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Summary

Glioblastoma Multiforme (GBM), a grade 4 glioma, develops into a rapidly growing
and highly malignant tumour with very poor prognosis. The average age at diagnosis
of GBM is between 40 and 60 years with GBM being more often found among male
adults. The goal of this thesis is to assess the potential of machine learning based
cluster analysis of expression profiles to lead to an alternative definition of GBM
subtypes.

To approach the problem in an optimal manner, we propose an integrated analysis
of expression data that was obtained with different measurement techniques. To
obtain such data a large and well annotated collection of GBM has been downloaded
from The Cancer Genome Atlas (TCGA). To warrant dependable results, alterna-
tive analysis strategies were considered at all stages of the analysis workflow. We
specifically compared data integration at the level of gene expression values and
subsequent clustering with clustering of individual expression data modalities and
subsequent integration of cluster assignments. Clustering itself was approached by
several competing methods with particular emphasis put on selecting an optimal
number of clusters. The number of clusters corresponds in such analysis to the pro-
posed number of GBM subtypes. Deciding on an optimal number of clusters is thus
crucial. We put thus considerable effort in devising a collection of metrics and relied
on consistency across metrics as model selection yardstick.

Careful assessments based on consistency lead to three gene expression derived GBM
subtypes and corresponding patient groups which are optimal in a technical manner.
To complement technical optimality with an assessment of biological relevance, we
compared patient survival between the predicted groups by a Kaplan-Meier analysis
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to find that the proposed GBM subtypes are significantly associated with survival.
For a second analysis of biological relevance we ranked gene expression profiles by
their predictive power for the established clustering and used a gene set enrichment
analysis to obtain easier to comprehend biological tags to our findings. The result-
ing biological process and pathway terms were compared by manual literature review
with established knowledge to find agreement in several biological processes which
are linked with GBM development. As a conclusion of this thesis we may thus state
that unsupervised machine learning has great potential to elucidate and characterise
the molecular mechanisms of GBM. The proposed analysis is however far from com-
plete as other machine learning methods are available that can replace and augment
different parts of our analysis workflow. The use of data modalities like methyla-
tion signatures of copy number signals has furthermore great potential to provide
additional insight.

An important result of this thesis was to establish a pipeline for integrating GBM
samples, data preprocessing, clustering and post processing. Although developed
specifically for the analysis of GBM subtypes, the pipeline developed in this MSc
thesis may be of broader interest to communities who wish to expand their knowledge
about molecular mechanisms of other types of cancer.
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Zusammenfassung

Glioblastoma Multiforme (GBM), ein Tumor des Gliom-typs Grad 4, entwickelt sich
zu einem schnell wachsenden und stark bösartigen Tumor. Das durchschnittliche
Diagnosealter liegt zwischen 40 und 60 Jahren. Am häufigsten werden männliche
Erwachsene diagnostiziert. Das Ziel dieser Arbeit ist es, umfassende Signaturen von
GBM-Subtypen aus Expressionsdaten durch Implementierung von Datenintegration
und Clusteranalyse zu entdecken.

Um das Problem zu lösen, wurde die Integration von Expressionsdaten aus ver-
schiedenen Messergebnissen, die in The Cancer Genome Atlas (TCGA) öffentlich ver-
fügbar sind, mit entsprechenden Hintergrundinformationen des Patienten abgerufen
und analysiert. Um verlässliche Ergebnisse zu erzielen, werden alternative Analyse-
strategien in allen Abschnitten der Pipeline betrachtet - die Datenintegration auf der
Ebene der Geneexpressionsdaten mit anschließendem Clustering wird mit Clustering
einzelner Expressions-modalitäten und nachfolgender Integration der resultierenden
Cluster-Einteilungen verglichen. Zum Clustering selbst werden mehrere Methoden
herangezogen. Der sorgfältigen Modellauswahl kommt wegen der implizierten Bedu-
tung als Anzahl von GBM subtypen besondere Bedeutung zu. Da die Optimal-
ität entscheidend von der Modellbewertung abhängt, wurde ein erheblicher Arbeit-
saufwand unternommen, um eine ganze Gruppe zuverlässiger Metriken zu bekommen,
die zur Modellwauswahl verwendet werden.

Um technisch definierte Optima auf ihre biologische Relevanz hin zu untersuchen
wurde auf einfach interpretierbare Terme wie biologische Prozeße und Pfade zurück
gegriffen. Um Aussagen auf der Ebene solcher Terme zu machen wurden Expres-
sionssignaturen hinsichtlich ihrer Eignung zur Vorhersage der Clusterzugehörigkeit
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der GBM Patienten gereiht und anschließend mittels Gene Set Enrichment Analyse
auf biologische Terme projiziert. Unter den vorhergesagten Termen konnten durch
manuelle Recherche zahlreiche Prozesse identifiziert werden, die bekannte Assozia-
tionen mit der Entwicklung von GBM haben. Als zweites Kriterium biologischer
Relevanz konnten die aus den Expressionsmustern erhaltenen Patientengruppen mit-
tels Kaplan-Meier Analyse mit signifikanten Unterschieden in deren Überlebenszeit
assoziiert werden. Unsere Analysen legen nahe, dass der vorgeschlagene Einsatz
maschinellem Lernens zur Gruppierung von GBM in Subtypen bzw. zum besseren
Verständnis molekularer Mechanismen in GBM geeignet ist. Als Ausblick sei er-
wähnt, dass unsere Analyse in Zukunft um eine Reihe zusätzlicher Datenquellen
ergänzt werden soll um damit das Verständnis von GBM weiter zu verbessern und
in Zukunft therapeutische Ansätze zu schaffen, die momentan in der postoperativen
Behandlung von GBM weitgehend wirkungslos sind.
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1
Introduction

Glioblastoma Multiforme (GBM), can be described as a grad IV glioma type tumour
which develops into a rapidly growing and highly malignant tumour from a normal
brain tissue with least survival period (Jemal et al., 2009). GBMs are tumours with
heterogeneous characteristics, that means they expand into multiple complex genetic
abnormal neoplastic cells. The average diagnosis age are between 40 and 60 years and
commonly male adult patients. The risk factors and causes for the development of
GBM are mostly unknown. According to current knowledge, neither environmental
factors, eating habits, emotional stress, nor electromagnetic fields in the frequency
range of mobile signal led to a higher risk of brain cancer(Association and others,
2016). Due to aggressiveness, insufficient treatment methods, increased number of
patients and it’s unknown causes and risks, it is essential to find molecular causes
which impact survival of GBM patients which will provide a better understanding of
the disease and may suggest an improved treatment (Association and others, 2016).
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GBM subtypes

A common approach to study the genetic aberration of GBM is by gene expression
analysis. The technique can be used for individual transcripts as well as for the entire
transcriptome and allows for quantitative statements about the activity of genes
(DeRisi et al., 1997). Gene expression levels can be measured at the level of RNA
or proteins. The possibility of gene expression analysis has led to the identification
of prognostic profiles, some of which have been validated and are in clinical use. In
addition, clinical factors such as tumour size, etc. are important information about
tumour prognosis (DeRisi et al., 1997).

After the first treatment of GBM by surgery, prognostic and predictive factors are
assessed to identify the best suitable treatment. By analysing gene expression profiles,
molecular subtypes of GBM were identified that differ significantly in their clinical
course and response. Gene expression profiles aim to provide prognostic information
beyond conventional clinico-pathological risk taking to influence the therapy decision
if necessary (Wallner et al., 1989). (Verify the validity of citations of Wallner)

Unsupervised learning methods have been applied to gene expression data to identify
relationships among genes (Murat et al., 2008). Unsupervised learning methods can
however also discover commonalities among patients which may identify subtypes of
diseases in general (Murat et al., 2008) and GBM in particular. By associating gene
expression signatures with such patient clusterings, we may provide a deeper insight
into the molecular characteristics of the disease (Murat et al., 2008).

Cluster analysis is a very important technique in statistics and machine learning.
Therefore, a wide range of different methods with individual strengths and weak-
nesses can be found. Due to the well known (“no free lunch theorem”) from D.
Wolpert and W. Macready (Wolpert and Macready, 1997), it is impossible to favour
a particular method a-priori. Clustering should thus be approached by several com-
peting methods. Particular emphasis should be given to careful model selection
which decides on the optimal number of clusters. As cluster optimality depends on
the metric, we make an exceptional effort on implementing and applying different
validation metrics which are subsequently used as model selection criteria (Van’t
Veer et al., 2002).
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Established GBM subtypes and challenges

Different researchers proposed different classifications of GBM, which can be distin-
guished by their genomic features, survival period, patient and treatment responses.
Phillips et al. categorised GBM by 3 groups: mesenchymal (49%), Proneural (31%)
and proliferative (20%). While Mesenchymal and proliferative subtypes has equally
short survival period, Proneural subtype was associated with patients with longer
survival period (Phillips et al., 2006). The study by Verhaak et al. used a large
patient cohort of GBM samples which can now be obtained from TCGA GDC. Their
analysis identified four distinct groups of GBM: Mesenchymal, Proneural, Classical
and Neural subtypes. A characterisation of genetic differences and clinical outcome
is provided in figure 1.1. Their initial research was performed with 206 GBM patient
sample data containing 601 genes from 91 patients with mutations in TP53. The
classical subtype is classified with no TP53 mutations but high EGFR amplification
around 97%. The mesenchymal subtype has mutations in NF1 (38%), TP53 (3%)
and PTEN (87%). In addition Verhaak et. al. (Verhaak et al., 2010) report low
expression for NF1 and high expression of TNF and NF-KB.

A later study of Purkait et al. used 114 GBM patients which were diagnosed from
2006 until 2012 in the Neuropathology Laboratory of the All India Institute of Medi-
cal Science. The authors find not correlation of the current classification by Verhaak
et. al. with the clinical outcome of their study (Purkait et al., 2016). Purkait et.
al. raised some concerns about the Verhaak et. al. classification by finding that
protein expression measured with immunohistochemistry shows no correlation with
gene amplification of EGFR, PDGFR or TP53 (Purkait et al., 2016).

This discrepancy suggests that a careful analysis of the TCGA GBM data should
be carried out with emphasis on finding interesting patterns which allow separating
the patient cohort into subgroups which share distinct molecular features. Since
we do not have a priori information about patient groups, this analysis should be
approached with methods which belong to the category of unsupervised machine
learning methods.
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Figure 1.1: GBM Subtypes by (Verhaak et al., 2010). The figure summarises genetic
characterisations and observed gene expression abnormalities which are characteristic for
the four GBM subtypes as identified by (Verhaak et al., 2010). In addition, the figure
summarises typical clinical phenotypes of patients which suffer from the different GBM
subtypes. A common aspect of all GBM subtypes is very poor prognosis of patients and
lack of promising treatment. This suggests that further analysis into GBM which could
improve its characterisation is timely needed.

Research objective of this work

This master thesis proposes a careful clustering of GBM patients with the goal to eval-
uate the potential of unsupervised machine learning to overcome known shortcomings
of current GBM subtypes. We hypothesise that this objective can be achieved if we
apply carefully tuned unsupervised methods on a large set of GBM gene expression
profiles. To obtain the required data, we downloaded all available GBM cases from
TCGA GDC where gene expression data was available. This gave rise to three differ-
ent measurement platforms. To evaluate our hypothesis, we need therefor a carefully
designed workflow. To remove platform biases and other detrimental components
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from the gene expression data, we used methods from the bioconductor framework
for normalisation and quality control (Gentleman et al., 2004). To allow robust con-
clusions, we combine information from different data modalities by two alternative
strategies:

• We may combine information from different data sources by careful alignment
of samples and variables. Data may be integrated at gene expression level, for
example by averaging. We propose this approach for its similarity to factor
analysis approach which was applied in (Verhaak et al., 2010) for combining
information. A disadvantage of this choice is loss of information by having to
restrict analysis to samples and genes where all modalities are available. An
additional complication arrises from platform specific biases which render inter
platform normalisation challenging.

• We propose therefore a second approach which combines data at meta level. For
deciding for gene subsets which convey information angoput GBM, we combine
p-values using Fishers meta analysis (Fisher, 2006). Once we decided for a gene
set all further processing and clustering can be done separately for every data
modality. This has the advantage that we avoid loss of information as we may
use all cases. Once all individual clusterings are available, the overlapping
cases are used for resolving the identification problem between the different
clusterings (Stephens, 2000). After resolving we may combine the probabilistic
cluster assignments quantitatively and arrive at consensus clusters.

It is evident that reliable clustering is an important aspect to both approaches with
the optimal number of cluster centres corresponding to the proposed number of
GBM subtypes. Warranting a reliable cluster number determination is thus the
by far most important aspect of our analysis pipeline. To achieve this goal we
spent considerable effort on surveying theory, metric validation and application. To
validate our hypothesis we used two strategies for assessing the obtained clusterings:

• The cluster indicators of samples were used as factors in a linear model to obtain
characteristic expression signatures and gene rankings. By using a GSEA type
method, the rank lists were tagged with easy to comprehend terms from the
Gene Ontology and biological pathway databases. For verifying the biological
implications suggested by this analysis, we compared our findings by careful
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review to find good agreement with biological implication that are linked to
GBM in published literature.

• The cluster indicators were also used to separate clinical parameters into groups.
We investigated in particular the connection between our predicted GBM clus-
ters and patient survival and discovered a distinct separation among short to
medium survival periods. Significance was however dependent on the applied
clustering method.

Our findings allow the conclusion that a careful analysis of expression data by cluster-
ing and quantitative integration of evidence provides molecular distinct subgroups of
samples which are linked with meaningful biological processes and different clinical
prognosis. There are however also several aspects wich can be improved TCGA has
several other modalities like genotype, methylation state or copy number variation
which will carry information about GBM subtypes. These data sources should be
considered for integration.

By subjecting the gene expression signature which is significantly linked to our pro-
posed clustering of GBM to a GSEA analysis we find biological terms like “control
loss of cell cycle”, “regulation of G1-S transition”, “fibroblast growth factor receptor
signalling pathway” and “signal transduction by p53 class mediator” among the top
ranked GO terms. A careful literature analysis reveals these terms linked with devel-
opment of GBM (Nakada et al., 2011). Albeit observing such confirmatory evidence
of our clustering, there is one aspect which deserves a follow-up: The gene list we
obtain when using the cluster indicators as rank effect finds for all measurement
platforms strong differential expression for a large fraction of genes. This implies a
string variability of the molecular signatures in dependence of GBM subtype. It is
clearly necessary to investigate this result further to decide whether this is interesting
biology or a side effect from an unwanted batch effect which is consistently present
in all gene expression platforms and should thus be removed.
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2
Glioblastoma Multiforme

Gliomas: Occurrence and Classifications

Most common gliomas are high-grade gliomas and the occurrence of primary brain
tumours are increasing. Despite that gliomas are the minor widespread tumour types,
they are the main cause relating to cancer deaths in Europe under 40. Brain cancer
occurrence cannot be prevented by any kind of habits adjustment and no compelling
development in survival rates for almost 30 years has been classified yet(Weller et
al., 2014).

The name glioma comes after the cells from which glioma occurs and develops and
they make up about ~50% of the entire primary brain cancers and is composed of
wide distribution of neuroectodermal tumours, containing ependymomas, oligoden-
drogliomas and astrocytomas. Astrocytomas that occurs from astrocytes which are
the most frequent types of the brain cells and consist the most glioma groups, are
above 75 percent(Weller et al., 2014). Grade I astrocytomas or also known as pi-
locytic astrocytomas are mostly curable by surgical extraction procedure. Grade II
astrocytomas with 6 to 8 years of overall survival, have slow growth rate character
and low proliferation as a result (Crocetti et al., 2012). Grade III astrocytomas, also
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known as anaplastic astrocytomas, depending on the last grade progression, have a
median overall survival of ~3 years. Grade IV astrocytomas which are more classified
as glioblastoma multiforme (GBM), in comparison to the lower grade gliomas, differ
in prominent vascular proliferation, pseudopalisading necrosis and high growth rate.
The majority of lower grade II - III astrocytomas rapidly arise into a primary GBM
or de novo GBM without a less malignant precursor lesion (Ohgaki and Kleihues,
2012). As the result the amount of fluorescence intensity from every probe on the
plate of the expression is measure via fluorescence measurement.

Development of GBM

The large part of Glioblastoma Multiforme GBM tumours are being observed in the
supratentorial cell areas, in the frontal lobes, although they can be also found in
cortical parts, the brainstem, spinal cord and the cerebellum (Adamson et al., 2009).
GBM tumours usually develop in the central nervous system (CNS) and in spite of
GBM tumours as being highly aggressive, they exceptionally contribute outside the
CNS. GBM tumours contain genetically and phenotypically heterogeneous groups of
tumours that occur in average of about 4 cases from 100,000 people across Europe.
The average age is around 50 years and above and mostly affected patients are male
(3:1) (Crocetti et al., 2012).

Because of the heterogeneous character of GBM, the histopathology of the tumour
is extremely complex. Morphologically, GBM can be visually identified as grey
coloured tumour cells with yellow stained necrotic tissue by cause of myelin disrup-
tion and variety of hemorrhagic areas. One of the features that has been recognised
as a prognostic feature for differing the GBMs between the lower grade gliomas are
including pseudopalisading necrosis, a composition that is particularly unique to
GBM and microvascular hyperplasia that is linked with the pseudopalisades develop-
ment. Pseudopalisading necrosis, where hyper-cellular areas, depart from the hypoxic
necrotic regions, where the cells over-expressed hypoxia-inducible factor (HIF-1), in-
troducing cell responses to low oxygen concentration and inducing pro-angiogenic
factors for instance vascular endothelial growth factor (VEGF) (Rong et al., 2006).

GBMs are generally classified into primary and secondary GBM that influence a vari-
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ety of age groups, develop at varying rates and affecting multiple genetic conversions
on clinical basis(Masui et al., 2012). Although primary and secondary GBMs share
common clinical progress, they differ in molecular pathways such as the Ras/MAPK
cascade, PI3K and p53 pathways. While older patients are mostly affected with
primary GBMs, secondary GBM are found in most younger patients below the age
of 45 years. 90% of GBM arise de novo by multistep tumorigenesis from normal glial
cells (primary GBM), their presence occur rapidly and are usually easily detectable.
Additionally, they represent as the most aggressive form of GBM. About 55 percent
of GBMs are described by epidermal growth factor receptor (EGFR) over-expression
due to genetic (Henriksen et al., 2014). The most part of GBMs grow immediately
without any clinical indication of precursor lesion. The development of lower grade
gliomas into secondary GBM (10% of GBM) requires genetic transformations which
is described in the figure 2.3. The most common genetic modification of GBM,
which cover up 60% to 80% of most cases is the loss of heterozygosity (LOH) on
chromosome 10q. The majority of primary GBM indicate loss of the entire chromo-
some, when in fact the secondary GBMs show partly loss of 10q (Brat and Van Meir,
2004). MGMT promoter methylation has been much more observed in secondary
GBMs around 75% than in primary GBMs which is about 36%. On chromosome 9,
p16INK4a and p14ARF suppressor genes are encoded within the CDKN2A locus.
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Figure 2.1: Differences of the development between primary and secondary GBM. primary
GBMs arise de novo, whereas secondary GBMs arise from lower grade lesions.

Generally, the diagnosis of GBM is based on histopathological methods. Nowadays,
due to GBMs heterogeneity, the result of improper sampling, molecular markers are
turning into more reliable methods preferred in routine diagnostics. Our current
understanding of molecular events, as with most cancers, suggests that unlikely all
patients share a common genetic trait. Isocitrate dehydrogenase-1 (IDH1) mutations
have been identified in most low grade tumours and considered as an early event in
gliomagenesis (Nikiforova and Hamilton, 2011). Secondary GBMs have high rates of
IDH1 mutations contributing to a better prognosis (Dunn et al., 2013)

While IDH1 mutations in the primary GBM are rare, EGFR amplifications (40-60%)
and PTEN (15-40%) are more common (Kanu et al., 2009). TP53 mutations are
more common in secondary GBMs (> 60%) than primary GBMs (~ 10%) and are
the earliest detectable genetic mutation present in 60% of low-grade progenitor as-
trocytomas. However, the TP53 and RB1 signalling pathways are often altered in
the primary GBM (Zhu and Parada, 2002). Therefore, excelling approach of charac-
terisations between the types of astrocytoma tumours should be defined properly in

10



order to achieve better treatments within the next years (Kunkle et al., 2013).

Cell biology of GBM

In the last two decades the biological structures and functions of GBM have been
thoroughly researched. GBM cells are subjected to different kinds of cell malfunction
that gain advantage resisting different kinds of anti-GBM treatments. Six cellular
characterisations of GBM are shown below but it should be recognised that these
characterisations do not occur in isolation (Nakada et al., 2011).

Figure 2.2: Gliomagenesis. Progressive accumulation of tumour transformation in GBM is
subjected in multiple intracellular events. Starting from a normal healthy cell, it undergoes
different events such as loss of cell cycle control due to lack of regulators that coordinates
the cell division. Genomic instability is one of the main events in most cancer due to
mutations in the DNA repair genes, which promotes cancer development from healthy
cells.

The first occurrence is loss of cell cycle control. The normal cell cycle is immensely
strict regulated. However, these regulations are being inhibited by the glioma tu-
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mours, which cause genetic defects in growth regulatory factors, allowing them lim-
itless proliferation. These genetic defects are observed in malignant rather than
lower grade glioma cells. The G1 - S phase transition has been remarkably noticed,
since changes occur in one or more components of p16INK4a/cyclin-dependent kinase
(CDK)-4/RB (retinoblastoma) 1 pathway, regulating G1-S phase transition cell cycle
checkpoint in various anaplastic astrocytomas. RB1 undergoes phosphorylation by
CDK/cyclin D1 complex, which activate genes in G1 - S phase transition, releasing
E2F transcription factor (Nakada et al., 2011).

Over-expression of cellular growth factors and their receptors, the second event of the
cell cycle pathway, are the main cause of GBM development. Diverse growth factors
are over-expressed in GBM and transducing cell proliferation and turn healthy cells
into neoplastic tumours such as epidermal growth factor receptor (EGFR), platelet-
derived growth factor (PDFG), basic fibroblast growth factor (bFGF, FGF-2), trans-
forming growth factor (TGF)-α, and insulin-like growth factor (IGF-1). Among the
growth factors that are over-expressed in GBM, EGFR and PDGF are the main
over-expressed proteins (Nakada et al., 2011).

Angiogenesis is also an important part of causing and sustaining GBM. The rapidly
growing tumours in GBM development are surrounded by angiogenic alterations that
occur as ring-like contrast enhancements. These alterations are visible at the Mag-
netic Resonance Imaging (MRI) scan. Specially in GBMs angiogenic molecules are
present in malignant gliomas. As a result of microvascular proliferation, malignant
gliomas are vascular tumours (Nakada et al., 2011).

Also one of the event that causing and sustaining GBMs are invasion and migration
events that are influenced by extracellular matrix molecules (ECM) and cell surface
receptors and these influence the GBM to diffuse and infiltrate of the surrounding
neural net. The cytoskeletal proteins are included; signalling molecules that resolve
the communication between the microenvironment and the cytoskeleton (Nakada et
al., 2007).

The next event that should be mentioned and is also a key feature to the cell cycle
and that is the abnormality of apoptosis which is characterised as a programmed
cell death by non-inflammatory cellular condensation. Glioma cells develop means
for increased proliferation and to abrogating apoptosis. The apoptotic response
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in normal glial disturb by p53 mutations that usually follow growth factor over-
expression in low-grade gliomas, leading to progressive development (Nakada et al.,
2007).

A vital role and the last event is the genetic instability of GBM development. A
crucial feature of low-grade glioma is the rapid progress to high-grade lesions and
such malignant progression is correlated to the malignant clones development. More
Malignant clones are selected occurring further genomic damages as a result of ge-
nomic instability. Mutations in p53, also called as “guardian of the genome”, may
cause tumour progression through genomic instability. Patients have an increased of
developing malignant gliomas with syndromes of genomic instability (Nakada et al.,
2007).

Causes and Symptoms of GBM

The primary cause of GBM is still unknown. Most brain tumours are genetically
inheritable, though genetically heritable diseases such as Tuberous Sclerosis, Neu-
rofibromatosis, Li-Fraumeni and Von Hippel-Lindau occasionally trigger the cancer
tumour, which only a small quantity of cases have been recorded of being activated
by the genetically heritable diseases mentioned. Recently, researchers speculate that
abnormalities (genetically and immunogenicity), environmental factors such as UV-
lights exposures, ionising radiations and stress along with other factors that cause
deformities in genes of various chromosomes are responsible for triggering the tumour
development. However, no significant confirmations has been delivered a direct cor-
relation between the factors and the development of GBM tumours within those
cases. Investigators are approaching ongoing fundamental research to study more
about the underlying factors of causing GBM (Association and others, 2016).

Abnormal changes of cell structure or loss of tumour suppressor gene are one of the
causes for GBM development secondary to the oncogenes (tumour suppressor genes
regulates cell division) which control cell growth. The main cause to this specific
development is not clarified. Nonetheless, latest studies proposed that abnormal-
ities of DNA (deoxyribonucleic acid), which carries the gene information, are the
fundamentals of malignant cell transformation (Nakada et al., 2011).

