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Abstract 
 

The trehalose-6P synthase (Tps1) is the first step of the trehalose metabolism in yeast. Deletion of TPS1 

leads to several phenotypic features, e.g. they cannot grow on fermentable sugars, addition of those 

sugars causes rapid ATP depletion, or sensitivity to heat and osmotic stress. These apparently 

unrelated features suggest a more complex mechanism behind this protein. To gain further insight into 

the causes of these effects the strain has been studied on multiple biological levels. 

The growth defect on fermentable sugars might be due to a linkage of sugar uptake and its 

phosphorylation. Saccharomyces cerevisiae expresses three hexokinases involved in hexokinase 

processing: glucokinase 1 (Glk1), hexokinase 1 and hexokinase 2 (Hxk1 and 2). It has been shown that 

TPS1 mutants lacking Hxk2 regain the ability to grow on glucose but not on fructose, another 

fermentable carbon source. This could not be explained so far and is assumed to be due to the function 

of Glk1 in glucose-, but not in fructose processing. 

Since modern biology is data driven, methods to integrate multiple layers of information rapidly gain 

more importance. An effective way to approach such problems in systems biology is to use multi-omics 

information. So called “omics” studies try to capture the entirety of a functional layer of an organism. 

By combining them, effects that might appear uncorrelated from one perspective can be correlated or 

common causes identified. 

Analysing physical protein-protein interaction allows conclusions about proximity and possible 

influences proteins have over another. Using interaction data, these interconnections can be modelled 

into a network. They can further be investigated by using gained information for subsequent analysis, 

e.g. using Gene ontologies. Results obtained from this modelling approach can be used as a guideline 

for a general closer investigation of a certain protein, exemplified by the unassigned influence of TPS1 

deletion on cell wall formation. 

 

 

  



6 
 

Introduction 
 

Trehalose-6P synthase (Tps1) 
 

In the yeast Saccharomyces cerevisiae the trehalose-6-phosphate synthase protein Tps1 catalyses the 

first step of the trehalose pathway by producing trehalose-6-phosphate (T6P) in a two-step process 

from glucose-6-phosphate and UDP-alpha-D-glucose. It is part of the trehalose synthase complex, 

together with its other subunits, Tps2, Tps3 and Tsl1, but has been described to exhibit more than just 

a catalytic function since many effects previously ascribed to trehalose-6-phosphate, especially in 

stress response, seem to depend on the presence of the enzyme itself rather than its product (Gibney 

et al., 2015). 

Yeast mutants lacking the TPS1 gene are unable to metabolize fermentative sugars (van de Poll and 

Schamhart, 1977a). The growth defect of ∆tps1 strains is characterized by a rapid depletion of ATP and 

free organic phosphates in the cytosol and a hyper-accumulation of sugar phosphates (Thevelein and 

Hohmann, 1995). This might be due to the missing phosphate recycling function of Tps1 (van Heerden 

et al., 2014) although it cannot just be explained by the amount of phosphate that could be recovered 

from the trehalose pathway (Walther et al., 2013). It seems that the enzyme itself rather than the 

product is the crucial element for stress response (Vicente et al., 2018). Without Tps1, ATP depletes 

rapidly upon addition of glucose or fructose, probably due to the phosphorylation of the sugars, 

pushing them into glycolysis (Thevelein and Hohmann, 1995). 

 

Hexokinase analysis 
 

S. cerevisiae cells phosphorylate fermentable carbon sources, like glucose and fructose, using 

hexokinases while carbon sources that take more steps to be utilized, like galactose, do not depend on 

those genes. Fructose and glucose both can be processed by hexokinase 1 (Hxk1) and hexokinase 2 

(Hxk2) while Glk1 is acting only on glucose. At least one of those enzymes is necessary for the cell to 

grow on the respective substrate (Lobo and Maitra, 1977). On glucose, Hxk2 is the predominantly 

present one while the expression of Hxk1 is repressed by increasing glucose concentrations (Clifton et 

al., 1993) but they are capable of sustaining growth to the same extend at the same rate. Glucokinase 

1 shows the lowest level of specific activity in crude extracts.  

Growth rate and -extent are reduced if only glucokinase 1 is present. According to Walsh et al. (1991), 

extracts of wild type yeast phosphorylated glucose at a maximum reaction rate (Vmax) of about 6 µmol 

A580 unit-1 h-1 while Δhxk1Δhxk2 strains, expressing only Glk1, were reduced to a rate of about 1 µmol 

A580 unit-1 h-1. Comparing this to in vivo rates, wild type cells could phosphorylate glucose at about 2 

µmol A580 unit-1 h-1 while the rate stayed the same as in the in vitro rates of the extracts for the Glk1-

only cells. This indicates a rate limiting control mechanism in wild type cells while Glk1 appears to be 

sufficient to keep the rate at a fixed level. This mechanism is reported to be strongly regulated since 

raising the enzyme level per cell by increasing the gene copy number did not bring the metabolism up 

to levels possible in the wild type expressing Hxk1 and Hxk2. The exact mechanism behind the reaction 

is not known but it is indicated that the phosphorylation is linked to uptake since external glucose is 

preferentially used and internal glucose might not be directly available, allowing for the possibility that 
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the limitation, even under increased expression of Glk1, is related to a transport problem (Clifton et 

al., 1993). 

This effect can be scavenged on glucose by limiting sugar uptake by deleting the HXK2 gene. This 

deletion does not restore growth on fructose; double knock outs can only grow by consuming 

components of the complete medium (Hohmann et al., 1993). It does restore all secondary glucose 

related deficiencies that the mutant displays. The conclusion that this might indicate a regulating 

function of T6P on Hxk2 has been shown to be unlikely (Bonini et al., 2003). In Iynedjian (1998) it has 

been described that HXK2 overexpressing pancreatic β cells show a similar phenotype as ∆tps1 yeast 

cells, further indicating that unregulated activity of this enzyme is probably mainly responsible for the 

phenotype. While the mutant does not express the hexokinases in a significantly different amount 

compared to the wild type (van de Poll and Schamhart, 1977b), the rate of sugar phosphorylation 

exceeds the rest of glycolysis and is similar to HXK2 overexpressing strains. This behaviour does not 

occur in strains that only express GLK1 (Bonini et al., 2003). 

Fructose can only be utilized by the hexokinases 1 and 2. The affinity to fructose compared to glucose 

is about 10 fold lower but comparing activity of the enzymes when comparing the different substrates 

(F/G), values of 4.2 for Hxk1 and 2.3 for Hxk2 have been published (Lobo and Maitra, 1977). Assuming, 

as postulated, that Hxk2 is dominant it can be assumed that the Vmax for fructose will be 13.8 times 

higher in cell extracts and 4.6 times higher in vivo than the Vmax for cells grown on glucose using only 

the glucokinase 1, suggesting a rate difference for these two substrates in HXK2 deletion strains. This 

assumption is only numerical not considering arising biological responses. 

 

Interactomics 

 

In order to gain a closer insight into the influence of Tps1 onto the organism, laboratory experiments 

were combined with bioinformatics methods. Biologic activity is complex and most often it cannot be 

explained in simple, linear terms. Often the combined action of multiple partners causes an effect. 

Interactomics is a field of study focused on recording and displaying all, or a collective of, the 

interactions, e.g. genetic or protein-protein, that are going on in an organism (Gavin et al., 2002). 

Protein-protein interactions can be studied by using one protein as a bait and analysing all its hits, i.e. 

the proteins that physically interact with it. One of the available methods is Tandem Affinity 

Purification (Rigaut et al., 1999). A tag, genetically linked to the target protein that is used as a bait, is 

used for two subsequent purification steps. After the first step it is enzymatically cleaved, enabling the 

second round. Two steps are performed to be as selective as possible to remove a background of 

proteins that would be purified as well in one of the selection steps. 
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Figure 1: Schematic representation of a TAP-tagged bait protein and its hits. Also physical interaction partners of direct hits 
are recovered 

The proteins are identified by mass spectrometry. Recovered proteins can be seen as hits, as physical 

interaction partners, of the bait, the protein under investigation. For published studies, this 

information is available in databases, e.g. the Saccharomyces Genome Database (SGD; 

www.yeastgenome.org), and summarized in an community effort in the Biological General Repository 

for Interaction Datasets (BioGRID; www.thebiogrid.org) (Oughtred et al., 2016a).  

