adjustment)

[222], in which the differences between the engineered and wild type strain flux distributions

are minimized. Alternatively, one can perform an unbiased analysis of the solution space. The

latter is a valuable alternative that can enlighten us on the phenotypic capabilities of CHO cells

without the assumption of optimality.

Pathway analysis aims to obtain a greater picture of the metabolic landscapes of the network,

contrary to methods such as FBA, in which only one optimal flux distribution is obtained. Despite

their potential applications and versatility [223, 224], the applicability of these methods has

been hindered by the complexity of the results and the computational limitations in large scale

networks [225].

In order to perform EFM analysis in CHO, I have systematically reduced the genome-scale

metabolic network to a biologically meaningful set of reactions that fulfills functions such as

growth and protein production as the generic model with the minimal substrate requirements

(oxygen and essential amino acids) and major carbon and energy sources (glucose and glutamine)

[201]. The purpose of EFM analysis in this reduced model was to find genetic engineering targets

to improve metabolism of CHO towards a more efficient use of the available resources. This is

of special interest given the tendency to perform fed-batch cultures at high cell densities [226],

where protein production and cell growth are competing for the limited energy capacity of the

cell. I found 3 pathways that appear to be correlated with higher production of NAD(P)H per mol

of substrate. Experimental validation of these targets is still ongoing.

EFMs have emerged as a valuable mathematical tool for network analysis that allows one to

have a broader understanding of the system as a whole. Nevertheless, we still bear in mind that

the enumeration of metabolic pathways was done in a reduced model and the extensive metabolic

capabilities and flexibility of whole-cell metabolism are not fully represented.

In this regard, we have introduced an approach based in computational geometry to analyze

the flux space for the CHO GSMM in an unbiased manner. Until now, this phenotypic space

was computed by finding the maximum and minimum of the fluxes of interest with consecutive

LPs by fixing other fluxes in small intervals, limiting the computation to only a few reactions of

interest [227]. With the CHM, we were able to extend the computation to up to six dimensions in

a genome-scale metabolic network within a reasonable computation time frame.
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Additionally, recent advances in metabolic modelling applied to microbial communities have

exposed a demand for new mathematical tools which include multiple organisms and metabolic

targets [228, 229]. In some cases, reduced, core-models for each organism are assembled in a

community model [230], with the potential risk of removing the metabolic flexibility for each

network when exposed to cohabitation.

The applications of the CHM are of special interest in the case of microbial communities; the

effects of the environment (uptake and secretion rates), gene modifications, or cohabitation with

other species can be analyzed now in terms of particular changes to the phenotypic capabilities

on multiple products of interest in a fast, unbiased manner.

Vertex enumeration methos such as the CHM rely on accurate numerics. Round-off errors are

inherent to floating-point computation and are known to yield erroneous results in computational

geometry [231]. Nevertheless, solution time of current exact solvers hamper the applicability

of the CHM in systems of more than 4 dimensions. Instead, we argue that the double-precision

implementation of the CHM is a valid approximation to compute PEs, all the more so if we

consider the intrinsic inaccuracies of the stoichiometric coefficients of the reactions. These are

obtained experimentally as biochemical compositions and the precision is limited to that of the

measuring methods.
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CONCLUSION

Given the burgeoning demand for more efficient bioprocesses and more effective and safe thera-

peutic proteins, drug manufacturing in CHO has undergone major progress in bioprocess control,

media optimization and genetic engineering of the host. This progress took place regardless of the

dearth of mechanistic knowledge of the cellular processes and was primarily based on trial and

error. The whole process of cell line development for a given therapeutic product takes between

16 and 24 months and includes screening of hundreds of cell lines to find stable high producers

and formulation of specific optimal media conditions [214]. It is now for the first time that we can

make use of years of data acquisition, more computational power and better modelling tools to

aid rational design of experiments to obtain controlled product quality and higher yields. It is

only with detailed characterization of cellular processes such as gene regulation, metabolism,

post-translational modifications and protein secretion that we can aim to control the production

process. The complexity of the genotype-phenotype relationship, mostly in higher organisms such

as mammalian cells, goes beyond intuitive comprehension and requires mathematical modelling

[232].

Metabolic modelling of mammalian cells has been hampered by the inherent complexity of

the cell structure (compartmentalization) and the large variability of media compositions and

process perturbations under which the culture processes are carried out. To these challenges, we

have to add clonal variation and instability, intrinsic to CHO cells. New techniques such as single

cell analysis would add another layer of information to the rampant field of omics technologies. In

this regard, it is important to establish standardized methods for data integration and validation

within the modelling community. All together, these layers of information about genes, transcripts,

proteins and metabolites are slowly but steadily helping us to understand cell metabolism in a

systems-level manner.
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To date, the vast majority of modelling approaches in CHO have been applied in a reduced set

of reactions. These usually include glycolysis, the TCA cycle, the PPP and amino acid metabolism.

