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Abstract 

 

Crop growth models are widely used as a tool to assess the consequences of the changing 

climate and various management strategies for crop production at the field level. These out-

comes are increasingly implemented in a spatial model at the regional level. The analysis and 

modelling of crop growth, in combination with Geographic Information Systems (GIS), allows 

integrating e.g. topography, soil or weather data over a larger area. Currently, remote sens-

ing data is becoming increasingly more available in terms of quality and quantity and can be 

applied for spatial crop growth modelling. These different technologies together form the 

basis for the spatial and temporal analysis presented here. 

The assessment of the possible impacts of climate change on spring barley and winter wheat 

production in the Marchfeld region (NE Austria) was carried out in my previous studies on 

the basis of the Decision Support System for Agrotechnology Transfer (DSSAT) model in 

combination with three different Global Circulation Models (GCMs). In this present disserta-

tion, some of the practicable regional- and farm-based adaptation measures (management 

options) to the crop yield as well as water and nitrogen balance under the climate scenarios 

were simulated. The results showed that increasing air temperature by e.g. 2°C would short-

en the growing period by up to 20 days (winter wheat) and reduce the potential winter 

wheat and spring barley yield on almost all soil types in the region. Additional irrigation 

would maintain the yield, but at the same time lead to higher nitrogen leaching rates. Never-

theless, the use of specific management options, such as minimum tillage and windbreaks 

(e.g. hedges), could help mitigate increasing water demand. 

Furthermore, DSSAT was applied for the analysis of five grid-shaped precipitation data as 

model input at three sites in Austria. The Integrated Calibration and Application Tool (INCA) 

of the Austrian Met Service (ZAMG), two satellite precipitation data sources (Multisatellite 

Precipitation Analysis (TMPA) and Climate Prediction Centre MORPHing (CMORPH)) and two 

precipitation estimations on the basis of satellite soil moisture data were used. The latter 

was calculated by applying the SM2RAIN algorithm and regression analysis to the soil mois-

ture product Metop-A/B Advanced SCATtermonter (ASCAT) over 2007-2015. For the evalua-

tion, the impact on the winter wheat and spring barley yield by the various precipitation in-
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put sets at a spatial resolution of about 25 km was computed. The highest variance was 

achieved for the driest region e.g. in combination with light-textured soils; TMPA and the 

two soil moisture products gave very good results under more humid conditions. The statis-

tical weakest results at all three sites and for both crops were obtained with the CMORPH 

input data. 

 

Keywords: crop growth model, model calibration and validation, climate change impacts, 

adaptation options, ASCAT soil moisture data, INCA, SM2RAIN, satellite precipitation data 
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Kurzfassung 

 

Pflanzenwachstumsmodelle werden häufig als Instrument zur Abschätzung der Folgen eines 

Klimawandels und verschiedener Managementstrategien für die Pflanzenproduktion auf 

Feldebene eingesetzt. Diese Ergebnisse werden zunehmend in ein räumliches Modell auf 

regionale Ebene übertragen. Die Analyse und Modellierung dieser Daten in Kombination mit 

Geographischen Informationssystemen (GIS) ermöglicht es, Informationen aus z.B. Boden-, 

Klima- und Topographiedaten in eine größere Region zu übertragen. Fernerkundungsdaten 

sind in zunehmender Qualität und Quantität für die räumliche Anwendung von Modellen für 

Ertragssimulationen verfügbar. Diese verschiedenen Technologien bilden gleichzeitig die 

Grundlage für eine räumliche und zeitliche Analyse des Pflanzenwachstums. 

Die möglichen Auswirkungen des Klimawandels auf die Sommergerste- und Winterweizen-

produktion in der Region Marchfeld (NE Österreich) wurden in den ersten beiden Studien 

auf der Grundlage des Modells Decision Support System for Agrotechnology Transfer 

(DSSAT) in Kombination mit drei verschiedenen Global Circulation Models (GCMs) ermittelt. 

Darüber hinaus wurden einige praktikable regionale und betriebliche Anpassungsmaßnah-

men (betreffend Produktionstechniken) an den Ernteertrag sowie die Wasser- und Stick-

stoffbilanz in den Klimaszenarien simuliert. Die Ergebnisse zeigen, dass eine Zunahme der 

Lufttemperatur um z.B. 2°C die Wachstumsperiode um bis zu 20 Tage verkürzen (Winterwei-

zen) und den potenziellen Winterweizen- und Sommergersteertrag auf fast allen Bodenarten 

in der Region reduzieren würde. Eine zusätzliche Bewässerung würde den Ertrag erhalten, 

aber gleichzeitig zu höherer Nitratauswaschung führen. Spezielle Bewirtschaftungsoptionen, 

wie reduzierte Bodenbearbeitung und Windschutzelemente (z.B. Hecken), könnten jedoch 

dazu beitragen, den steigenden Wasserbedarf zu reduzieren. 

Darüber hinaus wurde DSSAT für die Evaluierung von fünf rasterförmigen Niederschlagsda-

ten als Modelleingabe an drei Standorten in Österreich verwendet, bestehend aus dem In-

tegrated Calibration and Application Tool (INCA) des Österreichischen Wetterdienstes, zwei 

Satelliten-Niederschlagsdaten - Multisatellite Precipitation Analysis (TMPA) und Climate Pre-

diction Centre MORPHing (CMORPH) - und zwei Niederschlagsschätzungen auf Basis von 

Satelliten-Bodenfeuchtedaten. Letzteres wurde durch die Anwendung des SM2RAIN-



vi 

 

Algorithmus und einer Regressionsanalyse basierend auf das Bodenfeuchteprodukt Metop-

A/B Advanced SCATtermonter (ASCAT) über den Zeitraum 2007-2015 ermittelt. Für die Be-

wertung wurden die Auswirkungen auf die Winterweizen- und Sommergersteerträge durch 

die verschiedenen Niederschlagseingabedaten bei einer räumlichen Auflösung von ca. 25 km 

berechnet. Die höchste Varianz wurde für die trockenste Region in Kombination mit sandi-

gen Böden ermittelt; TMPA und die beiden Bodenfeuchteprodukte lieferten sehr gute Er-

gebnisse bei den feuchteren Gebieten. Die statistisch schwächsten Ergebnisse an allen drei 

Standorten und für beide Kulturen wurden mit den CMORPH-Eingabedaten erzielt. 

 

Schlagwörter: Pflanzenwachstumsmodell, Modellkalibrierung und -validierung, Klimawandel, 

Anpassungsmöglichkeiten, ASCAT Bodenfeuchtedaten, INCA, SM2RAIN, Satelliten-

Niederschlagsdaten 
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1 Introduction 

 

Changes in the variability and the mean of climatic parameters have a critical influence on 

agricultural cropping systems, especially under water-limit production conditions, such as in 

the semi-arid areas of Central Europe (Trnka et al. 2010). It can be assumed that water scar-

city, drought frequency, and its severity are increasing in many European regions. Dubrovsky 

et al. (2008) and Trnka et al. (2010, 2011a,b) stated that droughts and heat stress in espe-

cially sensitive developmental stages of crops are expected to increase in these areas of Cen-

tral Europe. For instance, in Austria in 2013, the total damage to crops caused by drought 

and heat in agriculture was EUR 200 million; the damages in 2015 amounted up to EUR 175 

million, in 2017 to EUR 140 million and in 2018 increased to EUR 210 million, paid by the 

Austrian Hail insurances for farmers to those insured against drought. Still, these do not in-

clude additional direct state disaster support for drought damage, such as in 2018 (BMNT 

2018). 

Drought and heat stress in plants can reduce biomass accumulation (Barlow et al. 2015; Lo-

bell et al. 2011), accelerate senescence (Wardlaw and Moncur 1995) and – in specific cases – 

infertile florets (Saini et al. 1983; Grant et al. 2011), which reduce significantly, grain num-

bers (Tashiro and Wardlaw 1990; Stone and Nicolas 1995; Nendel et al. 2018). Heat stress, 

which often occurs in combination with drought stress, can be seen as a complex feature of 

the timing and duration of high-temperature events, characteristics of varieties and the 

phenological stage of the crop (Rezaei et al. 2015a,b; Prasad et al. 2017). In this case, tem-

peratures reach a threshold level for a certain period of time, which is adequate to affect the 

crop growth and development in an irreversible way (Wahid et al. 2007). The critical thresh-

olds for temperature differ strongly with the developmental stages of crops and plants (Hall 

2018). Cereals, millets, oilseeds and other field crops are most vulnerable during the main 

reproductive stages, i.e. gametogenesis and flowering (Hedhly 2011; Prasad and Djana-

guiraman 2014; Prasad et al. 2015; Shi et al. 2015; Singh et al. 2015). 

Drought is regarded as a slow-onset natural disaster that can be defined as an extended pe-

riod of time where less water is disposable than expected in an ecological system (Zhang et 

al. 2016). Agricultural dryness occurs if soil moisture is insufficient to fulfill the crop water 
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requirement at a given time during growth (Razzaghi et al. 2017) and increase risks in partic-

ular in rainfed agricultural production (Sayago et al. 2017). Indeterminate plants like cowpea, 

cotton and tomatoes may adapt better to mid-season droughts than determinate plants like 

rice, maize, sorghum, pearl millet, and wheat (Hall 2018). Since drought stress is mainly con-

nected with temperature stress, leaf temperatures usually increase above air temperature as 

a result of stomata closure and reduced transpiration (Hatfield 1979), having therefore in 

most cases negative effects on the crop growth and yield. 

Another aspect of the changing climate is the ongoing enrichment of atmospheric CO2, 

which is expected to rise from a current 400 ppm (2016) to 421 ppm (Regional Climate Mod-

el 2.6 (RCP)) - 936 ppm (RCP 8.5), respectively, by the year 2100 (IPCC 2014), enhancing the 

photosynthetic rate and biomass accumulation. 

Changes in rainfall patterns and the increases in atmospheric CO2 concentration and tem-

perature operate quite differently on crop yields (Asseng et al. 2013, 2015; Porter et al. 

2014; Trnka et al. 2014) and product quality (Martre et al. 2006; Myers et al. 2014), which 

may improve or decline depending on the region (Wheeler and von Braun 2013; Challinor et 

al. 2014; IPCC 2014; Nendel et al. 2018). Due to higher temperature changes in the crop’s 

phenological development are expected. It may besides affect its vulnerability to adverse 

weather conditions, shifting sensitive phases into or out of periods in which late frost, critical 

heat, drought or heavy rain is more likely to occur (Siebert and Ewert 2012; Teixeira et al. 

2013; Rezaei et al. 2015a,b; Trnka et al. 2015a,b). In addition to changes in climatic means, 

climate variability, with more frequent occurrence of climate extremes, increases the risk of 

adverse weather conditions during the cropping season, pushing crop performance beyond 

critical thresholds (Rötter et al. 2011a; Nendel et al. 2018). 

For the assessment and interpretation of the behavior of agronomic systems under diverse 

environmental conditions, such as climate change and management options, mechanistic 

crop simulation models are suitable tools (Tsuji et al. 1998; Challinor 2011; Rötter et al. 

2011b; Li et al. 2015a; Jones et al. 2017a). They are based on biophysical processes and their 

interactions are constructed to determine system feedbacks. In such a way, a better under-

standing and predicting of the system’s behavior is given. Notably is their capability to ex-

plore genotype × environment × management interactions that make them so indispensable 

in agriculture studies (Porter et al. 2014; Chenu et al. 2017). However, crop models are only 
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a simplification of the complex soil-crop-atmosphere system. Uncertainties are thus abun-

dant, such as the model representation of the involved processes and model inputs 

(Eitzinger et al. 2008; Challinor 2011; Rötter et al. 2011b). For example, deficient process 

descriptions for response to temperature, drought, and CO2 are given, lack of standardized 

protocols for their application, including inappropriate scaling methods and uncertainty re-

porting, can be found (Rötter et al. 2011b; White et al 2011; Rosenzweig et al. 2013). The 

use of crop simulation models is also a main tool to describe the effects of climatic condi-

tions and management strategies on the field level. Increasingly their outcomes are imple-

menting in a spatial application model on the regional level. Limits for crop model applica-

tions are frequently related to the availability and quality of model input data. So, an im-

portant uncertainty factor in simulated outputs is a poor quality of input data (beyond the 

representation of significant natural processes in the model); e.g. the spatial representation 

of the weather and soil model input data, which are mainly from scattered point locations 

such as weather stations (de Wit et al. 2005) and local spots (e.g. soil pit). With the help of 

spatial data analysis techniques and geographical information system (GIS) those model out-

puts can incorporate their information into a larger area (Delécolle et al. 1992). For instance, 

topographical, soil, and climate data provide a link between these two technologies and are 

at the same time groundwork for spatial and temporal analysis. Before using these data, 

comparing model results with field observations (model calibration and validation) or inter-

comparison of models (e.g. by sensitivity analysis) of different nature should be done. In this 

way,  information on the performance of the models are given and their strength and their 

weakness discovered (e.g. Palosuo et al. 2011; Rötter et al. 2012; Eitzinger et al. 2013a; 

Huang et al. 2015; Kollas et al. 2015; Battisti et al. 2017). 

 

2 Objectives 

 

The overall objectives of this work are (i) to identify the potential impacts of climate change 

on agriculture in Austria's driest regions and possible adaptation strategies as well as (ii) to 

evaluate various precipitation crop model inputs derived from remote sensing products 

through crop model outputs such as simulated yield.  
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(i) In the first two studies presented (Thaler et al. 2012; Eitzinger et al. 2013b), the manifold 

impacts and possible adaptation strategies to climate change at farm level under semi-arid 

crop production regions of Central Europe for winter wheat and spring barley production 

were investigated by means of crop growth simulation. For this purpose, detailed input data 

for the parameterisation and validation of the crop growth model DSSAT (Decision Support 

System for Agrotechnology Transfer) were collected. GIS was applied to link and visualise the 

results for the entire investigated region Marchfeld (NE Austria). Special attention was given 

to (i) the range of potential future crop development and yields under different climate 

change scenarios and (ii) the effects of tillage and windbreak effects (hedges) on yield-

limiting factors (i.e. soil water and N balance) as adaptation options. 

(ii) The third paper (Thaler et al. 2018a) analyses different types of spatially gridded precipi-

tation data used as crop model inputs and their influences of winter wheat and spring barley 

yield. For this purpose, remote sensing derived precipitation data were linked with the crop 

model DSSAT. The determination of site-representative precipitation estimates is of great 

importance since precipitation patterns during the vegetation period play a central role for 

crop growth and development conditions. Three case study sites in Austria were selected, 

which are characterized by different climate and soil conditions. The main purpose of this 

study was to test and compare whether the different free available satellite-based precipita-

tion data (25 km spatial resolution) were suitable sources as input data for crop models and 

to identify their limitations compared to the 1 km grid precipitation data of Integrated Cali-

bration and Application Tool (INCA) of Meteorological Service Austria. INCA data sets are 

distinguished by the high spatial resolution of 1 km but are not available freely, so that an 

overview of acceptable alternatives for different applications is of special interest. Besides, 

there is further relevancy in determining under which conditions and to which extent errors 

in the rainfall data are carried over to the final results of the crop model (simulated crop 

yield). Precipitation is the key uncertainty factor for crop growth simulation in the investi-

gated area and therefore, information on the circumstances to replace this critical weather 

input parameter with alternative spatial sources is of interest. 

The structure of the work is as follows. The Materials and Methods section presents crop 

growth models and remote sensing as well as their linking, followed by a description of the 

data used for application and evaluation in the crop growth model. Selected results from the 
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three papers are then presented in the Results section. Finally, the Discussion and Conclu-

sion section examines the approach and highlights some of the key findings of this work. 

Three peer-reviewed scientific publications form the Appendix of the thesis. 

 

3 Materials and methods 

 

3.1 Crop growth simulation models 

Crop growth simulation models integrate available information on cultivar physiology, soil 

chemistry, management practices, agro-climatology data, and simulate key processes in or-

der to determine crop performance in a given environment (Hodson and White 2010). They 

have a wide range of applications, e.g. climate change impact assessment and adaptation 

options, irrigation and fertilizer management, plant breeding and crop improvement, gene-

based modeling, pest and diseases management, spatial analysis, tillage simulation and long-

term effects of crop rotations (productivity and sustainability) (Jones et al. 2003; Hoogen-

boom et al. 2017). Generally, they can be divided into three main application categories (i) 

tools for decision making, (ii) research tools and (iii) tools for education and technology 

transfer (Murthy 2003). A brief summary of different types of models’ application can be 

found in table 1. 

Table 1. Different categories of models’ application (source: Soltani and Sinclari 2012) 
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3.1.1 Types of crop growth simulation models 

Crop growth models, a simple representation of a crop based on physical plant processes, 

can be classified in descriptive and explanatory models. The first one describes the behav-

iour of a system in a basic way and involves normally one or more mathematical equations 

(Fig 1) (Penning de Vries et al. 1989). The relationship between variables is described with-

out referring to any underlying biological or physical structure that may exist between the 

variable (Gowda et al. 2013). 

 

Figure 1. A simplified draft, which indicates how real world observations are brought into a descrip-

tive model (source: Penning de Vries et al. 1989) 

The explanatory model consists of a quantitative description of the mechanisms and pro-

cesses, which influence the behaviour of a system (Fig 2). They are also called dynamic mod-

els or process-based models (Kasampalis et al. 2018). After the analysis, the process and 

mechanisms of the system are quantified separately. The model is constructed by integrat-

ing the different descriptions for the entire system with rate, state and driving variables 

(Penning de Vries et al. 1989). The state variables are quantities, which can be measured at 

specific times; for example biomass, amount of nitrogen in the soil, soil water content. Driv-

ing variables define the influence of the environment on the system at its borders, and their 

values have to be continuously controlled, as for example meteorological variables. Each 

state variable is coupled with rate variables, which define their rate of change at a given 

point in time as a result of certain processes. These variables characterized the flow of bio-

mass or material between state variables. Their value relies on the state and driving varia-

bles, which are based on the knowledge of the biological, chemical, and physical processes 

involved in crop growth and development (Dadhwal 2003). In these ways, growth rates can 

be determined in each plant phase during the vegetation period, assuming the state of cul-

ture, soil, and weather (Gowda et al. 2013). The software application program DSSAT was 

used in these three studies, which comprises dynamic crop growth simulation models for 

over 40 crops. 
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Figure 2. A simplified draft, which indicates how real world observations are analyzed and integrated 

into an explanatory model to simulate behavior of the system (source: Penning de Vries et al. 1989) 

3.1.2 Brief history of crop modeling 

The classical and functional growth analysis phase, also called the first generation, was from 

the 1910′s to 1970′s (Fig 3). At this time, first mathematical descriptions of plant and crop 

growth (Gregory 1917; Blackman 1919; West et al. 1920; Fisher 1921) as well as soil pro-

cesses were defined (Heath and Gregory 1938; Williams 1946; Evans 1972; Venus and 

Causton 1979; Hunt 1982; Yin et al. 2003). The main focus was to describe growth functions, 

which fitted to plant growth data and frame plant growth according to leaf canopy for light 

capture and photosynthetic capacity (Keating and Thorburn 2018). These studies created the 

conditions for the next crop modelling efforts, the second generation. Here, one of the first 

models of agricultural production systems were conceived in the mid-1960s from the physi-

cist C.T. de Wit of the Wageningen University in the Netherlands, a pioneer of agricultural 

system modeling. He assumed that agricultural systems can be modeled by uniting physical 

and biological principles. Another pioneer was the chemical engineer W.G. Duncan, who 

made the attempt to model canopy photosynthesis (Duncan et al. 1967) and developed 

some of the early crop-specific simulation models for maize, cotton, and peanut (Duncan 

1972). 

These first models, which simulated photosynthetic rates of crop canopies, were applied to 

estimate potential food production for some regions of the world and to make available in-
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dications for crop management and breeding (de Wit 1967; Linneman et al. 1979; Oteng-

Darko et al. 2013). So de Wit et al. (1970) created in 1970 an Elementary Crop growth Simu-

lator (ELCROS). It is a static photosynthesis model in which crop respiration is used as a fixed 

fraction per day of biomass and an amount proportional to the growth rate is added. Fur-

thermore, a functional equation between root and shoot growth was established (Penning 

de Vries et al. 1974). 

The work by de Wit (1958, 1965; Brouwer and Wit 1968; de Wit et al. 1970) and Duncan et 

al. (1967) were the inspiration for many scientists and engineers who began to develop and 

apply crop models (Jones et al. 2017a). 

A significant improvement was the consideration of micrometeorology in the models (Gou-

driaan 1977) and the quantification of canopy resistance to gas exchanges, which was sup-

plemented, for example, in the Basic Crop growth Simulator (BACROS) (de Wit and Gourdi-

aan 1978; Oteng-Darko et al. 2013). 

In 1972, the Huffaker Integrated Pest Management (IPM) was established in the USA to tack-

le the huge problems associated with the increasing use of pesticide and the emergence of 

pesticide resistance in many target insects and diseases (Pimentel and Peshin 2014). A set of 

dynamic models for insect and disease were technologically further developed; some of 

them were linked to growth models for cotton and soybean (Wilkerson et al. 1983; Batchelor 

et al. 1993), like the SOYGRO model, which is now integrated into DSSAT (Jones et al. 2003). 

Additionally, the elaboration of a generic framework for coupling crop models with insect 

and disease information to assess the impact on crop growth and yield were undertaken 

(Boote et al. 1983; Jones et al. 2017a). 

In the 1970s and 1980s, more and more cropping systems models were developed, which 

integrated plant physiology for the crop components and soil science for the soil water and 

nitrogen components, the third generation. So in the 1980s, the CERES Models (Maize and 

Wheat) by Joe Richie and his colleagues in Texas (Ritchie and Otter 1984; Jones and Kiniry 

1986) as well as CROPGRO (SOYGRO and PNUTGRO) models at the University of Florida were 

developed (Wilkerson et al 1983; Boote et al 1986). These models coupled crop growth and 

yield, soil water, and soil nitrogen in a comprehensive way for the first time (Jones et al. 

2017a). In 1982, the IBSNAT (International Benchmark Sites Network for Agrotechnology 
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Transfer) project was initiated, which aim was to collect and distribute a portable, user-

friendly, computerized decision support system. This system contains (i) a database man-

agement system, where a minimum set of weather, soil, crop, site and management data 

can be entered, collected and saved to validate and use the software, (ii) crop growth mod-

els, which are able to simulate the interaction of genotype × environment × management, 

and (iii) application programs that permit a user to evaluate and display results of multi-year 

agronomic experiments on the computer (Uehara and Tsuji 1993). 

The works of the early pioneers have continuously developed during the years. So, for ex-

ample, the Wageningen University with C.T. de Wit trained many agricultural system model-

ers and developed a number of crop models, which are still in use today (Penning de Vries et 

al. 1991; Bouman et al. 1996; van Ittersum et al. 2003). Also, some of the early work of Dun-

can and Ritchie has influenced, generated and contributed to the DSSAT group of crop mod-

els (IBSNAT 1984; Tsuji et al. 1998; Uehara and Tsuji 1998; Jones et al. 2003; Hoogenboom et 

al. 2012). 

Notable, government-funded initiatives, which are still widely used globally today, were, for 

example, the 1980 US Soil and Water Conservation Act that led to development the EPIC 

model (Williams et al. 1983, 1989), the IBSNAT project, funded from USAID, which led to the 

formation of the DSSAT suite of crop models (CERES and CROPGRO were combined) (Jones 

1993; Boote et al. 1998, 2010; Jones et al. 2003; Hoogenboom et al. 2012), and, funded by 

the Dutch government from 1984, the Systems Analysis of Rice Production (SARP) project 

that resulted in the development of the ORYZA rice crop model (Penning de Vries et al. 1991; 

Bouman et al. 2001). 

In the early 1990s, the establishment of the first fully financed, multidisciplinary crop model-

ing research group in Australia resulted in the development of the Agricultural Production 

Systems sIMulator (APSIM) (Jones et al. 2017a). Here started the fourth generation, from 

crop models to cropping systems models. The DSSAT model and many other crop models, or 

rater cropping systems models, were developed over the 1990–2000 period. DSSAT im-

proved its functionality in cropping systems simulation and by 2003 it was defined as a mod-

ular cropping systems simulator (Jones et al. 2003). Further cropping system simulators are 

e.g. CropSyst (Stöckle et al. 2003) and STICS (Brisson et al. 2003). Still, there were the Dutch 

models in use (van Ittersum et al. 2003) but the Wageningen group did not go down the way 



10 

 

of supporting a main cropping systems simulator as APSIM or DSSAT. However, the three 

groups sustained international connections through the International Consortium for Anti-

microbial Stewardship in Agriculture (ICASA) Consortium (Keating and Thorburn 2018). 

So far, still these models have to be relying on improving as the current models are mainly 

out of date (Rötter et al. 2011b). On the one hand, the mechanism of individual crop growth 

factors like nutrients dispersion, CO2 diffusion, etc. are not yet included with the interaction 

of the environment, breeding programs, and microscale studies (Bhatia 2014). Here, the lat-

est understanding of how crops respond to a changing climate as well as modern crop varie-

ties and management practices need to be taken into account in the new models (Rötter et 

al. 2011b). On the other hand, the forces of shaping cropping systems model development 

and application should be intensifying. To have a better influence in real-world policy or 

practice settings, cropping systems models should be open in developments in data acquisi-

tion and model-data fusion and make so an important input to future agricultural productivi-

ty and sustainability (Keating and Thorburn 2018). Toward a 5th generation of agricultural 

system data, models and knowledge products, projects like the Agricultural Model Inter-

comparison and Improvement Project (AgMIP) could play a key role, which is a major inter-

national endeavor combining climate, crop and economic modelling communities with state-

of-the-art information technology. The aims are to develop the next generation of climate 

impact forecasts for the agricultural sector with the help of improved crop and economic 

models (Rosenzweig et al. 2013, Jones et al. 2017b). Latest developments try to establish 

modular, inter-transferable crop model compartments (e.g. on process level) using sophisti-

cated higher open source “programming language levels” thus being transparent, following a 

concept that was already applied in the Wageningen school models in the 1980s (e.g. MAC-

ROS). Further the fast developments in molecular genetics, techniques in of determining 

functional plant traits etc. is going to establish multi-level models combining/integrating mo-

lecular, cell, and organ to whole plant simulation (González and Inzé 1015; Bardini et al. 

2017). 
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Figure 3. Representation of the development of cropping systems modelling: starting with the com-

prehension of the basic plant and soil processes to models for more integrated plant-soil interactions 

up to cropping and farming systems (source: Keating and Thorburn 2018) 

3.1.3 Current limitations of crop growth simulation models 

In Boote et al. (1996) it is well stated which application possibilities and limitations crop 

growth models have; furthermore, it is also indicated whether a model is appropriate for a 

certain purpose or whether the configuration of the model can be applied to other environ-

mental conditions. Model limitations are, besides the model representation of the involved 

processes, the accuracy and availability of the input data, especially at regional scales. For 

example, Palosuo et al. (2011) simulated winter wheat in different European climates using 

eight crop growth models. The authors recognized that these crop models, which were per-

formed at field scale, cannot be used for larger-scale applications without proper parameter-

ization or ignoring essential factors about the model (Kasampalis et al. 2018). GIS and re-

mote sensing, in particular, can help to obtain useful spatial information of certain parame-

ters (e.g. Leaf Area Index) on larger areas and can contribute significantly to improve the 

performance of crop growth models (e.g. Thaler et al. 2012). 

3.1.4 The Decision Support System for Agrotechnology Transfer (DSSAT) 

The software application program DSSAT (Jones et al. 2001, 2003), which contains dynamic 

crop growth simulation models for over 40 crops, was applied in the current studies (Fig 4). 

These are process-based, management-oriented models, which simulate in diurnal running 
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time effects of e.g. water and nitrogen on crop growth, weather, cultivar, crop management, 

soil, crop phenology, and yield. The CERES models run within the DSSAT (v4.0.2.0) frame-

work (Hoogenboom et al. 1994; Tsuji et al. 1994, 1998) and CERES-Wheat Plant Growth 

Module (grain cereals wheat and barley) (Ritchie et al. 1984; Godwin et al. 1989) was used in 

the presented studies. This module is a widely used tool for the modelling of the yield com-

ponents, water balance and other parameters within the soil-crop-atmosphere system (e.g. 

Jones et al. 2003; Eitzinger et al. 2004). The input requests for the CERES model comprises 

weather data, soil conditions, genotypes and crop management (Hunt et al. 2001). 

 

Figure 4. Schematic overview of the DSSAT Cropping System Model (sources: Jones et al. 2003; Hoo-

genboom et al. 2017) 

 

3.2 Satellite Remote Sensing 

In the last decades, satellite remote sensing has been developed as a powerful source of 

data for observing and monitoring the Earth's surface for a wide range of disciplines, includ-
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ing agriculture, hydrology, forestry, oceanography, weather, land use, environmental con-

cerns, security purposes and military operations (Morris et al. 2005). The first use of the 

term “remote sensing” came from Ms. Evelyn Pruitt of the U.S. Office of Naval Research in 

the 1950s. Lillesand et al. (2004) described remote sensing as ‘the science and art of obtain-

ing information about an object, area, or phenomenon through the analysis of data acquired 

by a device that is not in contact with the object, area or phenomenon under investigation’. 

One of the key objectives for remote sensing is the detection of various electromagnetic 

radiations (EMR) (Fig 5) by a sensor on a remote sensing platform (Tomlinson et al. 2011). 

EMR, which includes intensity, frequency spectrum polarization and time delay of the re-

ceived energy, is characterized by its wavelength or frequency with the relationship ν = c/λ (c 

= speed of light in the medium [3.0 x 108 m s-1], ν = frequency [cycles s-1 or hertz, Hz], λ = 

wavelength [m]) (Brown et al. 2007). 

 

Figure 5. The wavelength ordered electromagnetic spectrum, which contains energy measurements 

within the ultraviolet, visible, reflective infrared, thermal infrared, and microwave ranges (source: 

Landgrebe 2003) 

3.2.1 Brief history of remote sensing 

Important events in the history of remote sensing are briefly summarized from the work by 

Campbell and Wynne (2011) in table 2. The technology of modern remote sensing lies in the 

beginnings of the practice of photography in the early 1800s. Several scientists conducted 

experiments with photosensitive chemicals, where e.g. 1839 Louse Daguerre (1789-1851) 

published his experiments. In 1858 Gaspard-Félix Tournachon (1829-1910) took the first aer-

ial photographs of Paris from a hot air balloon (Campbell and Wynne 2011). The usage of 



14 

 

kites in the 1880s and pigeons in the beginning of the 1900s was the next move, wherefrom 

cameras were carried at several hundred meters of altitude (Elachi and van Zyl 2006). During 

the First World War, cameras installed on airplanes delivered aerial views of large surface 

areas, which proved very valuable in military reconnaissance. Until the early 1960s, the aeri-

al photograph was the standard instrument for photographing the surface from a vertical or 

oblique perspective. The remote sensing from aircraft was used more and more with the 

onset of the two world wars to spy on the enemy. In the beginning, the visible area of the 

spectrum was used. Then the development of sensors designed to see multiple spectrums 

including infrared and microwave bands was a further milestone in remote sensing. In this 

way, war planners were able to recognize and find before unseen intelligence (Campbell and 

Wynne 2011). 

