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We cannot stop natural disasters but we can arm 

ourselves with knowledge:  

so many lives wouldn't have to be lost  

if there was enough disaster preparedness. 
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ABSTRACT 

The Bostanlik district, Tahskent Province, Uzbekistan is covered by high 

mountainous terrain and is frequently affected by landslides. Currently, a 

monitoring system is not in place, which can mitigate the numerous negative 

effects of landslides. The research was divided into three parts and each part 

was presented as a separate chapter. Three main chapters are already 

published in SCI journals or under review. The main objective of the study was 

the analysis of the mass movement processes in Bostanlik district, Tashkent 

Province, Uzbekistan. Chapter 2 describes the change detection analysis of two 

multispectral datasets for the Bostanlik district of Tashkent, Uzbekistan, using 

Landsat-5 TM data for 1989 and Landsat-8 OLI for 2017. Change detection 

technique showed that within 28 years significant changes occurred in the 

classes of the forest, built-up areas, bare soil and snow cover. The obtained 

results were used for the further analysis. Chapter 3 presents the first Earth 

Observation-based landslide inventory for Uzbekistan. We applied very high-

resolution GeoEye1 Earth observation data and a random forest object-based 

image analysis (OBIA) for the mass movement detection. Chapter 4 aims at 

creating a statistically derived landslide susceptibility map – the first of its type for 

Uzbekistan - for part of the area in order to inform risk management. Statistical 

index (SI), frequency ratio (FR) and certainty factor (CF) are employed and 

compared for this purpose. Ten predictor layers are used for the analysis, 

including geology, soil, land use and land cover, slope, aspect, elevation, 



 

x 

distance to lineaments, distance to faults, distance to roads, and distance to 

streams. The spatial relationships between the landslides and the predictor 

layers confirmed the results of previous studies conducted in other areas, 

whereas model performance was slightly higher than in some earlier studies – 

possibly a benefit of the polygon-based landslide inventory. 

The obtained results are highly valuable for local authorities for the 

management of landslides, hazard prevention and land use planning. 

Keywords: Bostanlik; change detection; remote sensing; Uzbekistan; 

landslide inventory, classification, landslide susceptibility mapping. 
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ZUSAMMENFASSUNG 

Die Bostanlik Region in der Tashkent Provinz in Usbekistan zeichnet sich 

durch überwiegend gebirgiges Terrain aus und weißt eine hohe Disposition für 

Erdrutsche auf. Jedoch befindet sich in diesem Gebiet keine Messstation welche 

diese Massenbewegungen detektiert. Diese Forschungsstudie, welche sich mit 

der ersten Gefahrenhinweiskarte für Rutschungen in dieser Region beschäftigt 

wird in drei Bereiche gegliedert und je einem Kapitel zugeordnet. Diese drei 

Kapitel sind jeweils in SCI-Publikationen veröffentlicht oder in derzeit in 

Begutachtung. Der Hauptfokus dieser Studie liegt in der Analyse der 

Massenbewegungen in der Bostanlik Region, in der Tashkent Provinz, 

Usbekistan. Kapitel 2 beschreibt das Verfahren der Change Detection Analysis 

von zwei multispektralen Datensätzen für die Region von Landsat-5 TM von 

1989 und Landsat-8 OLI für 2017. Das Verfahren der Change Detection zeigt 

innerhalb dieser 28 Jahren signifikante Änderungen in dem Bereich 

Waldnutzung, bebautem Gebiet, kahlem Boden und Schneebedeckung. Kapitel 3 

zeigt erstmalig mithilfe von Erdbeobachtung beruhenden Diensten kartierte 

Rutschungsgebiete in diesen Regionen auf. Hierzu wurden hochauflösenden 

GeoEye 1 Daten und das Klassifikationsverfahren Random Forest Object Based 

Image Analyses (OBIA) für die Ausweisung von Erdrutschgebieten 

herangezogen. Kapitel 4 zeigt die Erstellung der ersten Gefahrenhinweiskarte in 

dieser Region mit Hilfe von Statistical index (SI), frequency ratio (FR) und 

certainty factor (CF). Zehn Prognose Layer wurden für diesen Zweck verwendet, 



 

xii 

einschließlich Geologie, Boden, Landnutzung, Landbedeckung, Neigung, 

Ausrichtung,  tektonische Lineamente, Abstand zu Straßen, Abstand zu 

Störungszonen und Abstand zu Gewässern. Der räumliche Zusammenhang von 

Erdrutschen und den zehn verwendeten Layern bestätigten die Ergebnisse von 

anderen durchgeführten Studien in anderen Gebieten. Aufgrund der polygon-

basierenden Daten durfte die beobachtbare Leistung höher liegen als bei 

anderen Modellen. Diese gewonnenen Ergebnisse in dieser Studie sind für die 

lokalen Behörden in der Region vom großen Nutzen, da sie die erste 

Gefahrenhinweiskarte für Erdrutsch-gefährdeten Gebiete darstellen und eine 

wertevolle Unterstützung in der Prävention von Rutschungen und zukünftiger 

Landnutzung spielen. 

Schlüsselwörter: Bostanlik; Change detection; Fernerkundung; 

Usbekistan; Rutschungsdatenbank, Klassifikation, Gefahrenhinweiskarte. 
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CHAPTER 1 

Introduction    

1.1 Background 

Central Asian countries have a long history of disasters that have brought 

out economic and human losses. In this territory, we can observe all types of 

natural and technological hazards, including earthquakes, floods, landslides, 

mudslides, debris flows, avalanches, droughts (CAC DRMI, 2009).  

Earthquakes are the prevailing hazard in Uzbekistan. It lies in a region 

with low to very high seismic hazard zone (CAC DRMI, 2009). Since 1955, 

Uzbekistan has experienced 81 earthquakes above five in magnitude, of which 

11 were above six. An earthquake struck Tashkent on 26 April 1966 that killed 10 

people, affected 100,000 others and caused economic losses of $300 million 

(Thurman, 2011; Mavlyanova et al., 2004).  

  Landslides are the second natural hazard in terms of number of victims 

and damages. However, most of the earlier publications were in Russian and, 

thus, remained practically unknown in the Western World (Havenith et al., 2015).  

In Central Asia, landslides often occur in the loess zone of contact with 

other rocks, on clay interlayers of the Mesozoic and Cenozoic age, reaching a 

volume from tens of thousands up to 15-40 million m3, characterized by duration 
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of preparedness and relatively rapid and catastrophic displacement of the 

masses (Niyazov, 1982). 

During the last years, a large number of projects and studies have been 

conducted in the mountainous regions of Uzbekistan to prevent landslide 

processes. In Uzbekistan, 90000 km2 area covered by mountains, where about 

3.0 million people are living, 17% mountainous area vulnerable to landslides, 10-

12% of the total damage caused by natural disasters falls on landslides. 

Formation of landslide processes is a natural relief forming processes which, due 

to changes in climatic conditions and the development of mountain slopes 

increasing year by year. Mountain region of Uzbekistan are most prone to 

geohazards in Central Asia region. Landslide processes are often associated 

with influence of three factors: climatic, seismic and man-made or technogenic.  

Landslides triggered by snow melting, precipitation and underground 

waters consist 65-70%, by old and recent earthquakes - 25-20% and by 

technogenic factors - 15-20%. Last years the great attention paid to building new 

and reconstruction of old transport communication and transport movement on 

mountain highways has increased in ten times that can trigger the formation of 

new landslide sites. In mountain zones still operating existing economic 

constructions and mines where throughout 30-40 years large landslides 

developed. Their main feature is that, despite the long period of development, 

they continue to move year after year and become less predictable (Niyazov, 

2009).  
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Remote sensing technologies became a powerful tool in natural sciences. 

During the last decades that this technology has also extended to landslides 

(Canuti et al., 2004; Hong et al., 2007; van Westen et al., 2008; Martha et al., 

2010; Tofani  et al., 2013). Nowadays, new techniques of Remote sensing finding 

their application more effective for landslide detection, mapping, monitoring and 

hazard analysis. Landslide detection and mapping can be done by optical and 

radar imagery. New generation of high-resolution satellites, such as World-View, 

GeoEye can be very useful for creating inventory maps of landslides in regional 

and local scales (Casagli et al., 2005; Lu et al., 2011).  