In the BioGRID, the genetic and physical interactions and chemical modifications can be checked 

specifically for an organism. For each annotated element, the respective interactions or modifications 

can be listed together with a variety of information, e.g. corresponding publications or type of 

experiment (Oughtred et al., 2016b). 

 

Interaction Models 
 

A network presentation function is available in the BioGRID (Chatr-aryamontri et al., 2017). The entire 

database can also be downloaded in a text file and processed and used using e.g. R (R Core Team, 

2017). With this file, the information about the interactions can be presented numerically and visually, 

i.e. noted in adjacency matrices that can be translated into node/edge models allowing for automated 

analysis.  

 

Gene Ontology (GO) Analysis 
 

The Gene Ontology project (www.geneontology.org) facilitates gene analysis by putting them into 

context using ontologies, i.e. hierarchical categories describing properties. They are separated into 

three categories; biological processes, molecular functions and cellular compartments (Gene Ontology 

Consortium, 2001). 

Providing a list of genes, e.g. interaction partners of proteins or subsets thereof, it can be tested if 

certain properties are overrepresented in this subset compared to the general distribution of 

properties in the entirety of annotated genes in a count based method (Draghici et al., 2006) where 

overrepresented terms are identified using Fisher’s exact test (Lehmann and Romano, 2005). 

 

  

http://www.yeastgenome.org/
http://www.thebiogrid.org/
http://www.geneontology.org/
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Objectives of the project 
 

This project combines micro- and molecular biological methods with bioinformatics data analysis and 

modelling to get a better understanding of the functions of Tps1, apart from initiating the trehalose 

metabolism, in the yeast Saccharomyces cerevisiae. 

After extensive literature research, a new theory about the varying recovery of growth on different 

fermentable carbon sources and the growth defect in Δtps1 strains in general is set up. The 

investigation of this new possible explanation is started. A series of knock outs of the hexokinases are 

to be created and to be tested on their growth behaviour and reaction kinetics. 

Apart from that, a multitude of existing data is analysed and combined with database entries to obtain 

undiscovered information by approaching the objective in a systemic way. A method able to combine 

‘omics data is applied and new methods are created to get more out of the data then by just using 

conventional analysis. This resulted in the creation of multiple scrips allowing the user to apply these 

new ways of treating data. 

Following predictions that arise with these approaches, the effect of the deletion of TPS1 on the 

synthesis of the cell wall is studied. 

Literature research is presented along with a description of the developed and used methods. In the 

discussion, an overview of the limitations of the methods is given and follow up work is described in 

the outlook. 

  

Unless explicitly stated otherwise, all work was performed by the author. All the R scripts were newly 

developed and only use existing packages for indicated purposes. 
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Materials & Methods 
 

Hexokinase analysis 
 

Strains and culture conditions 
 

After deletion of the HXK2 gene, TPS1 mutant strains can grow on rich media with glucose and fructose, 

for the latter likely by consuming non-sugar components of the medium (Hohmann et al., 1993) but 

on minimal media only for glucose (unpublished data).  

For the attempts to delete the hexokinases (HXK1, HXK2 and GLK1), the vectors described in Laughery 

et al. (2015), carrying the URA3 gene as a selection marker, and dedicated guide RNAs were used. The 

guide sequences and repair fragments were calculated using the online tool described in Mans et al. 

(2015) which also rendered diagnostic primers used to check the results. The S. cerevisiae strains 

CEN.PK 113-7D (van Dijken JP et al., 2000) and its derivative Δtps1 strain (Guillou et al., 2004) were 

used as backgrounds for the strain constructions. 

All yeasts were either grown on YP-Galactose rich media or YNB-Galactose minimal media without 

selection pressure. If a selection pressure was necessary to maintain vectors for gene deletions, YNB-

Galactose URA-, missing supplemented uracil, was used. The sterile filtered carbon source solutions 

were added after autoclaving. Liquid media corresponding to the ones indicated in the tables are 

missing the added agar. 

Table 1: Composition and amounts of YP media, recipe for 100 mL. 

YP Agar 100 mL 

Component Amount 
Yeast extract 2 g 
Bacteropeptone 1 g 
Agar-agar 2 g 
dH2O 95 mL 
50 % carbon source solution 5 mL 

 

Table 2: Composition and amounts of YNB media, recipe for 100 mL. 

YNB Agar 100 mL 

Component Amount 
Yeast nitrogen base 0.171 g 
Complete supplement mixture (CSM) 0.078 g 
NH4SO4 0.5 g 
Agar-agar 2 g 
dH2O 95 mL 
50 % carbon source solution 5 mL 
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Table 3: Composition and amounts of YNB URA- media, recipe for 100 mL. 

YNB URA- Agar 100 mL 

Component Amount 
Yeast nitrogen base 0.171 g 
CSM URA- 0.077 g 
NH4SO4 0.5 g 
Agar-agar 2 g 
dH2O 95 mL 
50 % carbon source solution 5 mL 

 

Bacteria for plasmid multiplication were propagated Luria-Bertani (LB) broth. 

Table 4: Composition and amounts of LB broth, recipe for 100 mL. 

LB broth 100 mL 

Component Amount 
Peptone 1 g 
Yeast extract 0.5 g 
NaCl 0.5 g 
dH2O Fill to 100 mL 

 

Here, the modified version of the transformation protocol is provided. For the last trials, the amounts 

were varied (e.g. providing 10 times the amount of hybridized repair fragment described in literature). 

It was composed as a combination of the protocols described in the aforementioned publications 

outlining the experiment and the commonly used in house protocol, a modified version of (Gietz and 

Woods, 2002). The major change in regard to the original protocol is a reduced incubation time at 42 

°C since the TPS1 mutant strain that is used as one of the background strains is heat sensitive. 
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Molecular biology techniques 

 

Transformation protocol 

 

For 10 reactions 

Day 1 :  

1. Inoculate 5 mL of liquid media. 30 °C, 200 rpm, o/n 

Day 2:  

1. Measure OD600 

2. Inoculate 50 mL of liquid media. The OD600 depends on your growth rate and your time. 2 or 3 

doublings are preferred, correspondingly: inoculate to and OD600 of 0.1 or 0.05. 30 °C, 200 rpm 

3. The culture should reach an OD600 in the range of 0.3/0.6 in about 4 h. Once there, harvest by 

centrifugation at 3000 g for 5 min and wash with 25 mL water 

4. Resuspend in 1 mL water and transfer into a 1.5 mL tube 

5. Centrifuge for 30 sec and discard the supernatant 

6. Resuspend in 1mL water 

7. Split into 10 x 100 µL, centrifuge for 30 sec and discard the supernatant 

8.   

9. Add mix to cells and vortex gently 

10. Incubate at 30 °C, 200 rpm for 15 min 

11. Incubate at 42 °C for 15 min 

12. Centrifuge for 30 sec and remove the transformation mix 

13. Add 1 mL of liquid media and incubate at 30 °C, 200 rpm for 4 h and 

a. If it works badly: Centrifuge for 30 sec remove most of the supernatant, resuspend all 

of the cells and plate them directly on appropriate selective media 

b. If it works well: plate 100 µL, centrifuge for 30 sec and plate the rest as a back up 

14. Incubate at 30 °C for 3 to 6 days 

1 reaction

PEG 3350 (50 %, w/v) 240 μL

LiAc (1.0 M) 36 μL

Carrier DNA [2 mg/mL] 50 μL

Plasmid [100 ng/μL] 10 μL

hyb. Rep. Frag. [100 pmol/μL] 1 μL

dH2O 14 μL

total 360 μL
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qPCR Preparation 
 

Differing expression levels of the hexokinases have been postulated with Hxk2 being dominant, Hxk1 

glucose repressible and Glk1 having a lower Vmax but being responsible for the main part of glucose 

influx into glycolysis. To measure that, everything was prepared for a qPCR analysis. Comparing the 

relative amounts of transcripts for the hexokinases to those of reference genes allows also for 

comparison between wild type and mutant (Teste et al., 2009).  

Samples for a preliminary qPCR analysis have been taken. The first one after growth over night, dilution 

to OD600 of 1 and subsequent growth in exponential phase, if possible until OD600 of 2. A part of the 

cultures have been left to grow overnight and harvested in the morning to gather the cells in a carbon 

source depleted state. 

Table 5: Optical density at a wavelength of 600 nm at the time of sampling. 