Satellite remote sensing can be observed from the early days of the space age of the Russian 

and American programs. At first, a dual method was used to image surfaces with different 

types of spacecraft sensors. In 1946, V-2 rockets, developed from Germany after World War 

II, were launched from New Mexico. Generally, these first space rockets never reached their 

orbit and included automated still or movie cameras, which shot photographs as the vehicle 

ascended. 

In the early 1960s, the age of modern remote sensing was set with the launch of the Televi-

sion Infrared Observation Satellite (TIROS-1). This satellite and its successors brought vidicon 

cameras into space and systematic monitoring of the weather and global environment from 

space was possible (Simonett et al. 1983). Satellite platforms, electro-optical (EO) sensor 

systems, and quantitative analytical tools for processing photographic and EO images are 

from now on available (Schott 2007). 

Remote sensing has also been used from the outset to monitor and analyze agricultural ac-

tivities. For example, aerial photography was utilized to conduct soil and crop surveys relat-

ed to agricultural land in the USA and other parts of the world (Goodman 1959). With new 

advances in infrared photography introduced during the Second World War, remote sensing 

techniques developed a better understanding of crop status, water management as well as 

crop-soil conditions. Here, Robert Colwell of the University of California did pioneering work 

in this field in the 1950s. In the 1960s, new agricultural laboratories such as Purdue's were 

established (Nellis et al. 2009). 
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The first civilian earth observation satellite, LANDSAT-1, was launched in 1972. It was used, 

among other things, by the US government's Large Area Crop Inventory Experiment (LACIE) 

programme to estimate wheat production in large geographical areas; initially in the USA, 

then in Canada and the Soviet Union. LACIE's success resulted in a follow-up project in 1980 

under the name AgRISTARS (Agriculture and Resources Inventory Surveys Through Aero-

space Remote Sensing). The aim of this program was to expand LACIE and to cover the moni-

toring of other crops including rice, barley, cotton, maize, soybeans and wheat (Nellis et al. 

2009). A summary of these programs can be found in Rundquist and Samson (1983), Bauer 

(1985) and Pinter et al. (2003); detailed information on historical developments in remote 

sensing and agricultural applications is available from Reeves (1975). 

Table 2. Landmarks in the remote sensing history (source: Campbell and Wynne 2011) 

 

Nowadays in Europe, on behalf of the joint initiative GMES (Global Monitoring for Environ-

ment and Security) of ESA and the European Commission, a series of next-generation Earth 

observation missions called SENTINEL has been developed, whereby the first satellite Senti-

nel-1A was launched on 3 April 2014. The aim of the SENTINEL programme is to replace the 

current older Earth observation missions that have retired, such as the ERS mission, or are 

nearing the end of their operational life. This will ensure continuity of data and avoid gaps in 
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ongoing studies. These missions include a range of technologies, like radar and multi-

spectral imaging instruments for monitoring atmosphere, land, and ocean (ESA 2019). 

3.2.2 Basics of Satellite remote sensing 

The properties of the observations and their applications are characterized by the physical 

features of a satellite remote sensing system. A satellite system is equipped with several 

components: sensors, a physical structure (i.e. bus), instruments to maintain the satellite’s 

orientation and orbital position, data storage equipment, telemetry device to transmit the 

observations to Earth, the ground segment, which receives process, distributes the observa-

tions and derived parameters (Stewart 1985; Brown et al. 2007). 

One way to differentiate the Earth observation satellite systems is to look at their orbits: 

there are two main orbits, called sun-synchronous (or polar) and geostationary orbits. 

Satellites with polar or sun-synchronous orbits provide medium to high-resolution images of 

the entire Earth. They are mainly used for environmental monitoring, one example being 

LANDSAT (more information: https://landsat.gsfc.nasa.gov/). Polar or sun-synchronous or-

bits are located from 300 to 1400 km above the earth. Each satellite orbit lasts about 90 

minutes and in the meantime, the Earth rotates a little further. The satellite observes differ-

ent parts of the world in narrow bands (swaths). Days or weeks later, the satellite orbits the 

same area again. Consequently, the temporal resolution of these satellites is restricted in 

relation to geostationary satellites (Löffler et al. 2005; Albertz 2016). 

Geostationary orbits at about 36 000 km above the earth. At this altitude, a satellite takes 24 

hours to orbit around the Earth and it does synchronize with the rotation of the Earth. The 

satellites are at a right angle above the equator and so it seems that the satellite is station-

ary in the sky. Hence, the satellites observe the same segment of the earth's surface and the 

atmosphere. By reason of the high altitude of the orbit, the geometric resolution is very low 

and the smallest element, which can be recognized, is about 1 km² wide. One example of a 

geostationary satellite is METEOSAT (more information: 

https://www.eumetsat.int/website/home/index.html). Commonly, they were utilized to 

monitor and forecast the weather as well as for telecommunication and television broad-

casting (Löffler et al. 2005; Albertz 2016). 
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Another way to distinguish between Earth observation satellites is to compare the sensors 

used. In most cases, there are passive sensors that measure reflected sunlight or thermal 

radiation, and active sensors that use their own radiation source. Active sensors emit artifi-

cial radiation to observe the earth's surface or atmospheric features in microwave scat-

terometers and altimeters, e.g. radar and laser scanners. Passive sensors detect solar radia-

tion reflected from the earth and thermal radiation in the visible and infrared of the elec-

tromagnetic spectrum (Löffler et al. 2005; Albertz 2016). 

3.2.3 Resolution 

The resolution describes the ability to distinguish between objects both in space and time. 

The four main categories are spatial, temporal, spectral and radiometric resolution (Brown 

et al. 2007). 

Looking at the spatial resolution, satellite sensors save data about objects in a grid form. 

Digital data are gathered from the covered area in the form of individual pixels, which are 

the smallest area unit in a digitized image. The size of the pixel differs depending on the sen-

sor type and is responsible for the resolution of the image. The resolution measurement is 

the edge length of a pixel: the higher the resolution and the finer the raster, the greater the 

degree of visible detail on the earth's surface (Löffler et al. 2005; Albertz 2016). 

The temporal resolution is based on the frequency at which the same place on earth is ob-

served by the sensor. The re-visitation rate of a region is determined by several factors, e.g. 

the properties of the satellite orbitals, the field of view of the instrument, and the latitude of 

the observed area (Brown et al. 2007). 

The spectral resolution includes the various satellite sensors, which differ in the number and 

bandwidth of their spectral channels and thus in their ability to observe discrete spectral 

ranges. Sensors are capable of a single wide panchromatic spectral band, which allows high-

resolution observations. They are also capable to use multispectral and hyperspectral bands, 

which capture images in many spectral bands with medium to narrow bandwidth. A combi-

nation of both is also possible (Brown et al. 2007). 

Radiometric resolution or quantization is the precision with which the observed measure-

ments can be determined into discrete radiometric intervals. Whenever an image is scanned 
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by a sensor, the sensitivity to the magnitude of the electromagnetic spectrum represents its 

radiometric resolution. The more finely the radiometric resolution of a sensor is, the more 

sensitive it is to detect small changes in reflected or emitted energy (Brown et al. 2007). 

 

3.3 GIS and Remote Sensing combined with crop growth models 

3.3.1 Interfacing crop growth models to GIS 

GIS is a computer mapping and analysis tool where large datasets of spatial and non-spatial 

information can be integrated. It offers a digitized, spatially oriented database that can be 

evaluated with other spatially formatted data and information, such as satellites, maps, sur-

veys, and other geo-referenced information sources. Different data sets can be overlaying 

digitally, enabling a joint spatial analysis of cartographic and statistical products. GIS can 

store a lot of spatial information and easily show the visual impact of changes in natural re-

sources or policies on a large part of the region (Nagamani and Nethaji Mariappan 2017). 

Crop growth models generate point output as input data are normally used from a specific 

field or location. The combination of different spatial inputs such as soil, weather or crop 

management with a GIS system can extend the scope of these simulation models to a wider 

scale. The aim of the combination of crop growth models and GIS is to perform spatial and 

temporal analyses simultaneously, as the behavior of crops on a regional scale has a spatial 

dimension and simulation models provide temporal performance. GIS can help in spatial 

visualization of results and their interpretation by spatial analysis of model results (Delécolle 

et al. 1992; Ewert et al. 2011; Dadhwal 2013). 

Hartkamp et al. (1999) have suggested that "interface" and "interfacing" can be defined as 

generic terms for the concurrent use of GIS and crop growth models and "linking", "combin-

ing" and "integration" as appropriate terminology for the degree of the interface. These are 

the same terminology used by Burrough (1996) and Tim (1996) for loose, tight or embedded 

coupling. Although there is a continuum of linking and combination, the terms can be ex-

plained as follows (Dadhwal 2013): 

 linking: Simple linking strategies utilize GIS for spatial representation of model results. 

One approach is the interpolation of model outputs. Different GIS functions like interpo-
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lation, overlay, slope, etc. can be used to create a database that contains model inputs 

and exports model outputs to the same database. The identifiers of raster cells or poly-

gons are the input and output files for the data transfer between GIS and the model. 

Such an approach is not capable of realizing its full potential of the system and suffers 

from limitations due to dependence on GIS and model formats, incompatibility of oper-

ating environments and lack of use of GIS capabilities. 

 combining: The combination processes data in the GIS and displays the model results. 

The model is configured with the GIS and the data is automatically exchanged using GIS 

package of macro language, interface programs, libraries of user-callable routines. This 

demands more complex programming and data management rather than simply linking. 

 integration: Integration means that one system is integrated into the other. A model is 

either embedded in a GIS or a GIS system is part of a modeling system. This enables the 

automatic application of relational databases and statistical packages. Considerable 

knowledge, effort, and understanding of both instruments are here required (Dadhwal 

2013). 

3.3.2 Linking crop growth models with remote sensing data 

Remote sensing data provide quantitative information on the actual state of crop conditions 

over large scale (Dadhwal 2013); whereas crop models can calculate the temporal dynamics 

of the plants, normally for local spots. Data assimilation methods, which include remote 

sensing data into existing crop growth model structures, can help to decrease the uncertain-

ty of the model simulations and to increase the accuracy of the predicted models (Dorigo et 

al. 2007; Morel et al. 2014). In these frameworks it can be classified between (i) the driving 

variables that force the system; (ii) the system behaviour characterized by the state varia-

bles, (iii) the context between driving and state variables included the model parameters, 

and (iv) the outputs are the observable characteristics of the state variables (Delécolle et al. 

1992). Some examples for used canopy state and driving variables can be found in table 3 of 

Dorigo et al. 2007. 
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Table 3. Canopy state and driving variables, which are derived from remote sensing data and applied 

in modelling studies for agroecosystems (source: Dorigo et al. 2007) 

 

Different methods have been used to link remote sensing data with agroecosystem models, 

mainly (Delécolle et al. 1992; Morel et al. 2014): 

 calibration method (Fig 6a): the initial parameters of crop simulation models are 

adapted to the optimal configuration between the remote sensing data and the simulat-

ed state variables. So model parameters are re-initializing or re-calibrating by simulated 

and observed state variables (Moulin et al. 1998; Dorigo et al. 2007; Morel et al 2014). 

This approach has gained large attention in the scientific community by using optimised 

algorithms (Jin et al. 2018). Some examples of these different algorithms for calibration 

(Jin et al. 2018) are the simplex search algorithm (Guérif and Duke 1998; Launay and 

Guerif 2005; Ma et al. 2013), the Least Squares Method (LSM) (Zhao et al. 2013), the 

Maximum Likelihood Solution (MLS) (Dente et al. 2008), the Shuffled Complex Evolution 

(SCE-UA) (Shen et al. 2009; Jin et al. 2010; Ma et al. 2013), the Powell's conjugate direc-

tion method (PCDM) (Fang et al. 2008, 2011), the Very Fast Annealing Algorithm (VFSA) 

(Dong et al. 2013), and the Particle Swarm Optimization Algorithm (PSO) (Jin et al. 2015; 

Wang et al. 2014). 

 forcing method (Fig 6b): the direct use of remote sensing inputs as a forcing variable, 

where leastwise one state variable has to be replaced or adjusted by remote sensing da-

ta. One example is the use of the estimated LAI from remote sensing data as a state vari-

able and thus model input variable. In the works of e.g. Abou-Ismail (2004), Bouman 

(1995), Clevers et al. (2002), Hadria et al. (2006), Thorp et al. (2010) and Yao et al. (2015) 

estimated LAI of different remote sensing data were directly replaced in the crop growth 

model to improve the simulated LAI, biomass, yield, or crop transpiration. In general, in 
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the forcing method, the data assimilation of crop model and remote sensing data is sim-

ple to operate (Jin et al. 2018). 

 updating method (Fig 6c): the constant updating of a state model variable (e.g. leaf area 

index, soil moisture) if continuously observation data are available. This method shows 

higher flexibility in comparison to others. A number of algorithms have hereby applied 

for assimilation of remote sensing data and crop models, e.g. Maas (1988), Clevers et al. 

(1994), Dente et al. (2008), Hadria et al. (2006). Nevertheless, this method requires a 

higher accuracy and quality from remote sensing data (Jongschaap 2006; Draper et al. 

2012; Thorp et al. 2012; Li et al. 2015b). 

 

Figure 6. A schematic representation of the three methods to assimilate state variables from remote 

sensing data in crop growth models: (a) calibration, (b) forcing, and (c) updating method (source: 

Dorigo et al. 2007 adapted from Delécolle et al. 1992) 

Remote sensing data can even be applied to assess and evaluate model outputs. For exam-

ple, Thaler et al. 2018b compared soil moisture from crop growth models and ASCAT soil 

moisture data with in-situ measurements to investigate their performance. 
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3.4 Study area 

One region and three sites in different climatic regions in Austria (Fig 7) were selected for 

these studies: 

As a target region to study a changing climate, the Marchfeld area was chosen, which is in 

the north-eastern part of Austria. The region belongs to the Vienna Basin and is one of the 

most important crop production areas in Austria. At the same time, it is also one of the cli-

matologically driest areas in the country. It is characterised by a semi-arid, continental cli-

mate where summers are hot and from time to time very dry, winters are in general cold 

with regularly strong frosts and limited snow cover. Furthermore, Marchfeld is marked by 

frequent wind, low air humidity and limited leaf wetness duration (Müller 1993). Main rain-

fed crops are cereals, other important crops, such as maize, vegetables, sugar beet or pota-

toes need to be irrigated in many years (Thaler et al. 2012). 

The following three locations where selected for the analyses of different types of spatial 

precipitation data as crop model input: 

 Groß-Enzersdorf (48°12’N, 16°33’E, 156 m a.s.l.) is located in the Marchfeld region and is 

characterized by a semi-arid, continental climate. The average annual temperature of 

10.3°C and the mean annual rainfall of 516 mm were measured from 1981-2010.  

 Hartberg (47°17’, 15°58’E, 359 m a.s.l.) in Styria (SE Austria) is influenced by the Mediter-

ranean and continental climates characterized by warm summers and mild winters. The 

mean annual temperature was 9.4°C and the precipitation sum over one year was 716 

mm (1981–2010).  

 As third location Kremsmünster (48°3’N, 14°8’E, 384 m a.s.l.) in Upper Austria was se-

lected, which is marked by a central European transition climate, affected by the Atlantic 

climate. It is a humid region with a temperate climate. The mean temperature over a 

year was 9.1°C and the mean annual precipitation sum was 1003 mm (1981-2010). 
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Figure 7. The four soil classes applied for the agricultural land use for Austria, the Marchfeld region 

and the three study sites 

 

3.5 Input data of the crop model DSSAT 

The minimum data set refers to a database necessary for the operation of the crop models 

and for the evaluation of crop model simulation and outputs. 

3.5.1 Weather data 

The basic daily weather information is the latitude and longitude of the weather station, 

maximum and minimum air temperature, solar radiation and precipitation (Jones et al. 2003; 

Hoogenboom et al. 2017). Here, weather data from the Austrian Met Service (ZAMG), differ-

ent climate change scenarios and spatial precipitation data from satellite products were 

used. 

In the first two studies, additional climate change scenarios were used. The stochastic 

weather generator (WG) M&Rfi generated a 100-year daily weather series (Dubrovsky 1997; 

Dubrovsky et al. 2000, 2004) for the baseline (1961–1990) and future scenarios (2021-2050). 

The climate change scenarios were modelled on the global circulation models (GCMs) 

ECHAM5, HadCM3 and NCAR PCM and on the Special Report on Emission Scenarios A1B 

(Nakicenovic and Swart 2000). The comparison of the results from three different GCMs al-

lows to reduce the uncertainties in the climate scenarios. The final data sets used do not 
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take into account changes in daily variability under future climate conditions. They assume 

that the variability under future climate conditions is the same as under the baseline condi-

tions (Thaler et al. 2010, 2012). 

In the third study, the following gridded precipitation data were used as forcing variables: 

 The two high-resolution satellite precipitation data sets Tropical Rainfall Measurement 

Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) and NOAA CPC MORPHing 

Technique (CMORPH) were applied. Precipitation estimates are based on calibrating and 

combining six passive microwave data of different satellite sensors and infrared data (on-

ly TMPA) of one satellite (Nayak and Villarini 2018). The end-product of TMPA is available 

for the ± 50° latitude band over a grid with a distance of 0.25° every 3 hours (Huffmann 

et al. 2018). CMORPH data are accessible with a horizontal resolution of 0.25°x0.25° 

from December 2002 until today on a 3-hour time basis for the ± 60° latitude band 

(Nayak and Villarini 2018). Neither TRMMRT nor CMORPH products used ground precipi-

tation measurements to correct biases of satellite precipitation estimations. Their daily 

rainfall is the sum of rainfall estimates calculated within one day (Thaler et al. 2018a). 

 Estimated rainfall on the assumption of satellite soil moisture dataset: The Advanced 

SCATterometer (ASCAT), a real-time radar, provides a surface soil moisture product (SM), 

with a spatial resolution of ~25 km (sampled at 12.5 km) on a daily basis (Wagner et al. 

2013). The SM product represents a depth of 2-3 cm and lies between 0% (dry) and 100% 

(wet) with appropriate soil saturation. A Soil Water Index (SWI) can be used to obtain in-

formation about the root zone SM, which is a more robust product that can be used in 

deeper soil layers and has lower measurement noise (Wagner et al. 1999). Two ap-

proaches were applied to estimate the daily precipitation using these satellite SM obser-

vations: 

o An analytical relationship derived by reversing a soil-water balance equation to esti-

mate precipitation accumulations from the SM time series called SM2RAIN (Brocca et 

al. 2013, 2014). Hereinafter referred to as SM2RASC. 

o A direct statistical relationship based on the measured rainfall and the SM of the 

ASCAT (Thaler et al. 2018a). Further referred to as RAASC. 

 The Integrated Now-casting through Comprehensive Analysis (INCA) of the Austrian Met 

Service (ZAMG) is a numerical analysis and forecast tool of weather parameters in a very 
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high spatial (horizontal resolution of 1 km, vertical resolution of 200 m) and temporal 

resolution (4 h) (Karabatić et al. 2011; Haiden et al. 2014). The mean of all 1 km INCA 

pixels within one ASCAT resolution cell was computed to obtain a regional value corre-

sponding to the ASCAT-based precipitation estimates (a Hamming window at a radius of 

approx. 23.7 km). The data set was referred to as INCA23km. 

3.5.2 Soil data 

The desired crop model soil input contains soil classification (SCS), surface slope, color, per-

meability and drainage class. Upper and lower horizon depths in cm, soil texture infor-

mation, bulk density, lower limit of plant extractable soil water, drained upper limit, saturat-

ed soil water content, pH value in water, initial water and N-content, organic carbon, alumi-

num saturation, and root abundance information is for example requested as model input 

for each individual soil layer set by the user (Jones et al. 2003; Hoogenboom et al. 2017). 

However, only soil texture information is the obligatory minimum input. The soil water hold-

ing limits are very critical and important, but if not available, the model will calculate them 

from soil texture information using pedotransfer functions, which are normally introducing 

uncertainty. 

Table 4. Four soil classes according to the available water capacity for Austria (according to AG Boden 

1994, source: Thaler et al. 2018a) 

Soil classes LL DUL SAT area precentage 

in Austria (%) 

available water 

capacity 

Soil type 

soil class 1 0 0.1 0.1 14.1 very low loamy sand 

soil class 2 0.1 0.2 0.3 33.7 low sandy loam 

soil class 3 0.2 0.4 0.5 47.5 moderate sandy loam 

soil class 4 0.2 0.4 0.5 4.7 high loamy silt 

LL = lower limit of plant extractable soil water; DUL = drained upper limit; SAT = saturated soil water content 

In my study, the FAO-56 Penman-Monteith equation (Allen et al. 1998) was applied to esti-

mate evapotranspiration and the effect of wind speed reductions. Four soil classes (termed 

herein as soil 1, soil 2, soil 3 and soil 4, respectively) were selected according to the total 

available water capacity (Tab 4, Fig 7). The digital Austrian soil map 1:25,000 include data on 

texture, pH value, humus content, etc. of each soil profile down to a depth of 1 m. Based on 

these data, Murer et al. (2004) calculated the physical soil properties of permanent wilt 
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point, field capacity, saturation point and the available field capacity of the soil based on a 

pedotransfer function method in AG Boden (1994). 

3.5.3 Genetic data 

The genetic coefficients used in the CERES model present the specific growth and develop-

ment of the selected crop cultivar (Tsuji et al. 1998; Alexandrov and Hoogenboom 2000). For 

the equalization of genetic coefficients, simulated outcomes were calibrated and validated 

with measured results from field trials. Winter wheat (Triticum aestivum L.) cultivar “Capo” 

(Rischbeck 2007; Thaler et al. 2012) and spring barley (Hordeum vulgare L.) cultivar “Magda” 

(Rischbeck 2007; Eitzinger et al. 2013b) were adjusted using agro technological, phenologi-

cal, yield and weather data from the experimental site at Fuchensbigl, Marchfeld in Austria 

(48°12’N, 16°44’E, 157 m a.s.l.). The estimated genetic coefficients of the validated wheat 

and barley applied in the model simulations are provided in table 5. 

Table 5. Estimated genetic coefficients of winter wheat (cultivar Capo) (source: Rischbeck 2007; Tha-

ler et al. 2012) and spring barley (cultivar Magda) (source: Rischbeck 2007) used in the crop model 

simulation 

 

Genotype 

P1V 

(%/day) 

P1D 

(%/day) 

P5  

(°C/day) 

G1  

(#/g) 

G2  

(g/m² day) 

G3  

(g) 

PHINT 

(°C/day) 

CAPO 60 90 560 28 42 1.33 95 

MAGDA 0 0 420 22 40 1.00 75 
P1D = photoperiod sensitivity coefficient; P1V = vernalization sensitivity coefficient; P5 = thermal time from the onset of linear fill to ma-
turity (8 °C day); G1 = kernel number per unit stem and/spike weight at anthesis; G2 = potential kernel growth rate; G3 = tiller death coeffi-

cient: standard stem and/spike weight when elongation ceases; PHINT = thermal time between the appearance of leaf tips (8 °C day) (Jones 
et al. 2003) 

3.5.4 Management data 

Planting date, planting density and depth, row spacing, crop variety, irrigation and fertilizer 

schedules and practices are some of the most important input for crop management infor-

mation (Jones et al. 2003; Hoogenboom et al. 2017). In the first two studies different man-

agement strategies were analyzed: 

 rain-fed farming and automatic irrigation 

 automatically adapted sowing dates and predefined dates 

 with and without the enrichment of CO2 according to the emission scenario 

 ploughed soil and minimum tillage 

 wind speed reduction due to hedges 
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 additional soil moisture owing to snow banks on hedgerows 

 fix N fertilization according to the guidelines of the Austrian Agri-environmental Pro-

gramme ÖPUL 

 harvest at maturity 

In the third study rain-fed farming, including N fertilization, fix sowing date, harvest at ma-

turity and ploughed soil condition was simulated. 

In all simulation studies yield losses, provoked by pest and diseases, were not included or 

considered. 

 

3.6 Simulation and model performance analysis 

In the first two simulation studies present climate (1961-1990) and usual crop management 

in the region Marchfeld as baseline was applied: winter wheat and spring barley were drilled 

in 12 cm spaced rows at a depth of 3 cm; the sowing density was set with 350 kernels m-2. 

The application of two (spring barley) and three (winter wheat) fertilizer treatments was 

simulated; the amount that farmers presently use in this area. For spring barley 40 kg ha-1 N 

at the beginning and at the end of April was applied. Fertilization at 3 x 40 kg ha-1 N at tiller-

ing, steam elongation or jointing and booting was set for winter wheat. The baseline simula-

tion contains rain-fed farming, automatically adapted sowing dates, ploughed soil and con-

temporary cultivars (Tab 5). 

Modified scenarios were run including solar radiation, temperature, and precipitation data-

bases, accordingly to each of the climate change scenarios. Simulations were carried out 

with and without the direct effects of increased atmospheric CO2 levels. The atmospheric 

CO2 concentrations were assumed to be 360 ppm for the current climate (1961-1991) and 

452 ppm for the future climate in 2035 (2021-2050) according to the SRES-A1B emission 

scenario. Furthermore, different alternatives in crop management were simulated and eval-

uated (see above 2.5.4 Management data). 

The third study examined the impact of different precipitation input data on simulated yields 

and their performances. Hereby a set of statistical parameters was calculated: the root-

mean-square error (RMSE) was taken as a measure of the average differences between the 
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model estimates and measurements. RMSE indicates the standard deviation by which the 

model prediction error occurred. A smaller value indicates better model performance. 

𝑅𝑀𝑆𝐸 = √1𝑁 ∑(𝑆i − 𝑂i)²𝑁
𝑖=1   

           (1) 

where S is simulated values and O observed ones. 

Mean absolute error (MAE) calculates the absolute error between simulated and observed 

values. 

𝑀𝐴𝐸 = √1𝑁 ∑|𝑆i − 𝑂i|𝑁
𝑖=1  

           (2) 

Singh et al. (2004) state that in the case where the RMSE and MAE values are below half the 

standard deviation of the measured data, they may be regarded as low and both are appro-

priate for model evaluation. Both statistic parameters indicate an error in the units of the 

constituent of interest and values of 0 indicate a perfect fit (Moriasi et al. 2007). 

The percent bias (PBias) measures the average tendency of the simulated values to be larger 

or smaller as their observed ones. Low PBias values indicate a more precise model simula-

tion, where the optimal value is 0.0. Positive values show overestimation bias, while nega-

tive values indicate model underestimation one. The result is given in percentage (%) (So-

rooshian et al. 1993; Yapo et al. 1996). 

𝑃𝐵𝑖𝑎𝑠 = 100 ∑ (𝑆i − 𝑂i)𝑁𝑖=1∑ 𝑂i
𝑁𝑖=1  

           (3) 

The index of agreement (d) was developed by Willmott (1981) and can be seen as a generic 

indicator of modelling efficiency and presents the ratio between the mean square error and 

the “potential error” (Willmott 1984). The latter error can be quantified by the sum of the 

squared absolute values of the distance from the predicted values to the average of the ob-
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servation and the distances from the observed values to the mean of the observation. d 

ranges from [0,1], which values near 1 indicating high simulation quality (Willmott 1981, 

1984; Willmott et al. 1985; Legates and McCabe 1999). However, d is because of the squared 

differences very sensitive to extreme values (Legates and McCabe 1999; Moriasi et al. 2007). 

𝑑 = 1 −  ∑ (𝑂i − 𝑆i)²N

i=1∑ (|𝑆i −  �̅�| + |𝑂i − �̅�|)²N

i=1

 

           (4) 

For comparison, the r² regression statistics (least-squares coefficient of determination) were 

also computed, although they do not take into account model bias (Palousuo et al. 2011). In 

this context, it should be mentioned that r and r² are oversensitive to extreme values (outli-

ers) and not sensitive to additive and proportional variations in model predictions and 

measured data (Legates and McCabe 1999). 

Uncertainty is represented by a distribution of simulated model results, whereas the error 

presents the difference of observed and predicted values, applied to cases where true values 

are available (Wallach et al. 2006). Bias means an average (over sites or years, etc.) over- or 

underestimates by the models (illustrated by the PBias). 

 

4 Results 

 

4.1 Consequences of climate change in the Marchfeld, Austria 

4.1.1 Climate change effects 

The seasonal temperatures until 2035 (2021-2050) in Marchfeld show a clear increasing 

trend (Fig 8): the highest rises can be expected in the summer and winter months. August 

shows a temperature increase of up to 3.8°C (HadCM3) followed by the two months Decem-

ber and January up to 2.9°C (ECHAM5) (not shown). HadCM3 turns out to be the warmest 

scenario, while NCAR PCM is the scenario with the lowest temperature increase (Fig 8 year). 
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For the selected study area, ECHAM5 and HadCM3 forecast a decrease in annual precipita-

tion between 11% (HadCM3) and 17% (ECHAM5), while NCAR PCM for 2035 forecast an in-

crease by 5% in relation to the baseline (Fig 8). Whereas from November to March a higher 

rainfall can be expected, especially in the NCAR PCM scenarios, precipitation deficits are 

predicted from April to October. On a monthly scale, the months of July and August in 

ECHAM5 and HadCM3 show more than 70% less rainfall as in the baseline (not shown) (Tha-

ler et al. 2012). 

 

Figure 8. Changes of temperature (°C) as well as precipitation (%) in 2035 (2021-2050) in respect to 

present conditions (1961-1990) according to the SRES-A1B scenario (source: Thaler et al. 2009) 

4.1.2 Climate change impacts on winter wheat and spring barley yield 

The effects of the changing weather conditions under ECHAM and HadCM show a decline or 

stagnation of winter wheat (Fig 9a) and spring barley (Fig 9b) yields until 2035, where spring 

barley generally shows more stable yields. The decline in yield can be explained by a short-

ened vegetation period of the simulated crops (due to higher temperatures) and a reduction 

in precipitation during the vegetation period (especially May and June). In Marchfeld, even 

the additional effect of CO2 fertilisation (combined effect) could not completely offset the 

decline in yields. The yield reduction is much more pronounced on sandy and shallow soils 

(soil 1 and 2) with low water storage capacity. Only NCAR presented a significant increase in 

winter wheat and spring barley yields, especially for soil 3 and 4. According to the simula-
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tions, the interannual yield variability of both crops increases in 2035, which leads to higher 

economic risks for farmers (Thaler et al. 2012; Eitzinger et al. 2013b).  

(a) 

 

(b) 

 

Figure 9. Relative change (%) in winter wheat (a) and spring barley yield (b) compared to baseline 

(1961-1990) and climate scenarios 2035s conditions (2021-2050) (source: Thaler et al. 2009) 

4.1.3 Technical adaptation strategies in response to a changing climate 

A set of agronomic adaptation strategies can be suggested to mitigate or prevent the nega-

tive impacts of a changing climate. Generally, these strategies differ between short-term and 

long-term adaptation. The first solutions concern water saving e.g. the changes in planting 

dates or cultivars, changes in external inputs such as irrigation and techniques for soil water 

ECHAM 5 HadCM 3 NCAR PCM
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conservation. Long-term adaption often involves profound structural changes to overcome 

the new disadvantages and includes e.g. change in land use, breeding and biotechnology 

applications, crop substitution and in farming systems (Alexandrov et al. 2002). 