1.2 Climatic condition of Uzbekistan  

Uzbekistan extends from the foothills of the Tian Shan and Pamir 

mountains in the east. Natural environment of Uzbekistan is very wide from the 

sand and gypsum deserts of Kyzylkum to the eternal snows and glaciers of the 

Pamir-Alai mountains. Water is coming from glaciers in the Tian Shan and Pamir-

Alai mountains. Rivers Syr Darya and Amu Darya, flow from the Tian Shan and 

Pamir-Alai mountain ranges to the Aral Sea (Belolipov et al. 2013). Ugam, 

Pskem, Chatkal, Kurama ranges belong to Western Tian Shan system and 

Turkestan, Zerafshan and Gissar ranges with their continuous on southwestern - 

Babatag and Kugintangtau ranges, belong to Gissar-Alai system (NAPCD 

Uzbekistan, 1999) (Fig. 1-1). The observed global climate changes can have a 

serious influence on the different blocks of the environment and their individual 

characteristics and on socio-economic sector (Environmental profile of 
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Uzbekistan, 2008). Climate Change evaluation processes on the territory of 

Uzbekistan on day-to-day observation have started since 1951, as well as on the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Mountain ranges and deserts in Central Asia (from Climate Change in Central 

Asia, 2009). 

long-term monthly and seasonal data. By the analysis of average changes in 

seasonal temperatures by districts, we can see the trend of intensive warming 

throughout the Republic (UN FCCC Uzbekistan). Climate change conditions for 

Central Asia propose that temperature will increase from 1° to 3°C by 2030-50 

(Climate Change in Central Asia, 2009). Relationship of water invasion of 

mountain regions of the Central Asian region, first of all, are connected with 
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sharply expressed continentality and aridity of the climate and with character of 

evidence of the basic climatic factors - an atmospheric precipitation, temperature, 

evaporation and an air moisture. Precipitations brought mostly with the air 

masses formed over Atlantic Ocean. In the general air masses arrive on territory 

of Central Asia strongly heated-up and dried up on the way over continent from 

west to east. In this context, the climate of Uzbekistan arid and characteristics for 

the climate is the less quantity of an atmospheric precipitation, low humidity and 

the dryness of air. Distribution of precipitation on territory of Uzbekistan 

extremely irregular and it closely related with exposure height, location of ranges 

and an exposition of slopes (Niyazov, 2009).  

The minimum quantity of an atmospheric precipitation (<100 mm/year) 

drops out in the western part of republic (Ustyurt, lower reaches of Amu Darya, 

Kyzylkum). To the southeast and the east from flat area as approaching 

mountains it increases and reaches, and in places exceeds, 800-900 mm/year. 

Therefore, all territory of Uzbekistan is divided into eight zones - from 800 to 100 

mm (Babushkin, 1982). 

The snow cover in mountains at height of 1200-2000 m can reach up to 

90-100 cm, reaching in some years up to 1.5-2 m, an amount of precipitation 

reaches up to 1070-1250 mm. As for plain, piedmonts, and mountains of 

Uzbekistan, we can see the precipitation characteristics in autumn (15-20% from 

the sum of annual), winter (30%), spring (40%) and summer (5-10%). It is 

important to notice that the quantity of precipitation in a mountain zone in 
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different years changes from 600 to 1400 mm. Last years in a climate of 

Uzbekistan observed the process of aridization, i.e. big contrast has marked in 

quantity of an atmospheric precipitation between years.  

Frequency of the landslide activation in mountain region of Uzbekistan 

related with the transition of arid years with moist years (Babushkin, 1982). Large 

mass movements can occur during the period of thawing of snow and falling of 

high quantity of precipitation (Niyazov, 2009). Tashkent region on the area of 

distribution of landslides heads the list (50-67%). 

1.3 Geomorphological characteristics of Bostanlik district  

Relief of Bostanlik district relatively monotonous and mainly represented 

by hills, mountains and highlands. The lowlands are common in the western and 

southern part of the district. Mountains occupied almost all of the territory, where 

the highest mountain are ranges: eastern Tianshan, Karzhantau ridge Pskem 

Mountains, Ugam and Chatkal Ridges. The heights of the district respectively, 

increasing from west to east and from south to north. The southern and western 

parts of the area are on average at an altitude of 1000 meters above sea level. 

The rest of the district where the highlands prevails located at an altitude of 1200 

to 4000 meters above sea level (National Encyclopedia of Uzbekistan, 2000-

2005). The hills are formed mainly sandstones and loess. The region is included 

in a seismic zone, and annually in the district occur from 5 to 8 or more 

earthquakes of different strength (Havenith et al, 2010, Saponaro et al, 2015). 

Almost all mountain ranges have down streams, some of which turn into rivers. 
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The bulk of the streams and watercourses in the district are tributaries of the 

Chirchik River. The largest of them, Beldersay Pskem, Ugam, Koksu, 

Chimgansay and others (Natural Geography of Uzbekistan, 2006). Through the 

district flows the river Chatkal, which is sometimes considered to be the left part 

of the Chirchik River. Almost all rivers flow into the Charvak reservoir. All rivers 

and their inflows are characterised by instability of a water balance in a various 

season. The largest settlements - cities of Gazalkent, Charvak, Humsan, Saylik, 

Nanay, etc., only 40 mountain settlements (Niyazov, 2009).  

In 1970 the construction of the Charvak dam with height of 167 m has 

finished and started filling of the Charvak reservoir on the area around 40 km2 

and with the volume of 2 billion m3. Сoastal zone of the Charvak water reservoir 

has extent of 80 km (Rakhmatullaev et al, 2013).  

Most hazardous area is landslide Mingchukur, located in the centre of 

Brichmulla depression, on northern coast of a water reservoir in 3,5 km from dam 

site (Fig. 1-2a,b). The general width of a landslide is 3,0 km, depth of a surface of 

sliding of 50-20 m, the volume of landslide is 70,0 million volume m3. Most mobile 

is the right western board of a landslide. Now it has width in the top zone of 450 

m, in the bottom 940 m, at average width of 700 m and length of 700 m to depth 

of offset of 50 m the landslide volume makes 24,5 million m3. Geologic and 

tectonic structure of a landslide caused by flexural-rupture zone of the Pskem 

fault. Main rupture pass through the base of a wall of failure of landslide and has  
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Figure 1-2a. View of Mingchukur landslide. 

Figure 1-2b. View of Mingchukur landslide. 

depth of 10-12 m.  In intervals of heights of 1000-1200 m wedge out more than 

10 springs that testifies to the distribution of horizon of groundwater in Middle 

Quaternary conglomerate-gravels. Slope steepness on the average changes 

from 17-200. Activation of Mingchukur landslide started since first year of 

operating of the water reservoir (Niyazov, 2009). 
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1.4 Problem statement 

Current study was formulate based on the Resolution of the Cabinet of 

Ministers (RCM) of the Republic of Uzbekistan № 585 dated 19.02.2007 “On the 

activities on prevention and recovery of emergency situations related to floods, 

mudflows, avalanches and landslides" and national program for forecast and 

prevention of emergency situations.  

As mentioned before in mountain regions of Uzbekistan number of 

investigations carried out by different researchers in different years. Most of 

projects done by State Committee of Republic of Uzbekistan for Geology and 

Mineral Resources, Ministry of Emergency Situations, State Committee of 

Republic of Uzbekistan for Nature Protection, Centre of Hydrometeorological 

Service, Institutes of Academy of Sciences and United Nations Development 

Programme In Uzbekistan. Different triggering factors can cause different 

consequences in this study area. Climate change in Uzbekistan is also effecting 

in prevention of natural hazards. Analysis of different sources show that 

Tashkent Province has a big history of mass movement events triggered by 

different activities. Application of Remote Sensing techniques are becoming very 

effective tool in case of mass movement analysis in Uzbekistan. Nowadays it is 

necessary to create centralized accurate input data of historical events for time 

series analysis of big and catastrophic landslides. Remote Sensing technology 

with accurate input data from field analyses and monitoring results can help to 

see the further behavior of mass movement processes. Tashkent Province is a 
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good platform for new investigations and all given information encourage us that 

the studies in this area should be continued and it is necessary to look for new 

approaches of prevention of natural hazards.  

