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Abstract 

Real-time monitoring is the basis for real-time batch release concepts and automation in 
biopharmaceutical manufacturing. Challenges of real-time monitoring systems with 
model-based prediction of quality attributes are the experimental expenditure for model 
training and the transferability of the models to different sites. A real-time monitoring 
system based on process analytical technology (PAT) and data-based models was 
developed by Walch et al. 2019 and Sauer et al. 2019 to estimate quality attributes of 
biopharmaceuticals during chromatography. In this thesis, data generation for model 
training was semi-automated using a liquid handling station. I hypothesized that semi-
automated analytics is more precise and less time consuming than manual analysis. The 
time to analyze all fractions of a chromatography run was reduced by 2.4 h. Operator 
influence was reduced as shown by a 48% decrease in variability in DNA quantification. 
Precision of the semi-automated methods was equal to manual methods based on the 
comparison of results generated by one operator. Furthermore, I hypothesized that the 
prediction models are transferable to different sites. Root mean squared errors of 
predictions at the new sites were on average twice as high as at the training site. This was 
attributable to limited sensor robustness of the fluorescence detector which was a 
prototype and to model extrapolation. At all sites, prediction of purity was more challenging 
compared to product concentration. Model training for new processes at the new sites 
allowed accurate real-time monitoring with the transferred systems. The use of automated 
methods unburdens operators from repetitive and potentially hazardous tasks. Process 
monitoring by PAT is inherently faster than by offline analysis and more specific than 
conventional monitoring of elution by UV absorption. Compared Wo conYenWional ³offline´ 
manual workflows, different skills are required when using automated systems.  
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Deutsche Zusammenfassung 

Echtzeit-Überwachung von Herstellprozessen ist die Grundlage für Echtzeit-Chargen-
freigabe und Automatisierung in der biopharmazeutischen Industrie. Herausforderungen 
solcher Systeme mit modellbasierter Vorhersage von Qualitätsmerkmalen sind der 
experimentelle Aufwand für die Modellentwicklung sowie die Übertragbarkeit der Modelle 
an andere Standorte. Ein Echtzeit-Überwachungssystem basierend auf Prozessanalyse-
technologie (PAT) und datenbasierten Modellen wurde von Walch et al. 2019 und Sauer 
et al. 2019 für chromatographische Trennprozesse entwickelt. In der vorliegenden 
Doktorarbeit wurde die Datenerzeugung für das Modelltraining mit einem Pipettierroboter 
teil-automatisiert. Ich prüfte die Hypothese, dass teil-automatische Analysen präziser und 
weniger zeitaufwendig als manuelle Analysen sind. Die erforderliche Zeit der Analytiker 
wurde um 41% reduziert, die Präzision der teil-automatischen Methoden verbesserte sich 
allerdings nicht. Weiters stellte ich die Hypothese auf, dass die Vorhersagemodelle auf 
neue Standorte übertragbar sind. Der mittlere Vorhersagefehler an den neuen Standorten 
war im Durchschnitt doppelt so hoch wie am ursprünglichen Standort. Dies war auf die 
eingeschränkte Robustheit des Fluoreszenzdetektors, ein Prototyp, und auf teilweise 
Modellextrapolation zurückzuführen. An allen Standorten war die Vorhersage der Reinheit 
mit größeren Fehlern verbunden als jene der Produktkonzentration. Modellentwicklung 
für neue Prozesse an den neuen Standorten ermöglichten eine genaue Echtzeit-
überwachung mit den transferierten Systemen. Der Einsatz automatisierter Verfahren 
entlastet die Bediener von sich wiederholenden und potenziell gefährlichen Aufgaben. Die 
Prozessüberwachung durch PAT ist von Natur aus schneller als die Offline-Analyse und 
spezifischer als die konventionelle Überwachung der Elution durch UV-Absorption. Beim 
Einsatz automatisierter Systeme sind im Vergleich zu herkömmlichen, manuellen 
Methoden andere Fähigkeiten erforderlich. 
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Abbreviation Explanation 
API active pharmaceutical ingredient 
BSA Bovine serum albumin 
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cGMP current Good Manufacturing Practices 
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DoE Design of experiments 
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EMA European Medicines Agency 
FDA Food and Drug Administration 
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HMWI High molecular weight impurities 
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HCP Host cell proteins 
i.e. lat. id est, that is 
IEX Ion exchange chromatography 
IgG Immunoglobulin G 
IR Infrared (spectroscopy) 
kDa kiloDalton 
LLOQ Lower limit of quantification 
LMWI Low molecular weight impurities (fragments) 
mAb Monoclonal antibody 
MALS Multi-angle light scattering 
MIR Mid infrared 
NIR Near infrared 
PAT Process Analytical Technology 
QbD Quality by Design 
QTP Quality Target Profile 
RFID Radio-frequency Identification 
RI Refractive index 
RMSE Root mean squared error 
RSD Relative standard deviation 
ULOQ Upper limit of quantification 
UPLC Ultra-high pressure liquid chromatography 
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WHO World Health Organization 
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1. Introduction 
 
1.1. Real-time monitoring in biopharmaceutical manufacturing 

Economic competition and product diversification of biopharmaceuticals requires their 
production processes to be developed faster, cheaper and under highest quality requirements 
[1], [2]. For almost 20 years, the regulatory agencies have encouraged the pharmaceutical 
companies to replace the conventional empirical approach for product and process 
development by a rational approach. They named it Quality by Design (QbD): µµa V\VWemaWic 
approach to development that begins with predefined objectives and emphasizes product and 
process understanding and process control, based on sound science and quality risk 
managemenW¶¶ [3]. However, the pharmaceutical industry with its stringent regulatory 
requirements is conservative and implementation is still ongoing. The slow progress is mainly 
due to the high complexity of biotechnological products and manufacturing processes which 
are still not fully understood. Many decisions are still made based on experience. Machine 
learning and artificial intelligence are needed to achieve the state of control already in use in 
other industries [4]. 

One enabling technology on the way to QbD is real-time process monitoring where critical 
quality attributes such as product concentration and purity are monitored in real-time or near 
real-time [5]. In conventional processes, product quality attributes are monitored by offline 
analyses in the analytical laboratory. A hold time is required when decisions about how to 
continue the process are made based on the lab results. Real-time monitoring allows for faster 
decision-making and a reduction of the total processing time. Furthermore, continuous 
production, which has the potential of increased productivity with reduced footprint, is only 
possible with the use of monitoring systems [6]. 

Real-time monitoring systems are also called process analytical technology (PAT) [7] or soft 
sensors (from software) [8]. The use of this technology is encouraged by regulatory authorities 
[5] because a more active control of product quality is enabled compared to conventional 
³reWroVpecWiYe´ quality control as described before. Moreover, easier and faster process 
optimization is possible because changes within the filed design spaces are not considered as 
process changes [9]. Also, quality risk analysis can be based on process understanding and/or 
representative process models. PAT solutions have been developed and are in use in other 
industries for decades. Continuous monitoring of manufacturing steps, so-called unit operations, 
is the basis for process control during manufacture. Controlled processes enable manufacturers 
to produce (more) constant output from variable input. This is especially relevant for 
biotechnological products where the biological system is an inherent source of variability in the 
manufacturing process. 

From an economic but also from the quality point of view of a manufacturer, a vision is real-
time batch release [10], [11] (Figure 1). Real-time release means that the decision about 
release or rejection of a batch is solely based on data from online measurements. The benefits 
are substantial reductions in time, cost, and risk. The conventional batch release procedure 
based on finished product testing has a small but inherent statistical risk of approving a batch 
alWhoXgh iW doeVn¶W fulfill specifications. In Whe ZordV of one of Whe Zorld¶V moVW rigorous 
regulatory agency, the American Food and Drug Administration (FDA): ³(«) quality cannot be 
tested into products; it should be built-in or should be b\ deVign´ [5]. The European Medicines 
Agency (EMA) states in their Guideline on Real Time Release Testing [10] WhaW ³under specific 
circumstances an appropriate combination of process controls (critical process parameters) 
together with pre-defined material attributes may provide greater assurance of product quality 
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than end-prodXcW WeVWing´. Additional to enabling proactive quality control, real-time release is 
faster compared to finished product testing. 

Real-time batch release must be approved by the concerned authorities for each product and 
production site. Approval is based on the demonstration of process control which is based on 
product knowledge, process understanding and a solid quality (risk) management system (see 
Figure 1). Recently, so-called ³digiWal WZinV´ of Whe prodXcWion proceVVeV or eYen faciliWieV are 
being named as an enabling technology to meet current good manufacturing practice guidelines 
(cGMP) and economic requirements [12]. 

 
Figure 1: Fundamental requirements for real-time batch release. 

1.2. Chromatography in downstream processing and critical product quality attributes 

Chromatography is contained as a unit operation in almost every downstream process of 
biotherapeutics due to its unrivaled resolution. The separation of the components in the feed 
material is based on their interaction with a stationary phase. In most cases, the stationary 
phase is equipped with ligands to which the sample components bind differentially. The 
interaction  can be based on, for example, affinity binding, ion exchange, hydrophobic 
interaction or, in size exclusion chromatography, on the size of the components [13]. Thus, the 
sample components are retarded to different degrees by the stationary phase and ideally also 
eluted at different times to achieve the desired separation. Elution is most often caused by a 
buffer of different ionic strength or pH or both. The product must then be collected in a certain 
time interval to ensure the desired separation from the impurities. The collection step is called 
product pooling. The eluent stream is often collected in fractions which are then analyzed, and 
those fractions pooled which result in desired quality attributes. Product pooling is performed in 
the industry by either one of two methods [14]:  When relatively small amounts of impurities are 
present or resolution of product and impurities is good, a single fraction is collected. The start 
and end points of collection are usually determined based on inline measurement of UV 
absorption, often at 280 nm. In contrast, when relatively large amounts of impurities are present 
or resolution is limited or online measurements cannot capture the quality attributes, the 
column effluent is collected in equally sized fractions, and the quality target profile of all fractions 
is analyzed in a wet lab before pooling the fractions which give the desired quality attributes 
(e.g., purity, quantity, yield). 

Typical quality attributes defined in the product quality target profile (QTP) are product 
concentration (also referred to as quantity), purity and activity. Impurities are divided into 

Real-time 
batch release

Process monitoring 
and control, Process 
models, Digital twins

Product knowledge, Process 
understanding, Quality risk 

management, Pharmaceutical 
quality system
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process-related and product-related impurities. Common product-related impurities of 
therapeutic proteins are aggregates, fragments, and variants such as charge variants. Process-
related impurities deriYe from Whe e[preVVion V\VWem (Whe ³hoVW cellV´), Whe feed mediXm and 
downstream unit operations. Common process-related impurities are host cell DNA, host cell 
proteins (HCP), endotoxins (for products from E.coli and other gram-negative bacteria), leached 
protein A (for monoclonal antibodies), residual solvents or additives and viruses (for products 
from mammalian expression systems). All impurities must be reduced below levels which are 
safe for the patient. These levels are specified by regulatory health authorities in their respective 
pharmacopoeias. Activity or efficacy describes the ability of the product to perform its intended 
action which is most often the binding to its specific target (ligand), for example an antigen or a 
receptor. Therefore, correct folding is necessary for proteins. In many cases, posttranslational 
modifications (PTMs) are also required for (full) protein functionality. All critical quality attributes 
(CQA) must be defined and measured with appropriate methods to ensure that the 
specifications are being met. 

The Quality by Design concept also requires the identification of critical process parameters 
(CPP) Zhich direcWl\ inflXence Whe prodXcW¶V CQAV. The CPPV mXVW be moniWored and 
controlled. CPPs in chromatography can be for example the conductivities and pH values of 
buffers and load materials, the concentrations of product and impurities in the load, the 
flowrates in the process steps or the column loading [15]. Upper and lower boundaries need to 
be defined for each CPP which results in multi-factorial design and control spaces. 

Determining the pooling start and end time points after preparative chromatography is a multi-
objecWiYe or ³PareWo´ opWimi]aWion problem becaXVe Whe Whree objecWiYeV ³\ield´, ³pXriW\´ and 
³prodXcWiYiW\´ are in conflict with each other (e.g. [16]). Knowledge about further downstream 
operations is used to define the thresholds for each attribute. For example, impurities which 
can be efficiently reduced downstream, can be relatively high in the previous steps. In this light, 
the power of a model system which covers the whole production process becomes obvious.  

The first method which was established for detailed online monitoring (online here meaning ³on 
the shop floor´, i.e. in the production area) was at-line HPLC (e.g. [17]): Samples are drawn 
automatically and analyzed by HPLC. HPLC measurements provide information of high 
accuracy and precision, and the method is well established. However, due to common 
measurement times of 10 ± 30 minutes, at-line HPLC can accelerate offline analysis but cannot 
be used for real-time monitoring. The only real-time monitoring method established in 
biopharmaceutical industry is based on UV absorbance, as described above, which is 
unspecific to the compounds in the sample stream. Therefore, fast component-specific real-
time monitoring methods are needed. 

As an important unit operation in biopharmaceutical manufacturing, lab-scale chromatographic 
separation processes were used to develop a real-time monitoring system (Figure 2). A battery 
of online sensors was used, and statistical models were trained to estimate CQAs in real-time 
to enable automated collection of the product stream. 
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Figure 2: Conventional preparative chromatography using product fractionation and offline analysis 
for quality determination and real-time monitored chromatography using online sensors and statistical 
models for automated product pooling. The latter represents the system transferred to two new sites 
during this thesis. Author: Nicole Walch, printed with kind permission. 

1.3. Model proteins and model processes 

Two industry-relevant recombinant model proteins and processes were used to develop the 
monitoring system. The recombinant proteins were expressed using two very well-
characterized and commonly employed expression systems for therapeutic proteins: E.coli, a 
gram-negative bacterium, and Chinese hamster ovary cells (CHO), a mammalian cell factory 
system. They are two of the oldest ³bioWechnological ZorkhorVeV´ and represent two very 
different classes of expression systems and products.  

As a model protein from bacterial fermentation, recombinant basic human fibroblast growth 
factor 2 (FGF-2) was over-expressed in E.coli as described in [18]. FGF-2 is used clinically for 
example to support tissue repair, in regenerative medicine or for stem cell expansion. It has a 
molecular weight of around 17 kDa and an isoelectric point (pI) of 9.6. After harvest, 
homogenization and clarification, a two-step chromatographic purification sequence was 
developed [18] and used to generate data for training and testing of statistical models for real-
time monitoring [19]. For the first chromatographic step in the purification scheme, the so-called 
³capWXre´ VWep, anion e[change chromaWograph\ and heparin affiniW\ chromaWograph\ Zere 
compared [18]. The critical quality attributes were: FGF-2 quantity (i.e. concentration), purity ± 
in terms of monomer content (%), high molecular weight impurities (HMWI, %), low molecular 
weight impurities (LMWI, %), concentrations of host cell dsDNA (ng/ml or ppm), host cell 
proteins (ng/ml or ppm) and endotoxins (EU/ml) ± and the binding affinity to heparin 
(dissociation constant KD in nmol/l). High and low molecular weight impurities are product-
related impurities which arise from aggregation and fragmentation of the product. 

Conventional preparative chromatography

Real-time monitored preparative chromatography
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As a model protein from mammalian cell culture (CHO) the monoclonal antibody (mAb) 
Adalimumab was used. Adalimumab is an immunosuppressive IgG1-type antibody inhibiting 
the immunostimulating cytokine WXmRU necURViV facWRU Į (TNF-Į) [20]. Adalimumab is used for 
the treatment of persistent forms of inflammatory diseases and autoimmune diseases such as 
different forms of arthritis, psoriasis, gastrointestinal inflammatory diseases. Adalimumab was 
first supplied to the market as Humira®. Between 2015 and 2019, Humira was the drug with 
the highest revenues by far1. With about 10 biosimilars approved in EU, US and Indian markets 
together2, it is an example of the aforementioned increasing market pressure [21]. Adalimumab 
has a molecular weight of about 144.2 kDa and various posttranslational modifications (e.g. O-
/N-glycosylations and disulfide bridges) and can undergo modifications during processing (e.g. 
methionine oxidation, deamidation, isomerization) leading to a huge microheterogeneity [22]. 
Adalimumab was purified by Protein A affinity chromatography [23]. The CQAs assessed for 
Adalimumab were the same as for FGF-2 except for endotoxins since mammalian cells do not 
produce endotoxins. The binding affinity to the ligand TNF-Į was measured [23]. 

1.4. Offline wet lab analytics 

Protein concentrations and product-related impurities (HMWI and LMWI) were determined 
using HPLC or UPLC methods [18], [23]. Process-related impurities (HCP, DNA and 
endotoxins) and binding affinity were quantified by common biochemical analyses [24]. 

General requirements to analytical methods are that they are accurate (i.e. measuring the 
correct value) and precise (i.e. repeatedly measure the same or very similar results). Also, they 
must be specific for the analyte of interest. This means that the method can detect and quantify 
the analyte despite the presence of other species. Ideally, the method also has a wide dynamic 
range, meaning that it can quantify a large window of analyte concentrations. 

Equipment and methods should be robust against variations in external conditions such as 
temperature, humidity as well as variations in materials and users. Measuring control samples 
without analyte (blank sample) and one or more known concentrations are the standard method 
to check the method during every set of samples. 

If dilution factors greater than 10 are required, samples are usually diluted in several steps, for 
example 1:5 or 1:10. Dilution errors of each step multiply but precision is statistically better in 
this way compared to one dilution step with a large dilution factor. When many samples must 
be diluted in the same or similar way, this is often done in multi-well plates with, for example, 
96 wells (8 x 12) of about 400 ȝl each.3 Multi-channel pipettes are used to dispense reagents 
or dilute samples simultaneously. 

Most plunger-operated pipettes operate based on volume replacement and use disposable 
polymeric tips. TipV can be aYailable aV eVpeciall\ ³loZ reWenWion´ or non-sticky. In the standard 
pipetting technique, alVo called ³forZard´ pipetting, the exact volume is aspirated and the liquid 
in the tip is dispensed first at low speed and the remaining micro- or nanoliters (depending on 
sample volume and viscosity) are pushed out by a blow-out. The second technique is called 
³reYerVe pipeWWing´, Zhere some extra microliters are aspired which then remain in the tip 
because no blow-out is performed. The reverse technique is applied mainly for liquids that tend 
to form bubbles to avoid squirting of the sample to other samples in a dilution plate. 

