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Abstract  

 

 Wildfires are major threats to Mt. Kenya forests and its unique afro-alpine ecosystem. 

The main ecosystem service, securing the steady supply of enough fresh drinking water with 

sufficient quality is at risk.  For assuring the sustainable provision of this forest function several 

scientific studies with different scope have been implemented to understand the fire regime 

in the area.           

 The present thesis quantified the spatial characteristics of fire events for the period of 

2000-2015, to reveal the underlying patterns of its fire regime. Human activities relating to 

spatial patterns of fire were identified, and the effects of these patterns on the fire regime 

were assessed. Analyses were performed using diverse remote sensing and GIS data. The 

quality and quantity of these data providing information about the fire regime allowed 

assessing the applicability of remote sensing data and spatial analysis techniques for 

supporting an integral fire management.       

 Clustering pattern at very short and short distances, bimodal seasonality, and fire 

ignition point dependency on road and trail density are the main characteristics of the Mount 

Kenya fire regime. Frequent small fires burn in the forest, while less frequent larger fires 

dominate the high altitudinal moorland. The vegetation around Mount Kenya is adapted to 

fires and is actively regenerating in the landscape.      

 The available remote sensing data could be used along with the improved GIS data for 

more specific studies, giving recommendations for adapting forest management, and 

developing fire danger maps.      



Abstract (~deutsch~) 

  
 Waldbrände sind eine große Bedrohung für den Schutz der Wälder Mt. Kenyas und 
ihres einzigartigen Ökosystems. Die wichtigste Ökosystem-Dienstleistung, die regionale 
Sicherung einer ausreichenden Trinkwasserversorgung mit bester Qualität ist gefährdet.  Um 
diese wesentliche Waldfunktion zu erhalten, sind zahlreiche wissenschaftliche Studien mit 
unterschiedlichem Kontext durchgeführt worden, um die Bedeutung von Waldbränden die zu 
untersuchen.            
 Die vorliegende Arbeit quantifiziert die räumlichen Charakteristika der 
Brandereignisse für den Zeitraum 2000-2015, und untersucht die zugrunde liegenden Muster 
des Feuerregimes. Menschliche Aktivitäten in Bezug auf die identifizierten räumlichen Muster 
der aufgetretenen Brände wurden identifiziert, und deren Bedeutung für das Feuerregime 
wurden bewertet. Analysen wurden mit diversen Fernerkundungs- und GIS-Daten 
durchgeführt. Die Beurteilung der Qualität und Quantität erlaubte eine Einschätzung über die 
Anwendbarkeit von Fernerkundungsdaten und räumlichen Analysemethoden zur 
Unterstützung einer integralen Bewirtschaftung von Waldbränden.   
 Es wurden räumliche Cluster auf sehr kurzen und kurzen Entfernungen, eine bimodale 
Saisonalität und eine Abhängigkeit der Brandherde von Straßen- und Wege-Dichte als 
wesentliche Merkmale des Feuerregimes am Mt. Kenya festgestellt. Oft vorkommende 
kleinere Brände treten häufiger im Wald auf, während selten auftretende größere Brände 
häufiger das Hochmoor dominieren. Die Vegetation am Mount Kenya ist angepasst an die 
auftretenden Brände und regeneriert sich ständig.       
 Die verfügbaren Fernerkundungsdaten könnten gemeinsam mit den verbesserten GIS-
Daten für weiterführende Studien verwendet werden, um Empfehlungen für eine angepasste 
Waldbewirtschaftung zugeben und entsprechende Gefährdungskarten zu erstellen. 
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1. Introduction   

 Fire and different fire systems have been playing an important role of environmental 

changes for billions of years [1]. The last 60000 years have witnessed a rapid growth and 

differentiation of human land use activities in which human caused fire became a more and 

more significant factor [2]. In one of the oldest historically known religion, Zoroastrianism, fire 

(azar) is considered to be an ethereal medium through which pure wisdom and spiritual insight 

can be obtained. Humans have a rather two-dimensional relationship with fire: it could be 

either beneficial or destructive, or both at the same time. Fire itself, however, shows a multi-

dimensional character strongly dependent on environmental variables, such as temperature, 

precipitation, wind or air humidity, which suggests that fire ignition can be predicted along 

well assessed environmental gradients. Fire regime determined by different combinations of 

fire characteristics -intensity, frequency, seasonality, extent, size- can be used for spatial fire 

pattern analysis to see if there is any repeating pattern at a given location in space. One of the 

most researched topic of fire ecologists is the history, change and prediction of local and global 

human induced fire events. In our modern time, remote sensing (RS) and GIS became 

indispensable for any fire-landscape relation (spatial) analysing project [3].  When in the early 

90’s the availability of satellite data “extended” research capabilities, the large number of 

African fire occurrences surprised the scientific world [4].     

 The present study focusses on a specific ecosystem:  the Mount Kenya region. This 

tropical alpine area with its vegetation plays a life sustaining role in fresh water supply for its 

wide surroundings [5, 6, 7]. The intact keeping of fresh water production is crucial for humans 

and animals alike.  Besides its hydrological function, this “water tower” maintains a unique 

composition of biodiversity found only on the African continent.  In search of potential drivers 

of climate change, the tree line change was analysed in tropical African highlands [8]. In case 

of Mount Kenya the tree line (~3400 m) tends to move downward and it is regulated by 

anthropogenic caused fires [8, 9, 10]. Indeed, according to a recent study the last 16 years 

have witnessed fires with a shifting fire regime on the moorland, above the tree line, hindering 

the trees from an uphill succession [11]. The human impact on fire ignition is a global 

phenomenon that alters the spatial extent of wildfire in all biomes of the Earth system [12, 

13]. The dimensions of altering depend not only on human activities but on environmental 

variables such as regional climate, vegetation association, on physical environments and the 

scale of space and time of assessment. Within the East-African alpine zone Mount Kenya and 

its ecosystem, due to adjacent densely populated areas and human land use activities, is very 

vulnerable to fires. It has to be noted that fire can also be constructive in terms of being 

“responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems” 

[4]. To my knowledge has fire dependency of this afro-alpine system never been studied so 

far.            

 Fire ignition sources are manifold, Nyongesa [7] and Ngugi  (written comment) agree 

on the following major causes of wildfire: human activities during farmland preparation within 

some forest stations, practicing illegal charcoal burning (Nyongesa, written comment), arson, 

poaching and honey harvesting. Livestock grazing counts also as one of major sources of 

ignition, because it is allowed in plantations (within forest stations) all around the year [14]. 
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According to Ngugi (written comment) grazing is more intensive during the dry period of the 

year, from January to March respectively.       

 Natural forest cover (2 % of the whole country) remaining in Kenya is under regulation 

of governmental institutions [15]. With fire becoming an integral component in Mount Kenya 

ecosystem [7, 11, 16], a cooperative platform between Mount Kenya National Park (MKNP) 

and the Kenya Forest Service (KFS) can be the framework for implementing a fire management 

plan. It is vital in securing a sustainable preservation of this ecosystem and to ensure that 

there will be fresh water available in quantity and in good quality for future generations. 

 Fire ignition cause is estimated to be mainly human [7, 11, 16]. However, the relation 

between fire and the human footprint has never been mapped in the Mount Kenya ecosystem 

before. Therefore, this study is trying to unlock the spatial secrets of the regional fire regime 

and its direct human relation in a 15-year time scale. Indirect anthropogenic impact is assessed 

through burnt area, combined vegetation regeneration-burn severity and Normalized 

Difference Vegetation Index (NDVI) analysis. The dual-season hypothesis of Poletti [16], who 

examined the period between 1980-2015, has recently been challenged by Downing et al. 

(study period: 2000-2015) stating that the bimodal fire season profile changed to a single fire 

season around 2004. It is important to note that the former study concentrated on fire prone 

forest area, while the latter one has the “high”-moorland in focus. So, this thesis tries to reveal 

the characteristics of fire regime and its underlying processes, assuming dual-seasonality 

(based on the works of above mentioned authors) and using available RS data for the (by the 

extent of fire occurrences defined area) Mount Kenya region.    