 Fresh [OD600] o/n [OD600] 

YNBGlu 2 10 

YNBTre 1.94 10 

YNBFru 1.55 6 

YNBGal 0.97 12 

 

Primers for GLK1, HXK1 and HXK2 (two sets of primers each) have been ordered together with primers 

for reference genes (one set each), ACT1, ALG9, KRE11. 

This analysis could show differential regulation depending on carbon source availability. It would also 

display the described repression of HXK1 on glucose (Clifton et al., 1993) that would ascribe higher 

importance to Glk1. 

 

NMR 
 

Nuclear Magnetic Resonance Spectroscopy (NMR) can be used to identify molecules in solution. For 

phosphorylation reactions, 31P-NMR proved to be convenient due to it being naturally dominantly 

abundant and applicable (Eicher et al., 2012).  

NMR experiments were performed on a Bruker Avance III HD 800 MHz spectrometer equipped with a 

5mm QCP cryogenic probe head. Analyses were performed at 293 K. Spectra were acquired and 

processed using the Bruker Topspin 3.5 software. All enzymatic reactions analyses were performed in 

5 mm NMR tubes with 0.4 mM TSPD4 and 4 % D2O. 

The device can also be used to acquire time series data by measuring entire spectra in fixed intervals. 

Using these spectra, the de- or increase of certain molecular species can be followed. 

The enzyme is added after an initial measurement of the rest of the reaction mix. For technical reasons, 

the first measurement occurs after approximately three minutes. Substequently every 30 seconds one 

measurement is aquired. 
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Figure 2: A) exemplary 2D time series spectrum showing the use and production of certain metabolites. X-Axis: chemical shift; 
Y-Axis: time (not in absolute values). B) 2D spectrum for ATP (left) and ADP (right). 

Defining a range of chemical shift, the quantitative data obtained from all the spectra can be projected 

onto the time to follow the change in concentration of the respective metabolites. 

The glucose utilisation was observed by selecting the common peaks described in the Human 

Metabolome database (http://www.hmdb.ca/) while for fructose samples the peaks changed after 

prolonged storage in a non-frozen state which can be explained by an equilibrium of tautomers 

(Barclay et al., 2012). These results can be compared with the observed ATP decrease and ADP 

increase. Since controlled conditions with a commercial enzyme were used in this assay, the ATP and 

ADP progressions were sufficient. The amount of substrate was compared between the sugar- and 

nucleotide peaks at the beginning and the end of the reaction. 

 

Phenotypical test for cell wall integrity 
 

The cell wall tests were performed by adding agents in defined concentrations, according to an in 

house protocol, to the media plates (see table 6). The strains to be compared, the wild type and the 

mutant, were grown over night at 30 °C and 200 rpm in 10 mL of YP-Galactose medium. The optical 

density of the cultures was measured at 600 nm. The cultures were centrifuged and pelleted at 4000 

rpm (5 min, 4 °C) and re-suspended in sterile water to an optical density of 8 according to calculations 

from the previously mentioned measurements. 

On the plates, four drops of each of the two cultures were deposited: undiluted, 1/10 diluted in sterile 

water, 1/100 diluted, 1/1000 diluted. The plates were incubated at 30 °C and pictures taken after 72 h 

and after 98 h to account for possible differences arising from a slower growth of the Δtps1 strain. 

Table 6: List of the concentrations added to the plates for the substance sensitivity tests 

Substance Concentration 1 Concentration 2 Concentration 3 

Calcofluor White 0.1 mg/mL 0.05 mg/mL 0.01 mg/mL 

Congo Red 0.1 mg/mL 0.05 mg/mL 0.01 mg/mL 

Caffeine 5 mM 1 mM  

SDS 0.01 %   

 

  

http://www.hmdb.ca/
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Interactomics 
 

TAP-tag data analysis 
 

The measurements were performed with three technical replicates each but no biological replicates, 

thus functional conclusions cannot be drawn confidently, but scripts and procedures can later on be 

applied to further experiments. The data obtained in a preliminary analysis, performed by Sevan 

Arabaciyan (unpublished data), was analysed to set up an analytical pipeline. 

The TAP-tag technique was used to purify proteins that interact with the “bait” protein, in this case 

Tps1. Five samples representing different conditions were compared: the laboratory strain without a 

tag on the protein of interest was used to record the background noise and proteins that are artefacts 

of the technique. For two “acid” samples, HCl was added to one of them, bringing the pH down to 3, 

while a mix of HCl and acetic acid was added to a second sample to investigate the apoptosis inducing 

effect of acetic acid. Two “temperature” samples consisted of one completely untreated sample grown 

at 30 °C and one that was exposed to a heat-shock at 42 °C for one hour. 

To allow for numerical comparison and data treatment, the median values of the mascot scores of the 

technical replicates were used for analysis since it is less prone to deviation by outliers. The negative 

control was subtracted from all results and negative values set to “NA” (and not used for further 

analysis).  

 

Interaction Models 
 

BioGRID processing 

 

From the BioGRID database, all the organism specific interactions for S. cerevisiae were downloaded 

as a tab delimited text file. After loading it into R, the file can be reduced by separating the types of 

interaction, i.e. physical or genetic, and keeping only the information about the “Bait” and the “Hit” 

elements. The standard names of the genes/proteins are in the column “Official Symbol Interactor A” 

(Bait) and the names of the interactors are in the column “Official Symbol Interactor B” (Hit). 

Interactions described multiple times can be counted and filtered for, if higher confidence in the data 

through reproducibility is desired. 

These columns were put into a large list were all interactors were assigned to the list element of the 

corresponding bait proteins. This list (or subsets of it) can be used for the interaction network creation. 

Since they are constructed out of the “Bait” Data, all they show is which element interacts with other 

elements of the subset when they are used as a bait. The same was done to create a list of the “Hit” 

data. 

These lists can be used to select the elements for modelling. Later on they are used to construct the 

adjacency matrices as described in the general modelling part. Finally, by taking one adjacency matrix 

and comparing/correcting it with the other one we can obtain a combined model that contains the 

entire interaction information, hit and bait. These matrices can directly be used for the neighbourhood 

GO term enrichment script. In R, the resulting networks can be displayed using the igraph package 

(Csardi and Nepusz, 2006). 
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Construction 

 

The construction of an interaction network using database information for a generic element (protein 

or gene) follows the described scheme: 

A start protein (or gene) is picked and all its physical (or genetic) interaction partners are retrieved 

from a database (e.g. SGD or BioGRID). All partners listed here form the elements of the model. All the 

interaction information of all the elements is taken as well and reduced to the interactions regarding 

other interaction partners of the core protein (or gene).  

Here, “A” is the core element interacting with “B”, “C”, “D” and “E”. The interactions are described by 

“0”s and “1”s in a square matrix. The columns of this matrix can be read as a description of the “Bait” 

nature of the respective partner, i.e. going down a column one can see which other elements of the 

model interact with them. On the other hand the “Hit” information is embedded into the rows; 

similarly one can see all the partners for which the respective element is a “Hit” by following a row. 

 

Figure 3: Exemplary adjacency matrix and corresponding interaction model. A) Follwing a column, a 1 indicates an interaction, 
i.e. a bait - hit relationship, between the element in the column- and the row-element. E.g. “B” is a bait just for itself but a hit 
for “A” and itself. B) Visualization of the described concept. 

Differently, if an interaction model of a defined group is to be constructed, the model is limited to the 

members of that group while the interaction information is obtained from the database. 

 

GO neighbourhood analysis 
 

An automatized gene ontology term enrichment neighbourhood analysis was performed starting from 

the constructed interaction models. A neighbourhood “distance 1” consists of an element of the 

network and its direct interaction partners, forming a so-called clique. The interaction model in the 
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described case was constructed using the experimentally obtained list of physical interactors of Tps1. 

By iterating through a network, each clique around every element of the model was used for a GO 

enrichment analysis. The R package topGO was used (Adrian Alexa and Jörg Rahnenführer, 2018). 

Unless noted differently, a p-value of < 0.01 was used as a cut-off to identify overrepresented terms. 

The results are checked for frequency of occurrence, and separately, an html file with the cliques 

associated to the overrepresented terms is produced. This interactive table is linked to the SGD and 

allows for an in depth manual investigation (see Figure 15 in the Results section). 

 

mixOmics 
 

The R package mixOmics (Rohart et al., 2017) can be used to gain a deeper insight into omics data 

by combining multiple types of information. For example, gene expression data can be combined with 

protein abundance levels to find differences between treated- and control samples. Different types of 

data (e.g. factors) can be used as anchor points for the separation.  