 
1 https://en.wikipedia.org/wiki/List_of_largest_selling_pharmaceutical_products, accessed 
September 01, 2021. 
2 https://en.wikipedia.org/wiki/Adalimumab#Biosimilars, accessed October 04, 2021. 
3 Different plates are available with six to 3456 wells for different purposes, e.g., cultivation of cells 
and high-throughput analysis, respectively. 

https://en.wikipedia.org/wiki/List_of_largest_selling_pharmaceutical_products
https://en.wikipedia.org/wiki/Adalimumab%23Biosimilars
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A critical process for accuracy and precision of an analysis is sample dilution and the 
corresponding pipetting technique. Pipetting accuracy and precision are influenced, among 
others, by: 

x The type of pipette (volume range) 
x Speed of aspiration and dispense 
x The angle of the pipette during aspiration and dispense 
x Prewetting of the tip before aspiration of the sample 
x Depth of immersion into the sample 

For more details on good pipetting practice, compare the infographic in Section 9.1. 

Analyzing several or many parameters of numerous fractions per chromatography run by wet 
chemistry was work- and resource-intense. Manual work for data generation can be reduced 
by automated and/or semi-automated systems. 

1.5. Laboratory automation 

Automated and semi- or partially automated methods are used in many different disciplines and 
industries such as (exemplary references are given) medicine [25], chemical synthesis [26], 
agriculture [27], wildlife research [28], electronics [29] or literature review/analysis [30]. The 
aims of using automated systems can be: reduction of (repetitive) manual work, reduced 
Vample anal\ViV or ³turnaround´ time, reduced costs and/or variability among operators, 
increased quality and/or working safety [31]. Another advantage of (semi-)automated systems 
is that they often provide audit trails which allow the tracking of procedures. Barcodes and/or 
RFID technology for samples, plates and reagents can improve data integrity and sample 
traceability even further. After implementing an automation strategy, human actions can focus 
on steps which are non- or less repetitive and/or require intellectual evaluation. This makes 
workflows safer by avoiding tiring repetitive work steps [32] and more interesting at the same 
time. In many analytical methods, sample processing steps such as dilution, aliquoting, addition 
of reagents, mixing, incubation, centrifugation etc. represent the most labor-intensive tasks and 
are also well suited for automation [33]. Also data analysis and process development can be 
(partially) automated, e.g. [34]. 

In bioanalytical and bioprocessing labs, different kinds of automated systems are available and 
commonly found. Examples are given in Figure 3. Automated systems can be classified by 
different aspects [33], for example the degree of automation and the complexity of the tasks 
performed. In this sense, lab automation begins with task-targeted equipment [31] such as 
electric pipettes, heating and stirring plates, shakers or autosamplers. On the other side of the 
spectrum, totally automated laboratories exist where high samples volumes must be analyzed 
in the same way. Such total automation systems are mostly found in clinical laboratories in 
hospitals where they consolidate several specialized labs into one core laboratory [35]. Total 
automation systems also contain automated systems for sample storage, archival and retrieval 
[31]. Hawker estimated in 2017 [31] that a sample count of at least 1000 per day justified the 
installation of total lab automation systems and when are other pressures prevail such as 
unavailability of staff or the need to reduce turnaround time, task-targeted automation can be 
sensible for 500 samples per day. Total lab automation requires a long-term commitment. As 
an example, the installation of a total laboratory automation system described by Lou et al. [35] 
required almost 2.5 years to complete. 
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Figure 3: Examples for different degrees of automation in a bioanalytical / bioprocessing laboratory. 
Devices in different scales. Exemplary vendors in brackets. 

In the ³middle of Whe aXWomaWion VpecWrXm´, Where iV a broad range of Vpeciali]ed or fle[ible 
automated or semi-automated workstations and instruments. A semi-automated procedure is 
a method in which some steps are automated while some steps are carried out by a human 
operator. Advantages are greater flexibility compared to full automation and reduced operation 
time compared to manual work. Compared to fully automated systems, however, more operator 
time is required in semi-automated methods and operators have more influence on the results. 
The suitability of a system in a specific case is determined largely by the sample volume and 
economic considerations. The process(es) to be automated and the degree of flexibility 
required also play roles in the decision of the most suitable automation strategy. For example, 
Lou et al. [35] reported that for large sample volumes (about 4 million tests per year) in the 
clinical laboratory, their multi-disciplinary total laboratory automation system turned out to be a 
greaW benefiW in anal\ViV Wime redXcWion, bXW for ³Vmall´ Vample YolXmeV, a Vemi-automated 
workflow including manual centrifugation and sample loading on the analyzer was more efficient. 

The implementation of automated systems or methods requires the transfer of established 
manual methods to the automated workstation. Ideally, automated methods can be developed 
quickly. A fast establishment of methods requires, among others, that the control software is 
intuitive to use for laboratory scientists and technicians. 
 

Semi-automated single and 
multi-pipettes (Wheaton, Brand)

Microplate washer (BioTek)

Automated laboratory 
(Arup Laboratories)

Autosampler (HTA)Heating and stirring 
plate (MedChrom)

Total laboratory 
automation

(Semi-)Automated 
workstations

Single task (semi-) 
automation

Liquid handling station (Tecan)

Shaker incubator 
(AccuTherm)

Chromatography workstation 
(Cytiva) Parallel Bioreactor System 

(Eppendorf)

Microfluidic platforms (Gyros 
Protein Technologies)

Microplate reader (Accuris 
Instruments)
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1.6. Online sensors and statistical methods for real-time monitoring 

For semi-automated real-time monitoring of chromatography processes, commercial non-
destructive online sensors were used in combination with statistical models. Optical and 
electroanalytical sensors were used. 

The electroanalytical sensors were a pH probe and a conductometer. These are standard 
online sensors in chromatographic workstations due to the importance of their respective 
signals and due to their robustness. A pH probe measures the potential between two electrodes, 
which is based on a chemical equilibrium [36]. The potential is related to the activity of H3O+ in 
the solution which is related to the H3O+ concentration at a certain temperature. A 
conductometer or conductivity sensor measures the resistance of an alternating current in a 
solution between two electrodes and returns a conductivity value in mS/cm. The conductivity is 
also temperature dependent due to varying mobility of ions in the solution. 

Optical sensors use electromagnetic radiation and filters for wavelength selection, to obtain 
information about the sample. For aqueous samples, wavelengths between about 200 nm (UV) 
and 25 µm (mid-IR) are interesting. In optical sensors, several effects can contribute to the 
measurement signal: absorption of radiation, absorption with emission of a lower frequency 
(fluorescence), scattering, refraction, diffraction, and reflection. Optical sensors often measure 
the differential signal between the sample and a reference chamber which can be filled with a 
liquid which represents the sample background. This setup increases specificity by reducing 
the signal contribution by the sample buffer, for example. 

UV/VIS absorption is one of the most widely used optical methods because it is sensitive, robust 
and allows very fast detection. We used a three-wavelength UV/VIS detector alternating 
between 214, 260 and 280 nm. 

Sensors for UV/VIS absorption, conductivity, pH and pressure are commonly used in 
preparative chromatography from benchtop to manufacturing scales. These sensors are robust 
and can be used to monitor process parameters such as conductivity and pH of buffers and 
feed solutions or breakthrough due to column saturation (UV/VIS signal). To obtain information 
on different species which are present in the feed solution, more distinguished analyses are 
needed. Sensors and associated data evaluation methods for rapid bioprocess monitoring have 
been reviewed in numerous articles, e.g. [7], [15], [37]±[41]. Additional to the aforementioned 
sensors, we used a multi-wavelength fluorescence detector, a multi-angle static light scattering 
(MALS) detector, an infrared (IR) detector and a refractive index (RI) detector. The arrangement 
of sensors is shown in Figure 4. The sensors will be briefly described. More details can be 
found in [19], [23], [42]. 

 
Figure 4: Schematic representation of the online monitoring system with solvent reservoirs, feed 
container, pumps, inline mixer, chromatography column, pressure sensors, online sensors, fraction 
containers and waste container; reproduced from Walch et al. 2019 [23]. 
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Refractive index and light scattering sensors measure interaction with the sum of sample 
components. Static light scattering, as in the used MALS detector, measures the relative 
amount of scattered light. It can provide information on the particle sizes in a sample [43] 
because larger particles scatter more light and in wider angles. Therefore, MALS detection is 
often used after size exclusion chromatography where components are separated based on 
their (hydrodynamic) size to estimate their molar masses. 

The refractive index of a solution represents the degree to which light is refracted by the sample 
and, as mentioned before, is unspecific to the sample components. The refractive index is also 
influenced by the changing buffer used to elute the product, as can be seen in Figure 2 of 
Publication II [42]. 

More complex optical methods are spectroscopic sensors which record signals over a range of 
wavelengths using optical filters. Spectroscopic analytical methods are very useful because the 
interaction of electromagnetic radiation and chemical structures such as covalent bonds, e.g. 
amide bond or aromatic rings, give specific signals which can be used for structural 
characterization or quantification.  

Mid- and near-infrared (MIR and NIR) absorption spectroscopy are popular analytical methods 
in protein analysis due to the specific absorption spectra, also referred to as IR ³fingerprinWV´. 
The absorption of IR radiation causes molecular vibrations and the intensity of absorption at 
different wavelengths correlates to the presence of certain molecular structures of the protein 
or other analyte [44]. IR spectroscopy can be used for quantification if the absorption spectrum 
is known, i.e. by calibration, as well as for structural identification by comparison of the recorded 
spectrum with spectra of other (similar) substances. Suitable MIR technology was used for 
monitoring of bacterial cell integrity [45] and for quantification of intracellular product 
concentration during fermentations [46]. We used a detector based on attenuated total 
reflection Fourier-transform infrared spectroscopy (ATR-FTIR) which allows fast measurements 
and a high signal-to-noise ratio. A drawback of IR is the strong and temperature-dependent 
water absorption. In our data, the influence of water and buffer absorption was reduced by 
subtracting reference spectra of (1) deionized water recorded before analysis and (2) a 
spectrum of the buffer during the run just prior to elution. The first correction was done by the 
instrument software OPUS (Bruker), the second during data preprocessing in the statistics 
software R [47]. 

Intrinsic fluorescence of proteins derives from the aromatic amino acids tryptophane, tyrosine 
and phenylalanine and is influenced by the surrounding of these residues in the protein and by 
the sample matrix. Fluorescence emission spectra can give information about the correct 
folding of proteins and might allow distinction between different sample species due to different 
intensities at certain excitation and emission wavelengths. The detector we used recorded 
emission spectra from 236 to 795 nm in a resolution of 0.3 nm after excitation at six different 
wavelengths (265 nm, 280 nm, 289 nm, 300 nm, and 400 nm) and either one of two filter widths 
(10 or 40 nm). A reference channel was indicating the intensity of the xenon lamp and the 
integrity of the optical fibers. Due to the switching between channels which correspond to 
different excitation wavelengths, each fluorescence variable was available every 16 seconds. 

Measurements of UV/VIS, RI, conductivity, pH and MALS detectors were available every 
second because no spectra over a range of wavelengths were recorded as for fluorescence 
and IR sensors. For all sensors, we chose setups with as many variables as possible 
(wavelengths, angles) to obtain as much information as possible. Multivariate data analysis 
methods were used to select the variables which are (most) useful to estimate concentrations 
of active proteins and impurities. In statistical terms, real-Wime eVWimaWion iV called ³predicWion´ 
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because attributes are estimated (from online sensor data) before they are determined (by 
offline analytics). Both terms, real-time estimate and prediction, are used in this thesis. 

The variables on which a prediction is based, are the predictors. For example, the intensity of 
UV absorption at 280 nm can be a predictor of protein concentration, which is the response of 
the model. The most useful variables to predict a response are those which change with varying 
response (in this case concentrations), i.e. they have a covariance. The useful covariant 
predictors can be distinguished from ³useless´ variables by principal component analysis (PCA). 
For the type of data set obtained, partial least squares (PLS) regression (also called projection 
to latent structures) is a popular method. One step in this multi-step regression method is PCA 
which reduces the dimensionality of the data set significantly. PLS regression models formulate 
the response as a linear combination of a specified number of so-called latent variables which 
are derived from the original variables. 

Cross-validation was used to avoid model overfitting which is the undesired modeling of the 
noise in the data. In cross-validation, the data set is split into subsets which are then used to 
train and test the model, respectively. The test data is used to calculate an observed error score, 
for example the root mean squared error (RMSE) or the mean relative deviation (MRD). For 
example, two chromatography runs can be reserved for model testing while the remaining runs 
are used for model training. This procedure can be repeated automatically until all data has 
been used for testing once. The average of the generated test errors is returned as the cross-
validated error. 

PLS, as a linear modeling technique, has at least one advantage and one disadvantage in the 
present case. The disadvantage is that linear methods best represent linear relationships, such 
as the concentration of dilute solutions and their UV/VIS absorbance. Linear modeling 
techniques are not as well suited for non-linear relationships as they are present in 
chromatography of complex solutions and the saturated online sensor signals [48]. The 
advantage is that linear methods can be trained faster than non-linear methods due to their 
relative simplicity. Large computation power and time were needed to optimize non-linear STAR 
models [19], especially when combined with different preprocessing methods and settings 
which are, however, indispensable for spectroscopic data [49]. A rational approach to find the 
optimal settings for data preprocessing was for example reported by Feidl et al. using a tree-
based method [50]. Pais et al. used a genetic algorithm-based approach to find optimal 
preprocessing methods for fluorescence online data of an upstream process [51]. 

The developed models were solely data-based. Other common types of process models are 
mechanistic or hybrid models. The latter use combinations of mechanistic and data-based 
model parts which allows interesting advantages over the respective single-sourced model 
types [52], [53]. All models need some form of process data for calibration and validation. 
Besides the technique or model structure, the quality and quantity of the data used for training 
and testing are the basis for model performance [54]. It should be noted that statistical models 
are no virtual representations of the unit operation processes [12] and can therefore not be 
used for digital twin-assisted product applications but for process monitoring and as part of a 
process control strategy. 
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2. Objectives 
 

The objectives of the thesis were (1) to establish semi-automated methods for sample 
preparation for determination of product purity and activity; and (2) to transfer the real-time 
monitoring system developed in-house [19], [23] to WZo indXVWrial parWnerV¶ sites. 

The objectives concerned analytical methods of very different kinds. Biochemical analytical 
methods for quantification of impurities and binding affinity were transferred to an automated 
liquid handling equipment and established for routine analysis. The aims were to accelerate 
data generation and to increase standardization to achieve a reduction of variability in the 
generated data. This was required because a large amount of data was needed to train data-
based prediction models for real-time process monitoring. During the development until transfer 
to the new sites, data was collected over a time span of 5 years by several analysts. 
Standardization by semi-automation was anticipated to increase reproducibility as was reported 
elsewhere [55]. Therefore, I hypothesized that semi-automated analytics is more precise and 
less time consuming than manual analysis. 

The second objective was the transfer of a real-time monitoring system for chromatographic 
separation of proteins to WZo indXVWrial parWnerV¶ ViWeV. The hypothesis was that a transfer of the 
models is possible because equivalent or similar equipment and materials were used at all sites. 
The transferability of the models should be evaluated in terms of their prediction errors on test 
runs performed at the new sites. A direct transfer of models developed at one site to another 
would save time and resources for data collection and model training. 
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3. Results 

The results generated in this thesis were published in two publications as first or shared-first 
author. During the thesis, contributions to another publication were made. Author contributions 
to the publications can be found in Section 8. 

3.1 Publications as first or shared first author 

Publication I: Semi-automation of process analytics reduces operator effect 
Bioprocess and Biosystems Engineering (2020) 43:753-764; Springer. 
Anna Christler, Edit Felföldi, Magdalena Mosor, Dominik Sauer, Nicole Walch, Astrid 
Dürauer, Alois Jungbauer 
https://doi.org/10.1007/s00449-019-02254-y 

Publication II: Technology transfer of a monitoring system to predict product quantity and 
purity of biopharmaceuticals in real-time during chromatographic separation 
Biotechnology & Bioengineering (2021) 1-12; Wiley.  
Anna Christler*, Theresa Scharl-Hirsch*, Dominik Sauer, Johannes Köppl, Cabir Toy, 
Michael Melcher, Alois Jungbauer, Astrid Dürauer 
*equally contributing authors 
https://doi.org/10.1002/bit.27870 

3.2 Other publications 

A two-step process for capture and purification of human basic fibroblast
 
growth factor from 

E.coli homogenate: Yield versus endotoxin clearance 
Protein Expression and Purification (2019) 153, 70-82; Elsevier. 
Dominik Georg Sauer, Magdalena Mosor, Anna-Carina Frank, Florian Weiß, Anna Christler, 
Nicole Walch, Alois Jungbauer, Astrid D�rauer 
https://doi.org/10.1016/j.pep.2018.08.009 

3.3 Summary of results 

Laborious sample preparation steps in the protocols of biochemical analytics for the 
quantification of process-related impurities and binding affinities of biopharmaceuticals were 
semi-automated, as described in publication I [24]. The relative standard deviation of results 
among four different operators using the semi-automated method for DNA determination over 
a time span of 6 months was 48% lower compared to manual (7.1% vs. 13.7%). In this assay, 
the median of results was 17% higher with the semi-automated method compared to the 
manual results. Precision of ELISA results and the absolute values were similar when one 
analyst performed all tests (10.9% vs. 8.3% manual). Thus, semi-automation of offline analytics 
did not increase the precision of results compared to an experienced analyst. However, 
operator effects could be reduced in one assay. Operator hands-on-time of a polishing 
chromatography run with 15 fractions was 5.8 hours with the manual methods. With the support 
of the liquid handling station, only about 3.4 hours of manual work were required. Thus, hands-
on time was reduced by about 2.4 hours or 41%. Even more time could be saved for early 
purification steps where 10 ± 27 times higher dilution factors were necessary. 

https://doi.org/10.1007/s00449-019-02254-y
https://doi.org/10.1002/bit.27870
https://doi.org/10.1016/j.pep.2018.08.009
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The developed real-time monitoring system was transferred to two other sites, as described in 
publication II [42]. Equivalent systems were installed at the new sites. Sensor signals of the 
online monitored chromatography runs were similar between the sites except for the 
fluorescence sensor which was an in-house assembled prototype. Due to the differences in the 
fluorescence data, the developed prediction models were not directly transferable to the new 
sites. Exclusion of five excitation wavelengths in the range of 300 to 400 nm and the 
corresponding emission data, and adjustment of data preprocessing was necessary. After the 
adjustment of model predictors and data preprocessing, prediction errors were on average 
twice as high (per model 0.9 ± 5.7 times) at the new sites compared to the training site. One 
reason for the higher errors was the limited sensor robustness of the fluorescence detector. 
Also, for some impurities, higher or lower concentrations were measured at the new sites 
compared to the training site which led to model extrapolation. Poorer performance of data-
based models outside their design space was expected. At all sites, prediction of purity 
parameters led to higher prediction errors compared to the prediction of product concentration. 
Model training for new processes and products at the new sites allowed prediction of six quality 
attributes with mean relative deviations between 1 and 33%. Among the quality attributes were 
product charge variants which are structurally very similar to the POI. 
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4. Discussion 

On the way to industry 4.0 and even 5.04, automated processes and process control strategies 
are required in biopharmaceutical manufacturing [1], [2]. As biopharmaceutical products 
become more diverse, manufacturing processes must be developed quickly, be flexible and 
controllable. Biosimilars and biobetters on the market increase the economic pressure on 
manufacturing companies. Real-time process monitoring enables a small step towards a 
modern digital factory and real-time batch release. 