1.5 Relevance of sustainable development goals and their targets to the 

topic 

1 No poverty 

1.4 By 2030, build the resilience of the poor and those in vulnerable 

situations and reduce their exposure and vulnerability to climate-related extreme 

events and other economic, social and environmental shocks and disasters. 

2 Zero hunger 

2.4 By 2030, ensure sustainable food production systems and implement 

resilient agricultural practices that increase productivity and production, that help 

maintain ecosystems, that strengthen capacity for adaptation to climate change, 

extreme weather, drought, flooding and other disasters and that progressively 

improve land and soil quality 

13 Climate action  

13.1 Strengthen resilience and adaptive capacity to climate-related 

hazards and natural disasters in all countries 

13.2 Integrate climate change measures into national policies, strategies 

and planning  
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13.3 Improve education, awareness-raising and human and institutional 

capacity on climate change mitigation, adaptation, impact reduction and early 

warning  

13.b Promote mechanisms for raising capacity for effective climate 

change-related planning and management in least developed countries and 

small island developing States, including focusing on women, youth and local 

and marginalized communities  

15 Life on land 

15.1 By 2020, ensure the conservation, restoration and sustainable use of 

terrestrial and inland freshwater ecosystems and their services, in particular 

forests, wetlands, mountains and drylands, in line with obligations under 

international agreements  

15.2 By 2020, promote the implementation of sustainable management of 

all types of forests, halt deforestation, restore degraded forests and substantially 

increase afforestation and reforestation globally  

15.3 By 2030, combat desertification, restore degraded land and soil, 

including land affected by desertification, drought and floods, and strive to 

achieve a land degradation-neutral world  

15.4 By 2030, ensure the conservation of mountain ecosystems, including 

their biodiversity, in order to enhance their capacity to provide benefits that are 

essential for sustainable development  
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15.5 Take urgent and significant action to reduce the degradation of 

natural habitats, halt the loss of biodiversity and, by 2020, protect and prevent 

the extinction of threatened species  

15.7 Take urgent action to end poaching and trafficking of protected 

species of flora and fauna and address both demand and supply of illegal wildlife 

products.  

 

1.6 Research objectives 

The main objective of the thesis is to prepare a landslide inventory using 

earth observation techniques and landslide susceptibility map for the Bostanlik 

district (Uzbekistan). 

To achieve these objectives, some sub-objectives has been considered in 

this study: 

- To evaluate the land use land cover change direction for the landslide 

studies.  

- To develop landslide inventory using very high resolution datasets. 

- To collect, map and evaluate conditioning factors for the landslide 

susceptibility mapping. 

- To apply various statistical methods for landslide susceptibility mapping. 

- To select the best fitted method for the study area and evaluate the 

spatial distribution of the landslide. 
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1.7 Structure of the thesis 

The thesis has a total of seven chapters and three chapters contain 

manuscripts which are already published or under review (Tab. 1-1). All chapters 

are thematically connected and can be read separately. 

- Chapter 2 presents the change detection analysis of two 

multispectral datasets for the Bostanlik district of Tashkent, Uzbekistan, using 

Landsat-5 TM data for 1989 and Landsat-8 OLI for 2017. Both Supervised 

Classification and Maximum Likelihood algorithm utilized for the change 

detection analysis. Six land use classes were identified: snow cover, bare 

soil/rock, forest, waterbody, built-up areas and agriculture. Change detection 

technique showed that within 28 years significant changes occurred in the 

classes of the forest, built-up areas, bare soil and snow cover. The presented 

results might be valuable for the government authorities and stakeholders for the 

future land use planning activities.  

- Chapter 3 presents the first Earth Observation-based landslide 

inventory for Uzbekistan. We applied very high-resolution GeoEye1 Earth 

observation data and a random forest object-based image analysis (OBIA) for the 

surface displacement detection. While performing a 10-fold cross-validation to 

assess the accuracy. Our results indicate very high overall accuracy (0.93) and 

user’s (0.87) and producer’s (0.91) accuracy for the surface displacement class. 

We determined in that 5.5% of the study area was classified as surface 
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displacement. The obtained results are highly valuable for local authorities for the 

management of landslides, hazard prevention. 

- Chapter 4 aims at creating a statistically derived landslide 

susceptibility map – the first of its type for Uzbekistan - for part of the area in 

order to inform risk management. Statistical index (SI), frequency ratio (FR) and 

certainty factor (CF) are employed and compared for this purpose. Ten predictor 

layers are used for the analysis, including geology, soil, land use and land cover, 

slope, aspect, elevation, distance to lineaments, distance to faults, distance to 

roads, and distance to streams. 170 landslide polygons are mapped based on 

GeoEye-1 and Google Earth imagery. 119 (70%) out of them are randomly 

selected and used for the training of the methods, whereas 51 (30%) are retained 

for the evaluation of the results. The three landslide susceptibility maps are split 

into five classes, i.e. very low, low, moderate, high, and very high. The evaluation 

of the results obtained builds on the area under the success rate and prediction 

rate curves (AUC). The training accuracies are 82.1%, 74.3% and 74%, while the 

prediction accuracies are 80%, 70% and 71%, for the SI, FR and CF methods, 

respectively. The spatial relationships between the landslides and the predictor 

layers confirmed the results of previous studies conducted in other areas, 

whereas model performance was slightly higher than in some earlier studies – 

possibly a benefit of the polygon-based landslide inventory.  

Chapter 5 presents conclusions ant outlook of the thesis. Chapter 6 

consists of curriculum vitae and Chapter 7 has a list of all publications.  
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Table 1-1. List of the publications used for the thesis which are included in Scientific 

Citation Index (SCI) Web of Science Clarivate Analytics. 

Chapter Journal name Impact 
factor 
(2018) 

Title 

2 Polish Journal of 
Environmental Studies 

1.12 1Analysis of Land Use 
Land Cover Change 

Detection of Bostanlik 
District, Uzbekistan 

3 Sensors 2.475 2Surface displacement 
detection using object-
based image analysis 

and Very-High 
Resolution EO data for 
the Tashkent region, 

Uzbekistan 

4 Science of the Total 
Environment 

4.61 3Comparative analysis of 
statistical methods for 
landslide susceptibility 

mapping in the Bostanlik 
district, Uzbekistan 

 

 

__________________________ 
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2Juliev M, Ng W, Mondal I, Pulatov A, Hübl J, Surface displacement detection 

using object-based image analysis and Very-High Resolution EO data for the 

Tashkent region, Uzbekistan, Sensors ( under review) 

3Juliev, M.; Mergili, M.; Mondal, I.; Nurtaev, B.; Pulatov, A.; Hübl, J. Comparative 
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doi:10.1016/j.scitotenv.2018.10.431. 
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CHAPTER 2 

Analysis of Land Use Land Cover Change Detection of Bostanlik District, 

Uzbekistan 

1Juliev M, Pulatov A, Fuchs S, Hübl J, Analysis of Land Use Land Cover 

Change Detection of Bostanlik District, Uzbekistan. Pol. J. Environ. Stud. Vol. 29, 

2019, doi: 10.15244/pjoes/94216. (in press). 

________________________________________________________________ 

Abstract  

This paper presents the change detection analysis of two multispectral 

datasets for the Bostanlik district of Tashkent, Uzbekistan, using Landsat-5 TM 

data for 1989 and Landsat-8 OLI for 2017. Both Supervised Classification and 

Maximum Likelihood algorithm utilized for the change detection analysis. Six land 

use classes were identified: snow cover, bare soil/rock, forest, waterbody, built-

up areas and agriculture. Change detection technique showed that within 28 

years significant changes occurred in the classes of the forest, built-up areas, 

bare soil and snow cover. The presented results might be valuable for the 

government authorities and stakeholders for the future land use planning 

activities.  