13



The typically inversion to a more primitive form of tumour (loss of differentiation
or anaplasia) in cells that developed malignancies which is the result of incapability
performing their respective functions within the tissue (Nakada et al., 2011). Once
cells developed malignancies, they pass these abnormalities to their “daughter” cells
with a rate of a rapidly and uncontrolled division, which the natural immune de-
fences of the body are incapable to compete. Ultimately, the formation of a mass
known as tumour or neoplasm is the result due to such uncontrolled proliferation
and abnormalities of the cells. Thus, cells proliferate heterogeneously, which means
that the cells within the tumour do not share identical genetic properties(Nakada et
al., 2011).

The location of the neoplasm, the growth size and the growing rate are the dependen-
cies of the symptoms displayed from the patients. There are cases when symptoms
occurs directly after tumour development, however in more of the cases, symptoms
only occurs when the tumour has reached a definite size (Nakada et al., 2011).

Based on patient records, general symptoms of GBM are headaches with different
stages of intensities, usually occurs after sleeping, early mornings that leads to nausea
and vomiting issues and in later periods to hemiparesis (a one side paralysis of the
body), loss of motoric skills and affective sensation. The cognitive perception is also
negatively affected, adverse concentration and mental development, loss of visual
capability and aphasia (language dysfunction) (Association and others, 2016).

Prognosis and Treatment of GBM

A suitable diagnosis has to be subjected on patients being detected with this kind
of tumour before it can be treated. The initiation of diagnosis is to execute a neuro-
logical observation on the patient and afterwards performing a Magnetic Resonance
Imaging (MRI), Computed Tomography (CT) or Magnetic Resonance Spectroscopy
(MRS) scan. These methods are essential for tumour location, size, tumour type,
mineral and chemical measurements in result to the malignancy results of the pa-
tients (Association and others, 2016).

GBM is a genetically heterogeneous neoplastic tumour with complex structures as the
results its existence of sub-clones within the tumour cell population. The existence

14



of sub-clones and their heterogeneity has made GBM resistant to the introduced
treatment methods. The conventional GBM treatment method has been unchanged
for years. A surgical intervention is performed on the patient to extract the tumour,
secondly a radiation therapy and subsequently the chemotherapy is executed. In most
of the cases, the average survival of those GBM diseased patients are about nine to ten
months even after all visible MRI scanned tumours have been surgically extracted
and being treated with radiation and chemotherapy. This is due to the diffusive
topography that makes the tumour location inconsistent that leads to unsuitable
resection of the tumour (E.C. Holland 2000). It has not been able to fully undergo
full resection with any adverse neurological and functional side effects such as motoric
disorders, that could impact the quality of living (Von Neubeck et al., 2015).

In spite of the aggressiveness of the disease and despite to the technological develop-
ment obtained in surgery, radio- and chemotherapy, the survival periods of treated
patients has been marginally improved. Even though with these intensive treatment
applications to the GBM, resistance has been observed despite to the intensive mul-
timodal therapy methods and the survival period just slightly increased with just
couple of months. The treatment proposal was introduced by the European Or-
ganisation for Research and Treatment of Cancer (EORTC) and National Cancer
Institute of Canada Clinical Trials Group (NCIC). This approach implicates surgical
procedure for extracting all the tumours followed by fractionated radiotherapy beside
of concomitant and adjuvant treatment of temozolomide (TMZ) a cytostatic agent.
The median has been increased due to this applied method to the patients with 2
years survival up to 14.6 months and 26.5% compared to patients only treated with
radiotherapy, which is only 10.4% and 12.1 months (Von Neubeck et al., 2015). #
Glioblastoma Multiforme

Gliomas: Occurrence and Classifications

Most common gliomas are high-grade gliomas and the occurrence of primary brain
tumours are increasing. Despite that gliomas are the minor widespread tumour types,
they are the main cause relating to cancer deaths in Europe under 40. Brain cancer
occurrence cannot be prevented by any kind of habits adjustment and no compelling
development in survival rates for almost 30 years has been classified yet(Weller et
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al., 2014).

The name glioma comes after the cells from which glioma occurs and develops and
they make up about ~50% of the entire primary brain cancers and is composed of
wide distribution of neuroectodermal tumours, containing ependymomas, oligoden-
drogliomas and astrocytomas. Astrocytomas that occurs from astrocytes which are
the most frequent types of the brain cells and consist the most glioma groups, are
above 75 percent(Weller et al., 2014). Grade I astrocytomas or also known as pi-
locytic astrocytomas are mostly curable by surgical extraction procedure. Grade II
astrocytomas with 6 to 8 years of overall survival, have slow growth rate character
and low proliferation as a result (Crocetti et al., 2012). Grade III astrocytomas, also
known as anaplastic astrocytomas, depending on the last grade progression, have a
median overall survival of ~3 years. Grade IV astrocytomas which are more classified
as glioblastoma multiforme (GBM), in comparison to the lower grade gliomas, differ
in prominent vascular proliferation, pseudopalisading necrosis and high growth rate.
The majority of lower grade II - III astrocytomas rapidly arise into a primary GBM
or de novo GBM without a less malignant precursor lesion (Ohgaki and Kleihues,
2012). As the result the amount of fluorescence intensity from every probe on the
plate of the expression is measure via fluorescence measurement.

Development of GBM

The large part of Glioblastoma Multiforme GBM tumours are being observed in the
supratentorial cell areas, in the frontal lobes, although they can be also found in
cortical parts, the brainstem, spinal cord and the cerebellum (Adamson et al., 2009).
GBM tumours usually develop in the central nervous system (CNS) and in spite of
GBM tumours as being highly aggressive, they exceptionally contribute outside the
CNS. GBM tumours contain genetically and phenotypically heterogeneous groups of
tumours that occur in average of about 4 cases from 100,000 people across Europe.
The average age is around 50 years and above and mostly affected patients are male
(3:1) (Crocetti et al., 2012).

Because of the heterogeneous character of GBM, the histopathology of the tumour
is extremely complex. Morphologically, GBM can be visually identified as grey
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coloured tumour cells with yellow stained necrotic tissue by cause of myelin disrup-
tion and variety of hemorrhagic areas. One of the features that has been recognised
as a prognostic feature for differing the GBMs between the lower grade gliomas are
including pseudopalisading necrosis, a composition that is particularly unique to
GBM and microvascular hyperplasia that is linked with the pseudopalisades develop-
ment. Pseudopalisading necrosis, where hyper-cellular areas, depart from the hypoxic
necrotic regions, where the cells over-expressed hypoxia-inducible factor (HIF-1), in-
troducing cell responses to low oxygen concentration and inducing pro-angiogenic
factors for instance vascular endothelial growth factor (VEGF) (Rong et al., 2006).

GBMs are generally classified into primary and secondary GBM that influence a vari-
ety of age groups, develop at varying rates and affecting multiple genetic conversions
on clinical basis(Masui et al., 2012). Although primary and secondary GBMs share
common clinical progress, they differ in molecular pathways such as the Ras/MAPK
cascade, PI3K and p53 pathways. While older patients are mostly affected with
primary GBMs, secondary GBM are found in most younger patients below the age
of 45 years. 90% of GBM arise de novo by multistep tumorigenesis from normal glial
cells (primary GBM), their presence occur rapidly and are usually easily detectable.
Additionally, they represent as the most aggressive form of GBM. About 55 percent
of GBMs are described by epidermal growth factor receptor (EGFR) over-expression
due to genetic (Henriksen et al., 2014). The most part of GBMs grow immediately
without any clinical indication of precursor lesion. The development of lower grade
gliomas into secondary GBM (10% of GBM) requires genetic transformations which
is described in the figure 2.3. The most common genetic modification of GBM,
which cover up 60% to 80% of most cases is the loss of heterozygosity (LOH) on
chromosome 10q. The majority of primary GBM indicate loss of the entire chromo-
some, when in fact the secondary GBMs show partly loss of 10q (Brat and Van Meir,
2004). MGMT promoter methylation has been much more observed in secondary
GBMs around 75% than in primary GBMs which is about 36%. On chromosome 9,
p16INK4a and p14ARF suppressor genes are encoded within the CDKN2A locus.
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Figure 2.3: Differences of the development between primary and secondary GBM. primary
GBMs arise de novo, whereas secondary GBMs arise from lower grade lesions.

Generally, the diagnosis of GBM is based on histopathological methods. Nowadays,
due to GBMs heterogeneity, the result of improper sampling, molecular markers are
turning into more reliable methods preferred in routine diagnostics. Our current
understanding of molecular events, as with most cancers, suggests that unlikely all
patients share a common genetic trait. Isocitrate dehydrogenase-1 (IDH1) mutations
have been identified in most low grade tumours and considered as an early event in
gliomagenesis (Nikiforova and Hamilton, 2011). Secondary GBMs have high rates of
IDH1 mutations contributing to a better prognosis (Dunn et al., 2013)

While IDH1 mutations in the primary GBM are rare, EGFR amplifications (40-60%)
and PTEN (15-40%) are more common (Kanu et al., 2009). TP53 mutations are
more common in secondary GBMs (> 60%) than primary GBMs (~ 10%) and are
the earliest detectable genetic mutation present in 60% of low-grade progenitor as-
trocytomas. However, the TP53 and RB1 signalling pathways are often altered in
the primary GBM (Zhu and Parada, 2002). Therefore, excelling approach of charac-
terisations between the types of astrocytoma tumours should be defined properly in
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order to achieve better treatments within the next years (Kunkle et al., 2013).

Cell biology of GBM

In the last two decades the biological structures and functions of GBM have been
thoroughly researched. GBM cells are subjected to different kinds of cell malfunction
that gain advantage resisting different kinds of anti-GBM treatments. Six cellular
characterisations of GBM are shown below but it should be recognised that these
characterisations do not occur in isolation (Nakada et al., 2011).

Figure 2.4: Gliomagenesis. Progressive accumulation of tumour transformation in GBM is
subjected in multiple intracellular events. Starting from a normal healthy cell, it undergoes
different events such as loss of cell cycle control due to lack of regulators that coordinates
the cell division. Genomic instability is one of the main events in most cancer due to
mutations in the DNA repair genes, which promotes cancer development from healthy
cells.

The first occurrence is loss of cell cycle control. The normal cell cycle is immensely
strict regulated. However, these regulations are being inhibited by the glioma tu-
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mours, which cause genetic defects in growth regulatory factors, allowing them lim-
itless proliferation. These genetic defects are observed in malignant rather than
lower grade glioma cells. The G1 - S phase transition has been remarkably noticed,
since changes occur in one or more components of p16INK4a/cyclin-dependent kinase
(CDK)-4/RB (retinoblastoma) 1 pathway, regulating G1-S phase transition cell cycle
checkpoint in various anaplastic astrocytomas. RB1 undergoes phosphorylation by
CDK/cyclin D1 complex, which activate genes in G1 - S phase transition, releasing
E2F transcription factor (Nakada et al., 2011).

Over-expression of cellular growth factors and their receptors, the second event of the
cell cycle pathway, are the main cause of GBM development. Diverse growth factors
are over-expressed in GBM and transducing cell proliferation and turn healthy cells
into neoplastic tumours such as epidermal growth factor receptor (EGFR), platelet-
derived growth factor (PDFG), basic fibroblast growth factor (bFGF, FGF-2), trans-
forming growth factor (TGF)-α, and insulin-like growth factor (IGF-1). Among the
growth factors that are over-expressed in GBM, EGFR and PDGF are the main
over-expressed proteins (Nakada et al., 2011).

Angiogenesis is also an important part of causing and sustaining GBM. The rapidly
growing tumours in GBM development are surrounded by angiogenic alterations that
occur as ring-like contrast enhancements. These alterations are visible at the Mag-
netic Resonance Imaging (MRI) scan. Specially in GBMs angiogenic molecules are
present in malignant gliomas. As a result of microvascular proliferation, malignant
gliomas are vascular tumours (Nakada et al., 2011).

Also one of the event that causing and sustaining GBMs are invasion and migration
events that are influenced by extracellular matrix molecules (ECM) and cell surface
receptors and these influence the GBM to diffuse and infiltrate of the surrounding
neural net. The cytoskeletal proteins are included; signalling molecules that resolve
the communication between the microenvironment and the cytoskeleton (Nakada et
al., 2007).

The next event that should be mentioned and is also a key feature to the cell cycle
and that is the abnormality of apoptosis which is characterised as a programmed
cell death by non-inflammatory cellular condensation. Glioma cells develop means
for increased proliferation and to abrogating apoptosis. The apoptotic response
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in normal glial disturb by p53 mutations that usually follow growth factor over-
expression in low-grade gliomas, leading to progressive development (Nakada et al.,
2007).

A vital role and the last event is the genetic instability of GBM development. A
crucial feature of low-grade glioma is the rapid progress to high-grade lesions and
such malignant progression is correlated to the malignant clones development. More
Malignant clones are selected occurring further genomic damages as a result of ge-
nomic instability. Mutations in p53, also called as “guardian of the genome”, may
cause tumour progression through genomic instability. Patients have an increased of
developing malignant gliomas with syndromes of genomic instability (Nakada et al.,
2007).

Causes and Symptoms of GBM

The primary cause of GBM is still unknown. Most brain tumours are genetically
inheritable, though genetically heritable diseases such as Tuberous Sclerosis, Neu-
rofibromatosis, Li-Fraumeni and Von Hippel-Lindau occasionally trigger the cancer
tumour, which only a small quantity of cases have been recorded of being activated
by the genetically heritable diseases mentioned. Recently, researchers speculate that
abnormalities (genetically and immunogenicity), environmental factors such as UV-
lights exposures, ionising radiations and stress along with other factors that cause
deformities in genes of various chromosomes are responsible for triggering the tumour
development. However, no significant confirmations has been delivered a direct cor-
relation between the factors and the development of GBM tumours within those
cases. Investigators are approaching ongoing fundamental research to study more
about the underlying factors of causing GBM (Association and others, 2016).

Abnormal changes of cell structure or loss of tumour suppressor gene are one of the
causes for GBM development secondary to the oncogenes (tumour suppressor genes
regulates cell division) which control cell growth. The main cause to this specific
development is not clarified. Nonetheless, latest studies proposed that abnormal-
ities of DNA (deoxyribonucleic acid), which carries the gene information, are the
fundamentals of malignant cell transformation (Nakada et al., 2011).
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The typically inversion to a more primitive form of tumour (loss of differentiation
or anaplasia) in cells that developed malignancies which is the result of incapability
performing their respective functions within the tissue (Nakada et al., 2011). Once
cells developed malignancies, they pass these abnormalities to their “daughter” cells
with a rate of a rapidly and uncontrolled division, which the natural immune de-
fences of the body are incapable to compete. Ultimately, the formation of a mass
known as tumour or neoplasm is the result due to such uncontrolled proliferation
and abnormalities of the cells. Thus, cells proliferate heterogeneously, which means
that the cells within the tumour do not share identical genetic properties(Nakada et
al., 2011).

The location of the neoplasm, the growth size and the growing rate are the dependen-
cies of the symptoms displayed from the patients. There are cases when symptoms
occurs directly after tumour development, however in more of the cases, symptoms
only occurs when the tumour has reached a definite size (Nakada et al., 2011).

Based on patient records, general symptoms of GBM are headaches with different
stages of intensities, usually occurs after sleeping, early mornings that leads to nausea
and vomiting issues and in later periods to hemiparesis (a one side paralysis of the
body), loss of motoric skills and affective sensation. The cognitive perception is also
negatively affected, adverse concentration and mental development, loss of visual
capability and aphasia (language dysfunction) (Association and others, 2016).

Prognosis and Treatment of GBM

A suitable diagnosis has to be subjected on patients being detected with this kind
of tumour before it can be treated. The initiation of diagnosis is to execute a neuro-
logical observation on the patient and afterwards performing a Magnetic Resonance
Imaging (MRI), Computed Tomography (CT) or Magnetic Resonance Spectroscopy
(MRS) scan. These methods are essential for tumour location, size, tumour type,
mineral and chemical measurements in result to the malignancy results of the pa-
tients (Association and others, 2016).

GBM is a genetically heterogeneous neoplastic tumour with complex structures as the
results its existence of sub-clones within the tumour cell population. The existence
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of sub-clones and their heterogeneity has made GBM resistant to the introduced
treatment methods. The conventional GBM treatment method has been unchanged
for years. A surgical intervention is performed on the patient to extract the tumour,
secondly a radiation therapy and subsequently the chemotherapy is executed. In most
of the cases, the average survival of those GBM diseased patients are about nine to ten
months even after all visible MRI scanned tumours have been surgically extracted
and being treated with radiation and chemotherapy. This is due to the diffusive
topography that makes the tumour location inconsistent that leads to unsuitable
resection of the tumour (E.C. Holland 2000). It has not been able to fully undergo
full resection with any adverse neurological and functional side effects such as motoric
disorders, that could impact the quality of living (Von Neubeck et al., 2015).

In spite of the aggressiveness of the disease and despite to the technological develop-
ment obtained in surgery, radio- and chemotherapy, the survival periods of treated
patients has been marginally improved. Even though with these intensive treatment
applications to the GBM, resistance has been observed despite to the intensive mul-
timodal therapy methods and the survival period just slightly increased with just
couple of months. The treatment proposal was introduced by the European Or-
ganisation for Research and Treatment of Cancer (EORTC) and National Cancer
Institute of Canada Clinical Trials Group (NCIC). This approach implicates surgical
procedure for extracting all the tumours followed by fractionated radiotherapy beside
of concomitant and adjuvant treatment of temozolomide (TMZ) a cytostatic agent.
The median has been increased due to this applied method to the patients with 2
years survival up to 14.6 months and 26.5% compared to patients only treated with
radiotherapy, which is only 10.4% and 12.1 months (Von Neubeck et al., 2015). #
Materials and Methods

Gene expression analysis

Microarray technology and RNA-Seq are important tools in global gene expression
analysis. Hereby the expression of several hundred genes can be investigated simulta-
neously. In individual tumours, important cell biology relationships in tumour cells
can be detected by gene expression analysis (Miller and Tang, 2009).
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The most important role of these technologies in the future lies in the classification
and prognostic assessment of diseases and gene expression. For individual disease sub-
types or risk groups, specific gene expression profiles can be established (Pagliarulo
et al., 2002). With this information, it is then possible - in addition to the previously
available morphological and molecular genetic criteria - to improve the classification
and prognosis estimation of tumour diseases. Another area of application of global
gene expression analysis is the “prediction” of drug efficacy. Studies suggest that it
will be possible to generate gene expression profiles of body cells that are specific to
the responses of the cells to drug therapy. In the future, this may be important for
the individual therapy of tumour diseases (Van’t Veer et al., 2002).

Most accurate characterisation for classification, prognosis and treatment decision of
the malignant cells define the goal of the diagnosis of malignant diseases (Weller et
al., 2014). In spite of increasingly improved morphological examination techniques,
immuno-phenotyping, chromosome examination and other methods, significant dif-
ferences in prognosis and response to therapy cannot ultimately be explained by
the methods mentioned (Wen and Kesari, 2008). Therefore, to obtain more accu-
rate information about the disturbed growth of tumour cells, explorations are being
dedicated to the elementary building blocks of cells, the genes (Weller et al., 2014).

It is of particular interest to which genes in the tumour cells are active (turned
on, expressed, high concentration of RNA) and which are inactive (switched off, not
expressed, low or no RNA concentration) (DeRisi et al., 1997). So far, the expression
of individual genes in cells after separation of RNA in the electric field on a gel using
radioactively labeled probes was measured (Northern Blot). This process is very
laborious and time consuming, and the experiments can only be carried out in special
laboratories suitable for working with radioactive materials. In an experiment, only
the analysis of a gene can be done (Schena et al., 1995).

In the early 1990s, the polymerase chain reaction (PCR) was developed. With arti-
ficially generated complementary DNA, the RNA can be repeatedly amplified. This
makes it possible to detect even minimal amounts of RNA. In recent years, the tech-
nique of PCR has improved so much that it can also be used in clinical routine (for
example, to detect viral RNA) (Livak and Schmittgen, 2001).
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Microarrays

Analysis of microarrays

In the 1990s, so-called gene arrays were developed that allow the simultaneous ex-
pression analysis of many genes. First, it was possible to probe up to several hinder
genes in parallel with gene probes attached to membranes. Since 1997, the techni-
cal prerequisites exist for the production of microarrays in which up to 30,000 gene
probes can be applied to a glass surface for expression analysis (Schena, 2003).

The starting material for global gene expression analysis can be cells from tissue,
blood, bone marrow or cell cultures. First, the total RNA is extracted and labeled
with a fluorescent dye. Subsequently, the specific binding (hybridisation) of this
labeled RNA takes place on the microarray (Livak and Schmittgen, 2001). On a
solid surface of about 2 cm2 (plastic membrane, glass surface or silicon surface) there
are placed between 100 and 40,000 gene-specific probes to which the RNA to be
measured binds. Subsequently, unbound RNA is washed off and the fluorescence
for each gene-specific probe is measured with a high-resolution scanner (Livak and
Schmittgen, 2001). Currently, two fundamentally different techniques are used:

1. In the cDNA technique, long cDNA fragments (500 to 5000 bp) are applied to
the surface of the chip. From this technique derives the original name “DNA
Chip”, which is somewhat misleading because the gene expression measurement
is carried out on RNA samples. Each cDNA fragment is specific for a gene.
The RNA to be measured binds to the cDNA; The amount of bound RNA
is proportional to the amount of RNA in the cells to be examined. In this
technique, the hybridisation of a mixture of unknown RNA and a control RNA
labeled with different fluorescent substances is performed. The quantification
of the expression of the RNA in the target cells is done by measuring the mixed
color and the intensity (Schena et al., 1995).

2. In contrast to the cDNA technique, the oligonucleotide microarrays use 25 to 80
bp oligonucleotides (so-called 25-mers or 80-mers) as gene-specific probes. The
fluorescently-labeled RNA is hybridised directly to the microarray. Scanning
with the scanner does not produce a color image but a black and white image
with a corresponding gradation of the intensity of the individual measuring
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points (Schena et al., 1995).

The numerical expression data of several thousand genes provide the opportunity to
gain insights into the regulation of gene expression to an unprecedented extent. This
flood of data is also a significant problem for the analysis. Initially, data analysis
was done using simple spreadsheet programs. This made it possible to use the gene
bank number to determine the expression of individual genes in different samples and
to compare this expression virtually manually. Furthermore, pairwise comparisons
could be made by systematic arrangement of the data. The analysis of several sam-
ples at the same time was not possible, and the evaluation was very lengthy (DeRisi
et al., 1997).

Figure 2.5: A diagram of a microarray analysis process.

Microarray Technology

In the last 10 years various powerful computer programs for evaluating microarray
data have been developed. Simultaneously, various methods were introduced to
statistically control the quality of the hybridisation data. Expression data can be
graphically displayed and compared in pairs. Likewise, group comparisons are possi-
ble, e.g. Data from a normal control group with those from patients in the early or
late stage of a disease (Allison et al., 2006).

26



Noise is one of the major problems associated with microarrays as it is introduced
at each stage of the experiment. Since microarrays are noisy and an experiment
is repeated more than once, using the same materials and preparations as in the
previous experiment, many genes give different quantisation values due to noise after
the sample and image processing steps (Miller and Tang, 2009).

Different mathematical algorithms can be applied to the gene expression data, with
the help of which a characteristic gene expression profile can be created for each
examined Prop. Groups of samples may be formed, e.g., represent a particular
diagnosis, stage of disease or therapy success / failure (Miller and Tang, 2009). First,
known samples are analysed. The program seeks to find commonalities in the gene
expression profiles of samples with equal group affiliation. These form the so-called
“learning set”. Now samples with unknown group affiliation can be analysed (Schena,
2003). The program compares each individual gene expression profile of the unknown
samples with the profiles that were created on the “learning set” and tries to assign
the unknown samples to the individual groups. This method is mainly used in the
diagnosis of diseases, in their prognosis estimation and in the determination of drug
resistance (Schena, 2003).

When the first microarray experiments were performed on patient material, it was
believed that the molecular genetic causes of cancer could soon be elucidated. In
individual tumours, it has also been possible to discover cell biology relationships in
the tumour cells. However, the hopes that microarray technology can quickly and
systematically elucidate the pathophysiology of tumours have not yet been fulfilled.
Probably the most significant role of microarray technology in the future lies in
the classification and prognostic assessment of diseases based on gene expression.
Much of the work with microarrays is therefore focused on linking diseases to specific
expression profiles and using that information to validate existing or more accurate
and accurate classifications (Heller, 2002).
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RNA-Seq

RNA-Seq Analysis

RNA-Seq is a method of high throughput sequencing of cDNA transcribed frag-
mented RNA. In theory, RNA-Seq quantifies all transcripts present in a sample and
increasingly displaces gene expression analysis by microarray. In conventional RNA-
Seq, the entire transcript is fragmented and ideally each fragment is sequenced (Wang
et al., 2009). The longer a transcript is, the more fragments are formed, so that long
transcripts are over-represented in RNA-Seq results. This effect is compensated by a
bioinformatic normalisation of the RNA-Seq data. However, different normalisation
strategies lead to different results. In addition, it must be very deeply sequenced to
be able to count rare and short transcripts with sufficient certainty. Another problem
is the different RNA quality of samples. Once the RNA is degraded, normalisation
becomes impossible (Wang et al., 2009).