A change in planting dates in the future has already been considered in the crop simulations, 

as farmers already adapt to it autonomously. It can be interpreted as a free choice which can 

be made at the farm level. On the other hand, a major shift in sowing dates could compro-

mise the agro-technical management of other crops that grow during the rest of the year 

(Alexandrov and Hoogenboom 2000). This aspect is not so relevant for the Marchfeld region: 

the sowing date for winter wheat would be later in autumn and more time would be availa-

ble for other varieties and only intermediate crops are grown before spring barley. 

By replacing in the 2035 scenario simulation ploughing with minimal tillage and direct culti-

vation, winter wheat yields of up to 3% (area-weighted average NCAR PCM) and spring bar-

ley yield of up to 4 % are in average enhanced (area-weighted average HadCM3). Especially 

on sandy and shallow soils (soil 1), minimum tillage can increase the yield potential by up to 

10% for winter wheat and up to 6 % for spring barley (Fig 10) (Thaler et al. 2012; Eitzinger et 

al. 2013b). 
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(a) 

 

(b) 

 

Figure 10. Relative change (%) of winter wheat yield (a) and spring barley yield (b) in 2035 (2021-

2050) when ploughing would be replaced by minimum tillage in the Marchfeld region (source: Thaler 

et al. 2009) 

Further technical adaptation structures were simulated in a next step only with winter 

wheat. 

The effect of landscape structures such as hedgerows on wind reduction shows a positive 

effect on winter wheat yields through a reduction of evaporation losses. The ECHAM5 sce-

nario shows the highest increases and the NCAR-PCM scenario the lowest. Soils 3 and 4, in 

particular, would benefit from a hedge with ploughing (Fig 11). In contrast to ploughing, a 
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combination of minimum tillage with hedgerows would have the greatest impact on soils 1 

and 2 with the lowest plant available water storage capacity. A yield increase between 4% 

(NCAR PCM) and 4.4% (ECHAM5) was simulated (for the area-weighted average) compared 

to reference management (not shown). In addition, a lower N leaching rate and a higher 

standard deviation were simulated (Thaler et al. 2012). 

 

Figure 11. Relative changes (%) of winter wheat yield in 2035 (2021-2050) with average wind speed 

decreases of 25%, 50% and 75% due to hedges on ploughed fields compared to reference manage-

ment (1961-1990) (source: Thaler et al. 2012) 

The yield effect of an additional snow accumulation effect near hedgerows in connection 

with a wind speed reduction of 50% was simulated in a further step (only minimum tillage). 

In this scenario, the additional water input at the beginning of the crop growing period after 

snowmelt was taken into account. The results indicated a yield increase of 9% with ECHAM5 

and 6% with HadCM3 (area-weighted average) in relation to the reference management. 

However, under these conditions, NCAR PCM predicted a yield loss of 1%, because this sce-

nario predicts precipitation increases in spring (therefore lowering solar radiation and bio-

mass accumulation) in contrast to the other scenarios. The results also show that the highest 

yield increase (and the lowest decrease, in the case of NCAR PCM) was simulated for soils 3 

and 4 (Thaler et al. 2012). 
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Table 6. Changes of water demand (absolute in mm) across the various climate and management 

scenarios (2021-2050) against the baseline (1961-1990) 

  

In order to answer the question of future water demand, the simulation option "automatic 

when required" for irrigation and water management was activated in the model. This new 

option was used to simulate the initial conditions as well as various climate and manage-

ment scenarios. The ECHAM5 and HadCM3 scenarios led to similar results regarding the ad-

ditional water demand: the highest additional water quantity due to climate change (up to 

39 mm more water during the crop growing period) would be required for soils 3 and 4 (Tab 

6). In the baseline scenario, soil 1 already showed relatively low yield potentials and a high 

water demand; additional irrigation would also not lead to better results due to the low wa-

ter storage capacity connected with high leaching risk. Thus, soils with very low water stor-

age capacity need only slightly more or less water in the applied climate scenarios to achieve 

a similar yield and irrigation is not a strong limiting factor rather than the low soil water 

storage capacity itself already under baseline conditions. An additional amount of 37 mm 

water (area-weighted average) during the crop growing period would be required to main-

tain the potential yield level according to ECHAM5 and HadCM3 in both tillage scenarios. 

Since the growing period of winter wheat would be shorter by about >10 days and about 7-8 

months long due to higher temperatures, an average value of up to 37 mm more water de-

mand is a considerable amount. NCAR PCM, the wettest scenario, predicted the lowest wa-

ter demand of the future: 6 mm more for ploughed conditions and 8 mm more for minimum 

Management/Soil class Plough

Minimum 

tillage

Plough+wind 

speed 

reduction 

50%

Minimum 

tillage+wind 

speed 

reduction 

50%

Minimum 

tillage+wind 

speed 

reduction 

50%+snow 

retention

Soil 1 11 12 2 4 -6

Soil 2 34 37 28 28 17

Soil 3 39 37 30 29 20

Soil 4 36 39 29 32 16

area-weighted average 37 37 29 29 18

Soil 1 9 14 2 7 -3

Soil 2 33 34 27 29 20

Soil 3 38 37 31 29 21

Soil 4 33 39 29 30 19

area-weighted average 36 37 29 29 20

Soil 1 -8 -8 -14 -16 -27

Soil 2 2 4 -3 -5 -11

Soil 3 6 9 0 -3 -8

Soil 4 7 11 4 2 -7

area-weighted average 6 8 0 -2 -8

ECHAM 5

HadCM3

NCAR
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tillage. Hedges helped to reduce water requirements when wind speeds were expected to 

be reduced by 50 %, and additional snow cover would make the effect even more pro-

nounced (Tab 6) (Thaler et al. 2012). 

 

4.2 Influence of various spatial precipitation input data on the results of the crop model 

4.2.1 Comparison of the different precipitation dataset 

The two SM-based products SM2RASC and RAASC, as well as the two satellite rainfall data sets 

TRMMRT and CMORPH were evaluated against INCA23km (benchmark) with respect to precip-

itation estimation (daily: Tab 7, monthly: Fig 12). 

Table 7. Statistical characteristics (MAE, RMSE and r²) of daily rainfall differences INCA23km (bench-

mark) versus SM2RASC, RAASC, TRMMRT, CMORPH for the period March to July 2007-2015 in Groß-

Enzersdorf, Hartberg and Kremsmünster (source: Thaler et al. 2018a) 

 Groß-Enzersdorf Hartberg Kremsmünster 

 SM2RASC RAASC TRMMRT CMORPH SM2RASC RAASC TRMMRT CMORPH SM2RASC RAASC TRMMRT CMORPH 

MAE 1.67 2.31 1.86 1.75 2.8 2.97 2.37 2.11 3.04 3.69 2.88 2.75 

RMSE 3.72 4.03 4.71 4.75 5.02 5.66 5.68 5.33 5.37 5.78 5.94 5.73 

r² 0.45 0.32 0.41 0.42 0.3 0.19 0.47 0.52 0.34 0.23 0.36 0.37 

 

The lowest r² can be observed in RAASC daily and monthly precipitation data. However, RAASC 

is remarkable by high values at low precipitation periods and lower values in very humid 

months (Fig 12). The other three approaches, for the most part, show a good r² (up to 0.52 

daily and 0.68 monthly) with INCA23km. An exception is SM2RASC in Kremsmünster, where it 

exhibits high differences and weak monthly performance results (r² = 0.18 and RMSE = 

60mm). The two SM-based products have a low RMSE in Groß-Enzersdorf; at the other two 

locations, the RMSE differences between SM-based products and satellite precipitation data 

are noticeably lower (Tab 7, Fig 12). 
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Figure 12. Monthly precipitation variations INCA23km (benchmark) versus SM2RASC, RAASC, TRMMRT, 

CMORPH for the period March to July 2007-2015 in (a) Groß-Enzersdorf, (b) Hartberg, (c) Kremsmün-

ster (source: Thaler et al. 2018a) 

4.2.2 Crop model response 

The four different forcing variables of crop model precipitation input (2 SM-based products 

SM2RASC and RAASC, 2 satellite precipitation data TRMMRT and CMORPH) were applied for 

simulating the yields of spring barley and winter wheat. These results were then evaluated 

against the benchmark (INCA23km). 

A detailed comparison of winter wheat and spring barley yields, estimated with INCA23km 

input data (benchmark), showed that none of the other precipitation data lead to a good fit 

to the simulated yields from the benchmark in all years (Tab 8). The analyses were per-

formed for all soil types together (soils 1-4) and individually (soil 1, soil 2, soil 3, soil 4). 
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Table 8. Mean yield (kg/ha) with INCA23km input data and comparative statistics (RMSE, PBias, d, and 

r²) of model performance in simulated crop yield using SM2RASC, RAASC, TRMMRT and CMORPH precip-

itation inputs against INCA23km inputs for the three study areas: (a) winter wheat (b) spring barley 

(source: Thaler et al. 2018a) 

 

(a) winter wheat

soil 1-4 soil  1 soil  2 soil  3 soil  4 soil 1-4 soil  1 soil  2 soil  3 soil  4 soil 1-4 soil  1 soil  2 soil  3 soil  4

5751 3276 5395 7290 7045 5954 3982 5982 7218 6633 5523 4226 5508 6355 6002

MAE 838 962 936 1035 419 368 546 319 353 251 141 272 35 145 111

RMSE 1011 1029 1060 1223 646 516 634 411 558 430 223 378 48 180 144

PBias % -13.1 -19.5 -17.3 -14.2 -5.7 -3.8 -5.4 -2.9 -4.3 -3.1 -1 1.5 -0.5 -2.3 -1.9

d 0.93 0.82 0.71 0.61 0.69 0.96 0.82 0.71 0.78 0.85 0.99 0.95 1 0.91 0.95

r² 0.87 0.77 0.68 0.71 0.74 0.89 0.5 0.26 0.62 0.72 0.95 0.93 0.99 0.89 0.92

MAE 498 826 698 351 116 320 804 215 88 174 209 397 60 190 188

RMSE 818 1221 961 493 141 504 929 303 110 223 372 660 65 245 228

PBias % 5.6 17 8.3 3.1 0.8 -0.4 -1.3 -1.3 -0.1 0.7 -1 4.2 -0.5 -3 -3.1

d 0.94 0.7 0.51 0.73 0.96 0.96 0.4 0.88 0.98 0.93 0.95 0.79 0.99 0.83 0.87

r² 0.84 0.52 0.01 0.43 0.87 0.86 0.01 0.69 0.95 0.77 0.88 0.5 0.97 0.75 0.86

MAE 568 984 616 406 265 136 234 92 129 89 241 535 220 89 122

RMSE 909 1430 836 582 470 194 300 129 181 106 426 725 416 102 135

PBias % -4.2 -14.3 -4.7 -2.3 -1.3 -0.9 -1.1 -0.3 -1.6 -0.7 -2.3 -12.1 -3.3 0.8 2

d 0.94 0.7 0.68 0.86 0.79 0.99 0.96 0.98 0.96 0.98 0.96 0.83 0.78 0.98 0.96

r² 0.8 0.25 0.19 0.79 0.79 0.98 0.85 0.92 0.92 0.97 0.89 0.68 0.59 0.95 0.97

MAE 917 1600 932 762 377 496 1318 288 276 102 741 1984 657 154 169

RMSE 1253 1853 1022 1081 794 805 1462 386 539 138 1174 2151 888 251 178

PBias % -12.6 -35.5 -17.3 -8.2 -3.1 -6.9 -30.9 -4.8 -2.2 0.3 -11.5 -46.9 -11.7 -1.4 2.8

d 0.9 0.5 0.71 0.71 0.65 0.93 0.5 0.84 0.78 0.97 0.81 0.43 0.43 0.9 0.93

r² 0.78 0.1 0.74 0.73 0.76 0.9 0.32 0.75 0.52 0.91 0.77 0.23 0.12 0.84 0.97

(b) spring barley

soil 1-4 soil  1 soil  2 soil  3 soil  4 soil 1-4 soil  1 soil  2 soil  3 soil  4 soil 1-4 soil  1 soil  2 soil  3 soil  4

4727 3118 4444 5644 5701 5111 4056 5078 5779 5532 4451 3654 4451 4890 4810

MAE 512 719 532 488 307 215 352 270 127 111 144 237 58 139 142

RMSE 633 803 618 655 384 369 582 396 168 149 220 319 64 214 203

PBias % -9.1 -23 -10.8 -7.8 -1.6 -3.2 -7.6 -4.6 -1.2 -0.7 -0.9 3.5 -0.5 -2.8 -2.9

d 0.94 0.75 0.69 0.69 0.67 0.95 0.49 0.71 0.98 0.97 0.95 0.72 0.98 0.86 0.87

r² 0.89 0.76 0.49 0.35 0.18 0.87 0.26 0.43 0.93 0.89 0.87 0.31 0.95 0.69 0.73

MAE 374 449 525 318 202 235 509 148 149 136 219 304 102 222 246

RMSE 544 679 691 427 250 343 615 198 157 173 275 355 126 276 290

PBias % 7 12.2 11.5 4.9 2.5 -1.7 -11.4 -0.8 0.7 2 -3.2 -0.3 -2.1 -4.5 -5.1

d 0.94 0.67 0.47 0.76 0.87 0.96 0.39 0.94 0.98 0.96 0.93 0.45 0.93 0.78 0.77

r² 0.86 0.41 0.04 0.52 0.68 0.92 0.12 0.83 0.93 0.91 0.84 0.07 0.88 0.68 0.7

MAE 385 556 466 310 209 135 101 161 170 111 254 401 220 206 189

RMSE 506 691 593 351 267 174 131 206 201 147 340 515 334 215 197

PBias % 6.3 10.8 7.9 5.2 3.6 -1.8 -1.2 -2.1 -1.8 -1.8 0.3 -3.6 -2.1 2.5 3.4

d 0.95 0.81 0.68 0.86 0.86 0.99 0.94 0.94 0.97 0.97 0.93 0.5 0.67 0.89 0.91

r² 0.88 0.51 0.33 0.83 0.76 0.96 0.8 0.84 0.91 0.94 0.79 0.14 0.18 0.78 0.93

MAE 350 537 259 296 309 166 272 160 146 85 405 581 497 286 255

RMSE 431 599 327 361 386 277 428 275 193 109 602 904 670 333 265

PBias % -2.7 -14.8 -2.2 -0.8 1.8 -0.9 -4.3 -1.6 0.9 0.5 -3.1 -11.9 -9.6 1 5.3

d 0.97 0.83 0.88 0.85 0.68 0.97 0.55 0.9 0.97 0.98 0.82 0.25 0.34 0.75 0.82

r² 0.92 0.73 0.68 0.53 0.17 0.91 0.15 0.71 0.9 0.95 0.62 0.04 0.01 0.37 0.93

SM2RASC - INCA23km

RAASC - INCA23km

TRMMRT - INCA23km

CMORPH - INCA23km

CMORPH - INCA23km

TRMMRT - INCA23km

RAASC - INCA23km

Mean yield (kg/ha) with INCA23km input data

SM2RASC - INCA23km

Hartberg KremsmünsterGroß-Enzersdorf

Groß-Enzersdorf Hartberg Kremsmünster

Mean yield (kg/ha) with INCA23km input data
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The yield variation of the two crops, winter wheat and spring barley, due to different precipi-

tation input data shows similar behavior. 

In Groß-Enzersdorf, the driest location, the various types of precipitation inputs caused the 

greatest deviations in simulated crop grain yield, with sandy soils (soil 1: RMSEwinter barley up 

to 1800 kg/ha and RMSEspring barley > 600kg/ha) being more sensitive than moderately finely 

structured soils with higher plant available water storage capacity (soil 3 and 4) (Tab 8). 

SM2RASC precipitation inputs generally lead to the highest MAE (soil 1-4 = 512 kg/ha) and 

RMSE (soil 1-4 = 633 kg/ha) values for spring barley, while CMORPH had the lowest (soil 1-4 

= 431 kg/ha). It is also noticeable that SM2RASC and CMORPH precipitation inputs underesti-

mate the barley yield (negative PBias), while RAASC and TRMMRT input data shows a positive 

PBias. For winter wheat, SM2RASC, TRMMRT, and CMORPH based precipitation inputs largely 

underestimate yields, while RAASC presents positive PBias. All in all, RAASC shows the strong-

est performances with high d (soil 1-4 = 0.94) and r² values (soil 1-4 = 0.84), respectively and 

the lowest RMSE (soil 1-4 = 818 kg/ha) (Tab 8) (Thaler et al. 2018a). 

In the more humid areas Hartberg and Kremsmünster, lower yield differences were simulat-

ed for all precipitation inputs – in particular for soils 3 and 4. It can be seen that the RMSE 

values at these two sites are about half as high as in Groß-Enzersdorf. TRMMRT precipitation 

inputs lead to very low MAE and RMSE values of crop grain yield in Hartberg (soil 1-4: MAE-

winter wheat = 136 kg/ha; RMSEwinter wheat = 194 kg/ha; MAEspring barley = 135 kg/ha; RMSEspring barley 

= 174 kg/ha) and the highest r² (soil 1-4: r²winter wheat = 98%; r²spring barley = 96%) as well as d 

(soil 1-4: d = 0.99) (Tab 8). CMORPH, on the other hand, shows the greatest difficulties in 

yield simulation, especially in Kremsmünster for spring barley. All four precipitation data 

showed a yield underestimation (negative PBias) for winter wheat (all soils) and for spring 

barley soil 1 and 2, while soil 3 and 4 did not show such a clear trend (Thaler et al. 2018a). 

One reason is that other yield-limiting factors than water availability dominates in the more 

humid conditions. 
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5 Discussion and conclusion 

 

The execution of agricultural field experiments is time-consuming and cost-intensive. They 

require considerable investment in infrastructure and organization. These resources are not 

always available for various reasons. Computer-aided simulation models for crop growth 

have therefore been developed since the 1960s from very simple descriptive models to 

complex process-based models. With their help, field experiments cannot be replaced, but 

they can be reduced or an extended set of variables can be analysed. The models are inter-

disciplinary and integrate a comprehensive knowledge of crop physiological and physical-

ecological processes. 

Therefore, crop growth simulation models are increasingly used as tools to assess regional 

impacts on crop production and related adaptation options under different environmental 

conditions, such as climate change and management options. The impact model results are 

strongly influenced by the results of climate models (climate scenarios used as input) in 

terms of quality, spatial representation, and uncertainty. In agriculture and food production, 

dynamic crop models have established themselves as tools for estimating e.g. the impacts of 

climate change on different scales (White et al. 2011). For example, in the report of Eitzinger 

et al. 2013b, a large-scale study for Central Europe reveals significant regional variations in 

the effects of changing climate on crop yields, as simulated by crop growth models. Similar 

to the climate models, the crop models themselves also can provide distinctly to the uncer-

tainty in predicting the effects of a changing climate on crop yields (Angulo et al. 2013; As-

seng et al. 2013; Eitzinger et al. 2013a). Nevertheless, the transferability of uncertainties in 

the selection of crop models to other regions with higher spatial heterogeneity under 

weather conditions as well as different soil and plant management data requires a stronger 

assessment (Angulo et al. 2013). The spatial resolution of daily weather data and other in-

puts on crop models (e.g. soil properties) is a central topic for regional climate change im-

pact assessments and the development of adaptation options, where different scales can be 

considered depending on the application (Zhao et al. 2015). In particular, representative 

weather data with high spatial resolution are required at the local level, as is necessary for 

the development of custom farm-based adaptation possibilities in agriculture (APCC 2014), 

in order to reduce uncertainties through the modelling chain to the agro-economic level 
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(Schönhart et al. 2014). Rezaei et al. (2015c) reported that an aggregation of weather and 

soil input data led to lower spatial variability and lower severity of simulated stress events, 

especially for regions with high heterogeneity in weather and soil conditions. This confirms 

that climate-induced stress events in crops are more sensitive to spatial resolution (due to 

small-scale orographic effects) than mean climatic conditions. 

Initially, the crop models have to be calibrated using measured accurate data sets to reduce 

parameter uncertainty related to the biophysical conditions of application (Asseng et al. 

2013; Rötter et al. 2011b; Yin et al. 2017). Earlier studies have demonstrated that model 

calibration with appropriate observation data can enhance the accuracy of model predic-

tions (e.g. Asseng et al. 2013). In our studies, we used data of winter wheat and spring barley 

from experimental sites to calibrate and validate both cultivars (Rischbeck 2007; Thaler et al. 

2012; Eitzinger et al. 2013a), which subsequently were used for further analyses. 

In the first two studies, an ensemble of climate change scenarios was used to point out local 

crop growth-limiting factors and potential crop yield changes in the Marchfeld region. With 

the help of the ensemble, it was possible to cover the most probable range of expected up-

coming impacts. 

For both winter wheat and spring barley, it is clear that shorter growing seasons due to 

higher temperatures until 2035 will lead to yield losses for currently used crop cultivars un-

der the applied climate change scenarios (with the exception of the NCAR scenario, which 

involves an increase in precipitation). Thus, a decline in spring and summer precipitation in 

the climate scenarios is also a main yield reduction factor for this semi-arid region. Due to 

the limited availability of crop water, the yield reductions would be even more pronounced 

without the assumed CO2 fertilizer effect (Amthor 2001). However, the degree of this last 

mention effect is uncertain from the estimates of the crop model and differs between crops 

and varieties (Tubiello et al. 1999; Tubiello and Ewert 2002; Wolf et al. 2002; Kersebaum and 

Nendel 2014). Additionally, the effects of direct heat stress are expected to create further 

yield risks and is only partially integrated into the models (Semenov and Shewry 2011), while 

others such as ozone effects on stomata function are not considered, such as in DSSAT. 

The Marchfeld study showed that, due to the increased water demand, additional irrigation 

of about 30-40 mm would be necessary to maintain the current yield under the drier scenar-
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ios as these crops are not irrigated under the current conditions. However, additional water 

input may increase the risk of nitrate leaching rates (e.g. by uncertain precipitation fore-

casts), especially on sandy soils, which reduces the positive effects on yield. An adaptation 

method that could be used to improve the available soil water storage capacity is to change 

the tillage method (in the present study a change from ploughing to minimum tillage was 

investigated), which leads to higher simulated soil water contents and yields due to higher 

soil water capacity with minimum tillage. Hedges (by their windbreak effect leading to re-

duced evaporation rates) would also have a positive effect on soil water content (Thaler et 

al. 2012; Eitzinger et al. 2013b). 

More recent climate change models, e.g. the ÖKS15, show a much lower precipitation reduc-

tion in spring and early summer in Austria and it can be assumed that yields of winter wheat 

and spring barley will also increase in the semi-arid regions of Austria due to higher atmos-

pheric CO2 and temperatures as well as more humid soil conditions in the spring months 

(Chimani et al. 2019). However, summer crops such as maize are differently affected as the 

reduction in summer precipitation and higher temperatures are clearly indicated in the ÖKS 

scenarios as well. It is expected that the yields from grain maize will decrease if there is no 

adaptation with the help of e.g. later ripening cultivars and irrigation. 

For regional studies, crop models require spatially and temporally detailed input data of 

weather, soil, crop cultivation, and cultivars, which are usually difficult to obtain in good 

quality for larger areas (Angulo et al. 2013). Since weather data are restricted to a limited 

number of meteorological stations covering a region, it is important to assess the necessary 

weather inputs for the relevant simulation size (Faivre et al. 2004). The focus of the third 

study was therefore on deriving daily precipitation data from alternative sources, as these 

are the most important uncertain parameters for crop growth. Crop models (mimicking 

crops grown under water limiting conditions) are very sensitive to soil water, as soil moisture 

is a potential limiting factor for different processes of plant growth and harvest (see above 

yield effects of climate change). Here, satellite rainfall estimations can be a useful tool as 

alternative to ground-based measurements, which offers global coverage data and infor-

mation in regions lacking data from other sources. 

In the semi-arid region Groß-Enzersdorf winter wheat and spring barley simulations are very 

sensitive to various precipitation model inputs, particularly in light textured (sandy) soils. 
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This is because the availability of soil water under drought-prone conditions is a more domi-

nant limiting growth factor. Thus, small differences in the amount of precipitation can 

strongly influence the simulated yield. Also, a missing precipitation event in a critical devel-

opment phase can lead to crop failure or reduction (Thaler et al. 2018a). 

In the more humid locations, Hartberg and Kremsmünster all four alternatives (remote sens-

ing based) precipitation inputs led to good results. Crop drought stress does not occur so 

often and can be observed especially on sandy soils. A distortion of the precipitation sum is 

not so decisive here; a prediction of the event is much more important. Winter wheat and 

spring barley show similar yield forecasts at both locations (Thaler et al. 2018a). 

The weakest results at all three sites and for both crops were determined using CMORPH 

based precipitation input data. The general underestimation of precipitation by CMORPH is 

reliable with the results of Stampoulis and Anagnostou (2012), who evaluated the quality of 

this product for Europe. 

A closer look at the estimated precipitation of SM shows that SM2RASC and RAASC perform 

well in this research, notably on light soils at the more humid sites of Kremsmünster and 

Hartberg versus the two satellite precipitation data. Here, for example, the use of infor-

mation on the spatial-temporal variability of topsoil moisture could improve the spatial yield 

simulation of crops compared to the use of single point information for individual weather 

stations for a given area. Consequently, estimates from SM data (SM2RASC, RAASC) for agricul-

tural applications in regions may be alternative when the precipitation data are adapted to 

their local climatic conditions and other weather data are not available. In addition, a re-

mote sensing product need not at all be "better" than the crop growth model. Consideration 

should be given to whether the data provide added value or new information. Even if, for 

example, the r² values are lower than for models, clever data assimilation techniques can be 

made to use the data (see e.g. Draper et al. 2012). 

The Sentinel 1 mission, launched in 2014, offers new perspectives with the use of Synthetic 

Aperture Radars (SAR). High-resolution radar images are routinely available at a scale of 20 

meters, with a high frequency of revisits of 3-6 days and excellent radiometric accuracy. The 

TU Vienna developed SSM (Surface Soil Moisture) retrieval on a scale of 1 km with a tem-

poral revisit time of 3 to 8 days (depending on location) (Bauer-Marschallinger et al. 2017). 
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Since the 25 km derived precipitation data of SM products have already delivered partly 

good results, the new high resolutions of SM data offer a new possibility for linking with crop 

growth models. 

Improved spatial information on land surface characteristics is required to enhance perfor-

mance related to spatial applications and assessments, for example, to better take into con-

sideration the spatial variability of natural production conditions (e.g. soils, water availabil-

ity, microclimate, etc.). Here, satellite data, the resolution of which is becoming more and 

more accurate (see Sentinel) and the use of complementary data sets from remote sensing 

sources, play a decisive role. This information combined with crop growth models, preferen-

tially crop growth ensembles, have a great potential to reduce model uncertainties and can 

create an important contribution to agricultural applications and decision support tools, es-

pecially under water-limit production conditions, which encounter more and more frequent-

ly in Austria. 
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SUMMARY

The main objective of the present crop simulation study was to determine the impact of climate change on the
winter wheat production of a dry area situated in north-east Austria (Marchfeld region) based on the CERES-Wheat
crop-growth simulation model associated with global circulation models (GCMs). The effects of some of the
feasible regional- and farm-based adaptation measures (management options) on crop yield and water and
nitrogen (N) balance under the climate scenarios were simulated. Climate scenarios were defined based on the
ECHAM5, HadCM3 andNCAR PCMGCM simulations for future conditions (2021–50) as described in the Special
Report on Emission Scenarios A1B (Nakicenovic & Swart 2000). The potential development, yield, water demand
and soil N leaching were estimated for winter wheat and all of the defined climates (including rising CO2 levels)
and management scenarios (soil cultivation, windbreaks and irrigation).
The results showed that a warming of 2 °C in the air temperature would shorten the crop-growing period by

up to 20 days and would decrease the potential winter wheat yield on nearly all of the soil types in the region.
Particularly, high-yield reductions were projected for light-textured soils such as Parachernozems. A change from
ploughing to minimum tillage within the future scenario would lead to an increase of up to 8% of the mean yield
of winter wheat. This effect mainly resulted from improved water supply to the crop, associated with higher soil
water storage capacity and decrease of unproductive water losses. Hedgerows, which reduce the wind speed,
were predicted to have particularly positive effects on medium and moderately fine-textured soils such as
Chernozems and Fluvisols. With both management changes, regional mean-yield level can be expected to be
+4% in comparison with no management changes in the future conditions. Compared with the baseline period,
water demand for the potential yield of winter wheat would require 6–37mm more water per crop season (area-
weighted average). The highest water demand would be on medium-textured soils, which make up the largest
amount of area in the study region. Additionally, the effects of snow accumulation near hedgerows would further
increase the yield, but would also lead to higher N leaching rates. However, specific management options, such as
minimum tillage and hedgerows, could contribute towards reducing the increasing water demand.

INTRODUCTION

Changes in the mean and the variability of climatic
parameters will have an essential influence on
agricultural cropping systems, especially under
water-limited production conditions, such as in the

dry region of north-eastern Austria. For example,
Dubrovsky et al. (2008) and Trnka et al. (2010a,
2011a,b) indicated that in dry agricultural areas of
Central Europe, drought and periods of heat stress
at particularly sensitive stages of development are
expected to increase and will be limiting factors in
crop production under future climate scenarios.
Heat stress in plants is a complex function of the
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temperature level and duration as well as the rate of
temperature increase. The critical thresholds of temp-
erature vary greatly with the developmental stages of
crops and plants (Hall 2001). Water stress is often
associated with (i) heat stress, as leaf temperature
usually increases during stomata closure and (ii) a
reduced transpirational cooling effect (Hathfield
1979). At the same time, the ongoing enrichment of
atmospheric CO2, which is expected to rise from a
current 390 μmol/mol to c. 550 μmol/mol by the
middle of the century (Solomon et al. 2007), enhances
the photosynthetic rate and biomass accumulation.
However, higher temperatures can provoke a notable
shortening of the growth period, especially for annual
crops, such as cereals with determinate growth,
providing less time for carbon fixation and a reduction
in biomass accumulation (Morison & Lawlor 1999).
Therefore, the combination of increased CO2 concen-
tration with higher temperature does not necessarily
result in a higher crop yield (Kristensen et al. 2011).
Specific agricultural practices such as selecting earlier
sowing dates or cultivars with a longer growth cycle
contribute to preventing yield reductions and reducing
water demand (Trnka et al. 2004a; Olesen et al. 2007,
2011; Kaukoranta & Hakala 2008). Additionally,
limitations by other factors, such as water availability
and the associated uptake of mineral nutrients, is
expected to become increasingly important (Amthor
2001; Linke et al. 2005).