4.1. Semi-automated offline analytics 

Data generation for model training represented the bottleneck during development of the real-
time monitoring system. Accurate representative process data was needed for model 
calibration and testing. The maximum sample count per week was: 4 chromatography runs (two 
of each POI) with 18 fractions each and 6 analyses per sample amounting to 432 analyses. 
Counting only the laborious biochemical analyses (dsDNA, HCP, endotoxins, and binding 
affinity), the total count of analyses was 252 (Table 1). For these analyses, two full-time 
equivalent analysts were occupied. 

Table 1: Maximum numbers of samples and biochemical analyses for model training per week. 

 FGF-2 IgG 

Chromatography runs per week 2 2 

Average number of samples per run 18 18 

Biochemical analyses per sample 4 3 

Number of samples for biochemical analysis 
per week 144 108 

Total 252 

 

The directly product-related quality attributes ± protein concentration and contents of monomer, 
HMWI, LMWI and charge variants ± were quantified by HPLC or UPLC and required only 
minimal sample preparation: dilution with phosphate buffers, filtration, filling in HPLC/UPLC 
vials and capping. Special automated systems for sample preparation for HPLC/UPLC are 
available, for example accroma®5, but most liquid handling systems are not designed to filter 
samples and cap HPLC/UPLC vials. In our case, relatively small dilution factors in the range of 
0 ± 20 were needed for most HPLC/UPLC analyses. For size exclusion chromatography of 
FGF-2, factors of 5 ± 100 were needed. Thus, sample preparation for HPLC and UPLC 
measurements did not need extensive operator time and no special additional equipment was 
justified for the respective sample preparation tasks. In contrast, large dilution factors and thus 
extensive manual pipetting was required for the analysis of DNA, HCP, endotoxins, and binding 
affinity, especially in samples from early-stage purification steps. Analyte concentrations in 
capture stage purification and analytical ranges of assays are shown in Table 2 and 3. 

 
4 Industry 5.0: While the idea of Industry 4.0 is a completely smart and automated way of 
production, Industry 5.0 builds upon the achievements of Industry 4.0 but aims to be more human-
centered and sustainable. See for example: https://ec.europa.eu/info/research-and-
innovation/research-area/industrial-research-and-innovation/industry-50_en, accessed August 31, 
2021. 
5 https://accroma.com/, accessed October 07, 2021. 

https://ec.europa.eu/info/research-and-innovation/research-area/industrial-research-and-innovation/industry-50_en
https://ec.europa.eu/info/research-and-innovation/research-area/industrial-research-and-innovation/industry-50_en
https://accroma.com/
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In each dilution step, inevitably a small error is introduced. When pipetting viscous concentrated 
samples, the pipetting technique can have a large influence. From own observations, the most 
common errors in pipetting are a too high speed and an inconvenient angle of holding the 
pipette. Several aspects should be considered for pipetting accuracy (compare the infographic 
in Section 9.1). Many, if not all of them, reduce the speed without immediate obvious benefit. 
Therefore, repeated training of analysts is necessary. A good pipetting technique is always 
required but is especially important when pipetting viscous biological samples. Automation of 
sample dilution for binding affinity (Table 3) eliminated a lot of manual adjustment of pipettes 
because Whe YolXmeV of Vample and bXffer had Wo be adjXVWed Wo each fracWionV¶ proWein 
concentration. 

Table 2: Ranges of analytes in process samples from chromatographic capture, analytical ranges of 
assays and analyte concentrations relative to upper limits of quantification (ULOQ). Adapted from 
Christler et al. 2020 [24]. 

Protein of 
interest 
(POI) 

Sample 
component 

Concentration range in 
fractions1 

Analytical range 
of assay (mL-1) 

Analyte 
concentration 
in % of ULOQ 

 per mL in ppm of 
the POI 

FGF-2 FGF-2 
concentration 

0.01 ± 42 mg ± ± ± 

 dsDNA 50 ± 2,000 ng 8 ± 5800 3.91 ± 500 ng 10 ± 400% 

 HCP 20 ± 500 ng 10 ± 4670  0.39 ± 25 ng 80 ± 2,000% 

 Endotoxins 20 ± 188,000 EU  0.01 ± 5 EU 400 ± 
3,760,000% 

IgG IgG 0.004 ± 32 mg ± ± ± 

 dsDNA � 1.95* ± 100 ng 0 ± 900 1.95 ± 250 ng � 40% 

 HCP 0.060 ± 30 ȝg 2,200 ± 106 2.11 ± 135 ng 44 ± 22,222% 

1 Distributions over the fractions can be found in [18] (Figures 1-3, 5 and 6) for FGF-2 samples and in [23] 
(Figure 2) for IgG samples. 
* Below the lower limit of quantification (LLOQ). 

Table 3: Samples and dilutions for binding affinity assay using surface plasmon resonance on a 
Biacore instrument. 

POI Concentration of POI 
(mg/mL) 

Concentrations required for assay Dilution factors 
required6 

FGF-2 0.01 ± 42 1 ± 20 nmol/L =  
1.7 x 10-5 ± 3.4 x 10-4 mg/ml 

29 ± 2,470,588 

IgG 0.014 ± 32 10 ± 100 nmol/L = 
0.0014 ± 0.014 mg/ml 

0 ± 22,191 

 

 
6 The minimal dilution factor (DF) for FGF-2 samples (29) represents a sample of 0.01 mg/ml that is 
diluted to 20 nM (the highest concentration to be measured). The maximal DF for FGF-2 samples 
(2,470,588) represents a sample of 42.0 mg/ml FGF-2 that is diluted to 1.0 nM (the lowest 
concentration to be measured). Similarly, for IgG: the minimum required sample concentration was 
100 nM or 0.0144 mg/ml which has a DF of 0. A sample of 32.0 mg/ml must be diluted 22,191-fold 
to reach 1.0 nM. 



 16 

Relatively larger volumes and smaller dilution factors were favored over relatively small sample 
volumes and large dilution factors since the relative pipetting error decreases with larger 
volumes. Lippi et al. [56] observed an approximately 7-fold reduction in the coefficient of 
variation for both intra- and inter-individual pipetting precision of 20 operators when pipetting 
100 ȝl of water (!) compared to 10 ȝl and another 3- to 4-fold reduction from 100 ȝl to 1000 ȝl. 
Probabl\ from e[WrapolaWion of Whe findingV, Whe\ conclXde WhaW ³manXal pipeWWing of 1 ȝL ma\ 
be considered unacceptable and manXal pipeWWing of 10 ȝL ma\ be accepWable in Vome 
condiWionV bXW noW in oWherV.´ [56]. These numbers show that care must be taken when the 
pipetting of small volumes cannot be avoided such as in ribonucleic acid research, for example. 
Similarly, dilution factors should only be as large as necessary to be in the range of 
quantification (compare Table 2) and exclude or reduce interfering effects from other sample 
components to a minimum. 

Due to the introduction of the liquid handling system during the development of the real-time 
monitoring system, data from manual assay execution (from four analysts) and also from the 
semi-automated methods was used for model training. Therefore, data from manual and semi-
automated methods must be equivalent to avoid biasing the models. Some differences between 
manual and semi-automated methods were unavoidable. For example, in some steps, larger 
volumes had to be used with the liquid handling station because less pipetting tools were 
available. With the semi-automated methods for sample preparation for binding affinity, HCP, 
CHO cell dsDNA and endotoxins, equivalent results as with manual methods were obtained. In 
one assay, E. coli host cell DNA determination, systematically higher results (median: +17%) 
were obtained. Higher results might have been caused by smaller dilution factors because a 
dilutional bias was observed (see publication I [24], Figure S4 in Supplementary Material). The 
definitive root cause of the differing results between manual and automated methods was not 
identified. Since the confidence intervals overlapped due to the relatively large variability of the 
assay results, the semi-automated method was used for routine analyses. No obvious influence 
on Whe model calibraWion ZaV obVerYed in Whe modelV¶ predicWionV. 

Automated plate washing needed significantly more time than manual and thus was not useful 
in routine analysis. Similarly, Tornel et al. described the increased turnaround time (= longer 
analysis time) due to the automation of an additional step (centrifugation) with the benefit of 
reduced manual work [57]. They accepted the increased turnaround time due to overall 
increased laboratory efficiency. Van de Bilt et al. [27] reported that three washing cycles were 
needed in their automated plate washing procedure compared to one in the manual method. 
Nevertheless, the automated method was twice as fast overall due to parallel preparation of 
144 samples in 5 dilutions each. We could process at most two 96-well plates containing each 
14 samples in 6 dilutions (i.e., in total 28 samples) plus reference standards and blank. In this 
case, manual plate washing was more efficient. Even if the number of dilutions was reduced to 
5 or four (see publication I [24], Figure 4), the maximum number of samples in one run would 
be limited to 16 or 20 per plate, i.e. 32 or 40 in total ± far away from 144. The comparison of 
the three publications shows that it depends on the circumstances whether the automation of 
a step in a workflow is sensible or not. It depends for example on the surrounding work steps, 
the possible degree of parallelization, the availability of operators and the time pressure. 

Semi-automation of biochemical analyses reduced manual repetitive steps, mainly pipetting, in 
our analytical workflows. This reduced the dependency of analytical results on operators. Our 
data confirm other sources which stated that results generated by a liquid handling system were 
not more precise than those of trained and experienced analysts [55]. Yet, technical solutions 
eliminate random human errors. It would have been interesting to evaluate whether the 
implementation of the automated methods lead to reduced re-testing of samples due to the 
decreased chance of random human errors. 
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Automated systems are alVo ³VWXpid´ in the sense that they just execute programs. Machines 
lack creativity and common logic sense [33]. If not equipped with respective sensors, they 
ignore possible complications such as air bubbles, foam, missing samples, mismatching 
volumes, etc. Appropriate settings for the speed of aspiration and dispense were critical for 
protein solutions since they tend to form bubbles and stick to surfaces. As described in 
publication I [24], the pipetting accuracy of non-protein solutions was better than that of protein 
solutions. Reverse pipetting helped to reduce bubble formation in the ELISA sample buffer 
which contained 1% BSA (i.e., 10 mg/ml) and 0.05% detergent (Tween 20). However, the 
standard mode of aVpiraWion and diVpenVe (³forZard´ pipeWWing) ZaV more accXraWe. Advanced 
machine vision technologies are advisable to increase confidence when pipetting such 
solutions [31]. 

A side-effect of automation was the need for other skills in the lab: ³digiWal´ knowledge to operate 
automated equipment. In an automated laboratory, different training of personnel or even 
different personnel is needed compared to a classical wet lab. New technologies often bring 
uncertainty with them. Some people fear losing control over workflows, others fear to become 
redundant by new technologies [33]. In our lab, analysts received the introduction of the liquid 
handling station differently. For some analysts, the lower precision was a reason they felt 
uncomfortable using the semi-automated methods. Others welcomed the reduction of manual 
repetitive work. Continuous training was necessary to make people understand and use the 
benefits of the technology effectively. The skepticism of the beginning changed to acceptance 
when the users became more familiar with the system and the advantages became more 
obvious. Besides sample dilution, automation of a sequence of repetitive time-critical steps, 
such as starting and stopping the staining reaction of an ELISA plate, were the most useful 
automation tasks. 

Another advantage of automated liquid handling systems can be the simplification of assay 
optimization based on a Design of Experiments (DoE) approach which can be tedious to plan 
and execute manually. The same is true for method development and validation where sets of 
samples must be created such as series of standard additions. The system control software 
would need to offer these functionalities and should assist in data evaluation and reporting. 

Automated systems become more efficient when they are connected and communicate with 
each other [58], for example a liquid handler and a spectrophotometer. Information about 
erroneous samples (e.g., due to mismatching volumes or bubble formation) could be 
transferred to the protocol of the analytic device [59]. Analysts would need to check only one 
report. In a highly digitized lab, the information could even go both ways, i.e., from the analytical 
instrument back to the liquid handler suggesting the analyst and instrument which samples 
should be repeated, for example because the dilution needs to be adjusted based on the 
measurements. 

Further automation and/or acceleration of sample analysis could be achieved by assay 
miniaturization, for example by ³lab on a chip´ or microflXidic deYiceV [60], [61]. Sample and 
reagent volumes could potentially be reduced, as well as costs and the amount of waste. Gyros 
Protein Technologies7 offers automated immunoassays at the nanoliter-scale. Basically, every 
ligand-receptor pair can be used for specific quantification and binding affinity evaluation [62], 
[63]. Compared to ELISA, results can be obtained faster, with less manual work, requiring fewer 
equipment and less reagents8. Although not fully miniaturized, a similar platform for endotoxin 

 
7 https://www.gyrosproteintechnologies.com/gyrolab-technology; accessed 30 August 2021. 
8 https://www.gyrosproteintechnologies.com/gyrosizing-your-elisa; accessed 30 August 2021. 

https://www.gyrosproteintechnologies.com/gyrolab-technology
https://www.gyrosproteintechnologies.com/gyrosizing-your-elisa
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determination is the Sievers Eclipse BET marketed by SUEZ Water Technologies & Solutions9. 
Microfluidic DNA quantification is proposed in research and development, mainly for low 
concentration clinical applications [64] but also in the higher concentration range of 10 ± 110 
ȝg/ml [65]. The latter is a quite narrow range of quantification compared to the PicoGreen dying 
method we used [24] which quantified dsDNA from about 4 to 500 ng/ml. 

Another relevant application of microfluidics in bioprocessing that should be mentioned in this 
context is the scale-down of manufacturing unit operations to accelerate investigations or 
process development or optimization tasks, e.g. [66], [67]. 

Pros and cons of conventional manual and (semi-)automated bioanalytical workflows are 
summarized in Table 4. 

Table 4: Possible advantages and disadvantages of conventional manual processes and 
(semi-)automated processes in bioanalytical labs. 

 Manual workflow (Semi-)Automated workflow 

Advantages x Usually well-known 
workflows 

x Experience and equipment 
often available 

x Full flexibilty 

x Parallelization of workflows possible leading 
to time reduction 

x Less manual work, therefore either time 
saving or easier or safer workflow 

x Higher degree of miniaturization possible 
(nanoliters in microfluidic techniques) 

x Traceability due to electronic documentation 
(audit trail, barcodes, RFID) 

x Possibility of automated data evaluation and 
reporting 

Disadvantages x Repetitive tasks are error-
prone and can lead to 
fatigue 

x Traceability depends on 
manual documentation 
 

x ReVWricWion of poVVible aVVa\ ³configXraWion´ 
due to dependency on software and 
machines 

x Digital skills needed in addition to chemical 
and analytical skills 

x Less or no experience available in many 
labs 

4.2. Real-time monitoring of biochromatography 

Many new technologies or systems are being developed using model solutions like synthetic 
distinct mixtures of few components, for example the protein of interest (POI), variants of it 
and/or typical impurities, e.g. [68], [69]. In our lab, we took the challenge to develop a system 
using two industry-relevant purification processes and feed materials to test and show usability 
in an industrial-like setting. Feed materials from fermentation and cell culture, as described in 
Section 1.3, were used. Fermentation and cell culture supernatants are complex biological 
mixtures containing the POI, different product variants, cell debris, media components, and 
potentially other contaminants such as viruses. In the load materials, many different impurities 
were present in relatively high concentrations (see Table 2). The POI and most of the impurities 
have very different properties regarding hydrophobicity, charge and/or size which is the basis 
for their separation in downstream processing. However, this complex mix complicated the 
development of data-based prediction models for real-time monitoring in several ways. First, 
some offline analyses were influenced by the sample matrix, most dominantly quantification of 

 
9 https://www.suezwatertechnologies.com/products/analyzers-instruments/sievers-eclipse; 
accessed 30 August 2021. 

https://www.suezwatertechnologies.com/products/analyzers-instruments/sievers-eclipse
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low concentrations of dsDNA in IgG samples by PicoGreen staining. The quality of offline 
measurements influences the prediction quality by the statistical models because the model 
assumes the reference to be the true value. 

Secondly, the high concentrations of proteins and other impurities caused fouling in the 
monitoring system. Fouling, which is the attachment of proteins and other species onto surfaces, 
reduces the efficiency of unit operations such as filtration or chromatography by blocking pores 
and/or ligands. Some proteins, especially membrane proteins easily adhere to surfaces due to 
their amphiphilic nature. Fouling is a common problem in bioprocessing. PAT applications have 
been applied to monitor fouling in chromatographic columns [70]. In the manufacturing 
equipment, especially in pipes, fouling reduces the available cross-section. According to the 
continuity equation (conservation of mass), when the flow is kept constant (by the pump), the 
flow velocity increases linearly proportional to the reduced cross-section. Thus, the pressure 
drop in the tube system increases due to friction, according to the Darcy-Weisbach equation 
with the square of the flow velocity. Some inVWrXmenWV¶ floZ cellV are VenViWiYe Wo preVVXre dXe 
to their delicate architecture made for high precision. For this reason, sensors of the developed 
real-time monitoring system were arranged in a sequence accounting for the pressure 
sensitivity (high to low pressure tolerance) (compare Figure 4). Fouling can even lead to 
clogging of narrow channels or pipes which would stop the process. To avoid this, equipment 
was rigorously cleaned with acid or caustic solutions between batches. MALS and RI detectors 
were also sensitive to extreme pH values and had to be cleaned otherwise. In an industrial 
setting, increasing the robustness of the sensors would be needed to allow for a closed process, 
including cleaning procedures, as far as possible. 