However, in 2016 a full genome-scale metabolic model of CHO has become available [69], unleash-

ing the capabilities of genome-scale metabolic modelling. In the present work, I have applied

constraint-based modelling methods to characterize CHO metabolism and to search for potential

engineering targets related to the efficient use of energy resources and for increased protein

production. Our results suggest that decreasing flux through the TCA cycle could boost protein

production. Pathways from tyrosine metabolism, urea cycle and central carbon metabolism were

reported to make an efficient use of metabolic resources in terms of NAD(P)H. These potential

engineering targets will be experimentally tested for changes in protein production or cell growth.

Pathway analysis tools such as EFMs or EFVs are computationally demanding, mostly in the

case of genome-scale metabolic models. Even though computing power increases exponentially,

there are still limitations when it comes to solve mathematical problems in a reasonable amount

of time. We have developed a new, fast method for the characterization of the full feasible flux

space of the metabolic network based in computational geometry that bypasses the need of

sampling the phenotypic space with FVA. The CHM runs LPs to efficiently find only the vertices

of the PE for the reactions of interest. The algorithm can be applied for a higher number of

reactions than state-of-the-art algorithms for phenotypic phase plane analysis, with low time and

memory requirements.

Despite being a promising tool for bioprocess optimization, metabolic modelling in CHO is still

challenging. I already mentioned the need for better annotation. On the other hand, predictions

can only be as close to reality as the experimental constraints are. Parallel improvement on

analysis techniques will undoubtedly boost the prediction capabilities of metabolic models. These

still have to be further developed to generate more accurate results, e.g., metabolite concentrations

for uptake and secretion rates or biomass constituents [72, 233]. In addition, the iterative process

of model building can benefit from predictions which fail to describe cell behaviour.

Besides metabolic burdens for production, modelling glycosylation still remains a challenge

given the combinatorial nature of the process. Many factors seem to affect the final glycan distri-

bution, and controlling product quality (and therapeutic efficacy) depends heavily on knowing

which factors are the key players and what biochemical process they trigger. Glycan patterns

vary from batch to batch and from cell line to cell line, making it difficult to model the process

deterministically. Statistical models of protein glycosylation perform well in predicting final

glycan structures from key bioprocess parameters [234] but still lack mechanistic understanding

of the underlying causes. On the bright side, it has been recently shown that only a limited

amount of CHO proteins account for the majority of glycosylation, which could ease the ap-

proaches dealing with the dynamic evolution of glycosylation by focusing solely on these highly

contributing proteins [152]. Even though the mechanisms by which the culture conditions and

enzyme expression affect glycosylation are still unknown, the modelling efforts discussed in
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section 1.4 have taken a significant step forward in media optimization by linking glycosylation

to metabolism. A future step in this direction would be including glycan compounds in the

biomass stoichiometric equation, since it has been shown that the metabolic demands towards

glycosylation of both recombinant and host proteins are significant [152].

In summary, the ability to accurately predict cell behaviour is of major relevance to the

development of new biopharmaceuticals. Models for recombinant protein production in CHO cells

are rapidly evolving and data acquisition must increase in both quantity and quality; the main

goal is to build a merged model which integrates all levels of information from the cell systems,

from genes to enzymes to metabolites; and processes such as post-translational modifications,

protein folding and secretion.
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Metabolic rates for 0mM and 8mM glutamine experiments

All rates are expressed in mmol/gDW/h.

Metabolite 0mM 8mM
Alanine 0.03817 0.07632
Arginine -0.00246 -0.00549
Asparagine -0.05911 -0.04403
Aspartate -0.01529 0.03622
Citrate 0 0
Glutamine 0.00242 -0.19898
Glutamate -0.02209 0.02288
Glycine 0.01797 0.01823
Histidine -0.00292 -0.00887
Isoleucine -0.02457 -0.04169
Leucine -0.05797 -0.1
Lysine -0.01488 -0.03095
Methionine -0.00739 -0.01113
Ornitine 0.00005 0.00003
Phenylalanine -0.0041 -0.00588
Proline -0.0036 -0.00969
Serine -0.05607 -0.0633
Threonine -0.00648 -0.02114
Tryptophan -0.00416 -0.00082
Tyrosine -0.00597 -0.01297
Valine -0.01536 -0.02385