Several short- and long-term agronomic adaptation
strategies are recommended to avoid or reduce the
negative impact of climate change on the crop yield
potential and develop eventual positive effects. Short-
term adjustments at the farm level involve production
techniques, such as changes in crop rotation and
crop cultivars, changes in soil cultivation and tillage
practices, a shift of sowing dates, adapted fertilization
and crop protection measures (Tubiello et al. 2000;
Chen &McCarl 2001; Alexandrov et al. 2002; Ghaffari
et al. 2002; Trnka et al. 2004b; Patil et al. 2010; Davies
et al. 2011; Seo 2011). These adjustments aim to
optimize crop production without major system
changes and can be developed and implemented
independently at the farm level. Long-term adap-
tations, on the contrary, include major structural
changes of farm production systems and need careful
agro-economic planning and realization at a society
level; these adaptations also involve a set of sectors
and stakeholders, such as policy, research, water and
land planning (Eitzinger et al. 2010; Olesen et al.
2011; Shahabfar & Eitzinger 2011). Some examples

of long-term adjustments are changes in land use and
landscape structure, breeding and biotechnology
applications, crop substitution and changes in the
farm production type (Alexandrov et al. 2002).

Various potential adaptations in farm practices for
crop production aim to reduce the negative impacts
of crop growth-limiting factors, such as water stress or
heat, through changes in management aimed at
more efficient use and/or decrease in the unproductive
losses of production resources (e.g. water and soil).
Both conservation and efficiency gains improve the
local sustainability of production, reduce production
risks and may concomitantly improve the resilience of
the production system. A change in soil cultivation or
tillage practices, for example, can have multiple
effects, such as on the soil water storage and soil
erosion caused by water and wind (Falloon & Betts
2010; Klik & Eitzinger 2010). Conservation tillage
practices have several advantages over conventional
tillage systems (i.e. based on ploughing) under various
soil, climate and management conditions (Martínez
et al. 2008), which among others include the pre-
servation of soil and water resources, a reduction of
energy input and costs and, therefore, an increase or
stabilization of crop production (Osunbitan et al.
2005).

Hedges (hedgerows, windbreaks or shelterbelts)
consist of trees or bushes forming elongated structures
in the agricultural landscape. Their introduction in the
landscape represents another important adaptation
strategy in regions with water-limiting crop-growing
conditions (Kuemmel 2003). Hedges reduce wind
speed and, therefore, unproductive evaporative losses
from the crop stand by a reduction in the advection
of dry air. However, growing hedges may create a
disadvantage to nearby crops by introducing compe-
tition for growth-limiting factors, such as water or light
(Brenner et al. 1995; Cleugh et al. 1998). Increased
snow retention near hedges may augment soil water
storage, but it can also affect the soil nitrogen (N)
balance (Rowe et al. 2005), delay field operations in
spring time (Nuberg 1998), and cause fungal crop
diseases (Brenner 1996; Nuberg 1998).

For the assessment and interpretation of the behav-
iour of agronomic systems under diverse environ-
mental conditions, such as climate change and
management options, mechanistic crop simulation
models are suitable tools (Tsuji et al. 1998; Orlandini
et al. 2008; Challinor 2011; Rötter et al. 2011). With
the help of extensive spatial databases and analysis
techniques supported by geographical information
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systems, the model outputs can be scaled up for
regional planning (Uhlir & Carter 1994). Additionally,
crop simulation models can help to find adequate
adaptation strategies to avoid or reduce negative
climate change effects on crop yield and exploit
possible beneficial options (Alexandrov et al. 2002;
Trnka et al. 2004a; Thaler et al. 2010; Iqbal et al.
2011). However, crop models are only a simplification
of the complex soil-crop-atmosphere system. Uncer-
tainties are thus abundant, such as the model
representation of the involved processes and model
inputs (Eitzinger et al. 2008; Challinor 2011; Rötter
et al. 2011).
The present study contributes to the assessment of

the regional-specific and multiple effects of farm-
level climate change adaptation strategies in dry crop
production regions of Central Europe for winter wheat
production by use of crop simulation. Specifically, the
main objectives of the paper include: (i) a determi-
nation of the impact of climate change and (ii) an
evaluation of the possible adaptation strategies for
current winter wheat production in north-eastern
Austria under a changing climate. For this purpose,
detailed input data were collected for the parameter-
ization and validation of the crop growth model
CERES-Wheat. The impact of different regionalized
climate change and management scenarios for the
period 2021–50 on simulated winter wheat phenology

and yields was studied. Particular emphasis was put
on the assessment of: (i) the range of potential future
crop development and yields under different climate
change scenarios and (ii) the effects of soil cultivation
and hedges on crop yield-limiting factors (i.e., soil
water and N balance) as adaptation options.

MATERIALS AND METHODS

Study region

The Marchfeld region (Fig. 1; 48°17′N, 16°38′E),
located in the north-eastern part of Austria, is not
only one of the major crop production areas but also
one of the driest regions in the country. It is a plain of
c. 900 km2 with minor variations in elevation, ranging
from 143 to 178m a.s.l. The region is in the transition
zone between the semi-humid Western-European
climate and continental East-European one. Con-
ditions are usually cold, with frequent hard frosts and
limited snow cover in winter, and hot and periodically
dry in summer (Müller 1993). According to the
phytogeographical and climatological aspect March-
feld is part of the Pannonicum, with high levels of
sunshine, high average temperature during the grow-
ing period and low precipitation. The growing period
(mean temperature >5 °C) lasts from the middle of
March until middle of November, which means a

4 soil classes:

Very low (<60 mm)

High (>219 mm)

0 3·75 7·5 15 km

Low (60–139 mm) 

Moderate (140 – 219 mm)

available water capacity

up to 1000 mm soil depth

Fig. 1. The available water capacity of mineral soil classes in Marchfeld, Austria.
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growing period of c. 240 days (Cepuder & Schlederer
2002). Total precipitation of 550mm and temperature
of 9·9 °C characterize this semi-arid area (annual mean
values 1961–90 weather station Groß-Enzersdorf
48°12′N, 16°33′E, 157m a.s.l.). The mean annual
potential evapotranspiration is 615mm (1965–74
weather station Obersiebenbrunn 48°16′N, 16°41′E,
150 m a.s.l.) and was calculated with the Penman
equation (Penman 1948, 1963). The annual water
balance (precipitation – evapotranspiration according
to Penman) is negative, with a value of −350mm
(Obersiebenbrunn 1969–74) (Müller 1993).

The main rain-fed crops are cereals in Marchfeld
and other important crops, such as maize, vegetables,
sugar beet or potatoes, need to be irrigated most years.

Model and data processing

The CERES-Wheat crop model (DSSAT 4.0.2.0) was
selected for the present study. Palosuo et al. (2011)
showed that CERES-Wheat performed well in com-
parison with real data and other models. It is a process-
based, management-oriented model that simulates the
daily time-step effects of the cultivar, crop manage-
ment, weather, soil, water and N on crop growth,
phenology and yield (Jones et al. 2001, 2003). The
input requirements for CERES-Wheat include weather
and soil conditions, plant characteristics and crop
management (Hunt et al. 2001).

Weather data

The minimum weather input requests of the model are
daily solar radiation, the maximum and minimum air
temperature and precipitation (Singh et al. 2008).
Since the target area is a flat, small region, the
variability of climate due to topography is marginal
and can be neglected, as the daily variability of the
weather equates to the climatological mean.
Therefore, a representative weather station at Groß-
Enzersdorf was selected for the entire region.

Soil data

Soil inputs include the drainage and runoff coeffi-
cients, first-stage evaporation and soil albedo, water-
holding capacity, soil texture, bulk density, organic
carbon (C) content for each individual soil layer and
the rooting preference coefficients at several depth
increments. For the first simulated day, the model also
requires information about the saturated and initial soil
water and N contents (Singh et al. 2008). In the model,

the FAO-56 Penman–Monteith equation (Allen et al.
1998) was used to calculate the evapotranspiration
and effect of wind speed reductions. The CERES soil
model was selected as the soil organic N sub-model
(Godwin & Jones 1991; Godwin & Singh 1998), which
among others has been evaluated in a wide range of
studies (Kovács et al. 1995; Timsina et al. 1998; Singh
et al. 2008).

The overall soil conditions in Marchfeld are
characterized by high spatial variability, including
soils with low to moderate water-storage capacity. The
arable soils in this region have a humus-rich A-horizon
with high variability in depth (from c. 300 to
>1000mm) and a sandy C-horizon underneath,
followed by fluvial gravel from the former river bed
of the Danube. The groundwater table is in this gravel
body, 6 m below the surface. Gravels avoid capillary
rise, therefore there is no groundwater impact in the
rooting zone of the crops (Eitzinger et al. 2003). Four
soil classes (termed herein as soil 1, soil 2, soil 3 and
soil 4, respectively) were defined according to the total
available water capacity from the digital Austrian Soil
Map 1:25 000 (BFW 2007); they were calculated with
the area-weighed mean values of physical and
chemical soil properties (i.e. texture and organic C
content; Fig. 1) (Rischbeck 2007). The first two soil
classes have an available water capacity of up to
140mm for a 1000-mm soil depth. They are mostly
Parachernozems, which are characterized as loamy
sand or sandy loam soils, comprising c. 0·17 of the
target area. Soils 3 and 4 are Chernozems and
Fluvisols, respectively, with an available water
capacity >140mm for a 1000-mm soil depth (soil 3:
sandy loam, 0·61 of the Marchfeld area; soil 4: loamy
silt, 0·22 of the area).

Crop characteristics of winter wheat

The genetic coefficients used in the model depict the
specific growth and development of the relevant crop
cultivar (Tsuji et al. 1998; Alexandrov & Hoogenboom
2000). Coefficients related to photoperiod sensitivity,
duration of grain filling, conversion of mass to grain
number, grain-filling rates, vernalization requirements,
stem size and cold hardiness are essential information
to run the model (Hunt et al. 1993).

For the calibration of the genetic coefficients, the
experimental site at Fuchsenbigl in Marchfeld was
chosen (48°11′N, 17°00′E, 149m asl) using 17 years
(1989–2005) of phenological and yield data of the
crop cultivar Capo (Fig. 2). It is a well-established
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cultivar, which is adapted to relatively dry and warm
regions such as those found in eastern Austria
(Oberforster &Werteker 2009). Nine years of observed
winter wheat yield data from Obersiebenbrunn in the
Marchfeld region were used for the model validation
(Fig. 2) (Rischbeck 2007). The estimated genetic co-
efficients of the validated wheat used in the model
simulations are presented in Table 1.

Crop management

The winter wheat simulations depending on the
management scenarios (see below) were conducted
for rain-fed farming, including N fertilization, auto-
matically adapted sowing dates, with and without the
enrichment of CO2 according to the emission

scenario, ploughed soil and minimum tillage, wind
speed reduction due to hedges, additional soil
moisture owing to snow banks on hedgerows and
automatic irrigation without considering the potential
yield losses caused by pest or diseases. Fertilization at
3×40 kg N/ha, the amount that farmers presently use
in this area, at tillering, stem elongation or jointing and
booting was simulated.

The effects of CO2 on photosynthesis and water
use were added to the CERES Wheat simulations.
Internally in the model, the daily potential transpira-
tion calculations were modified by the CO2 concen-
tration, due to the effects of CO2 on stomatal
conductivity (Peart et al. 1989). A multiplicative
modification was made to daily canopy photosyn-
thesis as described by Curry et al. (1990). An
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Fig. 2. Comparison between simulated and observed phenological and yield data of winter wheat cultivar CAPO in
Fuchsenbigl and Obersiebenbrunn, Marchfeld.
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atmospheric CO2 level of 350 μmol/mol was set for the
baseline. The future conditions were simulated with
and without any CO2 enrichment (458 μmol/mol
according to the emission scenario) to obtain a range
of possible impacts.

The automatic adapted sowing date was defined for
a given day. This day was considered suitable for
sowing from the model when the soil water content in
the top layer of soil (the top 150mm) was between
0·05 and 0·85 of the maximum soil water-holding
capacity, while the soil temperature was between
8 and 15 °C. The automatic irrigation option
implemented irrigation as a function of threshold
parameters. These included the depth of the profile
(300mm), where soil moisture and threshold at which
irrigation was triggered (defined 0·5 of max available)
were controlled everyday. Once the soil water content
at the top of the profile drops below this defined
threshold, the automatic irrigation system adds water
to raise the soil profile to the drained upper limit
(Nijbroeka et al. 2003).

A 100-year daily weather series used as an input to
the crop model was produced by the stochastic
weather generator (WG) M&Rfi, which was developed
from the earlier Met&Roll WG (Dubrovsky 1997;
Dubrovsky et al. 2000, 2004). The weather series for
the representative site were generated for the baseline
period (1961–90) and 2021–50 (termed herein as the
future scenario). When generating the weather series
for the future climate, the WG parameters were
modified according to the climate change scenarios.
The climate change scenarios were constructed using
a pattern scaling method (Dubrovsky et al. 2005), in
which the scenario for a given future (specific climate
sensitivity and emission scenario) was defined as a
product of the change in global mean temperature by
the standardized (accounting for 1 °C rise in global
mean temperature) climate change scenarios. The
standardized scenarios were based on the outputs from

ECHAM5, HadCM3 and NCAR PCM global circula-
tion models (GCMs). The change in global mean
temperature was determined by simple climate model
MAGICC 5·3 (Harvey et al. 1997; Hulme et al. 2000).
The climate scenarios were based on the Special
Report on Emission Scenarios A1B (Nakicenovic &
Swart 2000) and moderate climate sensitivity (3 °C),
which implies a change in global mean temperature
of 1·28 °C (according to the MAGICC model).
By comparing the results from three different GCMs
it was possible to reduce uncertainties in the
climate change scenarios. Maximum and minimum
temperature as well as precipitation at baseline,
and the changes with respect to the baseline period,
are presented in Fig. 3. The final datasets that
were used do not explicitly consider changes in
the diurnal variability under future climate change
conditions and assume that the variability under
future climate is the same as under the baseline
conditions.

The alternative management practices studied as
selected adaptation strategies are described below.

Soil cultivation

Mouldboard plough with a ploughing depth of
250 mm was replaced by minimum tillage. The
impacts on the soil physical properties: plant growth
and yield were estimated in a 3-year field experiment
comparing both conventional and minimum tillage in
Raasdorf (48°15′N, 16°34′E, 156 m a.s.l.) from 2002 to
2004. Soil input data for ploughed and minimum
tillage-scenarios were estimated by the model, where
undisturbed soil or minimum tillage condition were
determined from the values of the Austrian Soil Map
(BFW 2007). For the ploughed soil, the first 250mm
soil layer was modified according to laboratory
analyses of soil samples, as depicted in Table 2
(Rischbeck 2007). This two-tillage practice in the

Table 1. Estimated genetic coefficients of winter wheat (cultivar Capo) used in the crop model simulation

Genotype
P1V
(%/day)

P1D
(%/day)

P5
(°C/day)

G1
(#/g)

G2
(g/(m2 day)) G3 (g)

PHINT
(°C/day)

CAPO 60 90 560 28 42 1·33 95

P1D, photoperiod sensitivity coefficient (% reduction/h near threshold); P1V, vernalization sensitivity coefficient (%/day of
unfulfilled vernalization); P5, thermal time from the onset of linear fill to maturity (8 °C day); G1, Kernel number per unit stem
and/spikeweight at anthesis (#/g); G2, potential kernel growth rate (mg/(kernel day)); G3, Tiller death coefficient. Standard stem
and/spike weight when elongation ceases (g); PHINT, thermal time between the appearance of leaf tips (8 °C day) Jones et al.
(2003).
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target area with CERES-Wheat was validated by
Hlavinka et al. (2010), who showed that the model
is capable, to a certain extent, of mimicking the
differences between conventional and minimum
tillage.

Hedgerows

Winter wheat yields at various distances from a hedge
were compared with unsheltered mid-field yield.
Among other benefits, shelters reduce wind speed;

therefore, wind speed reductions of 0·25, 0·50 and
0·75 were simulated, based on the study of
Gerersdorfer et al. (2009).

Snow retention near hedges

The effect of windbreaks on snow near the hedgerows
(snow banks) was considered in the simulation.
Increased snow retention near hedges enhances the
soil moisture after melting in the spring. Based on the
snowMAUS model (Trnka et al. 2010b), information
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about the duration of snow cover and the snow-water
equivalent (in mm) per year was available. During
a field trial in Raasdorf in spring 2005, melting
water equivalent to c. 158mm was measured near a
representative hedgerow (Gerersdorfer et al. 2009), a
value that was 3·6 times higher than the one predicted
by snowMAUS for the same year for unsheltered mid-
field conditions. To simulate this additional soil
moisture, the snow-water equivalent was added to
the precipitation input at the beginning of the
vegetation period, where the value of the ‘volume of
precipitation in term of snow melt per year’
(snowMAUS) × 3·6/10 was used for the subsequent
10 days. The study region experiences prevailing
winds from the north to the west (in more than 0·65 of
cases per year), so that the accumulation of snow near
hedgerows that are oriented from north to south is
common.

Irrigation

To study the crop water demand under climate change
scenarios, the automatic irrigation option of the crop
model was selected.

The baseline period was simulated with rain-fed
farming, including N fertilization and ploughed soil on
unsheltered conditions. The reference management in
the future scenario also included the CO2 enrichment.
For the evaluation and comparison of themodel results
of the different climate andmanagement scenarios, the
following outputs were used: yield (kg/ha), sowing,

anthesis andmaturity dates, nitrate (N) leached (kg/ha),
applied irrigation (mm) and the water use efficiency
(WUE) of the crops (WUEplant) and cropping systems
(WUEfield), which were calculated between two
sowing dates as follows:

WUEplant kg/ mmha
( )

= Yield/Transpiration (1)
WUEfield kg/ mmha

( )

=Yield/Evapotranspiration (2)

RESULTS

Impacts of climate change on winter wheat
phenology

According to Alexandrov & Hoogenboom (2000)
and Trnka et al. (2004b), the projected increases in
temperature are expected to lead to shorter
growing and reproductive seasons. The duration of
the regular crop-growing season of winter wheat
(the interval from sowing until physiological maturity
area-weighted average) in the simulated future
scenario was 17 (NCAR PCM), 18 (ECAM5) and
20 (HadCM3) days shorter than in the baseline period.

The analysis of these simulated future scenarios also
suggested a delay to the sowing date of winter wheat
by a maximum of 7 days (ECHAM5 and HadCM3),
from 6 to 13 October. Anthesis would occur c. 10
(ECHAM5) to 11 days earlier (HadCM3 and NCAR
PCM) and maturity between 11 (ECHAM5) and 13
days earlier (HadCM3) than in the baseline period
(Fig. 4).

Table 2. Soil properties for the four soil classes under minimum tillage (400mm soil depth) and modification
factors of the first 250mm layer of the soil data for the harrowed (0–50mm) and ploughed (0–250mm) soil
in the DSSAT soil module (Rischbeck 2007)

Soil depth
(mm)

Soil
saturation
(ml/ml)

Field
capacity
(ml/ml)

Wilting
point
(ml/ml)

Bulk
density
(g/cm3)

Soil 1 minimum tillage 0–200 0·36 0·30 0·10 1·50
200–400 0·13 0·07 0·03 1·95

Soil 2 minimum tillage 0–200 0·49 0·36 0·15 1·47
200–400 0·44 0·33 0·15 1·47

Soil 3 minimum tillage 0–200 0·55 0·45 0·22 1·44
200–400 0·49 0·41 0·21 1·42

Soil 4 minimum tillage 0–200 0·54 0·46 0·20 1·40
200–400 0·46 0·41 0·18 1·42

Modification factors
fharrow=Yharrow/Yminimum tillage 0–50 1·15 0·83 0·84 0·85
fplough=Yplough/Yminimum tillage 50–250 1·10 0·88 0·89 0·89
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Impact of climate change on wheat production with
unmodified management

Simulation of changes to future weather conditions
without any associated CO2 enrichment using the
three GCMs would lead to a yield depression of winter
wheat (except for soil 4 –NCAR PCM), especially for
soil 1 and 2 in Marchfeld (Table 3a). A CO2 level of
350 μmol/mol in future would account for a yield
change of −18% using ECHAM5, −14% using
HadCM3 and −3% using NCAR PCM (area-weighted
average), whereas the WUEplant would increase by
between 4 and 6% and the WUEfield between −1 and
1% (area-weighted average) with respect to the base-
line period. The interannual yield variability of winter
wheat would increase for almost all soils (exception
soil 1 – ECHAM5 and HadCM3). The yield decreases
were caused by a shortened growing season and
reductions in the precipitation during the crop-grow-
ing season.
For a CO2 level of 458 μmol/mol, the future scenario

simulations predicted lower yield losses or even yield
increases in comparison with the ones without any
CO2 enrichment (c. +11% by area-weighted average),
especially for soil 1 and 2. Yield losses (area-weighted
average) of 7 and 4% were predicted by ECHAM5 and
HadCM3 respectively, in comparison with the base-
line period. The simulated CO2-fertilizing effect could
not offset the yield drop. On the contrary, an increase
of +7% (area-weighted average) in winter wheat yield
was predicted by NCAR PCM (Fig. 5 and Table 3b).
This last GCM also forecasted an annual temperature
increase of 2 °C and 3% additional precipitation for the
region compared to the baseline period. This is the
only scenario that showed higher precipitation than for
the baseline period (Fig. 3).
The enhanced levels of atmospheric CO2 were

predicted to increase the WUEplant by increasing
the growth rates and decreasing the transpiration per
leaf area unit (up to 19% area-weighted average),
especially for soils with a low available water capacity.

These soils showed the highest N leaching rates, which
would be even higher without the CO2 enrichment
effect due to lower biomass accumulation and N
uptake. At the same timeWUEfield raised, especially in
soils 3 and 4 (Table 3b).

In the last few decades, the N concentration in the
groundwater at Marchfeld has increased to a critical
level due to the intensive agricultural crop production
practices. Agricultural fertilization is reported to be
the main cause for the high concentration of N in
the groundwater (Cepuder 1999). Depending on the
amount and intensity of precipitation, the part of N that
is not absorbed by the plants remains in the soil or is
leached below the crop root zone. It stays in the soil
during years with low precipitation and is leached
downwards during years with heavy rainfall events.

A field trial, which included the winter wheat
cultivar Capo, was carried out in Fuchsenbigl from
1999 to 2001 with conventional crop rotation, to
investigate the groundwater quality in the pannonic
region in Austria (Cepuder & Schlederer 2002).
The lysimeter N leaching rates ranged from 2·2 to
16·8 kg/ha among three soils. The available water
capacity of these soils was between 115 and 138mm
for a 900-mm soil depth, which is in the range of soils
2 and 3 in the present study.

Effects of management adaptation strategies on
the winter wheat growth conditions (with CO2

enrichment)

Replacement of ploughing by minimum tillage

In the climate change modelled scenario, the replace-
ment of ploughing (reference management) by mini-
mum tillage led to an increase in the mean yield for
winter wheat of up to 2% (area-weighted average,
NCAR PCM). Minimum tillage would potentially
enhance the yield up to 8%, particularly for soil 1
(Table 4a). This positive effect mainly resulted from
both improved water supply for the crops and a
decrease of unproductive water losses. The relative
change of soil water content would increase in soil 1
and 2 in ECHAM5 and HadCM3 and for all soil classes
in NCAR PCM (Table 5). Additionally, minimum
tillage induced lower N leaching potential in all soil
classes (Table 4a).

Effects of hedges on winter wheat yield

The results of the previous simulation are representa-
tive of unsheltered conditions. The effects on the
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Fig. 4. Changes (in days) of the dates of sowing, anthesis
and maturity of winter wheat (area-weighted average) in
the future scenario, with respect to baseline conditions.
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Table 3. Winter wheat yield mean (kg/ha) and S.D., WUE of crops (WUEplant), cropping systems (WUEfield) (kg/ha per mm+ S.D.) as well as nitrogen
leached (kg/ha+ S.D.) for the baseline and changes of winter wheat yield (%), WUE (%) and N leached (abs.) as well as S.D. (absolute value) (a) without
and (b) with CO2 enrichment in the future scenario v. the baseline

Baseline (CO2=350 μmol/mol)

Yield WUEplant WUEfield N leached

kg/ha S.D.
kg/ha
per mm S.D.

kg/ha
per mm S.D. kg/ha S.D.

Soil 1 3766 1107 33 5·1 8 2·1 46 27·6
Soil 2 5281 1222 30 4·1 11 1·7 12 16·1
Soil 3 6022 1665 32 3·3 12 2·3 3 11·4
Soil 4 5664 1473 31 3·8 11 2·0 1 4·9
Area-weighted average 5790·7 31·4 11·2 4·8

ECHAM5 HadCM3 NCAR PCM

Yield WUEplant WUEfield N leached Yield WUEplant WUEfield N leached Yield WUEplant WUEfield N leached

% S.D. % S.D. % S.D.

Abs.

change S.D. % S.D. % S.D. % S.D.

Abs.

change S.D. % S.D. % S.D. % S.D.

Abs.

change S.D.

(a) CO2=350 μmol/mol (without CO2 enrichment)

Soil 1 −31 1080 0·3 4·9 −15 2·4 27 56·8 −28 1065 0·0 5·2 −13 2·3 24 35·3 −19 1166 −4 5·8 −16 2·2 24 45·5

Soil 2 −21 1716 8 4·2 −3 3·2 14 51·1 −18 1590 7 4·3 −2 2·9 13 48·5 −9 1567 5 5·3 −5 2·5 15 29·3

Soil 3 −18 2193 5 4·2 −2 3·9 21 65·5 −14 2069 5 4·8 0·4 3·6 18 69·3 −3 1851 4 4·4 −0·7 2·9 20 44·9

Soil 4 −13 2229 9 5·0 4 3·9 6 24·4 −9 2034 7 4·5 5 3·4 6 64·6 2 1769 6 4·7 4 2·7 8 20·7

Area-weighted average −17·7 6·4 −1·2 16·8 −13·5 5·8 0·7 14·7 −2·8 4·1 −0·7 16·7

(b) CO2=458 μmol/mol (with CO2 enrichment)

Soil 1 −19 1140 22 6·0 0·4 2·5 16 47·8 −17 1139 22 6·1 2 2·5 14 35·1 −9 1255 18 6·2 −3 2·3 16 38·1

Soil 2 −12 1678 21 5·6 8 3·1 9 33·8 −9 1538 20 5·5 9 2·7 8 45·0 0·3 1609 18 4·8 6 2·2 12 23·7

Soil 3 −7 2192 18 6·6 12 3·9 9 32·6 −4 2007 17 6·0 13 3·4 10 64·5 8 1848 16 4·4 12 2·5 14 27·9

Soil 4 −4·1 2090 21 6·4 15 3·7 3 11·5 0·1 1906 20 6·0 16 3·2 4 58·3 11 1724 18 4·4 14 2·3 7 15·4

Area-weighted average −7·2 19·1 12·1 7·8 −3·9 18·0 12·8 8·5 7·1 16·9 11·0 12·2
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landscape of hedgerows that lie at right angles to the
prevailing winds are as follows. The effects of wind
speed reductions of 0·25, 0·50 and 0·75 under
ploughed soil cultivation were simulated for the
applied climate scenarios. As the results show (see
Fig. 6 and Table 4b for wind reduction 0·50), wind
speed reductions would raise winter wheat yield. For
all cases, the ECHAM5 scenario showed the highest
increases, and the NCAR PCM scenario showed the
lowest ones. Furthermore, the highest yield raises were
found on soils 3 and 4; whereas only minor effects for
the two other soil classes.
In contrast to plough cultivation practices, a

combination of minimum tillage with hedgerows (the
results are shown only for a wind speed reduction of
0·50) would have the highest impact on soils 1 and
2. An increase in yield of between 4% (NCAR PCM)
and 4·4% (ECHAM5) was predicted (for the area-
weighted average) compared to the reference manage-
ment. In addition, a lower N leaching rate and higher
WUEplant and WUEfield as well as S.D. was simulated
(Table 4c).
The simulated yield effect of additional snow

accumulation near hedgerows for the case of mini-
mum tillage associated with a wind speed reduction of
0·50 is shown in Table 4d. Additional water input at
the beginning of the vegetation period after the snow-
melting period was considered in this scenario. The
results showed a yield increase of 9% using ECHAM5
and 6% using HadCM3 (area-weighted average) with
respect to the reference management. However,
NCAR PCM projected a yield loss of 1% under these
conditions. The results also show that the highest yield
increase (and the lowest decrease, in the case of NCAR

PCM) was simulated for soils 3 and 4. The WUEplant
and S.D. is lower, theWUEfield is between 3% and−3%
and the N leaching would be c. 20–26 kg/ha (area-
weighted average) higher than for the reference
management.

Changing water demand for potential yields

To answer the question of water demand in the future
and stabilize winter wheat yields in the studied area,
the simulation option ‘automatic when required’ for
irrigation and water management was activated in the
model. Baseline conditions, and different climate and
management scenarios were simulated with this new
option.

The ECHAM5 and HadCM3 scenarios led to
similar results concerning any additional water de-
mand to maintain the potential winter wheat yield
level. The highest extra amount of water due to
climate change (up to 39mm more water during the
growing season) was required for soils 3 and 4
(Table 6). In the baseline scenario, soil 1 already
showed relatively low potential yields and a high
water demand, while any additional irrigation would
not help to obtain better results. Under the applied
climate scenarios, the soils with very lowwater-storage
capacity only need slightly more or rather less water to
achieve a similar yield than the currently one; thus,
water is not predicted be a strong limiting factor in the
climate scenarios considered in the present paper for
these soils in the case of a winter wheat crop.

An additional amount of 37 mm of water (area-
weighted average) during the growing season would
be required for the maintenance of the potential yield

ECHAM 5 HadCM 3 NCAR PCM

Change of winter wheat yield to baseline (%)

<–18 > 10–12 –8 0 8

0 303·75 7·5 22·515
km

Fig. 5. Relative change (%) of winter wheat yield to baseline conditions for different GCMs with CO2 enrichment on
ploughed soil.
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level according to ECHAM5 and HadCM3 in both
tillage scenarios. As the growing season of winter
wheat would be >10 days shorter due to higher
temperatures and c. 7–8 months long, a mean value of
up to 37mm more water required is a significant
amount. The range of maximum and minimum water
demand is higher under minimum tillage. NCAR PCM,
the wettest scenario, predicted the lowest water
requirement in the future: 6 mm more for ploughed
conditions and 8mmmore for minimum tillage. At the
same time, soils 1 and 2 both showed the maximum
range with this GCM: this was >100mm higher than
with ECHAM5 or HadCM3. Hedges helped to reduce
the water demand, when a wind speed reduction of
0·50 was assumed. ECHAM5 and HadCM3 predicted
an additional 29 mm, while NCAR PCM predicted
0 mm under ploughed conditions and −2mm under
minimum tillage (the area-weighted average). Changes
of +18mm using ECHAM5, +20mm using HadCM3
and −8mm using NCAR PCM (the area-weighted
average) were simulated by minimum tillage, a wind
speed reduction of 0·50 and additional water input
from melted snow banks. The S.D. was higher than
for the baseline for all climate and management
scenarios.