2.1 Introduction 

Land use and land cover (LULC) are two different terms generally 

assessed in combination since the first (physical properties of surface elements) 
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and the latter (human use of land cover) cannot be seen independent from each 

other (Rawat et al., 2015; Turner et al., 1988). Consequently, LULC represents 

the result of human-environment interaction within a given area (Yang et al., 

2017; Gong et al., 2013; Fuchs et al., 2017; Lopez et al., 2001; Ruiz et al., 2003; 

Chen et al., 2013), influenced by the dynamics given by climate change 

processes and socio-economic dynamics (Verburg et al., 2011; Yuan et al., 

2005; Wang et al., 2008). Nowadays the most prominent methods are remote 

sensing techniques for LULC change detection. Multi-temporal remote sensing 

(RS) based on change detection analysis has repeatedly been used in different 

aspects of land cover change (Li et al., 2017; Abd et al., 2011).  

RS platforms continuously capture the Earth surface and decision makers 

can easily apply the satellite imageries to monitor dynamics of change. LULC 

change analysis using RS techniques gives an opportunity to obtain results with 

low cost, less time consumption and good accuracy and Geographical 

Information Systems (GIS) allow updating results whenever new data is available 

(Jovanovic et al., 2015; Lambin et al., 2003). Utilization of open source data is a 

good choice to improve the skills in RS and GIS tools, in particular for scientists 

from less-developed countries. In this context, Landsat satellite images are 

frequently used for LULC change detection analysis. With RS data, different 

change detection algorithms are available and repeatedly applied, such as 

Principal component analysis, Fuzzy classification, and Post classification 

methods (Lu et al., 2004; Petit et al., 2001).  
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Different supervised classification methods are applied for LULC change 

detection. In this research, we built on research published on LULC change for 

Uzbekistan and countries in Central Asia. Yin et al. (2017) produced a forest 

cover map for Central Asia using multi-resolution satellite imagery from Landsat 

and MODIS for the years 2009-2011. Kraemer et al. (2015) analyzed the 

agricultural land cover change in the Kostanay Province for 1953 to 2010. Based 

on multi-temporal Landsat TM/ETM+ datasets, they applied Support Vector 

Machine techniques to map the agricultural land cover change.  Furthermore, 

Edlinger et al. (2012) used Landsat MSS and TM data for the years 1972, 1977, 

1987 and 2000 to compute the expansion of irrigated croplands in the 

Kashkadarya Province, Uzbekistan, based on decision trees; and their results 

had shown good accuracy for the cropland change.  

From the given references we can observe that most of the publications 

centered on the west and south-west of Uzbekistan so far. In order to expand 

information on LULC, we chose a study area in north-eastern Uzbekistan; the 

area is a less-populated region and includes large areas falling under different 

land protection laws.  

The area is characterized by the Ugam Chatkal national park located in 

the Bostanlik, Akhangaran and Parkent districts. The park was founded in 1992 

and it is a largest natural protection area in Uzbekistan with a total area of 5,746 

km2 and a border to Kazakhstan in the north and Kyrgyzstan in the east. The 

main objective of the national park is biodiversity conservation, and as such the 
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fauna counts more than 280 species, among them 44 species of mammals, 200 

birds, 16 species of reptiles, 2 amphibians and 20 varieties of fish (Chemonics 

international). The park is home of approximately 2,200 different species of 

plants. One of the main tasks for responsible ecologists is to preserve and 

extend the forested area of the park. A large part of the national park is open to 

tourists, which creates management challenges. In 2016, Ugam Chatkal National 

park has been included to the UNESCO World Heritage sites list (MIR 

Corporation).    

The Bostanlik district is one of the landslide-prone areas of Uzbekistan 

and most of the landslides are triggered by snow melting and precipitation. The 

presence of a mountain reservoir increases the frequency of landslide 

occurrence, in particular for areas near the water-body. Around 65% of total 

landslides in Uzbekistan located in Tashkent Province (Juliev et al., 2017). Since 

the Bostanlik district is not only a very important place for nature conservation, 

but also for the socio-economy of Uzbekistan, the monitoring of existing 

landslides is necessary, and a landslide susceptibility zonation is highly 

recommended in order to mitigate these hazards. LULC is a main parameter for 

the landslide susceptibility analysis. Сonsequently, the main objective of the 

current study was the application of open source datasets for LULC change 

detection analysis using RS and GIS techniques for the given area. Our research 

was the first attempt for LULC change detection for the Tashkent Province and 

the applied methodology provided the expected results.  
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2.2 Materials and Methods 

2.2.1 Study area 

The Bostanlik district is located in the north-east part of Uzbekistan 

between 41°00' and 42°20' North and 69°30' and 71°20' East. The district covers 

4,982 km2 and it is the largest district in the Tashkent region (Fig. 2-1).  

 

Figure 2-1. Location of the study area. 

Almost the entire part of the study area is covered by high mountains such 

as the Western Tien Shan, Karzhantau, Pskem, Ugam and Chatkal, and the 

altitude range of the district varies from 568 to 4,301 m asl. The altitude of the 

district increases from west to east and from south to north. Bostanlik belongs to 

the Western part of the Tien Shan Mountain range. The highest point of the 
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district is the peak Adelung with 4,301m asl. The district belongs to the 

seismically active zone and more than eight earthquakes occur on an annual 

average. The climate of the territory belongs to the continental type; annual mean 

minimum, maximum and absolute minimum and maximum temperature of the 

area are -9°C, +21°C, -26°C and +46°C, respectively. On the average the district 

receives about 800-1200 mm of precipitation per year. The main river of the area 

is the Chirchik river. Within the district, the mountain reservoir operates with the 

area of coverage 40 km2 and with 2 billion m3 of storage volume. The 

administrative center of the district is the city of Gazalkent. According to the 

census of 2000, there were 142,900 people living in the district and according to 

the census of 2013, about 160,000 people inhabite the area with more than 60% 

of the residents living in rural areas. The largest recreation sites of Uzbekistan 

are located in Bostanlik district. 

2.2.2 Data preparation and processing 

For the current study, Landsat 5 TM (Thematic Mapper) data of 28 May 

1989 and Landsat 8 OLI (Operational Land Imager) data of 27 May 2017 

provided by the USGS (United States Geological Survey) Earth Explorer 

database system were used for generating LULC maps. The spatial resolution of 

both imageries is the same and equals 30 m. The topography of the study area is 

mountainous and ground reference data was obtained by visual interpretation of 

the images and using Google Earth Pro and the current reference data used for 

the classification of the study area. All the processing and post-classification 
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steps were completed using the software packages ENVI 5.1 and ArcGIS 10.1. 

The preprocessing steps included the assignment of the coordinate system, layer 

stacking of the separate bands of the datasets and subsetting the images based 

on the polygon of the study area. Supervised classification methods and 

maximum likelihood algorithm were used for preparation of LULC maps. 

Maximum likelihood algorithms are well-known and were repeatedly used 

effectively in assessing satellite imageries (Abino et al., 2015). Finally, six types 

of LULC classes were identified in the study area: snow cover, bare soil/rock, 

forest, waterbodies, built-up areas and areas used for agriculture. For obtaining 

more accurate LULC maps, for each land use class 15 training samples were 

select-ed. Figures 2-2 and 2-3 show the final output of LULC maps for 1989 and 

2017, respectively.  

 

 

 

 

 

 

 

 

 

Figure 2-2. Land use and Land cover Map (1989, May 28). 
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Figure 2-3. Land use and Land cover Map (2017, May 27). 