The techniques for sequencing genomes and transcriptomes are very similar. First,
the DNA or RNA molecules to be sequenced are fragmented and filtered according
to their length. From the totality of the resulting fragments, a sequencing library
is created by appropriate modification and duplication. Using sequencing machines
based on the sequencing-by-synthesis principle, these libraries can be read within
a few days (Kircher et al., 2009). For example, the Illumina Genome Analyzer II
(Illumina Inc.) produces 100 to 200 million sequence fragments with a length of 40
to 200 nucleotides (Kircher et al., 2009). This is nearly ten times the size of the
human genome sequence - but the cost of doing so is only ten thousands of the cost
needed to sequence the first human genome some 20 years ago (Kircher et al., 2009).
From this wealth of data, very accurate information about the investigated genome
or transcriptome can be derived.

However, the new sequencing technologies still have some drawbacks despite their
merits. It may e.g. not complete RNA molecules but only fragments are sequenced,
and the sequencing error rate is well above the traditional methods (Morozova et
al., 2009). Furthermore, both in the preparation and in the actual sequencing bio-
chemical processes involved, which can change the concentration of RNA fragments
undesirable. These properties make it much more difficult to utilise the resulting
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sequences for the reconstruction and quantification of the transcriptome(Morozova
et al., 2009). In addition, the amount of data produced during sequencing poses a
very great challenge for the subsequent analyses. Previous methods for processing
the resulting sequences are very easily reaching their limits, both with regard to
accuracy and the speed of data processing (Morozova et al., 2009).

Figure 2.6: A diagram of RNA-Seq analysis process.

The genomes and transcriptomes are generally analysed using so-called “machine
learning” (Libbrecht and Noble, 2015). This research field combines methods from
artificial intelligence, statistics and mathematical optimisation. Machine learning
deals with the analysis of complex statistical phenomena, such as the processing of
RNA transcripts in the cell. For this purpose, empirical observations, the so-called
learning samples, are analysed in order to be able to make precise predictions about
the investigated phenomenon. Frequently, the exact and efficient core-based learning
algorithms are used, which can be easily adapted to the respective problem by means
of a so-called core function. These methods have been developed in research to the
extent that they are now also suitable for the analysis of genome and transcriptome
data (Libbrecht and Noble, 2015).

29



An important step in the investigation of transcriptome data is the quantification
of the investigated transcripts in order to find volume-specific differences within the
transcriptome or to compare different transcriptomes (Libbrecht and Noble, 2015).
This may lead to deviations in the actual molecule concentrations due to molecular-
biological preparation steps before sequencing. To account for these distortions in
quantification, a new approach based on an optimisation approach has been de-
veloped that allows a much more accurate determination of the concentration of
mixtures of co-occurring RNA transcripts (Tarazona et al., 2011).

Microarray VS. RNA-Seq

Understanding the regulation of gene expression is crucial to the knowledge of the
correlation between genotype and phenotype. The requirements for an appropriate
evaluation of transcription frequencies in samples has led scientist to discover and
develop new technologies in gene expression profiling methods such as microarray
and RNA-Seq. Questions are often being asked for which method is more practical
in performing gene expression profiling, many researchers require difficult conclusion
in terms of cost and performance value, with the additional impact of selecting the
best method based on their research objectives. The following chapter elaborates
the methods based on which os more practical in which context, while in some cases,
both method will probably complement one another for its both advantage.

There are different viewpoints to either conclude which preferable gene expression
profiling method, that require a discrete definition. First, practical questions such
as the necessary genome information with the scope of finding the gene of interest.
Another important question is the amount of the available resource of expertise re-
quired. Thus, financial contribution is also one of important factors to be considered
for choosing the best method. Before, comparing the methods, similarities between
the both has to be clearly defined.
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Considerations

Equally as important to the aforementioned factors are the current research objec-
tives of the project. In addition to measuring differences in gene expression between
samples, accurate absolute Quantification is as well as important. Furthermore, the
importance in discovering new genes is also worth mentioning, due to its cruciality
to distinguish isoforms and the difference in expression between those isoforms from
already existing genes. Thus, the interest at the expression of transcripts at very
high or low levels or structural information such as alternative splicing and/or gene
fusions should also included. After these objectives being undergone, the next steps
is to find similarities between both method.

Characteristics

Microarray is a reliable method that has proven itself for the last few decades. Over
time, most of the researchers became more and more familiar with the technology
and analysis of gene expression results. Although, given as a previous issue, there is
a general agreement on the basic processing methods that can now be implemented
on any computer. Although the price of RNA-Seq have been reasonably reduced,
microarrays are still more economical and provide higher workloads that offer great
benefits when dealing with large-scale projects with larger sample quantities (Zhao
et al., 2014). Microarrays are constructed with hybridisation probes that rely on
sequence knowledge. Therefore, they cannot recognise structural variations of new
genes or transcripts. The hybridisation strategy for microarrays limits their sensi-
tivity, meaning that they cannot recognise the difference in expression between very
similar sequences such as isoforms. In addition, they can only produce expression
levels, not absolute quantification levels (Mooney et al., 2013).

Due to its independency on any prior sequence knowledge, RNA-Seq provides a
complete overview of the transcriptome. Every single transcript, either known or
unknown is sequenced in the sample. For this reason, structural variations such as
new genes or transcripts, gene fusion and alternative splicing events are being able
to be identified. RNA-Seq data be reanalysed as new discoveries become available,
comparing to the microarray which has be run the analysis again to analyse the new
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sequence information (Zhao et al., 2014). RNA-Seq, unlike microarrays that mea-
sure probe intensities, quantifies discrete digital read counts aligned to a particular
sequence. Due to the individually sequenced transcripts, the method itself is more
sensitive and more suitable for detecting low abundance and distinguishable of the
biologically critical isoforms (Willenbrock et al., 2009). The dynamic range, in fact,
can be adjusted unlimitedly through continuous sequencing. Since RNA-Seq is an
advanced technology, it is a fundamental analysis method to most researchers. One
of the bigger drawbacks is the data output, which be much more complex compare
to microarray, which can lead to a more much complex interpretation of the analysis
results (Mooney et al., 2013). In fact, the specific computer infrastructure and per-
sonell must use the additional biological information obtained in these data. Since
various RNA-Seq analysis tools are rapidly evolving, there are yet no standard pro-
tocol procedures provided, which can make it difficult to compare results. Indeed,
RNA-Seq generates so much data that storing such larges datasets can be a big prob-
lem. Large data sizes can be very difficult to access and also be very expensive to
store, especially for large projects with a larger number of samples (Kogenaru et al.,
2012).

Finally, despite the reduction of RNA-Seq costs which are based on modern technol-
ogy, the cost of performing a microarray experiment is in most cases lower than in
a comparable experiment based on RNA-Seq. In many cases, a combination of tech-
nology that maximises efficacy and overcome limitations can be the best strategy.
For example, RNA-Seq results can largely cover all transcripts of samples of differ-
ent temporal and spatial origin, without the need for sequence knowledge. Because
of the relatively higher cost and throughput of sample handling and data analysis,
systematic tracking of sequencing results for validation and/or profiling can be re-
producibly long and expensive in repetitive sequence. Customised microarrays can
be effective follow-up tools for capturing comprehensive sequencing information and
profiling and comparing gene expressions quickly, reproducibly, and cost-effectively
based on sequencing errors.
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Outlook

The global gene expression analysis of malignant cells, but not only of these, will in
the future gain substantial importance in basic research and increasingly in clinical
medicine. This makes it possible to record the functional states of the genes of a cell
and thus risk profiles, disease progression and therapy response. Since one cannot
generally assume that the change of only one gene is specific to the disease process,
the diagnosis and prognosis of diseases will be based on certain gene expression pro-
files characteristic of the particular disease or clinical course (Schulze and Downward,
2001).

Limiting for the microarray analyses is the relatively large amount of RNA (about
10µg), which is needed for a hybridisation. So far, this cannot be applied to a small
number of malignant cells in a tissue sample (Drăghici, 2016). However, there are
already approaches on how the sensitivity of the technique can be increased. The
ultimate goal could be the analysis of gene expression in a single cell. An advantage
of the method is that it will be largely automatable (Miller and Tang, 2009).

The experience to date shows that the reproducibility of the results from microar-
ray experiments strongly depends on the quality of the RNA. When applying the
technique in basic research, this point is not a problem, but for the investigation of
clinical samples. The development of useful RNA preservatives, which are added im-
mediately after the cell or tissue sample has been taken, seeks to solve this problem
with regard to the clinical application of the method (Schena et al., 1995).

The technique of microarrays and the methods for analysing the expression data will
be improved in a few years so that their broad application in the laboratory sector
is standard. The risk of uncritical accumulation of gene expression data, which then
confront the attending physician or the patient (Drăghici, 2016). It should always
be the goal to make a critical selection of the genes to be studied. It remains a vision
of the future, with the microarray technique not only to find the actual state of a
cell for diagnosis, prognosis and treatment decision, but also to identify individual
disease responsible genes. If it were possible to detect the function of these genes or
their malfunction, for example in signal transduction, then causal, targeted molecular
therapies could be developed (Schena et al., 1995).

Since microarray experiments can be processed differently, there is no consistent pro-
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cedure in evaluating microarray data. Also, the order of the process varies depending
on application. Furthermore, an error analysis is also carried out. Statistical analysis
requires different evaluations from different fields between biologist, computational
statisticians, and molecular and clinical research to development more statistical
methods for solving problems associated with microarray analysis. This has led to
the development of different comprehensive statistical approaches (Drăghici, 2016).

The application of the new sequencing technologies and the newly developed methods
make it possible to generate very accurate images of transcriptomes in the computer
and to determine their change under different experimental conditions (Libbrecht
and Noble, 2015). Exact knowledge of the transcriptome also allows the application
of learning methods that can learn from the measured data how the transcriptome
is formed from the genome and other factors. It has also been shown that epige-
netic information and external influences also strongly influence the transcriptome
(Tarazona et al., 2011).

Experimental data

The data was retrieved from The Cancer Genome Atlas (TCGA) through a pipeline
that was established by my supervisor Prof. Peter Sykacek with gene expression
annotation file, where all the clinical information are included within this file, and
all microarray raw files from Affymetrix .CEL files and from Agilent .txt files. The
Cancer Genome Atlas was created in collaboration of The National Cancer Institute
(NCI) and National Human Genome Research Institute (NHGRI) for creating global
and complex genomic maps from different cancer types. The cancer data are available
publicly and were utilised and processed for different research studies by researcher
globally (Tomczak et al., 2015)).

In addition, The Cancer Genome Atlas has developed a pipeline of genomic data
analysis that can accurately assemble, select and evaluate human tissue for large-
scale genomic compounds. The success of the TCGA project has had an impact on
teamwork in science and can serve as a prototype for future projects. The Cancer
Genomics Center (CCG) is an NCI initiative that will replace TCGA and builds on
the success of TCGA by publishing genomic data using a similar collaboration for a
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complete genomic analysis (Tomczak et al., 2015).

The Affymetrix raw files was in total of about 2.4 GB and the Agilent raw files
about 171 GB. After preprocessing the microarray raw files, the preprocessed data
matrix of Affymetrix has 200102 rows (genes) and 536 columns (samples) and that
of Agilent has around 13948 rows (genes) and 536 columns (samples). The HTSeq-
counts and FPKM files have a total of only 153 patient samples. All retrieved gene
expression data were preprocessed using specific methods provided by Bioconductor
(Gentleman et al., 2004).

Once the all the data from each experiments have been converted into a data frame,
they were cross annotated by matching and filter all the features/genes that occur
in all 3 experiments and sorted them in equal order. The same procedure were also
performed by the samples.

Description of the GDC Data Portal Webpage

The GDC Portal is the TCGA GDC Webpage for retrieving GDC data. The GDC
portal allows to search for data provided in the GDC database. It is a user friendly
graphical interface. You can search and browse all patients and their corresponding
metadata. The GDC portal contains different connections that can be linked to each
other and be able to specifically retrieved required data for further analysis (Network
and others, 2017a).
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Figure 2.7: Graphical Interface of the GDC Data portal webpage(Network and others,
2017a).

1. The left main menu bar. These are the quick links to the GDC data contents
to Projects and Repository. At the Exploration menu, analysis using GDC’s
DAVE tools can be found (GDC Data Portal User Guide 2018).

2. Buttons identical to the left main menu bar that leads to the same Projects,
Repository and Exploratory views as the main menu (Network and others,
2017b).

3. The right menu bar, Search, Login and View Cart can view the right main menu.
The GDC Apps is a link to the whole section of the GDC Webpage, including
the access to the legacy archive, to the cBioPortal and to the documentations
(Network and others, 2017b).

4. The bar chart connected with the human model next to the left that can bee
seen above the overview figure. These are the cases for each part of the human
body and organs that included in the GDC pipeline. By clicking on one of
the bar-graphs, it will take you to the Project menu for the selected project
(Network and others, 2017b).

5. A much larger view to the GDC Apps links, which contain the same links as
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in the right menu bar (Network and others, 2017b).
6. The Data Portal summary menu are shown the total number of projects, cases,

primary sites, files, genes and mutations annotations that are currently stores
in the GDC pipeline. These numbers changes from time to time, since new
data als always added (Network and others, 2017b).

GDC Legacy

GDC Legacy Archive is where the original data in GDC the call it the legacy data
that was provided by the original submitter that used old genome build data. These
legacy data are unharmonised und not-maintained data by the GDC. The Legacy
Archive can be accessed at the GDC Portal under the GDC Apps links and by clicking
Legacy archive.

Figure 2.8: Accessing Legacy Archive from GDC Apps(Network and others, 2017a).

The GDC Legacy archive consist of features based on the GDC Portal Projects menu
bar, where all the GDC unharmonised legacy data content are shown. The left panel
are facets that contain filters for specific search and the right panel shows the results
of specific searching the left panel to the legacy data. The difference between the
GDC Portal and the Legacy archive are that there are no pie charts representing
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the visualisation of the Data content in the legacy archive. The File and Annotation
tables is a list containing all of the legacy files and annotations. The GDC Data
Portal and Legacy Archive are not connected together, they are separated systems
which is being recommended that Legacy users should use the GDC Portal instead
due to harmonised and maintained (Network and others, 2017a).

Figure 2.9: GDC Legacy Archive file page, similar to GDC Data Portal file page(Network
and others, 2017a).

The file page view of the GDC Legacy Archive shares identical features with the GDC
Data Portal file page view. The main difference between both are that GDC Legacy
Archive provide additional information as describe with the figure below (Network
and others, 2017a).

Materials used in Data Analysis

The major languages used in data analysis of TCGA microarray data are python and
R with their corresponding packages from Bioconductor, Sklearn, Pandas, Numpy,
Matplotlib, Scipy, Statsmodels.
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Python

The programming language Python was developed in the early 90’s by Guido van
Rossum at the Stichting Mathematisch Centrum. It was named after the BBC show
Monty Python’s Flying Circus. Since then, the language has undergone numerous
changes and is now available in version 3.6. Python was thought to be a redesign of
the learning language ABC and the basis of the operating system Amoeba (Beebe,
2018).

The goal of Python is a simple and clear language, with enormous functionality and
only a few keywords. The focus was still on short development times and limiting
the programmer only as much as is absolutely necessary (Beebe, 2018).

Since 2001, Python has been management, published and promoted by the Python
Software Foundation (PSF). It is a non-profit organisation supported by sponsors
from a variety of fields (Beebe, 2018).

Python is a typical high-level language that allows very abstract programming. The
user does not need to worry about low-level problems and has a large amount of
complex commands at his disposal. Data types such as complex numbers, strings,
tuples, lists, and dictionaries are already implemented as standard data types and
can be easily used (Beebe, 2018).

Like many other languages, Python is interpreted. This is possible in two ways: The
source code can be sent precompiled to the interpreter for execution, or as source
code, which then has to be internally compiled first (Beebe, 2018).

Like any newer language, Python is object oriented. This does not mean the you
are required to work with classes. As with C++, and unlike, for example, Java,
Python also makes possible to declare functions and variables outside of classes. The
key words private, protected and public, which can be found in most other object-
oriented languages, are completely omitted and left to the programmer. To mark
methods private, its name must begin with two underscores. By name-mangling
this is the hidden, but still accessible from the outside. Since Python is already an
interpreted language, it has been designed to run on as many platforms as possible
(Beebe, 2018).

In contrast to most other languages, Python does not use its own key words or
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symbols (such as Begin and End in Pascal) for statement grouping, but only the
indentation. Whitespace at the beginning of a line is therefore assigned a meaning.
As an indication, a tab is generally equated with eight spaces. Therefore, it makes
sense to indent within a module only with spaces or only with tab. Otherwise, it can
easily lead to errors in the block formation (Beebe, 2018).

In general, Python is syntactically and programmatically very elegant. The state-
ments are relatively short, unique and never need to be completed with a semicolon
or dot as usual. Added to this is block formation through indentation, which to some
extent imposes a uniform look on many programs (Beebe, 2018).

Python libraries

For our clustering analysis we are applying different kinds of python libraries but
mostly sklearn for the clustering analysis(Pedregosa et al., 2011), pandas for data
manipulation, Matplotlib for data visualisation (Hunter, 2007), Numpy for multi-
dimensional array and matrix manipulations (Walt et al., 2011) and scipy for statis-
tical analysis (Jones et al., 2014).

Scikit-learn or also Sklearn is a free Python library dedicated to machine learning.
It is developed by many contributors, particularly in the academic world by French
institutes of higher education and research. It includes functions for estimating
random forests, logistic regressions, classification and clustering algorithms, It is
designed to harmonised with other Python free libraries, including Numpy, Pandas
and SciPy (Pedregosa et al., 2011, Walt et al. (2011), McKinney (2015)).

The Pandas we are writing about in this chapter have nothing to do with the cute
panda bears. Pandas is a Python module that rounds off the possibilities of Numpy,
Scipy and Matplotlib. The word Pandas is an acronym and is derived from “Python
and Data Analysis” and “Panal Data” (McKinney, 2015).

There is often confusion about whether Pandas is not an alternative to Numpy, Scipy
and Matplotlib. The truth is that Pandas is building on Numpy. This also means
that Numpy is for Pandas prejudice (Walt et al., 2011). Scipy and Matplotlib are
not required by pandas but are extremely useful. Therefore, the Pandas project also
lists these as “optional dependencies”.
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Pandas is a software library written for Python. It is used for data manipulation
and analysis. It provides special functions and data structures for the manipulation
of numerical tables and time series. Pandas is a free software and was released under
the three-clause BSD license (McKinney, 2015).

NumPy is an acronym for “Numeric Python” or “Numerical Python”. This module
is an open source extension for Python that provides fast precompiled functions for
math and numeric routines. In addition, NumPy enriches the Python programming
language with powerful data structures for efficient arithmetic on large arrays and
matrices. The implementation even targets extremely large (“Big Data”) matrices
and arrays. Furthermore, the module offers a huge number of high-quality mathe-
matical functions to work these matrices and arrays (Walt et al., 2011).

SciPy (Scientific Python) is often called in the same breath as NumPy. SciPy extends
the power of NumPy with additional useful features such as minimisation, regression,
Fourier transformation, and many more (Jones et al., 2014).

Matplotlib is a library for plotting like GNUplot. The main advantage over GNUplot
is the fact that Matplotlib is a Python module. Due to the growing interest in
the Python programming language, that popularity of Matplotlib is also increasing.
Matplotlib is able to create diagrams and representations in different formats, which
you can then use in publications (Hunter, 2007).

R programing software

R stands for the R Project for Statistical Computing.

• R is a software for statistical data processing and its graphical visualisations.
• It is an implementation of the statistical programming language S that runs on

various UNIX, Linux and Unix-like operating systems, as well as on Windows
and Mac OS X.

• Older R versions are still available for the classic Mac OS.
• Many operating systems already have compiled packages.
• The language can easily be extended by new functions and a large number

of existing additional packages supplement the R functionality with methods
from the special and application areas of statistics.
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• R can be connected to other programming languages such as Perl, Python, C
or Java.

• Furthermore, R can be used both interactively, in single command mode, as
scripting language and in batch mode. The R source code is published under
the GNU General Public License (GPL) of the Free Software Foundation.

R was created in 1997 as an open source alternative for the then extended S-PLUS
business statistics software, whose programming language “S” is modelled by R. R
is included in the language of the so-called basis of “environmental statistics” (as
the opposite of “statistical software”). This should highlight R. R’s open source
concept consists of a few major packages that provide basic functionality, and can
be expanded with any number of packages. While most of these packages are also
available under an open source license, the R license also allows you to offer commer-
cially licensed extension packages. In other part, the additional development of R
is also funded by such packages, e.g. be developed as a work commissioned for the
pharmaceutical industry (R Development Core Team, 2008).

In addition to the popular statistical analysis programs such as “SPSS” or “STATA”,
R has the advantage of being available for free (under the free GNU license) around
the globe. R can import most common formats, ensuring full control over the data
and providing a reliable, open-source format for created datasets. In addition, R is
partially more powerful and there are more evaluation methods available than other
programs (R Development Core Team, 2008).

R is a programming environment. Functions can be easily adapted to its own needs.
Complex problems can be solved even if the developers have not yet implemented
them. R is being continuously developed and expanded by the scientific community.
New statistical methods are usually integrated in R. A standardised package system
facilitates the subsequent package system as well as the publication of own packages.
R is also a working user and developer community that is open to questions, making
it easy to get started. R can be used across systems on different platforms, has
highly flexible interfaces for data input and output and can work with several other
applications (R Development Core Team, 2008).

After listing all the advantages, there are some difficulties when using R, for the
beginner, the operation functionality of R is not in need of getting used to. When
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programming in R, compared to other modern languages, some things work in un-
expected ways and certain basic methods are currently only cumbersome or not
implemented at all (R Development Core Team, 2008).

Bioconductor

Bioconductor is an open source development software project, that provides tools for
high throughput genomic data analysis using R. Additionally, it contains different
packages which supports annotations from different fields. In addition, Bioconductor
software development projects desire is to provide publicly accessible statistical and
graphical methods for genomic data analysis, assisting researchers proliferate scien-
tific findings on computational methods applied in genomic data analysis (Gentleman
et al., 2004).

Analysis Overview

The Figure 2.10 represents overview of the data analysis approach as a flowchart.
The workflow is composed of 3 main parts: data preparation, clustering analysis and
biological interpretation. The flowchart visualises the importance of data prepara-
tion, since the clustering results of gene expression data rely on how the data are
prepared.

A background correction has to be performed in able to extract noises due to specific
hybridisations (e.g. detecting signal which do not occur from the hybridised probe
samples) (Simon et al., 2003). The goal of a gene expression data preparation is to
obtain a high quality of intensity value that can be contemplated proportionally to
the expression level. A part of the intensity value comes from the non-bound probes
(e.g. a small amount of sample may interact to the non-complementary chains), as
well as signals from unknown or unwanted sources. Removing those unwanted signals
from the sample probes are the main task of a background correction (Simon et al.,
2003).

Which much effort and resources has been dedicated in developing different meth-
ods, normalisation of raw data, which is responsible of the regulation between the
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technical variation between arrays, is one of the essential key-point in data prepa-
ration (Gentleman et al., 2006). Leaving the biological variation unmodified while
extracting out as much of the noises and variations as possible is one of the most
challenging tasks of gene expression data normalisation. These challenges makes
the most amount of effort, as these are only being part of the main issues in data
preparation. First, a visual comparison of the raw against the preprocessed data is a
crucial part of data quality assessment for choosing the most suitable normalisation
method to estimate the normalisation performance (Gentleman et al., 2006).

Quality control is an essential part of the preprocessing gene expression data, to
determine the reliability of the data preprocessing. Quality assessment is a primary
concern of gene expression data preprocessing. The main goal of quality assessment
is to identify outlier arrays and calculates the signal-to-noise ratio.

One of the main purpose of clustering gene expression data is to identify the regulated
biological processes by evaluating co-regulated genes, based on the question that
the cellular response is mainly reflected by the transcription levels. Unfortunately,
the assignment of genetical co-regulation and biological function is not the same.
The reasons are diverse, mainly due to a variety of biological responses. First of
all, cellular processes are affected by the adjustment of up- and down-regulation.
Therefore, the genes involved in common pathway can reach completely different
groups. Secondly, post-translation modifications regulate many biological processes.
In particular, statistical fluctuations makes the clustering more inaccurate. The
less statistical variation throughout the data, the more robust are the clustering
algorithms. To form meaningful clusters, a minimum number of samples are required.
The potential for genes to clusters into groups with meaningful biological outcomes
has been implied on many clustering algorithms, with the fact that the algorithms
perform differently on the same datasets.
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Figure 2.10: Overview of statistical gene expression data analysis approach.
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Preprocessing and Quality assessment

The scripts were created with R-Studio. The scripts use packages developed for
the evaluation of cDNA microarray data. The main package for the analysis is
Bioconductor (http://www.bioconductor.org/). This is a free package for R designed
to analyse and compare genomic data. The package was designed in the fall of
2001 and has been receiving regular updates ever since. It supports a large number
of biological analysis functions, including analyses for affymetrix arrays, genome
annotation and extensive graphical analysis(Gentleman et al., 2004). All packages
used and their meaning can be seen in the table below.

library defintion

limma Linear models for the evaluation of geneexpression data.
affy Basis for the analysis of Affymetrix microarrays.
DESeq2 Basis for the analysis of RNA-Seq data.
genefilter Filter for better search for differentially expressed genes.
vsn Variance stabilization and calibration for microarray data.
arrayQualityMetrics Various quality assessments for microarray data.

Affymetrix microarray data

Affymetrix was preprocessed with the affy package provided(Irizarry et al., 2006). In
able to read and to parse the raw .CEL files, it is necessary to put the Affymetrix file
names as a list. Using the ReadAffy() function, the list with the file names is being
iterated that reads each files located within a specific directory, which result an affy
specific object.