DISCUSSION

Climate change is predicted to lead to an increase
of 2 °C in the mean air temperature with respect to
the baseline period in north-eastern Austria (Fig. 3).
The GCMs used in the present study forecast a change
of annual precipitation of −15% using ECHAM5,
−12% using HadCM3 and +3% using NCAR PCM;
these methods predict a strong reduction in rainfall,
particularly for the summer months. For the critical
spring winter wheat growing period (April–June),
ECHAM5 and HadCM3 show a significant reduction
in rainfall for June, more than 30% in the scenarios
considered in the present paper. Higher annual
temperatures will extend the vegetation period,
increase CO2 concentrations, enhance plant growth
and consequentially improve the vegetative cover.
These advantages might be offset by the increased
water stress experienced by specific annual crops,
such as winter wheat, during summer and shorter
growing periods. A high winter wheat yield loss
under future conditions was simulated by ECHAM5
and HadCM3 due to additional crop water stress.
However, under the NCAR PCM scenario a yield
increase would be expected due to additional

precipitation during the spring growing period of
winter wheat. At the same time, the interannual
yield variability of winter wheat would increase,
which would lead to higher economic risks for
farmers. The most vulnerable areas, where yield
losses can be expected for drier spring conditions,
are the regions with low soil water-storage capacity.
In this particular case, the additional annual precipi-
tation predicted by NCAR PCM or any additional
irrigation would not help to increase the yield in the
future.

A common uncertainty in climate change impact-
simulation studies for crops is the CO2-fertilizing
effect, which can vary widely under different environ-
mental conditions. For this reason, the simulations
took into account the impact of climate change both
with and without CO2 enrichment. The CERES model
uses constant multipliers for the daily total crop
biomass under elevated CO2, which are equally
applied to both stressed and unstressed growth
conditions (Tubiello et al. 2007). Free-air CO2 enrich-
ment experiments have shown a more complex
picture. In fact, it is impossible to simulate in detail
the high variability due to cultivars and environmental
conditions, considering that many processes related to
them are still unknown (Kartschall et al. 1995; Fuhrer
2003; Kersebaum et al. 2008). The present simulations
without and with CO2 enrichment show a high
variation in the winter wheat yield, where the yield
differences amount to c. 10% of the area-weighted
average. Related to the interaction between the CO2

effect and an improved WUE, higher N leaching was
simulated in all scenarios, when no CO2 enrichment
was considered.

The only set of adaptations that does not consider
irrigation and would lead to higher yields under any
GCM (with CO2 enrichment) compared to the baseline
period (area-weighted average), were a combination
of minimum tillage and hedgerows, inducing a
wind reduction of 0·50 and snow retention. To
maintain the baseline yield level, the minimum
adaptation to implement is the combination of either
minimum tillage and hedgerows (using HadCM3) or
minimum tillage, hedgerows and snow retention
(using ECHAM5). According to NCAR PCM, any
CO2 enrichment would increase the yield, and no
adaptation would be necessary to maintain the base-
line yield. Without any CO2 enrichment, none of the
adaptation sets could improve the baseline yield using
ECHAM5 or HadCM3, whereas minimum tillage
could maintain the yield level using NCAR PCM.
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Table 4. Changes of winter wheat yield (relative), WUE (relative) and N leaching (absolute) for the different climate and management change scenarios
v. the reference management (=ploughed soil on unsheltered conditions) with CO2 enrichment as well as S.D. (absolute value)

ECHAM5 HadCM3 NCAR PCM

Yield WUEplant WUEfield N leached Yield WUEplant WUEfield N leached Yield WUEplant WUEfield N leached

% S.D. % S.D. % S.D.
Abs.
change S.D. % S.D. % S.D. % S.D.

Abs.
change S.D. % S.D. % S.D. % S.D.

Abs.
change S.D.

(a) Minimum tillage
Soil 1 6·7 1266 −0·5 6·2 4·8 2·8 −6 47·9 7·9 1218 −0·2 6·4 5·9 2·6 −6 37·4 8·1 1369 −0·7 6·1 6·2 2·3 −5·0 37·7
Soil 2 2·2 1808 1·1 6·4 1·5 3·4 −1 36·3 2·5 1665 0·7 6·1 1·7 3·0 −1 49·9 3·1 1730 1·1 5·3 2·2 2·4 −2·0 23·6
Soil 3 0·5 2371 1·7 5·9 0·6 4·2 0 34·7 0·9 2196 1·2 5·3 0·8 3·6 −2 70·5 1·5 1951 0·8 4·5 1·3 2·8 −1·0 30·1
Soil 4 −0·3 2248 1·0 7·0 0·1 4·1 −1 9·5 −0·6 2051 0·3 6·3 −0·3 3·5 −1 63·3 0·6 1818 0·0 5·0 0·7 2·5 −2·0 13·3
Area-weighted average 0·7 1·4 0·7 −0·5 0·9 0·9 0·8 −1·7 1·7 0·6 1·4 −1·4

(b) Plough+wind speed reduction 0·50
Soil 1 1·5 1160 −1·6 6·0 2·8 2·7 −1 45·3 1·1 1106 −1·6 5·8 2·4 2·4 0 33·3 0·9 1246 −1·5 6·0 2·1 2·3 0·0 36·7
Soil 2 2·6 1585 −0·2 5·1 3·5 3·0 −1 27·4 2·2 1469 −0·5 4·9 3·1 2·6 0 42·1 1·3 1648 0·2 4·5 2·5 2·4 1·0 23·7
Soil 3 3·3 2064 0·3 5·6 4·0 3·7 −1 29·4 3·2 1872 0·3 4·8 3·9 3·2 0 60·0 2·1 1747 0·7 4·1 3·2 2·4 1·0 26·7
Soil 4 3·2 1959 0·3 5·6 3·9 3·5 1 11·7 3·4 1787 0·3 5·0 4·0 2·9 0 54·0 1·7 1621 0·8 4·2 2·8 2·2 1·0 16·7
Area-weighted average 3·1 0·2 3·9 −0·6 3·1 0·1 3·8 0·0 1·9 0·6 3·0 1·0

(c) Minimum tillage+wind speed reduction 0·50
Soil 1 10·2 1221 −1·2 6·0 9·5 2·7 −8 42·2 9·1 1194 −1·6 6·2 8·5 2·6 −6 35·5 9·1 1387 −1·9 6·0 8·4 2·4 −5·0 36·0
Soil 2 5·2 1713 0·9 5·7 5·3 3·2 −2 31·7 4·8 1586 0·5 5·7 4·9 2·9 −1 47·3 5·4 1686 1·3 4·8 5·5 2·3 −1·0 23·4
Soil 3 4·4 2240 1·9 6·5 5·1 4·1 −1 30·0 4·1 2059 1·5 4·9 4·7 3·4 –1 66·3 4·1 1830 2·2 4·2 5·0 2·6 −1·0 28·0
Soil 4 3·3 2099 1·0 6·4 4·2 3·8 −1 10·6 3·1 1948 1·1 6·0 4·0 3·3 −1 59·1 2·5 1716 0·7 4·7 3·6 2·4 −1·0 14·9
Area-weighted average 4·4 1·5 5·0 −1·3 4·1 1·2 4·6 −1·1 4·0 1·7 4·8 −1·1

(d) Minimum tillage+wind speed reduction 0·50+snow retention
Soil 1 −1·0 1033 −4·8 5·3 −3·2 2·2 7 38·6 −3·4 1012 −4·0 5·7 −5·0 2·2 10 29·7 −2·8 1204 −3·5 6·0 −3·8 2·1 9·0 35·1
Soil 2 2·6 1288 −3·4 4·4 −1·3 2·3 16 31·4 −0·4 1306 −3·3 5·3 −3·2 2·4 20 35·4 −2·4 1465 −0·5 4·1 −3·6 2·0 21·0 31·8
Soil 3 9·8 1350 −3·0 3·4 3·4 2·2 21 35·4 6·6 1284 −3·1 3·5 1·2 2·1 25 40·8 −0·8 1452 −0·8 3·6 −2·3 2·0 29·0 40·2
Soil 4 11·8 1177 −2·4 3·2 4·7 2·0 19 25·8 9·3 1161 −1·8 3·4 3·3 1·9 22 34·0 −1·3 1403 −1·1 4·2 −2·6 1·9 23·0 29·2
Area-weighted average 9·0 −3·0 2·9 19·6 6·0 −2·9 0·9 23·3 −1·2 −0·9 −2·6 26·1
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The set of adaptation applied in the first two GCMs can
only help to reduce negative climate change effects.

The simulated multiple effects of potential adap-
tation options under climate scenarios, simulated for
the next few decades for winter wheat, clarified several
aspects that may be useful for decision makers to
increase the resilience of winter wheat-dominated
cropping systems in the semi-arid Marchfeld region.
These aspects are summarized as follows. The
introduction of minimum tillage improved crop water
supply and decreased unproductive water losses due

to a higher plant-available water-storage capacity in
the soil, in particular for soils 1 and 2 where a change
in tillage practices could help reduce yield losses in
the near future. Additionally, higher soil water contents
and WUE and reduced N leaching rates could be
expected.

A change in the landscape structure, such as the
introduction of windbreaks or hedges, influenced the
microclimate of crops in neighbouring fields, mainly
by slowing down the wind speed. Further effects were:
an increased dew formation and leaf-wetness duration

Table 5. Soil water content (=precipitation–runoff−drainage) on ploughed and minimum tillage soil (mean,
S.D., max, min) in the future scenario as well as relative change (%) of soil water content if ploughing were to
be replaced by minimum tillage, from sowing until harvest

ECHAM5 HadCM3
NCAR
PCM ECHAM5 HadCM3

NCAR
PCM ECHAM5 HadCM3

NCAR
PCM

Plough (mm) Minimum tillage (mm) Change of soil water content (%)

Soil 1 Mean 275 280 288 282 285 292 2·4 2·0 1·7
S.D. 45·9 45·9 45·0 48·0 47·1 47·0
Max 372 379 375 380 384 385
Min 159 172 170 162 173 170

Soil 2 Mean 315 322 324 316 323 329 0·2 0·4 1·3
S.D. 58·8 57·5 59·0 60·2 58·8 60·5
Max 446 446 460 454 456 464
Min 168 173 170 158 164 170

Soil 3 Mean 332 341 342 332 340 348 −0·1 −0·4 1·9
S.D. 70·5 70·0 84·7 69·5 69·4 71·7
Max 492 510 505 478 492 511
Min 158 164 −122 158 162 168

Soil 4 Mean 337 347 355 335 345 357 −0·8 −0·3 0·6
S.D. 73·2 73·6 75·9 71·8 72·1 74·6
Max 496 507 530 499 501 517
Min 158 164 173 157 162 173

Area-weighted average −0·1 −0·3 1·5
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Fig. 6. Relative changes (%) of winter wheat yield in the future scenario with wind speed reductions of 0·25, 0·50 and 0·75
due to hedges on ploughed fields v. the reference management.
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and a reduction of dry air advection, evapotranspira-
tion, unproductive water loss and wind erosion
(Cleugh et al. 1998; Mayus et al. 1999). All these
effects are expected to result in an increase of crop
yields under semi-arid climate. However, increased
leaf-wetness duration may cause a higher incidence of

crop diseases, an effect, which was not considered in
the model.

The present simulations, which include different
wind speed-reduction effects, confirm these often-
reported positive effects. This is especially true for soils
3 and 4, which are the prevailing soil conditions in

Table 6. Simulated winter wheat water demand (mm) for the baseline period (mean, S.D., max, min), changes
of water demand (absolute) under the different climate and management scenarios v. baseline as well as S.D.,
max and min

Baseline

Mean S.D. Max Min
(mm)

Soil 1 190 41·0 269 50
Soil 2 112 36·7 170 0
Soil 3 93 36·8 199 0
Soil 4 80 38·6 177 0
Area-weighted average 94·5 37·3 191 1·0

ECHAM5 HadCM3 NCAR PCM

Abs.
change S.D. Max Min

Abs.
change S.D. Max Min

Abs.
change S.D. Max Min

Plough
Soil 1 11 41·9 317 75 9 43·5 316 75 −8 48·9 455 75
Soil 2 34 44·8 237 0 33 46·1 240 0 2 49·3 367 0
Soil 3 39 46·1 222 0 38 47·3 225 0 6 44·8 286 0
Soil 4 36 48·9 277 0 33 48·3 237 0 7 45·7 234 0
Area-weighted average 37 46·5 238 1·4 36 47·3 232 1·4 6 45·7 290 1·4
Minimum tillage
Soil 1 12 43·7 328 60 14 45·2 321 56 −8 51·8 431 55
Soil 2 37 45·9 257 0 34 48·0 259 0 4 50·9 360 0
Soil 3 37 48·8 278 0 37 47·8 244 0 9 46·9 273 0
Soil 4 39 52·6 264 0 39 53·4 256 0 11 52·1 259 0
Area-weighted average 37 49·1 273 1·1 37 49·0 250 1·1 8 48·8 286 1·0
Plough+wind speed reduction 0·50
Soil 1 2 41·7 294 76 2 41·9 294 50 −14 47·9 429 75
Soil 2 28 44·0 242 0 27 43·5 240 0 −3 47·3 361 0
Soil 3 30 46·1 217 0 31 47·9 223 0 0 45·7 286 0
Soil 4 29 48·1 240 0 29 50·4 273 0 4 46·1 199 0
Area-weighted average 29 46·2 227 1·4 29 47·7 238 1·0 0 46·1 281 1·4
Minimum tillage+wind speed reduction 0·50
Soil 1 4 43·3 321 59 7 41·8 319 56 −16 47·9 398 56
Soil 2 28 43·7 249 0 29 43·6 234 0 −5 47·3 358 0
Soil 3 29 46·7 236 0 29 46·0 241 0 −3 46·8 274 0
Soil 4 32 51·9 260 0 30 52·3 263 0 2 49·0 221 0
Area-weighted average 29 47·3 245 1·1 29 47·0 246 1·1 −2 47·4 277 1·1
Minimum tillage+wind speed reduction 0·50+snow retention
Soil 1 −6 41·5 292 86 −3 41·8 291 56 −27 50·7 399 56
Soil 2 17 43·2 226 0 20 45·0 226 0 −11 44·0 324 0
Soil 3 20 46·3 238 0 21 46·9 279 0 −8 45·5 312 0
Soil 4 16 47·0 258 0 19 50·7 265 0 −7 46·3 216 0
Area-weighted average 18 45·9 242 1·6 20 47·4 268 1·1 −8 45·5 294 1·1
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Marchfeld. Higher winter wheat yield and soil water
content associated with lower N leaching, were
simulated here.

A combination of different adaptation options
could further increase the positive effects on the winter
wheat yield. For example, a yield increase of up to 4%
(area-weighted average) and a lower N leaching rate
(compared to the reference management) were simu-
lated under the combination of minimum tillage
with hedgerows considering a wind speed reduction
of 0·50.

An additional effect of windbreaks could also have a
positive impact on the crop yield through an improved
soil water budget in the spring (Kuemmel 2003). In
particular, this positive yield effect was due to an
additional water input at the beginning of the
vegetation period under the ECHAM5 and HadCM3
scenarios with reduced spring precipitation. Even
though a higher yield was simulated in this case,
negative side effects such as a higher N leaching rate
and a lower WUE were also found. This demonstrates
that a combination of several adaptation options does
not necessarily provide positive effects but can also
result in negative effects that need to be carefully
evaluated under the specific local conditions (Olesen
et al. 2011).

The water demand was projected to increase (under
most of the future climate scenarios) in order to
maintain similar yield levels compared to actual
conditions. However, the present study has shown
that the additional water demand could also be
effectively reduced with adaptation strategies other
than irrigation. Negative side effects should also be
taken into account. This includes the N leaching rate,
which could increase up to 300% on soil 4, with
regard to the baseline conditions with optimum
irrigation.

Transferring into practice the findings of this study
requires further research and scientific efforts, and
should be addressed especially in the field of crop and
climate change modelling.
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SUMMARY

The present study investigates regional climate change impacts on agricultural crop production in Central and
Eastern Europe, including local case studies with different focuses in Austria, the Czech Republic and Slovakia.
The area studied experiences a continental European climate and is characterized by strong climatic gradients,
which may foster regional differences or trends in the impacts of climate change on agriculture. To study the
regional aspects and variabilities of climate change impacts on agriculture, the effect of climate change on
selected future agroclimatic conditions, crop yield and variability (including the effect of higher ambient CO2

concentrations) and the most important yield limiting factors, such as water availability, nitrogen balance and the
infestation risks posed by selected pests were studied. In general, the results predicted significant agroclimatic
changes over the entire area during the 21st century, affecting agricultural crop production through various
pathways. Simulated crop yield trends confirmed past regional studies but also revealed that yield-limiting factors
may change from region to region. For example, pest pressures, as demonstrated by examining two pests, are likely
to increase due to warmer conditions. In general, higher potentials for cereal yield increase are seen for wetter and
cooler regions (i.e. uplands) than for the drier and warmer lowlands, where yield potentials will be increasingly
limited by decreasing crop water availability and heat under most scenarios. In addition, yield variability will
increase during the coming decades, but this may decrease towards the end of the 21st century. The present study
contributes to the interpretation of previously conducted climate change impact and adaptation studies for
agriculture and may prove useful in proposing future research in this field.

INTRODUCTION

In agriculture, projected climatic changes will affect
crop yields, livestock management and the location of
production in Europe (Olesen & Bindi 2002). Climate
change will affect crop growing processes not only
directly through changed agroclimatic conditions
(Eitzinger et al. 2003; Trnka et al. 2011a,b) but also

indirectly, e.g. by changing soil properties that affect
soil water and nutrient balance (M. Trnka et al.,
personal communication) or by changing pest, disease
and weed occurrence (Porter et al. 1991), resulting in
altered yield potentials that are crop-specific. Further,
the increasing likelihood and severity of extreme
weather events (especially heat waves, droughts and
heavy precipitation) can considerably increase the risk
of crop failure and enhance yield variability (Peltonen-
Sainio et al. 2010; Semenov & Shewry 2011). In
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particular, climate change will cause significant
changes in the quality and availability of water
resources for crop irrigation (IPCC 2011; Iqbal et al.
2011; Thaler et al. 2012), affecting food production
and security; in this scenario, the occurrence of
extreme events such as droughts will play a crucial
role.

In general, climate change impacts crop production
in various and complex ways at different levels, differ-
ent scales and depending on local natural crop
growing limitations. The main impacts of changing
climatic parameters and weather extremes on crops
are well known, such as the impact of temperature on
phenology and on various physiological processes that
depend on temperature such as maintenance, which
influences net biomass accumulation. Photosynthetic
activity and water use efficiency can increase through
the interaction of plant responses with increasing
atmospheric CO2 levels; however, a wide variation in
these responses is expected between crops and en-
vironments (Fuhrer 2003). In addition, short- and long-
term effects on crop growing conditions are reported,
such as the direct impact of weather extremes or the
influence of changing climate on soil conditions such
as water holding capacity due to desertification pro-
cesses. Although many results have already been
obtained using, e.g. the application of ecosystem or
crop models, many research questions remain; these
questions are often related to processes or impacts that
are insufficiently considered by single crop models or
modelling approaches (Rötter et al. 2011). A related
issue is that large-scale crop simulation studies do not
consider the variability of region-specific conditions
sufficiently (White et al. 2011), and there is a need for
high-spatial resolution of inputs for the calibration of
regional models (Eitzinger et al. 2008; Strauss et al.
2012). Therefore, considering regional aspects (in-
cluding model calibration) in regional climate change
impact studies is of increasingly high importance; the
present study contributes directly to this topic.

The results of climate change impact and adaptation
studies, therefore, often show considerably different
results, depending on the spatial scale of regionaliza-
tion. However, reliable recommendations are crucial
for stakeholders for early risk recognition and the
implementation of anticipatory adaptation strategies;
precautionary adaptation is more effective and less
costly than forced, last-minute or emergency adap-
tation (ANL 1994; EEA 2005, 2007; Eitzinger et al.
2007; Parry & Carter 1998). In this context, it is recom-
mended that regional studies should be undertaken

and recommendations developed for adaptations con-
sidering local conditions (environmental and socio-
economic) (Reidsma et al. 2009).

The present study addressed these aspects using a
regional and holistic approach by modelling various
types of climate change impacts on crop production
within the same region. The key results from Central
and Eastern Europe, including local case studies with
different focuses in Austria, the Czech Republic and
Slovakia, are presented. The study domain experi-
ences a continental European climate and is charac-
terized by strong climatic gradients, which may foster
regional differences or trends in climate change
impacts on agriculture.

To study the regional aspects and variability of the
effects of climate change on agriculture, the following
objectives were addressed:

(1) The effect of climate change on selected future
agroclimatic conditions;

(2) The effect of climate change (including the effect of
higher ambient CO2 concentration) on yield levels
and variability;

(3) The effect of climate change on the most important
yield-limiting factors, such as water availability,
nitrogen balance and infestation risks posed by
selected thermophile insects (pests);

(4) Assessment of potential adaptation options based
on case study results.

MATERIALS AND METHODS

Agroclimatic indices

Agroclimatic indices describe the complex relations
existing between climate and crops (their development
and/or production) as well as the agrosystems in a
simplified manner (Orlandini et al. 2008) and can be
applied over large regions and with limited data input.
To describe specific agroclimatic conditions over the
Central European domain examined in the present
study, seven agroclimatic indicators were used. The
goal was to select a set of key indices that would be
relevant for various aspects of crop production and
complement the other tools applied (pest and crop
models) to assess climate change impacts on crop
production conditions.

The first indicator, the sum of effective global
radiation (EGR), was calculated as the sum of global
radiation during the period over which the mean
air temperature was continuously above 5 °C
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(and without snow cover (SC) or frost occurrence) and
with sufficient soil water available for evapotrans-
piration. The soil profile necessary for calculating
EGR was assumed to have a maximum rooting depth
of 1·3 m and an available soil water holding capacity
of 270mm. The critical ratio between actual and
potential evapotranspiration was chosen to be greater
than 0·4, based on the settings used by Trnka et al.
(2011a).
As the second indicator, the climatological water

balance (CW) during the climatological spring
(March–May) and summer (June–August) was calcu-
lated (i.e. difference between reference evapotran-
spiration (ETr) and precipitation). This indicator reflects
drought intensity during the most critical crop growing
periods.
To assess wine-growing conditions, the Huglin

index (HUG) was used to classify potential wine-
growing regions in terms of the sum of temperatures
required for grape development and ripening (Huglin
1978). The minimum requirement for grape wine is
defined as a HUG value of c. 1500. The attribution of
particular varieties to thermal conditions estimated
using HUG was based on the study by Schultz et al.
(2005) and should be treated as an approximation
only.
For assessing agroclimatic winter conditions, three

further indicators were used. The number of days
with SC was estimated using the SnowMAUS model
(Trnka et al. 2010a); this model estimates SC absence/
presence using daily temperature and total precipi-
tation. Potential frost risk (FR) for field crops was
estimated as the number of days from September to
April without SC and during which the minimum
daily temperature (at 2 m above ground level) dropped
below −10 °C (Trnka et al. 2010a). To estimate
changes in the conditions relevant to the vernalization
of winter wheat (V), the temperature thresholds
derived from Petr & Hnilička (2002) were used to
estimate the number of conducive days required for
the vernalization of winter wheat. Vernalization days
fromOctober to April were accumulated from 3 to 6 °C
daily mean temperature (estimated optimum range)
and the accumulation was reduced or stopped when
daily maximum, minimum or mean temperatures were
beyond optimum ranges. Vernalization was cancelled
when mean daily temperature rose above 20 °C for
more than 2 days during the vernalization period
(40 vernalization days).
As an indicator for field operation conditions (FOCs)

during spring and autumn, the suitabilities of sowing

windows (spring and autumn) and harvest (June)
were estimated. A given day is considered suitable
for sowing or harvest when the soil water content in
the top 100mm layer of soil is between 10 and 70% of
the available soil water-holding capacity (this par-
ameter was set at 20 mm for all soils in the present
study). The thresholds of soil moisture that were used
to define days suitable for sowing and harvesting
were parameterized at 30 experimental stations in the
Czech republic (1985–2005); these thresholds were
stricter than those used by Rounsevell (1993) and
Cooper et al. (1997) to avoid potential soil compac-
tion, which is considered as unsustainable in the long
term.

All agrometeorological parameters described above
were calculated using the software package AgriClim
(Trnka et al. 2011a). This software uses daily inputs
of global radiation, maximum and minimum tempera-
tures, precipitation, water vapour pressure and mean
daily wind speed. To allow grid-to-grid comparability,
the same soil profile was used at all sites, and spring
barley was used as a reference crop.While calculating
evapotranspiration under climate change scenarios
(see below), an adjustment was made for increased
CO2 concentrations using the method proposed by
Kruijt et al. (2008), which resulted in a decrease in
reference evapotranspiration rates compared with runs
that did not consider increases in CO2 levels. The
ambient CO2 concentration in air for the time horizon
of the study (i.e. 2050) was set at 536 ppm, and
the baseline calculations were set at 360 ppm. The
agroclimatic indicators noted above were calculated
for 99 years and the growing seasons in each grid of
the entire domain for the applied climate change
scenarios representing 2050 (Table 1).

In most cases, the median value of the parameter
and the 5th and 95th percentiles were analysed to
determine 20-year extremes of the given agroclimatic
index. To increase the spatial resolution of the inter-
polated outputs, the values in the 10×10 km grids
were regridded at a 1×1 km resolution using co-
kriging techniques with altitude used as an additional
parameter.

Pest models

From the range of pests that could have been studied,
two thermophile insects, the Colorado potato beetle
(Leptinotarsa decemlineata, referred to as CPB) and
the European corn borer (Ostrinia nubilalis, referred to
as ECB), were selected. The CPB is one of the
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most important insect pests of potato globally and is
widespread in Europe (EPPO 2009). The ECB, as the
most important pest of grain maize (Mason et al. 1996),
has also been recorded to occur across all of Europe
(Keszthelyi & Lengyel 2003; EPPO 2009) and the
development of this pest is closely related to tempera-
ture.

The pest model CLIMEX (Sutherst & Maywald 1985;
Sutherst et al. 2001) was applied in the study of these
two pests. Knowing the climatological requirements of
a given species, the model allows the suitability of a
given area for the population growth of the pest in
question to be assessed and determines the stress
exposure due to unsuitable climatic conditions. These
factors are expressed in terms of the Ecoclimatic index
(EI), which describes the overall suitability of a climate
for the establishment and long-term presence of a
pest’s population at a given location. Generally, EI lies
in the range 0–100; EI=0 indicates locations experi-
encing climate conditions that are unfavourable for
long-term species occurrence, and EI>25–30 rep-
resents a climate that is very suitable for species
occurrence (Hoddle 2004). The observed occurrence
data obtained from field observations in the Czech
Republic constituted the base material for the vali-
dation of the pest model CLIMEX under recent climate
conditions (Kocmánková et al. 2008). Following
validation and calibration of the model outputs, the
model was applied over the entire domain of the
present study and for the applied climate change
scenarios (Table 1).

Crop models

In recent years, process-oriented (mechanistic) crop
models have been among the most frequently used
tools in climate change impact studies (Audsley et al.
2006; White et al. 2011). To explore the effect of
climate change in the various case study regions on
crop yields and growth conditions (phenology and
crop water stress), three crop models were applied:
CERES-Barley (Otter-Nacke et al. 1991), CERES-Wheat
(Ritchie & Otter 1985) and DAISY (Hansen et al. 1990,
1991; Abrahamsen & Hansen 2000; Hansen 2000).
The CERES models operate within the Decision
Support System for Agrotechnology Transfer (DSSAT)
(Hoogenboom et al. 1994; Tsuji et al. 1994, 1998). All
crop models considered the impact of enhanced
atmospheric CO2 concentration under the relevant
climate scenarios (Table 1) for crop growth.Ta
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Crop model and simulation setup – a case study in
the Czech Republic

Experimental data used for model evaluation were
derived from field trials of the State Institute for
Agricultural Supervision and Testing (SIAST). The
CERES-Barley calibration was based on 50 experimen-
tal seasons at four sites; during calibration, the crop
parameters of spring barley cultivar ‘Akcent’ were
determined. Theevaluationof themodel used indepen-
dent data sets from 13 experimental sites over 155
experimental seasons. The simulated values of the
anthesis and maturity dates fit well with the obser-
vations. Despite the large variability of the experimen-
tal data, few simulated yields (<0·05) differed by more
than25% from theobservations. Inmost seasons (0·90),
the difference between simulated and observed grain
yields was smaller than 20%, and 0·80 of the yields
were simulated with a bias of < 800 kg/ha. CERES-
Barley was able to explain 65–74% of the variability of
key developmental stages and almost 70% of the yield
variability. Calibration of the CERES-Wheat model for

winter wheat cultivar ‘Hana’ has been described
previously (Trnka et al. 2004a) and shows very similar
results to those for spring barley described above.

The simulation of mean potential yields scaled
up from 1 km grids to the district level (areas of
c. 1000 km2) showed that attainable yields are over
40% higher than observed yields. This was, however,
expected, as the model assumes optimum growing
conditions without any yield-limiting factors. Both
crop models also show a consistent performance
under varying conditions within individual districts
and are able to explain almost two thirds of the inter-
regional variability.

Crop model simulations accounted for autonomous
adaptation of the sowing date, which was simulated
based on soil temperature and workability. Medium
fertilizing intensity (a nitrogen dosage of 60 kg/ha for
spring barley and 100 kg/ha for winter wheat) and a
leguminous pre-crop were considered as further
conditions. The main soil type characteristics over
the Czech domain used for the simulations are shown
in Table 2.

Table 2. Main arable soil types of the study areas in the Czech Republic, Austria and Slovakia and their
relation to the crop model inputs of soil properties that are relevant for soil water balance

Study area Soil Soil type

Available soil water
capacity (mm) and
related soil depth (m)

Study area
(proportion)

Czech Republic

Whole CR Cambisols Loam 180 (1·3 m) 0·210
Whole CR Cambisols Sandy loam 180 (1·3 m) 0·173
Whole CR Haplic luvisols Loam 220 (1·3 m) 0·096
Whole CR Stagnosols Loam 220 (1·3 m) 0·091
Whole CR Chernozem Loam 260 (1·3 m) 0·089
Whole CR Gleysols Loam 180 (1·3 m) 0·054
Whole CR Albic luvisols Loam 220 (1·3 m) 0·049
Whole CR Fluvisosl Loam 220 (1·3 m) 0·047
Whole CR Chernozem Clay-loam 260 (1·3 m) 0·021

Austria

Marchfeld – soil 1 Parachernozems Sandy loam 52 (1·0 m) 0·019
Marchfeld – soil 2 Parachernozems Sandy loam 129 (1·0 m) 0·147
Marchfeld – soil 3 Chernozems and fluvisols Sandy loam 204 (1·0 m) 0·613
Marchfeld – soil 4 Chernozems and fluvisols Loamy silt 248 (1·0 m) 0·219
Marchfeld – soil 5 Colluvial chernozem Sandy loam 371 (1·5 m) 0·002

Slovakia

Danubian lowland-site A Haplic chernozem Loamy 280 (1·2 m) 0·143
Danubian lowland-Site B Haplic fluvisol Loamy 290 (1·2 m) 0·132
Danubian lowland-Site C Haplic luvisol Loamy 240 (1·2 m) 0·200
Danubian lowland-Site D Calcaric chernozem Loamy 250 (1·2 m) 0·110
Záhorie lowland-Site E Mollic fluvisol Sandy loam 220 (1·2 m) 0·184
Záhorie lowland-Site F Regosol Sandy loam 200 (1·2 m) 0·063
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For a spatial analysis, each crop model was run for
each climate scenario for all 125 weather stations
using 400 soil type groups in 1600 soil polygons. The
native resolution of the soil map was 1 :500000
(Tomášek 2007).