The third way in which the authentic load materials complicated the development of prediction 
models was the saturation of sensors. The complex biological solutions posed a challenge for 
the sensitive analytical instruments. For quantitative analysis, the relationship between analyte 
concentration and signal intensity should ideally be linear for best sensitivity and accuracy. This 
is only possible in the low concentration range. Exact numbers depend on the method and 
analyte but are often below 1 mg/ml (e.g. BSA fluorescence at 280 nm >excitation@ / 340 nm 
>emission@ [71]). Sensor saturation is especially problematic at the borders of the peak where 
pooling decisions must be made. In early-stage purification, saturation of sensors is especially 
an issue due to the high impurity content. In later downstream unit operations, sensor saturation 
will be less pronounced in the concerned regions of the chromatogram because the impurity 
concentrations are much smaller. A variable pathlength UV/VIS spectrometer was applied by 
Brestrich et al. [69] to extend the dynamic range and selectively quantify and pool two-
component protein mixtures of up to 80 g/L after chromatographic separation, however with a 
long measurement cycle time of 30 seconds. 

Protein activity could not be predicted with the statistical models. The offline measured 
dissociation constant was equal within the range of the meWhod¶V variability in all fractions (1 ± 
4 nM for FGF-2 [18] and about 20 nM for IgG binding to TNFĮ10). No inactive POI was detected 
by the binding assays. Thus, it was impossible to correlate the sensor signals to the offline 
determined quality attribute. Inactivated POI would need to be spiked to the active in some of 
the fractions. However, we wanted to remain with the real processes. 

 
10 Note: The dissociation constant for the IgG (Adalimumab) is no generally valid number as it 
depends on assay and instrumental setups. Lower values, corresponding to stronger binding, have 
been reported in literature. 
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4.3 Transfer of the monitoring system to two new sites 

The developed real-time online monitoring system was transferred to the industrial partners¶ 
sites. The transfer included the following steps: 

1) Installation of the sensors and database at the new sites; 
2) Transfer of process materials (columns, load material) and purification protocol; 
3) Training of operators on the handling of the monitoring system; 
4) Performance of online monitored chromatographic runs; 
5) Comparison of sensor signals and model predictions from new sites with the training 

site. 

Predictive models for five quality attributes were trained using the data from the training site 
based on PLS regression, as described in section 1.6, and applied to the new sites data [42]. 
Measured dsDNA concentrations were very high at site A and very low at site B (Figure 5). 
Thus, the model for dsDNA prediction was extrapolated to partially unknown concentrations 
which failed as shown by large deviations of the predictions from measured values. Generally, 
the models for POI concentration (quantity) and monomer content predicted reasonably well, 
but the models for HMWI content, HCP and dsDNA were not really acceptable as reflected in 
the high RMSEs compared to the Null models (Table 1 in [42]). They would need to be retrained 
with data from the respective sites. Thus, the hypothesis of direct transferability of the models 
could not be accepted under the circumstances. If all sensors were robust and the results of 
the processes more similar, a direct application of the models might be possible. 

 
Figure 5: Comparison of responses HCP and dsDNA modeled and predicted either in units ng/ml or 
in ppm. 



 21 

The sensors are the critical point of the monitoring system. They are expected to deliver highly 
sensitive measurements but need to be robust at the same time. In our study, the compact 
commercial sensors (compare Figure 6a) were robust and delivered reproducible signals at 
different sites [42]. The in-house assembled fluorescence sensor, a prototype (see Figure 6b), 
was not robust. It gave different signal profiles and intensities at different sites. Even the 
reference channel showed very different signals and behaviors at the three sites. As described 
in publication II [42], smoothing, taking the first derivative and normalization to equal length was 
useful for excitation at 260 and 280 nm. At higher excitation wavelengths, the signals remained 
very different at one site. Furthermore, the relatively fast signal decrease over time due to aging 
of lamp and optical fibers was problematic. Close monitoring of signal intensity and data 
preprocessing was needed at all sites. A multiplexer is generally interesting because it allows 
the measurement of many different wavelengths in one device (see publication II [42], Figure 
1). This set-up was chosen to screen as many excitation wavelengths as possible and obtain 
full emission spectra. One measurement cycle of all channels took 16 seconds and for this time, 
a constant value was used as predictor. In an industrial set-up, the number of fluorescence 
excitation wavelengths would be reduced and potentially also the emission wavelengths as it 
is commonly done in HPLC/UPLC fluorescence detectors. König et al. [71] used a miniaturized 
fluorescence detector without any moving parts for highest robustness for the prediction of 
biomass in upstream bioprocess using three excitation/emission wavelength pairs and 
scattered light at 850 nm. Fluorescence data can give very valuable information because 
intrinsic fluorescence of proteins depends on the secondary and tertiary structures. These 
structures, i.e. the correct protein folding, are essential for protein integrity and thus activity. 
Helgers et al. [72] achieved monitoring of mAb concentration in chromatography with UV/VIS 
and fluorescence data but not with ATR-FTIR or Raman spectroscopic data. 

a) 

 

b) 

 

Figure 6: (a) The commercial refractive index and MALS detectors used in the study and (b) the 
fluorescence detector assembled in-house from several separate parts. Compare Figure 1 in 
publication II [42] for a schematic representation of the parts of the fluorescence detector. 
 
Quality control measures were needed for all online sensors, e.g. light source intensity control, 
performance qualification test or measurement of a reference standard or spectrum before the 
sample(s). Absolute intensities varied from day to day, run to run or drifted over time. Data 
preprocessing was an important prerequisite to modeling and prediction. KXhn VWaWeV WhaW ³daWa 
preparaWion can make or break a model¶V predicWiYe abiliW\´ [13] Zhich ZaV confirmed in oXr 
case. Without preprocessing, IR and fluorescence data could not be used for predictive 
modeling. Transformations such as normalization and derivatization often help to remove or 

Refractive 
index detector

MALS detector

Flow 
cell

Multiplexer
Lamp

Spectrometer

Optical 
fibers



 22 

reduce adverse effects such as scattering or baseline shift [49], [54]. AlVo ³Vimple´ meWhodV 
such as removing variables based on expert knowledge or experience are effective. For the 
UV/VIS sensor, a reset to zero during system equilibration was sufficient. Sensors and the 
applied chemometric method including data preprocessing must also be able to detect and 
quantify analytes despite changing buffer backgrounds during elution [72]. 

In regression it is desirable to have a data set with more observations, i.e. replicate 
measurements (in this case: chromatography runs) than variables, i.e. different parallel 
measurements (in this case: sensors). In our data set, the number of variables (in the raw data 
about 17 830) was much larger than the maximum number of observations (246; however not 
all sensors were available in all 16 runs). Additionally, the variables were linearly correlated 
delivering redundant information. Multicollinearity occurs when predictors represent the same 
or similar chemical information. For example, similar wavelengths of UV/VIS or IR frequencies, 
especially the closer they are to each other, are being absorbed by the same molecular 
structures in the sample, only to a little different extent. Using both wavelengths in a model 
would not be helpful in predicting the response but increases the risk of model overfitting. Both 
issues, the unfavorable ratio of observations and variables and the multicollinearity of the 
predictors, were expected and were addressed by using PLS regression, a method particularly 
suited in such situations because it is based on data dimensionality reduction.  

Simple models were preferred over complex ones. Whenever several model variants yielded 
equal or almost equal errors, the model with fewer predictors was selected. If a variable offers 
no benefit in the training set, it might worsen the prediction in a future case because it could 
represent the noise specific to the observations in the training data set. Another reason is 
practical: sensors might fail temporarily or permanently during a run, which they did sometimes 
in our case, and models which require fewer sensors have a higher statistical chance of stable 
performance. Lastly, model interpretation, if possible at all, becomes very difficult when models 
are complex. In contrast, Helgers et al. [72] pointed out that even if similar prediction qualities 
are obtained using a single sensor and a combination of sensors, respectively, the combination 
yields ³differenW informaWion, Whereb\ proYiding poWenWiall\ a more robXVW predicWion´ [72]. They 
therefore recommend using two orthogonal sensors, i.e. sensors which measure different 
aspects of a sample component or by a different principle, instead of only one. 

Due to the narrow tubes and flow cells, the pressure drop over the sensors was about 1 bar. 
The flow rate was therefore limited to about 1.5 ml/min corresponding to about 57 cm/h or 7.2 
and 8.2 minutes residence times for FGF-2 and IgG, respectively. Linear flow velocity in Protein 
A and IEX capture processes is commonly 100 ± 400 cm/h and can be up to 1000 cm/h in 
capture processes [13]. Residence times are usually 2 ± 5 min in capture processes for 
productivity reasons. To reduce the pressure drop, either less sensors in series need to be 
used or larger diameters of tubes and flow cells. However, larger flow cells would reduce the 
sensitivity of the sensors and potentially increase undesired back-mixing of the sample stream. 
A technical solution would be to split the flow stream in a bulk and a smaller stream for in-line 
measurements which comes at the cost of (1) an open system (risk of contamination) and (2) 
worse cleanability. Therefore, split-stream solutions are usually unpopular in hygienic 
production systems. 

Besides the high pressure drop over the in-line sensor battery, another limitation of systems 
with this many sensors are the high investment costs. One aim was to evaluate which sensors 
are useful to predict which sample component. Unfortunately, this aim was not achieved. With 
one exception (monomer content), very different sensors were selected in the models (see 
Table 5). Different interactions between sample composition, signal preprocessing and 
modeling technique influence the choice of variables in the models. 
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Table 5: Comparison of sensors used in models for two different proteins and processes and modeling 
techniques in three cases. Colors highlight common features of the three publications. IEX: ion 
exchange chromatography. MALS: Light scattering at 43.6°, 90°, and 136.4°. PLS: partial least squares. 
Ppm: parts per million (of the POI). RI: refractive index. STAR: structured additive regression. UV: UV 
absorbance at 214 nm, 260 nm AND 280 nm.  

Reference Sauer et al., 2019 
[19] 

Christler, Scharl et 
al., 2021 [42] 

Walch et al., 2019 (sensors in 
bold increased model 
complexity but also prediction 
quality) [23] 

Process and POI FGF-2 purification 
with IEX chrom. 

FGF-2 purification 
with IEX chrom. 

IgG purification with Protein A 
chrom. 

Regression / modeling 
method 

STAR PLS PLS 

Sensors 
used in 
models 
(units of the 
modelled 
response) 

POI conc. 
(mg/ml) 

UV + conductivity UV + RI + 
conductivity 

UV (pH + RI) 

Monomer 
(%) 

not evaluated UV + RI + 
fluorescence 

UV (RI + fluorescence) 

HMWI (%) not evaluated UV + conductivity UV + RI + (fluorescence and 
IR or pH and MALS) 

HCP (ppm) 
UV + conductivity + 
fluorescence 

(ng/ml) 
UV + conductivity + 
MALS 

(ppm) 
UV + RI + MALS + (pH or IR) 

DNA (ppm) 
UV + fluorescence 
+ IR 

(ng/ml) 
MALS 

(ppm) 
UV + RI + MALS + (pH or 
fluorescence) 

 

Another possible reason for the different predictors selected in the models are the different units 
in which the responses were regressed. The conversion from the measured response in ng/ml 
to ppm of the POI changes drastically the shape of the response and thus the relationship 
between response and variables, see Figure 5. The prediction of HCP at site B (orange/brown 
curves) in ng/ml is not accurate but acceptable but is completely wrong in ppm.  

Data-based predictive modeling for real-time monitoring is a highly interdisciplinary task 
requiring expertise in downstream processing, analytics, automation, data science and 
statistics. Knowledge about the underlying process is required to identify faulty data which 
contains artifacts or results from equipment malfunction for example. Communication between 
disciplines must be established in the team and should not be underestimated. Similar to 
automation in the chemical laboratory, implementation of modern process control technologies 
such as PAT requires different skills compared to conventional methods: data mining, machine 
learning and artificial intelligence [4]. 

The developed real-time monitoring system can also be described as a semi-automated system 
because product was pooled manually based on model-predicted quality attributes. Similar to 
the situation of the liquid handling station and the plate reader discussed above, the real-time 
monitoring system will be more efficient when the single sensors were integrated into one 
system. The customized automation software XAMControl® (Evon, Austria) enabled 
coordinated data acquisition and correct alignment of the sensor data which would be 
cumbersome to do manually. 

Another sensor that might be interesting for online monitoring is Raman spectroscopy. Raman 
scattering is molecule-specific and water does not interfere the measurement. However, the 
intrinsic weakness of the Raman signal makes it hard to be used in the relatively fast processes 
in downstream processing (compared to upstream processes). For example, Helgers et al. [72] 
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reported the successful monitoring of product concentrations in upstream processing and 
aqueous two-phase extraction by Raman spectroscopy. They used a 1.5-mW laser and only 
required a measurement time of 1 second per spectrum. They cumulated 3 spectra giving a 
total measurement time of 3 seconds. However, they could not use it for chromatography at all 
due to the large flow cell causing too much back-mixing of the effluent stream. Feidl et al. [50] 
developed a smaller flow cell to monitor mAb breakthrough after a protein A chromatography 
column by Raman spectroscopy. Even though a much more powerful laser (400 mW) was used, 
a measurement time of 1 minute was required. One minute is too long for automated peak 
cutting where pooling decisions must be made within seconds. 
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5. Conclusion 

Both semi-automated systems investigated in this thesis, the liquid handling station for wet lab 
analysis and the real-time monitoring system for biochromatography, were not more precise 
than the corresponding manual methods. However, they substantially reduced operator hands-
on-times and reduced operator influence. Although 17% higher results were obtained for one 
assay with the semi-automated method compared to the manual method, overall, the method 
transfer for four biochemical analytical assays to the liquid handling station was possible and 
successful. The transfer of statistical models from the training site to two other sites resulted in 
increased errors of prediction even though the systems and materials were equivalent. The 
models were thus not directly transferable. 

Quality control and robustness of online spectroscopic sensors concerning integrity, function, 
fouling and aging is necessary for a robust operation of an online monitoring system. Real-time 
estimation of purity was the most challenging task and estimation of activity was not realized at 
all. 

Semi-automation is recommended whenever repetitive steps represent a large part of the work 
and can be automated. Compared to full automation, more flexibility is allowed by semi-
automated methods and investment costs for equipment are often lower. Different skills are 
needed when transitioning from conventional offline work to digital automated ways of analysis 
or manufacturing. For automation to be successful, there must be a good interconnection 
between human operators and machines. Usability, i.e. user-friendliness, of machines is key 
for efficiency of automated solutions. Lab automation systems need to allow intuitive workstyles 
for analysts. Analysts should be continuously trained and methods re-evaluated to maximize 
system efficiency. 
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6. Outlook 

In a next step, an automated pooling algorithm would be added to the real-time monitored 
chromatography system to switch a valve routing the liquid stream after the sensors either into 
a waste or a product collection vessel. Walch et al. [23] and Sauer et al. [19] demonstrated 
exemplarily that it is possible to collect the product based on pre-defined criteria for each 
monitored variable with similar yields and qualities. Automated pooling can be realized by a 
simple algorithm switching a valve. Due to the noisy nature of the fluorescence sensor data for 
example, pooling decisions should be made only in near real-time to allow data interpolation 
(e.g. by a Savitzky-Golay filter [69]) and thereby assure that decisions are not made due to 
spikes to higher or lower predictions. Due to the physical distance between the sensors and 
the switching valve, the time delay for data acquisition, preprocessing, prediction and 
interpolation will be sufficient with our instrumental set-up. 

The integration of all sensors into one compact unit would allow easier handling of the 
developed real-time monitoring system. Easy-to-use and robust hardware and software would 
need to be designed. A Design of Experiments (DoE) functionality integrated into the software 
would allow to control the relevant design space of the models and support system validation. 

Another logical extension of the system is its application for process control for either 
continuous processing or critical unit operations, for example for difficult separations where 
disturbances easily influence the process performance. Measurements of the feed material (in 
a split-stream manner or in-line diluted to avoid sensor saturation) could be taken (at-line or in-
line) before the column, concentrations estimated in real-time and process parameters adjusted 
accordingly. In batch-wise manufacturing, the benefits can be increased yield and/or 
productivity and/or quality [15] while continuous processing is only possible using online 
process control. For robust batch processes, the effort and investment is usually not justified 
[15]. 

One method to increase confidence of the predictions and thus of the pooling decision could 
be the addition of a mechanistic process model (Figure 7) [73], [74]. Mechanistic and hybrid 
models are of interest in research and industry in addition to data-based models because 
complimentary information can be obtained [53]: Statistical, data-based models deliver (quasi) 
real-time estimates for time points where data is available while the prediction of future events 
is only possible with mechanistic models. Another advantage of mechanistic models is the 
possibility to close mass balances. The process could be predicted by the mechanistic model 
based on the composition of the load material. Taking the feed volume into account, total 
amounts of loaded product and impurities could be calculated and used to correct real-time 
estimations and predictions. On the other hand, predictions by the mechanistic model could be 
updated by the statistical part using real-time estimates. Weights could also be given to the 
mechanistic and the data-based model parts in different stages of the process or for specific 
responses when one of the model parts is known to outperform the other [75]. A mechanistic 
model can also help to determine the largest possible design space for safe operation which 
allows greater flexibility in operation when filed to the authorities accordingly [9]. 

 
Figure 7: Schematic representation of hybdrid model structures: A, parallel, B and C, serial structures. 
Black boxes represent data-based models or model parts, white boxes represent mechanistic models 
or model parts [75]. 
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9. Appendix 

9.1. Infographic on Good Pipetting Technique 

From https://biosistemika.com/blog/tips-to-improve-pipetting-technique/, accessed 
September 19, 2021.