Accuracy assessment was performed to verify the quality of the obtained 

results for the classified maps. Totally fifteen polygons from each class selected 

to assess the accuracy of the obtained results. The overall accuracy for the data 

from 1989 was 90.91% and 80.49% for the 2017 respectively. Kappa coefficient 

for 1989 was 0.8830 and for 2017 was 0.7492. Finally, for showing the change 

detection results a post-classification method was applied, and the LULC change 

direction and change detection matrix between initial and final state was 

evaluated. 
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2.3 Results and Discussion 

2.3.1 LULC Change Direction 

All classes were named generally and they may further be divided into 

subclasses, such as snow cover which also included glaciated areas, bare soil 

and rock which represented exposed soil and bedrocks, forest which included 

meadows and mixed forested areas, waterbodies which included both, rivers and 

reservoir, built-up areas which included residential, commercial and industrial 

subclasses, and finally the class of agriculture which can be further divided into 

crop fields and fallow fields. In Figures 2-2 and 2-3 the spatial distribution of 

LULC for the given years is provided. The classified image for 1989 year is 

divided into six classes with 30.5% (1519.6 km2) of the area covered with forest, 

30.3% (1511.3 km2) with snow cover, 0.7% (36.2km2) with waterbodies, 13.1% 

(655 km2) with agriculture, 24.5% (1118.6km2) with bare soil and 1.7% (86.4 km2) 

with built-up areas. About 36.2% (1804.1 km2) of the area of the 2017 image is 

classified as forest, 30.2% (1504.9km2) as snow cover, 0.8% (38.9 km2) as 

waterbodies, 13.2% (656.9 km2) as agriculture, 17.3% (863.3 km2) as bare soil 

and 2.3% (113.9 km2) as built-up areas.  

The results achieved after processing the two multispectral datasets of 

Landsat 5 TM and 8 OLI for change detection are given in Figure 2-4 and Tables 

2-1 and 2-2. A decline occurred in the classes bare soil and snow cover, but the 

classes of forest, built-up areas and agriculture were increased (Tab. 2-1). Snow 

cover class has decreased from 1511.3 km2 to 1504.9 km2 and class bare soil  
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Figure 2-4. Change Detection Map (1989-2017). 

Landuse/Landcover 
1989 2017 

Area(km2) Area (%) Area(km2) Area (%) 

Forest 1519.6 
30.5 1804.1 36.2 

Snow Cover 1511.3 30.3 1504.9 30.2 

Water body 36.2 0.7 38.9 0.8 

Agriculture 655.0 13.1 656.9 13.2 

Bare Soil 1118.6 22.5 863.3 17.3 

Built-up 86.4 1.7 113.9 2.3 

Total Area 4982 100 4982 100 

Table 2-1. Land use and Land cover Change Direction (1989-2017). 

declined from 1118.6 km2 to 863.3 km2. The forest class increased from 1519.6 

km2 to 1804.1 km2, built-up areas increased from 86.4 km2 to 113.9 km2 and a 

slight increase was observed for both, the waterbodies and areas used for 

agriculture.  
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Final 
State 
2017 

Initial State(1989) 

  
Snow 
Cover 

Water 
body 

Forest 
Bare 
Soil 

Agriculture Built-up 
Class 
Total  

Snow Cover  1163.1 

0.2 65.0 192.4 78.7 17.3 1504.9 

Water body 0.4 35.1 0.2 3.0 0.2 0.0 38.9 

Forest 5.6 0.1 1191.2 279.1 289.4 1.0 1804.1 

Agriculture 10.5 0.1 190.3 208.8 212.7 34.5 656.9 

Built-up 1.6 0.0 26.3 20.0 18.3 20.3 113.9 

Bare Soil 330.1 0.7 46.7 415.3 55.8 14.7 863.3 

Class Total 1511.3 36.2 1519.6 1118.6 655.0 86.4 4982.0 

Change 
Class 

-6.3 2.8 284.5 -255.3 1.9 27.5   

Table 2-2. Change Detection Matrix between Initial and Final State (1989-2017). 

Results have shown that over the 28 year period under investigation, 

perceptible LULC changes occurred in the Bostanlik district. Over this period, the 

forest area has in-creased by 5.7%, which proves the protective status of the 

area. Accordingly, a lot of ongoing projects on flora and fauna protection in the 

Western Tien Shan and Ugam Chatkal National Park can be observed. The data 

given in the Mongabay rainforests database shows that Uzbekistan had an 

increment in forested area between 2000 and 2005 with an average of 16,700 ha 

per year. Annual reforestation amount was about 0.55%. During this period, 

Uzbek forest cover increased by 8.2% or around 250,000 ha (Mongabay.com, 

2006). For the Ugam river watershed the Interstate Coordination Water 

Commission of Central Asia reported an increase in forest cover between 1998 

and 2010 within the Bostanlik district (ICWC, 2013).  

The next class that got an increment is the built-up area with a change of 

0.56% (27.51 km2) for the total area of the district. This is obvious since built-up 
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areas expansion is related to the number of population and the population of the 

district increased from 142,900 to 160,000 in the period between 2000 and 2013. 

Population density in the Bostanlik district is 29.9 per km2, and from 2010 to 2013 

the population increased by 5.4% with an annual rate of 1.8% (Bensitova et al., 

2014). The Bostanlik district is an area heavily influenced by tourism, with 40 

villages, more than 10,000 households, 180 large recreation areas, resorts and 

children's camps, one mountain reservoir, four rivers, 240 kilometers of mountain 

roads, which is another reason for this increase.  It should be noted that most of 

the recreation zones along the Charvak reservoir were built between 1989 and 

2017.  

The waterbody class on the image mainly represents the Chirchik river 

and the Charvak reservoir area. By the classified images, a minor change in the 

waterbody class is detectable with only 0.06% increase (2.76 km2). This result is 

mainly related to a seasonal issue of water-abundance during the month of May 

in Bostanlik. Chirchik river has formed by joining of rivers Pskem and Chatkal. 

According to the calculations conducted in the Chirchik-Ahangaran hydrological 

area, mountain river flow will not change during the next 20-30 years, though 

climate change can affect to the water discharge during the vegetation period. 

Glaciers of the Western Tien Shan are the main sources for the water. During the 

last years we can observe that areas covered with glaciers and snow cover are 

decreasing, but the most of research on glaciers noted for the study region that 
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this process does not affect much to the water flow to the rivers (Semakova et 

al., 2016).  

Another class which increasing dynamics is the agriculture class, which 

rose by 1.86 km2. It is obvious that due to the observed increase in population 

the agricultural areas also increased, mainly because of subsidence farming: 

About 80% of the Bostanlik population inhabits small villages with own 

agricultural fields. 

Bare soil area is the class that declined the most, equal to minus 5.2% 

from the total area of Bostanlik. From the Table 2-2 we can see that the bare soil 

class has changed to forest and agriculture classes. As the study area befalls to 

the protected zone of Uzbekistan from 1992, the main effort is being paid for the 

afforestation of the area. Most probably this is the one of the main reason of 

declining of the soil class. The  another reason for this could be the sufficient 

amount of water availability during March to June, when the mountain area 

meadows and forests have very high Normalized Difference Vegetation Indices 

(NDVI), but due to extremely hot weather conditions and from heavy grazing of 

meadows this index decreases regularly from July.  

The area covered with snow and glaciers indicated a decrease from 1989 

to 2017. Degradation of glaciers over 28 years amounted to 6.33 km2 (0.127%) 

from the total area of the district with an annual rate of degradation of 0.225 km2. 

Due to the effect of climate change and the temperature increase in mountain 

areas, most of the small glaciers disappeared. Regression of glaciers can 
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develop the glacial lakes in mountain areas; from previous research on glacier 

extent using remote sensing satellite datasets in the Bostanlik district it has been 

proven that the area covered with glaciers changed by minus 0.12% from 2007 to 

2013, confirming the results of our study (Yuan et al., 2005). 