 

PLS 
 

In a PLS (“partial least squares” or “projection to latent structures”) regression, multiple data matrices 

can be related. Similar to a principal component analysis, it will try to find a direction that explains the 

most variance in the distribution but due to the nature of this analysis this is done in a higher 

dimensional scale. By combining two data matrices, the multidimensional direction in one matrix is 

sought for that fits into the next matrix, explaining the maximum of the multidimensional variance in 

it (Wold et al., 2001).  

 

PLS-DA 
 

If the second information given is factorial, this method can be used to find the multidimensional 

directions that explain the biggest differences between the factors, giving a way to differentiate 

between them.  This is then referred to as a PLS-discriminant analysis (Barker and Rayens, 2003). 

 

Block-PLS-DA 
 

As a combination of the previous methods, matrices carrying information about the same set of 

samples can be combined, effectively performing a PLS regression on two data matrices and 

subsequently discriminating between factors, searching for the biggest differences between the set 

types in the combined model. 
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Sparse analysis 
 

In order to allow for a facilitated interpretation of the results, the amount of variables taken into 

account can be limited (Lê Cao et al., 2008), selecting and using a reduced amount of biologically 

meaningful variables. 

 

Data 
 

Gene expression levels obtained from microarrays were used for the preliminary analysis, as well as 

factorial values indicating the type of strain used and rates taken from the exponential part of the 

fermentations describing the use/production of sugars, cell mass or metabolites.  

The results of a gene ontology term enrichment neighbourhood analysis can be included as additional 

information for the genes tested on the microarray. For each gene and its neighbourhood, a gene 

ontology enrichment analysis is run and the over-represented terms with a certain cut-off (here p < 

0.05 using Fisher’s exact test) are assigned to the gene. These categorical values can be made one 

dimensional in order to use them by applying the kmodes algorithm (Huang, Z, 1998) (similar to 

kmeans) with the klaR R package (Weihs et al., 2005).  

 

Figure 4: Schematic representation of the data to be combined. Gene expression levels, factors describing the type and 
metabolic- or growth rates will be compared depending on the sample for which they were measured.GO terms should be 
included as additional information for the genes under investigation. 

The data obtained from fermentations by Laurent Benbadis and Jean-Luc Parrou (unpublished) was 

screened thoroughly to find information that can be used for further analysis and gain of knowledge. 

Since most of it was just acquired for control purposes (e.g. the fermenter settings) only the OD600 

and the metabolite levels at certain time points were considered. Through the measured values, a 

combination of models were fitted to approximate the course of these natural distributions. 
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Figure 5: Exemplary graph for the curves fitted into the fermentation data 

Here the result for one of the fermentations are shown as an example. At the latter development of 

the red curve one can see the problem of using high polynomials for that purpose as it starts to deviate 

from the estimated course of the data. These models can be used to calculate time series points for 

the experiments (not considered here). 

The rates, e.g. substrate use or growth in the exponential phase can be used for mixOmics. At a later 

stage it might be possible to use time series information directly, i.e. the entire dataset instead of “just” 

the rates. The rates used were: the optical density (OD, as a representative of cell growth), galactose 

(as the substrate) and the produced metabolites trehalose, ethanol, acetate, glycogen and glycerol. 

Since trehalose was not measured in the Δtps1 samples it has been assumed to be absent in the 

mutants in order to use it for analysis. 

 

Microarray data 
 

Transcriptome analysis performed for samples taken in the exponential phase during the 

Fermentations mentioned before. 

Table 7: General information about the samples. 

Fermentation  
number 

Date Sample 

02 22. 01. 2008  TPS1_1 
03 05.02. 2008 WT_3  
04 18. 03. 2008 WT_1 TPS1_2 
05 31. 03. 2008 WT_2 | WTµ-aéré_4  
07 ??. 12. 2008  TPS1_3 
08 12. 01. 2009  TPS1_4 
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The data has been background corrected by subtraction and normalized using the “loess” method, 

subsequently normalized between the lanes using the “Aquantile” method and then sorted to be used 

for mixOmics analysis. An interaction model has been calculated as well and was used as a base for 

finding overrepresented GO terms which possibly can be used as additional information for the gene 

names. 

 

Scripts 
 

The scripts that were developed for future users are described and their application is explained. All of 

them are written in R. 

 

Interaction network construction 
 

These functions make use of the downloaded BioGRID database, in this case the Saccharomyces 

cerevisiae specific information. Models can be constructed for: 

1. a defined group of genes/proteins that the user enters themselves as a character vector 

2. Distance = 1, i.e. for all interaction partners of a selected centre element 

3. Distance = 2, i.e. for all interaction partners of a selected centre element and their respective 

interaction partners 

Should the need arise, all functions could be quickly adjusted for any other organism. 

 

“CROISSANT” 

 

Database file preparation, “CROISSANT” (Concentration and Reduction Of Interaction Sample Size for 

Association Network Tables) 

The file size of the downloaded BioGRID database file is reduced by saving limited versions of the 

database, i.e. only the names of the interaction partners (“Official Symbol Interactor A” and “Official 

Symbol Interactor B”) and only genetic or physical interactions respectively are being kept. 

As input for the processing function, the name of the downloaded database file and the interaction 

type of interest are requested. The reduced version of the annotated physical and genetic data are 

saved separately. The output data frame has three columns, “Bait” and “Hit” where the protein names 

of the interactors are listed and “Count” where it is indicated how often the respective interaction 

occurs.  

The second function takes the reduced database as an input and writes lists that associate each protein 

with its respective baits and hits. It saves those in two separate files which are the basis for the 

interaction modelling. 
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“PAIN” 

 

Physical protein-protein interaction modelling, “PAIN” (Physical Association Interaction Networks)

  

Protein-protein interactions denoted as “physical” in the “Experimental System Type” in the 

downloaded file from the database are extracted. An interaction network is created based on these 

elements. 

First the lists containing the associated baits and hits to every element have to be loaded. They are 

saved in a variable each which are subsequently used as input for the following function.  

To generate the network, the selection has to be specified. The default value is set to “d1”, indicating 

that the programme will build an interaction network of distance one. A centre element has to be 

specified and all its interaction partners and their respective interactions with each other will be 

modelled. Other possible selections are “d2”, distance two, where all the interaction partners of a 

specified centre element and all the interaction partners of those interaction partners are modelled 

together, or “group” where the user specifies the element to be modelled themselves. The first two 

options are interesting for database exploration while the last option allows to investigate e.g. 

experimental results. 

 

“FOIEGRAS” 

 

Genetic interaction modelling, “FOIEGRAS” (Functional Organisation of Interaction Exhibiting Genes 

Representing Associated Segments) 

Genetic interaction (can be positive, negative, …) denoted as “genetic” in the “Experimental System 

Type” in the downloaded file from the database are extracted. An interaction network is created based 

on these elements. 

This script works the same way as the previously described one, only specified for genetic interaction 

instead of physical protein-protein interaction. They were separated since they include a long loading 

step to make it easier for the user to keep a distinction. 

 

“CREPE” 

 

Database file preparation including an evidence limit, “CREPE” (Concentration and Reduction Enabled 

by Publication Enumeration) 

The number of annotations are counted and files with an evidence limit are created if the user wants 

to have more confidence into the described interaction. 

This filtering step is done to exclude interactions that are described by less than a certain number of 

publications to have more confidence through reproducibility. This can be applied before or after 

model construction. Doing it before limits the model to frequently described elements that are directly 

connected with the centre element even in the reduced list. Filtering the data after model construction 

keeps genes that are not directly connected but show frequently described interactions with other 
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elements of the unfiltered model. To construct models with filtering beforehand, the previously 

described construction scrips (“PAIN” and “FOIEGRAS”) can be used by loading the limited interaction 

lists instead of the full ones. 

The same approach for creating files containing the distinguished information of all respective hit- or 

bait elements associated to each element as in the first described script (CROISSANT) was used with 

the distinction that only interactions that were published more often than a specified number of times 

are taken into account. The reduced database file, the type of interaction and the numeric limit for the 

number of required publications are taken as inputs. 

 

“QUICHE” 

 

Interaction modelling using an evidence limit, “QUICHE” (QUantitative Incident Curb for Higher 

Evidence) 

This script constructs network models using a certain number of publications as a cut-off. It uses the 

output of CREPE as an input. 