 
(continued on next page) 
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Abstract
The aim of this study was to semi-automate process analytics for the quantification of common impurities in downstream 
processing such as host cell DNA, host cell proteins and endotoxins using a commercial liquid handling station. By semi-
automation, the work load to fully analyze the elution peak of a purification run was reduced by at least 2.41 h. The rela-
tive standard deviation of results among different operators over a time span of up to 6 months was at the best reduced by 
half, e.g. from 13.7 to 7.1% in dsDNA analysis. Automation did not improve the reproducibility of results produced by one 
operator but released time for data evaluation and interpretation or planning of experiments. Overall, semi-automation of 
process analytics reduced operator-specific influence on test results. Such robust and reproducible analytics is fundamental 
to establish process analytical technology and get downstream processing ready for Quality by Design approaches.

Keywords Liquid handling · Pipetting · PicoGreen · Endotoxin · Host cell proteins · dsDNA · ELISA

Introduction

Semi-automation is the compromise to accelerate process 
development while maintaining high precision and reason-
able costs in an environment where the number of samples is 
manageable. The benefits of full automation are often over-
estimated. Full automation is desirable if highest productiv-
ity is anticipated and to eliminate most human influence. 
Since the beginning of the 1990s, especially after the turn of 
the millennium, automated liquid handling systems enabled 
high-throughput methods and thus revolutionized labora-
tory work. This is highlighted by numbers of publications 
in different fields of application such as nucleic acid syn-
thesis and analysis, protein refolding, production host clone 
screening, process development, diagnostics, cell culture and 
others [1-9]. However, setting up fully automated methods 

is laborious, time-consuming [10, 11] and investment costs 
for fully automated equipment are high. This implies a long-
term commitment for a specific assay. Usually 3–5 years is 
necessary for full automation to depreciate the high upfront 
costs for the equipment. Chan emphasizes that high-volume 
testing, meaning many samples, may benefit using semi-
automated steps for the most labor-intensive steps [12].

Conventional as well as DoE-based process development, 
process modelling, and manufacturing processes of recom-
binant proteins require in-process analytics to monitor the 
quality of the product and depletion of impurities. Espe-
cially, biopharmaceuticals are subjected to stringent regu-
latory requirements. Appropriate analytical methods must 
provide information about the content of target protein, its 
activity and show that critical impurities such as DNA, host 
cell proteins (HCP), endotoxins and product-related impuri-
ties are cleared from the final protein product below certain 
levels as specified by national and international authorities. 
Accuracy and precision of analytical results are usually 
assured by method qualification, validation and continu-
ous training of operators. However, Pandya et al. found that 
their long-term stability testing of protein therapeutics was 
obscured by the systematic differences in manual pipet-
ting between operators [13], commonly known as “opera-
tor effect”. Moreover, manual pipetting is highly repetitive 
and might lead to fatigue and possibly repetitive strain 
injury [14]. Therefore, we hypothesize that an appropriate 
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automation strategy will improve reproducibility of results 
in a long-term study involving multiple operators, increase 
security of data delivery due to an operator-independent 
analytical workflow and protect staff from adverse effects 
of monotonous work. Manpower released by automating 
repetitive work can be deployed for more demanding tasks 
and thus increase productivity.

In the present literature, either very specialized (semi-
automated) applications were reported or liquid handling 
stations (LHS) with high capacities and functionalities were 
used. We extend the field by describing semi-automated 
methods for four different common biochemical assays 
(dsDNA, HCP, endotoxins, binding affinity) using a sim-
ple commercial LHS and comparing them to manual assay 
performance. The adaptation of the analytical protocols to 
the space and tools of the LHS is described. Spectroscopi-
cally detectable model substances were used to discrimi-
nate the influence of sample dilution steps only to deviations 
obtained for the individual assays. The outcome of the semi-
automated protocols was compared to conventional manual 
analytics in terms of time efficiency, precision and repro-
ducibility. Semi-automation of analytics reduced long-term 
variability of analytical results and improved the confidence 
in the subsequent data application.

Materials and methods

Instrumentation

A liquid  handling station epMotion®5073 (Eppendorf, 
Germany) equipped with a thermal module (0–110 °C), 
a single-channel liquid transfer tool (40–1000 µL) and an 
8-channel tool (20–300 µL) was used. Plates were incubated 
in a Thermomixer Comfort MTP (Eppendorf, Germany). 
Spectroscopic measurements were performed using a plate 
reader Infinite M200 PRO (TECAN, USA) with a dual pump 
dispense unit. Preparative chromatography was carried out 
on an ÄKTA pure 25 workstation (GE Healthcare, USA).

Chemicals

Chemicals were purchased from E. Merck (Germany) in ana-
lytical grade unless specified differently. Green fluorescent 
protein (GFP) was produced in-house and kindly provided 
by Prof. Rainer Hahn.

Protein samples

An IgG1 monoclonal antibody (mAb) was produced in CHO 
cell culture, harvested, and captured by Protein A affinity 
chromatography as described in [15]. IgG1 concentrations 
were determined by high-performance monolith affinity 

chromatography as described in [16]. Human fibroblast 
growth factor 2 (FGF-2) was expressed in E. coli, captured 
by cation exchange or affinity chromatography, polished by 
hydrophobic interaction chromatography, and quantified by 
reversed phase HPLC, all as described in [17].

Biochemical assays

The principles described below are valid for both manual 
and semi-automated procedures. Serial 1:2 dilutions were 
done in 350 µL NUNC® 96F 96-well microplates (Thermo 
Fisher Scientific, USA). From the dilution plates, 100 µL 
were transferred to the measurement plates (Corning® Cos-
tar 350 µl 96-well plates, Sigma-Aldrich/Merck, USA) or 
MaxiSorp™ Immuno ELISA plates (Thermo Fisher Scien-
tific, USA). Data were evaluated using MS Excel (Micro-
soft, USA). In semi-automated methods, samples for binding 
affinity and endotoxins were pre-diluted in 96-well 2 mL 
deepwell® plates (VWR, USA). In manual methods, the 
dilution was carried out in 1.5 mL (Sarstedt, Germany) and 
2 mL reaction tubes (Eppendorf, Germany).

Host cell protein (HCP) ELISA

Capture and detection antibodies and HCP standards were 
purchased from Cygnus, USA. Product numbers are given in 
brackets. ELISA plates were coated with 0.25 µg of anti-E. 
coli HCP (AP117) or 0.5 µg anti-CHO HCP (3G-0016-AF) 
antibody per well in 100 µL of 0.2 M sodium carbonate 
buffer (pH 9.3–9.5) for 2 h at 37 °C/350 rpm. Plates were 
washed three times with 300 µL of PBS (137 mM NaCl, 
2.7 mM KCl, 10 mM  Na2HPO4, 1.8 mM  KH2PO4) contain-
ing 0.05% Tween 20 (pH 7.2–7.6) per well. Plates were 
blocked with 300 µL 3% BSA in PBS per well overnight 
at 4 °C. The blocked plates were washed as before. Sam-
ples and concentrated E. coli or CHO HCP antigen (F413H 
or F553H) were diluted in sample buffer (1% BSA, 0.05% 
Tween 20 in PBS) and incubated for 1 h at 37 °C/350 rpm. 
Plates were washed as before and incubated with 100 µL/
well of a 0.5 µg/mL (0.05 µg/well) detection antibody solu-
tion (anti-E. coli-HCP, F411C or anti-CHO–HCP, F551C) 
conjugated with horseradish peroxidase (HRP) in sample 
buffer for 1 h at 37 °C/350 rpm. Plates were washed again as 
before and incubated with 100 µL/well of a tetramethylben-
zidine (TMB) substrate (Bio-Rad, USA) for 30 min at room 
temperature without shaking. The HRP reaction was stopped 
by adding 50 µL/well of 1 N sulfuric acid. Absorbance was 
measured at 450 nm and at 630 nm as reference which was 
subtracted from the absorbance at 450 nm. Average blank 
was subtracted from all measurements. A quadratic calibra-
tion curve was fitted through the standard measurements. 
The calibration range for E. coli HCP was 0.39–25 ng/mL 
and 2.11–135 ng/mL for CHO HCP.
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Double-stranded (ds) DNA quanti!cation by Quant-iT™ 
PicoGreen® assay

DsDNA concentrations were determined with Quant-iT™ 
PicoGreen® assay (Invitrogen, USA). 20 × TE buffer was 
diluted 1:20 with RO-water to a working concentration of 
10 mM Tris–HCl, 1 mM EDTA, pH 7.5 (1 × TE). Sam-
ples and λ DNA standard were diluted in 1 × TE. 100 µL 
of Quant-iT™ PicoGreen® working solution in 1 × TE was 
added to each well. After incubation for 2 min at room tem-
perature in the dark, fluorescence was measured using an 
excitation wavelength of 480 nm and emission wavelength 
of 520 nm (filter with a bandwidth of ± 20 nm). Average 
blank was subtracted from all measurements. A linear 
calibration curve was fitted through the standard measure-
ments and the origin of the coordinate system (0,0). The 
calibration range for E. coli DNA was 3.91–500 ng/mL and 
1.95–250 ng/mL for CHO DNA.

Endotoxin quanti!cation with recombinant factor C-based 
assay

Endotoxins were determined using EndoZyme® II recom-
binant Factor C (rFC)-based assay kit (Hyglos, Germany). 
Samples and standards were diluted in endotoxin-free water. 
Vigorous mixing (30–120 s on orbital shaker at 1400 rpm or 
ten cycles of aspiration and dispense at a speed of 11 mm/s) 
was applied to disperse the analytes homogeneously. The 
plate was heated to 37 °C. 100 µL of enzyme–substrate solu-
tion was added to each sample and standard dilution. Signal 
intensities were measured at an excitation wavelength of 
380 nm and emission wavelength of 445 nm. Plates were 
incubated at 37 °C for 75 min without shaking. Signals at 
time 0 were subtracted from signals after 75 min. Average 
blank was subtracted from all measurements. A linear cali-
bration curve was fitted through the standard measurements 
and the origin of the coordinate system (0,0). The calibration 
range was 0.01–5 Endotoxin Units (EU)/mL.

Determination of ligand binding a#nity with a surface 
plasmon resonance (SPR)-based assay

Binding affinities of anti-TNFα-IgG against TNFα (10,602-
HNAE-100, Sino Biological, China) and of FGF-2 to FGF-
receptor 2 were determined by a SPR assay using a Biacore 
2000 system (GE Healthcare, USA) as described in [17].

Quality criteria

For the standard curve fit of PicoGreen®, HCP ELISA and 
endotoxin assays, a value of the determination coefficient 
R2 of at least 0.999 was accepted. A maximum tolerable 
deviation from the nominal concentration (bias) of ± 15% 

was allowed. For each reported target response, at least three 
consecutive values from different dilutions were averaged 
that give a coefficient of variation (CV) ≤ 20%. The lower 
limit of detection (LLOD) was calculated as the average of 
at least three blank measurements plus three times the stand-
ard deviation of blanks. The lower limit of quantification 
(LLOQ) was calculated as average blank plus ten times the 
standard deviation of blanks. The upper limit of quantifica-
tion (ULOQ) was the highest calibration standard.

Comparison of accuracy and precision of automated 
dilutions compared to manual

To compare the processes of sample and standard dilu-
tion only, model substances were used that can be detected 
spectroscopically. Solutions of myoglobin, the pH indicator 
bromocresol purple, and green fluorescent protein (GFP) 
were prepared in the respective buffer system. Dilutions of 
model substance solutions were treated like process sam-
ples to compare the manual and semi-automated methods as 
close to real situations as possible. Random concentration 
levels were assumed for the model solutions and dilutions 
calculated accordingly. Averages of 2 replicates for each 
dilution level were compared and the respective differences 
between manual and automated results plotted over the aver-
age absorbance value according to Bland and Altman, 1999 
[18].

Results

Transfer of analytical methods from manual 
to semi-automated processes

Four analytical methods commonly applied for process 
analytics in downstream processing of recombinant pro-
teins were semi-automated using a commercial LHS. The 
analytical methods comprised the quantification of host cell 
dsDNA, HCP, bacterial endotoxins and binding assays for 
potency estimation. The methods were adjusted for pro-
cesses capturing an IgG1 antibody and a basic fibroblast 
growth factor-2 (FGF-2), respectively. Different steps of 
the analytical procedures were automated (Fig. 1): sample 
dilution, filling of diluted samples in vials (binding affin-
ity), and addition of reagents to samples (dsDNA and HCP). 
Sample dilution was identified as highly potential for auto-
mation, since this step consumed the most operator time and 
was very repetitive. For example, in the early-stage purifi-
cation, endotoxin concentrations in samples exceeded the 
ULOQ up to 37,600-fold (Tables 1 and 2). Even samples 
with analyte concentrations within the quantification ranges 
usually must be diluted to eliminate or reduce matrix influ-
ence which otherwise can impair accurate quantification. 
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Fig. 1  Steps in the four semi-
automated analytical proce-
dures. Hands symbolize manual 
actions, robots denote auto-
mated steps. Asterisks denote 
steps with an automated option. 
Abbreviations: rFC recombi-
nant factor C, HCP host cell 
proteins, TMB tetramethylben-
zidin, Ab antibody, HPLC high-
pressure liquid chromatography, 
SPR surface plasmon resonance

Table 1  Ranges of analytes 
in process samples from 
capture stage purification, 
analytical ranges and analyte 
concentrations relative to upper 
limits of quantification (ULOQ)

* Below lower limit of quantification (LLOQ)

Protein sample Component Concentration range in 
fractions  (mL−1)

Analytical range of 
assay  (mL−1)

Analyte concen-
trations in % of 
ULOQ

FGF-2 Product 0.01–42 mg
DNA 50–2000 ng 3.91–500 ng 10–400%
HCP 20–500 ng 0.39–25 ng 80–2000%
Endotoxins 20–188,000 EU 0.01–5 EU 400–3760 000%

IgG Product 0.004–32 mg
DNA  ≤ 1.95*–100 ng 1.95–250 ng  ≤ 40%
HCP 0.060–30 µg 2.11–135 ng 44–22,222%

Table 2  Ranges of analytes in 
process samples after FGF-2 
polishing, analytical range of 
endotoxin assay and endotoxin 
concentrations relative to upper 
limit of quantification (ULOQ)

Protein sample Component Concentration range in 
fractions  (mL−1)

Analytical range of 
assay  (mL−1)

Analyte concentra-
tions in % of ULOQ

FGF-2 Product 0.07–7.3 mg
DNA  < LLOQ
HCP  < LLOQ
Endotoxins 20–7000 EU 0.01–5 EU 400–140,000%
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This was the case for DNA determination in samples of 
IgG1 where the measured concentrations never exceeded 
the ULOQ.  

Differences between manual and semi-automated pipet-
ting mainly concerned (1) the available space in the LHS, 
(2) the number and volume ranges of the pipetting tools 
and (3) the operating direction of the multichannel tool. 
In most of the methods, more units of labware (plates, res-
ervoir holder, tube racks, tips) were needed compared to 
the available space on worktable of the LHS (Fig. S1 in 
Supplementary Material). In these cases, labware had to 
be interchanged manually during a method. The number 
of exchanges could be reduced using deepwell plates for 
sample dilution instead of reaction tubes. This allowed to 
divide dilution factors into smaller steps or to process more 
samples at a time.

Host cell dsDNA

DNA staining by Quant-iT™ PicoGreen® is a fast and 
sensitive method for dsDNA quantification. Automation of 
this assay was straightforward due to its short protocol and 
convenient pipetting behavior of the dilution buffer (low 
viscosity, high surface tension). Aliquot dispense of DNA 
staining reagent was semi-automated using a dispense unit 
attached to the spectroscopic plate reader to reduce light-
induced degradation of the dye and exposure time of the 
operators to the hazardous reagent. The minimum dilution 
for all samples was 1:2.

Protein-speci!c binding a"nity

To determine the binding affinity by SPR as a measure 
for the product´s potency, the protein concentration must 
be reduced to levels around the expected dissociation con-
stant (KD). Since the process samples contained different 
initial product concentrations (Tables 1 and 2), they must 
be normalized to the same concentration in the beginning 
of sample dilution. In the semi-automated procedure, this 
was achieved by manually generating csv-files based on 
templates and importing the volumetric information con-
tained in them into the LHS, similar to the way described 
in [19]. Samples were filled in the dilution plate manually 
and all further dilution steps were executed automatically. 
Templates were created to calculate volumes to be used by 
the LHS (see Fig. S2A in Supplementary Material). This 
allowed fast and flexible sample processing in routine 
analytics.

To avoid disturbance of SPR measurements by gas bub-
bles, the running buffer was degassed by ultrasonication prior 
to sample dilution. Dissolution of air during sample dilution 
and filling as well as trapping of air bubbles in sample vials 
must be avoided. This was achieved by adjusting the speed 

of dispense to 3–4 mm/s. No higher frequency of gas bub-
ble disturbance was observed in the sensorgrams of samples 
diluted automatically compared to manual sample dilution 
(data not shown). Therefore, we conclude that the robotic 
mixing by repeated aspiration and dispense did not dissolve 
more air than manual mixing on an orbital shaker.

First experiments indicated that measurement of SPR 
response and fitting of the data to a binding model caused 
more variance in the final analytical result than the sample 
dilution process. Therefore, model substances were used to 
assess the differences between manual and semi-automated 
sample dilution for binding affinity measurements. Buff-
ered solutions of bromocresol purple and myoglobin were 
diluted in accordance to both protocols, manual and semi-
automated. After normalization to a common concentration 
representing 100 nM antibody concentration, five consecu-
tive independent dilutions with dilution factors between 1.3 
and 10 were prepared. Limits of agreement defined as the 
95% confidence intervals [18] were − 5.8% and + 7.0% for 
bromocresol purple (Fig. 2a, b) and − 6.7% and + 3% for 
myoglobin (Fig. 2c, d). The differences of the bromocresol 
purple sample contents were evenly distributed around zero. 
For the myoglobin solution, differences for smaller concen-
trations (higher dilution factors) were mostly negative and 
positive for the higher concentrations. Average differences 
of semi-automated results compared to manual dilution were 
+ 1.2% and − 1.8% for bromocresol purple and myoglobin, 
respectively. These are acceptable ranges for use in the assay.

HCP ELISA

Immunological methods such as western blot and ELISA 
are the standard for HCP detection and quantification. HCP 
ELISA was the longest and most challenging protocol to 
semi-automate. One reason was that the buffers used con-
tained BSA and Tween 20 to reduce unspecific binding of 
matrix components. Detergents facilitate air bubble forma-
tion in pipette tips upon aspiration and foaming on liquid 
surfaces upon dispense through a reduced surface tension 
and increased viscosity of the solution. Air bubbles and 
foam can lead to volume inaccuracies and must be avoided. 
On the other hand, pipetting speed must be high enough 
to ensure complete mixing. In our case, this was achieved 
by repeated (3–7x) aspiration and dispense at a speed of 
1 mm/s. Exact values might vary with equipment.