Metabolite 0mM 8mM
Citrate 0.00356 0.00232
Isoleucine -0.01468 -0.01224
Leucine -0.0274 -0.0183
Malate 0.0012 0.00184
Succinate 0.00084 0.00093
Alanine 0.03611 0.0996
Arginine -0.01136 0.00425
Aspargine -0.08733 -0.07006
Aspartate -0.01046 0.0328
Glutamine 0.00412 -0.21143
Glutamate -0.03983 -0.02133
Histidine -0.00464 -0.00563
Lysine -0.01863 -0.02167
Methionine -0.00509 -0.00407
Phenylalanine -0.00926 -0.01247
Proline 0 -0.00054
Serine -0.04655 -0.06776
Threonine -0.01523 -0.00753
Tryptophan -0.00301 -0.00565
Tyrosine -0.00551 -0.00708
Valine -0.01479 -0.01841

Table A.1: Metabolic rates for Biocrates (left) and DCH (right).
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Metabolite 0mM 8mM
Glucose -0.51149 -0.54198
Glutamine 0 -0.12719
Glutamate -0.02066 0.02782
Lactate 0.52359 0.83569
Ammonia 0.00831 0.21855

Table A.2: Metabolic rates from in-house bioprocess data
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APPENDIX B

Subsystems for the pathways found with FSEOF

GLYCOLYSIS/GLUCONEOGENESIS 1
VALINE, LEUCINE, AND ISOLEUCINE METABOLISM 4
NUCLEOTIDE INTERCONVERSION 11
TRANSPORT, GOLGI APPARATUS 1
PYRIMIDINE SYNTHESIS 1
TRANSPORT, ENDOPLASMIC RETICULAR 1
N-GLYCAN SYNTHESIS 1
EXCHANGE/DEMAND REACTION 1
GLYCEROPHOSPHOLIPID METABOLISM 1
FRUCTOSE AND MANNOSE METABOLISM 1
TRANSPORT, MITOCHONDRIAL 1

TABLE B.1. Subsystems for the reactions found with FSEOF to be correlated
positively with protein production, and the number of occurrences
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GLYCEROPHOSPHOLIPID METABOLISM 10
BILE ACID SYNTHESIS 1
TRANSPORT, ENDOPLASMIC RETICULAR 3
EXCHANGE/DEMAND REACTION 1
GALACTOSE METABOLISM 1
PROPANOATE METABOLISM 1
BIOMASS 1
NUCLEOTIDE INTERCONVERSION 4
EICOSANOID METABOLISM 2
CHOLESTEROL METABOLISM 12
STARCH AND SUCROSE METABOLISM 3
TRANSPORT, PEROXISOMAL 2
PYRIMIDINE SYNTHESIS 2
TRIACYLGLYCEROL SYNTHESIS 2
UNASSIGNED 1
TRANSPORT, MITOCHONDRIAL 2
FRUCTOSE AND MANNOSE METABOLISM 4
TRANSPORT, EXTRACELLULAR 2

TABLE B.2. Subsystems for the reactions found with FSEOF to be correlated
negatively with protein production, and the number of occurrences

66



A
P

P
E

N
D

I
X

C
APPENDIX C

Protected reactions for model reduction

The following list contains the identifiers from iCHO1766 to be protected during the model

reduction. Modified from the lumped version in [7].

R_HEX1 R_PGI R_PFK R_FBA R_TPI
R_GAPD R_PGK R_PGM R_ENO R_PYK
R_LDH_L R_PDHm R_CSm R_ACONTm R_ICDHxm
R_AKGDm R_SUCOAS1m R_SUCD1m R_FUMm R_MDHm
R_ME2m R_GLUNm R_GLNS R_GLUDxm R_r0081
R_r0193 R_GHMT2rm R_GLYCLm R_r0060 R_ASNN
R_ASNS1 R_ASPTA R_r0399 R_TYRTA R_34HPPOR
R_HGNTOR R_MACACIr R_FUMAC R_AACOAT R_ACACT1r
R_VALTAm R_OIVD2m R_ACOAD9m R_ECOAH12m R_3HBCOAHLm
R_HIBDm R_MMTSADm R_MMMm R_METAT R_GNMT
R_AHC R_CYSTS R_CYSTGL R_OBDHc R_PPCOACm
R_MMEm R_HISD R_URCN R_IZPN R_GluForTx
R_ARGNm R_ORNTArm R_r0074 R_PRO1xm R_G5SADrm
R_GLU5Km R_G5SDym R_P5CRm R_LEUTAm R_OIVD1m
R_ACOAD8m R_MCCCrm R_MGCHrm R_HMGLm R_SACCD3m
R_SACCD4m R_AASAD3m R_r0450 R_2OXOADOXm R_GLUTCOADHm
R_ECOAH1m R_HACD1m R_ILETAm R_OIVD3m R_ACOAD10m
R_HACD9m R_ACACT10m R_THRA R_ALDD2x R_ACS
R_G6PDH2r R_PGL R_GND R_RPI R_biomass_cho_producing
R_IgG1_production R_DM_atp_LSQBKT_c_RSQBKT_

TABLE C.1. Protected reactions for model reduction
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