Removing outliers was done with a similar approach as Agilent, by preprocessing the
data and detecting outliers using the aqm() function. Preprocessing Affymetrix was
done with the vsnrma() package, similar to the normaliseVSN() of Agilent, back-
ground correction and normalisation without reading and parsing the .CEL files. As
the result, an expression set was generated, which is then utilised for detecting out-
liers using aqm.boxplot(), aqm.density(), aqm.heatmap() and aqm.maplot(). After
removing the first outliers, the process was also re-run until no outliers could be
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detected.

Agilent microarray data

Agilent was preprocessed using Bioconductor Limma package(Smyth, 2005). The
read.maimages() function reads and parse raw Agilent files as a .txt file into a limma
specific object similar to an expression set, which the file names are required to be
in a list to generate the limma object.

For removing outliers, backgroundCorrect() and normalizeBetweenArrays was be-
ing utilised for the normalization with the corresponding quality assessment us-
ing the prepdata() function from arrayQualityMetrics library with do.logtransform
set to TRUE. For outlier detection, we used 4 different methods using aqm() in-
cluded in the arrayQualityMetrics package, which are aqm.boxplot(), aqm.density(),
aqm.heatmap() and aqm.maplot(). After removing the first outliers, the process was
re-run until no outliers could be detected. After outliers removal, Agilent was pre-
processed using Bioconductor Limma (Smyth, 2005) using normalizeVSN(), which
included background correction and normalisation. The function returns an MAList
on a log2 scale.

RNA-Seq data

2. For the RNA-Seq data, we obtained raw counts from HTSeq data. DESeq2
library was being used for preprocessing the data. DSEqDataSetFromHTSeq-
Count() function provides the function to parse and merge the data into an
array(Anders and Huber, 2010). The varianceStabilizingTransformation() func-
tion calculates the variance-stabilizing transformation of the array, the purpose
of transforming sample mean values variation, constant throughout the sam-
ples, this includes the calculation of the count size factors for the constant
variance along the mean values, the rlog() for the logarithmic transformation
of the data. Furthermore, quality control for the outlier detection were also
applied to take the outlier samples out of the array.

3. For FPKM data, we merge the data into a data frame and transformed the data
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with the corresponding phenotypic data and meta data, which corresponds to
each samples and feature data, which annotates each probe sample ID. After
transforming the data into an expression set, the function justvsn() from the
vsn library were then used for further preprocessing.

The gene and the sample order were then subsequently sort and cross-annotated
in the same order. All genes and samples that don’t exist between either of the
experiments have been remove from the dataframe so all experiments together share
the same variables. Then the sample order were also sorted in the same order. After
preprocessing the data, clustering analysis were performed that will be described
from the next chapter.

Meta-Analysis

For the clustering analysis, low variable genes that were not consistent throughout
the gene expression data from all experiments had to be excluded. The modified
meta-analysis by P. Sykacek is an adaptation of the meta p-value calculation by the
approach in combining dependent p-values with an empirical adaptation of Brown’s
method(Poole et al., 2016), filtering the genes were possible by combining p-values
across the experiments.

The idea behind Meta-Analysis of Pathway Enrichment is to combine Independent
and dependent omics data sets (Kaever et al., 2014) to obtain a variable specific
data matrix which allows the calculation of covariance estimates by the approach
in the empirical adaptation of Brown’s method(Poole et al., 2016) and the analytic
approximation in combining dependent p-values (Kost and McDermott, 2002).

First a function was written to calculate the meta p-values by the fisher method
(Elston, 1991). The input required a matrix where the rows represent variables
(e.g. expression of a particular gene) which were harmonised in such that all columns
represent the same variable. The columns of the matrix represent the matrix rep-
resent different experiments which provide evidence for the same hypothesis. The
result is a 1-dimensional column vector of aggregated meta p-values.

The next function required for the modified meta-analysis is a function to convert a
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matrix of p-values into a 3-dimensional tensor of data matrices. The input required
a matrix where the rows represent variables (e.g. expression of a particular gene)
which were then harmonised, so that all columns represent the same variable. The
columns of the matrix represent the matrix represent different experiments which
provide evidence for the same hypothesis. The result is a 1-dimensional column
vector of aggregated meta p-values. Another input was also to convert this matrix
with the inverse cumulative density function (CDF) to give out the probability of
the normal gaussian distribution. An odd number of values has to be generated
for determining a variable specific covariance structure among experiments. The
larger the number the larger the set of similar variables will be selected for modelling
covariance. The larger the value the better the covariance estimate and the stronger
the similarity assumption. As the result of this function a 3-dimensional tensor of
p-value derived data samples which has been returned for calculating the covariance
similarity structure.

This next function the purpose was to calculate the aggregated summary required for
the previous function to calculate the moderated meta p-values according to Brown’s
method. We allowed for the empirical Brown method (W. Poole, 2016) and Kost
approach (Kost and McDermont, 2002). As input it was the output from the previous
function, the 3-dimensional tensor that calculates the covariance contribution and
as the result a 2-dimensional matrix with summaries from the sample covariances
required for Brown’s method(Poole et al., 2016).

By combining these functions together we created a function that calculates meta
p-values with the empirical brown method(Poole et al., 2016) and Kost method
(Kost and McDermott, 2002) with the idea of Meta-Analysis of Pathway Enrichment
(Kaever et al., 2014).

Cluster Analysis

The following task subsequently after calculating the meta p-values was filtering out
the first 2000 genes that were significant after the meta analysis. Clustering analysis
were then performed by different numbers of gene subsets. The first 50, 100, 500 and
1000 features was implemented with different clustering algorithms.
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As for the cluster analysis, the definition is an unobserved method of grouping data.
In contrast to the classification the true class labels are not known. Cluster analysis
is performed using a cluster algorithm. The goal is that the objects within a cluster
are very similar, while objects in different cluster are very different. The “natural”
structure of the data should be revealed. Possible applications of cluster analysis
include data reduction and the formation of hypotheses and predictions (Eisen et
al., 1998) that are used in many fields: bioinformatics (Sturn et al., 2002), machine
learning and Pattern Recognition (Nasrabadi, 2007).

The aim of the clustering is to find groups of similar observations (clusters), where
similarities are detected by means of a similarity function, for example a distance
measure (Ackermann et al., 2010). There are a very large number of different clus-
tering methods (Estivill-Castro, 2002), which are categorised differently in the lit-
erature, e.g. (Tan et al., 2005, Soni and Ganatra (2012), Berkhin (2006), Rokach
and Maimon (2005)). Of the many clustering principles, only those that are used
in this work will be discussed here: hierarchical clustering, partitioning clusters and
density-based clustering (Xu and Wunsch, 2005).

• In hierarchical clustering, it is assumed that clusters are nested hierarchically,
e.g. two clusters together can form a higher-level third cluster. Hierarchical
clustering techniques are divided into agglomerative and divisive hierarchical
clustering (Aggarwal and Reddy, 2013). In agglomerative clustering, each point
is treated as a single cluster at the beginning, combining at each step the cluster
nearest to one cluster until, after a certain number of blocks, only one cluster
remains - the complete data set. In divisive clustering, the hierarchical cluster
structure is developed by starting with a single cluster - the complete data set -
and dividing it until each point is a single cluster (Aggarwal and Reddy, 2013).

• With partitioning clustering methods, it is assumed that the clusters are com-
pletely separated from each other and no hierarchical structure exists. The
goal of partitioning techniques is to find the best possible separation of the
data into separate clusters (Aggarwal and Reddy, 2013).

• Density-based clustering methods follow the idea that clusters are

(a) regions in space where high densities prevail at points and (b) clusters are
separated by areas in space where (significantly) lower densities prevail. What
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exactly is “density”? There are several definitions for this term, whereby in
this master thesis the centre-based concept of density (Xu and Wunsch, 2005)
is used. The centre-based density is determined by an observation b, in which
one counts the observations that are within a certain distance around

b. The more observations are within a certain distance of the observations b, the
higher the density.

In this thesis, three cluster techniques were implemented: Gaussian Mixture Model
(GMM), K-Means Clustering, and Spectral Clustering.

The procedures were chosen due to the modes of operation, approaches, strengths
and weaknesses - and thus the data can be examined from different perspectives.

Gaussian Mixture Model

A Gaussian mixed model is a weighted sum of Gaussian distributions. Gaussian
mixed models are used to model complex multimodal distribution functions. Mul-
timodal means that the distribution has more than one maximum(Reynolds, 2015).
The probability density function is given as:

p(x|Θ) =
M∑

m=1
αmN (x|Θ),

in which Θm = {µm, Σm}. The parameters of the distribution are: Θ =
{α1, .., αM , µ1, .., µM , Σ1, .., ΣM}, in which M is the number of gaussian components.
The parameter αm = P (m) weights the individual gaussian components. For the
probability αm applies 0 ≤ αm ≤ 1 and ΣM

m=1αm = 1. The scaling of N (x|Θ) by αm

guarantees that
∫∞

−∞ p(x|Θ)dx = 1 (Bishop, 2012).

Maximum-Likelihood Estimator

Given the data X = {x1, ...., xN}, the parameter of the model can be estimate with
the ML-estimator. The goal is to estimate the Θ of the parametric model. In the
maximum-likelihood method, the parameters Θ are estimated so that the likelihood
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function becomes maximum, the data X is fixed and the estimated parameters Θ
vary (Dempster et al., 1977).

The likelihood function is defined by:

P (X |Θ) = P (x1, ...., xN |Θ) = P (x1|Θ)P (x2|x1, Θ)....P (xN |xN − 1, ..., N1, Θ)

If the samples are independent and identically distributed, we can determine the
likelihood function by the product of the likelihoods of all xn(Dempster et al., 1977),
that means:

P (X |Θ) =
N∏

n=1
P (xn|Θ)

can be used over the samples. This avoids numerical problems with very large N.
The log likelihood function is:

L(X |Θ) = L(x1, ...., xN |Θ) = lnP (x1, ...., xN |Θ)

=
[ N∏

n=1
P (xn|Θ)

]

=
N∑

n=1
(ln(Pxn|Θ))

In the maximum likelihood method, the parameters Θ with the maximum L(X|Θ) are
of interest, that means, we need the argument Θ, which maximises the log-likelihood
(Dempster et al., 1977):

ΘML = argmax
Θ

L(X |Θ)

To determine these parameter ΘML, the log-likelihood function is derive to Θ and
the derivative is set to 0 (Dempster et al., 1977).

∂L(X |Θ)
∂Θ

!= 0

For example, in the case of a Gaussian distribution, the log-likelihood function is:

L(X |× =
N∑

n=1
ln(N (xn|Θ))
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By deriving the function above the parameters µ and Σ and zeroing the derivative
(Hartley, 1958), we obtain the ΘML = {µ, Σ} the following results (Dempster et al.,
1977):

µ = 1
N

N∑
n=1

xn

Σ = 1
N

N∑
n=1

(xn − µ)(xn − µ)T

Extimating the parameter Θ

The Gaussian mixed model is a parametric model. The estimation of the parameters
O can be done by the maximum likelihood method (McLachlan and Krishnan, 2007).
The given data are: X = {x1, ..., XN}, x ∈ Rd and the parameters are: ΘML =
argmax

Θ
{ln P (X |Θ}

In the first step, the log-likelihood function L(X |Θ) = lnP (X |Θ) is formulated for
the gaussian mixture model (McLachlan and Krishnan, 2007). Then the stationary
point for L(X |Θ) is searched: ∂lnP (X |Θ)

∂Θ
!= 0

Assuming that the samples/data points X = {x1, ..., XN} are independent and iden-
tically distributed, the following log-likelihood function results (McLachlan and Kr-
ishnan, 2007):

L(X |Θ) =
N∑

n=1
lnP (X |Θ) =

N∑
n=1

ln
M∑

m=1
αmN (xn|µm, Σm)

In the last step, the Gaussian mixture model is used for P (xn|Θ). Next, the individual
derivatives for the parameters µm, Σm, αm are formulated and set to 0 (McLachlan
and Krishnan, 2007).

For the derivation of the µm, the log-likelihood function L(X |Θ) must be derived
after µm in the first step (McLachlan and Krishnan, 2007).

∂lnP (X |Θ)
∂µm

=
N∑

n=1

1∑M
m′=1 α′

mN (xn|µ′
m, Σ′

m)
∂
∑

m=1(xn|µm, Σm)
∂µm
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N∑
n=1

αmN (xn|µm, Σm)
M∑

m′=1
α′

mN (xn|µ′
m, Σ′

m)︸ ︷︷ ︸
rn

m

∂[ln(αm) + lnN (xn|µm, Σm)]
∂µm

The probability rn
m = P (m|xn, Θ) is the posterior probability for component m given

xn and the parameters (McLachlan and Krishnan, 2007).

The derivation of the normal distribution are:

∂
∑

m=1(xn|µm, Σm)
∂µm

= 1
2

(Σ−1
m + (Σ−1

m )T )(xm − µm),

in which (Σ−1
m + (Σ−1

m )T ) = 2Σ−1
m , since Σ is symmetrical, that means Σ = ΣT . It

follows:
∂
∑

m=1(xn|µm, Σm)
∂µm

= Σ−1
m (xm − µm)

Applying those 2 previous derivatives results:

∂lnP (X |Θ)
∂µm

=
N∑

n=1
rn

mΣ−1
m (xm − µm)

The derivation is set to 0 in the next step and multiplied both sides with Σm

N∑
n=1

Σ−1
m (rn

mxm − rn
mµm) != 0

After further reformulation, we get the formula to calculate µm

µm

N∑
n=1

rn
m =

N∑
n=1

rn
mxn

µm =
∑N

n=1 rn
mxn

N∑
n=1

rn
m︸ ︷︷ ︸

Nm

The mean value is calculated from the probability rn
m weighted data xn (Bishop, 2012).

The Nm is the affective number of data points that are modeled by component m.
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To calculate µm you need rn
m, which in turn depends on Θ. This leads to the classic

chicken-egg problem (Bishop, 2012). The consequence of this is that the calculation of
µm is done iteratively, so that means Θ has to be initialize (McLachlan and Krishnan,
2007). This enables the iterative calculation of rn

m and µm (Bishop, 2012).

Now the L(X |Θ) is derived according to Σ and the derivative is then set to 0 (Bishop,
2006).

∂ ln P (X |Θ)
∂ Σm

!= 0

This derivation can be found in (Bishop, 2006). The solution is:

Σm = 1
Nm

N∑
n=1

rn
m(xn − µm)(xn − µm)T

Required is again the posterior distribution to weight the data X (Bishop, 2012).
For M = 1, that means for only 1 gaussian distribution would result a probability
of rn

m = P (m|xn, Θ) = 1, in which the probability can be calculated as follows:

Σ = 1
N

N∑
n=1

(xn − µ)(xn − µ)T

µ = 1
N
∑N

n=1 xn

We obtain the Maximum-Likelihood solution of a gaussian distribution as being
explained above (Dempster et al., 1977).

Furthermore, we would have to derive L(X |Θ) according to αm and then set it to 0.

∂ ln P (X |Θ)
∂ αm

!= 0

This is an optimization problem in α with the constraint ∑M
m=1 αm = 1. We can

obtain the solution through the Lagrange Multiplicators. The Lagrange function is
constructed by combining the log-likelihood function L(X |Θ) with the constraint as
follows (Buse, 1982):

J(m) = ln P (X |Θ) + λ

(
M∑

m=1
αm − 1

)
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The Lagrange function Jm consists of the log-likelihood function L(X |Θ) plus a
term consisting of the Lagrangian multiplicator λ and the condition ∑M

m=1 αm − 1
(Dempster et al., 1977). The function Jm is derived after αm. First we calculate the
derivative of L(X |Θ) according to αm.

∂ ln P (X |Θ)
∂ αm

=
N∑

n=1

1∑M
m=1 α′

mN (xn|µ′
m, Σ′

m

∂
∑M

m=1 αmN (xn|µm, Σm

∂αm

=
N∑

n=1

N (xn|µm, Σm)∑M
m=1 α′

mN (xn|µ′
m, Σ′

m

The derivative from Jm to αm is obtained by the previous function and the derivation
of the conditions∑M

m=1 αm − 1 (Dempster et al., 1977). That means:

∂ Jm

∂ αm

=
N∑

n=1

N (xn|µm, Σm)∑M
m=1 α′

mN (xn|µ′
m, Σ′

m

+ λ

Now we set the derivative to 0
∂Jm

∂αm

!= 0

and multiply both sides of the equation with αm. Thus we get the following formula:

N∑
n=1

rn
m + λαm

!= 0

Then we sum up on both sides over m components and set Nm = ∑N
n=1 rn

m. We get
the following equation:

N∑
n=1

Nm +
M∑

m=1
λαm = 0

Since λ
∑M

m=1 αm = λ under the condition ∑M
m=1 αm = 1 and ∑M

m=1 Nm = N , it
follows that λ = −N . We set λ = −N in the function and we get:

Nm − Nαm = 0

αm = Nm

N

Similar to the derivation for µm and Σm, rn
m is also necessary here, since rn

m always
adds all data weighted to the updates. This results in an iterative algorithm for
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estimating ΘML. This algorithm is known as Expectation Maximization for GMMs
(McLachlan and Krishnan, 2007) and will be introduced in the next chapter.

Expectation-Maximization (EM) Algorithm

The EM algorithm for learning GMMs is iterative. First the parameters theta are
initialised. In the E-step, the parameter Theta rn

m can be used to calculate (Minka,
1998). In the maximising step (M-Step) the parameters µm, Σm and αm are recal-
culated with the help of rn

m. The E and the M-Step are alternately performed until
the log-likelihood function converges (Dempster et al., 1977).

The individual steps are briefly summarised below.

1. Initialisation: t…..iteration counter (McLachlan and Krishnan, 2007)

Θ{αt=0
m , µt=0

m , Σt=0
m }M

m=1

2. E-Step: calculate class affiliation(McLachlan and Krishnan, 2007)

rn
m = αt

mN (xn|µt
m, Σt

m)∑M
m′=1 α′

mN (xn|µ′
m, Σ′

m)
= P (m|xn, Θt)

P (m|xn, Θt) gives the probability for m given xn and Θ. This posterior distribu-
tion is in fact equal to the posterior in the Bayes classifier with the assumption
of a normal distribution as a likelihood model.

3. M-Step: calculation of the Parameter Θ (McLachlan and Krishnan, 2007)

µt+1
m + 1

Nm

N∑
n=1

rn
mxn

Σt+1
m = 1

Nm

rn
m(xn − µt+1

m )(xn − µt+1
m )T

αt+1
m + Nm

N

t = t + 1
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4. Evaluation (Neal and Hinton, 1998):

L(X |Θt) = log(P (X |Θt))

→ if converges, termination of ΘML = Θt

→ if not ⇒ E-Step

One possibility to initialise Θ0 is: 1. α0
m in uniform distribution function α0

m = 1
M

(Neal and Hinton, 1998) 2. Σ0
m is set to the covariance matrix Σ of the data X, that

means Σ = 1
N

(xn −µ)(xn −µ)T , in which µ = 1
N

∑N
n=1 xn (R. Neal & G. Hinton,1998)

3. For µ0
m we can randomly select samples or use k-means Algorithm (Neal and

Hinton, 1998)

K-means Algorithm

The goal of the K-means algorithm is to divide the data into clusters. The number
of clusters is denoted by K. one way to derive the K-means algorithm is to modify
the EM algorithm for GMMs (McLachlan and Krishnan, 2007). Under the following
assumptions, the EM algorithm for GMMs becomes the K-means algorithm:

1. αm = P (m) = 1
M

. . . ∀m; αm is modelled by a uniform probability distribution
and not modified,

i. a can be neglected (Hartigan and Wong, 1979)

2. Σm = σ2I . . . ∀m; All components are represented by the same spherical covari-
ance matrix (Hartigan and Wong, 1979)

3. Classifications of samples xn to components m; that means m = argmaxm, [rn
m];

each sample will be modelled from one component (Hartigan and Wong, 1979).

We modified the E-Step

rn
m = αmN (xn|µm, Σm)∑M

m=1 αmN (xn|µm, Σm)

under the above conditions (Nasrabadi, 2007). Assumption 2 leads to the decision
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function gm(xn)

gm(xn) = −(xn − µm)T (xn − µm)
2σ2 + lnP (m)

By the first assumption Pm can be neglected. Furthermore, 2σ2 is just a scaling
factor and can also be neglected(Nasrabadi, 2007). So we get the Euclidean distance
as a decision-making function. The third assumption leads to classification of xn to
component m (Nasrabadi, 2007)

m∗ = argmax
m

[gm(xn)]

= argmin
m

[(xn − µm)T (xn − µm)]

The K-means algorithm for clustering data X = {x1, ..., xN} into K clusters is shown
in this section. Here, Ym represents the set of all data points xn which are classified
to the component m, that means Ym = {xn|m = argminm[(xn −µm)T (xn −µm)]}. In
the following the steps of the K-means algorithm are presented. In this case variable
for component m in GMMs is replaced by the variable K (Nasrabadi, 2007).

1. Initialisation: t . . . iterationcounter Select K samples randomly for the cluster
centres µk: Θ0 = {µt=0

k }K
k=2, t = 0 (Nasrabadi, 2007).

2. Classification of the Samples to the components (modified E-Step) (Nasrabadi,
2007)

Yk = {xn|k = argmin
k′

[(xn − µt
k′)T (xn − µt

k′)]} . . . ∀k = 1, ...., K

3. Step 2: recalculation of the mean-vectors (gravity of the clusters) due to the
allocation in Yk (Nasrabadi, 2007)

µt+1
k = 1

|Yk|
∑

xn∈Yk

xn

t = t + 1

59



4. Evaluation of the cumulative distance (Nasrabadi, 2007)

J t =
K∑

k=1

∑
xn∈Yk

(xn − µt
k′)T (xn − µt

k′)

→ if J t converges, that means:|J t − J t1| < ϵ, so the optimal cluster centers
{µt

1, ...., µt
K}

→ if no convergence, that means: |J t − J t1| > ϵ, ⇒ Step 1

Spectral Clustering

Spectral clustering can be described as a group of partitioning, deterministic pro-
cedures. The term “Spectral” is based on the fact that the clustering is calculated
from the spectrum of the similarity matrix. For the first time, the calculation of par-
titions using eigenvalues and vectors was proposed by Fiedler (1973) (Fiedler, 1975)
and Donath and Hoffmann (1973) (Donath and Hoffman, 1972).

For spectral clustering, it is not only necessary to have a vector with measured
values/data for the objects to be clustered, but a further step must already be
taken: pairwise similarities (between 0 and 1) or distances have been calculated
(Von Luxburg, 2007). This can be done in different ways. Above all that, it is im-
portant to ensure that relatively high similarity values also correspond to the desired
cluster criteria. Inaccuracies with low similarities are less severe, because in most
cases only high values have an impact on the result (Von Luxburg, 2007). How dis-
tances are calculated depends very much on the form in which the data is available,
and whether the source of the data may imply a particular variant of the calculation
of the partition (Von Luxburg, 2007).

1. Calculation of the similarity matrix (Von Luxburg, 2007) An×n

Ai,j = exp
−|xi−xj |2

2σ2 , if i ̸= j and Aii = 0

σ2 : scaling factor

2. Calculation of diagonal matrix (Von Luxburg, 2007) Dn×n
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Di,j =
n∑

l=1
Aij, if i = j, and Aii = 0

that means, in the diagonal of D, the line sums of A.

Calculate L = D− 1
2 AD− 1

2 .

D− 1
2 := 1√

Dij

, if i = j, and Aii = 0

3. find v1, ...., vk, die k biggest eigenvectors of L, so that all vi are pairwise diagonal
(Von Luxburg, 2007). Create a matrix out of it

Xn×k = [v1, ...., vk] ∈ Rn×k

4. Construct the Matrix Yn×k via Normalisation of X (Von Luxburg, 2007):

Yij = Xij√
Σj X2

ij

5. every row Yi of Y is a point in Rk. Cluster the points with any simple cluster
algorithms like k − means (Von Luxburg, 2007).

6. Assign the cluster j to each original point xi, if and only if the line Yi lies in
the cluster j (Von Luxburg, 2007).

Cluster Validation Metrics

In some situations before starting with the clustering tasks, it is necessary to deter-
mine if the data really show any tendency to be clustered. After performing a cluster
analysis, it is important to validate the quality of cluster analysis results. Clustering
methods will always find groups, even when there are no patterns. Clustering valida-
tion can be a first step to determine the correct number of clusters. It is also a tool
to compare different clustering methods applied to the same dataset (Halkidi et al.,
2001).
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Cluster analysis consists of three phases: preparation, clustering and cluster vali-
dation (Halkidi et al., 2001). The preparation includes the selection of the relevant
variables and the normalisation of the data. Subsequently, a clustering algorithm and
its parameters have to be selected so that the clustering can be performed. There-
after, the cluster validation takes place, because after performing a clustering, it is
not known how well the clusters match the data. The cluster algorithms cannot en-
sure that the “perfect” partitioning is found. Therefore several algorithms and their
parameters have to be tried out. The clustering algorithms used will always find a
solution, even if there is no structure in the data. To uncover these faulty clusterings,
cluster validation is necessary (Halkidi et al., 2001).