Crop model and simulation setup –Austrian
case study

The region of Marchfeld (48°17′N, 16°38′E,
c. 1000 km2, in the north-east of Austria) was chosen
to simulate the effects of climate change on winter
wheat and spring barley using CERES-Wheat and
CERES-Barley. Marchfeld is a major crop production
area and one of the warmest and driest regions in the
country. The groundwater table in the Marchfeld
region is very deep; crops have no access to ground-
water and there is no capillary rise from groundwater to
the rooting zone. The main soil types in Marchfeld are
Parachernozems, Chernozems and Fluvisols, which
are characterized by a high-spatial variability and
include soils with low to moderate water-storage
capacity. To simulate crop yields in the Marchfeld
region, five soil classes were created; these were based
on the 1 :25000-scale Austrian digital soil map (BFW
2007) and the amount of available water capacity of
the individual soil classes (Table 2) in conjunction with
pseudo-transfer function (Murer et al. 2004). Soil-
layer-specific model input parameters of soil physical
properties represent the dominant type of soil cultiva-
tion in Marchfeld, which is ploughing. In addition,
area-weighted mean values of physical and chemical
soil properties (i.e. texture and humus content) were
calculated for these soil classes (Rischbeck 2007)
(Table 2). Two different tillage operations (ploughing
and minimum tillage) were simulated to analyse the
effect of soil cultivation on soil water balance under
the climate change scenarios. For this purpose,
undisturbed soil or minimum tillage conditions were
determined from the values of the Austrian soil map
(BFW 2007). For ploughed soil, selected soil input
parameters (bulk density, soil saturation, field capacity
and wilting point) were modified based on field
experiment results (Thaler et al. 2012).

To validate the two CERES models, simulated
outcomes were compared with measured results
obtained from field trials. The CERES wheat model
for winter wheat was calibrated for the winter
wheat cultivar ‘Capo’ using agrotechnological, phe-
nological, yield and weather data from an experimen-
tal site at Fuchsenbigl, Marchfeld (48°12′N, 16°44′E,

157 m a.s.l.) during 1989–2005. The difference
between the simulated and observed dates of anthesis
and the physiological maturity of winter wheat for
calibration varied from 0 to 4 days. Simulated grain
yieldsmostly agreedwith themeasured data (R2=0·61;
root-mean-square error (RMSE)=590 kg/ha), and the
deviation in annual yield predictions was less than
20% (Thaler et al. 2012).

The CERES barley model for spring barley was
calibrated in the same way and verified for the periods
1989–95, 1998 and 2001/02 using data for the cultivar
‘Magda’. The difference between the simulated and
observed dates of anthesis and physiological maturity
varied from 0 to 7 days, and the simulated yield was
within 20% of the measured values for each year
(R2=0·57; RMSE=623 kg/ha).

Long-term weather data from the representative
weather station Groß-Enzersdorf (48°12′N, 16°33′E,
157 m a.s.l.) were used as data for the reference period
and for creating the climate scenarios (Table 1); this
methodology is the same as that used for the Czech
Republic case study.

Crop model and simulation setup – Slovakian
case study

In the present study, the effects of climate change on
spring barley, winter wheat and maize in two crop
production regions of Slovakia were simulated using
the crop model DAISY. Crop modules of spring barley,
winter wheat and maize were calibrated and validated
using long-term data (1973–2006) obtained from
the experimental station at the Research Institute
of Irrigation near Bratislava (48°10′N, 17°12′E, 131 m
a.s.l.). Yield data of various cultivars that did not differ
significantly in growing period length and potential
yield under the specific environmental conditions
(Patil et al. 2010; Hakala et al. 2012) were used for this
purpose. Comparisons of measured and simulated
dry matter production, crop nitrogen uptake and soil
inorganic nitrogen content proved good performance
of the crop model (Takáč & Šiška 2011). Simulated
winter wheat grain yields mostly agreed with the
measured yields (R2=0·81, RMSE=924 kg/ha, co-
efficient of variation (CV) (RMSE)=0·15). Simulated
spring barley yields also showed generally good
agreement with the measured yields (R2=0·77,
RMSE=759 kg/ha, CV (RMSE)=0·15). The mean
deviation from predicted grain yields of spring barley
and winter wheat was 12%. Measured and simulated
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maize yields were in good agreement (R2=0·94,
RMSE=834 kg/ha, CV (RMSE)=0·11).
The mean deviation in predicted maize grain yields

from observed yields was 9%. The differences between
simulated and observed dates of maturity of all three
crops were all less than 7 days.
Representative soil profiles of the Danubian

and Záhorie lowlands were defined according to
texture, humus content and C/N ratio. The database
of the Soil Science and Conservation Research Institute
in Bratislava (17741 soil samples) was used for creation
of soil characteristics in a 10×10 km grid. Based
on soil parameters, soils were classified as shown in
Table 2. Various crop rotations and management
practices (including irrigation and fertilization) were
considered while preparing representative datasets for
yield simulations. Crop rotation involved the dominant
crops in the Danubian and Záhorie lowlands (winter
wheat, spring barley, sugar beet, maize, potato, winter
rape and pea). Fertilization rates of 150 kg N/ha for
winter wheat and 160 kg N/ha+40 t farmyard manure/
ha for maize were applied during the crop simulation.
Maize was also fertilized in the autumn, before the
growing season. Soil trafficability, which is limited by
topsoil water content and soil temperature, was con-
sidered for field operations such as the simulated
sowing date.
The crop model was run for the regions of the

Záhorie and Danubian Lowlands with two different
climatic datasets for 1971–2000 and two climate
scenarios for the periods 2021–51 and 2071–2100
(Table 1).

Climate scenarios

Climate change scenarios for Central Europe (whole
domain) and the case study regions in the Czech
Republic and Austria (Table 1) were developed via a
‘pattern-scaling’ technique (Santer et al. 1990) and
then applied to modify the parameters of the weather
generator. The pattern-scaling technique defines a
climate change scenario based on the product of the
standardized scenario and the change in global mean
temperature. The standardized scenarios, which relate
the responses of climatic characteristics to a 1 °C rise in
global mean temperature (ΔTG), were determined by
applying a regression method (Dubrovský et al. 2005)
to the 2000–99 period, which was obtained from three
global climate models (GCMs) from the IPCC Fourth
Assessment Report (Solomon et al. 2007). The three
GCMs used (Table 1) include ECHAM5/MPI-OM,

HadCM3 and NCAR-PCM, hereafter referred to as
ECHAM, HadCM and NCAR, respectively. The
climate scenarios of the whole domain and the
Czech Republic were calculated for an increase in
global mean temperatures by 2·1 °C until 2050, speci-
fically for a time-slice centred at c. 2050 (Hulme et al.
2000). This assumed the A2 emission scenario (SRES)
and high climate sensitivities (i.e. an equilibrium
change in global mean surface temperature following
a doubling of the atmospheric equivalent CO2 con-
centration, TG,2×CO2). The scenarios of the Austrian
case study were calculated accordingly for 2035 (time
slice 2021–50), based on the SRES-A2 scenario. To
create the daily model weather input data for the
climate change scenarios, the authors applied a
method originally developed by Semenov & Porter
(1995) and adapted by Žalud & Dubrovský (2002). A
weather generator was parameterized on observed
weather data (1961–2001) and used to generate daily
weather data for the climate scenarios.

The climate scenarios applied for the case study
in Slovakia (Table 1) included data generated by
the ALADIN climate model (Farda et al. 2007) and the
measured climatic data for the particular locality. The
climate scenarios applied are based on the ARPEGE
climate model (Lopez et al. 2000) for two intervals
(2021–51 and 2071–2100).

RESULTS

The results illustrate general agricultural production
conditions based on agroclimatic indices for the
domain of Central–Eastern Europe (Fig. 1), and this
information is complemented with three regional case
studies (Fig. 1(a)) that focus on simulated climate
change impacts on crop yields. When combined,
these results should allow for the development of
recommendations for regional adaptation options for
the various production regions that consider regional
differences in production conditions (soils, climate and
crop management) as well as the development and
shifts of the overall climatic conditions under the
applied climate scenarios.

The effect of climate change on agroclimatic
conditions in Central–Eastern Europe

The following section presents the results of the
applied agroclimatic indices for the entire domain of
Central and Eastern Europe.
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Based on the applied climate scenarios (Table 1), the
annual sum of EGR would rise via increases in the
duration of the potential growing period (i.e. with
mean air temperatures continuously above 5 °C). In
addition, EGR would be affected in some cases by the
increase in global radiation that occurs due to reduced
cloudiness associated with decreased precipitation,
especially during the summer months. Although these
changes may increase crop production potential, the
decrease in precipitation would also increase the
probability of water deficit, leading to a lower overall
value of this key parameter. Under present conditions,
the southern and southeastern areas of the domain
exhibited the highest EGR values (Fig. 1(a)), indicating
the potential productivity of rainfed agriculture. The
western and northern parts of the domain would
benefit most from the changed climate conditions,
with areas in Germany, Poland, parts of Austria,
Slovakia and the Czech Republic showing a sustained
increase in the values of this parameter (Fig. 1(b–d)).
The largest decreases are to be expected within the
Pannonian lowland, which includes almost all of
Hungary, northern Serbia and Croatia, as well as parts
of southern Slovakia, eastern Austria and western parts

of Romania. The most marked changes (both positive
and negative in regard to growing conditions) within
the regions are to be expected under HadCM-driven
scenarios; NCAR-based results indicate a much lower
rate of change. The overall spatial pattern of these
changes remained the same, regardless of the scenario
used.

Regarding drought intensity, the spatial patterns of
the 20-year extremes of CW balance during spring
(MAM) and summer (JJA) months (results not shown in
the figures) showed the highest water deficit in the
Pannonian region and the lowest water deficit in the
Alps and mountain regions in general. The climate
change scenarios (in particular, the HadCM-based
scenario) demonstrated an increase in the present
spatial gradients during spring (i.e. dry areas becoming
drier and wet areas wetter), but significant changes are
to be expected over the entire region during the
summer months. The magnitude of the changes
exhibited a southeast gradient, in which the arable
land in the Czech Republic would be affected least and
Hungary and Slovenia would experience the most
marked increase in drought intensity. However, a
slight easing of the 20-year drought intensity was seen

Legend: (MJ/m2/year) :

a - baseline

b, c, d - change

600 800 1000 1200 1400 1600 1800 2000 2200

–700 –550 –400 –250 –100 100 250 400 550 700 850

(a)

(d)

(b)

(c)

Fig. 1 (Colour online). The sum of EGR in Central-Eastern Europe for a) the baseline period (1961–90) and for an increase
in global mean temperatures by 2·1 °C until 2050 under three standardized scenarios based on the HadCM, ECHAM and
NCAR GCMs (b–d). The numbers in (a) show the location of the case study regions in the Czech Republic (1 – includes the
entire country), Austria (2) and Slovakia (3). The white lines show the division of the region into four quadrants.
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in the Czech Republic, Austria, Slovakia and Slovenia
under the NCAR scenario, leaving only the arable
lands in Hungary worse off.
The HUG indicated a significant increase across the

entire domain as a direct consequence of the expected
temperature increase based on the climate projections
used. Figure 2 illustrates that the present mean HUG
value would not allow for permanent successful
production of grapes across most of the domain except
in areas already established as wine-growing regions.
Very good thermal conditions for wine growing were
found especially in the southeastern part of the
domain. Under the climate scenarios studied, the
area with wine-growing potential would increase
substantially, providing HUG values sufficient for
wine production across most of the region with the
exception of mountainous areas. It must be stressed
that HUG only considers temperature requirements
during the summer period, and this is not the sole
factor in wine production (Dalla Marta et al. 2010).
Other limitations such as amount of precipitation, soil
conditions and small-scale local climatic variations
based on terrain effects (such as the effects of slope on
temperature or cold air lake conditions) were not
considered in the present paper. The results clearly
showed that the present wine-growing regions in

Central Europe will generally experience much
warmer conditions, and this may force the use of
cultivars other than those grown currently. The results
also indicated that wine growing may be possible even
in northern latitudes where wine production is
currently infeasible for climatic reasons.

Agroclimatic conditions during winter will change
significantly, including such factors as the number of
days with SC. Figure 3(a) and (b) indicates that by
2050, more than 0·8 of the domain will have an
average SC of less than 50 days, and in one-third of the
domain, SC will be less than 25 days. Despite less
frequent SC, the risk of severe frost to field crops (FR)
resulting from low temperatures (air temperature less
than −10 °C) is likely to decrease (Fig. 3(c) and (d ))
across most of the domain. However, the reduction of
SC, which protects winter crops effectively against frost
damage, could partly overcome this positive effect.
The occurrence of late FR (especially radiative frost) is
unlikely to be altered much. However, perennial crops
such as orchards will tend to start their growing season
earlier and will consequently lose their frost tolerance
earlier (Arora & Rowland 2011).

An increase of winter temperatures will inevitably
influence the vernalization conditions (V) for winter
wheat (results not shown in the figures) but the

 

(a)

(d)

(b)

(c)

Legend: (°c)

1300
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Riesling, Silvaner
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1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Fig. 2 (Colour online). Value of the HUGLIN index, which serves as a proxy for wine growing suitability in Central-Eastern
Europe, for (a) the baseline period (1961–90) and for an increase in global mean temperatures by 2·1 °C until 2050 under
three standardized scenarios based on the HadCM, ECHAM and NCAR GCMs (b–d).

Regional climate change effects on agriculture 795

https://doi.org/10.1017/S0021859612000767
Downloaded from https://www.cambridge.org/core. UB Bodenkultur Wien, on 01 Apr 2019 at 20:20:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



expected change does not exceed critical levels that
hinder the vernalization. With the exceptions of the
Pannonian basin and Rhine valley, an increase in the
mean value of V is expected mainly due to an increase
in the number of days with the optimum temperature
for vernalization. The majority of the presently used
cultivars of winter wheat or winter barley require at
least 40 vernalization days, and in most cases, they
require 50–60 vernalization days (Petr & Hnilička
2002). In light of the present results, the vernalization
season will be sufficiently long in most years. The
expected change would only prevent vernalization for
most of the presently grown winter wheat cultivars in
extremely warm winters.

Agroclimatic conditions during spring and autumn
for field operations (FOCs), (results not shown in the
figures) will be altered in that the growing season will
start earlier, and this will be accompanied by changes
in the proportion of days suitable for sowing in spring.
However, the three GCM-based predictions showed
little agreement regarding the proportion of suitable
sowing days during early spring. The NCAR-based
projections showed a slight decrease in the number of
suitable days in the centre and north and increases in

the south of the domain. The ECHAM-based results
showed an overall increase in early spring sowing
suitability. However, HadCM differed from the other
two predictions in that it predicted a substantial drop in
the number of suitable days for sowing in spring in
most of the Czech Republic, Bavaria, northern and
eastern Austria and in some regions of Hungary and
Romania. This particular result was caused by the
predicted increases, compared with the present, in
precipitation during March and April according to the
HadCM model. At the same time, FOC increased
sharply in spring in northern Italy, easternHungary and
in parts of Saxony that are within the domain.

The increase of FOCs during the autumn (25
September–25 November) was very pronounced.
The positive development mainly affected areas with
low suitability under present conditions (mountainous
areas of Austria, Italy, Slovenia, the Czech Republic,
Poland and Slovakia), whereas areas in the south-
eastern part of the domain (Hungary, eastern Austria,
northern Serbia and Croatia) showed no change or a
slight decrease. According to all three projections
(ECHAM, HadCM and NCAR), increases in the
suitable days are to be expected mainly due to an

(a)

(d)

(b)

(c)

Legend: snow days

a - baseline, b - HadCM (days)

Frost Stress

c - baseline, b - HadCM (days)

0·25 0·51 1·51 2 3 4 5

5025 75 100 150 200 250

Fig. 3 (Colour online). (a) The mean number of days with SC in Central–Eastern Europe for the baseline period (1961–90);
(b) the expected change of the number of snow days based on an increase in global mean temperatures by 2·1 °C until
2050 based on the HadCM standardized scenario; (c) the number of days at high risk of frost damage with a 20-year return
period for the baseline period and (d ) the expected change of FR based on an increase of global mean temperatures by
2·1 °C until 2050 under the HadCM standardized scenario.
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increase in the growing season (thus causing a
prolongation of the sowing window) and a drop in
precipitation in September and partly also in October
and November.
The earlier start of the growing season and the higher

rate of phenological development will lead to earlier
harvest dates for crops in general (this effect, however,
partly can be mitigated by growing later ripening
cultivars). For cereals, FOCs for harvest were analysed
for June, when the main cereal harvest will take place
under expected climate scenario conditions
(Alexandrov et al. 2002). According to the NCAR-
based scenario, the harvest suitability in June is likely
to remain the same or decrease slightly over the main
production areas; however, the results obtained using
the ECHAM-based scenario indicate increases in the
harvesting window, especially in southern parts of the
domain. The HadCM-based results indicated a rela-
tively sharp drop (on average by >10%) in the number
of suitable harvest days in June, especially across most
of the Czech Republic, parts of northern and eastern
Austria and almost all of Bavaria, with improvements
over northern Italy, most of Hungary and southern
Poland.

The effect of climate change on the infestation
pressure of two indicator pest species in
Central–Eastern Europe

European corn borer

The model indicated the presence of one or two
generations of ECB (Fig. 4(a)) under the reference
climate conditions (1960–90). Two generations are
found in the southern part of the domain, in areas that
are more climatically favourable for development of
the ECB, i.e. Hungary, the northern parts of Croatia,
Serbia and Italy, and the eastern part of Romania.
Under future climate conditions in which temperature
increases and a prolonged warm season are expected,
the area of pest occurrence is expected to expand
(Fig. 4(c)). At the same time, the emergence of bivoltine
populations and a further increase to a third generation
in the warmest areas is indicated. The results showed
that the pest would, for example, colonize areas
recently unoccupied by univoltine populations, up to
an altitude of c. 800m. The ratio of arable land that
is endangered by an increase in the number of
generations shows the decrease in the pest’s univoltine
areas due to an increase in the bivoltine population

 

(a)

(d)

(b)

(c)

Number of generations (a, c – ECB;  b, d – CPB)

Legend: baseline (a, b)

change (c, d)

+0·5

possible occur.

+1 +1all +1·5 +2 +2all +2·5 +3all

no suitable

no change

no agreement

 3.G 2.G poss.3.1.G poss.2.

Fig. 4 (Colour online). Suitability of the EI for (a) the ECB and (b) the CPB in Central–Eastern Europe for the baseline (1961–
90) period. (c) and (d ) illustrate the likely shift in the number of generations of the pests as a composite of three
standardized scenarios (HadCM, NCAR and ECHAM) for 2050. The blank areas indicate no change in the number of
generations, grey areas are not suitable for pest occurrence, and dark grey pixels indicate disagreement in the trend
between the various models. The intensity of the colour expresses the degree of the agreement between the various models.
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and the risk of three generations in some regions
(Table 3).

Colorado potato beetle

Under baseline climate conditions (1961–90), the
simulated values of the EI predicted one to four
generations of CPB over the domain (Fig. 4(b)).
Simulations of baseline climate conditions indicated
that 0·35 of arable land is threatened by one complete
generation of the CPB, 0·08 by two generations and
0·05 by three generations (Table 3). The results of the
simulations for the applied climate scenarios exhibited
an apparent trend of a widening of the pests’ climatic
niche and increase in the number of generations based
on the temperature increase (Fig. 4(d )). Similar to the
results obtained regarding the ECB, the occurrence of
at least one CPB generation is expected to increase in
the northern part of the domain up to an altitude of
800 m. In addition, there was a marked increase of
approximately two generations in the lowlands, and

three generations are expected to occur, but rarely.
The overall decrease in the area established by the
univoltine population was caused by a shift towards
higher number of populations (Table 3). The bivoltine
population would therefore occupy 0·17 of arable
land, whereas the area occupied by a third generation
increases to 0·31 (ECHAM). However, a marked
decrease in climates favourable to CPB development
under ECHAM is simulated in northern Serbia (the
Vojvodina region), where the significant temperature
increases under ECHAM exceeds the high-tempera-
ture limitation for the development of the pest and a
subsequent decrease to approximately one generation.

The effect of climate change on cereal crop
production and crop growing conditions
in Central–Eastern Europe

Various factors and regional conditions can alter the
response of crop production potential to climate
change, as demonstrated by the examination of three
regional case studies over the domain using crop
models. The simulated yield estimates did not account
for the influence of pests/diseases, changes in soil
workability and extreme events (e.g. hail, heat waves,
prolonged drought and floods); therefore, the results
should be treated together with outcomes of agro-
climatic indicators, e.g. those presented above.

The effect of climate change on spatial cereal
production conditions in the Czech Republic

In the first case study, the effects of climate change
prior to 2050 were simulated for three scenarios
(Table 1) on winter wheat and spring barley for all
arable lands of the Czech Republic.

The highest yields of winter wheat and spring barley
in the baseline climate (1961–90) were simulated at
lower altitudes in the Czech Republic (Fig. 5(a) and
(d )). Apart from the effect of climate, this result was
also determined by the good soil conditions present at
c. 250 m a.s.l. (lowlands), where arable land was
composed of chernozem (0·43), fluvisols, phaeozems,
haplic Luvisols, cambisols and regosols. The increase
in air temperature under all climate scenarios is
expected to lead to the shortening of the growing
period of both simulated crops (data not shown), as
confirmed by many related studies.

In general, the changed climate conditions prior to
2050 are expected to lead to a moderate decrease in
the yield of winter wheat when the effect of CO2

Table 3. The ratio of arable land occupied by a
particular number of generations of the CPB and the
ECB under current and expected climate conditions
according to the HadCM, NCAR and ECHAM
scenarios in 2050 (Table 1) over the entire Central
European domain

CPB ECB

First and partial
second generation

First generation

1961–90 34·8 9·5
ECHAM 2050 7·0 3·4
NCAR 2050 6·8 4·8
HadCM 2050 1·4 0·9

Second
generation

Partial Second
generation

1961–90 8·4 8·8
ECHAM 2050 16·8 36·8
NCAR 2050 11·4 28·2
HadCM 2050 10·8 8·9

Third generation Second generation
1961–90 5·1 25·1
ECHAM 2050 30·5 44·8
NCAR 2050 25·8 46·4
HadCM 2050 16·9 86·0

Fourth generation Third generation
1961–90 0·4 0·2
ECHAM 2050 2·9 13·1
NCAR 2050 6·7 17·8
HadCM 2050 1·8 3·8
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fertilization is not considered (indirect effect); this
effect would be greatest in the lowland and midland
areas (Fig. 5(c)). For spring barley, the impact on yield
was equally great because the negative effect of a
shortened growing period was outbalanced by the
earlier sowing dates (Fig. 5( f )). Generally, sites in
regions that experience low air temperatures at present
would be less negatively or positively affected by the
indirect effect (mainly due to the increase of tempera-
tures) of climatic change, as would lowland areas with
deep fertile soils. In addition, the potentially positive
effect of increased CO2 concentration on crop yields
(combined effect) (Trnka et al. 2004b) would lead to an

overall increase in the yields of winter wheat (Fig. 5(b))
and spring barley (Fig. 5(e)), especially in areas
that currently experience lower annual temperatures
(e.g. upland regions).

Assessment of the potential impacts and
adaptation options for cereals in a semi-arid
region of Austria

In the Marchfeld lowland region (in the north-east of
Austria), the changes in winter wheat and spring barley
yields were simulated for 2035 relative to the baseline
conditions using the same methodologies (crop

 

(a)

(e)

(f)

(d)

(b)

(c)

Legend (t/ha): Winter Wheat (a–c); Spring Barley (d–f)

baseline (a, b)

change 

b, e - combined

c, f - indirect –1

3 4 5 6 7 8 9

0 +1 +2 no agreement+1·5+0·5–0·5

Fig. 5 (Colour online). Mean yield levels (t/ha) of (a) spring barley and (d ) winter wheat during the baseline period (1961–
90) in the Czech Republic (78864 km2). Maps (b) and (e) show the change in yield (t/ha) resulting from climate change and
effect of increased ambient CO2, and maps (c) and ( f ) only show the effect of changed climate conditions. Set of maps
showing combined and indirect effects are based on composites of three standardized scenarios (HadCM, NCAR and
ECHAM) for 2050. The blank areas indicate no change compared to the present conditions, grey depicts areas where
estimates based on three scenarios do not agree on the sign of the change, green depicts increased yield, and red indicated
decreased yields. The results indicated in red and green represent the average results of all three scenarios.
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models and climate scenarios) as those used in the
Czech case study.

In accordance with the results of the Czech case
study for lowland regions, the impact of the changed
weather conditions under ECHAM and HadCM was
the decrease or a stagnation in the yields of winter
wheat and spring barley until 2035, at which time
spring barley exhibits more stable yields. The decrease
in yield was caused primarily by a shortened growing
season of the simulated cultivars and by reductions in
precipitation during the growing season. In Marchfeld,
even the additional effect of CO2 fertilization (com-
bined effect) could not fully offset the decrease in
yields. The decrease in yield would be more distinct
for both crops studied on soils with low water storage

capacity (Table 2, Fig. 6). Only NCAR presented a
significant increase of winter wheat and spring barley
yields, especially on soil classes 3–4 (Table 2) with
better soil water storage capacity (Fig. 6). As men-
tioned above, winter wheat yields differed more
among the three climate scenarios than spring barley
yields; this result was probably caused by the positive
and greater effect of the simulated earlier sowing dates
for spring barley under the climate scenarios.

The interannual yield variability of these two crops
is expected to increase for almost all soils, leading
to increased economic risk for farmers. Without the
positive effect of CO2 fertilization, the mean yield
would decrease more, especially on sandy soils (see
the results of the Czech Republic case study above).

(a)

(b)  

ECHAM 5 HadCM 5

Marchfeld / Austria

Marchfeld / Austria

>–10 –10 –8 –6 –4 –2 0 2
0 2·5 5 10 15 20

km

km

4 6 8

>–10 –10 –8 –6 –4 –2 0 2
0 2·5 5 10 15 20

4 6 8

NCAR PCM

ECHAM 5 HadCM 3 NCAR PCM

Fig. 6 (Colour online). Relative change (%) in the yields of (a) winter wheat and (b) spring barley for various climate
scenarios for 2035 (Table 1) in the Marchfeld region (1000 km2) in comparison with those observed under baseline
conditions (1961–90).
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The effect of climate change on crop water
demand and the effect of soil cultivation changes
on crop yield and water balance were investigated
for the Marchfeld region to evaluate potential adap-
tation effects. The effects of replacing ploughing
by the use of minimum tillage on the simulated yield
of winter wheat and spring barley are shown in Fig. 7.
The results for the 2035 scenarios showed that
such altered cultivation would lead to an increase
in the mean yield for both crops; this effect was more
pronounced for winter wheat and the NCAR scenario.
In general, replacing ploughing with minimum
tillage under the 2035 scenarios resulted in an increase
of the mean yields of winter wheat (up to 10%) and

of spring barley (up to 6%). Especially on sandy soils
with low water storage capacity (soil classes 1–2),
minimum tillage enhanced the yield potential signifi-
cantly.

This effect was mainly due to improvedwater supply
for the crops and a decrease in unproductive water
losses, resulting in higher water use efficiency. If
ploughing were replaced by minimum tillage in 2035
for the three climate scenarios, an increase of up to
2·3% vol. was seen in the simulated mean soil water
content for the winter wheat growing season and up to
4% vol. in the simulated mean soil water content
for the spring barley growing season on sandy soils
(Table 4). This result may be due to the greater (c. 12%)

ECHAM 5 HadCM 3 NCAR PCM

ECHAM 5 HadCM 3 NCAR PCM

Marchfeld / Austria

Marchfeld / Austria

8 9 107654321
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km

8 9 107654321
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0
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(a)

(b)

Fig. 7 (Colour online). Relative change (%) in the yields of (a) winter wheat and (b) spring barley yield if ploughing were
replaced by minimum tillage in the Marchfeld region (1000 km2) in 2035 for the various scenarios.
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available water storage capacity of the top 250mm
of soils under minimum tillage v. ploughing (Thaler
et al. 2012). The main effective adaptation options
for agricultural crop production in semi-arid regions
are related to irrigation. Regarding the crop water
demand required in the coming decades to main-
tain optimum yields of winter wheat and spring
barley in Marchfeld, the irrigation option ‘automatic
when required’ was used in the simulations for
baseline and climate scenarios, respectively. In this
context, the effect of nitrate leaching was also con-
sidered (in the simulation, nitrogen balance was
assumed).

The ECHAM and HadCM scenarios generally led to
similar results for potential change of water demand of
winter wheat (Table 5). Maintaining optimal yield of
winter wheat would require more water (e.g. provided
by irrigation) per year (up to 33mm for the area-
weighted average) in 2035, except under the wetter

NCAR scenario. Soils with low water storage capacity
(sandy soils) showed relatively low yields even at
present, and additional water input (irrigation) would
reduce yields under all three climate scenarios due to
strong increases in nitrate leaching (Table 6). Under
the NCAR scenario, even less irrigation would be
necessary in almost all soil classes to obtain the same
winter wheat yields as those obtained under the
baseline scenario (Table 5).

The results showed mostly increased water demand
for spring barley for all soils and scenarios (although
these are less pronounced under the NCAR scenario);
this demand was greater than for winter wheat
(Table 5). The nitrate leaching for spring barley was
29 kg/ha, almost twice as much as for winter wheat in
the baseline period. The absolute increases in nitrate
leaching rates in the climate change scenarios and
with optimized irrigation (Table 5) are, in most cases,
lower than for winter wheat (Table 6).

Table 4. Simulated relative change of mean soil water content during winter wheat and spring barley growing
periods in the Marchfeld region under climate change scenarios in 2035, if ploughing were to be replaced by
minimum tillage

Marchfeld (area weighted) Soil 1* Soil 2* Soil 3* Soil 4* Soil 5*

Mean change of soil water content (winter wheat) (%)
ECHAM +0·6 +2·3 +1·1 +0·6 0 +1·0
HadCM +0·5 +2·3 +1·1 +0·4 +0·2 +1·4
NCAR +0·9 +2·2 +1·5 +0·7 +0·8 +1·9

Mean change of soil water content (spring barley) (%)
ECHAM +3·7 +3·2 +3·7 +3·8 +3·3 +1·8
HadCM +1·0 +4·0 +1·7 +1·0 +0·4 +0·7
NCAR +1·1 +3·4 +2·5 +0·9 +0·3 +1·5

* Soil classes as defined in Table 2.