 The general objective of the thesis at hand is to clarify by analysing diverse RS and 

socio-economic data set the relationship between fire regime and human activities in order 

to help setting the fundaments of fire management for KFS and MKNP. Therefore, the 

following questions are to clarify: 

(I) What are the spatial characteristics of the Mount Kenya fire regime and how can they be 

quantified?  

(II) Which spatial patterns can be identified in relation to human activities (direct-ignition 

source and indirect-burnt area, fire severity, vegetation regeneration and NDVI) and how fire 

regime (I) is effected by them? 

(III) How is the quality and quantity of available remote sensing (RS) data to provide necessary 

information relating questions (I) and (II) above? 
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2. Materials and methods 

2.1. Study area 

 The geographical boundary of this study is the forested area (the green belt between 

1400-2000 m and ~3400 m) of Mount Kenya within the forest stations and its marginal fire-

ecologically inseperable area: the moorland above ~3400 m, belonging to Mount Kenya 

Reserve (MKR). The total area of the Mount Kenya Reserve is 263200 hectares (=2632 km2). 

 Mount Kenya’s equatorial mountain climate is strongly influenced by precipitation. 

The Intertropical Convergence Zone (ITCZ, the low-pressure belt along the Equator) is marked 

with heavy rainfalls. The long-lasting rain period (from the middle of March to the beginning 

of June) and the short-lasting rain periods (from the middle of October to December) define 

the dry-wet changing seasonality of Mount Kenya [17]. The amount of rainfall is distributed 

differently in the region, from an average precipitation of 900 mm/year in the North to 2300 

mm/year in the South-Eastern regions.        

 With its 5200m high soaring peak, is Mount Kenya the second highest mountain on the 

African continent. Its east-central, equatorial location in the middle of Kenya, is home to 

about 200.000 hectares of unique afro-alpine forest cover [18]. The main vegetation 

communities are moorland, forest belt, wooded grassland, and cropland. The moorland 

lies between 3000 m and 3500 m, it is referred to as Ericaceous belt [19] and is mainly 

covered with giant heath, the African sage (Artemisia afra) and several Gentians (Swertia 

spp.). Indigenous forest starts at 2400 m down to 2000 m and dominated by Podocarpus 

latifolia. At lower altitudes (down to the lower boundary of the forest belt ~ 1400m) the 

species change depending on aspect. Wooded grassland concerns both plantations (in the 

vicinity to the lower boundary of the forest) and the vegetation between the moorland 

and the forest, the so called inner areas. Plantations are “cultivated” according to shamba 

system with little trees mixed with cropland. The main cultivated species on the cropland 

are vegetables such as potatoes, maize, tomatoes. Tea is also cultivated on the lower 

southern slopes of the mountain, but these cultivations lie outside of the Forest Reserve 

territory [19].           

 The Mount Kenya massive emerged from diverging activities of the Great Rift 

Valley and is part of the volcano chain, forming the highest peaks of the continent. The 

upper part of the extinct volcano is under administration of Mount Kenya National Park 

(MKNP) and the lower (up to ~3400 m) forest belt, divided into forest stations (Fig. 1), 

falls to jurisdiction of Mount Kenya Forest Reserve (MKFR), operated by the Kenya Forest 

Service (KFS). As mentioned above, both areas belong to the MKR. The institutions 

responsible for forest management are the KFS station administrations.  
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2.2. Data set 

2.2.1. Firemaps  

 Wide range of data was prepared and given by the Mount Kenya Team (group of 

researchers) who worked within the framework of FIREMAPS project in cooperation with the 

Kenya Forest Service and the Kenyan Forestry Research Institute (KEFRI). The FIREMAPS 

folder provided, contains various climate data such as temperature, precipitation, relative air 

humidity and wind speed. All data measured in five meteorologic stations located on the 

North/North-west side of the studied area, adjacent to but far outside of the forest stations. 

GIS applicable data included (more details in the following chapter) a core zone shapefile 

encompassing municipality land around the lower boundaries of the forest stations and the 

higher elevated moorland, was supposed to serve as the original borderline of interest area. 

This buffer zone gives the extent to road density and sub-district (municipality land) files. A 

Boolean vegetation map (Fig. 2.) with 30 m spatial resolution was also included. Furthermore, 

collected socio-economic data such as sub-district based population density, district based 

literacy and land use indicating data are also part of the data set.   

 

Fig. 1.  Mount Kenya region and the Mount Kenya Reserve including the upper moorland and the forest station 
administrations.  
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2.2.2. RS and GIS  

 Mapping fire occurrences and constructing fire regime in a combined spatial and timely 

context, requires good quality RS data.        

 The overall fire detection performance of Collection 5 Terra MODIS is on global scale 

acceptably accurate [20, 21, 22, 23]. For fire regime reconstruction MODIS MCD14DL - 

Collection 5 data is widely used.  With a very low false alarm rate (under 1 %) in Central-Africa 

it promised to be very accurate, however, the satellite can miss smaller fires under cloud or 

fraction tree cover [24]. MODIS 5 data set was prepared and given by KEFRI in GIS applicable 

shapefile (shp) format.         

 Accuracy of Collection 6 MCD64A1 500-m Burned Area Product was promising [25]. 

However, as shown by a case study [26], Collection 5 MCD54A1 Burned Area Product is a 

better performer in detecting small fires that occur frequently in a steep mountainous area. 

Accordingly, the latter product was selected for the burnt area assessment.        

 Both data set are available from 2000 and can freely be downloaded from the MODIS 

website. For estimating and mapping burn severity, NDVI and vegetation regeneration 30 m 

spatial resolution Landsat 7 ETM + and 8 images were used, provided by the US Geological 

Survey (USGS). Satellite images based burn severity analysis have recently gained more ground 

in research due to their application for reproducing fairly accurate above ground biomass 

Fig. 2. Vegetation classes and their density distribution in the Mount Kenya region (Source: Kenyan Forestry 
Research Institute). 
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changes [27]. Ancillary data, 12,5 m spatial resolution digital elevation model images were 

downloaded from the Alaska Satellite Facility (ASF) website. As far as Lidar point cloud data 

concerned, all efforts of obtaining them bore no fruits, partly because there is not many in the 

whole country, partly because of the existing ones of Aberdare Range (located occidental to 

Mount Kenya) are not directly relevant to the studied area. 

Source Spatial resolution (m) Period/Date Content 

MODIS  
https://earthdata.nasa.gov/c5-
mcd14dl 

- 2001-2015 MODIS 5 fire 
occurrence 
(shp) 

MODIS  
ftp://ba1.geog.umd.edu/ 

- 2001-2015 MODIS 5 Burnt 
area product 
(shp) 

USGS 
https://earthexplorer.usgs.gov/ 

30 21.02.2000 Landsat 7 ETM+ 
satellite image 

USGS 30 28.03.2016 Landsat 8 
satellite image 

ASF  
https://vertex.daac.asf.alaska.edu/ 

12.5 - Digital elevation 
model (DEM) 
images 

Table 1. RS data used in this study. - indicates irrelevance. 

 

2.3. Methodology  

2.3.1. On mapping fire  

 First of all, various spatial analyses were applied using ArcGIS to assess the relationship 

between fire occurrences (FO) and several socio-economic variables such as population 

density, animal grazing, honey collecting, illiteracy and education level. The seasonality of FO 

and their spatial and temporal dispersal was also mapped to get the first insight in FO 

behaviour.  Some basic maps were created in order to utilize them in organized workshops 

where different stake-holders discussed planning options of a fire preventive adopting 

management in the study area.         

 After the first steps, the author decided to change for R software environment due to 

spatial statistical power of the spatstat package. FO were divided in frequency classes to 

address fire regime’s monthly temporal distribution. To evaluate spatial 

relationship/connectivity of FO various analyses of an advanced Spatial Point Pattern Analysis 

(SPPA) were executed. The results of SPPA were mapped accordingly. Moreover, the maps of 

burnt area, Normalized Difference Vegetation Index (NDVI), the combined vegetation 

regeneration and burn severity analysis were also realized in a similar way. All maps (except 

the last one in the recommendation chapter) were finalized using diverse combinations of RS, 

GIS related and other packages (adehabitatMA, rgdal, raster, rasterVis, maptools, sp, 

prettymapr, spdep, rgeos, GIStools, devtools, RStoolbox, colorspace, RColorBrewer, lattice, 

satellite, rLandsat8 and landsat) in R computational environment. It has to be noted that 
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ArcGIS remained in application for preparatory purposes and for calculating burnt area. 