With this script, the adjacency matrix is constructed with all the partners, for which the respective type 

of interaction were described for the selected element, but only the interactions, that were publish 

more often than the specified limit indicates, are included in the model. The same approach in a slightly 

varied version is used by the BioGRID database. For this function, the unfiltered interaction lists, the 

filtered lists and also the neighbourhood type (“group”, “d1”, “d2) and the respective selected element 

(centre element or entire group) are required input. 

 

Integration of microarray data 
 

“CANARD” 

 

Integration of numerical data, in this case expression levels measured by microarrays, into interaction 

networks, “CANARD” (Combined Analysis of Numerical And Relationship Data) 

To have one dimensional expression values to work with, the fold changes between the average levels 

of the previously described ∆tps1 strains and the average of the wild type strains (excluding the highly 

deviating micro-aeration strain) were used to set up this analysis tool. 

The combination can be done visually (see Figures 11 and 12 in the Results section) and numerically, 

for representation or further evaluation. Visually, a (multiple of the) absolute value of the respective 

differential expression of each gene in the network was assigned to the size of the nodes. Nodes with 

positive fold change values when taking the decimal logarithm (overexpression) are blue while 

negative ones (repression) are held in red. Numerically, the expression values are held separate from 

the network but can be referenced. For example, if one wants to check for possible network effects of 

the expression value it is possible to iterate through the network and check all the expression values 

of the cliques around each element. This can be combined by filtering steps, e.g. setting a limit for the 

standard deviation of the expression values of the genes in the respective cluster to reduce 
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heterogeneity to find clusters that behave in a uniform fashion or a limit for the mean to filter for 

strongly impacted clusters. 

The first provided function helps to check to which the elements in the numerical experiment, in this 

case genes in the microarray experiments, overlap with the genes in the previously constructed 

interaction matrix using these genes as an input. Deviations might be caused by diverging annotation 

conventions (e.g. using minuses “-“ instead of dots “.”) using them as inputs. The next one reduces the 

interaction matrix to its elements that are intersecting with the gene list. Further on the differential 

values for the groups in the array can be calculated and saved in a new variable. The loaded information 

and the range of the columns corresponding to the samples have to be specified. Everything is set now 

for a numerical data exploration. For the visual analysis or presentation, a function is given that takes 

the reduced interaction matrix and the differential values as input. Optionally the size of the nodes can 

be adjusted by a size factor. 

 

Gene ontology analysis 
 

Checks with the gene ontology information downloaded from the SGD database and the topGO R 

package if in the provided group of genes are any gene ontology terms overrepresented in comparison 

to the distribution in the entirety of genes. This can be done for: 

 a defined group of genes/proteins that the user enters themselves 

 Distance = 1, i.e. for all interaction partners of a selected centre element 

 Distance = 2, i.e. for all interaction partners of a selected centre element and their respective 

interaction partners 

 

“PATE” 

 

Gene ontology file preparation “PATE” (Processing of the Associated Terms Enumeration) 

For a gene ontology (GO) analysis, we need a file where all the ontologies are collected. To obtain that, 

the annotation file from the SGD can be downloaded and processed. For this purpose, a data frame 

consisting of two columns, one containing the elements name, one the references to the gene 

ontologies separated by commas if there are multiple, is constructed. The downloaded gene 

association file from the database, as a .csv file, is read, processed and the output file saved. This file 

is the base reference for the subsequent analysis. 

 

“GOURMET” 

 

Gene Ontology term overrepresentation analysis “GOURMET” (Gene Ontology - Unequal 

Representation of Multiple Element assigned Terms) 

A different approach to get more information out of constructed interaction would be a gene ontology 

analysis. To make sense out of the structure given in the model, it is separated into groups. One way 

is to select a subset and analyse it using the online portal of the database. A more elaborate method 
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is to screen the model for any peculiar abnormalities. Here, a neighbourhood analysis is performed by 

selecting all the elements of the model one at a time and running a gene ontology enrichment analysis 

for it and all its interaction partners, also referred to as a clique. A p-value of 0.01 was set as a 

threshold. Functions that are overrepresented multiple times could give an indication of what would 

be impacted in a TPS1 mutant strain. This is especially useful if there is not a lot known about the 

protein or gene and its importance. 

The results are automatically saved in a file that can be presented using the subsequent function. The 

neighbourhoods for all the centre elements and the respective overexpressed GO terms are displayed 

and the element names are linked to the SGD. A second file is generated saving the occurrence 

frequency of the respective term, i.e. the amount of cliques in the neighbourhood of the centre 

element that over represent certain terms. Additionally graphs produced by the respective analysis for 

each element can be saved.  

 

“ESCARGOT” 

 

Html file generator “ESCARGOT” (Easy Sgd Coupled Access through R for Groups with Overrepresented 

Terms) 

This file generator was created to present the results from the automatized gene ontology analysis. 

The automatically saved results file from the previous analysis can directly be used as an input and will 

be processed into an html file that links to the SGD database. Upon opening the file in a browser, all 

the centre proteins and their interaction partners are hyperlinks to their respective entries to present 

more information about them. For each clique that has overrepresented GO terms, the systematic 

name of the centre element, its standard name, the standard names of its interaction partners and the 

overrepresented terms are listed in an alphabetical (referring to the standard name) table. This script 

facilitates “classical” biological gain of knowledge by referring to information about the involved 

elements after the modern approach of using automatized comparisons. 

 

Preparation for mixOmics 
 

“CHEVRE” 

 

Categorical Clustering “CHEVRE” (Categorical Heuristic EValuation to Reduce Elements) 

After a gene ontology analysis of the genes tested in the microarray experiment and their interaction 

partners (distance 1) using a genetic interaction network as a reference, the result has to be made one 

dimensional in order to use it for a mixOmics analysis. To do this, the elements are clustered by 

similarity of the terms they display using the kmodes algorithm. Meaningful groups of genes, whose 

cliques over represent certain gene ontology terms, are associated by similarity of their categorical 

elements depending on how many of them overlap. These groups can be used as factors for the 

evaluation. 
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Results 
 

Determination of hexokinase activity using 31P-NMR 
 

By using glucose or fructose as a substrate and a commercially available hexokinase mix (contains 

undefined amounts of Hxk1 and Hxk2 but predominantly the latter) as the enzyme we could see that 

the reaction is roughly 2 times faster on fructose compared to glucose, estimated by the ADP ratio 

when comparing fructose and glucose as substrates (taking the initial rates of the reactions, for 

fructose the first 3 sample points were used, for glucose until around 10 min). 

 

Figure 6: plotting the ATP and ADP concentrations measured at the specified time points 

This fits for the behaviour of Hxk2 as described in (Lobo and Maitra, 1977), where the F/G ratio is said 

to be 2.3. 

These results strengthen the idea that fructose causes ATP depletion in the cells by using all the ATP 

up too quickly. 

 

TAP-tag data analysis 
 

All the data analysed was obtained in previous experiments performed by Sevan Arabaciyan. The 

Mascot score was used as a semi-quantitative measure for protein abundancy. The more (or less) 

abundant proteins can be separately listed for further manual analysis. Here, always a “stressed” 

sample, the heat shock sample exposed to 42 °C and the sample treated with acetic acid, was 

compared to its respective control sample, the one grown under normal conditions at 30 °C and the 

acid control sample grown at a pH value of 3. 
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Figure 7: For a simple comparison of the samples, their abundance levels for proteins present in both conditions were plotted 
against each other. Above line: less abundant in testing condition. Below: more abundant in testing condition. A) + B) 
Temperature control and heat shock sample. Without and with axis limit, respectively. C) + D) Acid control and apoptosis 
inducing sample. Without and with axis limit, respectively. On all the axes, the mascot scores of the respective conditions are 
displayed. 

Heat maps of the Mascot scores, as a semi-quantitative measure for abundance levels of the proteins 

interacting with the TAG-tagged Tps1 in the samples, were drawn. Since the TPS complex is far more 

interacting with Tps1 and thus far more abundant than all other proteins, comparing all protein levels 

does not make sense. Here a relative comparison displaying proteins that were present in at least three 

of the four tested conditions is displayed. 
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Figure 8: Heat map with row scaling for the corrected Mascot scores. The z-score represents the normalized deviation from 
the row mean value, also visualized by the blue line in the main graph. The box in the upper left corner shows the distribution 
of relative values. 