2.3.2 Change Detection Matrix between Initial and Final State 

Change detection matrix between the initial (1989) and final (2017) states 

was calculated using ENVI 5.1 software. Table 2-2 shows the shifts of land cover 

classes over 28 year period. From 1511.26 km2 of snow cover, 1163.06 km2 

remained like a same class in 2017, 0.4 km2 were converted to waterbodies, 5.6 

km2 to forests, 10.5 km2 to agriculture areas, 1.6 km2 to built-up areas and 330.1 

km2 to the class of bare soils during this period. There is no significant change for 

the waterbody class, only 0.7 km2 of the area was converted to the bare soil 

class in 2017. For the forest area from 1989 with the total area of 1519.6 km2, 

1191.2 km2 retained in this class in 2017 and 65.0 km2 were replaced by the 

snow cover class, 190.3 km2 by the agriculture class, 46.7 km2 by the bare soil 

class and 26.3 km2 by the built-up areas. 415.3 km2 from 1118.6 km2 of bare soil 

area remained as in this class in 2017, 279.1 km2 were converted to the forested 

area, and 208.8 km2 were converted to agricultural areas. Out of 655.0 km2 of the 

agriculture class 212.7 km2 remained in this class in 2017 and the remaining part 

of the area mostly replaced by the forest, snow cover and bare soil classes. 

About 66.1 km2 out of 86.4 km2 for the built-up areas was converted to the 

agriculture, snow cover and bare soil classes during this period. Because during 
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this period many recreational zones were built in this area. Accordingly, built-up 

class areas were converted to other classes and vice versa. The current change 

direction in built-up class has to be checked with the local experts and local 

statistic data.  

The study had shown that change detection techniques using remote 

sensing and GIS can give valuable results about land cover changes over longer 

periods. Results may be further used for landslide susceptibility analysis, glacier 

monitoring and glacier lake outburst flood detection, forest biomass estimation 

and biodiversity conservation in the Bostanlik area. 

2.4 Conclusions 

Remote sensing methods with accurate input data and monitoring results 

can support to assess the further behavior of LULC processes. The achieved 

results show that within 28 years the LULC of the Bostanlik district changed 

significantly. We observed an increment for the forests, built-up areas, 

waterbodies and agriculture classes and we verified the obtained results with 

already existing results from fellow using other methods of assessment. There 

are different agencies involved for the sustainable development of the Ugam 

Chatkal National Park and the whole Bostanlik province, which are conducting 

the various activities.  

The study area exhibits different geomorphological phenomena, such as 

erosion, glacial lake outburst floods, debris flows, and landslides, all of which can 

turn into hazards once elements are at risk. The LULC maps resulting from this 
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study will be further used for landslide susceptibility mapping of the district, which 

will support the governmental authorities and stakeholders to establish land-use 

planning for the Bostanlik district in order to prevent natural hazard losses. 

Moreover, the results obtained may help to achieve the sustainable development 

of the entire region by providing necessary input data. 
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CHAPTER 3 

Surface displacement detection using object-based image analysis 

and Very-High Resolution EO data for the Tashkent region, Uzbekistan.  

 

2Juliev M, Ng W, Mondal I, Pulatov A, Hübl J, Surface displacement 

detection using object-based image analysis and Very-High Resolution EO data 

for the Tashkent region, Uzbekistan (2018), Sensors (MDPI) (under review) 

________________________________________________________________ 

Abstract  

The Bostanlik district, Uzbekistan is covered by high mountainous terrain 

and is frequently affected by landslides. Currently, a monitoring system is not in 

place, which can mitigate the numerous negative effects of landslides. The 

current study presents the first Earth Observation-based landslide inventory for 

Uzbekistan. We applied very high-resolution GeoEye1 Earth observation data 

and a random forest object-based image analysis (OBIA) for the surface 

displacement detection. While performing a 10-fold cross-validation to assess the 

accuracy. Our results indicate very high overall accuracy (0.93) and user’s (0.87) 

and producer’s (0.91) accuracy for the surface displacement class. We 

determined in that 5.5% of the study area was classified as surface 

displacement. The obtained results are highly valuable for local authorities for the 

management of landslides, hazard prevention and land use planning. 
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3.1 Introduction 

Landslides, also referred to as surface displacements, are prominent 

natural hazards, which can be catastrophic to economic activities (i.e. damage to 

property and infrastructure) and human health (i.e. causing death and injuries) 

are affecting many countries around the world (Alexander, 2008; Dou et al., 

2015). Accordingly, landslide detection and the application of countermeasures 

are significant tools for mountain risk engineers (Guzzetti et al., 2012). Landslide 

inventory maps should be prepared to know the landslide type and volume, year 

of occurrence. Furthermore, historical landslide inventories are vital for landslide 

risk assessment and for pre- and post-disaster studies and assessments 

(Assilzadeh et al., 2010; Stumpf and Kerle, 2011). A landslide inventory is the 

spatial disposition of sedimentation and weathering areas of gravity induced 

mass movement processes (Guzzetti et al., 1999). Landslide maps are 

considered an initial step for conducting landslide susceptibility and landslide risk 

mapping. Almost all landslide susceptibility mapping methods require a precise 

landslide inventory map (Pradhan et al., 2010; Lin and Wang, 2018; Pathak, 

2016; Pradhan and Kim, 2014; Shirzadi et al., 2018; Singh and Kumar, 2018; Du 

et al., 2017; Broeckx et al., 2018; Chen et al., 2017; Pourghasemi et al., 2018; 

Vakhshoori et al., 2018; Mandal and Mandal, 2018). 

Apart from other natural hazards, the territory of Uzbekistan is prone to 

landslides. Over the past 80 years 2,600 landslide events were documented 

(Central Asia and Caucasus Disaster Risk Management Initiative (CAC DRMI) 
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Risk Assessment for Central Asia and Caucasus Desk Study Review, 2009). The 

Bostanlik district is one of the most landslide-prone areas of Uzbekistan, 

triggered by earthquakes, snowmelt or precipitation. The Charvak mountain 

reservoir increases the frequency of landslide occurrences, in particular near the 

water body (Juliev et al., 2017). Around 65% of all landslides in Uzbekistan are 

located in the Tashkent region (Central Asia and Caucasus Disaster Risk 

Management Initiative (CAC DRMI) Risk Assessment for Central Asia and 

Caucasus Desk Study Review, 2009). Therefore, monitoring of landslides is 

essential, and landslide susceptibility studies are highly recommended to mitigate 

these hazards (Juliev et al., 2018). 

Earth Observation (EO) is widely utilized in environmental sciences, but 

only during the last decade introduced for landslide studies (Martha et al., 2010; 

van Westen et al., 2008). EO can provide accurate results for detecting surface 

displacements in remote areas without the need for extensive and tedious 

fieldwork (Ayalew and Yamagishi, 2005). Advanced EO approaches pro-duce 

effective results in the field of the landslide detection, mapping and analysis 

(Behling et al., 2014; Blaschke et al., 2014a; Hölbling et al., 2015; Kurtz et al., 

2014; Pradhan and Alsaleh, 2017; Stumpf and Kerle, 2011). The optical very 

high-resolution (VHR) EO satellites (i.e. WorldView, GeoEye) with spatial 

resolutions between 0.5 to 2 m have proven to be very successful for detailed 

landslide inventory mapping (Lu et al., 2011).  
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Landslide inventory maps are traditionally prepared using visual 

interpretation of aerial photos or satellite images with in situ verifications. Visual 

interpretation of landslides is a time consuming and costly task and therefore 

automated landslide mapping methods were developed (Moosavi et al., 2014). 

For the landslide mapping both pixel-based and object-based automated and 

semi-automated techniques are employed. Object-based image analysis 

methods (OBIA) have been used for landslide and surface displacement 

mapping by the several researchers (Behling et al., 2014; Blaschke et al., 2014a; 

Hölbling et al., 2015; Kurtz et al., 2014; Pradhan and Alsaleh, 2017; Stumpf and 

Kerle, 2011). OBIA is a tool for semi-automatically representation and 

classification of surface displacement processes, utilizing mostly high-resolution 

satellite datasets. The main concept of OBIA consists of segmentation and 

classification of sub sequential segments. This method has proven to be effec-

tive for landslide mapping and landslide inventories (Behling et al., 2014; 

Blaschke et al., 2014a; Hölbling et al., 2015). Hölbling et al. (2017) applied an 

OBIA method for the landslide mapping in five areas in Austria and Italy using 

satellite imageries of Landsat 7, SPOT-5, WorldView-2/3, and Sentinel-2. The 

objectives of the paper were to compare manual landslide mapping results to 

automated results. They analyzed advantages and disadvantages for both 

methods and achieved relatively similar results. Feizizadeh et al. (2017) 

employed OBIA for landslide delineation and landslide change detection using 

temporal data from the IRS-1D, SPOT-5 and ALOS sensors in the northern part 
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of Iran. The authors performed landslide mapping for 2005 and 2011 with 

accuracies 0.93 and 0.94 respectively and acknowledged the potential of OBIA 

for landslide delineation.  