   All analyses, mapping as well as modelling of the present thesis are 

considering the non-boundary behaviour of fire and are conducted with focussing on the 

spatial dispersal of FO.   

 

2.3.2. On spatial analyses   

 In the framework of Spatial Point Pattern Analysis (SPPA) Variance to Mean Ratio 
analysis, G- and K-function methods plus Kernel Density Estimation were carried out so as to 
quantify and qualify density, spatial and temporal distribution of FO assuming double 
seasonality. 

 (1)   Fire density combined with dispersion index, the Variance to Mean Ratio (VMR): 
 by analysing the distribution of defined (5 km2), superimposed quadrats, the point 
 pattern arrangement can be verified. In quadrats, the variance index, called VMR 
 standardizes the degree of variability of cell frequencies in relation to mean cell  
 frequency [28]. The calculation is based on 

    VMR =
VAR

MEAN
  

 where variance is concepted by the formula      

    VAR = 
∑ fi∗xi

2−[
(∑ xi∗fi)

2

m
]

m−1
    

 and the mean as   

    MEAN = 
n

m
  

 n = number of points 

 m = number of quadrats 

 𝑓𝑖  = frequency of quadrats 

 𝑥1 = number of points per quadrat. 

 (2) A more objective method (no self-defined superimposed quadrat), the G-function 
 was conducted to get more insight into spatial characteristic of FO. It is an 
 exploratory analysis,  one  of the distance methods, estimating the nearest 
 neighbour distance distribution function. It is a statistic summarising approach 
 aiming at spatial regularity /  clustering of points. The estimate of G is compared to its 
 ‘original’ true value for complete spatial randomness (CSR), expressed as a 
 homogenous  Poisson point  process, which is 

    G(r) = 1-exp(-λ*π *r2) 
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 where 𝜆 signifies the expected number of points per unit area and r is the distance (the 
 mean minimum distance of all points to their nearest ones) at which G(r) is computed 
 [29, 30]. 

 (3) Ripley’s K-function: a statistic approach of analysing aspects of inter-point 
 dependence or non-dependence, spatial point regularity or irregularity, respectively 
 [31, 32]. The estimate of K is compared to its ‘original’ true value for complete spatial 
 randomness (CSR), a stationary Poisson point process, which is   

    K(r) = π *r2   

 The estimate of K(r) is calculated with the form 

    K(r) = (a/(n * (n-1))) * ∑[i,j] I(d[i,j] <= r) e[i,j])  

 where  

 a = area of the window  

 n = number of points 

 d[i,j] = distance between two points 

 I(d[i,j] <= r) = 1 if the distance is ≤ 𝑟.  

  e[i,j] = edge correction weight (only in case of large point pattern > 1000 points).  

 (4)  Kernel Density Estimation (KDE): a non-parametric way to estimate the probability 
 density function of a random variable. The aim of KDE is to find probability density 
 function for a given dataset. In SPPA it is based on the weighted moving average of 
 the input data, which is 

    f(u) = (1/Nb) ∑ Ki [(u - ui)/b] 

 where 

 z = any location 
 
 K = kernel function (a function of distance), most commonly used is the Gaussian 
 function [33] 
 
 b = bandwidth (how far the moving average is computed with Nb as the number of 
 observations within the bandwidth), bandwidth equals to standard deviation. 
 
 With the help of Geographic Information System different Remote Sensing data were 
used to verify seasonality as for quantified burnt area, vegetation regeneration and burn 
severity classes. Normalized Difference Vegetation Index combined with Pixel Ident 
Distribution analysis was performed to assess land use change. Roads ~ trails buffer analysis 
was conducted to verify human activities induced fire events in dependence of road density:  

 
(1) Burnt area analysis was performed in order to quantify burnt area for the period 
2000-2015 to approve or disapprove the assumed dual-seasonality.  
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 (2) Normalized Difference Vegetation Index (NDVI) based on selected Landsat 7 ETM+ 
(date: 21.02.2000) and Landsat 8 (date: 28.03.2016) was calculated in order to assess 
changes in land use applying supervised classification based on the provided 
vegetation map. The formula of calculating NDVI is  

     NDVI =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 

 where Landsat 7 ETM+ band 4 is NIR (Near Infrared) and band 3 is Red designated. In 
 case of Landsat 8, band 5 correlates NIR and band 4 Red. 

 (3) Pixel Ident Distribution (PID), derived from the classic spectral response pattern 
 analysis (that is prior to any classification in order to separate different spectral 
 response patterns in the satellite images on which the classification is based). In this 
 study, the difference between PID and spectral response pattern analysis is that the 
 former one is post-classification performed with the vegetation classes extracted from 
 the Boolean vegetation map. PID was conducted for the NDVI used satellite bands, NIR 
 and Red respectively. 

 

(4) Vegetation Regeneration (VegReg) combined with Normalized Burn Ratio (NBR) 
analysis serves the purpose of detecting spatio-temporal changes in vegetation 
dynamism effected directly by fire and of comparing seasonal driven differences. It is 
based on the classic burn severity mapping, however vegetation regrowth classes 
enjoy priority. Mapped and assessed on MODIS verified burnt area extent. Landsat 7 
ETM+ (date: 21.02.2000) and Landsat 8 (date: 28.03.2016) images were applied for the 
NBR calculation, thus its time scale is sixteen years. The formula for Normalized Burn 
Ratio driven Vegetation Regeneration analysis is     
        

   NBR =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅2
 

 where Landsat 7 ETM+ band 4 is NIR (Near Infrared) and band 6 is SWIR2 (Short Wave 

 Infrared 2), Landsat 8 band 5 is NIR and band 7 is SWIR2. What needed is 

               NBR = 𝑃𝑟𝑒𝐹𝑖𝑟𝑒𝑁𝐵𝑅 − 𝑃𝑜𝑠𝑡𝐹𝑖𝑟𝑒𝑁𝐵𝑅 

 NBR was multiplied by 1000, and the result was converted to integer. Classification 

(defining threshold values) was conducted in accordance with USGS standard [34].  

 (5) Accessibility (roads ~ trails buffer) analysis was executed to verify human 

 accessibility of Mount Kenya Reserve and to relate roads, trails to FO (and Ignition 

 Sources, clarified in the next chapter). The provided GIS applicable road network was 

 expanded and many trails were drawn by the author of this thesis. Zones along (on 

 both sides) the roads, trails were created by superimposing 0.5 and 1 km wide 

 buffers.  The resulted  (buffered) roads ~ trails map was compared to reclassified FO, 

 called Ignition Sources.  
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2.4. Reclassification 

 Reclassification was needed because of MODIS satellite detection quality. Clouds or 

other disturbances can cause periodic interruptions in fire detection [23], so the same fire 

event can be spotted in the vicinity of a previously detected one. New parameters were 

defined according to temporal characteristics and confidence (a scale from 0 to 100 expressed 

in %) of MODIS detected fire occurrences:  

 Ignition Classes (IC):  

 1     - fire detected for the first time, interpreted as Ignition Point (IP) 

 2      - fire detected on the same day or on the day after 1, spatially close to 1, 
 interpreted as After Fire 1 (AF1) 

 3    - fire detected two or three days after the detection day of 1, spatially close to 1, 
 interpreted as After Fire 2 (AF2) 

 4     - not identifiable, interpreted as Unclear (U) 

 Ignition reliability: 

MODIS FO confidence range was also ordered into nine classes with 1 indicating the highest 

confidence level and 9 the lowest.  

 Ignition time: 

The evidence time of detection was also evaluated and subset into nine classes as well. In this 

case 1 indicates the first point detected in an assumed fire event, 2 refers to the second fire 

point in the detection chain.  