A plate wash procedure involving four cycles of aspiration 
and dispense of wash solution was developed on the LHS. 
Equivalence of wash efficiency to manual wash was shown 
using GFP solution and measuring fluorescence after each 
wash cycle (Fig. 3). Three slightly different automated pro-
tocols were compared to manual: AUT1 and AUT2 include 
manual emptying of residual liquid in the plate after the 
wash procedure of three or four wash cycles, respectively. 
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Fig. 2  Absorbance measurements of model substances bromocresol purple (a–b) and myoglobin (c–d) assuming different initial mAb concentra-
tions. b and d show relative differences over the concentration ranges of the prepared samples with averages and limits of agreement

Fig. 3  Wash-out of GFP by manual and different semi-automated 
procedures monitored by fluorescence detection. Left panel: absolute 
fluorescence counts after each wash cycle. Signal amplification factor 

was increased when the signal dropped below 700 FU to distinguish 
signal from blank. Right panel: final fluorescence signals compared to 
blank (solid line ± one standard deviation)
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For the third protocol (AUT3), manual emptying of residual 
liquid was done prior to four wash cycles. The residual fluo-
rescence determined after the entire protocol was used to 
measure the efficiency of the procedures. Using AUT1 and 
AUT2, a depletion in the range of the manual protocol was 
achieved. AUT3 showed a 20% higher residual fluorescence 
than the manual protocol. AUT2 plate wash procedure was 
applied for HCP ELISA assays and compared to the manual 
protocol. Both plate wash methods produced equivalent 
results (data not shown), thus the semi-automated plate wash 
procedure with four wash cycles with manual emptying of 
residual liquid in the end was chosen as standard protocol.

Endotoxin

Efficient mixing is critical during sample preparation for 
endotoxin detection due to the amphiphilic nature of the 
lipopolysaccharides. According to the kit manufacturer, sam-
ples and standard solutions should be shaken for 1–2 min at 
1400 rpm on an orbital shaker. Aspirating and dispensing 
solutions in the LHS 10 × at a speed of 9–14 mm/s resulted 
in equivalent signals of standard dilutions compared to man-
ual mixing and dilution (data not shown). The manufacturer 
moreover recommended using glass containers rather than 
polymeric due to a potentially higher surface adherence of 
lipopolysaccharides to polymeric material [20, 21]. Recov-
ery of endotoxins from glass and polymeric containers was 
tested by comparing signals of dilutions performed in the 
respective containers. Equivalent signals were obtained even 
at low concentrations (0.01–0.1 EU/mL). Full analyte recov-
ery from polymeric containers enabled the dilution of sam-
ples and standard in polystyrene deepwell plates instead of 
in glass vials. Since in the early stage purification of E.coli 
homogenates, endotoxin levels were very high (up to 188 
000 EU/ml), the number of vials required for dilution would 
have exceeded the available space in the LHS. Thus, the 
applicability of multiwell plates was an important prerequi-
site to semi-automate this assay.

Labware compatibility between manual 
and semi-automated methods

Most of the standard labware used in manual methods can 
be also used in the LHS as they are stored in a built-in 
database. Special pipette tips, reservoirs, reservoir holder 
and a tube rack were purchased with the instrument. Accu-
rate information about geometries of the used labware were 
required for exact liquid aspiration and dispense. Starting 
liquid levels of buffers and samples were detected by the 
optical sensor of the LHS. The rise and fall of filling levels 
upon aspiration and dispense was then calculated by the 
system using the container geometry. Thus, a strongly devi-
ating liquid level, due to for example deviating container 

geometry, can lead to distorted aspiration or dispense and 
thus produce wrong results. Therefore, specification of the 
labware is crucial for correct pipetting. Special labware can 
be sent to the LHS manufacturer to establish a dataset and 
use it in the LHS.

Pipetting tools

Plunger-operated pipettes usually achieve greatest accu-
racy and precision at the upper limit of their volume ranges. 
The accuracy of the single-channel tool was checked gravi-
metrically and spectroscopically. At the minimum volume 
recommended by the manufacturer for the single channel 
tool (40 µL), with ELISA sample buffer which is the fluid 
with the highest viscosity and the lowest surface tension 
of the solutions tested and considered similar to complex 
biological samples from early-stage purification (compare 
Sect. 3.1.1), the relative error was between + 3.3 and + 4.1% 
(n = 6). A minimal working volume for sample aspiration 
with the single-channel tool was set from experience at a 
value of 75 µL. For accurate serial dilutions, the 8-chan-
nel tool’s precision was tested. At the upper limit (300 µL), 
an error of + 1.1 ± 0.8% (n = 4) was observed for pipet-
ting of water and reuse of tips. This bias was reduced to 
− 0.4 ± 0.3% (n = 4) when fresh tips were used after each 
cycle which is in the specification range given by the vendor.

In the manual protocols, 12 specimens (samples, stand-
ard, blank, references) were diluted with a 12-channel 
pipette in vertical direction on dilution plates (Fig. 4a). 
In automated liquid handling systems, multichannel tools 
usually have eight channels and they are operated in hori-
zontal direction. Various positionings of samples on dilu-
tion plates were applied to meet the needs of the different 
assays (Fig. 4b–e). Two parameters determined the most 
suitable type of arrangement: (1) the range of analytes in 
samples and (2) the analytical range and linearity of the 
assays. Assays with a large linear range, such as the Pico-
Green® DNA assay and the recombinant Factor C-based 
endotoxin assay, required a lower number of measurements 
(e.g. four) to achieve results with sufficient accuracy. Nev-
ertheless, due to the large range of endotoxin concentra-
tions over the elution peak, five serial dilution levels per 
sample were used. After another purification step (FGF-2 
polishing), less dilution levels were needed due to a more 
narrow range of concentrations in samples. The range of 
DNA levels in all samples was small enough so that four 
1:2 serial dilutions per sample were sufficient. If the assay 
response increases non-linearly with analyte concentration 
or only in a small range as in the case of HCP ELISA, more 
dilutions are preferable. Due to the very high HCP con-
centrations compared to the analytical range and the assay 
non-linearity, six dilutions per sample were used. Schemes 
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in Fig. 4c–e allowed to measure all fractions of a run on one 
plate. For HCP ELISA, 1.5 plates were required to analyze 
all fractions of one chromatographic run.

Performance comparison of semi-automated 
and manual procedures

Time

In a preparative chromatographic purification run in lab 
scale, typically 15–20 fractions are collected during elution 
which are then analyzed. In our assays for DNA, HCP and 
endotoxins, all samples were analyzed together, while for 
binding affinity determination, two times eight samples were 
determined consecutively, because many dilution steps were 
required. In Fig. 5, the total times of manual and semi-auto-
mated methods are compared for a polishing run. Details are 
given in the Supplementary Material, Table S1. The total 
times per assay were almost equal for manual and semi-
automated methods with the exception of ELISA, where the 
semi-automated procedure requires relatively much operator 
time. Additionally, the speed of pipetting must be low in 
this assay due to the buffers’ tendency to form air bubbles 
during pipetting.

The working time reduction by semi-automation of each 
assay was calculated as the difference between the sum of 
the manual steps in semi-automated method and the total 

time needed for manual execution. With the semi-automated 
procedures, operator working time could be reduced on aver-
age by 11.6–53.2 min per analysis. In total, for the analysis 
of product purity and potency, about 225 min or 3.75 h of 
sample dilution could be eliminated by semi-automation 
and around 144 min or 2.41 h of working time saved. The 
time saving will be even higher for earlier purification steps 
(product capture) where impurity levels are higher.

Accuracy and reproducibility

The inter-assay variations of DNA and HCP measurements 
were estimated using a quality control (QC) sample in each 
assay. Comparison of results from manual and semi-auto-
mated methods was sensible only for fully quantitative meth-
ods. Due to low DNA concentrations close to the LLOQ 
in IgG1 samples, matrix effects were dominant resulting in 
poor dilutional linearity. Poor dilutional linearity was also 
observed in HCP measurements of FGF-2 samples. We, 
therefore, considered these results as semi-quantitative and 
did not use them for accuracy and precision assessments. 
Measurements of the QC samples were normalized by divi-
sion by the median of the respective manual assay results 
which were 76.29 µg/ml for DNA and 1.195 µg/ml for CHO 
HCP. The median of the semi-automated DNA measure-
ments was 17% higher than the manual assay results while 
the distribution was narrower (Fig. 6a). For CHO HCP 

Fig. 4  Arrangements of samples on 96-well dilution plates used for 
different assays. Blank, reference standards and samples are placed 
in wells indicated in light, dark and medium grey, respectively, and 

diluted serially 1:2 in the direction of the arrows. a Application 
scheme in all manual assays. Automated assays: b ELISA, c endotox-
ins (capture), d endotoxins (polishing), e dsDNA
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ELISA, a slightly larger inter-assay variability (10.9%) was 
found compared to manual (8.3%). The difference of average 
results was − 2% (Fig. 6b). Only one operator was involved 
producing the data, whereas for the DNA assay four opera-
tors were involved.

Discussion

Quality testing of products is a bottleneck in biopharma-
ceutical process development and manufacturing with 
its stringent regulatory requirements. Specifically, the 
laborious and time-consuming repetitive sample dilution 

are driving forces for the implementation of automated 
equipment. In this work, biochemical analytical protocols 
for the analysis of samples from chromatographic protein 
purification steps were semi-automated to reduce operator 
hands-on-time, parallelize workflows and accelerate devel-
opment projects which depend on analytical results. Semi-
automated protocols were developed starting from manual 
procedures and adjusted for typical protein samples from 
different expression hosts and purification processes, con-
taining large ranges of analyte concentrations. Equivalent 
results were obtained compared to established manual 
methods except for DNA measurements, where higher val-
ues were obtained. The use of model substances allowed to 

Fig. 5  Total and operator work-
ing times for typical sets of 
samples (all 15–20 fractions of 
one purification run for HCP, 
DNA and endotoxins, eight 
fractions for binding affinity). 
Error bars represent ± 1 stand-
ard deviation of three or four 
measurements. Dark grey parts 
are performed manually

Fig. 6  Reproducibility in (a) 
PicoGreen DNA and (b) ELISA 
HCP assays
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directly compare the dilution processes and exclude vari-
ance added by the detection method. This approach was 
most useful in methods using measurements of SPR or 
enzyme activity because these steps caused more variance 
to the result than the sample dilution process. Enzyme 
activity depends on temperature which is not perfectly dis-
tributed in 96-well plates and in thermoshakers [22] and 
might influence the final results.

Operator working times were reduced to very different 
extents for the different assays by the semi-automated pro-
cedures. The largest benefits in this respect were observed 
for binding affinity and endotoxin determinations, because 
large dilution factors and rigorous mixing was required.

ELISA plate wash was mostly done manually, because 
the automated plate wash took around 6.7 times as long as 
manual plate wash (around 40 min for 2 plates compared 
to around 6 min manually). Since the automated and the 
manual protocols led to results of same accuracy and repro-
ducibility, plate wash was assigned optionally automated 
or manual in the semi-automated procedure depending on 
the individual time schedule and preference of the opera-
tor. Similarly, reagent dispense was left to the operators’ 
discretion to carry out manually or semi-automated, since 
the methods were equal in terms of time and quality. Auto-
mation of reagent dispense with the liquid handling station 
was, however, beneficial in routine analytics when several 
steps could be combined such as staining, incubation and 
stop in ELISA (Fig. 1). Also, dispensing light-sensitive rea-
gents such as PicoGreen® automatically in the plate reader 
reduces light-induced degradation and thus increases sensi-
tivity compared to manual dispense. The reduced handling 
with the potentially mutagenic reagent moreover improved 
working safety.

Semi-automation lead to a reduction of operator hands-
on-time and influence, but it required adjustments to over-
come technical limitations of the LHS such as restricted 
space and pipetting tools. Generally, larger volumes were 
used compared to manual to increase precision. Compat-
ibility of the LHS with common laboratory containers and 
plates is advantageous since it reduces dependency on any 
special materials and products from a designated vendor. 
Deepwell plates allowed to perform more sample dilutions 
on the same footprint compared to using reaction tubes. 
Thereby, the number of manual exchanges during a method 
could be reduced. More efficient sample patterns on mul-
tiwell plates could be carried out with the LHS. Thereby, 
the required quantities of reagents and materials as well as 
effort for data evaluation were reduced. Extensive repeti-
tive movements as required for operating plunger-driven 
manual pipettes and thus the risk of repetitive strain injuries 
in the hands, arms and shoulders [14, 23] were reduced by 
automation.

The design of the control unit user interface was found to 
be important for user efficiency and comfort. The software 
must not only be functional and enable flexibility, but also 
has to be designed in a way allowing intuitive use by scien-
tists and all staff not trained in automation. The interface 
must be easy to understand considering and using common 
laboratory workstyles such as sequences in multiwell plates. 
With the liquid handling system used in this study, automa-
tion was most beneficial for routine analyses. Adaptation of 
semi-automated methods to higher or lower analyte concen-
trations was time-consuming. Extensive operator training 
was necessary.

The different reproducibility observed for DNA quanti-
fication compared to HCP content estimation (Fig. 6) indi-
cate that the remaining manual liquid transfer steps, e.g. of 
the assay calibration standard, still impact the final results. 
Systematic differences between the pipetting techniques of 
operators were reported to cause significant deviations in 
results [1]. A dilution-dependent positive bias at low dilution 
factors (up to 1:10) and a negative bias of samples diluted 
more than 1:100 was reported [13] and also observed in 
our data (Fig. S4). This might be one reason for the differ-
ence of average manual and semi-automated results for DNA 
measurements. In our case, reduction of manual pipetting in 
the assay protocol reduced the inter-assay variation of DNA 
measurements to about half. Thus, reproducibility between 
operators was improved which is essential if data are gener-
ated over longer periods of time by several people. The CHO 
host cell protein ELISA data showed that semi-automation 
did not improve precision and reproducibility of one trained 
operator.

We suggest to implement the proposed methodology in 
early development where screening of different product vari-
ants (lead candidates), materials and/or process conditions is 
required. Semi-automation allows more flexibility required 
in this stage of development compared to full automation.

We see potential of semi-automation for any other (spec-
troscopic) analytical method that requires several sample 
dilutions and/or aliquot reagent dispense after a defined 
incubation time, such as UV/Vis absorption- or fluores-
cence-based quantifications, total protein determination (e.g. 
Bradford staining), nanoparticle tracking (e.g. NanoSight), 
or viral titer quantification (e.g. TCID50), to name some 
examples.

Conclusion and outlook

In the presented study, semi-automation of sample prepara-
tion for biochemical analyses reduced operator times and 
operator-specific influence, thereby increased data consist-
ency, and unburdened staff from repetitive physical tasks 
such as sample dilution. Critical issues of typical analytical 
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methods for quality testing such as HCP ELISA, DNA quan-
tification, enzymatic endotoxin detection and SPR-based 
binding assay were discussed. We showed which challenges 
might arise in common analytical procedures regarding 
semi-automation with a simple liquid handling station and 
how these challenges can be addressed.

For commissioners of analytics, automation bears the 
potential to reduce personnel cost and on the other hand, 
reduce variability due to operator influence. Less extensive 
training of staff might be necessary since the critical steps 
of sample and standard dilution are carried out by a robot. 
Procedures should be easily adaptable and (re-)validated. 
For the concerned staff, automation reduces the risk of hand 
and shoulder ailments.

A next step to further improve analytical workflows and 
data quality will be assay miniaturization to reduce sample 
and reagent volumes, material costs, time and potentially 
accuracy and reproducibility [24].

To get biopharmaceutical ready for Quality-by-Design 
approaches as recommended by the authorities, such robust 
and reproducible analytics can be used to calibrate pro-
cess analytical technology (PAT) and model-based control 
algorithms.
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Figure S1: Representation of the epBlueTM Application Editor used to control the LHS. 
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Calculation and data import into LHS and sample dilution scheme for binding affinity assay 

Process samples were diluted in 96-well 2 mL deepwell plates starting in column 1 with a 1:10 dilution. Up 
to 4 serial 1:10 dilutions were carried out by transfer to columns 2 – 4 (see Figure S2B). Higher one-step 
dilution factors were avoided in all methods for accuracy reasons. In column 5, individual dilutions are 
performed for each sample to reach a common concentration for all samples (normalization step). In 
columns 6 to 9 all samples were diluted simultaneously with the 8-channel tool to levels around the 
dissociation constant KD of FGF-2 to FGF receptor 2 which was found to be in the range of 1 to 4 nM. 

A  B 

  

Figure S2: Sample preparation by semi-automated dilution for binding affinity measurement of FGF-2. (A) 
Calculation sheet to determine dilution steps. Csv-files are loaded into the LHS control software. (B) Scheme 
of dilution plate (96-well 2 mL deepwell plate). Every sample is diluted to 1, 2, 5, 10 and 20 nM. 
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Development of the plate wash procedure 

A plate wash procedure for HCP ELISA was set-up on the LHS by sequentially dispensing and aspirating wash 
buffer. In order to remove as much of the wash solution out of the wells as possible in each step, the lowest 
tip position was determined at which none of the 8 tips touched the bottom of the wells. Keeping a distance 
to the bottom was important in order not to disturb the bound surface layer. This distance between well 
bottom and tip was eventually 0.8 mm. The remaining liquid volume after aspiration was 20 – 25 µL/well. 
In manual plate wash, wells are filled with multi-channel pipette and emptied by gravitational and 
mechanical force resulting in only the surface adsorbed liquid layer to remain in the wells.  

Prior to the washing procedure the well were filled with a GFP solution in order to be able to rapidly and 
accurately determine the residual amount of protein. After each cycle of liquid aspiration and dispense of 
fresh wash buffer, the amount of remaining substance was determined by fluorescence measurement of 
GFP. The signal amplification factor (gain) was increased from 65 to 90 as the amount of substance 
decreased. Sequences with same number and one additional wash cycle were compared to manual plate 
wash for their efficiency to remove unbound substances (see Figure 3A). After manual wash the signal of 
GFP was 9% higher than the blank and in automated wash procedure the difference varied from 9 - 28%. 
(Figure 3B). The 16% difference compared to 9% was not considered as significant and therefore also 
included in further evaluations.  
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Figure S4: Dependence of results of DNA measurements on dilution factors (proportional bias). 
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Table S1: Details to Figure 5 on duration of assays in manual and semi-automated ways. 