The main scope of the present study is to perform OBIA for surface 

displacement detection for the surroundings of the Charvak Reservoir, am 

important site in the Bostanlik district, Tashkent region, Uzbekistan. This work is 

the first attempt of an automated surface displacement or landslide inventory 

using EO data within the territory of Uzbekistan. The main objectives can be 

summarized as following: 

1) utilizing very high resolution GeoEye1 for the classification; 

2) verifying the suitability of OBIA for the land cover classification and 

surface displacement; 

3) obtaining detailed surface displacement areas for the study area for 

further utilizing them for land-slide susceptibility and risk mapping. 

3.2 Materials and methods 

3.2.1 Study area 

The Bostanlik district is located in the north-eastern part of Uzbekistan 

between 41°00' and 42°20' North and 69°30' and 71°20' East. The study area 

measures 4,982 km2 and is the largest district in the Tashkent region (Fig. 3-1) 

but we will apply OBIA method for the surrounding of the Charvak reservoir for 

the area of 307 km2. The administrative center is the city of Gazalkent. According 
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to the census of 2013 (Belolipov et al., 2013), about 160,000 people inhabited 

the area with more than 60% of the residents living in rural areas. The study area 

includes the largest recreational site of Uzbekistan. 

The study area, mostly covered by quaternary loess deposits, is 

vulnerable to erosion and landslide processes. Almost the entire area is covered 

by high mountains such as the Western Tien Shan, Karzhantau, Pskem, Ugam 

and Chatkal. The elevation varies from 568 m to 4,301 m a.s.l. (summit of Mt. 

Adelung). Elevation generally increases from west to east and from south to 

north. The district further belongs to a seismically active zone, resulting in more 

than eight earthquakes occurring on average per year (Niyazov and Nurtaev, 

2013).  

The area is further characterized by a continental climate: annual mean 

minimum and maximum, and absolute minimum and maximum temperatures are 

-9°C, +21°C, -26°C and +46°C, respectively. The total amount of precipitation 

measured at the meteorological stations reaches up to 800–1200 mm per year 

and the main drainage system of the area is the Chirchik River. Within the 

district, the Charvak Reservoir covers an area of 40 km2 and stores 2 billion m3 of 

water (Belolipov et al., 2013). 
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Figure 3-1. The study area located in Bostanlik district of Tashkent region, Uzbekistan, 

displayed with contour lines and digital elevation model (SRTM). A and B are photos taken during 

the field mission in northern (A) and north-eastern (B) directions showing surface displacements. 

3.2.2 Reference data 

The study area was visited in July 2018 and an extensive set of landslides 

were digitized (n=45). The remaining land cover classes were interpreted through 

a combination of Google Earth orthophoto (Harrington and Cross, 2015) and the 

GeoEye-1 interpretation. In total 15 land cover classes were selected (Tab. 3-1) 

and trained in random forest these are displayed in (Tab. 3-1), including the 

number of segments assigned for training. To select reference data for the 

surface displacement segments, the digitized polygons where overlaid with the 
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segmentation and a number of the segments were assigned. A remaining 

number of in situ collected data was used to complete a validation dataset.   

Table 3-1. Description of the land cover classes and number of reference polygons for 

training the random forest model. 

Class Description Ref. data 

Surface displacement Debris flows, landslides, erosion processes 58 

Bedrock Exposed outcrops of the rocky material 34 

Bare soil Areas of exposed soil and barren fields 37 

Fallow fields Agriculture parcels without any crops 21 

Low intensity agriculture (LIA) Areas with the sparse crops 39 

High intensity agriculture (HIA) Parcels with the dense crops 26 

Meadows Areas covered by grass and other non-woody plants 30 

Shrub land Areas covered by bushes, shrubs including grasses, 

herbs 

49 

Sparse forest Areas covered with the sparse tall trees cover 40 

Dense forest Areas covered with the dense and tall trees 37 

Shadows Shadows from the bedrocks, residential and forested 

areas 

43 

Water Water bodies and rivers Mask 

Unpaved roads Roads made from the native material e.g. gravels 32 

Paved roads Roads covered with the asphalt 40 

Built-up Residential, commercial and industrial buildings 56 
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3.2.3 EO and Geospatial data 

GeoEye-1 on is a commercial very high-resolution satellite operated by 

DigitalGlobe established in 2009. The sensor collected data in four multi-spectral 

channels (red, green, blue and near infrared) at 2 meter spatial resolution and 

one panchromatic channel at 0.5 meter spatial resolution. The Digital Globe 

Foundation provided a data set of the study area acquired at 15 of July 2016. 

The data was atmospherically and topographically corrected using 606 reference 

polygons. A water mask was created to remove the water bodies using an 

empirically selected threshold of normalized difference water index (NDWI) 

proposed by MCFeeters (1996).  

 

      

 Aster global digital elevation map version 2 (GDEM V2) data with a 

spatial resolution of 1 arc-second was acquired thought the EarthExplorer  portal 

operated by the U.S. Geological Survey (USGS) Earth Resources Observation 

and Science (EROS) Center (http://earthexplorer.usgs.gov/). The GDEM V2 was 

used to calculate slope and aspect using ArcGIS. 

The pre-processed GeoEye-1 data was used to calculate both the 

normalized difference vegetation index (NDVI,) and green ratio (GR) (Immitzer 

and Atzberger, 2014).   
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In addition, the VHR satellite data was used to generate texture 

information. Toscani et al. (2013) proved an increase in classification accuracy 

when including coiflets (Daubechies, 1992) a member of the wavelet family to the 

feature stack. For every spectral band we used four transformation levels and 

produced the mean of horizontal (H), vertical (V) and diagonal (D) detail 

coefficients, by applying the Wavelet Toolbox in MATLAB 7.13.0 (“MATLAB 

R2012a,” n.d.). 

For each of the 26 input features (i.e. spectral bands, coiflets, vegetation 

indices, elevation, slope and aspect) statistical features (n=12) were calculated 

per object (i.e. mean, standard deviation and percentiles). In total 312 input 

features were applied to build the RF model (Figure 3-2). 

Figure 3-2. Workflow used to detect the surface displacement in the study area. 
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3.2.4 Image segmentation 

VHR EO data is highly suitable for an object-based approach (OBIA) and 

many authors report in improved accuracy (Immitzer et al., 2016; Ng et al., 

2017). OBIA has the advantage of: i) significantly increasing the amount of input 

features to train the model as information (i.e. statistics) can be extracted of an 

object, and ii) removes the “salt and pepper” effect often encountered at pixel-

based approaches (Blaschke et al., 2014b). Therefore, we implemented a 

segmentation to find meaningful objects representing the land cover classes 

found at the study area. We applied the Large Scale Mean Shift (LSMS) 

segmentation provided by Michel et al. (2015) implemented in the open source 

software OTB version 5.4.0 (Inglada and Christophe, 2009) in R version 3.5 (R 

Core Team, 2017) as it provides an open source solution to create high quality 

segmentation results (Huang and Zhang, 2008) fand does not require a priori 

knowledge. The algorithm requires three parameters: (a) Spatial Radius: 24 

(spatial distance); (b) Range Radius: 18 (spectral difference); and (c) Minimum 

Size: 16 (merging criterion). 

3.2.5 Classification, parametrization and accuracy assessment 

Random Forest (RF) is a well-established ensemble machine learning 

algorithm what has been used in large number of object-based studies 

(Einzmann et al., 2017; Meroni et al., 2016; Ng et al., 2017; Schultz et al., 2015). 