(b) 

(d) 

Fig. 3. MODIS FO reclassification process. Dependency between most weighted parameter and new 
variables: (a) and (b), between most weighted and old parameter (c). Resulted IC, denoted with gradually 
shading grey (a),(b),(c) and (d). Sum of FO and IS are shown in bars (d). Seasonal IS expressed with red 
and blue dashed lines (d). P-values provided by 𝐶ℎ𝑖2 tests. 

(c) 

(a) 
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 Reclassification is defined by the new MODIS parameter set mentioned above. The 

weighted dependencies shown in Figure 3, between Ignition and Ignition reliability (a), 

between Ignition and Ignition time (b), and between Ignition and the old parameter MODIS 

Confidence (c) proved to be statistically significant (low p-values). Monthly FO and IC 

distributions are represented in bars, the Ignition Classes: IP, AF1, AF2 and U are denoted with 

different shades of grey (d).  The purpose of the reclassification process was to identify fire 

event IGNITION SOURCES (IS). IS were finally gained by weighting Ignition class 1, and both 

Ignition reliability and Ignition time classes 1 and 2. As expected the initial number of 798 FO 

points was reduced to 266 IS points, 158 for January-March and 108 for April-December. In 

order to verify IS statistically (as a result of FO reclassification) Moran’s I spatial 

autocorrelation (SAC) and Pearson’s product-moment correlation coefficient (PPMCC) 

combined with SAC were executed in a comparative analysis between FO and IS. 

 

2.5. On spatial statistics/stochastics 

2.5.1. Theory: K-S, Moran’s I SAC, PPMCC 

 First it has to be confirmed that FO spatial characteristics meet the minimum 

requirement for running SPPA. There cannot be complete spatial randomness (CSR) in the 

point data set. If there is CSR present in the data set, the author can carry on mapping and 

analyzing, skipping SPPA and reclassification were not needed.      

 Correlated variables of fire occurrences can be tested for normality using spatial 

Kolmogorov-Smirnov (K-S) test, which examines the observed and expected distributions and 

in doing so it also determines how significant is the difference between them [35]. It is a 

powerful test of complete spatial randomness (CSR). Values of one variable are the Cartesian 

coordinates x or y. Values of an empirical distribution won by evaluating the function T (x, y) 

at each of the data points, form the predicted (expected) distribution. It means that the 

comparison is simply performed on the observed and expected distributions of FO x 

coordinates [36].          

 In statistical interface prediction is usually expected models are compared to 

measured data models on defined significance intervals. Spatial statistics has to deal with 

spatial and temporal object such as points and polygoned areas. As far as reclassification 

concerned, additional explanation is needed. The point is that on purpose defined statistics of 

the present thesis go against the usual basic laws of statistics, and the concepts of 

reclassification were formed accordingly.  Moran’s I spatial autocorrelation and Pearson’s 

product-moment correlation coefficient tests were run to prove non-dependency of IS points. 

 Moran’s I spatial autocorrelation (SAC) measures similarity between close objects in 

comparison with other close objects [37, 38] in a spatial field. It can be classified as positive, 

no or negative spatial autocorrelation and takes values from -1 to +1.   
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 In case of positive spatial autocorrelation similar values cluster together in a given 
area, can takes values between +1 and 0 where values closer to +1 represent strong 
positive autocorrelation. 

 Negative spatial autocorrelation is when dissimilar values cluster together in a given 
area, takes values from 0 and -1. The closer to -1 the stronger negative autocorrelation 
is. 

 No spatial autocorrelation means that observed objects are independent and they are 
0, which is very rare, most of the time they are very close to or around zero. 

 Clustering, close by points with similar autocorrelation values might be part of the 

same fire event (see previous section on Ignition, Ignition reliability and Ignition time) so they 

are assumed to be the same fire event. Ignition Sources (IS) points are considered as the 

ignition sources of fire events, numbering fire events. If these fire events (IS) show no spatial 

autocorrelation, taking close values around zero, their differentiation from each other is 

confirmed. With other words, they are spatially-temporally independent fire events. 

 Pearson’s product-moment correlation coefficient (PPMCC) is a widely-used statistic 

method in all kind of science. It measures the strength of linear correlation between two 

variables. Range of values is set between +1 and −1 inclusive, where: 

 +1   implies a perfect positive association between the variables meaning if values go 

up on one, they also go up on the other  

 -1   implies perfect negative association between variables meaning if values go up on 

one, they go down on the other 

 0 implies no linear association. 

The variables were on one side the FO and IP points, and on the other their nearest neighbor 

(NTH) fire points [39]. For visualization smoothed trend fit lines were applied to the graphs. 

 Aiming at no correlation, the PPMCC test was run to verify the results of reclassification 

process more pronounced than it was done by Moran’s I SAC. Fire points, FO and IP, are 

compared to their 1st, 2nd, 3rd,… xth NTH nearest neighbour and computed for linearity. 

Hence their values are the same, PPMCC values are interpreted for Moran’s I spatial 

autocorrelation. 

 

2.5.2. Implementation: K-S 

 Null-hypothesis behind the spatial Kolmogorov-Smirnov test, illustrated in Figure 4 is 

that there is no difference between observed and expected distributions of FO x- and y-

Fig. 4. Spatial Kolmogorov-Smirnov test for testing MODIS 
detected fire occurrences (FO) for complete spatial 
randomness (CSR).  
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coordinates obtaining CSR in this case. P-value smaller than 2.2*10−16 provided by the K-S 

test suggests enough evidence to reject the null-hypothesis. There is difference between 

observed and expected values. With other words: no CSR is present! Spatial point pattern 

analysis can be thus conducted.  

 

 
2.6. On thesis procedure 
 
  The build-up of this thesis followed an analysis-response interaction line (Fig. 5.): a 
performed analysis (in circle) always had a response, conclusive results (by triangles 
symbolized) that paved the way for a further analysis. This also had conclusive results guiding 
into the next analysis. The response of one performed analysis was the conclusive result 
leading into another analysis stimulated by the results (of the former analysis). This 
phenomenon has made the study flow along an analysis-response interaction line. The logic-
analytical responses FO reclassification, Discussion and conclusions, Recommendations 
performed by the author are depicted by ovals. The connection between VegReg and Burnt 
Area analysis shows that VegReg was conducted on the extent of MODIS verified burnt area.  
 Obviously, as shown by Figure 5, the results of SPPA triggered FO reclassification which 
resulted in IC. Once ignition classes and IS existed, spatial statistical analyses were run to check 
whether the aimed ignition sources spatial non-dependency of ignition sources is achieved or 
not.            
 All other RS-GIS analyses Burnt Area, NDVI, VegReg and roads ~ trails Buffer were 
conducted afterwards, their results building the pedestal on which Discussion and conclusions 
lays. Recommendations include general recommendations, and particular recommendations 
providing GIS-ameliorated data which is very promising regarding future forest fire 
management and further researches at Mount Kenya. 

Fig. 5. Simplified visualisation of thesis evolution process. Circles contain analyses, triangles express results and 
logical-analytical responses of the author are in ovals. Dark grey arrow heads mark initial phases and a timeline 
is represented by the arrow above. Dotted oval indicates that recommendations are treated as a separate 
chapter.  
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3. Results 

3.1. Seasonality  

 The MODIS detected FO, depicted by Figure 6, follow a spatially random distribution 

pattern with local aggregations, clustering. The seven FO frequency classes reveal that about 

two-third of FO that belong to high frequency classes (Class 4, 5 and 6) contribute to a shorter 

period of the year, namely January, February and March. The precise ratio is 229 to 569, where 

the smaller sum of FO is distributed over the long period of year, from April to December. It is 

clearly visible that the fire frequency distribution highlights fire regime’s dual seasonal 

characteristic with March and August as peak months in the Mount Kenya region.  

 Remarkably, the majority of FO are detected outside the forest stations, on the high 

altitudinal moorland and on the area in the North above Marania forest station. 

 Further analyses are executed within the scope of this dual seasonality: January-March 

and April-December, distinguished as high and low (fire) season, or fire-prone and non-fire 

prone season, respectively. 

 

Fig. 6. Spatial distribution of FO frequency classes. Bimodal seasonality expressed by white and yellow dots. 
Forest station names displayed. 