Table 5. Absolute changes of water demand (mm per growing season) required to maintain optimum yield
levels of winter wheat and spring barley in the Marchfeld region under climate change scenarios in 2035 with
respect to present conditions

Marchfeld (area weighted) Soil 1* Soil 2* Soil 3* Soil 4* Soil 5*

Mean change of water demand (winter wheat) (mm)
ECHAM +30 −10 25 33 29 14
HadCM +33 −10 30 36 31 14
NCAR −3 −30 −10 0 −3 −11

Mean change of water demand (spring barley) (mm)
ECHAM +39 29 36 38 44 31
HadCM +42 26 40 41 46 32
NCAR +11 −2 7 13 11 5

* Soil classes as defined in Table 2.
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The effects of climate change on crop growth
and yield in the lowlands of Slovakia

The effects of the climate change scenarios for 2021–
50 and 2071–2100 (Table 1) on the simulated crop
growth and yield of spring barley, winter wheat and
maize were estimated and analysed for the main
cropping regions of the Danubian and Záhorie low-
lands in Slovakia (Fig. 8).
As expected, the physiological maturity of all

simulated crops (spring barley, winter wheat and
maize) grown on different soil types was accelerated
under all three scenarios. Owing to the increased
air temperature, spring barley, winter wheat andmaize
reached maturity on average c. 6, 17 and 17 days
earlier, respectively during 2071–2100 comparedwith
the baseline of 1971–2000 (results not shown).
The combined effect of changing climate (including

the CO2 fertilization effect) would lead to increasing
grain yields of spring barley and winter wheat,
especially towards the time horizon of 2021–50. This
trend, however, would be stabilized for 2071–2100
over almost the entire area of Western Slovakia. The
highest positive yield effects for winter wheat and
spring barley were simulated for Haplic Chernozems
on Danubian lowlands in Western Slovakia. Unlike
the Marchfeld case study, the fertilizing effect of
increased concentrations of CO2 could more than
compensate for any decrease in cereal yield in this
case, probably due to lower temperature increases and
precipitation changes in the climate change scenario
applied for Slovakia (Table 1).

Maize yields tended to decline significantly com-
pared with winter wheat and spring barley under the
climate scenarios tested. The highest decrease
in rainfed maize yields was found during 2071–2100
for the entire case study region (Fig. 8). This was
because maize, as a crop grown during summer, was
more affected by drought, and the fertilizing effect of
increasing CO2 concentrations is small for C4 crops.

The interannual yield variability of simulated crop
yields is influenced mainly by the frequency of
extreme weather such as drought and heat waves,
although these effects are often not sufficiently
considered by crop models (Eitzinger et al. 2004;
Rötter et al. 2011). The present results for the Slovakian
case study demonstrated that the interannual varia-
bility of yields (indicated as upper and lower quartiles
in Fig. 8) in regions with high available water storage
capacity was relatively small. However, simulated
yields were highly variable in sandy loams, luvisols
and fluvisols over the entirety of western Slovakia.
Similar relationships were reported from Marchfeld in
Austria (Thaler et al. 2012).

The interannual yield variability of spring barley and
winter wheat, as indicated by the 90% percentile,
showed a decreasing trend especially for the 2021–50
periods, except at a few sites. However, in all cases, the
differences between the absolute extreme yield levels
increased towards 2071. Spring barley generally
exhibited lower interannual yield variability than
winter wheat and lower differences in the mean yields
between the climate scenarios tested (in agreement
with the Austrian case study).

Table 6. Changes of nitrate leaching (kg/ha per growing season) for winter wheat and spring barley in the
Marchfeld region under climate change scenarios in 2035 that will occur when the change of water demand
(as change in irrigation) of Table 5 is applied

Winter wheat Marchfeld (area weighted) Soil 1* Soil 2* Soil 3* Soil 4* Soil 5*

Present (kg/ha) 15 41 21 15 9 36

Mean change of nitrate leaching to present conditions (kg/ha)
ECHAM +10 +22 +11 +12 +6 +17
HadCM +13 +24 +14 +15 +8 +21
NCAR +18 +24 +16 +21 +12 +25
Spring barley
Present (kg/ha) 29 42 24 33 19 47

Mean change of nitrate leaching to present conditions (kg/ha)
ECHAM +7 +3 +5 +8 +6 +12
HadCM +11 +6 +9 +13 +9 +16
NCAR +19 +8 +14 +20 +21 +20

* Soil classes as defined in Table 2.
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Simulated rainfed grain maize yields (representing
ripening group FAO310) were affected by increasing
temperatures and droughts during summer, as can be
seen from the significantly higher interannual yield
variabilities especially for 2021–50 and from the
strongly decreasing mean yields towards 2071–2100.
The simulations clearly showed that the risk for maize
cultivation around this ripening group will increase in
almost all regions. However, an increase of precipi-
tation during 2021–50 will positively influence the
mean yield of grain maize on average (except for the
Nitra region). Owing to the lower fertilizing effect of
CO2 on C4 crops, the decrease in maize yields will be

greater than that of other cereals, especially in warmer
regions. Grain maize is often considered to have
increased yield potential due to its heat resistance in
the agro-climatic conditions of Slovakia. However, as
the present study shows, this could be only exploited
with later ripening cultivars and irrigation.

DISCUSSION

Common trends in the effects of climate change in
Central and South-eastern Europe

Potential crop yield changes under various climate
scenarios are affected by the interaction between
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Fig. 8. Grain yields of spring barley, winter wheat and maize for different soils on the Danubian and Záhorie lowlands
(Table 2) and the time intervals 1971–2000, 2021–50 and 2071–2100 (statistical distribution: lines represent the simulated
full yield range, and columns represent the upper and lower quartiles; the medium yield level is also shown).

804 J. Eitzinger et al.

https://doi.org/10.1017/S0021859612000767
Downloaded from https://www.cambridge.org/core. UB Bodenkultur Wien, on 01 Apr 2019 at 20:20:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



climate and other local crop growth-limiting factors.
Climate change signals together with increased CO2

concentrations influence biomass accumulation di-
rectly with respect to the genetically determined
optimal conditions for the growth and yield of specific
cultivars. However, additional parameters that affect
crop yield occur on different time scales; these include
pest, disease and weed pressures or the damaging
effects of extreme weather events such as hail, floods
and heavy precipitation. Agroclimatic conditions
also affect crop management options and the suit-
ability of crops for specific regions (Trnka et al.
2011a,b). These additional factors affect crop yields
both directly (the plant) and indirectly (e.g. via soil
conditions and crop management) and should be
considered in long-term and holistic assessments of
climate change impact studies, including the related
uncertainties (Eitzinger et al. 2008; Trnka et al. 2009).
The present study, therefore, used an extended set of
parameters for the assessment of Central European
crop yield potentials under various climate change
conditions (Table 7).
The results showed that most parts of Austria,

the Czech Republic, Germany, Poland, Romania,
Slovakia, Ukraine and Switzerland exhibited an
increase in the mean production potential for the
21st century as awhole (based on the EGR and number
of effective growing days). The Pannonian and
Mediterranean climatic regions in Hungary, Serbia,
Slovenia and Italy were exceptions; in these regions,
increases in water deficit will increasingly limit rainfed
agriculture. An increase in the severity of the 20-year
drought intensity and a more substantial water deficit
during the critical part of the growing season are very
likely over the central and western parts of the domain.
Sowing conditions during spring could deteriorate
due to increasing soil wetness, which might further
support the preference given to winter crops. Harvest
conditions in June (which will become the main
harvest period) will generally not improve beyond the
current level. In general, it is concluded that rainfed
agriculture will face more climate-related risks, and
extremely unfavourable years will occur under the
applied climate scenarios; however, the overall
conditions will probably lead to, on average, increas-
ing yield potentials over the whole domain. This find-
ing is in general agreement with previous studies that
have been conducted for this region; however, none of
these studies covered the entire domain of Central
Europe (Alexandrov et al. 2002; Trnka et al. 2011a) or
applied aggregated scales (Trnka et al. 2011b).

However, based on the combined effects of chan-
ging agroclimatic conditions, several additional nega-
tive impacts on potential yields can be assumed,
such as an increasing risk for soil erosion over the
domain, e.g. due to reduced duration of SC and
increasing winter precipitation. Overwintering con-
ditions will also change. In winter cereals, for example,
this change could affect risk of frost damage and
disease pressure either positively or negatively (de-
pending on the combination of SC, temperatures and
frost impact). However, no significant negative impacts
on the mean vernalization conditions of winter wheat
were calculated over the domain with the assumed
temperature thresholds.

Further yield-limiting factors include the increasing
potential for damage from pests due to warmer
conditions, especially from thermophile insects in
most of the domain, as demonstrated by the findings
related to the ECB and the CPB. Significant shifts in
spatial occurrence can also be expected for weeds and
diseases (Porter et al. 1991).

Spatial analysis conducted for winter wheat yields in
the Czech case study concerning altitude suggested
that cereal yields should increase especially in upland
regions, where increasing temperatures will provide
favourable conditions, rainfall will remain sufficient
and soil conditions are relatively good. The spatial
patterns of yield distribution for spring barley were
similar for all altitude categories according to all three
projections considered. Despite differences between
individual regions, the simulated trend seemed to be
slightly positive or without any significant change
across the entire Czech Republic until 2050.

In the Austrian case study region of Marchfeld,
factors that particularly limit crop yields were ana-
lysed, and these are comparable with those of the
lowland conditions in the Czech Republic. It can be
clearly seen for both winter wheat and spring barley
that shorter growing periods (Porter & Gawith 1999)
will lead to decreases in yield for currently grown
cultivars under the applied climate change scenarios
(except the NCAR scenario that includes increasing
precipitation) until 2035. Therefore, the decrease in
spring and summer precipitation in the climate
scenarios is also a crucial factor for this semi-arid
region. Owing to the limitation of crop water
availability, the decreases in yields would be even
more significant without the assumed CO2 fertilizing
effect (Amthor 2001). However, the degree of this
effect is uncertain from crop model estimates and
differs between crops and cultivars (Tubiello et al.
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Table 7. Overview of the estimated trends in factors for crop production over the Central and Eastern European domain under the various CC scenarios
presented in Table 1

Crop production
factor

CC scenario and
time horizon

Simulated region
of the domain Crops affected

Trend
(+ /0/−) Comments

EGR All 2050 North-west* All + Especially south and south-eastern part of the domain affected negatively (i.e.
Pannonian lowlands)North-east* +

South-west* −

South-east* −

Drought North-west* All − /0 Enhanced regional differences over the domain with relation to orography;
especially south and south-eastern part of the domain affected negatively; water
deficit and heat stress during summer increases over the whole domain

North-east* +
South-west* +
South-east* +

HUG index All Grapes + Improved wine growing conditions throughout the domain
Winter conditions All Winter crops

and perennials
+ /0 Overall improvement of winter conditions; little change for vernalization

conditions and late FR; Potential of higher risks for diseases; increased soil
erosion risk depending on region (orography)

Spring conditions South-east* All crops + Spring conditions improve or decrease depending on the region; autumn
conditions and harvest conditions in June will mostly improve over the domainNorth-west* −

North-east* +
South-west* −

Nitrate leaching
change (crop
model)

All 2035 Austria –Marchfeld Winter Wheat + Higher N-leaching especially on sandy soils and with irrigation
Spring barley + Higher N-leaching especially on sandy soils and with irrigation

Pest pressure–
Corn borer

All 2050 North-west* Maize + More infestation of maize due to the newly presence of the pest in still not affected
areas; additionally the increase of generation number in regions with long-term
presence of the pest

North-east* + Similar to north-west region
South-west* + Modest growth of the number of generation
South-east* + Similar to south-west region; In whole domain the shift of the pest coupledwith the

increase of generation number will likely affect economical losses caused by
lower yield of maize and higher cost of the pest management

Pest pressure–
Colorado beetle

All 2050 North-west* Potato, tomato + In areas with potato cultures higher pest harmfulness due to the increase of
generation number; total defoliation of plants with subsequent loss of yield can
be expected

North–east* + Similar to north-west
South–west* − Croatia and the north of Italy – recession of the pest as a reaction to high

temperature stress which potentially could decrease the costs of pest
management if the plants would not be affected by drought

South–east* − Serbia, Hungary – the same effect of high temperature stress as in south-west area
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1999; Tubiello & Ewert 2002;Wolf et al. 2002; Nendel
et al. 2009). In addition, the effects of direct heat stress
and ozone will probably create additional yield risks
(Semenov & Shewry 2011).

The Marchfeld study on winter wheat and spring
barley showed that because of increased water
demand, additional irrigation of c. 30–40mm would
be necessary to maintain current yield levels under the
drier scenarios because these crops are not irrigated
under current conditions. Additional water input can,
however, increase nitrate leaching rates, especially on
sandy soils, reducing positive effect on yield. Another
example of an adaptation measure that could be used
to improve crop water availability is alteration of the
soil cultivation method (the present study examined
a change from ploughing to minimum tillage), and
this leads to higher simulated soil water contents and
yields due to higher soil water storage capacity under
minimum tillage. Based on the two crops studied for
the semi-arid lowland region of Marchfeld in central
Europe, several crop management factors have to be
considered to adapt to new climatic conditions. Soil
water and N-fertilizationmanagement techniques may
play a crucial role in maintaining the production
potential of cereals (Thaler et al. 2012).

Several studies focused on Europe have noted that
climate change can affect interannual crop yield vari-
ability (Hlavinka et al. 2009; Peltonen-Sainio et al.
2010). This fact is confirmed for the present Slovakian
case study region for different sites and soils, especially
for maize. It revealed increasingmaize yield variability
towards the middle of the 21st century, followed by a
later decrease. As indicated by the Marchfeld study
results and the increasing drought frequencies under
the various climate scenarios (see the agroclimatic
indices), extreme shortages of precipitation in some
years will depress crop yields, especially on sandy
loam and loamy soils (luvisols, fluvisols and cherno-
zems). However, under good soil conditions, the direct
CO2 fertilizing effect may lead to lower yield
variability and increasing mean crop yields. Grain
maize yields are also expected to decrease for almost
all evaluated time horizons if there is no adaptation
using later-ripening cultivars and irrigation (Vučetić
2011).

Although several risks and trends can already be
described for crop yield potentials for themain areas of
the studied domain under climate change conditions
(Table 7), it is noted that the current local soil and
climate conditions can vary significantly within small
areas; changing precipitation levels and temperaturesC
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can therefore have variable effects relative to each
other on locally grown crops and cultivars.

Recommended adaptation options

Farmers must and will respond to the changing grow-
ing conditions by altering their production techniques
(Olesen & Bindi 2002; Reidsma et al. 2009). The major
climate change impacts of the present study are related
to changes in the seasonal water balance for crops
accompanied with increased temperatures; under
future climate scenarios, increasing drought and heat
stress during summer and wetter and warmer con-
ditions during winter can be expected.

Specific recommendations for adaptation can there-
fore be related to altered production techniques that
affect the water balance/demand of crops, the effective
use of water and soil resources (EEA 2005), adapted
crop timing and selection, and altered pest/disease/
weed management.

Rainfed summer crops such as maize and spring
crops, particularly in the lowlands of the domains (e.g.
the Pannonian region), will lose production potential
unless their management is altered (Trnka et al.
2010b). Therefore, the growing of winter crops and
the consequent use of intermediate crops can be re-
commended to reduce yield risks that leading to
lower mean yields and higher interannual yield
variability. Moreover, vegetation cover during winter
will protect against soil erosion resulting from warmer
winters with less SC and higher precipitation. This will
be especially important for crops grown on hilly terrain
and erosive soils over the domain (Klik & Eitzinger
2010).

Several measures for reducing unproductive evap-
oration will be increasingly crucial for rainfed crops. A
number of management options are available for
improving water availability and water use efficiency
including irrigation, soil cultivation, fertilization, crop
rotation and others (Latiri-Souki et al. 1998; Connor
2004; Tennakoon & Hulugalle 2006; Zhang et al.
2006; Hsiao et al. 2007). For example, permanent soil
cover (mulch) established during periods without
crop cover (preferably in connection with reduced
soil cultivation methods or direct drilling) can re-
duce evaporation and nitrate leaching (Thaler et al.
2012). Mulching also contributes to reduced soil
erosion, surface leakage and crust formation (thereby
reducing runoff). Windbreaks such as hedgerows can
reduce unproductive water losses, especially in the
Pannonian Lowlands, which experience high wind

loads (Müller 1993). Flexible fertilization schemes,
especially for nitrogen, should reflect seasonal shifts of
rainfall and rainfall intensity. For example, applying
precision farming methods (e.g. considering real-time
crop demand, reduced and more frequent appli-
cations, using slow-release fertilizers, etc.) can help
farmers to adapt to the new conditions.

The present results have shown that crops,
especially in the warm and dry lowland regions (the
Danubian lowlands and vast regions of the Pannonian
area of south-eastern Europe) will need more water to
maintain their production potential. With regard to
irrigation, efficient management of regional irrigation
water resources, improvements in the water use
efficiency of irrigation systems and the introduction
and application of efficient irrigation methods such as
deficit irrigation are recommended.

Owing to the increasing temperatures, growing
degree days (GDDs) will increase throughout the
domain, leading to longer vegetation seasons and
shortened crop growing periods. Simultaneously, the
number of heat extremes and heat stress days for crops
will increase significantly, and this has been identified
as an important yield-limiting factor for cereals
(drought stress is another) (Semenov & Shewry 2011).
Therefore, selection (and breeding) of adapted culti-
vars with respect to the higher expected GDD demand
and for drought and heat tolerance will be important
for all regions of the domain.

Other measures that can be used to adapt to longer
vegetation periods are shifting sowing dates or chan-
ging the crops planted to those that are adapted to
higher temperatures and exhibit heat tolerance (e.g.
millet, maize, soybeans or sunflowers). Land use,
especially in highlands with permanent grasslands,
could be increasingly forced towards fodder crops or
other farming types such as the planting of orchards or
vineyards (Trnka et al. 2011a). Where this is not
possible, a decrease in grassland production potential
can be expected (such as in the highlands of the Czech
Republic or northern and south-eastern parts of
Austria).

As demonstrated in the present study, thermophile
pests could spread considerably (and increase their
populations by breeding more often within one
season) under the future climate scenarios; this may
be exacerbated by increases in the areas being devoted
to the host crops (e.g. maize). This development will
require efficient and better crop protection methods in
future decades over the domain. In addition to
technical measures such as adapted crop rotations,
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the use of new genetic cultivars, adapted soil cultiva-
tion and monitoring and forecasting systems will be
crucial for early warning to allow efficient crop
protection.
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provided through support of the 6th FP EU projects
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CLIMSAVE (Climate Change Integrated Assessment
Methodology for Cross-Sectoral Adaptation and
Vulnerability in Europe) no. 244031, OPVK project
Partnership in Climate Research and Adaptation
Strategies (no.: CZ.1·07/2·4·00/31·0056) and COST
734 action.
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Abstract: Crop simulation models, which are mainly being utilized as tools to assess the consequences

of a changing climate and different management strategies on crop production at the field scale,

are increasingly being used in a distributed model at the regional scale. Spatial data analysis and

modelling in combination with geographic information systems (GIS) integrates information from soil,

climate, and topography data into a larger area, providing a basis for spatial and temporal analysis.

In the current study, the crop growth model Decision Support System for Agrotechnology Transfer

(DSSAT) was used to evaluate five gridded precipitation input data at three locations in Austria.

The precipitation data sets consist of the INtegrated Calibration and Application Tool (INCA) from the

Meteorological Service Austria, two satellite precipitation data sources—Multisatellite Precipitation

Analysis (TMPA) and Climate Prediction Center MORPHing (CMORPH)—and two rainfall estimates

based on satellite soil moisture data. The latter were obtained through the application of the SM2RAIN

algorithm (SM2RASC) and a regression analysis (RAASC) applied to the Metop-A/B Advanced

SCATtermonter (ASCAT) soil moisture product during a 9-year period from 2007–2015. For the

evaluation, the effect on winter wheat and spring barley yield, caused by different precipitation

inputs, at a spatial resolution of around 25 km was used. The highest variance was obtained for the

driest area with light-textured soils; TMPA and two soil moisture-based products show very good

results in the more humid areas. The poorest performances at all three locations and for both crops

were found with the CMORPH input data.

Keywords: DSSAT; INCA; ASCAT soil moisture; SM2RAIN; satellite precipitation data

1. Introduction

The behavior of crops under environmental conditions and cultivation practices can be analyzed

with the useful tool and technique of crop growth models. Depending on their purpose, the models

differ in their approaches and complexity, with consequences for the required type and amount of

input data. Consisting of one or more mathematical equations, descriptive or empirical models define

the behavior of a system or part of a system in a simple manner [1], such as agrometeorological indices.

These can be an efficient tool to relate various crop responses to environmental observations if the

Atmosphere 2018, 9, 290; doi:10.3390/atmos9080290 www.mdpi.com/journal/atmosphere
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extent of the measurements or of data availability is limited. Explanatory (or process-oriented) crop

models comprise quantitative descriptions of the mechanisms and processes that cause the behavior

of a system [1]. These are based on bio-physical plant processes, simulating the diurnal effects of

changes in the environment on plant growth as well as development. The core processes of such crop

models are all methods which aim to assess potential changes in plant production, e.g., phenology,

photosynthesis, dry matter production. Environments with limited water and nutrition are included

by using soil water balance modules including transpiration and nutrient (e.g., nitrogen, phosphor,

and potassium) transformations in the soil as well as remobilization within the plants [2].

The main aim of a crop simulation model is to assess the consequences of climatic conditions and

individual management behavior on plant production at the field scale. In a further step the results

can be implemented in a distributed model at the regional scale. Limitations usually occur on the

availability and quality of used data. Weak quality input data is often the main source of uncertainty in

simulated outputs; e.g., caused by spatial representative problems or measurement errors. In addition,

challenges arise at the regional scale in which model input parameters must be collected at dispersed

point features such as weather stations [3] and produce outputs for local spots (for example, soil pits).

Spatial data analysis and modelling in combination with geographical information systems (GIS)

can help to integrate information from crop model outputs into a larger area [4,5]. For example, soil,

climate, and topographical data provide the interface of these two technologies and are at the same

time the basis for spatial and temporal analysis. An increasingly promising approach for monitoring

crop growth or grain yield over large regions more accurately is the additional use of remote sensing

data for spatial crop growth model applications. The linkage between crop simulation models with

remote sensing and modelling techniques has been already applied in various examples, such as

regional crop forecasting [6–8], agro-ecological zoning [9–11], crop suitability assessments [12–14],

yield gap analysis [15,16], and in precision agriculture applications [17,18].

Data assimilation methods that incorporate remote sensing data into existing crop growth

modelling frameworks might help to reduce uncertainty of the model simulations and to increase

the evidence of the predicted models [19,20]. In such frameworks, one needs to distinguish between

(i) driving variables (which constrain the system); (ii) state variables (which characterize the system

behavior); (iii) model parameters (which establish the relation between driving and state variables);

and (iv) output variables (observable functions of the state variables) [4]. Several methods have

been developed and used to combine remote sensing data into agroecosystem models, mainly [4,20]:

(i) the direct use of remote sensing inputs as a forcing variable, where at least one state variable

must be replaced by measured data. A key challenge is the precondition of model calibration [4,21];

(ii) crop simulation models must re-initialize or re-calibrate using simulated and observed state

variables [19–21]. This approach has gained attention in the scientific community by using optimize

algorithms. Nevertheless, this method increases the amount of computation resources [20,22–26];

(iii) the continuous updating of a state variable of the model (for example, leaf area index) is only

possible if data observation is ongoing. This method shows a higher flexibility in comparison to the

others. However, this methodological approach requires a higher accuracy of data quality from remote

sensing [27–30].

A key advantage of using remotely sensed information is to provide quantitative information

on actual state of crop conditions over a large scale [2]; whereabouts crop models can assess the

temporal dynamics of the plants. Even in the early use of crop model applications, Wiegand et al. [31]

and Richardson et al. [32] recommended the use of remotely sensed information to enhance crop

model outputs. Satellite rainfall as a model input was studied by Reynolds et al. [33], who used

rainfall estimation images for regional yield prediction with a resolution of 7.6 km obtained from the

geostationary Meteosar-5 satellite for Africa; Ovando et al. [34] evaluated soybean yield estimations

using satellite precipitation input data in a crop growth model.

This paper analyses how different types of spatial precipitation data, taken as the input, influence a

crop model application. Finding site-representative precipitation estimates is of importance, as rainfall
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patterns during the growing season play a key role in crop growth and development conditions.

Similar importance is reported for other applications, such as the assessment of drought events,

adaptive behavior and response to a warmer climate, weather forecasting, agriculture, and disease

prevention [35,36]. In the current study, the dynamic crop growth and yield model Decision Support

System for Agrotechnology Transfer (DSSAT v.4.0.2.0) [37] for wheat and barley was applied at three

case study sites in Austria, characterized by different climate and soil conditions. Precipitation input

data were used on the one hand as a reference from weather station-based measurements (point

location) and on the other hand were compared to different types of spatial precipitation data: the

data from the INtegrated Calibration and Application Tool (INCA) from the Meteorological Service

Austria (1 km grid spatial resolution as well as a 25 km raster mean value), two satellite precipitation

data sources—Multisatellite Precipitation Analysis (TMPA) and Climate Prediction Center MORPHing

(CMORPH) with a 0.25 × 0.25◦ spatial resolution—a new soil moisture (SM)-derived rainfall dataset

obtained through the application of the SM2RAIN algorithm [38,39] to the Metop-A/B Advanced

SCATtermonter (ASCAT) soil moisture product (25 km spatial resolution) and a simple regression

analysis of satellite SM data from Metop ASCAT (25 km spatial resolution). First, the performance of

the different precipitation data was assessed for the three reference locations (weather station sites

at each case study area). The second purpose of this study was to evaluate the consequences of the

different types of precipitation data as crop model inputs, considering simulated spring barley and

winter wheat yield at different soil types in the three study areas. The main aim was to test and

compare whether the satellite-based precipitation data are suitable sources as input data for crop

models and to identify their limitations in comparison to INCA. INCA data sets, with their high spatial

resolution of 1 km, are already used as crop model inputs in Austria (for example, for the operational

drought monitoring system in Austria and in research studies); however, INCA data are relatively

expensive, so a survey of acceptable alternatives is of interest for several applications. Further, it is also

of interest to determine under which circumstances and to which degree errors in precipitation data

are propagated into final crop model results (simulated crop yield). Precipitation is the main uncertain

limiting crop growth parameter over the area of interest; thus, information regarding under which

conditions this important weather input parameter could be replaced by alternative spatial sources

is essential.

2. Materials and Methods

2.1. Study Areas

Three sites in different climatic regions in Austria were chosen for this study (Figure 1).

Groß-Enzersdorf (48◦12′ N, 16◦33′ E, 156 m a.s.l.) in Lower Austria is located in eastern Austria

and is influenced by a semi-arid, continental climate whereabouts summers are hot and intermittently

dry; winters are most of the time cold with strong frosts and rarely snow cover. The annual mean

temperature in Groß-Enzersdorf from 1981–2010 was 10.3 ◦C and the mean annual precipitation sum

was 516 mm.

Hartberg (47◦17′, 15◦58′ E, 359 m a.s.l.) in Styria is located in the south-eastern part of Austria

and is characterized by both Mediterranean and continental climates with warm summers and mild

winters. The mean average temperature was 9.4 ◦C and the annual precipitation sum was 716 mm

(1981–2010).

Kremsmünster (48◦3′ N, 14◦8′ E, 384 m a.s.l.) in Upper Austria was chosen as the third site and

is characterized by a central-European transition climate influenced by the Atlantic climate. It is a

humid area with a moderate climate. The mean average temperature was 9.1 ◦C and the mean annual

precipitation sum was 1003 mm (1981–2010).
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Figure 1. The four applied soil classes for agricultural land use for Austria and the three study sites.

These three locations, characterized by different climates, and four soil classes (Table 1, Figure 1)

used in the study represent the main arable cropping areas in Austria, which occupies about 25% of

the total area of Austria, quite well. We note that a high resolution and qualitative soil map is available

only for the agricultural areas of Austria. Grasslands were not covered by this study.

Table 1. Four soil classes according to the available water capacity for Austria.

Soil Classes LL DUL SAT Area Percentage in Austria (%) Available Water Capacity Soil Type

soil class 1 0 0.1 0.1 14.1 very low loamy sand
soil class 2 0.1 0.2 0.3 33.7 low sandy loam
soil class 3 0.2 0.4 0.5 47.5 moderate sandy loam
soil class 4 0.2 0.4 0.5 4.7 high loamy silt

LL = lower limit of plant extractable soil water; DUL = drained upper limit; SAT = saturated soil water content.

2.2. Crop Growth Model

The DSSAT 4.0.2.0 crop model is a mechanistic or process-based, management-oriented

model [37,40] and the input requirements comprehend daily weather data, soil conditions, plant

characteristics, and crop management [41].

The minimum daily weather inputs for DSSAT are global solar radiation, maximum, and

minimum air temperature, and precipitation [42]. These data were available from the Austrian

Met Service (ZAMG) for the three weather stations Groß-Enzersdorf, Hartberg, and Kremsmünster.

Soil inputs include the soil water contents (volumetric fraction) for the lower limit of plant water

availability (LL), and for the drain upper limit (DUL), where capillary forces are higher than gravity

ones, and for field saturation (SAT) [42]. In the model, the FAO-56 Penman–Monteith equation [43]

was used to calculate the evapotranspiration. Four different soil classes (termed here in as soil 1,

soil 2, soil 3, and soil 4, respectively) were calculated from the total available water capacity (Table 1,

Figure 1).

As there was no observed crop yield for all three sites available, two well calibrated crops for

eastern Austria, the winter wheat cultivar “Capo” [44] and spring barley cultivar “Magda” [45], were
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used in this study. The simulation was set for rain-fed farming, including N fertilization (spring

barley: 2 × 40 kg N/ha, 1 × 25 kg P/ha and 1 × 170 kg K/ha; winter wheat 2 × 52 kg N/ha,

1 × 26 kg P/ha and 1 × 100 K/ha), fix sowing date, harvest at maturity, and ploughed soil condition,

without considering a potential yield loss provoked by pest or diseases. The sowing dates were mean

values from different experimental sites of the Austrian Agency for Health and Food Safety (AGES)

and were set as fixed for spring barley on March 19 in Groß-Enzersdorf and on March 24 in Hartberg

as well as in Kremsmünster. For winter wheat, the dates were set on October 1 at all three locations.

2.3. Precipitation Datasets

Different spatial precipitation crop model input data were used during the 9-year period from

2007 to 2015 (Table 2): precipitation data were obtained from a nowcasting model (INCA), satellite

precipitation data and rainfall estimations from SM data. All datasets were completed in the

investigated period.
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Table 2. Spatial precipitation input datasets in this study.