In order to include data for proteins that were not present in most of the tested conditions, the 

clustering was performed separately. Conditions that display interaction partners that are not present 

in other conditions will cluster closer together. The data is generally scaled. 
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Figure 9: Cluster analysis using the "ward.D" method on generally scaled data 

The sample grown under normal conditions clusters closest to the apoptosis inducing sample while the 

acid control sample shows the biggest distance to the other ones. 

A Venn-diagram analysis illustrates the overlap in present proteins and also the uniquely expressed 

ones. All subsets can be listed separately for further manual analysis. 

 

Figure 10: Venn diagram comparing the presence of proteins in the respective samples. The numbers in the boxes indicate 
how many proteins are shared by the conditions enclosing them (or are exclusively present in that condition) 

Also looking at the distribution of the subsets, the normal conditions control sample shows a big 

similarity with the apoptosis inducing sample.  

 

Interaction network analyses 
 

Alternative names in BioGRID 
 

First, all the names in the database were checked to make sure that no genes/proteins are annotated 

more than once using the standard or an alternative name. Everything was fine suggesting that the 

database is well curated automatically. 
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Integration of microarray data into interaction networks 
 

Every presented exemplary model uses Tsp1 as a centre. The aforementioned microarray data, 

consisting of four Δtps1 strains, three wild type strains grown under normal conditions and one wild 

type strain grown under micro-aeration conditions, was combined with the constructed interaction 

models using the “CANARD” script. In order to correlate them, the microarray results had to be 

reduced to one value for each element in the model. After normalization, the fold changes of the mean 

values of the Δtps1 strains in comparison to the wild type strains were calculated and used for further 

analysis. While the link with the genetic network was used to look for possible expressional influences 

the deletion might have, the protein-protein interaction network was used to represent possible 

functional correlations this would cause. 

Integrating microarray data into interaction networks did not yield any remarkable results in this study. 

A more thorough and in depth microarray data analysis might allow for more sophisticated input. A 

visual analysis of the produced figures is only possible up to a certain extend. A graph with too many 

elements is not interpretable anymore due to the overlap of nodes and edges (see Figure 12). The 

physical interaction model is suited for an analysis (see Figure 11). Two out of four partners of the TPS 

complex (TPS2 and TPS3) are clearly repressed while the fourth one, TSL1, seems not to change 

expression drastically. The unchanged value of TPS1 in the TPS1 inactivated strain might be explained 

by the way the gene was silenced. The part of the gene recognized by the microarray might still be 

expressed. 

 

Figure 11: Microarray data integrated into a protein-protein interaction network for Tps1 distance 1, size according to the 
absolute values of the log10 of the fold changes of the mean of the mutant expression levels compared to the wild type. Blue 
indicates overexpression in the mutant, red repression. 
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Figure 12: Microarray data integrated into a genetic interaction network for Tps1 distance 1, size according to the absolute 
values of the log10 of the fold changes of the mean of the mutant expression levels compared to the wild type. Blue indicates 
overexpression in the mutant, red repression. At this size of network, visual analysis becomes difficult. A tabular analysis of 
the results is preferred. 

For future analysis and especially when regulatory elements are of concern, this method could provide 

further insight. Different approaches of combining networks with experimental data have been 

described in literature (Franceschini et al., 2012; Padi and Quackenbush, 2015). 

 

Gene Ontology analysis 
 

A gene ontology neighbourhood analysis was performed based on a physical interaction network 

constructed using the proteins obtained experimentally by TAP. The algorithm iterates through all the 

elements and takes all the interaction partners of each element and itself as a neighbourhood, also 

referred to as clique. Counting how often certain functions are overrepresented in cliques in this 

network provides functional information about the proximity of the element under investigation in the 

cell. 
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Figure 13: Exemplary GO tree for the TPS1 neighbourhood d = 1 showing the hierarchical structure of the GO terms (nodes). 
These graphs can be produced for all the enrichment analyses. The redness of the colour, which can change from pale yellow 
over multiple shade to orange and finally red, is related to the p-value and thus indicates the significance. Squares indicate 
the five GO-terms with the lowest p-values. 

The GO terms are hierarchically structured following their function (see Figure 13). If a term is more 

abundant amongst the members of a tested group compared to the entirety of genes on the 

database it is considered to be enriched. The terms with p-values under a manually set threshold are 

collected and counted. Here the results for an analysis using an interaction network constructed 

using the partners identified in the TAP-tag analysis (Figure 14 and Table 8). 
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Figure 14: Interaction model of the experimentally obtained interactions partners of Tps1 in the temperature control sample. 

Table 8: Percentage of cliques the respective GO terms were found to be overrepresented in. 

Overrepresented GO terms Frequency [%] 

mannose-1-phosphate guanylyltransferase ... 12 

CTP synthase activity 8 

glyceraldehyde-3-phosphate dehydrogenase... 8 

proteasome-activating ATPase activity 8 

6-phosphofructokinase activity 7 

DNA-(apurinic or apyrimidinic site) lyas... 7 

TBP-class protein binding 6 

ATP binding 5 

glucose-6-phosphate isomerase activity 5 

alpha,alpha-trehalose-phosphate synthase... 4 

methylenetetrahydrofolate dehydrogenase ... 4 

misfolded protein binding 4 

ribosome binding 5 
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chorismate synthase activity 2 

decanoate--CoA ligase activity 2 

hydrogen-exporting ATPase activity, phos... 2 

long-chain fatty acid-CoA ligase activit... 2 

peptide-transporting ATPase activity 2 

phenylalanine-tRNA ligase activity 2 

porphobilinogen synthase activity 2 

proteasome binding 2 

structural constituent of ribosome 2 

actin binding 1 

imidazoleglycerol-phosphate dehydratase ... 1 

phosphatidylinositol kinase activity 1 

transcription factor activity, RNA polym... 1 

unfolded protein binding 1 

UTP:glucose-1-phosphate uridylyltransfer... 1 

 

The most prevalent function in the cliques in the Tps1 based interaction model is the mannose-1-

phosphate guanylyltransferase activity, an important step involved in cell wall synthesis. This is linked 

to the GDP-mannose pyrophosphorylase (mannose-1-phosphate guanyltransferase), which 

synthesizes GDP-mannose from GTP and mannose-1-phosphate and is encoded by the PSA1 gene 

which is part of the experimentally obtained list of Tps1 interacting proteins. No interaction between 

these proteins is listed in the BioGRID database. 

The results are afterwards summarized and presented in an html page linked to the SGD database. 

 

Figure 15: Example for a result html page. 

The same has been done for the database information alone (Figure 16 and Table 9). 
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Figure 16: Interaction model of database d = 1 information using TPS1 as a center. 

Table 9: Overrepresented GO terms in the d = 1 model for TPS1 and the percentage of cliques in this model they are 
overrepresented in 

Overrepresented GO terms Frequency [%] 

thiol-dependent ubiquitin-specific prote... 33 

alpha,alpha-trehalose-phosphate synthase... 15 

U6 snRNA binding 15 

SUMO transferase activity 11 

protein serine/threonine kinase activity 9 

ATP binding 7 

[pyruvate dehydrogenase (lipoamide)] pho... 4 

protein serine/threonine phosphatase act... 2 

ureidoglycolate lyase activity 2 

 

In the model constructed purely from database information, thiol-dependent ubiquitin-specific 

protease activity was the most commonly found function while alpha alpha-trehalose-phosphate 

synthase activity, a function solely found in the members of the TPS complex, comes in second. 
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Cell Wall 
 

Looking at the results of the GO enrichment analysis of the experimentally obtained interaction 

partners for Tps1, the molecular function overrepresented in the highest number of cliques was 

“mannose-1-phosphate guanylyltransferase activity” which suggests that Tps1 is in some way 

associated to genes involved in cell wall synthesis. 

Since this data exploration approach is supposed to be used as an indicator of possible functions to 

explore, this result was used as a proof of principle. 

The cell wall forms a protective layer made out of macromolecular components whose composition 

depends on genetic variations and growth conditions. Many genes, even if they are not directly 

involved in cell wall synthesis, can have a negative impact on the cells when they are altered (Lussier 

et al., 1997). A way to show differences between mutants of certain genes and the wild type is 

performing a spotting assay on agar plates containing media and drugs at varying concentrations to 

test for different phenotypes. Altered susceptibility to Calcofluor White and Congo Red, two anionic 

dyes, indicate alterations in chitin synthesis (Ram and Klis, 2006) by preventing nascent chains from 

co-crystallizing (Roncero et al., 1988). Changes do not have inherent positive or negative effects. 