 

Total: 569 

Total: 229 
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3.2. SPPA 

3.2.1. Variance to Mean Ratio 

            
 The April-December FO density raster (Fig. 7.)  shows clustering FO behaviour. 
Quadrats with zero FO counts are not visualized.  The histogram of fire density distribution, 
however, includes quadrats with zero FO counts.  With 4.31 VMR value spatial clustering 
pattern is highlighted. The mean FO pro quadrat is 4.75.      
 Figure 8 reveals with mean 8.54 FO pro quadrat clustering characteristic as well.  White 
empty dots indicate number of FO and their relevant quadrat counts. The further VMR from 

Fig. 7. Spatial FO density distribution and the results of VMR for low fire season. Yellow empty dots 
indicate FO sums of spatial corresponding quadrats.   

Fig. 8. Spatial FO density distribution and the results of VMR for high fire season. White empty dots 
indicate FO sums of spatial corresponding quadrats.   
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the value 1 is, the more intensified indicated spatial clustering is. With a VMR value of 
6.328266 becomes FO clustering behaviour more pronounced.     
 The January-March period shows a near double mean fire occurrence density (mFO) 
and a relative denser FO clustering (2.015 higher VMR value) in comparison to the low fire 
season. The difference between the highest numbers of FO pro quadrat are also notable. 20 
for the April-December period, whereas 33 for the high fire season. 

 

3.2.2. G-function 

 Results of the nearest neighbour distance with MMD for both FO seasons can be 

examined in Figure 9. The estimates of the nearest neighbour distance are: Kaplan-Meier, 

border corrected, Hanisch and Poisson for complete spatial randomness (CSR). For the sake of 

interpretation, it is sufficient to look at values of various estimates of the nearest neighbour 

function G(r) and compare them to the values of Poisson’s (equivalent to CSR) 𝐺𝑝𝑜𝑖𝑠 (r). 

Obviously, all three: the Kaplan-Meier, the border corrected and the Hanisch estimates 

overlap each other, having the same values. If the nearest neighbour distance in the point 

pattern is shorter than Poisson G(r) < 𝐺𝑝𝑜𝑖𝑠 (r), it suggests clustering in the point pattern. In 

case of the function values, there is smoothening to be observed at a distance between 10-20 

m, marking the threshold between regularity and clustering for the FO point pattern. Indeed, 

the steep increasing lines of nearest neighbour distances are almost flat at 12 m distance for 

both seasons.  Clustering pattern at short distances is observed for both seasons 

independently from seasonality.  

            

 These results suggest that MODIS detected FO are likely to occur on the same location 

in the period between 2001 and 2015.       

Fig. 9. G-function, FO nearest neighbour distance with Minimum Mean Distance (MMD) for 
high and low fire seasons.                                                 
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 Clustering nature of the G-function are surprisingly only useful for very short distances 

due to FO point pattern characteristics. Therefore, the needs of implementing other scaling 

up distance method were met. 

 

3.2.3. Ripley’s K-function 

 The K-function, by comparing estimates of K(r) to 𝐾𝑝𝑜𝑖𝑠 (r) (equivalent to CSR) directly 

reveals clustering or regularity. The choice of estimator does not seem to be very important 

as long as there is edge correction applied [27], which is automated in RStudio’s computational  

environment. Values K(r) > 𝐾𝑝𝑜𝑖𝑠 (r) suggest clustering, while K(r) < 𝐾𝑝𝑜𝑖𝑠 (r) imply at regularity 

in a given point pattern.          

 Top graphs of Figure 10 show the K(r) estimates: Ripley’s isotropic correction - black 

solid line, translation corrected - red dashed line, border corrected - dotted green line and the 

theoretical Poisson, represented by dot-dashed blue line for CSR.    

 Bottom graphs of Figure 10 visualize a simplified K(r) estimate approach, where red 

dashed lined  𝐾𝑡ℎ𝑒𝑜(r) is Poisson, black solid lined  𝐾𝑜𝑏𝑠(r) corresponds to Ripley’s isotropic 

correction estimate. Theoretical highest and lowest values are also computed, represented 

with grey lines, showing insignificance.        

 Estimates of K(r) for both seasons show steep deviation from Poisson, clearly 

Fig. 10. FO Ripley’s K-function analysis. Top: true K(r) estimates for both seasons. Bottom: 
simplified K(r) estimates for both seasons. 
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suggesting clustered characteristics in FO point pattern. The April-December line is up to 250 

m strongly pronounced, the same characteristic appeal up to approximately 350 m to the high 

fire season line. The observed FO clustering are in both seasons obviously smoothed at the 

end of their shown distance scale, at around 350-400 m 

 

3.2.4. Kernel Density 

 Surprising results brought by the Kernel Density Estimate comparison between FO and 

IS can be viewed in Figure 11. Low seasonal MODIS detected FO aggregate in the northern 

part of Mount Kenya, concentrated in Marania, Meru and especially in Mucheene forest 

stations and in their vicinities. Density centre can be identified at the intersecting point where 

the upper boundary lines of Marania and Mucheene meet. IS number less points within the 

forest stations noted (with Mucheene encompassing most FO) and becomes more weighted 

on the cultivated fields outside the low altitudinal boundary of Marania. Accordingly, a slight 

Fig. 11. Kernel density comparative maps for both FO and IS as to bimodal seasonality. Low to high density 
expressed with brightening colour palette, from blue to orange. M is Marania, Mu refers to Mucheene and Me 
to Meru forest station. 
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shift of density centre is to be observed towards the North. So, the IS kernel density centre is 

located in Marania. This, spatially seen, is an insignificant change.    

 January-March FO kernel density centre is on higher altitude. Viewed from the map’s 

geographical centre, it is located between the moorland and the Kenya massif, a bit to the 

north. Comparing to the IS map, a significant shift of density centre can be observed. The 

density centre ‘moved’ to the North, directly towards Marania forest station and is established 

there. As far as the upper area (above the high altitudinal boundaries of forest stations) 

concerned, the ‘drastic’ reduction of FO resulted in 29 IS adjacent to the forest stations. 

Indeed, IS on high altitude are concentrated nearby the upper boundaries of surrounding 

forest stations.           

 IS centres for both seasons are very similar, spatially almost overlapping each other. 

 

3.2.5. Statistics: Moran’s I SAC, PPMCC 

 Moran’s I spatial autocorrelation (SAC) 

 Described in section 2.2.1., reclassification’s aim was to reduce spatial autocorrelation 
between fire points, expecting IS autocorrelation values close to zero.   

   

 As shown in Figure 12, according to the weighting of points: FO, IS and ignition class 
AF1 by the independent variable Months, one of MODIS detected FO parameters, 
autocorrelated values vary. Comparison between FO and IS need to be considered particularly. 
The initial negatively and positively autocorrelated FO values became smoother at distances 
up to 350-400 m: IS values run along the zero line. Furthermore, the test unveils the AF 

Fig. 12. Moran’s I Spatial Autocorrelation test comparing IS and AF1 to FO for spatial 
dependency.  Distance unit in km, while autocorrelation is unitless. 
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characteristics. Points of AF1 are the pulling agents of the original data set, making FO 
autocorrelation point values either positive or negative. 

 

 Pearson’s product-moment correlation coefficient (PPMCC) 
            
 Figure 13 confirms the expectation that FO and IP (thus IS) have different 
neighbourhood relation and have to perform differently under the PPMCC test. Although the 
MODIS detected FO points trend line (blue) glides smoothly downward from weakly positive 
to weakly negative correlations, the red IP trend line runs nicely along the zero and is therefore 
a much better fit. It means that linear association between Ignition Sources are minimised 
making fire events more independent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. PPMCC test of IP and FO (inset graph) for linear correlation (expressed by smoothed 
trend lines) and SAC.   
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3.3. RS - GIS 

3.3.1. Burnt area 

 Figure 14 emphasises the dual seasonal fire characteristics with peaks in August for 

April-December, and in February for January-March. In the fire-prone season 41677 ha area 

was burnt from 2001 to 2015. This is more than double than the summed size (17537 ha) of 

low seasonal burnt area. 