For this purpose, it is evaluated how well the determined cluster match the underlying
data. Also calling the algorithm with an incorrect parameter, too high a cluster
number, will lead to a sub-optimal solution (Halkidi et al., 2001). The reason is
that most algorithms do not detect the “perfect” number of clusters. The algorithms
must be compared to different cluster numbers. The solutions must be compared
using cluster validation to determine which cluster number is optimal (Halkidi et al.,
2001). A representation of the data to determine visually correct number of clusters
is only possible up to three dimensions. The restriction is regularly exceeded in real
applications, so indices for cluster validation are used (Halkidi et al., 2001).

The internal validation metrics focus on the information contained in the cluster and
identify the issue of how data points are constructed based on that information. A
good cluster analysis result is finding clusters where the data points within a cluster
are close to each other (Liu et al., 2010).

The result of the internal cluster validation shows only the matching accuracy of
the original cluster algorithm and the validation function. Therefore, the internal
validation methods in this master thesis will be considered a reference only, but not
the main assessment criteria (Liu et al., 2010).

The clustering indices was based on clusterCrit package from the Bioconductor
framework (Desgraupes, 2013) converted into python. From all available indices in
clusterCrit, only specific indices have been chosen for the validation that will be
described in the following section later.

Additionally to the internal clustering indices which include its internal dataset quan-
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tity vectors with the basis of statistical testing, the relative clustering indices are
based on comparing a cluster to other clusters and thus, it does not include sta-
tistical testing. The following indices are being applied in this master thesis are a
reformulation BIC (Bayesian Information Criterion) and AIC (Akaike Information
Criterion) which is a decisive first local maximum knee point clustering detection
proposed from Q. Zhao, V. Hautamaki and P. Fraenti (Zhao et al., 2008).

In external validation, the results of a cluster can be validated based on data what
was not used for the clustering, usually such as labels of known classes or external
markers. Such markers consist of labels classified by human experts and in our case
the labels of other clustering algorithms. These types of evaluation methods measure
how close the clustering of the set of predetermined classes is.

Clustering Validation metrics notations

X is labeled as the data matrix. The size of X are N×p, where N are the observations
and p are the features. X is assumed to be clustered in K groups. LK are the cluster
length (Krzanowski and Lai, 1988).

M is labeled as the center of the gravity of all clusters. M1, ..., MN are the coefficients
that represent all observations. G is the centroid or the barycentre of all points
(Krzanowski and Lai, 1988).

Total Dispersion Matrix - Total Sum of Squares

TSS = Trace(T ) =
N∑

i=1
||Mi − G||2

So TSS is defined as total scattering is the total sum of squares of the points around
the centroid (Krzanowski and Lai, 1988).

Within Group Dispersion Matrix - Within Group Sum of Squares

WGSS{k} = Trace(WG{k}) =
∑
i∈Ik

||M{k}
i − G{k}||2
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where Ik is defined as the set of indices of the observations from cluster of the sub-
matrix of X{k}, which is denoted as Ck (Krzanowski and Lai, 1988).

The within group sum of squares is calculated as the total of squared distances
between M

{k}
i and G{k} of the cluster (Krzanowski and Lai, 1988). So the total of

the within group sum of squares is:

WGSS =
K∑

k=0
WGSS{k}

Between Group Dispersion Matrix - Between Group Sum of Squares

The between group matrix measures the cluster dispersion between groups, so the
dispersion of the centroids G{k} of each cluster to the total set of data G (Krzanowski
and Lai, 1988).

BGSS = Trace(BG) =
K∑

k=1
nk||G{k} − G||2

The between group sum of squares is the total weighted sum of squared distances
between G{k} and G with the weight elements nk in Ck clusters (Krzanowski and Lai,
1988).

Log-likelihood function

For calculating the knee point based clustering metrics BIC (Bayesian Information
Criterion) and AIC (Akaike Information Criterion), the log-likelihood function hast
to be defined by the following formula:

L(Θi) =
ni∑

i=1
logpr(xi)

=
Ki∑
i=1

log

(
Ki

N

1
N(2π) d

2 Σ 1
2
exp

(
−

||Mi − Cp(i)||2

2Σi

))
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= Ki log Ki − Ki log N − Ki ∗ d

2
log(2π) − Ki

2
log Σi − Ki − Lk

2

where Σ is the maximum likelihood estimate for the variance of the ith cluster:

Σ = 1
Ki − Lk

ΣKi
j=1||xj − Ci||2

Ki is the size of each cluster, Mk is the jth point in the cluster and Ci is the ith

cluster.

Clustering indices

This chapter describes the different clustering validation indices that for evaluating
the optimal numbers of clusters (Liu et al., 2010).

Ball and Hall

The Ball and Hall index was introduced on the basis of the average distance of the
points to the centroid (Desgraupes, 2013). It is computed as:

BH = 1
K

K∑
k=1

1
nk

∑
i∈Ik

||M{k}
i − G{k}||2

Banfeld and Raftery

the Banfeld and Raftery index is on the basis of the weighted sum of the logarithms
of the traces of within group dispersion of each cluster (Banfield and Raftery, 1993).
It can be calculated as:

BR =
K∑

k=1
nk log

(
Trace(WG{k}

nk

)
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Calinsky and Harabasz

Calinksy and Harabasz index was proposed as:

CH = N − K

K − 1
BGSS

WGSS

which K is the value, that maximises the index, the specify the optimal number of
clusters (Caliński and Harabasz, 1974).

Friedman and Rubin - Det Ratio

The Det Ratio and log Det Ratio index was introduced by Friedman and Rubin on
the basis of a non hierarchical clustering validation method (Friedman and Rubin,
1967).

FR = det(T )
det(WG)

logFR = N log

(
det(T )

det(WG)

)

Hartigan - log SS Ratio

The log SS-Ratio (Milligan and Cooper, 1985) was introduced by Hartigan and can
be computed as:

Hartigan = log
(

BGSS

WGSS

)

Ratkowsky and Lance

The Ratkowsky and Lance (Ratkowsky and Lance, 1978) index was proposed as:

RL =

√√√√ 1
p

∑p
j=1

BGSSj

W GSSj

K
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where:
BGSSj =

K∑
k=1

nk(µ{k}
j − µj)2

TSSj =
N∑

i=1
(aij − µij)2

BGSSj stands for the between group sum of squares for each variable (Ratkowsky
and Lance, 1978). The optimal value of K for the maximal value of the index
(Milligan and Cooper, 1985). TSSj stands for the total sum of squares for each
variable (Milligan and Cooper, 1985).

Ray and Turi

The Ray and Turi index can be described as:

RT = 1
N

WGSS

min
k<k′

||G{k} − G{k}′||2

Within group sum of squares of all points divided by the number of the observations
is the numerator and the minimum of squared distances between all the cluster
centroids (Ray and Turi, 1999).

Scott

The Scott index is defined as the total of logarithm determinant of within group
dispersion in each cluster (Desgraupes, 2013).

Scott =
K∑

k=1
log det

(
WG{k}

nk

)

Trace W

the Trace W index can be defined as the within group sum of squares or the trace
of within group dispersion (Milligan and Cooper, 1985).

67



TW = Tr(WG) = WGSS

AIC (Akaike Information Criterion)

There is a distribution of a variable with an unknown density function p in the basic
population. In the maximum likelihood estimation (ML-estimation)(Pan and Fang,
2002) it starts from a known distribution with an unknown parameter Θu; so we
assume that the density function can be written as q(Θu). The Kullback-Leibler
divergence (Joyce, 2011) D(P ||Q) is used as distance measure between p and q(Θ).
Θ is the estimated parameter from the maximum likelihood estimation. The better
the model, the smaller the KL-divergence.

Akaike (Akaike, 2011) was able to show that the log-likelihood function L(Θ) is
a distorted estimator for the KL-divergence and that the distortion is asymptotic
converges to the number of parameters k to be estimated. Therefore, the AIC results
with the logarithmic likelihood function as:

AIC =
Lk∑
i=1

(L(Θi)) − penalty

where penalty is (K − 1)(K ∗ d), and d is the dimension of the data set.

BIC (Bayesian Information Criterion)

The disadvantage of AIC is that the penalty is independent of the sample size
(Bielza and Larrañaga, 2004). In the case of large samples, improvements of the log-
likelihood function are possible, which is why the criterion for large samples tends
to favour models with relatively many parameters (Bielza and Larrañaga, 2004).

BIC (Bayesian Information Criterion) also known as the Schwarz Information Crite-
rion (SIC) can be defined as:

BIC =
Lk∑
i=1

(L(Θi)) − 1
2

∗ penalty ∗ logN
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where the penalty factor increases logarithmically with the number of observations
N .

Fowlkes and Mallows

The Fowlked-Mallows index computes the similarity between the groups returned by
the clustering analysis results. The higher the value of the Fowlkes-Mallows index
the more similar are the groups. It can be calculated using the following formula:

FM =
√

TP

TP + FP
∗ TP

TP + FN

Where TP is the number of True Positives, FP is the number of False Positives, and
FN is the number of False Negatives. The Fowlkes-Mallows index is the geometric
mean of the precision and recall P and R, while the F-measure is its harmonic mean.

PCA

Principal component analysis (PCA) is a variable-oriented method that attempts
to extract few latent factors in variables with many properties. For this purpose,
main components are formed in descending order, that means that the first major
component accounts for most of the variations (Wold et al., 1987).

Mathematically speaking, this means that the correlation of multidimensional fea-
tures is minimised by conversion into a new-basis vector space. From the eigenvectors
of the covariance matrix, a new matrix can be formed, which indicates the main axis
transformation. This matrix must be recalculated for each record, making the prin-
cipal component analysis problem-dependent (Abdi and Williams, 2010).

Suppose there are m data - i.e. a point cloud with m points - given in a P -dimensional
space. To form the main components, the following procedure is used:

1. First, the origin of the coordinate system is placed in the center of gravity
of the point cloud. Next, the coordinate system is rotated so that the first
coordinate points in the direction of the greatest variance of the point cloud.
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The first coordinate thus represents the first main axis, the variance the first
main component (Abdi and Williams, 2010).

2. For the second main component, the coordinate system is rotated further so
that now shows the second major axis in the direction of the remaining maxi-
mum variance. Thus, the second major axis and the second major component
are fixed. This process is repeated until a new base is created (Abdi and
Williams, 2010).

In terms of mathematics, this means the following: The data xi ∈ RN , i = 1, ., , , m,

correspond to the m points of the point cloud. These data are centered, that means
that ∑m

i=1 xi = 0. PCA finds the major axes by diagonalising the covariance matrix
(Richardson, 2009),

C = 1
m

m∑
j=1

xix
T
j

This can be diagonalised with nonnegative eigenvalues λ, since it is positive definite.
The eigenvalues are determined by taking the equation for the eigenvalues λ ≥ 0 and
the eigenvectors v ∈ RN \ {0} (Richardson, 2009)

λv = Cv

is calculated. By substituting equation the first into the second (Richardson, 2009),
we obtain:

λv = Cv = 1
m

m∑
j=1

⟨xj, v⟩xj

Thus, all solutions v with λ ̸= 0 are in the range of x1, ..., xm (Richardson, 2009).
consequently the second equation is equivalent to:

λ⟨xi, v⟩ = ⟨xi, Cv⟩

for all i = 1, ..., m.
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t-SNE

t-SNE (t-Distributed Stochastic Neighbour Embedding) is a tool for visualising high-
dimensional data. It converts affinities of data points into probabilities. The affinities
in the original space are represented by common Gaussian distributions and the
affinities in the embedded space by student t distributions (Maaten and Hinton,
2008). Therefore, t-SNE can take the local structure well into account and has even
more advantages compared to the current methods:

1. Visualise the structure with different scales in a single card (Maaten and Hinton,
2008)

2. Visualising data that resides in several different manifolds or clusters (Maaten
and Hinton, 2008)

3. Low tendency to collect points in the middle (Maaten and Hinton, 2008)

Given a high-dimensional data set X = {x1, x2, ..., xN}, where xi ∈ Rp and the
entries of the load collective of i. Contain vehicle. The set of corresponding low-
dimensional data representations to be determined is denoted by Y = {y1, y2, ..., yN},
where yi ∈ Rm and m ≪ p apply. To make it easy to visualise Y , 2 is typically chosen
to be 2 or 3 (Maaten and Hinton, 2008).

The basic idea of t-SNE is to model “similarities” between any two objects xi and xj of
the high-dimensional output data set X or between the sought-after low-dimensional
representations yi and yj such that they each form a probability distribution over
the object pairs (Maaten and Hinton, 2008).

The latter are defined as assigning a high probability to two “similar” and “adja-
cent” instances, whereas far from one another, i.e., in the case of the “similar” or
“neighbouring” instances. very “dissimilar” data objects have a low probability un-
der this distribution (Maaten and Hinton, 2008). Formally, the common probability
pij, which uses t-SNE as a measure of the pairwise similarity between two high-
dimensional objects xi and xj, is given by:

Pij =
Pj|i + Pi|j

2N

where pi|j = 0 and the conditional probability pj|i by the normalised Gaussian kernel
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(Maaten and Hinton, 2008).

Pj|i =
exp

(
− d(xi, xj)2/2σ2

i

)
∑

k ̸=i exp(−d(xi, xk)2/2σ2
i )

is defined. Where d(xi, xj) denotes a distance function, e.g. the Euclidean distance
d(xi, xj) = ||xi − xj||2, and the bandwidth of the Gaussian kernel is given by σi

(Maaten and Hinton, 2008). The latter is chosen individually for each object i such
that the perplexity of the conditional probability distribution Pi corresponds to a
predefined value u. As a result, σi tends to have lower values for objects located
in denser regions of the high-dimensional space than for objects located in sparsely
populated areas. In that sense, perplexity can be seen as a measure of the effective
number of neighbours of an object. It is by the equation:

Perp(Pi) = 2−
∑

j
pj|ilog2pj|i

Figure 2.11: Sketch of distance problem in a projection of three two-dimensional points into
the one-dimensional space: An exact modelling of short distances (line) in one-dimensional
space leads to an increase in distance between more distant points (dashed-line)

The objects xi and xj as well as xj and xk are equidistant from each other in the
two-dimensional space (see left diagram), while the distance between xi and xk is
somewhat larger. If one wants to obtain the short distances (line) in one-dimensional
space, the points xi and xk must be further farther than originally modelled from
each other, since one dimension is not sufficient to obtain this distance as well. If,
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on the other hand, one were to preserve the distance (dashed-line) between these
two points in one-dimensional space, then all three points would be “closer together”.
This can lead to a complete overlapping or overlapping of similar points in the low-
dimensional space, so that local differences or structures are no longer recognisable.
This is also referred to as the so-called “crowding problem” (Maaten and Hinton,
2008).

In t-SNE, the similarities between the low-dimensional representations yi and yj of
two objects xi and xj are therefore calculated by a normalised kernel of a student
t-distribution with one degree of freedom (Maaten and Hinton, 2008):

qij =

(
1 + ||yi − yj||2

)
∑

k ̸=l

(
1 + ||yk − yl||2

)−1′

where qii = 0. Since there is more mass on the flanks compared to the normal dis-
tribution in this probability distribution, unlike the original space, dissimilar objects
can be modelled farther apart, counteracting the “crowding problem” (Maaten and
Hinton, 2008).

Finally, we obtain the final coordinates of the projection points y1, y2, ..., yN in the low-
dimensional space by minimising the Kullback-Leibler divergence (KL divergence) be-
tween the induced common probability distributions P and Q (Maaten and Hinton,
2008):

min
Q

(P ||Q) =
∑

i

∑
j ̸=1

pijlog
Pij

qij

This minimisation problem can be solved by using a gradient descent method
(Maaten and Hinton, 2008).

Label switching problem

After the optimal number of clusters of each experiments has been selected via Clus-
tering Validation, the following task is to find out a way of aggregating those clus-
tering results from all experiments into one unified clustering. The purpose of this
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chapter is the determination of a general problem that occurs to most of the clus-
tering algorithms, especially in mixture models and to introduce a solution of this
problem.

The observed data in a mixture model are considered to derived from a heteroge-
neous population with mixing density functions on probabilities.(Jasra et al., 2005)
Standard maximum likelihood techniques are being used to estimate the parameters
for these models. The problem is that the estimated parameters can’t be classified if
more than one choice of the parameters acquired the same likelihood function. That
means that all finite mixture models are non-classifiable if the component labels
are permuted under symmetric priors. These permutations are also known as label
switching (Jasra et al., 2005).

The label switching problem occurs, since mixture model components can be ran-
domly ordered. While iterating the clustering algorithms, the label order with switch
several times in each iterations. To acquire reasonable components, different meth-
ods have been proposed in solving these label switching problems. One method that
is being implemented in this thesis has been called the relabelling algorithm (Jasra
et al., 2005).

Relabelling algorithm

One of the first relabelling algorithms was developed by Stephens. The idea behind
the algorithm is based upon the agreement on the n×k matrix of classification prob-
abilities. Stephens applied the KL-divergence to measure the loss of the classification
probabilities when the true probabilities are P (θ) (Stephens, 2000).

m starting points has to be chosen as the algorithm only assembles to a local maxi-
mum. The permutations and the quantities are being selected for the optimal result
(Stephens, 2000).

1. Select m permutations τ (t) t = 1, ...., m

2. For t = 1, ...., m, k = 1, ...., K, calculate qik = 1
m

∑m
t=1 p

(t)
iτk

3. For t = 1, ...., m find a permutation τ (t) ∈ TK that minimizes∑n
i=1

∑K
k=1 p

(t)
iτk

log

(
p

(t)
iτk

qik

)

4. If there is a progress to ∑m
t=1

∑n
i=1

∑K
k=1 p

(t)
iτk

log

(
p

(t)
iτk

qik

)
go to step 2, finish oth-
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erwise (Papastamoulis, 2015).

The relabelling algorithm by Stephens (Stephens, 2000) refers to an automative ap-
plication of an identifiability constraint, so that the permutations of the samples
have equal labelling. It can be relatively compared with that of a k-Means clustering
algorithm.

So the main application of the relabelling algorithm in the thesis is by defining one
experiment as a cluster template and based on this template, all other experiments
has to be relabelled at the same label as the cluster template. For the relabelling
algorithm, it requires to have a probability estimation of each sample corresponding
to the cluster labels. For all clustering algorithms that have been implemented into
our experiments, only k-means and Spectral-Clustering algorithm does not provide
a probability estimation function in sklearn. the GaussianProcessClassifier() from
sklearn has been applied to calculate the probability estimation from the clustering
results of all clustering algorithms. It is based on Laplace Approximation (Azevedo-
Filho and Shachter, 1994) that applies a Gaussian approximation to the posterior
over the latent variables to generate a probabilistic prediction, with a second order
Taylor expansion around posterior maximum to obtain the probability estimation.

Gene Ontology (GO)

Now after the clustering analysis we left out with a question if the genes are signif-
icantly involved in any specific process. And if it is what have been expected, that
is, in this case, if the genes will apply any relation to the clustering results. Gene
ontology is generate in a hierarchical way. The gene ontology (GO) was developed to
facilitate the annotation, the incorporation of information to genes in a system way.
It provides a controlled vocabulary that describes the gene and its attributes of the
gene product in any organism. Gene ontologies consist of structured and controlled
vocabulary of terms that describe gene products according to their:

• Biological processes: A series of molecular events with beginning and end.
• Cellular components: Location in cellular or macromolecular structures.
• Molecular functions: Molecular activities such as enzymatic activities.
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Gene Set Enrichment Analysis (GSEA)

The GSEA is a statistical method for so-called weighted gene expression for pairwise
comparisons of two conditions. These gene groups can be chosen arbitrarily, so they
can be compiled manually or come from databases. E.g., in order to be able to
compare two conditions, the gene groups have similar functions or equal regulatory
mechanisms.

In this thesis, the obtained gene expression data sets were compared in order to
identify possible correlations between the datasets. The goal of GSEA as an effective
method for gene expression analysis is to demonstrate a preferential distribution of
given sets of genes in the examined data sets. For this purpose, we used the package
topGO to conduct GSEA (Alexa and Rahnenfuhrer, 2010). The package was given
a ranking of the expressed genes, which was calculated from the corrected p-value.
Subsequently, an enrichment score (ES) was calculated, which is based on a weighted
statistic for the degree of enrichment of the gene set, using the new() function.

A gene set is considered to be enriched if many genes from this gene group have high
ranks in the hierarchically sorted gene list. The maximum of the cumulative sum,
indicates how high the enrichment of the examined gene group is in comparison to
the whole gene set. The more genes in the groups occupy high rankes in the gene
rankings, the higher is the maximum of the cumulative sum. However, not only
genes with high ranks are interesting, but also ranks with low ranks are of interest,
considering, e.g. up- and down-regulated genes. The up-regulated genes occupy high
ranks and down-regulated genes occupy low ranks in the gene list. The GSEA is a
running sum statistical based on a bootstrapping process of the gene groups.

In this case, after the calculation of the cumulative sum, permutation tests are per-
formed by gene randomisations in order to determine whether the calculated value
of the running sum actually has a significant height. This permeation test used in
the ranks distribution corresponds to the Kolmogorov-Smirnov test. # Results and
Discussions

This chapter presents the results of the analysis. The results are divided into eight
sections. First, the results of the quality assessments are shown, which tells about
how well the data has been preprocessed. The second part of the results is the
Pearson’s correlation coefficient calculation and will decide whether which data can
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be used for the analysis. The third section is the performance of the meta-analysis
on the calculated p-values of both data. The fourth and the fifth part deals with
cluster validation and the visualisation of the clustering results. Here, the section
is also subdivided into the results of the toy data set and the gene expression data
sets. The sixth part concerns the determination of the cluster probabilities with the
respective label switching method around the cluster labels in correct labelling to
the other clustering results. The penultimate and the final part of the results are
corresponding to the evaluation and the biological interpretation of the clustering
results by implementing the survival analysis with a Kaplan-Meier analysis and a
gene set enrichment analysis.

Quality assessment

This section is the quality assessment, which are used to find the poor quality gene
expression data points. If there are gene-expression data that are of insufficient
quality, they are removed for the analysis. The following figures below show heat map,
density, box and MA plots representing signal intensity distributions summarisation
of the data.

The figure 2.12 shows a heatmap that is created across 40 randomly selected samples.
Similar data that can be classified into certain groups are being searched, without
previously specifying fixed groups. The heatmap determines the Euclidean distance
of the intensities between 2 arrays.
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Figure 2.12: Heatmap of false colour of the distances between arrays. It shows the com-
parison between unprocessed (upper) vs. preprocessed arrays (lower) of a) Affymetrix, b)
Agilent and c) HTSeq data.

The heatmap displays a false colour of the distances between arrays. The colour range
(between blue - low correlation and yellow - high correlation) is being chosen to cover
the distances encountered in the data. The rectangular patterns of the heatmap
can be an indication of correlations for certain groups of samples or unintended
experimental factors such as batch effects. The figure 2.12 is a comparison between
unprocessed and preprocessed all experiments. The distance between the red and
green channel is being calculated as the mean absolute difference between both arrays
in Agilent microarray. Outlier detection of the heatmap is based on both channels
which the sum of the distances to all other arrays are exceptionally large. 23 samples
without the references were detected as outliers. The high correlation part on the
edge of the raw data heat map of HTSeq could indicate the reference samples.

An MA plot allows to display the relationship between intensity and difference be-
tween two arrays, for e.g. the red and green channel of Agilent. It is a 2D plot with
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a point for each genes. The x-axis is the average value across the channels or the log
of mean of expression values (A = 1/2 * (log2(I1) + log2(I2))) and the y-axis the
difference or the log fold change (M = log2(I1) - log2(I2)) between them. Genes with
similar expression values will scattered around M = 0 value, meaning that genes ex-
pressed with no significant differences between the channels. Data values away from
M = 0 line implies that genes are significantly expressed.

The figure 2.13 displays 2 MA-plots of (raw vs. preprocessed) Affymetrix. Each plot
display the upper four worst and the lower four best MA-plots. The four worst plots
show curved trends away from M = 0. After normalisation, we can observed that
the upper worst plots have been normalised, which transform the expression values
around M = 0.

Figure 2.13: MA-Plot of Affymetrix. The upper plot shows the raw data und the lower
plot the preprocessed data.
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The MA-plot of Agilent on the figure 2.14 display more scattered MA-plots than
Affymetrix. We can also observed a successful normalisation between the data, as
the MA-plots of preprocessed data show linearity across M = 0.

Figure 2.14: MA-Plot of Agilent. The upper plot shows the raw data und the lower plot
the preprocessed data.

Similar to both figures 2.13 and 2.14, the HTSeq data on the figure 2.15 has been
also normalised successfully, since it display more or less linearised MA-Plots.
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Figure 2.15: MA-Plot of HTSeq. The upper plot shows the raw data und the lower plot
the preprocessed data.

Correlations

In order to implement the meta-analysis to combine multiple p-values across gene
expression data, it is necessary that positive correlations between those data exist.
The lower the correlation between the data, the lesser the method to generate ap-
propriate results of the cluster analysis. The figures 2.16, 2.17, 2.18, 2.19 and 2.20
display the scatter plot between each paired samples of Affymetrix, Agilent, FPKM
and HTSeq data against each other. What we can clearly observed is that Affymetrix
and HTSeq show linear correlations between all random selected samples and genes,
while the lowest correlations are displayed between FPKM and both Agilent and
Affymetrix. Agilent against both HTSeq and Affymetrix display L-shaped scatter
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plots. Many of the higher expressed values from Agilent show low expressions to
both HTSeq and Affymetrix.

Figure 2.16: Scatter plot between Affymetrix and FPKM across each paired samples.