Caffeine can enter cells with damaged cell walls and, as an analogue to purines, leads ultimately to cell 

death (Kuranda et al., 2006). Osmotic stress can be applied on the growing yeast by the addition of 

NaCl or sodium dodecyl sulphate to the media (Popolo et al., 2001). 

So far, no influence of Tps1 on the synthesis of the wall has been described. Tests have been performed 

as a proof of principle of functions predicted using the methods described below. 

Spotting assays on YP-Galactose plates containing drugs or substances affecting strains with defects in 

cell wall synthesis were performed with the wild type and the TPS1 deletion strain. Pictures were taken 

after 3 and after 5 days to account for the slower growth of TPS1 mutants. After five days, the extent 

of growth for both strains can be assumed to be about the same, as can be seen in the lowest 

concentrated plates for e.g. Calcofluor White, Caffeine or SDS. 
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Figure 17: Drug sensitivity phenotypic tests on plates. Spotting assays on YP-Galactose plates containing different 
concentrations of different substances. Always the wild is type compared to a ∆tps1 strain. Plates were substituted with A) 
different concentrations of Calcoflour White, B) different concentrations of Caffeine, C) different concentrations of Congo Red, 
D) SDS. 

Calcofluor White and Congo Red bind to chitin. While differential reaction to the agents is not directly 

related to effects, cells that are more resistant to it than the wild type can be assumed to have 

problems in the chitin synthesis while a lower resistance mainly indicates a lower stress resistance in 

general. Lower resistance can be due to higher chitin levels which are a direct response to cell wall 

damage (Lagorce et al., 2003). Caffeine can enter into cells with a damaged cell wall and leads to cell 

death while cells with an intact wall are largely protected. SDS is used to test for susceptibility to 

osmotic stress. 

Although there are differences visible on Calcofluor White and SDS, they are not strongly pronounced. 

Congo Red on the other hand seems to have a strong effect on the ∆tps1 strain; a higher cell 

concentration seems to be necessary in order to allow for growth. The biggest effect is visible on 

Caffeine where a concentration of 5 mM completely inhibits growth of the ∆tps1 strain after 3 days 

and only allows it at high cell concentrations after 5 days while the wild type is growing normally.  

Effects on the cell wall have not been described so far for ∆tps1 strains, it is advised to have a closer 

look into that in future projects. This phenotypic experiment supports the suggestion that 

TPS1 deletion influences cell wall integrity. 
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mixOmics 
 

The microarray data of wild type and TPS1 mutant samples was analysed together with metabolite 

rates taken from the same fermentations the samples were taken from. Here, the results of the sparse 

analyses regarding the genes are displayed to allow for a more meaningful presentation. Because only 

a few genes are displayed, they cannot be related to each other. The PCA (principle component 

analysis) sample plots present the projection of the samples on the two major variants according to 

their multivariate models. The axes represent principle components in the datasets, maximising the 

variance in those directions. Block X refers to the genes, the microarray results, while block Y 

represents the rates obtained from the fermentation data processing. The numbers refer to the 

samples in the order presented in table 10.  

Table 10: Samples used for mixOmics analysis. 

Sample Type 

1 TPS1 
2 TPS1 
3 TPS1 
4 TPS1 
5 WT 
6 WT 
7 WT 
8 WT_µ-aeration 

 

In order to interpret the results, the sample plots have to be seen as a “map” for the circle plot. Arrows 

have been added for clarity. The position of the samples on the sample plot corresponds to positions 

on the circle plot. Genes or rates in certain locations in the circle plot can be understood to relate to 

clusters in a similar place in the sample plots. 

 

sPLA 
 

The source of the biggest variation, and thus principal component number one, is on the x-axis. Looking 

at the samples, this describes the difference between the wild type samples grown under normal 

conditions (5 – 7) and the micro-aeration sample (8) as they can be found on the outer edges of the 

plot. The second biggest source of variation arises from the difference between wild type and deletion 

strains. The distributions relate to the positioning of the samples relative to one another according to 

the descriptor (genes or rates) while the principal components are determined by the analysis for both 

blocks, thus they can be overlaid in the circle plot. Also the distributions in the sample plots follow a 

similar order, indicating that the distribution is sensible. 
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Figure 18: Results of sPLA analysis, sample plots for X (genes) and Y (rates) on the left, circle plot on the right. 

Trehalose, since it is only present in the wild type samples, is located in the direction away from the 

deletion strains. Cell growth, acetate and ethanol production locate away from the micro-aeration 

condition closer to the wild type, glycogen and glycerol in the same direction but closer to the mutants. 

Galactose, since it is consumed it is a negative rate, indicated slow growth. It is located opposite of the 

optical density, associated to the micro-aeration sample and the Δtps1 samples. 

 

sPLA-DA 
 

For the discriminant analysis, the program tries to find the biggest differences between the named 

types of samples, namely wild type and deletion strain. Since it is looking for that, the principal 

component is the distinction between the types. On the genetic level, the micro-aeration had little 

influence while its effect is visible on the rate level. 
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Figure 19: Results of sPLA-DA analysis, sample plots for the gene samples (up) and the rates (down) on the left, circle plot for 
the genes (up) and for the rates (down) on the right. 

The rates orient themselves in a similar fashion compared to the sPLA. 

 

Block-sPLA-DA 
 

The block-sPLA-DA combines the integration of multiple ‘omics’ sets while looking for the biggest 

differences between the assigned types. The most important variant, due to the type of analysis, 

differentiates between wild type and deletion strain. Variant number two describes the difference of 

the micro-aeration sample to the strains grown under normal conditions. 
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Figure 20: Results of Block-sPLA-DA analysis, sample plots for X (genes) and Y (rates) on the left, circle plot on the right. 

The rates are again oriented similar to the distribution after the sPLA.  
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Discussion 
 

Gene Ontology analysis 
 

While distance = 1 analyses are of interest as exemplified by the cell wall experiments, the distance = 

2 analysis is not very fruitful since there are some highly interacting proteins in the model and any 

protein connected to one of them will automatically be connected to almost all of the others and thus 

all of the d = 2 models look basically the same. It remains to be shown that they could be interesting 

for bigger models that are not based on data from a single element. 

The statistics of the implemented R package topGo was checked by Serguei Sokol for a few cliques at 

random using the phyper function. Other sources of error were also tested, e.g. if all proteins are 

only presented in the database by only one name. Name convention differences between the BioGRID 

and Gene Ontology databases were taken care of. 

An R script was written as well that produces an html file for a more convenient manual analysis of the 

results. The “Systematic Name”, the “Standard Name”, the standard names of the “Interaction 

Partners” and the overrepresented GO terms are presented. The standard names link directly to their 

respective database entry. 

The biggest problem of this approach remains. Database entries, especially of high throughput studies, 

are usually based on experiments performed using glucose as a substrate while the experimental data 

here (and especially the follow-up experiments) used galactose. This inherently favours the presence 

of proteins or overexpression of genes involved in galactose processing or related processes, thus 

distorting the result. Overrepresentation of functional terms linked to this alternative carbon source 

are to be expected. 

 

Interaction Modelling 
 

Interactomics data 
 

A prominent general problem in this field of study is reproducibility. Most interactions are only 

described in one study and cannot be shown again in subsequent experiments. This is usually 

attributed to the nature of these studies. Most are high throughput screenings testing multiple 

proteins in a standardized setting which opens up the possibility of biological errors arising in the set-

up or just technical errors due to these studies having a higher risk of unspecific results than focused 

studies. 

This problem causes the need for a filtering step. For proteins that are described in multiple 

publications, it makes sense to restrict the number of interactions to those described in (at least) more 

than one study.  
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Problems with the BioGRID database inbuilt functions 
 

As for the results, every presented exemplary model uses Tsp1 as a centre. 

Using the “evidence level” approach with the presented method, i.e. setting a limit for a minimum 

number of publications mentioning interactions, those that have not been observed repeatedly are 

excluded from the interaction model construction. Applying the filtering step prior to model 

construction limits it to direct interactions with the centre element that have been reported more 

often than the defined limit. This approach is very restrictive and only highlights the direct proximity 

of the element(s) under investigation. 

 

Figure 21: Tps1 distance 1 protein-protein interaction model with filtering for interactions that have been described in at least 
2 publication prior to model construction. 