 

 

            

 The most complex analysis of the thesis at hand was depicting MODIS burnt area data 

in time series with respect to dual seasonality. Selection was based firstly on location, secondly 

on sizes of burnt areas.         

 Three remarkable years, in which more than 1500 ha area was burnt (Fig. 15.), can be 

highlighted for the non-fire-prone season. The years of 2002, 2008 and 2014, respectively. Not 

surprisingly, it is August when the largest areas were burnt.  The summer of 2008 was 

unexpectedly hot in terms of fire activity, because there was 8805 ha partly forest and partly 

moorland vegetation burning. It means almost ten times more burnt area during this summer 

in comparison to the median, 943 ha burnt area for the selected fire years. 

 Concerning fire-prone season (Fig. 16.), six years can be selected when more than 1500 

ha area was burnt, namely 2006, 2009, 2011, 2012, 2013 and 2015. Peaking with 12171 ha the 

year 2012 happened to be the most devastating (more than two times bigger burnt area than 

in 2009 when ‘only’ 5579 ha was burnt) fire year during the studied period. The median burnt 

area is 1643,5 ha, which is less than six times smaller than the burnt area size of the top year 

recently described.         

 High seasonal burnt area suggests fire events burning bigger areas, whereas low 

seasonal fire events burn in general smaller areas.       

Fig. 14. Monthly distribution of area burnt. Fire seasonal differentiation indicated by red and 
brown colours. Increasing bubble sizes express burnt area sizes. Unit in hectares. 
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Fig. 15. April-December burnt area time series in Mount Kenya region. Numbers in the middle indicate hectares 
burnt by year. Red, yellow and light red colours represent burnt areas by relevant months between April and 
December. 

Fig. 16. January-March burnt area time series in Mount Kenya region. Numbers in the middle indicate 
hectares burnt by year. Red, yellow and light red colours represent burnt areas by January, February, 
or March. 
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 As shown by Figure 17 (where IS and AF 1 imitate direct ‘on the day of ignition and day 

after’ fire spread), the combination of IS with AF1 covers the burnt area quite fittingly. From 

a spatial point of view, Some AF 1 could possibly be identified for spatial upscaling to IS. 

 There are proportionally more IS to be observed within the forest station boundaries 

than on the moorland. In case of North of Marania, where the accumulation of agricultural 

land is dominant, lot of IS are present with no burnt area coverage. These must have been 

small fire events with no or very short distanced (by satellite not detectable) fire spreads, or 

false alarms.          

 More frequent but smaller fire events are thus more likely to occur within the forest 

stations, while less frequent but larger fire events are more likely to happen on the moorland. 

In addition to it, forest stations have to deal with more frequent fire events during the fire 

prone season. 

             

 According to MODIS verified burnt area product, these fire events burn more forests 

(within forest station boundaries) than low seasonal fire events do (Fig. 18.). The observed 

differences regarding burnt area distribution between high and low seasons are in size and 

spatial location. As expected, dry seasonal burnings are concentrated by far on the moorland. 

Fig. 17. MODIS verified 500-m burnt area. IS and AF1 displayed regarding dual seasonality. M is for Marania, Mu 
refers to Mucheene and Me to Meru forest station. 
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 Furthermore, within the forest stations the vast majority of burnt areas are small sized, 

averaged between 100-300 ha while on the moorland three-four-five times bigger burnt areas 

dominate. 

  

3.3.2. NDVI and PID 

 Samplings for the NDVI supervised classification are based on the classified Boolean 

Mount Kenya vegetation map (introduced in chapter 2.2.1.). The classification itself was 

performed on a ‘to the rectangular extent of forest stations’ clipped version of calculated NDVI 

year 2000 image displayed as a black frame in Figure 19, because unlike the 2016 image, it 

was cloudless over the Kenya massive. Sample plots are also visible. 

                                                

 NDVI pixel distribution unveils a prominent shifting towards higher values (Fig. 20.). A 

general change in vegetation distribution is to be observed, irrespectively to the bimodal 

seasonality. Values between 0.2 and 0.5 (grass, shrub, crop) are most probable and clearly 

decreasing. 

Fig. 18. MODIS verified burnt area size distribution displayed for both seasons. Unit in hectares. 

Fig. 19. Calculated NDVI images used for supervised classification on the extent shown by black frame. 
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 Fig. 22. Pixel Ident Distribution of for ‘NDVI 2016 based supervised classification used bands’ (left), presenting vegetation 

classes pixels. Supervised classification (right), vegetation classes distribution over NDVI. 

 

 

 

 

 

 

    

 NDVI values from 0.6 however, are increasing in a relative comparison to cropland 

values gaining more weight. In general, vegetation is more productive (higher assimilation) in 

fire prone season, suggesting connection to fire. To gain more insight in this topic, further 

researches are needed.        

 Remote sensing data based Pixel Ident Distribution (Fig. 21.) show for the NDVI 2000 

image a point pattern with differentiated clustering behaviour, forest (NDVI values 0.6-0.8) 

and cropland pixels are slightly overlapping in each other NDVI value range 0.6-0.7. A totally 

different point (pixel) pattern can be observed for the NDVI 2016 image (Fig. 22.). Here, 

besides a stronger clustering pattern observed for all vegetation types, more pronounced 

overlapping, with/within each other structured layering can be perceived for the five 

vegetation classes. This phenomenon is strongest between the moorland and the otherland.

    

 

Fig. 20. Comparative NDVI probability pixel distribution. Year 2000 
expressed by dark grey, year 2016 by light grey bars. Overlap is greyed. 
NDVI is unitless. 

Fig. 21. Pixel Ident Distribution of for ‘NDVI 2000 based supervised classification used bands’ (left), presenting vegetation 
classes pixels. Supervised classification (right), vegetation classes distribution over NDVI. 
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3.3.3. Vegetation Regeneration and Burn Severity 

Fig. 23. Vegetation regeneration dynamic and burn severity assessed on burnt area for April-December (top) and for January-March 

(bottom), derived from NBR. Burn severity classes, Enhanced Regrowth Low (red) and High (dark red) are expressed with intensity colour 
palette. NA meaning no pixel value. Forest stations from links: Gathiuru, Ontulili, Marania, Mucheene and Meru. 
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 The classes determined for the analysis are quantitatively interpreted based on NBR 

(section 2.3.2). Here, Enhanced Regrowth Low, equivalent to regeneration and Enhanced 

Regrowth High, or advanced almost grown vegetation are in focus. Because of the rapid 

natural regeneration (Nyongesa, verbal comment), the former indicates recent (several 

months in the past) fire events, while the latter suggests fire events that occurred around a 

year or years before. In science burn severity is always classified according to quantified loss 

of organic material either aboveground or in the soil or water, depending on the purpose of 

research [41].          

 Figure 23 shows North of Marania (M) as a catalytical centre where the most High 

Severity pixels can be seen. This piece of landscape is driven by constant human activities 

throughout the year, as it fosters Moderate-low Severity, Moderate-high Severity, Enhanced 

Regrowth Low (equivalent to regeneration) and High classes, irrespective of which season they 

occur in.           

 While scanning through the ‘by fires of non-fire prone season burnt’ forest stations, 

their landscape shows less fire activity in comparison to North of Marania.  Still, as the case of 

the most affected forest station Mucheene (Mu) shows: Enhanced Regrowth Low, although 

its spread is spatially scattered, is constantly to be spotted. In Meru (Me) forest station the 

presence of Enhanced Regrowth High surrounded by regenerating vegetation is a sign of fire 

driven landscape. On the moorland, as expected, regrowth (Enhanced Regrowth Low 

particularly) pixel frequency proportional to burnt area size of the season is increasing, 

suggesting more intense fire activity than in the forest stations (exclusive Meru). 

 Considering only the classes of burn severity index (without the two regrowth classes) 

of the fire-prone season, the forest is shaped by less intense fire events with burn severity 

pixels of Moderate-low, Low and High spotted here and there.  By including the two regrowth 

classes into the analysis, the picture of a dynamic changing landscape, shaped by fire, is 

unveiled. The forest station Ontulili presents a wide range of burn severity and both 

vegetation regeneration classes: Moderate-high, Low, High Severity and most of all Enhanced 

Regrowth Low. About half of the burnt area pixels in Meru and Ontulili are mainly indicated 

by colours of the two vegetation regeneration classes: Enhanced Regrowth Low and High. It is 

shown thus, that forest stations do not tend to burn significantly during the fire-prone season 

in comparison to the low season.         