Analyte (Assay)  
Same in both methods 

Manual in semi-
automated 

Sample dilution a 
Total 

Working 
time 
saved 

Method Steps [min] 
StdDev 
[min] 

RSD [min] 
StdDev 
[min] 

RSD 
manual 
[min] 

Automated 
[min] 

StdDev 
[min] 

RSD [min] 

Host Cell Proteins 
(ELISA) 

manual 
Preparations, plate coating 
and blocking, 4x plate 
wash, measuring 
absorbance, data 
evaluation, cleaning. 

75.8 3.1 4.1%       
43.3 

 
0.577 1.3% 119.1 

 

semi-automated 31.75 4.99 15.7%  62.7 1.50 2.4% 94.5 11.6 

Endotoxins 
(Factor C) 

manual 
Preparations, mix reagent 
and add to samples, 
measure fluorescence, 
data evaluation, cleaning. 

31.2 4.8 15.2% 
      55.5  4.5 8.1% 86.7  

semi-automated 2.3 0.6 24.7%  53.7 0.1 0.2% 56.1 53.2 

DNA (Picogreen) 
manual 

46.2 2.9 6.4% 
      18.7  1.53 8.2% 64.9  

semi-automated 4.5 0.2 3.7%  25.6 1.1 4.4% 30.1 14.1 

Binding affinity 
(Biacore) 

manual Calculation of dilutions, 
start SPR measuring, data 
evaluation, cleaning. 

24 2.0 8% 
      53.7  2.3 4.3% 77.7  

semi-automated 21.0 0.8 3.6%  27.6 0.3 1.1% 72.5 32.7 

Total (ELISA, Endotoxin assay, Picogreen: 1x, Binding affinity: 2x) b 224.9 197.1  144.3 

a For ELISA also staining and stop were done manually or automated. 
b Binding affinity: 8 samples per assay. 
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Abstract

Technological developments require the transfer to their location of application to

make use of them. We describe the transfer of a real‐time monitoring system for

lab‐scale preparative chromatography to two new sites where it will be used and

developed further. Equivalent equipment was used. The capture of a biopharma-

ceutical model protein, human fibroblast growth factor 2 (FGF‐2) was used to

evaluate the system transfer. Predictive models for five quality attributes based on

partial least squares regression were transferred. Six out of seven online sensors

(UV/VIS, pH, conductivity, IR, RI, and MALS) showed comparable signals between

the sites while one sensor (fluorescence) showed different signal profiles. A direct

transfer of the models for real‐time monitoring was not possible, mainly due to

differences in sensor signals. Adaptation of the models was necessary. Then, among

five prediction models, the prediction errors of the test run at the new sites were on

average twice as high as at the training site (model‐wise 0.9–5.7 times). Additionally,

new prediction models for different products were trained at each new site. These

allowed monitoring the critical quality attributes of two new biopharmaceutical

products during their purification processes with mean relative deviations between

1% and 33%.
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1 | INTRODUCTION

According to the WHO, transfer of technology is defined as “a logical

procedure that controls the transfer of any process together with its

documentation and professional expertise between development

and manufacture or between manufacture sites” (World Health

Organization, 2011). In this study, we describe the transfer of real‐
time monitoring and pooling system for preparative chromatographic

separation which we developed previously (Sauer, et al., 2019a;

Walch et al., 2019). Usually, pooling decisions are made based on off‐
line or at‐line analysis (Mendhe et al., 2015; Rathore, Wood, et al.,

2008; Rathore, Yu, et al., 2008; Shekhawat & Rathore, 2019). Our

monitoring system allows to predict critical quality attributes such as

product concentration and content of process‐ and product‐related
impurities by statistical models in real‐time. The main advantage of

this approach is that it saves a lot of process time compared with the

determination of quality attributes by offline wet lab analysis.

Moreover, real‐time monitoring enables prospective process control

(Jiang et al., 2017). Predictive models were built on process data

derived from a panel of online sensors and offline analyses of the

corresponding quality attributes. As online sensors, conventional pH,

conductivity, and UV absorbance measurements were connected in

series with commercially available multiangle light scattering (MALS),

refractive index (RI), and ATR‐FTIR (IR) probes. A prototype fluor-

escence measurement device was also integrated which allowed to

collect emission spectra alternatingly at six different excitation wa-

velengths. Overall, several thousands of predictors from the online

sensors were available for model building. Structured additive

regression (STAR) and partial least squares (PLS) regression were

applied as modeling techniques (Sauer, et al., 2019a; Walch et al.,

2019). In the present work, we used partial least squares (PLS) re-

gression as a modeling technique. PLS regression has been used for

similar purposes and with similar online sensors (Grote et al., 2014;

Roychoudhury et al., 2006; Wasalathanthri, 2020). This chemometric

technique reduces the dimensionality of the data set by projecting

the original variables to latent structures. The method is particularly

suited for such highly correlated variables generated by the online

sensors. For model training, the effluent of the chromatography

column was fractionated and analyzed for the respective quality

attributes. The optimal number of fractions and replicates of chro-

matographic runs is a function of the precision of the off‐line method

and the requested quality of the prediction frequently assessed by

the root mean squared error (RMSE) (Felföldi et al., 2020).

The transfer of the monitoring system between different sites is

described in this study. A chromatographic capture step of recombinant

human fibroblast growth factor 2 (FGF‐2) based on ion exchange (Sauer,

et al., 2019b) was used as an industry‐relevant model process for system

comparison. The elution phase was monitored. We used 12 training runs

with 15 fractions each to reach a total number of 180 observations. This

illustrates that many fractions must be analyzed to establish a model.

Hence, a direct transfer of the method from one site to the other would

save a lot of time and material. We hypothesize that the transfer of

models from the training site to the new sites is possible because sensors

of identical configuration of the same vendors where implemented into

commercially available chromatographic workstations of the same type

at all sites. Furthermore, the same separation process protocol and

equivalent feed material were used for all experiments. We tested

the hypothesis by evaluating the test errors at the new sites, that is, the

difference between predictions and measured quality attributes. The

product, FGF‐2, was pooled based on offline analyses and based on

model‐predicted values and the respective models are being described

and discussed. Case studies were performed at the new sites showing the

functionality with newly generated models specific for the site.

2 | MATERIALS AND METHODS

2.1 | Materials

All chemicals were purchased from Merck unless stated otherwise. Basic

human FGF‐2 was expressed in Escherichia coli BL21 in soluble form. Cells

harvest, disintegration, and clarification were carried out as described by

Sauer et al. (2019b). Aliquots of the homogenates obtained from fer-

mentation broth carried out under same conditions were used as feed

material for the experiments at the three sites. For the case studies,

biopharmaceutical proteins were produced by proprietary processes.

2.2 | Methods

2.2.1 | Chromatography

FGF‐2 was purified by chromatographic purification on an Äkta Pure 25

(Cytiva) as described in Sauer, et al. (2019b). In brief, E. coli homogenate

was 0.22 μm filtered and 118ml (10 CV) of the clarified homogenate

were loaded on a column packed with weak cation exchanger

Carboxymethyl‐Sepharose Fast Flow (Cytiva) with 11.8ml CV (1 cm

diameter, 15 cm bed height). The column was equilibrated before and

washed after loading with 100mM Na‐phosphate, pH 7.0. FGF‐2 was

eluted by a linear gradient from 0 to 1M NaCl in 100mM Na‐phosphate
pH 7.0. During the elution phase, the effluent was collected in 1ml

fractions. Fifteen fractions were analyzed around the peak center. The

column was sanitized after each run with 1.0M NaOH for 1 h (5 CV). For

the case studies, proprietary purification protocols were used. For model

training, 8–9 replicate runs were performed at each of the new sites, 6–7

of them as training runs, and 2 runs as test set.

2.2.2 | Online sensors and database

Sensors were integrated in the column effluent stream in‐line in the

order of increasing flow cell void volume and/or increasing pressure

sensitivity. Details are described in Sauer, et al. (2019a) and Walch

et al. (2019). A mid‐infrared spectrometer MATRIX‐FM (Bruker) was

used to measure ATR‐FTIR spectra in the wavenumber range

from 3500 to 750 cm−1 at a resolution of 2 cm−1. Intrinsic protein
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fluorescence was recorded at emission wavelengths between 236

and 795 nm at a resolution of 0.3 nm. Excitation was done at six

different wavelengths and one (300 nm) with a small and a large

filter width: 265 ± 10 nm, 280 ± 10 nm, 289 ± 10 nm, 300 ± 10 nm,

300 ± 40 nm, 340 ± 10 nm, and 400 ± 10 nm. The sensor was as-

sembled in‐house using a laser‐induced xenon lamp (type EQ‐99XFC
LDLS, Energetiq), a fiber optic multiplexer (Avantes), a flow cell

(FIAlab Instruments), and the spectrometer AvaSpec‐ULS‐TEC
(Avantes) (Figure 1). Measurement time for all seven emission

spectra including multiplexer switching time was 16 s. All other de-

tectors were standalone commercial devices. An RI detector Optilab

T‐rEX (Wyatt) was used allowing differential RI detection in the

range of −0.0047 to + 0.0047 RIU. The RI detector also traced a

forward monitor for evaluation of system integrity and the LED in-

tensity. Light scattering signals were recorded with the MALS de-

tector miniDAWN TREOS (Wyatt) at angles of 43.6° (LS1), 90° (LS2),

and 136.4° (LS3). Additionally, forward monitor intensity and tem-

perature were recorded.

Volume delay between sensors was determined gravimetrically

and sensor signals aligned accordingly before modeling and predic-

tion. All buffers used in the process were aqueous based, therefore

water was used as blank for all measurements. Blanks were mea-

sured with UV, IR, RI, and MALS before each run and signals ad-

justed. The pH probe was calibrated with a linear calibration

between pH 4 and pH 7 before each run. The IR detector was cooled

with liquid nitrogen at least 20min before each run. Signals were

recorded and stored by the control software XAMIris (evon).

2.2.3 | Offline analytics for quality parameters

All offline analyses were performed as described in Sauer, et al.

(2019b). In essence, protein quantity was determined by reversed‐
phase (RP) HPLC using a TSKgel Super‐Octyl column (2 μm bead

diameter, 4.6 × 50/100mm, 110 Å, Tosoh Bioscience). Monomer and

high molecular weight impurity (HMWI) contents were determined

by their relative peak areas after size‐exclusion (SEC) UPLC using an

ACQUITY UPLC BEH125 SEC column (1.7 μm bead diameter,

4.6 × 150mm, Waters). Low molecular weight impurities were pre-

sent in negligible amounts in the peak center.

Host cell proteins (HCP) were determined by anti‐E. coli‐HCP

sandwich ELISA in 96‐well plate format with antibodies from Cygnus.

Values of 3–6 doubling dilutions per sample were averaged. Double‐
stranded DNA (dsDNA) was quantified by Quant‐iT® Picogreen

(Thermo Fisher Scientific) fluorescence dying in 96‐well plate format.

Values of 3–4 doubling dilutions per sample were averaged. Offline

analyses for the case studies were performed by proprietary analy-

tical methods.

F IGURE 1 Schematic of the in‐house assembled multi‐wavelength fluorescence detector. Arrows represent optical fibers. Not drawn to
scale
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2.3 | Statistical modeling

PLS regression was used to generate prediction models of quantity

and purity. All data handling was performed within the statistical

computing environment R (Team R. C., 2020) using R package pls

(Mevik et al., 2019) as in Walch et al. (2019). This linear regression

method is particularly suited for multicollinear variables. Models

were trained on 8–12 replicate runs (120–180 data points) at the

training site as there were some missing sensor data at the training

site. Targets were the quality attributes quantity (measured in mg/

ml), monomer content (in %), HMWI content (in %), and HCP and

dsDNA contents (both in ng/ml). Based on expert knowledge (such as

amide bands and fingerprint regions), the spectral data were reduced

to certain regions of interest and different combinations of sensor

signals were tested. Numerous subsets of in total 15,725 predictors

(online variables) that were available and usable at all three sites

were selected. Prediction models were generated on the training

data using leave‐one‐run‐out cross‐validation (CV) for each of the

five responses. The error measure used here was the RMSE, which is

a measure of the average prediction error. It is given in the unit of

the respective quality attribute and calculated by

ٰ Һ
 n

y yRMSE 1 ( ˆ ) ,
i

n
i i1

2

where n is the number of samples, yi are the measured values, and ŷi the
predicted values. The set of predictors yielding the lowest RMSE for a

given response was selected for the prediction model of this response. In

case of equivalence or almost equivalence between models for one tar-

get, models with fewer predictors were preferred for reasons of simpli-

fication and greater robustness against sensor fall‐outs. Prediction quality

was assessed by applying the models on test data sets which were not

used for model training. The error measure is then called “test RMSE.”

To assess the quality of the proposed models we also included

so‐called null models. In a null model the response of a certain run is

simply predicted by the average values of all the training runs

without the use of any predictors. If the proposed model outper-

forms the null model, the contained predictors are considered im-

portant and useful for the prediction of the response.

Another measure of the quality of prediction used in this study

was the mean relative deviation (MRD, in %) defined by
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Contrary to the RMSE, the MRD is a relative measure and can be

regarded as independent of the range of the measured values. Therefore,

it was used for the case studies where not all information could be

disclosed.

2.4 | Method transfer to new sites

Online sensors at two new sites (A and B) were purchased from the

vendors mentioned above. Offline analyses were performed at the

training site to reduce differences between sites. Operators received

hands‐on training for the use of the monitoring system. A run

checklist was transferred to ensure correct system handling. Three

multi‐day hands‐on trainings were performed for data analysis and

modeling.

Data of runs B1 and B2 were shifted forward by 2 and 1min

respectively, corresponding to equal milliliters, for easier visual

comparison.

2.5 | Pooling

Fractions were manually selected for pooling so that the pools met

defined quality criteria while maximizing the yield (collected protein

over eluted protein). Negative predictions of dsDNA, HCP, and

HMWI were set to 0 before fraction selection for calculation of the

pool averages. Predictions of more than 100% Monomer were set to

100%. For pooling, HCP and dsDNA were calculated in parts per

million (ppm) by dividing the values in ng/ml by the FGF‐2 con-

centration in mg/ml. Runs were pooled independently based on

measured quality attributes and based on model predictions. The

pooled fractions can be identified in Online Supporting Information.

2.6 | Case studies

All offline analyses were performed at the new sites. PLS models for

six critical quality attributes were trained on 6–7 training runs and

tested on data of two independent test runs. In each run, 13 fractions

were collected.

3 | RESULTS

Online monitoring systems for chromatographic purification were

set‐up at the two new sites. Automated sensor control was enabled

by custom control software. The functionality of each system was

first tested using a human serum albumin solution (data not shown).

As a model process, we used the chromatographic capture process of

FGF‐2 from clarified E. coli homogenate. First, models were estab-

lished for real‐time prediction of product concentration and contents

of monomer, HMWI, HCP, and dsDNA at the training site. These

models were transferred to the new sites.

3.1 | Online sensor data of FGF‐2 capture at three
sites

Online sensor data of three FGF‐2 capture runs at site A (runs

A1–A3) and three runs at site B (runs B1–B3) were compared with

the arithmetic mean of 12 runs performed at the training site

(Figure 2). To include the variability at the training site, one, two, and

three standard deviations (SD) of the signals obtained at the training
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site were included in the graph. The three runs and the respective

sensor signals at site A were highly reproducible except for the

MALS detector. At site B, the runs were not as reproducible. Elution

was delayed in runs B1 and B2 as can be seen in the UV absorption,

conductivity, and refractive index signals (Figures 2a–d and 2f). The

reason for this delay was a later start and then steeper salt gradient

used for protein elution due to insufficient priming of the tubes

before the runs. As a result, peaks were narrower with higher peak

protein concentrations in runs B1 and B2 (Figure 2b). All sensors

except conductivity and pH showed higher maximum intensities

compared with site A and the training site. Modifications of the

process conditions of the final run B3 caused a broadening of the

peak. UV absorption signals showed large differences at site B

compared to the other two sites where the signals were comparable

F IGURE 2 Online sensor data during the elution phase from three test runs at sites A and B compared with data from the training site (gray
lines). Black lines: averages of 12 training runs. Dashed lines: 1, 2, and 3 standard deviations of training data. Sensors: UV (214, 260, and
280 nm, a–c), conductivity (d), pH (e), refractive index (f), light scattering (g) and (h)
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(Figure 2a–c). pH was not available for runs A2 and A3, but similar in

all other runs at all sites (Figure 2d). More pronounced pre‐peaks
were observed in MALS signals at the new sites in the range of

5–15min after start of the elution phase (Figure 2g,h). Noisy scat-

tering signals at 43.6° angle (Figure 2g) indicated the requirement for

cleaning of the flow cell at both new sites. Processing of cell

homogenates led to (fast) fouling of the flow cell. Light scattering at

90° (Figure 2h) was less affected by fouling. Overall, the signals from

the two new sites often differed significantly from the training site.

IR and fluorescence sensors recorded absorption and emission

spectra, respectively, at each time point in a very high resolution.

Thus, representative wavenumbers and wavelengths in the center of

the peaks were visualized over the time of the elution phase.

Figure 3 shows raw and preprocessed IR and fluorescence data.

F IGURE 3 Exemplary wavenumbers and wavelengths of IR (a) and (b) and fluorescence data (c)–(h) before and after preprocessing (left and
right column, respectively). Gray lines: model training data. Black lines: averages of 13 training runs. Dashed lines: 1, 2, and 3 standard
deviations of training data
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Spectral data needed one or more of the following preprocessing

techniques: smoothing, baseline correction, first or second deriva-

tive, and normalization to equal length or area. Preprocessing

methods and their parameter values influenced the suitability for

predictive modeling (not shown). They must be optimized iteratively

by comparing a score such as the RMSE. Here, smoothing, taking the

first derivative and normalization to equal length were selected for

fluorescence. IR was preprocessed by subtraction of a reference

spectrum recorded before elution in addition to smoothing and

baseline correction by asymmetric least squares (Eilers & Boelens,

2005) implemented in the R package baseline (Liland et al., 2010).