Constructing the interaction model before filtering the data, i.e. taking all described interactors into 

account for model construction but only connecting repeatedly reported interactors, gives a reduced 

model in broader context. Not only the direct proximity but also interactors that are separated from 

the centre after model reduction are displayed. 

 

Figure 22: Tps1 distance 1 protein-protein interaction model with filtering for interactions that have been described in at least 
2 publication prior to model construction. 
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Here the physical interactions network on the database is given to show concerns about it. 

 

Figure 23: Tps1 distance 1 protein-protein interaction model with filtering for interactions that have been described in at least 
2 publication constructed by the BioGRID database. 

BioGRID will also display genes (or in that case proteins) that show genetic interactions or chemical 

modifications and their respective interactions with each other even though they do not have any 

physical interactions connected to the physical network of the gene of interest. This means that those 

connections would not only be absent with the set evidence limit, they should also be absent in a 

model of the set type of interaction at all. 

Some genes are also inexplicably missing. Like for example a physical interaction of “TPS1” with 

“DHH1” is described, listed in the “Interactions” section of the database, shows up in the model 

constructed from the downloaded data but is missing in the network constructed by the database in 

the browser. 

  

Figure 24: Protein-protein interaction entry of "DHH1" with "TPS1" in the database as an example. 
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Automated analysis is also not easily supported on the database. 

 

Limits of the presented modelling approach 
 

For a neighbourhood analysis of a distance bigger than 1 the same problem as mentioned above has 

been observed: Some proteins interact with most of the other elements of the model and connect 

almost all elements. The distance 2 neighbourhoods of their interactants will thus be made up of 

approximately the same proteins (or genes) and render further analysis senseless.  

Here, TPS1 has been used as an example for a distance = 2 model. Graphical analysis becomes 

impossible but numerical analysis is still possible. Gene ontology enrichment analysis is still possible 

although one has to ask themselves if it makes any sense at this level. The following is just presented 

to show how far we can go, not to suggest any conclusions. 

 

Figure 25: Distance = 2 model of TPS1; TPS1 was used as a centre protein. All its interaction partners and all their interaction 
partners are included in this model. 

Table 11: Reduced list of the most interacting proteins in the model, how many other proteins they interact with as counts, 
and percentage of the number of proteins in the model. 

 
Dominant proteins 

Names DHH1 SSB2 CCR4 ISW1 NAB2 RPN11 

Int. Partners [counts] 1735 1611 1232 692 609 543 

Int. Partners [%] 74 68 52 29 26 23 
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Table 12: Reduced list of overrepresented GO terms in the d = 2 model for TPS1 and the number of time they occur as counts 
and percentage of the number of proteins in the model. 

Overrepresented GO terms Frequency [counts] Frequency [%] 

thiol-dependent ubiquitin-specific prote... 341 14 

ATP binding 230 10 

RNA polymerase III activity 104 4 

protein serine/threonine kinase activity 90 4 

mRNA binding 81 3 

 

mixOmics 
 

The given set of data is not the most suitable one for evaluation and it might be difficult to draw 

conclusions from it. There are a lot of missing values, e.g. for the metabolites, since every time a 

different set was used. One of the wild type fermentations was conducted under micro-aeration 

conditions so it might have to be excluded altogether. It is not an easy set of data but it is interesting 

to tackle all those problems and to try to integrate the functional terms, the interaction models and 

the time series information. 

It was however possible to see expected results, which speaks for the validity of the method. All of the 

distributions of the rates are how one would assume them to be; the trehalose production orients 

itself close to the only samples that produce trehalose, the formation rates of metabolic products are 

lowest on the micro-aeration samples and the growth indicator (OD and galactose) lie opposite of one 

another, saying that the remaining substrate is highest in mutant strains and micro-aeration samples 

while cell growth is higher in normal conditions. The results of this microarray data analysis were not 

examined in great extent. A limited, subjective, manual analysis deemed the result to be sensible. 

For the functional information, a problem, like always when it comes to clustering, is the selection of 

a suitable number of clusters. One cluster overshadows the others while some have only one member. 

In the end, the number of clusters is a subjective decision. The validity of summarising functional terms 

into clusters and using them for further analysis remains to be shown. It is possible that this would 

create nonsensical groups without any benefit for the analysis rather than functional clusters. 

Another idea to expand the analysis would be to include the network information of the interaction 

model. Gene expression can be assumed to be quite different in wild type and mutant strains. Database 

information about interactions is assumed to represent the wild type state. Looking at a network that 

would be constructed for one strain under one condition would be different than one constructed for 

another one. If it could be managed to include the models and “assign” them to the wild type samples, 

changes arising in the ∆tps1 strain could be connected, e.g. seemingly uncorrelated perturbations in 

two genes might be linked and this piece of information could be indicated hereby.  

At a later stage it might be possible to include the data from the fitted models for the fermentations 

directly as “time series” information instead of reducing the curves to rates. This could be crucial 

considering that effects on metabolite levels might arise delayed or in a specific fashion, e.g. sudden 

changes of rates or loss of correlations between metabolites, which is not being fully displayed in the 

exponential growth phase. 
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Cell wall 
 

The cell wall synthesis perturbation experiments were promising but one should keep in mind that 

they are based on preliminary data. Should the same functional overrepresentation be present in an 

exhaustive analysis, more thorough experiments highlighting the involvement of the Tps1 protein or 

the effect of its absence are advised. 

The model based solely on database information does not indicate an involvement of Tps1 in cell wall 

synthesis. This can be caused by the fact that available interactomics information for this protein is 

almost exclusively based on high throughput experiments leaving a larger margin of error and possibly 

overlooking key interactions compared to a more focused approach. 
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Outlook 
 

The connection between sugar phosphorylation and Tps1 
 

A collection of all variations of deletions for the genes encoding the three hexokinases will be created 

for the wild type and the TPS1 deletion strain. All variations can grow on galactose.  

 

Figure 26: All combinations of the kinase knock outs should be prepared, each in a wild type and a ∆tps1 strain. The triple 
deletion should not be viable on fermentable carbon sources. 

These knock outs will be used for subsequent analysis. Exposing ∆tps1∆glk1∆hxk2 cells to glucose 

media will reveal if the strain can recover growth. This would indicate that recovery is linked to the 

deletion of HXK2.  

If it is suggested that growth of the ∆tps1∆hxk2 depends on glucokinase 1, the hypothesis that the 

growth defect is due to the Vmax of hexokinases on fructose being too high gains credibility.  

To validate this idea, the following experiments could be performed:  

qPCR experiments could unravel the expression of the hexokinases in various situations, e.g. 

comparing HXK1 and GLK1 levels in ∆tps1∆hxk2 cells that can grow on glucose to see if, as is assumed, 

GLK1 is more abundant, especially in regard of TPS1 mutant versus wild type. Expression levels are also 

interesting for the role of the enzymes. Their involvement in the utilisation of non-fermentable carbon 

sources remains unknown. 

By measuring the ATP utilisation rate in a TPS1 mutant strain expressing only GLK1 and normalizing it 

by the cultures’ total protein content, a relative measure for a growth-sustaining hexokinase rate can 

be obtained.  

By studying the reaction behaviour of Hxk1 and Hxk2 on fructose and the change in rate upon addition 

of an inhibitor, e.g. 6-desoxyglucose, it can be calculated how much of this inhibitor is necessary to 

artificially lower the activity of the hexokinases on fructose to the level of the glucokinase 1 on glucose. 

A spotting assay on a minimal media plate using fructose as a carbon source and the respective relative 

amount of inhibitor to lower hexokinase activity can reveal if this approach restores growth. A positive 

result would be an indication that the reaction velocity of hexokinases using fructose as a substrate 
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brings ∆tps1 cells irreversibly out of balance and, further on, that the ∆tps1 phenotype is, at least in 

part, a hexokinase rate problem. 

A sugar pulse experiment in which the mutant strain is confronted with an excess of glucose or fructose 

could also be performed. A dramatic loss of ATP in response to fructose but not to glucose would be 

expected. 

 

Interactomics analysis 
 

The interactomics experiment will be repeated with biological controls. The new data can be evaluated 

with the scripts and methods developed in this project. It would make sense to be more restrictive 

with the proteins assumed to be interaction partners. After subtracting the mascot scores of proteins, 

those that are close to 0 can either be real interactants or technical remnants. An exclusive strategy 

seems feasible. Possible conclusions from functional analyses, like e.g. the described cell wall synthesis 

experiments, should be tested to verify the applicability of these methods. 
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