 As for the moorland, regrowth pixel frequency (proportional to its burnt area size) is 

slightly less than in the forest stations, suggesting temporal fragmentation of bigger fire 

events.            

 In terms of short temporal (fifteen years) fire regime it can be concluded that forest 

stations are driven by fires of similar intensity in both high and low seasons. The moorland 

shows a slightly more dynamic fire driven landscape in the fire prone season and less 

dynamism in the non-fire-prone season.       

 As can be seen in Figure 24 there is a clearer accumulation of Enhanced Regrowth High 

pixels with median NDVI value of 0.33 of the non-fire-prone season. Enhanced Regrowth Low 

(regeneration) is more pronounced for the fire-prone season, encompassing higher NDVI 
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values (with median slightly over 0.4). A wider range of High Severity pixel spread can also be 

noted for the high season. In general, all VegReg classes relate to higher NDVI values in case 

of January-March, whereas relatively lower NDVI values are typical for the April-December 

season. Higher NDVI values suggest forest and moorland vegetation, while lower values are 

(0.2-0.3) are identified with cropland.      

 Seasonality driven difference with respect to fire activity based on the ‘combined 

Vegetation Regeneration-Burn Severity on burnt area’ analysis cannot be significantly 

distinguishable for the forest stations and North of Marania. A difference of significance can 

be pronounced by including the moorland into the analysis. 

 

3.3.4. Accessibility (roads ~ trails buffer) 

 Since it is strongly assumed and suggested that fire ignition is human caused [7, 11, 

16], the questions how humans can reach the spatial locations of IS (spatial points) arises. 

Simplest answer is: on roads and trails.        

 One glance at the provided road density shapefile made clear that trails above the 

timberline and roads in most of the forest stations are either missing or non-existing. Accurate 

and actual GIS applicable map of trails, roads or trekking routes of the Mount Kenya region 

proved difficult to acquire and by the time of writing the thesis none could be found.

 Mending accuracy and drawing additional roads, trails and paths resulted in an 

increased road density map, that was applied for the purpose of the present thesis. 

Unfortunately, in the southern part of the moorland above Hombe and in the forest stations 

between Hombe and Chuka, trails could not be reproduced due to imagery cloudiness.  

 Fig. 24. shows, that IS have a strong relation with roads and trails, most of the IS are 

directly in contact with the snake-like buffered lines.  An exceptional situation can be seen in 

the southern part above Hombe in case of two IS points, the assumption that there is a trail 

line leading up to join a trekking path, cannot be proven. Some IS can be observed within 

Ontulili (O), Gathiuru (G), Mucheene (Mu) and Meru (Me) adjacent to the buffered roads. 

These ignition sources are related to forest plantations, cultivations located within the forest. 

About half of all IS are present outside the forest, on the agricultural land use dominated area, 

Fig. 24. VegReg classes pixel distribution over NDVI on burnt area as for fire seasons: 
April-December (left) and January-March (right). ERH- Enhanced Regrowth Low, ERL- 
Enhanced Regrowth High, HS- High Severity, LS- Low Severity, MLS- Moderate low 
Severity and MHS-  Moderate high Severity. Median, 0.39 - red dashed line. 
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North of Marania (M), underlining its importance. The most AF1 points are clustered in the 

forest of Mucheene and in its vicinity on the moorland. Accessibility of that area is facilitated 

by roads nearby.          

 On the April-December map is the lack of trails in the south, south-eastern part of the 

moorland, where six IS and a number of AF1 and 2 are located, an appealing feature (Fig. 25.). 

As for the rest of high altitudinal fire ignition sources related to area accessibility, roads ~ trails 

network offers sufficient coverage.         

 Fire prone seasonal IS show the same characteristics that were described above for 

the low seasonal ones. IS centres can be identified on the area North of Marania, in the forests 

of Ontulili, Gathiuru and Marania. Forest stations with less IS are Mucheene, Meru, Ruthumbi, 

Chogoria, Chuka and Irangi.  Because land use practices such as forest plantations mixed 

cultivation and cattle grazing are more concentrated during high fire season (Ngugi, written 

comment), ‘seasonal weighted importance of accessibility’ is accordingly more pronounced in 

the forest stations impacted by fires of the fire-prone season. A complete analysis regarding 

the moorland could not be performed due to technically uncompleted roads ~ trails network 

map.            

 The relation between roads ~ trails and Ignition Classes in preference to IS is simple. If 

fire events start with human induced ignitions as is the case in this thesis: the more roads ~ 

trails are crossing the region the easier to access larger areas (proportional to the region), 

consequently the more likely that more frequent human caused fire events occur on 

wider/larger areas of the region.   

Fig. 25. Mount Kenya region’s buffered roads ~ trails map, April-December. Ignition Sources represented by white rectangle. 
Ignition Classes: Ignition Point, After Fire 1, After Fire 2 and Unclear are denoted with symbols to be seen in the legend box. 
500 m buffer expressed by red transparent line, displayed under 1000 m blue transparent buffer line. Forest stations: G 
represents Gathiuru, O Ontulili, M Marania, Mu indicates Mucheene, Me Meru, Ru Ruthumbu and Ch Chogoria. 
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3.4. > summary(results) 

 Bimodal fire seasonal theory was confirmed by FO frequency spatio-temporal 

distribution analysis (map), as well as by the results of combined fire density and Mean to 

Variance Ratio analysis.  Furthermore, this dual seasonality was highlighted by the quantified 

Burnt Area monthly distribution analysis.       

 Spatial Point Pattern analyses (G- and Ripley’s K-functions) have shown clustering FO 

pattern for very short distances (10-20 m) and for relatively short distances up to 300-400 m 

likewise.            

 Both, low and high seasonal IS spatial spreads and their Kernel Density concentration 

(after FO reclassification process) expressed an unexpected overlapping. IS tends to behave 

similarly over the study area irrespectively of in which season they occur.   

 High seasonal fire events consume in general (verified on 15-year-long scale) larger 

areas in the study region, especially on the moorland. In the forest stations, there is a clear 

season driven differentiation to be observed regarding burnt area sizes. The frequency and 

the number of fire events are, of course, higher in the January-March period. Still, as far as 

forested burnt area sizes concerned, seasons tend to be in balance with each other. 

Fig. 26. Mount Kenya region’s buffered roads ~ trails map, January-March. Ignition Sources represented by white rectangle. 
Ignition Classes: Ignition Point, After Fire 1, After Fire 2 and Unclear are denoted with symbols to be seen in the legend box. 
500 m buffer expressed by red transparent line, displayed under 1000 m blue transparent buffer line. Forest stations: G 
represents Gathiuru, O Ontulili, M Marania, Mu indicates Mucheene, Me Meru, Ru Ruthumbu and Ch Chogoria. 
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 Land use changes were obtained from the stacked imagery of NDVI relevant band 

images and the NDVI image itself. Pixel Ident Distribution results show separate clustering of 

grass-, cropland and forest pixels for the year 2000 image, while the 2016 stacked image 

presents grass-, cropland and forest pixels overlapped in a similar shape and distribution. 

Moreover, the slight shift towards higher NDVI values indicate a trend of increasing 

assimilation, suggests a process of getting more healthier vegetation.     

 With regard to the combined Vegetation Regeneration-Burn Severity analysis: a 

seasonality driven difference in fire activity assessed on burnt area could not be detected.

 The roads ~ trails buffer analysis suggests that the more roads ~ trails crossing the 

area, the more likely that more frequent human caused fire events occur on wider/larger 

areas of the study region.  

 

4. Discussion and conclusions  

 Fire is one of the most important driving factors, threatening the Mount Kenyan 

ecosystem and it will surely remain so. Its effects will very likely be intensified in the future 

under the impacts of climate change.        