Figure 2.17: Scatter plot between Affymetrix and HTSeq across each paired samples.
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Figure 2.18: Scatter plot between Agilent and FPKM across each paired samples.

Figure 2.19: Scatter plot between Agilent and HTSeq across each paired samples.
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Figure 2.20: Scatter plot between Agilent and Affymetrix across each paired samples.

Furthermore, we calculated the correlations between each matched paired samples
between the experiments using Pearson Correlation Coefficient. The results then
underwent a Fisher’s z-transformation for normally distributed coefficients and then
visualise the results using empirical CDF, which show in the figure 2.21.
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Figure 2.21: The plot shows 3 different kinds of plots. It shows the correlations of the
experiments to each other. From 3 different gene expression data, there are 3 different
ECDFs. The upper left plot shows the correlation of HTSeq against Affymetrix (blue),
HTSeq against Agilent (orange), FPKM against Affymetrix (green), FPKM against Agilent
(red) and Affymetrix against Agilent (purple) from the first 100 genes (left), the top 1000
genes (middle), all 7180 cross annotated genes (right).

Based on the ECDF plots shown from the figure 2.21, it display overall high Pearson
coefficients between Affymetrix and HTSeq data, while lower Pearson coefficients
could be observed between Agilent against Affymetrix and HTSeq. Worst values
can be shown between FPKM against both Agilent and Affymetrix of the top 100
and 1000 genes. Slightly higher but clearly visible are the coefficients from all genes,
in which HTSeq against Affymetrix stood out the most. Similar results have been
approved from the publication of Y. Guo et. al., which stated that the low correlation
between Agilent and HTSeq data is due to the normalisation difference between ratio
and non-ratio representations of the data. Thus, HTSeq data are directly counted
from the transcript abundance, while the gene intensity of Agilent microarray is
based on the ratio between red and green channels.
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Meta-Analysis for combining p-values

After Affymetrix and HTSeq (henceforth called RNA-Seq) were selected for further
analysis, we determined the t-test statistics of the respective genes in which we used
the reference samples/healthy samples against the cancer samples from both data
to calculate the p-values to test the significance between healthy and tumour genes.
After the p-values has been obtained, the p-values were then combined via meta-
analysis annotated by its corresponding genes. This gave Affymetrix and RNA-Seq
the same p-values of the genes, which can then be ranked and then used together to
carry out the cluster analysis only with the top ranked genes.

Cluster Analysis and Validation

Based on the annotated RNA-Seq and Affymetrix data, the clustering analysis was
performed on 127 samples and the top 100 most significant genes from the meta-
analysis. The clustering analysis were simultaneously conducted using k-Means,
Spectral Clustering and Gaussian Mixture Model with the their corresponding pa-
rameters. The k-Means was being run with a randomised initialisation, where k
observations from data for initial cluster center were chosen at random, with 2000
number of iterations on a single run. Spectral Clustering was being run with the
eigenvalue decomposition strategy using the ARPACK method. ARPACK is based
on Fortran, that provides efficient eigenvalue decomposition of large sparse matrices.
The affinity parameter determines the similarity between points in the matrix, and
for our analysis, we used k-nearest neighbour. For the Gaussian Mixture Model we
used both random and k-Means initialisation, with a 2000 iterations within a single
run and a diagonal covariance matrix as the covariance type.

To find out the optimal cluster numbers, different clustering validation metrics have
been introduced within this master thesis. Since each validation metric is dependent
on the data size and structure, it is essential to evaluate the metrics to exclude those,
which does not fit to our clustering validation. Additionally, since each clustering
metrics has its own scoring results that differs mostly from each other in different
scales. But the purpose for the clustering validation by comparing the metrics and
visualising them in one figure, so a solution had to be found in order to solve this
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problem. We implemented the StandardScaler() function from sklearn, since it
assumes that the metrics are all normally distributed within each other and will
scale them that the distribution is centred around 0, with a standard deviation of 1.
The calculation of the mean and standard deviation is based on:

xi − mean(x)
stdev(x)

The idea behind StandardScaler() is that it will transform the data in such, that
the distribution will have a mean value of 0 and standard deviation of 1. Given
the distribution of the data, each value in the dataset will have the sample mean
value subtracted, and then decided by the standard deviation of the whole dataset.
Requirements of the data transformation is that all metrics scores have to be arranged
in a data frame column-wise.

Since the scores for the clustering validation are less important than the local maxi-
mum or minimum or the knee point of the metrics in our cases, the StandardScaler
is acceptable just for the visual validation.
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Results from Toy Dataset

Figure 2.22: Clustering validation for all implemented metrics: Ball and Hall (BH), Banfeld
and Raftery (BR), Calinski and Harabasz (CH), Hartigan, Friedman and Rubin (FR), Log
Set Ratio (Log Friedman and Rubin - LFR), Ratkowsky and Lance (LR), Ray and Turi
(RT), Trace_W (TW), Marriot, Xu, Silhouette, AIC and BIC.

The figure 2.22 represents the visualisations of the Toy Dataset being run through
the clustering algorithms and being evaluated by the clustering metrics. The left
graph represents all the clustering metrics introduced for the validation. The red
shading serves as indication for a possible cluster number. The reason of creating
the toy dataset with the same dimension as the gene expression data is to exclude
those metrics that could not fulfil the clustering validation criteria. Based on the
left graph, 7 out of 15 metrics do not perform as expected. Random GMM also
show poor validation performance from the graph, as it could not identify the right
number of clusters. We excluded those validation metrics, which seem to either
demonstrate bad or only slightly acceptable validation performance, that could lead
to misinterpretations of the clustering validation. Only 7 (BG, CH, Hartigan, RL,
TW, AIC, BIC) validation metrics which could satisfy the expectations of a good
validation performance which can be seen in the figure right graph.

Ball and Hall is the only metric that show an elbow-point scoring method, Hartigan
is as well the only metric that show a knee-point based scoring method, while the
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rest (AIC, BIC, Silhouette and Calinski and Harabasz scores) have a local maximum
to determine the number of clusters. Given those validation agreements between the
clustering validation metrics with the toy data set, we would seek to have similar
results with both gene expression data.

Cluster allocation probabilities and Label Switch-
ing

We aggregated different clustering results generated from RNA-Seq, affymetrix by
calculating the prediction probabilities of each the clustering results as the classifi-
cation input with the corresponding data set using the GaussianProcessClassifier()
function. After calculating the prediction probabilities, we relabeled the clustering
probabilities using the label.switching package using the stephens() function. The
function requires an m × n × K dimensional matrix of allocation probabilities of the
n observations, which are the unique cluster labels among the K mixture components
corresponds to the both clustering results of both RNA-Seq and Affymetrix and for
each iteration t = 1,…,m which corresponds to the patient samples.

Recalling the main goal of the thesis, one of the main objectives is to aggregate the
clustering results from multiple experiments. Once we obtained the label permuta-
tions, we changed the cluster probability labels from each cluster algorithms based
on the results obtained by the stephens() function. For combining the cluster la-
bels from each paired clustering algorithms, we implemented a naive Bayes approach
multiplying the individual cluster allocation probabilities for each sample and then
renormalise them so that the sum over k return to normal after renormalisation,
accepting the cluster priors as identical.

∀k : P (k, A, B) = P (k | A) ∗ P (k | B)

∀k : P (k | A, B) = p(k,A,B)∑
k

P (k,A,B

After the cluster allocation probabilities aggregation, we obtained the cluster labels
by returning the index of the maximum value over each row as the highest probability
of the cluster labels. These cluster labels were then implemented for Differential
Expressed Gene (DEG) analysis to apply the Gene Set Enrichment Analysis (GSEA).
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Clustering validation results

Clustering validation has been acknowledge as an essential part to the achievement
into clustering analysis. Recall the aim of clustering algorithms are to split data sets
into classified objects such that the objects in the same group are similar as possible,
and the objects in different clusters are highly distinct to each other.

Figure 2.23: Clustering validation results using all available metrics with the top 100 ranked
genes of Affymetrix data.
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Figure 2.24: Clustering validation results using all available metrics with the top 100 ranked
genes of RNA-Seq data.

The figures 2.23 and 2.24 illustrate the visualisation of the clustering validation
results using all available clustering metrics. The red bar across cluster three to six
shows the expectation range of the correct cluster number. At first no successful
validation could be observed, and in attempt of visualising the clustering metrics
in the same plot using a StandarScaler() function, no clear cluster number can be
identified due to poor validation performance most of the clustering metrics produce.
So we look into each metric separately to possibly detect any successful validation.
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Figure 2.25: Clustering validation results of the selected metrics with the top 100 ranked
genes of Affymetrix data.

Figure 2.26: Clustering validation results of the selected metrics with the top 100 ranked
genes of RNA-Seq data.
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The figures 2.25 and 2.26 display the clustering validation of the selected metrics
from the toy data set. Likewise to the figures 2.23 and 2.24 no clear clustering
number could be classified. When retrospectively looking back on the validation
results from the toy dataset, most of the metrics generate mostly persistent increasing
or decreasing values after detecting the right number of clusters with barely no
fluctuations. But we found a metric that show poor validation performance on the
toy data set but looks promising for both Affymetrix and RNA-Seq data.

Marriott et. al. proposed an approach of identifying the correct cluster num-
ber by minimising the within-group dispersion matrix for data clustered into k
groups(Marriott, 1971). The Marriot metric on the both figure 2.27 and 2.28 how
a decreasing of the metric score as the cluster number increases. The elbow bend
indicates that increasing the cluster number beyond cluster three have smaller values.
The Marriot metric proposes that the optimal cluster number is three.

Figure 2.27: Clustering validation metric using Marriot of Affymetrix data with the top
100 ranked genes.
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Figure 2.28: Clustering validation results of Affymetrix data with the top 100 ranked cancer
genes.

We also implemented the Marriot metric to our mean aggregated data set. All cluster
algorithms beside the random GMM show similar results to previous figures 2.27 and
2.28.

Figure 2.29: Clustering validation metric using Marriot of aggregated data with the top
100 ranked genes.

So overall, we used the StandardScaler() function from sklearn to unify different
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clustering metrics and to look for patterns regarding visualisations in one graph for
the optimal cluster number. Some clustering metrics are consistent throughout the
clustering algorithms but some do predict different cluster numbers while few could
not find any optimal cluster number at all. Although unifying different clustering
metrics in the same graph can cause issues in obtaining a useful clustering validation,
it is an important feature in a clustering validation approach. But one prominent
validation metric displays a very appropriate clustering validation since it provides a
very good example of an elbow method, which indicates cluster three as the optimal
cluster number.

Clustering visualisation

In order to understand the extent of the results displayed from the previous chapters,
we compared the clustering analysis results by projecting all data sets. It has to be
noted that the figure presents all data sets in a 2-Dimensional form, transformed
using t-SNE with default parameters from toy and perplexity of 450 and learning
rate of 800 from both microarray data sets.

What makes t-SNE a good 2-Dimensional data visualisation tool is that it converts
affinities of data points into probabilities. The affinities in the original space are
represented by common Gaussian distributions and the affinities in the embedded
space by t-distribution. Therefore, with the right parameter, t-SNE can separate
groups based on their relative similarity by calculating the probabilities and the
distance using KL-divergence between two data points. So what we should expect
to see after applying t-SNE to the data, that the cluster labels should be at least in
the same location close together, rather than spread around the graph.

Using a self designed toy data set will give us an understanding how the clustering
algorithms work if the groups are clearly separated. The toy data set will then be
compared as a reference to the clustering analysis results of our gene expression data.

Results from Toy data set

The figure 2.30 show a 2D generated toy dataset of 5 isotropic gaussians with 180
samples and 100 features and a standard deviation of 1.5 per gaussian with default
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parameters. The dimension of the gaussians are designed in the way that it has the
same dimension as the gene expression data. The toy dataset has been tuned to gen-
erate good clustering results. By setting the clustering results into a 2D projection,
we can see visualise the performance of each clustering algorithm.

Figure 2.30: t-SNE projected toy dataset. The toy data set contains five isotropic gaussians.
The different colour labels from each clustering algorithms, numerically labeled in each
clustering analysis iteration is based on the so called label switching problem, which has
been discussed on chapter 3.15.

The performance results of the clustering validation metrics can be clearly seen di-
rectly from the graphs. The toy data set has five well separated group values that
can be easily be detected with the clustering algorithms, except for the random
initialised GMM, all other clustering algorithms perform as expected with identi-
cal clustering results. The random GMM does not seem to clearly identify the five
isotropic gaussians, with such a low standard deviation and the appropriate distance
to each gaussians can be considered to be weighted less for the clustering analysis.
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Results from the original, combined, and aggregated data

Figure 2.31: t-SNE projected of top 100 genes of Affymetrix data with three clusters. There
are two different clustering results. The circles display the original clustering results while
the x points are the results of the combined clustering labels from Affymetrix and RNA-Seq
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Figure 2.32: t-SNE projected of top 100 genes of RNA-Seq data with three clusters. There
are two different clustering results. The circles display the original clustering results while
the x points are the results of the combined clustering labels from Affymetrix and RNA-Seq.

In this section we show a scatter plot from Affymetrix and RNA-Seq. The x repre-
sents the original labels of the clustering results, and the circle points represents the
labels from the combination of both clustering results by the Naive Bayes approach.
Both data were projected with n = 2 components and perplexity = 120. Each color
defined as the cluster label resulted from the clustering analysis. Both data display
good clustering classification results of the three clustering groups on all algorithms.
The clustering analysis results generated by RNA-Seq show high agreements on k-
Means, Spectral Clustering, and k-Means GMM, although random GMM just vary
slightly from the others. Whereas Affymetrix, all four cluster algorithms produced
mostly identical clustering results. Similar clustering labels from all algorithms indi-
cate that cluster three as the correct number of clusters.
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In the case of RNA-Seq data, no major changes in the cluster labels could be ob-
served after the clustering combination on k-Means und Spectral Clustering, while
few patients were switched over from one group to the other on k-Means GMM.
On one group of random GMM, many patients have switched over the other two
groups. On Affymetrix data, only few of the patients from two groups (purple and
red) are switched to each other. Many patients have switched from one group to the
other group (turquoise to red on Spectral Clustering, purple to turquoise on Random
GMM, and purple to red on k-Means GMM).

Figure 2.33: t-SNE projected of top 100 genes of the mean aggregated data with three
clusters.

The figure 2.33 shows the t-SNE projected clustering visualisation of the aggregated
data. Similar to the results generate from both gene expression data, the aggregated
data appear to also have agreements on clustering results when comparing visually
on all clustering algorithms beside from the random GMM, similar to the clustering
results visualisation from generated from the toy data set. All three clustering algo-
rithms (k-Means and k-Means GMM) show a slightly more similar clustering labels
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than Spectral Clustering.

t-SNE is a method well-suited for visualising of multidimensional data in a low 2-
dimensional space, using the local relationships between data points. t-SNE creates
a probability distribution using Gaussian distribution that defines the local relation-
ships. Compare to PCA which maps high-dimensional spaces around the medium dis-
tance, which makes the distances between the low-dimensional points gather around
the medium distance that can cause to the ‘crowding problem’. t-SNE deals with
the problem by spreading out the medium distance points with certain parameters
to prevent the crowding. Hence, it takes similar data points and place it on similar
spaces separated from the other data points. Therefor, t-SNE confirms that the al-
gorithms have generated good clustering results with the optimal cluster number of
three. Based on the results from the toy data and the mean aggregated data sets, we
should take the results generated by the random initialised GMM less into account.

Clustering similarity results

Figure 2.34: Clustering similarity results of Affymetrix (left) and RNA-Seq (right) of the
100 top ranked genes.
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The figures 2.34 displays the clustering similarity results using Fowlkes-Mallows score
that compares the clustering algorithms with each other. The results indicate that
the higher the cluster number the lesser the agreement of the clustering analysis
results. Based on the higher correlations presented on the figure 2.21 between
Affymetrix and HTSeq, we actually expected an identical similarity results between
both gene expression.

On the Affymetrix (left), all clustering algorithms show very high similarity > 0.90
comparing with each other with Random GMM vs. k-Means GMM as the highest
with identical clustering results (score = 1). On cluster five, the similarity for all
algorithm is lesser compare to cluster six, that indicate an agreement that cluster five
is not the optimal cluster number when choosing between one to six. After cluster six,
the scores show a decreasing trend with some exceptions at certain cluster numbers.
But generally the similar decreases as the cluster number increases, with difficulties
for the algorithms to find more alignments.

RNA-Seq significantly show lesser agreements on similarities compared to Affymetrix,
but a visible indication of the highest similarity scores on all algorithms around clus-
ter three and the decreasing similarities beyond cluster three. The highest similarity
score is about 0.89 (k-Means vs. Spectral Clustering) on cluster two followed on clus-
ter three of about 0.86. When looking at cluster two, we can see that Random GMM
show the least agreement against all other clustering algorithms, which means a poor
clustering analysis performance.
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Figure 2.35: Clustering similarity results of Affymetrix vs. RNA-Seq from both the 100
top ranked genes.

On the figure 2.35 the similarity score with matched algorithms on both gene expres-
sion data with, were being calculated. Inconsistencies of clustering agreements can
be demonstrated between cluster two and five, with an exception of Spectral Clus-
tering, which show a general higher similarities along the cluster numbers compare
to the other algorithms. We conclude that the results using the similarity score of
Fowlkes-Mallows reinforces the results generated from our cluster validation, as we
can see that the scores beyond cluster three degrade the higher the cluster number
get.

102



Survival analysis: Investigating clustering specific
phenotypes

To assess whether the clustering leads to clinically relevant patient groups multivari-
ate survival analysis via Kaplan-Meier has been conducted. We took the phenotypic
data with all the meta data including the time periods to death. We then anno-
tated the phenodata with its corresponding clustering labels (the combined and the
aggregated cluster labels) and perform a Kaplan-Meier survival analysis using the
lifelines(Davidson-Pilon et al., 2019) library. The KaplanMeierFitter() is the object
to conduct the survival analysis if each cluster. We further conducted a multivari-
ate Log rank test using the multivariate_logrank_test() to calculate the difference
between the cluster groups per algorithm and the similarities per group across the
algorithms under the null hypothesis of the groups are similar to each other and the
alternative hypothesis of at least one groups that differs from the other groups.

Figure 2.36: Survival analysis with Kaplan-Meier Method of the combined cluster labels
of each clustering algorithm.
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Figure 2.37: Survival analysis with Kaplan-Meier Method of the aggregated cluster labels
of each clustering algorithm.

The figures 2.36 and 2.37 show the depiction of a survival analysis according to
Kaplan-Meier. Each plot represents each cluster algorithm with 3 different cluster
groups, representing the survival probability of each individual group as a cumulative
distribution function. The log rank p-value is also shown in each plot. k-Means (p-
value = 0.021) and Spectral Clustering (p-value = 0.008) show significant different
between all three groups with Spectral Clustering as the most significant with big
differences between the groups, while either one or more clusters of Both Gaussian
Mixture Models (random GMM = 0.279, k-Means GMM = 0.272) do not significantly
show any differences between the groups on the combined cluster results 2.36. In the
case of the aggregated cluster labels 2.37, only Spectral Clustering (p-value = 0.008)
displays significant differences between groups in terms of survival probabilities.
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Figure 2.38: Survival analysis with Kaplan-Meier Method of the combined clustering results
between the clustering algorithms with each group.

Figure 2.39: Survival analysis with Kaplan-Meier Method of the aggregated cluster labels
of each clustering algorithm.

We additionally applied the multivariate log rank test to determine the similarities of
the groups between the cluster algorithms or differences between cluster groups and
visualise the survival curves represent by the figures 2.38 and 2.39. Regarding the
survival analysis results of the combined cluster labels, all groups have obtain very
high p-values close to 1, indicating high similarities at least two of the clustering
algorithms in corresponding to the other algorithms (cluster 1: p-value = 0.997,
cluster 2: p-value = 0.999, cluster 3: p-value = 0.995). Comparable are the results
of the aggregated cluster labels, where all the algorithms in each group have high
concordance, with cluster 1 has the highest similarities and cluster 2 as the lowest
(cluster 1: p-value = 1.0, cluster 2: p-value = 0.843, cluster 3: p-value = 0.968).

This section describes the results using Kaplan-Meier plots to visualise survival curves
to each groups and Log-rank test to compare the survival curves of these groups. The
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results suggests that grouping patients by expression data clustering separates pa-
tients with short to medium survival in three distinct groups which show (significant)
differences in survival.

DEG and GSEA results

Differential Expression Analysis

We conducted a Differential Expressed Genes (DEG) analysis based on the generated
clustering results to each corresponding clustering algorithms in each gene expression
data sets, with the purpose of discovering quantitative changes in expression levels
between cluster groups. We used the limma package for calculating DEG, which gen-
erated p-values per genes. Each DEG analysis results were further implied separately
for the GSEA. As a results, gene list has been generated with p-values annotated to
its corresponding gene symbol.

The figure 2.40 shows logit transformed p-values compared with each cluster algo-
rithm between Affymetrix and RNA-Seq. As you can see in the graphs, there is
clearly positive correlation between the two datasets, in spite of the scatter being
more spread out. Also the scatter plot between each of the clustering algorithms are
very similar.
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Figure 2.40: Scatter plot of logit transformed p-values Affymetrix vs. RNA-Seq compared
to each paired clustering algorithms of 1000 random selected genes.

For DEG analysis, we transformed our gene expression data frame into an Expres-
sionSet by importing the phenoData annotating each sample with additional meta
data, and featureData, which annotate the gene symbols with additional information
such as ENSEMBL IDs, and gene description. DEG analysis with limma also re-
quires beside the expression set a design matrix, composed of the combined cluster
labels converted as factors. Subsequently, fitting a linear model with the expression
set and the design matrix as inputs, calculating the empirical Bayes Statistics for
differential expression of the standard errors towards a common value, given a linear
model fit. As results, we get the moderated t-statistics, F-statistics, and log-odds
of differential expression. We then take the p-values corresponding to F-statistics as
our p-values for our GSEA.

Gene Set Enrichment Analysis

In this section, we discuss the application of Gene Set Enrichment Analysis (GSEA)
and the corresponding results to identify classes of genes that are over-expressed in
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our data, that may reveal associations with GBM cancer.

Once we have the gene list with their corresponding p-values generated from the DEG
analysis, we also require the gene annotations and the annFun.db function is used to
extract the gene to Gene Ontology annotation from the affyLib objects. Thus, we
also have to define a function as a gene selection criteria to out enrichment analysis,
in our case selected the top 10% of most significant genes instead of a regular p-value
cutoff. We have now all the necessary data and functions to build the object required
for the topGOdata.

We then continued to conduct the enrichment analysis, we used the Kolmogorov-
Smirnov (KS) test which computes the enrichment based on gene scores, mentioning
the nodeSize = 10 for the GO terms hierarchy to show less than 10 gene annotations.
The function runTest() is implemented to apply the KS statistic and the method of
the topGOdata. The function returns a topGOresult class. GenTable() is a function
for returning the most significant GO terms and the corresponding p-values into a
readable data frame. showSigOfNodes() is a function which visualises the enrichment
analysis over a Gene Ontology graph.

The figures below display the Gene Set Enrichment Analysis Results of Affymetrix,
RNA-Seq and the mean aggregated data. Since all four clustering algorithms to
each data sets generate almost identical GSEA results, we only display the GO
graph results from the DEG analysis of all data set with k-Means cluster labels of
Affymetrix.

The figures display Gene Ontology graphs induced by the top 5 most significant Gene
Ontology terms. Significant nodes are represented as rectangles, ranking from the
most significant (dark red) to the least significant (bright yellow). For each node,
the GO identification number and the p-values are displayed. Additionally to the
GO graph, we displayed the summary table with the results from the test using the
Kolmogorov Smirnov method. The table contains the top nodes of GO terms ordered
by the p-values.
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Figure 2.41: Gene Ontology graph of the top 5 GO terms identified by the KS (Kolmogorov-
Smirnov) algorithm based on DEG analysis results of Affymetrix with k-Means cluster
labels.
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Figure 2.42: Summary table with the results corresponding to the GO graph from k-Means
clustering labels of Affymetrix.
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The figure 2.42 displays a summary of the most significant GO terms ranked by the
corresponding p-values from KS.

We are going to discuss the most significant GO terms (the rectangles) into our
discussion, to find out if these GO terms have any relevance in Glioblastoma Mul-
tiforme. The top GO terms which are matched to all data sets are GO:0006396,
GO:0044237, 0016071, and 0008152 which are annotated to RNA process, cellular
metabolic process, mRNA metabolic process and metabolic process.

GBM is the most common type of primary brain cancer and for most GBM solid
tumours there are currently no effective treatments available besides the current surgi-
cal resection, followed by radiotherapy with temozolomide (TMZ). Although, current
advanced therapies such as gene therapy, and immunotherapy are in clinical trials,
the survival rate of GBM patients barely improved over the last decades. Therefore,
new treatment methods are urgently on demand. Researchers published a paper
which proposed that RNA-Processing as a therapeutic route for GBM treatment.

Alternative splicing is an importance source for gene regulation that affects more
than 90% of the human coding genes and that mutations and alterations in splic-
ing factors that display potential tumour driving mechanisms(Meliso et al., 2017).
Thus, mutations and alterations of splicing factors are prawn to induction of genomic
instability, which is a common characteristic in GBM. RNA-processing regulation oc-
curs by a complex RNA-protein network and changes in the regulation can cause to
mutations and splicing aberrations and hence to cancer(Yeo, 2016).