Among all sensors, the fluorescence data showed the largest

differences between sites. Intensities of peaks were different at all

sites (Figures 3c, 3e, and 3g). For excitation at 265 nm and 280 nm,

signal preprocessing by smoothing, derivatization (first derivative),

and normalization to equal length led to a higher agreement of

the spectra (Figure 3c–f). For all higher excitation wavelengths

(289–340 nm), no suitable preprocessing method or a combination

thereof could be found to compensate for the differences of the

signals obtained at the different sites (e.g., Figure 3g,h). In addition, a

decrease of signal intensities over time as a result of the aging of the

lamp and optical fibers was observed (see Figure S1).

3.2 | Model predictions

Predictive models for all described quality attributes were applied to

the online data obtained at the new sites. Due to the large differ-

ences in fluorescence signals which could not be compensated by

preprocessing, the RMSEs of the models were large in the beginning.

Fluorescence variables were only included for excitation at 265 and

280 nm. Models for monomer, HMWI, and HCP which contained

fluorescence excitation variables above 280 nm, were retrained with

data from the training site to be able to apply them to the new sites'

data. Figure 4 shows the results of the offline analyses obtained for

FGF‐2 concentration and contents of monomer, HMWI, HCP, and

dsDNA. Furthermore, corresponding model predictions and differ-

ences between measured and predicted values (errors) are shown for

F IGURE 4 Fraction‐wise offline measured quality attributes for FGF‐2 concentration, monomer, HMWI, HCP, and dsDNA content, model‐
based predictions, and corresponding differences to offline measured values (prediction errors). Gray lines: model training data. Blackline:
average of training data. Dashed lines: 1, 2, and 3 standard deviations of training data. dsDNA, double‐stranded DNA; FGF‐2, fibroblast growth
factor 2; HCP, host cell protein; HMWI, high molecular weight impurities
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each fraction. As before, data from new sites were plotted over the

data obtained at the training site including their respective averages

and 1, 2, and 3 standard deviations thereof. Predictors selected in

each model are given in Table 1.

Errors of the prediction of concentration were distributed

around zero in a slightly larger range as for the training data with

errors up to 4.5 mg/ml. The monomer content was underpredicted at

site A by −8.9% on average and by up to −20.5% in collected frac-

tions. The monomer content was over‐ and underpredicted at site B

by up to 31.2% overall and up to −20.7% in collected fractions. On

average, the monomer content at site B was underpredicted by

−1.5% in collected fractions. HMWI showed lower absolute values in

the beginning of the peak at site B compared with the other sites

which was not recognized by the model. Errors of the HMWI pre-

dictions were in the same range as at the training site (±12% HMWI).

The model for HCP was not able to recognize the different profiles

at the new sites, yet the errors were in a similar range as for the

training runs. Measured dsDNA was higher at site A compared to the

training site and lower at site B, due to the different fermentation

batches. The model for dsDNA was not able to predict the different

dsDNA profiles accurately. Average prediction errors for dsDNA

were about two and five times as high as at the training site for site A

and B, respectively (Table 1).

Model quality can also be evaluated with regard to the errors

obtained by so‐called null models which predict the target value by

simply taking the average of the respective variable from all the

TABLE 1 Predictors used in the models, RMSEs of the respective null models, and PLS models for test runs at three sites

Model Predictors (number) RMSE Training site Site A Site B

Concentration
(mg/ml)

UV, RI,
conductivity (5)

Null model 7.0 7.0 8.8

PLS model 0.8 (0.5–1.0) 1.2 (1.1–1.3) 1.1 (0.9–1.4)

Monomer (%) UV, RI, Fluor265 (25) Null model 21.9 11.1 24.9

PLS model 8.5 (4.7–10.4) 17.7 (14.4–20.9) 16.7 (14.9–19.2)

HMWI (%) UV, conductivity (4) Null model 6.2 3.7 4.9

PLS model 3.2 (2.0–4.7) 2.8 (2.7–3.0) 4.2 (1.8–6.1)

HCP (ng/ml) UV, conductivity,
MALS (8)

Null model 156 169 191

PLS model 81 (37–125) 171 (113–209) 121 (98–141)

dsDNA (ng/ml) MALS (4) Null model 110 623 199

PLS model 87 (39–139) 496 (488–501) 233 (186–271)

Note: The ranges of test RMSEs per run are given in brackets.

Abbreviations: dsDNA, double‐stranded DNA; FGF‐2, fibroblast growth factor 2; HCP, host cell protein; HMWI, high molecular weight impurities; MALS,
multiangle light scattering; PLS, partial least squares; RI, refractive index; RMSEs, root mean squared errors.

TABLE 2 Quality attributes of the collected FGF‐2 product pools at the three sites based on model‐predicted values and based on offline
measurements, respectively

Training site (n = 6) Site A (Run A2) Site B (Run B3)
Measured Predicted Measured Predicted Measured Predicted

Pool volume (ml)* 8 or 9 8 or 9 4 5 10 10

FGF‐2 concentration (mg/ml) 11.8 ± 0.6 10.5 ± 0.4 15.2 13.9 12.5 11.7

Monomer (%) 96.0 ± 1.5 97.6 ± 1.6 99.5 91.1 97.1 93.7

HMWI (%) 0.8 ± 0.4 1.7 ± 0.2 0.1 1.4 2.5 2.0

HCP (ppm) 44 ± 6 56 ± 3 12 34 45 53

dsDNA (ppm) 34 ± 14 56 ± 5 56 26 4 46

Yield (%) 97.1 ± 0.3 96.3 ± 1.3 65.1 73.0 97.6 95.9

Note: Plus/minus values represent one standard deviation. For the new sites, data of one representative run is shown.

Abbreviations: dsDNA, double‐stranded DNA; FGF‐2, fibroblast growth factor 2; HCP, host cell protein; HMWI, high molecular weight impurities.

*For the exact fractions refer to Online Supporting Information.
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training runs. Any trained model has to outperform the null model.

For the training site, data from six independent test runs from two

new fermentation batches (3 runs per batch) was used as a reference

(Sauer, et al., 2019a). These test runs represent a similar situation as

was faced at the new sites since the data was not used for model

training and the processed material was from different fermentation

batches. Predictions and offline measured values can be found in

Online Supporting Information.

The PLS model for FGF‐2 concentration performed much better

than the corresponding null model at all three sites (Table 1). The

model for monomer content also performed better than the null

model at two of three sites. At site A, the PLS model gave a higher

RMSE than the null model. This was probably due to many missing

observations at the tail of the peak where the error usually was the

largest (compare Figure 4). At the training site, the models predicting

HMWI, dsDNA, and HCP allowed better predictions compared with

the null models. Average RSMEs of the null models were between 1.3

and 8.8 times larger than the RMSEs of the PLS models at the

training site. At the new sites, the advantage of the models over the

null models was moderate or none at all. In three cases (monomer at

site A, HCP at site A, and dsDNA at site B) the model prediction

errors were even higher than the null model RMSE. The performance

of the transferred PLS models at the new sites was only satisfying for

the FGF‐2 concentration.

3.3 | Product pooling based on model predictions

The ability of the new systems to produce product that meets spe-

cified quality criteria was evaluated by pooling fractions of each of

the test runs. Quality attributes of pools based on model‐predicted
values were compared to pools based on offline measured data.

The following criteria had to be fulfilled by the pools: FGF‐2 mono-

mer more than or equal to 90%, HMWI less than or equal to 5%, HCP

less than or equal to 60 ppm, DNA less than or equal to 60 ppm, and

FGF‐2 concentration in the fraction of at least 1.0 mg/ml. Measured

and predicted HCP and dsDNA contents in ng/ml were converted

into ppm by division through the measured and predicted FGF‐2
concentrations, respectively. In an iterative process, fractions were

included to maximize the share of collected product from the total

eluted protein (=yield) while fulfilling all quality criteria. Table 2

shows the obtained pool quality attributes at the training site and for

exemplary runs at the new sites. Run A2 was selected randomly since

all runs at site A were very similar. Run B3 was selected as an ex-

ample because in this run the process conditions best matched those

of the other sites. Pool volumes were multiples of 1 ml fractions and

thus integer numbers. At the training site, very similar pools were

obtained using the predictions and the offline measurements. At site

A, less fractions were pooled offline than online due to high mea-

sured dsDNA contents. At site B, the model predictions led to the

collection of the same fractions as were pooled offline. The FGF‐2
concentration in the peak center was underpredicted about equally

at all sites: On average, the collected FGF‐2 mass was predicted 7.0%

lower than the measured mass. This was most probably due to the

saturation of many sensors at the peak center, such as UV or RI

detectors. Despite deviations in the monomer prediction at the

training site of up to 17% in collected fractions, the average mono-

mer content of the pools was similar to the reference analytics. At

site A, the monomer content was the limiting variable for pooling

based on predictions due to its strong underprediction which led to

moderate yields of 73%–88%. The mass balance of %monomer and %

HMWI was not closed either due to the presence of low molecular

weight impurities (not shown) or due to inaccuracies of the

predictions. Mass balances were not considered with these models.

F IGURE 5 PLS predictions and offline measurements of six critical quality attributes of two test runs at one of the new sites. The test RMSE
is given for each attribute. PLS, partial least squares; RMSEs, root mean squared errors
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The high dsDNA content of the material at site A (compare Figure 4)

was responsible for the low yields of the pools based on offline

measurements of 65%–82%.

3.4 | Case studies at the new sites

Case studies at the new sites were performed to test the abilities of

the systems to predict critical quality attributes of biopharmaceutical

proteins during chromatographic separation. One of them is ex-

emplarily shown in Figure 5. Among the modeled product attributes

were typical process‐related and product‐related quality attributes,

respectively. Mean relative deviations (MRDs) among the six models

were between 1% and 33%.

Among the critical quality attributes were charge variants which

represent a form of micro‐heterogeneity. The composition of charge

variants is a major quality attribute that needs to be controlled in the

manufacturing of biopharmaceuticals (Hintersteiner, Lingg, Janzek,

et al., 2016; Hintersteiner, Lingg, Zhang, et al., 2016). Protein charge

variants have very similar structural and spectroscopic properties

and present a challenge for online monitoring and prediction. The

developed models were able to predict the different critical quality

attributes with satisfying accuracy (not shown).

4 | DISCUSSION

The aim of the technology transfer was to ensure that the systems

are fit for their purpose at the new sites. The performances of the

online monitoring systems transferred to the new sites were com-

pared with the training site by two different measures: the RMSEs of

the test runs quantified the average errors overall fractions and

thus the overall quality of the PLS models. The pooling example

illustrated the ability of the models to produce qualitative products.

Even though equivalent load material was processed following

the identical protocol and using online sensors from the same sup-

pliers at all sites, significant differences between the sensor signals

were observed for the system established at the two new sites. Site‐
specific influences such as operator effects, ambient temperature,

humidity, or chemicals might have influenced the processes. Fouling

is another common problem when working with biological solutions.

Usually, signals are being background corrected by resetting them

just before the measurement however at the cost of decreased

sensitivity with an increasing amount of fouling. Fouling and sensor

aging must be continuously monitored and controlled to ensure that

the monitoring system is in a functional state. The IR detector came

with a built‐in performance qualification test which was done before

each run. The test fails, for example, when the device is not cooled

enough, when the lamp intensity is too low or humidity too high

which would indicate leakage. IR spectra were strongly influenced by

ambient conditions, for example, temperature. IR absorption mea-

surements are usually background corrected by a blank spectrum

recorded just before the measurement. This was not sufficient here

due to the long duration of the loading process of about 2 h. Spectra

of different runs showed very different appearances. Subtraction of a

spectrum just before the elution was necessary to use the sensor

data for modeling. For RI and MALS detectors, Forward monitor

intensity of more than 90% was used for quality control. With these

measures, the commercial sensors were robust and delivered com-

parable results across the sites. The reason for the different fluor-

escence signals was probably that this sensor was not an optimized

commercial setup but an in‐house assembled prototype (see

Figure 1). The flow cell was free‐standing and not encased as in the

other sensors. The optical fibers must be manually arrested and the

exact position impacted the measurement through the transmission

of light. Mechanical switching of channels by the multiplexer must be

precise to transmit all light. This setup was chosen to allow the

scanning of six excitation wavelengths in parallel to gather as much

information as possible. However, this was at the expense of the

robustness of this fluorescence sensor. In a manufacturing environ-

ment, a simpler and more robust sensor would be needed. Fluores-

cence signals at site A were closer to the training site than signals at

site B. The technology was transferred to site A about 2 years after

set‐up at the training site was completed and to site B about 1 year

after that, that is, 3 years after set‐up at the training site. Signal

preprocessing could not level out the differences sufficiently. Lamp

aging is generally common for such lamps and can be predicted but

here the effects of fiber aging and lamp aging overlayed.

Accurate representative process data is a major requirement for

the generation of reliable prediction models. Therefore, sufficient

time and resources must be invested in data generation. However,

data generation was work‐intensive (compare Christler et al., 2020).

The appropriate number of fractions and number of runs depends on

the coefficient of variation of the reference analytics (Felfödi et al.,

2020). If more fractions are analyzed, less runs can be sufficient

because a certain number of total data points is necessary. More

observations usually increase the reliability of predictions. More than

the planned runs were necessary at the training site because at least

one sensor showed fouling, aging, or had a defect. Moreover, the

complex system required experience to handle it correctly. Offline

and online data of the runs at site A were generally more similar to

the training site than at site B. This shows that technology transfer

concerns not only the transferred technology but also the technology

handling process. System handling is expected to become much ea-

sier for an optimized commercial sensor battery.

Model training was conducted within a few days, once the

workflow was established and knowledge was obtained on data

processing. The main parameters for model optimization were data

preprocessing techniques and predictor selection. Simpler models

with fewer predictors were selected in this investigation whenever

the RMSEs were similar between models containing a different

number of predictors. Simpler models bear a lower risk of dysfunc-

tion of the monitoring system if single sensors become dysfunctional

or lose their connection to the database during a run. Missing pre-

dictors can lead to totally missing predictions because all predictors

of a model are needed to calculate the target. Missing predictors
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could be imputed by other highly correlated predictors using for

example tree‐based modeling techniques (Kuhn & Johnson, 2013),

however at the cost of increased model complexity.

Overall, the UV absorbance sensor gave the most useful

predictors, conductivity the second most useful, then RI and

MALS, and last fluorescence. IR was not used in a model. How-

ever, this is no general statement. In our previous work, fluor-

escence and infrared sensors yielded very useful predictors,

especially for process‐derived impurities such as HCP and DNA,

but also for monomer and HWMI (Sauer, et al., 2019a; Walch

et al., 2019). This could be a reason for the poorer performance

of these models here, since fluorescence from excitation above

280 nm could not be used. The fact that a sensor is not included

in a model does not necessarily mean that it is useless in pre-

dicting a response. In the case of several prediction models with a

similar performance the simpler models were selected due to

higher robustness. RSMEs of the five models on the test runs of

the new sites were on average twice as high (2.0 times) as the

test errors at the training site (0.9–5.7 times). Higher errors at

the new sites were expected since some of the new data were not

represented in the training data set, such as the high dsDNA

values at site A or the high HCP values at site B. In such cases,

predictions may not be accurate (Kuhn & Johnson, 2013). Var-

iations in product and impurity contents are common in biologi-

cal processes. The training and test data set should include at

least as much variation as is expected later in the application,

better a bit more.

Product pooling based on model predictions was possible at all

three sites with yields between 73% and 99%. Nevertheless, the

differences between offline measurements and model predictions

showed that the accuracy of the transferred models was not suffi-

cient for monitoring in the manufacture of biopharmaceuticals. A

properly functioning fluorescence sensor is expected to significantly

improve the models' performance. Moreover, the test situation was

rather complex due to the very different impurity contents between

the sites.

The case studies showed that on‐site model training allowed to

predict six critical quality attributes with good accuracy. A mean

relative deviation of 33% may be borderline for manufacturing but

there is still room for optimization, for example by using different

modeling techniques. Nonlinear techniques such as STAR used in our

previous work (Sauer, et al., 2019a) generally bear an advantage in

cases where predictors and responses are nonlinearly related.

However, nonlinear modeling techniques often need more compu-

tation power and time for training. An advantage of PLS is that it can

be trained very fast. For proof of principle, we used the simpler

method here.

A prerequisite for real‐time process monitoring and control is a

central powerful data collection point. Large data was generated: for

one run about 450MB of process monitoring data. Sufficient com-

puting capacity was necessary to allow the estimation of several

quality parameters within a few seconds. Overall, time for quality

estimation could be reduced by days because no offline analytics was

necessary anymore. Once the functionality of the monitoring system

was shown, it can also be used for process development (e.g.,

Chemalil, 2020). Sensor data can be used directly, for example, the

fluorescence pattern to distinguish protein of interest from HCP.

Model predictions can be used to compare process variants as long

as the conditions are within the trained design space of the models.

In summary, we were able to transfer statistical models for real‐
time prediction of five critical quality attributes of a recombinant

human FGF‐2 process from the training site to two other sites. Up to

5.7 times higher test errors at the new sites compared with the

training site were observed with an average of 2.0 times among all

quality attributes. The accuracy of the transferred models would not

be high enough for real‐time process monitoring and product pool-

ing. Model re‐training would be needed for application in manu-

facturing. However, these were not optimized models but used to

assess system similarities and general functionality under real pro-

cess conditions.

5 | CONCLUSION

For a successful transfer of a statistical model for real‐time predic-

tion we conclude that the quality of prediction at new sites depend

on (a) how close the process parameters can be matched with the

training site and (b) how robust and reliably the sensors work at

the different sites. The biggest source of errors in our work was the

different sensitivity of these highly sensitive sensors. Differences

between sensor signals at the three sites could partially be com-

pensated by preprocessing methods and this is considered as ad-

vantage of the statistical models. For process monitoring, model

re‐training at each site was necessary. The case studies showed that

on‐site model training allowed to predict six critical quality attributes

with good accuracy. We conclude that it will be necessary to at least

optimize transferred statistical models at new sites. Sensor robust-

ness and thus data reliability are key elements of a monitoring

system.
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Supplementary Material 

I) Supplementary figure 

 

 

Figure S1: Fluorescence reference signals over a time span of 8 months with fiber exchange after Run 4. 

 

II) Supplementary original data 

FGF-2 data (offline measurements and predictions at the three sites) is available from the 
corresponding author upon request. 
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