 Three questions were specified in the beginning of this thesis. The process of attempt 

to determine answers as accurate as possible was described up to present. In this section are 

the conclusive answers formulated.                                                                                

(I) What are the spatial characteristics of the Mount Kenya fire regime and how can they be 

quantified?  

 The dual seasonality (high and low fire seasons), confirming Poletti’s work [16], 

marking spatial characteristics of fire regime, quantified by spatio-temporal fire 

frequency, density and burnt area analysis. The extent of the region’s fire regime and 

its spatial variability covers not only the forest stations and the moorland, but the area 

North of Marania.  

 

 The FO clustering pattern characteristics, quantified by G and K-function methods of 

SPPA. The nearest neighbour distance test of the G-function showed strong clustering 

up to 12 m, irrespective to seasonality. It means either that MODIS detects FO very 

likely on the same spot or FO happens very likely on the same spot in different time. 

The MODIS detection hypothesis is more likely.       

 The K-function revealed same clustering characteristics up to 350-400 m, 

suggesting the same conclusions as was described previously in case of the G-function.  

(II) Which spatial patterns can be identified in relation to human activities (direct-ignition 

source and indirect-burnt area, fire severity, vegetation regeneration and NDVI) and how fire 

regime (I) is effected by them? 

 Clustering patterned FO, implying at spatial locations where human activities are 

frequent. Spatial random IS and AF1, both are the result of the FO reclassification 
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process. Fire event(s) visualized by spatial combination of IS and AF1, marking the 

spatial fire spread of a given fire event. IS were related to roads ~ trails so as to verify 

spatial human accessibility. Human caused fires (IS) occur in the close neighbourhood 

of roads and trails.  The resulting maps of the roads ~ trails buffer analysis clearly 

determine: the higher roads ~ trails density is, the easier to access (newly) opened up 

areas by (newly built) roads. On these areas with no regard to their location (forest, 

moorland), it is very likely that more frequent fire events will follow  

 

 Clustering spatial distribution of burnt area directly related to IS, encompassing fire 

spreads of fire events. The more the ignitions are, the higher the probability for a fire 

event in both seasons. Human induced wild fire (any fire) can burn depending on 

seasonality and connected weather-fuel variables large areas. Clustering pattern of 

burnt area implies at fire-prone locations where human activities are practiced. Here, 

roads ~ trails density plays an essential role, as described above. It was shown that 

road density does not belong to the major factors limiting burnt area in Southern Africa 

[42]. However, it is not the case at Mount Kenya.     

 High fire season is marked with more frequent moorland fire events burning 

larger areas (bigger fires), keeping up the characteristics of dual seasonality, unlike it 

is stated by Downing et al. [11]. High seasonal forest fire events are more frequent, 

burning approximately similar sized areas as less frequent forest fire events during the 

April-December period.  

 

 Combined Vegetation Regeneration-Burn Severity, verified on burnt area results 

show no seasonality driven difference in fire activity. The spatially aggregated pattern 

of burnt areas are directly linked to roads ~ trails density, thus indirectly to human 

activities.           

 By high seasonal fires burnt forest landscape tends to be as dynamic and active 

as low seasonal fire driven forest landscape. Whereas the moorland embodies a more 

dynamic, by large fire events determined landscape during the fire-prone season and 

transforms into a slightly less active fire by smaller fire events driven landscape during 

the low season.         

 Increasing human caused fires impact the fire cycle (burning-regrowth). 

Depending on the cycle-interval, fire can either accelerate or hinder vegetation from 

regrowth. Mount Kenya’s vegetation tends to be fire adaptive with quick response of 

growth on fire events, that is why classes of burn severity and vegetation regeneration 

are cumulatively present.         

 Fire regime effects vegetation and in return vegetation affects fire regime. 

Further researches are needed to gain understanding how this interaction influences 

this fragile ecosystem and what effects it can have on essential ecosystem services like 

providing fresh water. 
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 No spatial patterns could be identified by the NDVI and PID analyses, because neither 

the change of NDVI values nor the clustering, non-clustering characteristics of PID 

could be spatially related to activities practiced by humans, which cause fire.  

 

(III) How is the quality and quantity of available remote sensing (RS) data to provide necessary 

information relating questions (I) and (II) above? 

 

 It is difficult to reflect on the qualitative part of the question due to lack of comparable 

studies in field of afro-alpine environment.       

 As described in section 2.2.2. overall fire detection performance of Collection 

5 Terra MODIS is acceptably accurate, but in Central-Africa (including Mount Kenya 

region) proofed to be very accurate. Fire occurrence based analyses were performed 

with this data.         

 Accuracy of Collection 5 MCD54A1 Burned Area Product was praised over 

Collection 6 MCD64A1 as a better performer in detecting small fires in steep 

mountainous area [23]. The former product was used for burnt area assessment.       

 The scientific legacy of Landsat 7 and ETM+ and Landsat 8 is enormous and far 

too numerous to mention for the extent of this thesis. Landsat satellite data were used 

for the calculations of NDVI images and NBR (from which combined vegetation 

regeneration and burn severity analysis were derived). Field of selection was restricted 

partly by the SLC-off scanner issue of Landsat 7 ETM+, and partly by cloudiness in the 

imagery. The two Landsat images were selected with care and consideration, making 

the author to choose images from different years of the study period: 2000 and 2016. 

Still, the 2016 image shows some cloudy patches over the mountain. It can have an 

error-raising effect on the NDVI and PID analyses, which turned out to be non-

responsive (irrelevant) to questions (I) and (II).     

 Apart from the qualitatively influenced quantitative restriction just mentioned, 

the quantitative availability of RS data for the scope of this thesis is thoroughly 

satisfactory.  

       

5. Recommendations 

1. In general 

 Fire danger sign posting at frequent distances along trails and roads, especially nearby 

fire-prone areas, and awareness raising by all possible means (workshops, organized 

education programs, distribution of simple maps) are suggested. Supervising / monitoring (a 

system to be created, which is sensitive to changes and flexible towards pending optimization 

processes) land preparatory activities on cultivated lands and in plantations within forest 

stations are highly recommended. Maintaining roads and trails (combined with intensified 

monitoring activities in the fire prone months) so as to lead people on monitored trails is 

considered as essential. Without clear pre-signing roads and trails, maintenance efforts will 

lose from their efficiency, so it is also essential. Fire management is strongly recommended 
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for the whole year, holding seasonal characteristics (considering January-March as highly fire-

prone and July-September as highly fire-sensitive months) before the eye.  

 Further recommendations include the creation and implementation of a fire danger 

map based on various up to dated meteorological data (recently found availability: 

http://wlrc-ken.org/data/timeseries/home) and classified fuel types. An understanding of the 

underlying processes of fire regime as described on the pages of this thesis, might support this 

attempt.           

 Last but not least, it is very important that the author of the present thesis does NOT 

recommend building new roads or trails. 

 

5.2. In particular 

 For the future, fire management recommendations described in previous section are 

advised to be based on an extended map version of forest station boundaries, called Mount 

Kenya Future Forest Stations (Fig. 26.), covering the Mount Kenya Reserve. The numbers of 

FO and IS are indicated with italic letters, IS are underlined. The expanded boundaries were 

drawn considering the original spatial distribution of the forest stations and a possible fair 

distribution of the moorland (relative to sizes of the distinct forest stations). The assessment 

of fire prone areas by implementing the ameliorated GIS data provided here in combination 

Fig. 27. For fire management and research recommended Future Forest Station (FFS). Ignition Sources frequency 
indicated by shading red for each forest stations. High seasonal IS displayed by in-quadrat-black dots, low seasonal 
IS by in-circle-grey triangles. Sum of MODIS FO (italic) and IS (italic, underlined) are shown for each FFF. Period 
2001-2015. Map is available and ready to be implemented. 
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of available remote sensing data could be the next step for specific spatial modelling in the 

Mount Kenya region. Moreover, this new GIS applicable shapefile could be the base for the 

fire danger map.  

 

At this stage the author of this thesis cannot tell whether the Future Forest Stations will be 

supportively useful, but dearly hopes that they will be used, re-used and will bring some help 

in raising awareness of fire’s destructiveness and responsibility of keeping Mount Kenya’s 

natural resources sustainably safe for future generations.                       
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