They stated that since defects in mRNA splicing can cause a high probability of de-
veloping cancer, splicing modulation has been a promising approach in GBM treat-
ment(Meliso et al., 2017). Metformin, together with TMZ has the task to inhibit the
proliferation of GBM cells. They also mentioned that based on their gene expression
profiling results, metformin has been involved in RNA binding and splicing(Meliso
et al., 2017).
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Figure 2.43: Venn diagram of the Gene Set Enrichment Analysis results from Affymetrix,
RNA-Seq and the aggregated data set.

The figure 2.43 displays a Venn diagram of the top 1000 GO terms resulted from
the enrichment analysis of all gene expression data. The Venn diagram serves as an
illustration of the enriched GO terms provided by the GSEA analysis of all three
data. There are 7 regions in the Venn diagram in each cluster algorithm which show
the intersections and difference between GO terms of the data. k-Means clustering
shows that 787 significant GO terms are matched between all three gene expression
data. 97 GO terms of Affymetrix, 105 of RNA-Seq and 17 of the aggregated data
neither intersect, hence, not enriched from each other. 13 GO terms which are
enriched in both Affymetrix and RNA-Seq are not enriched in the aggregated data.
All other algorithms display similar results to the k-Means Venn diagram with very
small variations of GO terms across the intersections.

To validate our GO enrichment analysis results, we additionally conducted a GO
terms comparison to other similar published articles. We collected the top GO terms
of those randomly selected studies to verify the existence of these GO terms to the
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top 1000 GO terms of our enrichment results. The following selected studies are:

• Predicting glioblastoma prognosis networks using weighted gene co-expression
network analysis on TCGA data(Xiang et al., 2012)

• Identification of glioblastoma gene prognosis modules based on weighted gene
co-expression network analysis(Xu et al., 2018)

• Identification of hub genes and pathways in glioblastoma by bioinformatics
analysis(Yang et al., 2019)

• Differential gene expression analysis in glioblastoma cells and normal human
brain cells based on GEO database(Wang and Zhang, 2017)

• Discovery and validation of a glioblastoma co-expressed gene mod-
ule(Dunwoodie et al., 2018)

The study published by Xiang et. al.(Xiang et al., 2012) and Xu et. al.(Xu et
al., 2018) utilised similar methods with the goal constructing a gene co-expression
network in TCGA GBM samples and to conduct enrichment analysis to classify
significant gene modules. Based on our top 1000 GO terms, we could find more
agreements to Xiang’s GO enrichment analysis results (6 out of top 14 GO terms)
compare to Xu’s results (1 out of top 10 GO terms) displayed in the studies. The
most matched GO terms were found so far on the article published by Yang et.
al.(Yang et al., 2019), with the scope of understanding the molecular mechanism of
GBM to provide novel treatment strategies (10 out of 21 top GO terms listed in
the publication). The study published by Wang et. al.(Wang and Zhang, 2017),
conducting a DEG analysis between GBM cells and healthy human brain cells based
on GEO database. Likewise we could find GO terms from their results, that also
correspond to the top 1000 GO terms we generated from the GO enrichment analysis
(6 out of top 11 GO terms). And the last study we compared was conducted by
Dunwoodie et. al. with the scope similar to the studies of Xiang et. al.(Xiang et al.,
2012) and Xu et. al.(Xu et al., 2018), utilising a gene co-expression network analysis.
We only found 1 matched GO term from 11 published GO terms.

We further looked into the cell biology and the intracellular events that characterises
GBM and then compared these events with our GO terms. Based on the review of
(Nakada et al., 2011) these events arise mostly In combination of multiple tumorigenic
events.
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The first biological event he stated is about the loss of cell cycle control. GBM
develops different ways to evade the cell cycle control for its own growth benefits. G1-
S phase transition is one of the cell cycle point that obtained the most attention in the
cell cycle event of GBM.The second event is the over-expression of growth factors and
receptors, such as epidermal growth factor receptor (EGFR), platelet-derived growth
factor (PDGF),Transforming growth factor (TFG) and fibroblast growth factor are
over-expressed In GBM. He also mentioned the p53 pathway of GBM that cause
abnormality of apoptosis by disturbing the apoptotic response that follows the usually
strict control of cell cycle progression, as well as genetic instability, which encourages
further genomic damage and mutations in p53 would lead to genomic instability and
hence to tumour progression.

All these biological processes are important indications of GBM. A manual investi-
gation of GO terms which we find by the proposed GSEA as significantly enriched
reveals GO biological process terms like GO:0045786 - negative regulation of cell cy-
cle, GO:0044843 - cell cycle G1/S phase transition, GO:1902806 - regulation of cell
cycle G1/S phase transition, GO:0008543 - fibroblast growth factor receptor signal-
ing pathway, GO:0072331 - signal transduction by p53 class mediator. By linking the
gene expression signature which differentiates the three proposed clusters with known
biological implications of GBM development we obtain additional confirmation for
the proposed approach to uncover GBM subtypes by an unsupervised analysis of
expression data. # Conclusion and Future Work

We explore in this MSc thesis whether a robust method for identifying subgroups
of GBM patients can be obtained by aggregating multiple data sets into a unified
clustering. The clustering uses carefully normalised and selected gene signatures to
identify a grouping of GBM cases which solely relies on expression signatures. Cases
which are assigned to the same cluster share similar expression patterns while differ-
ing from other patient groups. Such clustering leads to robust expression signatures
for characterising GBM subtypes. The acquired knowledge has thus great potential
to provide reproducible GBM subtypes which may subsequently improve diagnosis
and treatment of GBM. The gene expression datasets we used in this MSc thesis are
Affymetrix microarrays and HTSeq-counts of mRNAs on gene level. Agilent gene ex-
pression data that would have been available as well have were excluded for reasons
of low correlation with these two data modalities. To avoid methods dependencies
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and to assess robustness across clustering techniques we used 4 different algorithms
including k-Means, Spectral Clustering and Gaussian Mixture Models that were ini-
tialised randomly and by k-Means.

For data aggregation we applied two different methods:

1. Expression data based aggregation combined HTSeq and Affymetrix data after
pairing samples and transcript clusters and separate data normalisation. To
adjust for platform specific effects in gene expression quantification we adjusted
the data by the standard scaler function before taking average expression as
summary quantification of both platforms. Since we necessarily have to reduce
samples and genes to those found in both platforms, analysis on aggregated
measurements have to discard information which if avoided could have lead to
an improved clustering.

2. Combining clusterings at the meta level of cluster assignments allows us to
use platform specific variables for clustering. As cluster analysis is done for all
platforms separately, we may all samples and thus more information to arrive at
a more reliable clustering of the data. If we wish to use the same input variables,
we may use Fishers meta-analysis to obtain a shared ranking without need to
pool the data. Agreement in samples is only required for identifying cluster
centres across different input modalities and clusterings. The GBM subtypes
obtained with the second proposition is thus based on more information and
should thus be more robust.

Clustering plays an important role in both data integration strategies. A critical
aspect of clustering is to determine an appropriate number of clusters. This is tech-
nically challenging and from the biological perspective the most crucial aspect as
it determines the number of GBM subtypes. The number of clusters is biologically
important as it determines the number of proposed GBM subtypes. Determining
the optimal number of clusters is moreover technically difficult as model fitting will
always prefer larger cluster numbers and additional penalties must be considered. To
get reliable estimates for the optimal number of clusters, we apply several metrics
that were on toy data found to provide reasonable predictions. The proposed num-
ber of three GBM subtypes results from consensus considerations across all metrics.
Attempting to cluster the data into a larger number of subtypes led to a degraded
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reproducibility and was thus considered inappropriate.

A careful validation suggests that both aggregation methods generate robust cluster-
ings. We find however that random initialised Gaussian Mixture Models are more
difficult to fit and do not always provide meaningful results. This could however also
be a shortcoming of the GMM implementation in the toolbox that was used for our
assessments. Judged by cluster robustness we find that clustering of multivariate
GBM expression profiles with medium sized gene numbers leads after cluster identi-
fication with (Stephens, 2000) to large agreement in cluster assignments independent
of the chosen method. Cluster methods are nonlinear and have many local optima
in parameter space. Although optimisation is challenging, we find that repeating the
optimisation often enough from different starting conditions leads to reproducible
results. We may thus conclude that a careful machine learning workflow leads to
a separation of TCGA-GBM cases on the basis of expression signatures into three
distinct subtypes.

An important prerequisite for putting forward characterisations of diseases like GBM
is to assert that proposed subtypes which follow from purely technical consideration
are also biologically meaningful. To provide such verifications, this thesis uses two
different assessments.

1. We used a pairing of expression data with clinical information to tag all cases
with patient survival. This allows us by a Kaplan-Meier analysis (Kaplan and
Meier, 1958) to assess our clustering based GBM subtypes for significant dif-
ferences in patient survival. If we focus on a medium survival interval which
contains a large fraction of cases, we find that patient survival depends signifi-
cantly on the cluster assignment. Despite that not all clustering methods find
significant associations this analysis suggests that the proposed clustering un-
covers expression patterns which are linked to GBM aggressiveness and proves
that our propositions are viable.

2. To provide a second assessment of biological relevance, we used the assigned
clusters as rank levels in a limma analysis. Easy to comprehend biological mean-
ing is subsequently obtained by subjecting the resulting gene list to a GSEA
analysis (Alexa and Rahnenführer, 2009) where we used the Gene Ontology as
tag terms. A comparison with published GBM analyses which use the same
evaluation strategy reveals great overlap among top ranked GO terms of up to
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50%. A careful manual comparison of our GO term list with a biological char-
acterisation of GBM that was reported in (Nakada et al., 2011) also uncovers
considerable overlap in GBM linked molecular mechanisms. Among the biolog-
ical processes and pathways which are defined by our clustering and linked with
GBM we find: GO:0045786 - negative regulation of cell cycle, GO:0044843 - cell
cycle G1/S phase transition, GO:1902806 - regulation of cell cycle G1/S phase
transition, GO:0008543 - fibroblast growth factor receptor signalling pathway
and GO:0072331 - signal transduction by p53 class mediator.

We may thus conclude that our analysis of GBM expression profiles with unsuper-
vised machine learning methods uncovers GBM subtypes which differ in survival and
thus an important clinical parameter. The proposed GBM subtypes also differ in
several known GBM related biological processes. The technical and biological assess-
ments that were carried out in this thesis allow thus to verify our working hypothesis
that integrating data with robust unsupervised modelling has potential to improve
our understanding of the molecular mechanisms in GBM. There are however also
aspects which demand further research and improvement.

1. Our finding that the majority of genes is significantly differentially expressed
across cluster centres is surprising. While all analysis was done carefully and
we find plausible interpretations which link our subtypes to known biological
consequences of GBM, this finding must be further validated. To rule out that
the clustering is confounded with a batch effect in the data, a careful analysis
of preprocessing methods is essential.

2. To further deepen our understanding of GBM a second proposition is to con-
sider integrating other data modalities as well. TCGC allows for example to
obtain patient genotypes, methylation and copy number modalities, pathology
reports and imaging data. To test whether this information provides added
value additional analyses should be carried out.

Future work could also seek to apply the methods proposed in this thesis to other
diseases where reliable clinical labels are unavailable or should be challenged. Such
analysis could for example be applied to other large TCGA projects like COAD
(colon cancer) and BRCA (breast cancer).
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Appendices to data preprocessing

preprocessing Affymetrix microarray data

First, the phenodata were being imported using the read.AnnotatedDataFrame() func-
tion, then the file IDs specific to Affymetrix (the .CEL files) were extracted from the
phenoData as a list. The function transfers .CEL files to an R object of the Affybatch
class. ReadAffy() is automatically able to read the different versions of microarray
data. Before the read-in process, the data has to be annotated with the phenoData
by including them into the ReadAffy(). rma() is a standard normalisation method
of Affymetrix which includes background correction to correct the spatial variation
within the arrays. The background correction is being calculated that for each probe,
the intensities are positive. Also included is the log transformation to improve the
data distribution, quantile normalization for variation correction between arrays and
the probe normalization for variation correction within probe sets. This steps serve
as the preparation and were repeated for reading Affymetrix data when removing
outliers using arrayQualityMetrics().

library(affy)
library(arrayQualityMetrics)
library(vsn)

# obtaining phenodata
pData <- read.AnnotatedDataFrame(
"phenodata.csv",
header=TRUE, row.names=1L, sep="\t")

rownames(phenoData) <- phenoData$file_id_affymetrix

# extracting the .CEL files as a list
celFiles <- paste("",
phenoData$file_name_affymetrix,
sep="", collapse=NULL)

# read and parse the raw data from .CEL files
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affy.data <- ReadAffy(
filenames = celFiles,
sampleNames = sampleNames(phenoData),
phenoData = pData)

# normalisation
affy.prep <- vsnrma(affy.data)

The next sections are the actual quality control for Affymetrix microarray, which are
used to find the poor quality microarrays. If there are microarrays that re of insuffi-
cient quality, they are being removed for the analysis. arrayQualityMetrics() provides
all the functions and visualisations including box-plots, density plots, heatmap and
MA-plot for the quality assessment.

# preparing for quality assessment
prepared.data <- prepdata(
expressionset = affy.prep,
intgroup = c(), do.logtransform = TRUE)

# quality control
boxplot.data <- aqm.boxplot(prepared.data)
density.data <- aqm.density(prepared.data)
pca.data <- aqm.pca(prepared.data)
heatmap.data <- aqm.heatmap(prepared.data)
maplot.data <- aqm.maplot(prepared.data)

# outliers
boxplot.out <- boxplot.data@outlier@which
density.out <- density.data@outlier@which
heatmap.out <- heatmap.data@outlier@which
maplot.out <- maplot.data@outlier@which

Once the outliers has been generated, the lists were then concatenated into a single
list and is being removed from the phenoData and the the preprocessing was being
rerun.
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# obtaining phenodata
pheno.data.outl <- phenoDat[-c(heatmap.out),]

# read and parse the raw data from .CEL files
affy.data.outl <- ReadAffy(
filenames = pheno.data.outl$file_id_affymetrix,
sampleNames = sampleNames(pheno.data.outl),
phenoData = pheno.data.outl)

# normalisation
affy.prep.outl <- vsnrma(affy.data.outl)

# preparing for quality assessment
prepared.data.outl <- prepdata(
expressionset = affy.prep.outl,
intgroup = c(), do.logtransform = TRUE)

# quality control
boxplot.data <- aqm.boxplot(prepared.data.outl)
density.data <- aqm.density(prepared.data.outl)
pca.data <- aqm.pca(prepared.data.outl)
heatmap.data <- aqm.heatmap(prepared.data.outl)
maplot.data <- aqm.maplot(prepared.data.outl)

# save quality assessment in a folder
qm.affy <- list(

'Boxplot' = boxplot.data$boxplot,
'Density' = density.data$density,
'MAPlot' = maplot.data$maplot,
'Heatmap' = heatmap.data$heatmap,
'PCAPlot' = pca.data$pca)

aqm.writereport(modules = qm.affy,
reporttitle = 'QC Report for Affymetrix',
outdir = "/Users/Desktop/qa_aaffymetrix",
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arrayTable = pData(pheno.data.outl))

preprocessing Agilent microarray data

First, similar to affymetrix, the phenodata were being imported using the
read.AnnotatedDataFrame() function, then the file names specific to Agilent (the
.txt files) were extracted from the phenoData as a list. The function transfers .txt
files to an R object class as an expression set (eset). read.maimages() is automati-
cally able to read and extract the corresponding red (rProcessedSignal) and green
(gProcessedSignal) channels of Agilent microarray data with additional parameter to
be chosen. The read.maimages function cannot recognise different Agilent version,
so different version has to be separately run. NormalizeVSN() is a normalisation
method of Agilent which includes similar to the rma() function a background
correction, log transformation, quantile normalization for variation correction
between arrays and the probe normalization for variation correction within probe
sets. This steps serve as the preparation and were repeated for reading Agilent data,
similar to Affymetrix when removing outliers using arrayQualityMetrics().

library(limma)
library(arrayQualityMetrics)
library(vsn)

# obtaining phenodata
pheno.data <- read.AnnotatedDataFrame(

paste(pathName, "phenodataAgilent.csv", sep = ""),
header=TRUE, row.names=1L, sep="\t")

rownames(pheno.data) <- pheno.data$file_id_agilent

# extracting the agilent files as a list
celFiles <- paste("", pheno.data$file_id_agilent,

sep="", collapse=NULL)

# read and parse the raw data from agilent .txt files
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agilent.list <- paste("", pheno.data$file_name_agilent,
sep = "", collapse = NULL)

agi.raw <- read.maimages(
agilent.list,
annotation=c(

"FeatureNum",
"Sequence",
"ControlType",
"ProbeName",
"GeneName",
"SystematicName",
"Description"))

agi.backcorr <- backgroundCorrect(
agi.raw,
method = "normexp",
normexp.method = "rma",
offset=50)

# normalisation
agi.backcorr$G <- normalizeBetweenArrays(agi.backcorr$G, method="quantile")
agi.backcorr$R <- normalizeBetweenArrays(agi.backcorr$R, method="quantile")

# preparing data for quality control
preparedData <- prepdata(expressionset = backgr.corr, intgroup = c(), do.logtransform = TRUE)

# using heatmap as a quality control
boxplotData <- aqm.boxplot(preparedData)
densityData <- aqm.density(preparedData)
pcaData <- aqm.pca(preparedData)
heatmapData <- aqm.heatmap(preparedData)
maplotData <- aqm.maplot(preparedData)

# outliers
boxplot.out <- boxplot.data@outlier@which
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density.out <- density.data@outlier@which
heatmap.out <- heatmap.data@outlier@which
maplot.out <- maplot.data@outlier@which

pheno.data.outlrm <- pheno.data[-c(heatmap.out),]
agi.raw.outl.rm <- read.maimages(

pheno.data.outlrm$file_name_agilent,
annotation=c(

"FeatureNum",
"Sequence",
"ControlType",
"ProbeName",
"GeneName",
"SystematicName",
"Description"))

# normalisation
agi.vsn <- normalizeVSN(agi.raw.outl.rm) # returning and MAList
agi.eset <- as(agi.vsn, "ExpressionSet")

# quality control
agi.prep.data <- prepdata(

expressionset = agi.eset,
intgroup = c(),
do.logtransform = FALSE)

boxplot.agi <- aqm.boxplot(agi.prep.data)
density.agi <- aqm.density(agi.prep.data)
pca.agi <- aqm.pca(agi.prep.data)
heatmap.agi <- aqm.heatmap(agi.prep.data)
maplot.agi <- aqm.maplot(agi.prep.data)

# save quality assessment in a folder
qm.agi <- list(
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'Boxplot' = boxplot.agi,
'Density' = density.agi$density,
'MAPlot' = maplot.agi$maplot,
'Heatmap' = heatmap.agi$heatmap,
'PCAPlot' = pca.agi$pca)

aqm.writereport(
modules = qm.agi,
reporttitle = 'QC Report for Agilent',
outdir = "/Users/Desktop/qa_agilent",
arrayTable = pData(pheno.data.outlrm))

The aqm() generated results were then stored using the function aqm.writereport(),
which generates a folder where the results are stored.

preprocessing RNA-Seq data

HTSeq-counts have been preprocessed using DESeq2 library. DESeq2 provides a
function the can read and parse HTSeq-counts by using the function DSeqDataSet-
FromHTSeqCount() and convert them into a DESeqDataSet. Similar to vsn() in
Affymetrix and NormalizeVSN() in Agilent, DESeq2 also provides normalization via
Variance stabilisation and calibration with the vst() function, which returns a nor-
malised DESeqDataSet, which is different to the expression set (eset). DESeqDataSet
has to be converted to an expressionist in order to be further applied for the quality
control. Subsequently, similar to the quality control of Agilent and Affymetrix, we
used the aqm() function to generate different quality control measurements.

library(DESeq2)
library(arrayQualityMetrics)
library(limma)
library(vsn)

# obtaining phenodata
pheno.data <- read.AnnotatedDataFrame(

paste(pathName, "MasterThesis/annotation/phenodata.csv", sep = ""),

124



header=TRUE, row.names=1L, sep="\t")
rownames(pheno.data) <- pheno.data$file_id_htseq
filenames.list <- paste("", pheno.data$file_id_htseq, sep = "", collapse = NULL)

# condition
condition.htseq <- paste("", pheno.data$sample_type, sep = "", collapse = NULL)

# target data frame
target.htseq <- data.frame(

sampleName = filenames.list,
fileName = filenames.list,
condition = condition.htseq)

# DESeqDataSet
ddsHTSeq <- DESeqDataSetFromHTSeqCount(

sampleTable = target.htseq,
design = ~condition)

# creating a expression set functions
makeExpressionSet <- function(dat, state=colnames(dat)){

row.names(dat) <- NULL
dat <- data.matrix(dat)
pdata <- as.data.frame(state)
rownames(pdata) <- colnames(dat)

metadata <- data.frame(labelDescription=c("state"), row.names=c("state"))
phenoData <- new("AnnotatedDataFrame", data = pdata, varMetadata=metadata)
dataExp <- ExpressionSet(assayData=dat, phenoData=phenoData)
dataExp

}

esetHTSeq <- ExpressionSet(assay(vsdHTSeq)

# automatic quality control using *arrayQualityMetrics()*
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arrayQualityMetrics(esetHTSeq,
outdir = QC Report for RNA-Seq',
force = TRUE, do.logtransform = TRUE)

Python snippets

For data preparation

After preprocessing the gene expression data, they were saved as a data frame,
with an n by m dimension, where n are the genes (rows) and m are the pa-
tient samples (columns). The following python snippets below are all the codes
that were utilised for preparing the data until the meta-analysis. The function
gene_annotation_GEOparse() function annotates the probe names with the corre-
sponding gene symbol obtained from the GEOparse library. The cross_annotate()
function has been used to cross annotate 2 different gene expression data, with
the aim of obtaining the same rows and columns between both data, in our case,
the cross annotation takes once the probe names has been annotated with the
corresponding gene symbol.

# -*- coding: utf-8 -*-
#!/usr/bin/env python

import numpy as np
import pandas as pd

def gene_annotation_GEOparse(df, gpl_num = 'GPL570'):
try:

import GEOparse
import re

except ImportError as error:
print('GEOparse not installed.

Try installing GEOparse by either
"pip install GEOparse" or "conda install GEOparse"')
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import GEOparse

# extract annotations from GEO
gse = GEOparse.get_GEO(geo = gpl_num, destdir = "./")
GPLAnnot = gse.table

# set up index of dataframe and GPL
df = df.loc[df.index.isin(GPLAnnot['ID'])]
GPLAnnot = GPLAnnot.loc[GPLAnnot['ID'].isin(df.index)]

if df.shape[0] != GPLAnnot.shape[0]:
df = df.loc[df.index.isin(GPLAnnot['ID'])]
GPLAnnot = GPLAnnot.loc[GPLAnnot['ID'].isin(df.index)]

elif df.shape[0] == GPLAnnot.shape[0]:
col_sym = [

a for a in GPLAnnot.columns if re.search('symbol', a.lower())
][0]
df = df.reindex(GPLAnnot['ID'])
df = df.set_index(GPLAnnot[col_sym]).

reset_index().
dropna().
set_index(col_sym)

else:
print(
'there is something wrong
with the dataframe.
Please check for unusual or NaN values.')

return df

agilent_data = gene_annotation_GEOparse(agilent_data,

def cross_annotate(dataframe, dataframe2, which = 'columns', times = 8):
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df1 = dataframe.copy()
df2 = dataframe2.copy()
for _ in range(times):

if which == 'columns':
df1 = df1.loc[:,df1.columns.isin(df2.columns)]
df2 = df2.loc[:,df2.columns.isin(df1.columns)]

elif which == 'index':
df1 = df1.loc[df1.index.isin(df2.index)]
df2 = df2.loc[df2.index.isin(df1.index)]

elif which == 'both':
df1 = df1.loc[:,df1.columns.isin(df2.columns)].loc[df1.index.isin(df2.index)]
df2 = df2.loc[:,df2.columns.isin(df1.columns)].loc[df2.index.isin(df1.index)]

else:
print('Please write the right "which" condition: columns, index or both.')

return df1, df2

Clustering analysis and validation

This section displays the python codes for the clustering analysis and validation.
These sections provides classes and wrapper functions that include the clustering
validation metrics and the clustering algorithms provided for the analysis. The class
Clustering() summarised all the classes and wrapper functions for the analysis to
enable a smooth clustering analysis and validation procedure.