Name Abbreviation Short Description
Spatial

Resolution
Input Data

Temporal
Resolution

Reference Available

(1) forecasting system

Integrated Nowcasting
through
Comprehensive
Analysis

INCA
observation-based analysis and
forecasting system

1 km horizontal
resolution and
200 m vertical
resolution

Surface sensor observations,
weather radar, satellite data,
topographic data and
forecast models

hourly
Haiden et al.
[46]

Commercially available:
www.zamg.ac.at

(2) satellite precipitation data

Multi-satellite
Precipitation Analysis

TRMMRT
Tropical rainfall Measuring
Mission (~40S–40N and
~50S–50N)

0.25◦ × 0.25◦
satellite microwave and IR;
gauge (for calibration)

Sub-daily,
daily, monthly

Huffmann et al.
[47]

Freely available:
https://pmm.nasa.gov/TRMM

Climate Prediction
Center MORPHing

CMORPH
High resolution precipitation
(60S–60N)

0.25◦ × 0.25◦ satellite microwave
Sub-daily,
daily

Joyce, R. J. et al.
[48]

Freely available:
http://www.cpc.ncep.noaa.gov/
products/janowiak/cmorph_
description.html

(3) Estimated rainfall based on satellite soil moisture dataset

SM2RASC

analytical relationship by
inverting a soil–water balance
equation from soil moisture time
series

25 km (sampled
at 12.5 km)

ASCAT—Metop’s Advanced
Scatterometer

daily
Brocca et al.
[38,39]

Available upon request, SM-Data:
http://hsaf.meteoam.it/

RAASC

exponential regression analyses
of soil moisture values and
precipitation

25 km (sampled
at 12.5 km)

ASCAT—Metop’s Advanced
Scatterometer

daily
Constructed in this study SM-Data:
http://hsaf.meteoam.it/
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2.3.1. Integrated Now-Casting through Comprehensive Analysis (INCA)

INCA, a system of the Austrian Meteorological Agency (ZAMG), produces analyses and forecasts

of weather parameters in a very high spatial and temporal resolution [46]. The goal of the INCA

system is to provide a high-resolution weather forecast information at 1 × 1 km resolution from 6 h

until 14 days. Furthermore, INCA should be more suitable for mountain landscapes, where especially

attention is given to the behavior of orographic effects. The database includes topography information,

more than 200 ground meteorological stations, weather radar, satellite data, and forecast models.

Analyses and nowcasts are updated and produced at 1 h intervals on a horizontal resolution of 1 km

and a vertical resolution of 200 m [49]. As model inputs, the INCA data at a 1 km resolution (INCA1km)

were used. Additionally, the average of all 1 km INCA pixels within one ASCAT resolution cell was

calculated to obtain a regional value commensurate with the ASCAT-based precipitation estimates.

To simulate the ASCAT resolution cell, a Hamming window with a radius of about 23.7 km was

used (INCA23km).

2.3.2. Satellite Precipitation Data

In the current study, two high-resolution satellite precipitation data sets were additionally used:

the Tropical Rainfall Measurement Mission (TRMM), Multi-satellite Precipitation Analysis (TMPA) [47],

and the NOAA CPC MORPHing Technique (CMORPH) [48].

The National Aeronautics and Space Administration (NASA) in cooperation with the Japan

Aerospace Exploration Agency (JAXA) developed TMPA [50], a system where the estimates are

reached by calibrating and merging passive microwave data and ~10 µm band infra-red (IR)

data from multiple satellite sensors [51]. Six passive microwave radiometers (PMW) named

the TRMM Microwave Imager (TMI), Special Sensor Microwave/Imager (SSM/I), Advanced

Microwave Scanning Radiometer-EOS (AMSR-E), Advanced Microwave Sounding Unit-B (AMSU-B),

Special Sensor Microwave Imager/Sounder (SSMIS), and Microwave Humidity Sounder (MHS) are

utilized for rainfall estimates [50]. The IR data are accessible from the international constellation

of Geosynchronous Earth Orbit (GEO) satellites [51] and contain rainfall estimates at a high

spatial-temporal resolution. The product is available for the ±50◦ latitude band over a grid with a

0.25◦ spacing every 3 h [47]. In the current study, the TMPA 3B42 in real-time (RT) product, version 7,

is used. Detailed information about the TMPA product can be found in Huffman et al. [47]. TMPA is

hereafter referred to as TRMMRT.

CMORPH technology is developed from the NOAA/Climate Prediction Center (NOAA/CPC)

and their data are available at a 0.25◦ × 0.25◦ horizontal resolution from December 2002 to the present

on a 3-hourl basis [51] for the ±60◦ latitude band. Rainfall estimates are obtained from the same PMW

radiometers (AMSU-B, SSM/I, TMI, and AMSR-E) used for retrieving TRMM rainfall estimates [48].

The dataset obtained through CMORPH v1 is hereafter referred to as CMORPH.

Both TRMMRT and CMORPH products did not use ground rainfall observations to correct

satellite precipitation estimates. Diurnal accumulated precipitation was calculated by adding up

rainfall estimates within one day.

2.3.3. Estimated Rainfall Based on Satellite SM Dataset

The Advanced SCATterometer (ASCAT) is a real-aperture radar instrument operating in the

C-band (5.255 GHz) using vertical transmit and vertical receive (VV) polarization. ASCAT is part

of the payload of a series of three Metop satellites. At the moment, Metop-A and Metop-B share

the same sun-synchronous polar orbit. They were launched in October 2006 and September 2012,

respectively. The last Metop satellite, Metop-C, is foreseen to be launched in October 2018, also

carrying an identical ASCAT instrument [52,53]. ASCAT provides a surface soil moisture (SM) product

characterized by a ~25 km (sampled at 12.5 km) and daily spatial-temporal resolution [54]. The SM

product corresponds to a depth of 2–3 cm and ranges between 0% (dry) and 100% (wet) presenting the
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relative soil saturation [55]. A Soil Water Index (SWI) can be used to get root-zone SM information,

which is a more robust product applicable for deeper soil layers and presents lower measurement

noise [54].

Two approaches to estimate daily precipitation by using these satellite SM observations were

used in this study, as follows:

1. An analytical relationship derived by inverting a soil–water balance equation for estimating

rainfall accumulations from SM time series named SM2RAIN [38,39]. This method estimates

rainfall by exploiting the knowledge about the changes in time of the amount of water stored in

the soil [56]. A detailed description of the method can be found in Brocca et al. [38]. The method

has been applied to several SM products and validated at different spatial/temporal scales. In

the current study, the dataset obtained through the application of SM2RAIN to the ASCAT SM

product was named as SM2RASC [56].

2. A direct statistical relationship between measured precipitation and the SM of the ASCAT. To

estimate the daily accumulated precipitation (rainfall), the difference in ASCAT soil moisture

between two consecutive days was calculated. As soon as more than one daily ASCAT SM value

was available, the daily mean was used for the calculation. The daily SM differences were applied

in five intervals from −100 until 100 mm, where the mean measured precipitation was added.

An exponential regression analysis of these SM values (dependent variable) with the average

precipitation (independent variable) in each class and each location was carried out (Figure 2).

Subsequently daily precipitations were calculated with the three equations and further named as

RAASC. The analyses were done for the months March until October for the period 2007–2015.

 

 

 

−

Figure 2. Scatterplot of daily difference of the Advanced SCATterometer (ASCAT) signal (in 5 step

classes in mm) and the average precipitation [mm] as well as their exponential regression equation and

r2—March–October 2007–2015.

2.4. Methods Used for the Evaluation of Model Performance

Initially, a comparison of the precipitation datasets was carried out in order to evaluate the

differences of the INCA1km in reference to the measured station data (point location). The analysis

was done by calculating the least-squares coefficient of determination (r2), the root mean square error

(RMSE), and the mean absolute error (MAE) between the daily and monthly precipitation sums.

To obtain a regional value, INCA1km was aggregated to one ASCAT resolution cell (INCA23km).

Then, an evaluation of the two SM-based products and the two satellite precipitation data with

INCA23km (benchmark) at the 25 km scale was carried out.

In a last step, the crop model simulations were carried out over a 9-year period covering 2007–2015

for five different daily precipitation model inputs; as references, daily precipitation data from INCA23km

were used. Furthermore, SM2RASC, RAASC, TRMMRT, and CMORPH were used as forcing variables,
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respectively (Figure 3). These rain data were utilized only for the months March until October, as

satellite soil moisture retrievals are influenced by the presence of snow and frozen surfaces [57].

From November until February, INCA23km rainfall data was used. To assess and compare model

performance, a set of statistical parameters was calculated: the mean absolute error (MAE), the root

mean square error (RMSE), the percent bias (PBias), the index of agreement (d), and the least-squares

coefficient of determination (r2).

 

 

Figure 3. Simple flowchart of the methods used for the evaluation of model performances. SM: soil

moisture; INCA: Integrated Now-casting through Comprehensive Analysis; TRMMRT: Multi-satellite

Precipitation Analysis; CMORPH: Climate Prediction Center MORPHing.

3. Results

3.1. Rainfall Datasets Comparison

The daily and monthly precipitation differences between point-measured (ZAMG) and areal

estimates from INCA1km for the months March until July and years 2007–2015 are shown in Table 3.

For the evaluation, only five months per year were considered, as they include the main growing

period of the two simulated crops, spring barley and winter wheat. Trends during the growing season

period (March until July) were estimated on a monthly scale to get the temporal variability of the

product performance by calculating r2, RMSE, and MAE. INCA1km performs very well with an r2

greater than 0.69 (diurnal) and 0.89 (by the month), respectively, as well as a daily RMSE < 4 mm and

monthly RMSE < 18 mm. The daily MAE is between 0.7 and 1.4 mm, the monthly one between 8.5

and 17.7 mm. It should be kept in mind that INCA1km also integrates the ground measurements to

estimate the gridded precipitation values.

To evaluate values in the same spatial resolution, and due to the good accordance of INCA1km

and ZAMG precipitation values, INCA data were next aggregated to the 25 km scale. The aggregated

INCA23km presents in all three locations a higher precipitation sum (monthly and daily) and
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is particularly pronounced in the first three months of the study in all three locations (except

Groß-Enzersdorf in April and Kremsmünster in March) (Table 4).

Table 3. Statistical parameters of rainfall differences between point-measured (ZAMG) (as reference)

and INCA1km for the months March until July 2007–2015.

Groß-Enzersdorf Hartberg Kremsmünser

Daily based

r2 0.8 0.69 0.82
RMSE 2.38 mm 3.71 mm 2.95 mm
MAE 0.7 mm 1.37 mm 1.26 mm

Monthly based

r2 0.96 0.89 0.96
RMSE 8.49 mm 17.69 mm 12.31 mm
MAE 4.13 mm 12.12 mm 6.64 mm

In a next step, the two SM-based products SM2RASC, and RAASC, as well as the two satellite

precipitation datasets TRMMRT and CMORPH, were compared with INCA23km (benchmark) in terms

of rainfall estimation (daily: Table 5, monthly: Figure 4).

The lowest r2 can be seen in the RAASC daily and monthly precipitation data. RAASC is

characterized by high values during low precipitation periods and by lower values in very humid

months (Figure 4). The other three approaches show—for the most part—a good coefficient of

determination (up to 0.52 daily and 0.68 monthly) with INCA23km. One exception is SM2RASC in

Kremsmünster, where it shows high deviations and presents weak monthly performance results (r2

= 0.18 and RMSE = 60 mm). The two SM-based products present a low root-mean-square error in

Groß-Enzersdorf; in the other two locations RMSE differences between SM-based products and satellite

precipitation data are smaller (Table 5, Figure 4).

 

 
(a) 

Figure 4. Cont.
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Figure 4. Monthly rainfall differences between INCA23km and SM2RASC, RAASC, TRMMRT and

CMORPH, respectively, for the period March until July 2007–2015 in (a) Groß-Enzersdorf; (b) Hartberg;

(c) Kremsmünster.

The number of rain days alone was not considered in this study as a main crucial factor for crop

water balance in Austria, as factors such as actual evapotranspiration affecting soil water balance are

omitted. More important is the soil available water capacity for the plants and its dynamics on a daily

basis, which is used in this study as the best estimator of crop water stress available; e.g., [43].
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Table 4. Monthly precipitation sums and mean differences of rainfall (monthly and daily) between INCA1km and INCA23km for the months March until July 2007–2015.

Groß-Enzersdorf Hartberg Kremsmünster

Prec. (mm)
INCA1km

Prec. (mm)
INCA23km

Mean diff.
mo. (%)

Mean diff. d.
(%)

Prec. (mm)
INCA1km

Prec. (mm)
INCA23km

Mean diff.
mo. (%)

Mean diff. d.
(%)

Prec. (mm)
INCA1km

Prec. (mm)
INCA23km

Mean diff.
mo. (%)

Mean diff. d.
(%)

March 304 446 46 0.5 322 393 22 0.3 615 680 11 0.2
April 300 332 11 0.1 323 398 23 0.3 376 489 30 0.4
May 600 767 28 0.6 892 1113 25 0.8 1075 1318 23 0.9
June 678 804 18 0.5 1005 1139 13 0.5 1284 1382 8 0.4
July 693 770 11 0.3 1025 1175 15 0.5 1058 1246 18 0.7

Prec. = precipitation, diff. = difference, mo. = monthly, d. = daily.

Table 5. Statistical parameters of daily rainfall differences between INCA23km (benchmark) and SM2RASC, RAASC, TRMMRT as well as CMORPH for the months

March until July 2007–2015.

Groß-Enzersdorf Hartberg Kremsmünster

SM2RASC RAASC TRMMRT CMORPH SM2RASC RAASC TRMMRT CMORPH SM2RASC RAASC TRMMRT CMORPH

MAE 1.67 2.31 1.86 1.75 2.8 2.97 2.37 2.11 3.04 3.69 2.88 2.75
RMSE 3.72 4.03 4.71 4.75 5.02 5.66 5.68 5.33 5.37 5.78 5.94 5.73

r2 0.45 0.32 0.41 0.42 0.3 0.19 0.47 0.52 0.34 0.23 0.36 0.37
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3.2. Crop Model Performance

The influence of four different forcing variables (2 SM-based products SM2RASC and RAASC,

2 satellite precipitation data TRMMRT, and CMORPH) were used as an input on the DSSAT model in

order to evaluate their impact on spring barley and winter wheat yield estimations in comparison to

the benchmark (INCA23km).

3.2.1. Spring Barley

The growing season for spring barley reaches from March until July. The sowing date was set as

fixed (see Section 2.2) and the 9-year mean flowering was simulated between 5 and 9 June and mean

maturity from 30 June (Groß-Enzersdorf) until 5 July (Kremsmünster). The mean spring barely yield

over all soil classes (soils 1–4) was simulated in Groß-Enzersdorf with around 4700 kg/ha, in Hartberg

around 5100 kg/ha, and in Kremsmünster 4400 kg/ha (Table 6).

A detailed comparison of the spring barley yield, estimated with INCA23km input (benchmark),

showed that none of the other grid precipitation inputs perfectly reproduced the simulated yields in

all years (Figure 5, Table 6). The analyses were carried out for all soil types together (soils 1–4) as well

as separately (soil 1, soil 2, soil 3, and soil 4).

In the semi-arid area of Groß-Enzersdorf, the different types of precipitation inputs caused

the highest deviations, where mainly light-textured soils (soil classes 1 and 2 with mostly

RMSE > 600 kg/ha) are more sensitive than moderately fine-textured soils (soil classes 3 and 4)

(Figure 4, Table 3). SM2RASC generally presented the highest MAE (soil 1–4 = 512 kg/ha) and RMSE

values (soil 1–4 = 633 kg/ha), whereas CMORPH showed the lowest one (soil 1–4 = 431 kg/ha). It is

also noticeable that SM2RASC and CMORPH underestimated the barley yield (negative PBias), where

RAASC and TRMMRT input data demonstrated a positive PBias (Table 3).

 
(a) 

Figure 5. Cont.
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(b) 

 
(c) 

Figure 5. Boxplots of the relative differences [%] of spring barley yield INCA23km vs. SM2RASC

(black line), RAASC (red line), TRMMRT (green line) and CMORPH (blue line) precipitation inputs in

(a) Groß-Enzersdorf; (b) Hartberg and (c) Kremsmünster 2007–2015. The box lines represent the 25th,

50th and 75th percentiles, while the whiskers present the max and min values.
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Table 6. Mean yield (kg/ha) with INCA23km input data and comparative statistics (MAE, RMSE, PBias, d and r2) of model performance in simulated crop yield using

SM2RASC, RAASC, TRMMRT, and CMORPH precipitation inputs against INCA23km inputs for the three study areas—spring barley.

Groß-Enzersdorf Hartberg Kremsmünster

Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4

Mean yield (kg/ha) with INCA23km input data

4727 3118 4444 5644 5701 5111 4056 5078 5779 5532 4451 3654 4451 4890 4810

SM2RASC—INCA23km

MAE 512 719 532 488 307 215 352 270 127 111 144 237 58 139 142
RMSE 633 803 618 655 384 369 582 396 168 149 220 319 64 214 203

PBias % −9.10 −23 −10.8 −7.8 −1.6 −3.2 −7.6 −4.6 −1.2 −0.7 −0.9 3.5 −0.5 −2.8 −2.9
d 0.94 0.75 0.69 0.69 0.67 0.95 0.49 0.71 0.98 0.97 0.95 0.72 0.98 0.86 0.87
r2 0.89 0.76 0.49 0.35 0.18 0.87 0.26 0.43 0.93 0.89 0.87 0.31 0.95 0.69 0.73

RAASC—INCA23km

MAE 374 449 525 318 202 235 509 148 149 136 219 304 102 222 246
RMSE 544 679 691 427 250 343 615 198 157 173 275 355 126 276 290

PBias % 7 12.2 11.5 4.9 2.5 −1.7 −11.4 −0.8 0.7 2 −3.2 −0.3 −2.1 −4.5 −5.1
d 0.94 0.67 0.47 0.76 0.87 0.96 0.39 0.94 0.98 0.96 0.93 0.45 0.93 0.78 0.77
r2 0.86 0.41 0.04 0.52 0.68 0.92 0.12 0.83 0.93 0.91 0.84 0.07 0.88 0.68 0.7

TRMMRT—INCA23km

MAE 385 556 466 310 209 135 101 161 170 111 254 401 220 206 189
RMSE 506 691 593 351 267 174 131 206 201 147 340 515 334 215 197

PBias % 6.3 10.8 7.9 5.2 3.6 −1.8 −1.2 −2.1 −1.8 −1.8 0.3 −3.6 −2.1 2.5 3.4
d 0.95 0.81 0.68 0.86 0.86 0.99 0.94 0.94 0.97 0.97 0.93 0.5 0.67 0.89 0.91
r2 0.88 0.51 0.33 0.83 0.76 0.96 0.8 0.84 0.91 0.94 0.79 0.14 0.18 0.78 0.93

CMORPH—INCA23km

MAE 350 537 259 296 309 166 272 160 146 85 405 581 497 286 255
RMSE 431 599 327 361 386 277 428 275 193 109 602 904 670 333 265

PBias % −2.7 −14.8 −2.2 −0.8 1.8 −0.9 −4.3 −1.6 0.9 0.5 −3.1 −11.9 −9.6 1 5.3
d 0.97 0.83 0.88 0.85 0.68 0.97 0.55 0.9 0.97 0.98 0.82 0.25 0.34 0.75 0.82
r2 0.92 0.73 0.68 0.53 0.17 0.91 0.15 0.71 0.9 0.95 0.62 0.04 0.01 0.37 0.93
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Lower yield differences were found in the more humid areas of Hartberg and Kremsmünster with

all precipitation inputs—especially for soils 3 and 4 (Figure 4). It can be notice, that the RMSE values

in these two locations are about less than half that in Groß-Enzersdorf. Above all, TRMMRT presents

very low MAE and RMSE values in Hartberg (MAE: soil 1–4 = 135 kg/ha; RMSE: soil 1–4 = 174 kg/ha)

and the highest r2 (soil 1–4 = 99%) as well as d (soil 1–4 = 96%). CMORPH, on the other hand, shows

difficulties to simulate yield in Kremsmünster, which is characterized by the highest RMSE (soil 1–4 =

602 kg/ha) and the weakest coefficient of determination (soil 1–4 = 82%) as well as index of agreement

(soil 1–4 = 62%) (Table 3). The light-textured soils result in all simulations in a negative PBias; soils 3

and 4 do not show such a clear trend.

3.2.2. Winter Wheat

The winter wheat phenological season spans from October until July, including a dormant period

during winter. The sowing date was set as fixed on October 1 and the 9-year mean flowering date was

simulated between 27 and 30 May, with mean maturity between 28 June and 3 July. The mean yield for

all soil types together (soils 1–4) was simulated between 5500 kg/ha in Kremsmünster and 5900 kg/ha

in Hartberg (Table 7).

The variation of winter wheat yields, as a result of different precipitation input data, illustrated a

similar behavior to the spring barley simulations.

Groß-Enzersdorf presented the highest winter wheat yield deviations (Figure 5)—especially

for soil classes 1 and 2, with RMSE values up to 1800 kg/ha. The outlier in soil 1 was caused in

year 2011, where INCA23km input data simulated yield failure. SM2RASC, TRMMRT, and CMORPH

mainly underestimated yield, whereas RAASC presented a positive PBias (Figure 5, Table 4). All in all,

RAASC showed the strongest performances, with the lowest RMSE (soil 1–4 = 818 kg/ha) and a high d

(soil 1–4 = 0.94) as well as r2 (soil 1–4 = 0.84).

In the two locations Hartberg and Kremsmünster, lower deviations can be seen (Figure 6). Notable

are the TRMMRT input data, which simulated winter wheat yield in Hartberg (RMSE soil 1–4 =

194 kg/ha; d > 95%) and SM2RASC in Kremsmünster (RMSE soil 1–4 = 223 kg/ha, d > 95%) very well

(Table 4). CMORPH input data caused the highest deviations and the poorest performances. All four

rainfall input data showed a yield underestimation (negative PBias) (Table 4).

 

 
(a) 

Figure 6. Cont.
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Figure 6. Boxplots of the relative differences [%] of winter wheat yield INCA23km vs. SM2RASC

(black line), RAASC (red line), TRMMRT (green line) and CMORPH (blue line) precipitation inputs in

(a) Groß-Enzersdorf, (b) Hartberg and (c) Kremsmünster 2007–2015. The box lines represent the 25th,

50th and 75th percentiles, while the whiskers present the max and min values.
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Table 7. Mean yield (kg/ha) with INCA23km input data and comparative statistics (RMSE, PBias, d and r2) of model performance in simulated crop yield using

SM2RASC, RAASC, TRMMRT and CMORPH precipitation inputs against INCA23km inputs for the three study areas—winter wheat.

Groß-Enzersdorf Hartberg Kremsmünster

Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4

Mean yield (kg/ha) with INCA23km input data

5751 3276 5395 7290 7045 5954 3982 5982 7218 6633 5523 4226 5508 6355 6002

SM2RASC—INCA23km

MAE 838 962 936 1035 419 368 546 319 353 251 141 272 35 145 111
RMSE 1011 1029 1060 1223 646 516 634 411 558 430 223 378 48 180 144

PBias % −13.1 −19.5 −17.3 −14.2 −5.7 −3.8 −5.4 −2.9 −4.3 −3.1 −1 1.5 −0.5 −2.3 −1.9
d 0.93 0.82 0.71 0.61 0.69 0.96 0.82 0.71 0.78 0.85 0.99 0.95 1 0.91 0.95
r2 0.87 0.77 0.68 0.71 0.74 0.89 0.5 0.26 0.62 0.72 0.95 0.93 0.99 0.89 0.92

RAASC—INCA23km

MAE 498 826 698 351 116 320 804 215 88 174 209 397 60 190 188
RMSE 818 1221 961 493 141 504 929 303 110 223 372 660 65 245 228

PBias % 5.6 17 8.3 3.1 0.8 −0.4 −1.3 −1.3 −0.1 0.7 −1 4.2 −0.5 −3 −3.1
d 0.94 0.7 0.51 0.73 0.96 0.96 0.4 0.88 0.98 0.93 0.95 0.79 0.99 0.83 0.87
r2 0.84 0.52 0.01 0.43 0.87 0.86 0.01 0.69 0.95 0.77 0.88 0.5 0.97 0.75 0.86

TRMMRT—INCA23km

MAE 568 984 616 406 265 136 234 92 129 89 241 535 220 89 122
RMSE 909 1430 836 582 470 194 300 129 181 106 426 725 416 102 135

PBias % −4.2 −14.3 −4.7 −2.3 −1.3 −0.9 −1.1 −0.3 −1.6 −0.7 −2.3 −12.1 −3.3 0.8 2
d 0.94 0.7 0.68 0.86 0.79 0.99 0.96 0.98 0.96 0.98 0.96 0.83 0.78 0.98 0.96
r2 0.8 0.25 0.19 0.79 0.79 0.98 0.85 0.92 0.92 0.97 0.89 0.68 0.59 0.95 0.97

CMORPH—INCA23km

MAE 917 1600 932 762 377 496 1318 288 276 102 741 1984 657 154 169
RMSE 1253 1853 1022 1081 794 805 1462 386 539 138 1174 2151 888 251 178

PBias % −12.6 −35.5 −17.3 −8.2 −3.1 −6.9 −30.9 −4.8 −2.2 0.3 −11.5 −46.9 −11.7 −1.4 2.8
d 0.9 0.5 0.71 0.71 0.65 0.93 0.5 0.84 0.78 0.97 0.81 0.43 0.43 0.9 0.93
r2 0.78 0.1 0.74 0.73 0.76 0.9 0.32 0.75 0.52 0.91 0.77 0.23 0.12 0.84 0.97
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4. Discussion

Crop growth simulation models are increasingly being utilized as tools to assess the regional

impact on crop production under different environmental conditions, such as changing climate and

management options. These models need spatially and temporally detailed input data of weather,

soil, crop management, and cultivar, which are usually difficult to get reliably for larger areas [58].

As observation data are merely available at a limited number of meteorological stations within a

region, it is essential to estimate the required weather inputs for the related simulation-scale [59].

The focus of this study was set on daily precipitation data, as they are the main uncertain limiting

crop growth parameter over the area of interest. Crop models are highly sensitive to soil water, as soil

moisture is a limiting factor for different processes for crop growth and yield. A valued alternative

to ground-based measurements can be satellite-rainfall estimate systems, which produce global

coverage data and supply information in areas where data from other sources are unavailable [60].

The spatial and temporal resolution increased lately; e.g., the current NASA–JAXA joint Global

Precipitation Measurement (GPM) mission makes available rainfall products in near-real time with a

spatial sampling of 0.1◦ each 30 min, by utilizing different satellite sensors [61]. Satellite rainfall

products which have been previously developed include the near-real-time TMPA 3B42RT [48];

the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

(PERSIANN) [62]; CMORPH [49]; and the Climate Hazards Group InfraRed Precipitation with Station

(CHIRPS) products [63]. Nevertheless, satellite rainfall estimations are not free of error [64,65]. One

main reason is the inconsistent scan of rainfall patterns, which makes the reconstruction of the

accumulated rainfall in longer temporal scales (e.g., daily accumulated rainfall) challenging [66].

Further, the estimation of light rainfall is generally underestimated especially over land by remote

sensing analyses as a result of land surface emissivity [36,60,67].

Approaches to enhance the quality of satellite rainfall estimates, the use of satellite surface soil

moisture (SSM) data has been utilized recently [38,39,68–71]. These methods analyze the intense

correlation between SSM and rainfall to improve and/or estimate rainfall by using satellite surface SM

data. Here, SM2RAIN [38] is the first method, which directly makes available rainfall estimates from

SSM observations, whereas the other approaches are correction-based techniques [36,38,39,60,72–75].

In our study, we also added a new approach to estimate rainfall directly using the statistical relationship

between measured precipitation and the SM of the ASCAT.

Meteorological station data are normally spatially irregular and can be interpolated to a regular

grid. At this point, especially high-resolution gridded data sets can be used for impact studies.

Examples are the EURO4M-APGD dataset for the Alps [76], the European E-OBS [77], and JRC’s

Agri4cast dataset (http://agri4cast.jrc.ec.europa.eu). These data were not analyzed in the current study.

Here (e.g., for Austria), INCA data exists with a very high-resolution gridded data set; unfortunately,

they are not freely available.

An important aspect of crop models is that they are sensitive to perturbations in precipitation.

In Eitzinger et al. [78], the sensitivity of seven different crop models for winter wheat and maize to

extreme heat and drought over a short but critical period of two weeks after the start of flowering

in two locations in Austria was studied. It showed, that the models respond differently to climate

stresses (according to references [79,80]), even though they mainly present similar trends in grain

yields between different climatic situations. In Fronzek et al. [81], process-based wheat models were

applied, and no single model property was found, which describe the combined yield response to

temperature and precipitation perturbations.

The main objective of the current study was to test different types of spatial precipitation data as

inputs for a crop model application in three locations in Austria with different soil types and climates.

As INCA data are not freely available, a study of acceptable spatial alternatives is of interest for serval

applications. Also, under which circumstances and to which degree errors in precipitation data are

propagated into final crop model results are of interest. Therefore, the aggregated INCA23km presented

in all three locations already a higher precipitation sum as INCA1km and were thus not free of errors.
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All investigated grid-based types of precipitation data perform at their best as crop yield model

inputs on moderately fine-textured soils and under humid conditions (Hartberg and Kremsmünster).

In the semi-arid region of Groß-Enzersdorf, winter wheat and spring barley simulations are very

sensitive to different precipitation model inputs; especially in light-textured soils. This is due to the fact

that soil water availability is a more dominant limiting growth factor under drought-prone conditions.

Therefore, little differences in precipitation input can affect greatly the simulated yield (high RMSE,

low d and r2 values). Also, even one missing precipitation event in a critical development stage can

cause a crop failure. In this region, the model reacts more sensitively for winter wheat than for spring

barley. RAASC (winter wheat) and TRMMRT (winter wheat and spring barley) seem to be the best

predictors for this location.

In the more humid places of Hartberg and Kremsmünster, all four precipitation inputs produced

good agreements. Plant water stress does not occur often and can be observed mainly in light-textured

soils. A bias in the precipitation sum is not such a crucial factor here; much more important is a

prediction of the event. In Hartberg, crop yields with RAASC and TRMMRT input data correspond best

with INCA23km input data (except RAASC soil 1). In Kremsmünster, both SM-based products present

good yield results for soils 1 and 2; even if high monthly precipitation differences to INCA23km were

calculated (Figure 3). Winter wheat and spring barley show similar yield predictions in both locations.

The poorest performances in all three locations and for both crops were found with CMORPH

input data. The general underestimation of rainfall provided by CMORPH is in line with the finding

of Stampoulis and Anagnostou [82], who assess the quality of this product over Europe.

Looking at SM estimated rainfall in more detail, SM2RASC and RAASC perform well in this

study, especially on light-textured soils in Kremsmünster and Hartberg compared to the two satellite

precipitation data. Here, for example, the use of information regarding the spatial–temporal variability

of top soil moisture could improve spatial crop yield simulations against the use of single point

information for single weather stations for a given area. Therefore, the SM estimations (SM2RASC,

RAASC) could be an alternative for potential agriculture applications in regions where other products

are not available once calibrated to the specific climatic conditions. In addition, a remote sensing

product does not necessarily have to be “better” than the model. It should be considered whether the

data add value or new information. Hence, even when r2 values are lower than for models, clever data

assimilation approaches may take advantage of the data (see e.g., [28]).

5. Conclusions

In the current study, different types of spatial precipitation data as inputs were tested for a

crop model application. Two daily satellite precipitation and two estimated rainfall data based on

a satellite SM dataset were evaluated with INCA-input data at a spatial resolution of around 25 km

in three locations in Austria. A bias in precipitation model input has lower impacts on simulated

spring barley and winter wheat yield under humid (Kremsmünster and Hartberg) than under dry

conditions (Groß-Enzersdorf). This can be very well observed in TMPA and in the two SM-based

product simulations. Additionally, light-textured soils (especially soil class 1) show more sensitivity to

different precipitation inputs than the other soils, regardless of the studied region.

This study represents one of the first attempts to integrate estimated rainfall datasets from SM

for crop models. More comprehensive analyses will be approached henceforth in order to better

understand and improve the capability of satellite-derived rainfall.
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