# coding: utf-8
import numpy as np
import pandas as pd
import numbers
from sklearn.utils import check_random_state, check_array
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(color_codes=True)
from sklearn import cluster, mixture, metrics
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from scipy.spatial import distance

import math
from sklearn.metrics.pairwise import euclidean_distances

class Metrics(object):
def __init__(self, X, labels):

self.labels = np.array(labels)
self.unqlab = np.unique(self.labels)

# data
self.X = np.array(X)

# number of features/variables
self.n_features = self.X.shape[1]

# distance metric
self.distance = euclidean_distances

# number of observations
self.N = len(self.X) # self.X.shape[0]

self.length_clusters = {}
for lab in self.unqlab:

self.length_clusters[lab] = np.sum(self.labels==lab)

# number of clusters
self.n_clusters = len(self.length_clusters) # len(unqlab)

# center of gravity of clusters
self.M = np.zeros((self.n_clusters, self.n_features))

# center of gravity of all points
self.G = np.zeros((1, self.n_features))
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for i in range(self.N):
self.M[self.labels[i]] += self.X[i]
self.G += self.X[i]

for i in range(self.n_clusters):
self.M[i] /= self.length_clusters[i]

self.G /= self.N

# Total Dispersion Matrix - Total Sum Of Squares
def T(self):

diff = self.X - self.G
return diff.T.dot(diff)

# Total Scattering
def TSS(self):

return np.matrix.trace(self.T())

# Within Group k scatter Matrix
def __WG_k(self, k):

diff=self.X[self.labels == k] - self.M[self.unqlab == k]
return diff.T.dot(diff)

# Within Group Matrix
def WG(self):

within_group = np.zeros((self.n_features, self.n_features))
for k in self.unqlab:

within_group += self.__WG_k(k)
return within_group

# Within k Group Dispersion - Within k Group Sum Of Squares
def __WGSS_k(self, k):

return np.matrix.trace(self.__WG_k(k))
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# Within Group Dispersion - Within Group Sum Of Squares
def WGSS(self):

return sum([self.__WGSS_k(k) for k in self.unqlab])

# Between Group Matrix
def BG(self):

res=np.zeros((self.n_features, self.n_features))
for k in range(self.n_clusters):

diff=self.M[k] - self.G
res = res + diff.T.dot(diff)*self.length_clusters[k]

return res

# Between Group Dispersion - Between Group Sum Of Squares
def BGSS(self):

return np.matrix.trace(self.BG())

# Ball and Hall Metrics
def Ball_Hall(self):

A = 0.0
for k in self.unqlab:

B = np.sum(self.distance(self.X[self.labels==k], self.M[k].reshape(1, -1)) ** 2)
A += B / self.length_clusters[k]

A /= self.n_clusters
return A

# Banfeld and Raftery Metrics
def Banfeld_Raftery(self):

A = 0.0
for k in range(self.n_clusters):

WGSS_k = self.__WGSS_k(k)
if WGSS_k < 0.01:

return 'undefined'
A += self.length_clusters[k] * np.log(WGSS_k / self.length_clusters[k])
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return A

# Calinski and Harabasz Metrics
def Calinski_Harabasz(self):

return((self.N - self.n_clusters) * self.BGSS() / ((self.n_clusters -1) * self.WGSS()))

# Hartigan Metrics - Log Sum of Squares Ratio
def Hartigan(self):

BGSS = self.BGSS()
WGSS = self.WGSS()
return np.log((BGSS / WGSS))

# Friedman and Rubin Determinant Ratio Metrics
def Friedman_Rubin(self):

T = self.T()
WG = self.WG()
return (np.linalg.det(T)) / (np.linalg.det(WG))

# log_det_ratio
def Log_Friedman_Rubin(self):

return self.N * np.log(self.Friedman_Rubin())

# Marriot K-squared Determinant Within Metrics
def Marriot(self):

WG = self.WG()
return (self.n_clusters ** 2) * (np.linalg.det(WG))

# Scott Metrics
def Scott(self):

T = self.T()
WG = self.WG()
return self.N * np.log((np.linalg.det(T)) / (np.linalg.det(WG)))

# Ratkowsky and Lance Metrics
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def Ratkowsky_Lance(self):
A = len(self.BG())
B = sum([self.BG()[j][j] / self.T()[j][j] for j in range(A)]) / A
return np.sqrt(B / self.n_clusters)

# Ray and Turi Metrics
def Ray_Turi(self):

WGSS = self.WGSS()
alld=self.distance(self.M).reshape(1,-1)[0]
alld[alld == 0] = np.max(alld)
Min_d=np.min(alld)
return WGSS / (self.N * Min_d)

# Trace W Metrics
def Trace_W(self):

WG = self.WG()
BG = self.BG()
return np.matrix.trace((WG.T.dot(BG))) # transpose()

# Xu Metrics
def Xu(self):

WGSS = self.WGSS()
return (self.n_features * np.log(np.sqrt((WGSS) /

((self.n_features*self.N)**2)) + np.log(self.n_clusters)))

def log_likelihood(self):
# size of data
data = self.X
N, d = data.shape
# size of clusters
n = np.bincount(self.labels)
# number of clusters
m = len(n)
# cluster centers
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M = np.zeros((m,d))
for i in range(N):

M[self.labels[i]] += self.X[i]

for i in range(m):
M[i] /= n[i]

centers = [M]
# compute variance for all clusters
cl_var = (1.0 / (N - m) / d) * np.sum([np.sum

(distance.cdist(self.X[np.where(self.labels == i)],
[centers[0][i]], 'euclidean')**2) for i in range(m)])

# calculate log-likelihood
log_lh = np.sum([n[i] *

np.log10(n[i]) - n[i] *
np.log10(N) - ((n[i] * d) / 2) *

np.log10(2*np.pi*cl_var) -
((n[i] - 1) * d/ 2) for i in range(m)])

return log_lh

def free_parameters(self):
data = self.X
N,d = data.shape
unique_labels = self.unqlab
K = unique_labels.shape[0]
r = (K - 1) + (K * d)
r += 1
return r

def BIC(self):
log_lh = self.log_likelihood()
penalty = self.free_parameters()
return log_lh - 0.5 * penalty * np.log(self.N)
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def AIC(self):
log_lh = self.log_likelihood()
penalty = self.free_parameters()
return log_lh - penalty

def clustering_indices(X, labels, indices = []):
results = {}

# Ball and Hall
if 'BH' in indices:

results['BH'] = Metrics(X, labels).Ball_Hall()

# Banfeld and Raftery
elif 'BR' in indices:

results['BR'] = Metrics(X, labels).Banfeld_Raftery()

# Calinski and Harabasz
elif 'CH' in indices:

results['CH'] = Metrics(X, labels).Calinski_Harabasz()

# Hartigan
elif 'Hartigan' in indices:

results['Hartigan'] = Metrics(X, labels).Hartigan()

# Friedman and Rubin
elif 'FR' in indices:

results['FR'] = Metrics(X, labels).Friedman_Rubin()

# Log Friedman and Rubin
elif 'LFR' in indices:

results['LFR'] = Metrics(X, labels).Log_Friedman_Rubin()

# Marriot
elif 'Marriot' in indices:
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results['Marriot'] = Metrics(X, labels).Marriot()

# Scott
elif 'Scott' in indices:

results['Scott'] = Metrics(X, labels).Scott()

# Ratkowsky and Lance
elif 'RL' in indices:

results['RL'] = Metrics(X, labels).Ratkowsky_Lance()

# Ray and Turi
elif 'RT' in indices:

results['RT'] = Metrics(X, labels).Ray_Turi()

# Trace W
elif 'TW' in indices:

results['TW'] = Metrics(X, labels).Trace_W()

# Xu
elif 'Xu' in indices:

results['Xu'] = Metrics(X, labels).Xu()

# Knee point AIC
elif 'AIC' in indices:

results['AIC'] = Metrics(X, labels).AIC()

# Knee point BIC
elif 'BIC' in indices:

results['BIC'] = Metrics(X, labels).BIC()

# Silhouette
elif 'Silhouette' in indices:

results['Silhouette'] = metrics.silhouette_score(X, labels)
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return results

def ClusterWrapper(dataframe, algorithm, nClustMin, nClustMax, kwds):
scores = []
silhouette = []
labels_total = []
algorithm_name = algorithm.__name__
for k in range(nClustMin, nClustMax + 1):

if algorithm_name == 'GaussianMixture'
or algorithm_name == 'BayesianGaussianMixture':

labels = algorithm(
n_components = k, **kwds).
fit(dataframe).

predict(dataframe)
else:

labels = algorithm(n_clusters = k, **kwds).
fit_predict(dataframe)

labels_total.append(pd.DataFrame({'{}_k{}'.
format(algorithm_name, k): list(labels)}))

#labels_total.append(pd.DataFrame(
{algorithm_name + '_k' + str(k):list(labels)}))

labels_df = pd.concat(labels_total, axis = 1)
labels_df.index = dataframe.index
return labels_df

def cluster_wrapper_function(
clusterTuple,
dataframe,
clustMin,
clustMax):

cluster_dicts = {}
for clust in clusterTuple:

cluster_dicts[clust[0]] = ClusterWrapper(
dataframe,
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clust[1],
clustMin,
clustMax,
clust[2])

return cluster_dicts

def metrics_results(
dataframe,
labels_dataframe,
metrics_names):

"""
This function runs an intern clustering validation from
the labels with the corresponding dataframe.

input:
dataframe:

input data from the clustering analysis
label_dataframe:

clustering results from the clustering
analysis stored as a dataframe

metrics_names:
list of clustering metrics abbreviations

output:
dataframe:

clustering validation metrics stored in
a dataframe.

"""
try:

import cluster_metrics as cm
import pandas as pd
import sys

except ModuleError as error:
print('Set working directory where cluster_metrics.py is stored.')
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print('By "import sys" and "sys.path.insert(0,"../python")"')
scores = []
for colnames, labels in labels_dataframe.iteritems():

scores.append(cm.clustering_indices(
dataframe,
labels,
metrics_names))

return pd.DataFrame(scores)

def stdScaler(metrics, nclustMin):
"""
This function uses the standard scaler preprocessing
function from sklearn to transform the metrics dataframe,
so that all validation metrics scores has the same mean.
"""
stdDF = pd.DataFrame(StandardScaler().

fit_transform(metrics),
columns = metrics.columns)

stdDF.index = stdDF.index + nclustMin
return stdDF

For Differential Expressed Genes

In this section, we implemented the analysis of differential expressed genes with the
limma package. After obtaining the clustering labels, we used the labels as the design
matrix.

library(Biobase)
library(GEOquery)
library(illuminaHumanv4.db)
library(vsn)
library(arrayQualityMetrics)
library(limma)
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library(topGO)
library(DOSE)
library(clusterProfiler)
library(org.Hs.eg.db)
library(ggplot2)
library(dplyr)

pathName <- "/Users/marviedemit/Desktop/MasterThesis/Gene_Ontology"
setwd("/Users/marviedemit/Desktop/MasterThesis/Gene_Ontology")
source("PS_et_TM_funcsource.R")

combined.clusterlabels <- read.csv(paste(pathName,
"/combinedClusterLabels.csv", sep = ""),
header = TRUE, sep = "\t")

aggregated.clusterlabels <- read.csv(paste(pathName,
"/aggregatedClusterLabels.csv",

sep = ""),
header = TRUE,

sep = "\t")

rnaseq <- read.csv(paste(pathName,
"/rnaseq.csv", sep = ""),
header = TRUE,
sep = "\t")

rownames(rnaseq) <- rnaseq$gene_name

affymetrix <- read.csv(paste(pathName,
"/affymetrix.csv", sep = ""),
header = TRUE, sep = "\t")

rownames(affymetrix) <- affymetrix$gene_name

aggregated <- read.csv(paste(pathName,
"/aggregated.csv", sep = ""),
header = TRUE, sep = "\t")
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rownames(aggregated) <- aggregated$X

gene.names <- as.factor(rownames(rnaseq))
gene.namesDF <- bitr(gene.names,

fromType="SYMBOL",
toType = c(

"ENTREZID",
"ENSEMBL",
"GO"), OrgDb="org.Hs.eg.db")

gene.namesBP <- subset(
gene.namesDF,
ONTOLOGY == "BP")

idx <- order(gene.namesBP$SYMBOL)
[!duplicated(sort(gene.namesBP$SYMBOL))]

unq.genes <- gene.namesBP[idx,]
unq.genes.sorted <- unq.genes[

match(gene.names,
unq.genes$SYMBOL),]

unq.genes.sorted <- unq.genes.sorted[
complete.cases(unq.genes.sorted),]

rnaseq <- rnaseq[unq.genes.sorted$SYMBOL,]
affymetrix <- affymetrix[unq.genes.sorted$SYMBOL,]
aggregated <- aggregated[unq.genes.sorted$SYMBOL,]

rnaseq$gene_name <- NULL
affymetrix$gene_name <- NULL
aggregated$X <- NULL

dim(rnaseq)
dim(affymetrix)
dim(aggregated)

141



all(rownames(rnaseq) == rownames(affymetrix))
all(rownames(rnaseq) == rownames(aggregated))
# same columns
all(colnames(rnaseq) == colnames(affymetrix))
all(colnames(rnaseq) == colnames(aggregated))

makeExpressionSet <- function(dat, phenoData, featureData){
# delete the rownames of data or the PGSEA will go wrong.
dat <- data.matrix(dat)
dataExp <- ExpressionSet(

assayData=dat,
phenoData = phenoData,
featureData = featureData)

dataExp
}

fData <- unq.genes.sorted[c("SYMBOL", "ENSEMBL")]
rownames(fData) <- fData$SYMBOL
fData$SYMBOL <- NULL

# checking if the index order of fdata are the same as all
all(rownames(fData) == rownames(rnaseq))
all(rownames(fData) == rownames(affymetrix))
all(rownames(fData) == rownames(aggregated))

featureData <- new("AnnotatedDataFrame",
data = fData,
varMetadata = data.frame(

labelDescription = colnames(fData),
row.names = colnames(fData)))

## arranging phenoData
pData <- read.csv(paste(pathName,

"/PhenoData.csv", sep = ""),
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header = TRUE,
row.names = 1L, sep = "\t")

pData['sample_id_r'] <- make.names(pData$sample_id)
rownames(pData) <- pData$sample_id_r
pData$sample_id <- NULL
pData$sample_id_r <- NULL

# checking if the index order of phenoData are the same as all
all(rownames(pData) == colnames(rnaseq))
all(rownames(pData) == colnames(affymetrix))
all(rownames(pData) == colnames(aggregated))

phenoData <- new("AnnotatedDataFrame",
data = pData,
varMetadata = data.frame(labelDescription = colnames(pData),

row.names = colnames(pData)))

# creating expressionsets from a dataframe
rnaseq.eset <- makeExpressionSet(

rnaseq,
phenoData,
featureData)

affymetrix.eset <- makeExpressionSet(
affymetrix,
phenoData,
featureData)

aggregated.eset <- makeExpressionSet(
aggregated,
phenoData,
featureData)

#rnaseq.eset <- makeExpressionSet(
rnaseq[match(rownames(featureData@data),
rownames(rnaseq)),],
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phenoData,
featureData)

#affymetrix.eset <- makeExpressionSet(
affymetrix[match(rownames(featureData@data),
rownames(affymetrix)),],
phenoData,
featureData)

#aggregated.eset <- makeExpressionSet(
aggregated[match(rownames(featureData@data),
rownames(aggregated)),],
phenoData,
featureData)

#saveRDS(rnaseq.eset, file="rnaseq_eset.Rds")
#saveRDS(affymetrix.eset, file="affymetrix_eset.Rds")
#saveRDS(aggregated.eset, file="aggregated.eset.Rds")

diffExpress <- function(eset, cluster.labels){
design <- model.matrix(~factor(cluster.labels))
fit <- lmFit(eset, design)
p.fit <- eBayes(fit)
genelist <- p.fit$F.p.value
names(genelist) <- rownames(eset@featureData@data)
genelist

}

selection <- function(allScore){return(allScore < 0.05)}
topfracGeneSel <- function(geneList, topfrac=0.1){
outList <- rep(FALSE, length(geneList))
names(outList) <- names(geneList)
gs <- sort(geneList)
p.thrs <- gs[ceiling(length(geneList) * topfrac)]
outList[geneList <= p.thrs] <- TRUE
return(outList)
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}

allGO2genes <- annFUN.org(
whichOnto="BP",
feasibleGenes=NULL,
mapping="org.Hs.eg.db",
ID="symbol")

GOanalysis <- function(genelist){
new("topGOdata",

ontology="BP",
allGenes=genelist,
annot=annFUN.GO2genes,
GO2genes=allGO2genes,
geneSel=topfracGeneSel,
nodeSize=10)

}

### rnaseq
rnaseq.genelist.k.Means <- diffExpress(

rnaseq.eset,
combined.clusterlabels$k.Means)

## GO analysis rnaseq kmeans
ngs.km.go <- GOanalysis(rnaseq.genelist.k.Means)
ngs.km.ks <- runTest(ngs.km.go, algorithm="classic", statistic="KS")
pdf('/Users/marviedemit/Desktop/MasterThesis/

Gene_Ontology/results/GOgraph_rnaseq_kmeans.pdf',
width = 11,
height = 9)

showSigOfNodes(
ngs.km.go,
score(ngs.km.ks),
firstSigNodes = 5,
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useInfo = 'pval')
title(main = 'GO plot of RNA-Seq data from k-Means results',

cex = 1.5, line = -1.5)
dev.off()

### affymetrix
affymetrix.genelist.k.Means <- diffExpress(

affymetrix.eset,
combined.clusterlabels$k.Means)

## GO analysis affymetrix kmeans
affy.km.go <- GOanalysis(affymetrix.genelist.k.Means)
affy.km.ks <- runTest(

affy.km.go,
algorithm="classic",
statistic="ks")

pdf('/Users/marviedemit/Desktop
/MasterThesis/Gene_Ontology/
results/GOgraph_affymetrix_kmeans.pdf',
width = 11,
height = 9)

showSigOfNodes(
affy.km.go,
score(affy.km.ks),
firstSigNodes = 5, useInfo ='pval')

title(main = 'GO plot of Affymetrix data
from k-Means GMM results', cex = 1.5, line = -1.5)

dev.off()

### aggregated
aggregated.genelist.k.Means <- diffExpress(

aggregated.eset,
aggregated.clusterlabels$k.Means)
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## GO analysis aggregated kmeans
agg.km.go <- GOanalysis(aggregated.genelist.k.Means)
agg.km.ks <- runTest(agg.km.go, algorithm="classic", statistic="ks")
pdf('/Users/marviedemit/Desktop/MasterThesis/

Gene_Ontology/results/
GOgraph_aggregated_kmeans.pdf',
width = 11,
height = 9)

showSigOfNodes(
agg.km.go,
score(agg.km.ks),
firstSigNodes = 5,
useInfo ='pval')

title(main = 'GO plot of Aggregated
data from k-Means results',
cex = 1.5,
line = -1.5)

dev.off()

For Meta-Analysis

The Meta-analysis code was provided by Dr. Peter Sykacek, that is why only the func-
tion I’ve created without the fast_pvals function have been put in. After obtaining
the DEG results, with the p-values to each genes, we implemented the meta_analysis
to combine the p-values of RNA-Seq and Affymetrix.

# this metaanalysis.py file is provided by Dr. Sykacek
import metaanalysis as ma

def all_exist(avalue, bvalue):
return all(any(i in j for j in bvalue) for i in avalue)

def meta_analysis(pvalsDF,
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samples4covdet = 101,
which = 'fisher'):

if which == 'fisher':
fisher, _, _, chistats = ma.fast_pvals(

np.array(pvalsDF),
samples4covdet = samples4covdet)

return pd.DataFrame(
{'fisher':fisher,
'chi-stats': chistats},

index = pvalsDF.index)
elif which == 'kost':

_, kost, _, chistats = ma.fast_pvals(
np.array(pvalsDF),
samples4covdet = samples4covdet)

return pd.DataFrame(
{'kost':kost,
'chi-stats': chistats},

index = pvalsDF.index)
elif which == 'brown':

_, _, brown, chistats = ma.fast_pvals(
np.array(pvalsDF),
samples4covdet = samples4covdet)

return pd.DataFrame(
{'brown':brown,
'chi-stats': chistats},

index = pvalsDF.index)
elif which == 'all':

fisher, kost, brown, chistats = ma.fast_pvals(
np.array(pvalsDF),
samples4covdet = samples4covdet)

return pd.DataFrame(
{'fisher':fisher,
'kost':kost,
'brown':brown,
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'chi-stats': chistats},
index = pvalsDF.index)

else:
print('Choose either "fisher", "kost", "brown" or "all"')

tempath = '/Users/Desktop/MasterThesis
/data/topGO/diffExpressPvals'

for i in diffExpressPvals:
globals()[i.replace('.csv', '')] = loadExpressPvals(

i, tempath, i.replace('_', ' ').replace('.csv', '').split()[-1])

# concatenate the p-values
affyGOCombPvals = pd.concat(

[affymetrix_genelist_kmeans,
affymetrix_genelist_kmgm,
affymetrix_genelist_spec], axis = 1)

rnaseqGOCombPvals = pd.concat(
[rnaseq_genelist_kmeans,
rnaseq_genelist_kmgm,
rnaseq_genelist_spec], axis = 1)

aggGOCombPvals = pd.concat(
[aggregated_genelist_kmeans,
aggregated_genelist_kmgm,
aggregated_genelist_spec], axis = 1)

# meta analysis
aggGOMeta = meta_analysis(aggGOCombPvals, 1000, 'fisher')
#aggGOMeta = aggGOMeta[(aggGOMeta['fisher'] != 0)]

affyGOMeta = meta_analysis(affyGOCombPvals, 1000, 'fisher')
rnaseqGOMeta = meta_analysis(rnaseqGOCombPvals, 1000, 'fisher')
# meta analysis by aggregating the results from each clustering algorithm
rnaseq_affy_kmeans = meta_analysis(
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pd.concat(
[rnaseqGOCombPvals['kmeans'],
affyGOCombPvals['kmeans']], axis = 1).

dropna(how = 'any'), 1000, 'fisher')

# combined RNA-Seq and Affymetrix
rnaseq_affy_comb = meta_analysis(

pd.concat([rnaseq_affy_kmeans['fisher'],
rnaseq_affy_spec['fisher'],
rnaseq_affy_kmgm['fisher']], axis = 1), 1000, 'fisher')

Gene Set Enrichment Analysis (GSEA)

We implemented the clusterProfiler library to generate the GSEA analysis results.
First we prepared the gene list with the p-values annotated with each corresponding
genes. This gene list is then the input for the enrichGO() which return the enrichment
Gene Ontology categories after FDR-BH control.

library(limma)
library(topGO)
library(DOSE)
library(clusterProfiler)

## set-up working directory
pathName <- "/Users/Desktop/MasterThesis/data/topGO/metapvalsGO/"
#dirName <- "/data/topGo"
setwd("/Users/Desktop/MasterThesis/data/topGO/metapvalsGO/")
#source("PS_et_TM_funcsource.R")
# source("./ebm_modified.R")

rnaseq.meta <- read.csv(paste(pathName, "/rnaseqMETA.csv", sep = ""), header = TRUE, sep = "\t")
affy.meta <- read.csv(paste(pathName, "/affyMETA.csv", sep = ""), header = TRUE, sep = "\t")
aggregated.meta <- read.csv(paste(pathName, "/aggMETA.csv", sep = ""), header = TRUE, sep = "\t")
rnaseq.affy.meta <- read.csv(paste(pathName, "/rnaseqaffyMETA.csv", sep = ""), header = TRUE, sep = "\t")

150



# creating gene lists
rnaseq.meta.genelist <- rnaseq.meta$fisher
names(rnaseq.meta.genelist) <- rnaseq.meta$gene_symbol

affy.meta.genelist <- affy.meta$fisher
names(affy.meta.genelist) <- affy.meta$gene_symbol

agg.meta.genelist <- aggregated.meta$fisher
names(agg.meta.genelist) <- aggregated.meta$gene_symbol

rnaseq.affy.meta.genelist <- rnaseq.affy.meta$fisher
names(rnaseq.affy.meta.genelist) <- rnaseq.affy.meta$gene_symbol

# GO analysis Biological Process
setwd()

# RNA-Seq
rnaseq.meta.genes <- names(rnaseq.meta.genelist)[abs(rnaseq.meta.genelist) != 0]
rnaseq.meta.genes.df <- bitr(rnaseq.meta.genes, fromType = "SYMBOL",

toType = c("ENSEMBL", "ENTREZID", 'GO'),
OrgDb = org.Hs.eg.db)

rnaseq.meta.genes.ego <- enrichGO(
gene = rnaseq.meta.genes.df$ENSEMBL,
keyType = "ENSEMBL",
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05,
readable = TRUE
)
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# affymetrix
affy.meta.genes <- names(affy.meta.genelist)[abs(affy.meta.genelist) != 0]
affy.meta.genes.df <- bitr(

affy.meta.genes, fromType = "SYMBOL",
toType = c("ENSEMBL", "ENTREZID", 'GO'),
OrgDb = org.Hs.eg.db

)

affy.meta.genes.ego <- enrichGO(
gene = affy.meta.genes.df$ENSEMBL,
keyType = "ENSEMBL",
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05,
readable = TRUE

)

# aggregated
agg.meta.genes <- names(agg.meta.genelist)[abs(agg.meta.genelist) != 0]
agg.meta.genes.df <- bitr(
agg.meta.genes, fromType = "SYMBOL",
toType = c("ENSEMBL", "ENTREZID", 'GO'),
OrgDb = org.Hs.eg.db

)
agg.meta.genes.ego <- enrichGO(
gene = agg.meta.genes.df$ENSEMBL,
keyType = "ENSEMBL",
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
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qvalueCutoff = 0.05,
readable = TRUE

)

# combined
rnaseq.affy.meta.genes <- names(

rnaseq.affy.meta.genelist)[abs(rnaseq.affy.meta.genelist) != 0]
rnaseq.affy.meta.genes.df <- bitr(
rnaseq.affy.meta.genes, fromType = "SYMBOL",
toType = c("ENSEMBL", "ENTREZID", 'GO'),
OrgDb = org.Hs.eg.db

)
rnaseq.affy.meta.genes.ego <- enrichGO(

gene = rnaseq.affy.meta.genes.df$ENSEMBL,
keyType = "ENSEMBL",
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05,
readable = TRUE

)
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