Soil erosion and landslide detection using RF was done for a number of studies 

(Li et al., 2015; Stumpf and Kerle, 2011). Belgiu & Drăgu (2016) published an 
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extensive review on the advantages and limitations of RF. Random Forest as 

proposed by Breiman (2001) and implemented in R version 3.5 (R Core Team, 

2017) through the R package “randomForest” version 4.6-12 by Liaw and Wiener 

(Liaw and Wiener, 2002; Immitzer et al., 2012; Genuer et al., 2010).  

RF can be optimized, in terms of accuracy and processing time, by 

performing a parametrization process, reducing the number of input features 

(Breiman, 2001). Therefore, the feature importance was calculated as Mean 

Decreasing Accuracy (MDA). MDA is generated within RF by running the model 

and systematically testing which features impact most the Out-Of-Bag (OOB) 

accuracy of the classification, if left out. The MDA values were then used for 

feature ranking and selection, following approaches described in (Genuer et al., 

2010; Immitzer et al., 2012; Ng et al., 2016). 

3.2.6 Assessment 

To compensate for the relatively small amount of high-quality reference 

data, we applied a 10-fold cross-validation (Kohavi, 1995). The reference dataset 

was randomly split in ten partitions, and the RF model was performed ten times 

using different subsets of training (90%) and validation (10%) data. Therefore, we 

generated ten unique combinations, without repetition of validation polygons. The 

omitted polygons for validation were assessed by generating confusion matrices 

derived from the sum of the 10 classification results (Foody, 2002), where after, 

standard statistical metrics were derived (i.e. overall accuracy and Kappa). 
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3.3 Results 

3.3.1 Assessment 

The confusion matrix derived from the 10-fold cross-validation (Tab. 3-2) 

displays very high User’s accuracy (UA) and Producer’s accuracy (PA) for all 

classes. Confirming its suitability for detecting surface displacements (UA: 0.87 

and PA: 0.91). The overall accuracy (0.93) and Kappa (0.92) of the random 

forest classification are in line with other published studies (Hölbling et al., 2017; 

Feizizadeh et al., 2017; Maschler et al., 2018; Vuolo et al., 2018). 

Table 3-2. 10-fold cross-validation confusion matrix. 
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Bedrock 30 0 0 0 0 0 0 0 0 0 0 0 0 2 0.94 

Shadows 0 29 0 0 0 0 0 0 1 0 0 0 0 0 0.97 

Dense forest 0 0 36 1 0 0 0 0 0 0 1 0 0 0 0.95 

HIA 0 0 0 25 0 0 0 1 0 0 0 0 0 0 0.96 

Paved roads 0 0 0 0 38 0 0 0 1 0 0 2 0 0 0.93 

Unpaved roads 0 0 0 0 0 29 0 0 0 0 0 0 0 1 0.97 

Fallow fields 0 0 0 0 0 0 21 0 0 0 0 0 0 0 1.00 

LIA 0 0 0 0 0 0 0 35 2 1 0 0 0 0 0.92 

Built-up 1 0 0 0 2 0 0 1 52 0 0 2 0 0 0.90 

Shrub land 0 0 0 0 0 0 0 0 0 47 1 0 0 0 0.98 

Sparse forest 0 1 1 0 0 0 0 0 0 0 38 0 0 0 0.95 

Bare Soil 2 0 0 0 0 0 0 0 0 0 0 31 0 1 0.91 

Meadows 0 0 0 0 0 0 0 2 0 0 0 0 37 1 0.93 

Surface displacements 1 0 0 0 0 3 0 0 0 1 0 2 1 53 0.87 

Producer's accuracy 0.88 0.97 0.97 0.96 0.95 0.91 1.00 0.90 0.93 0.96 0.95 0.84 0.97 0.91 0.93 
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3.3.2 Land cover classification 

The land cover classification (Fig. 3-3) corresponds to the in situ 

observations. Among the 15 land cover classes shrub land, meadows, water, and 

sparse forest are dominant within the study area representing 28.37%, 18.22%, 

11.31%, and 10.47% respectively (Tab. 3-3). Surface displacements were 

detected on 5,5% of the study area. 

               Table 3-3. Individual class coverage in hectare and percentages. 

Class    Area (ha)     Area (%) 

Surface displacement 1690.32 5.50% 

Bedrock 1510.04 4.91% 

Bare soil 506.13 1.65% 

Fallow fields 445.41 1.45% 

Low intensity agriculture (LIA) 1234.75 4.02% 

High intensity agriculture (HIA) 182.41 0.59% 

Meadows 5603.02 18.22% 

Shrub land 8723.01 28.37% 

Sparse forest 3221.13 10.47% 

Dense forest 586.06 1.91% 

Shadows 1097.84 3.57% 

Water 3476.82 11.31% 

Unpaved roads 458.38 1.49% 

Paved roads 145.80 0.47% 

Built-up 1871.39 6.09% 
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Figure 3-3. Land cover map of the object-based random forest classification. 
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3.4 Discussion 

Landslide monitoring is a difficult task for mountainous regions with high 

altitudinal ranges. Therefore automated landslide inventories are needed for risk 

assessment pre- and post-disaster events (Dou et al., 2008).  As a highly 

landslide-prone area, the Bostanlik district is subjected to different types of 

landslides (e.g. translational slides, rotational slides, earth flows, debris flows and 

debris slides), with various volumes (Juliev et al., 2018). An accurate landslide 

inventory is a preparatory step for landslide susceptibility study. Manual landslide 

mapping is time consuming and requires expertise while automated detection 

provides rapid results with limited expert knowledge, which is especially valuable 

in crisis management. 

Most published EO-based landslide susceptibility maps use pixel based 

approaches for their analysis (Devkota et al., 2013; Fan et al., 2017). Our results 

demonstrate very high accuracy for surface displacement detection. Dou et al. 

(2008), who applied an object-oriented image analysis (OOIA) and a genetic 

algorithm methods using VHR QuickBird data (spatial resolution 2.4 m) for 

landslide detection in South China, achieved overall accuracies of 0.87 and 0.75 

respectively. While Hölbling et al. (2017) compared manual and OBIA based 

landslide detection method for five study areas in the Alps using EO data with the 

different spatial resolution, achieving producers’ accuracies from 0.70 to 0.95.  

Figure 3-4 highlights the detected landslides, which were confirmed during 

the field mission. These surface displacements consist of different types of debris 
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flows, landslides, and erosion processes. After detailed analysis of the surface 

displacement class, we determined that the majority of the detected areas are 

deep-seated landslide bodies and shallow landslides (Figure 3-4). From the 

classification output, we can ob-serve all deformations types, however for 

differentiating between landslide types expert knowledge and is situ observations 

are required. 

Figure 3-4. Deep-seated landslide bodies and shallow landslides on the GeoEye1 EO data. 

3.5 Conclusions 

In this study, we present the first automated surface displacement map 

using OBIA and VHR GeoEye1 EO data for the Bostanlik district, Uzbekistan. We 

reported on the suitability of the method to obtain detailed surface displacement 

information for landslide susceptibility and risk mapping. Remote and isolated vil-

lages in high altitude areas are especially vulnerable to surface displacements 

resulting in total cut-off from the outside world, obstructing rescue workers and 
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aid efforts. Therefore, mapping landslide hotspots near such villages is vital. We 

conclude VHR optical sensors (i.e. GeoEye-1) and OBIA are providing highly 

accurate results for detecting surface displacements. The obtained result can be 

used and upscaled to a national level to create a detailed landslide inventory and 

can be combined with the existing manual maps.  

In Uzbekistan there are two main agencies for landslide monitoring and 

forecasting: i) State Service of the Republic of Uzbekistan on geological hazard 

monitoring from the State Committee of the Republic of Uzbekistan for Geology, 

and ii) the Mineral Resources and Ministry of Emergency Situations of the 

Republic of Uzbekistan. The results will be presented to these agencies for its 

large-scale implementation and regional research conducted with the 

cooperation of the local authorities. 
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Abstract  

The Bostanlik district, Uzbekistan, is characterized by mountainous terrain 

susceptible to landslides. The present study aims at creating a statistically 

derived landslide susceptibility map – the first of its type for Uzbekistan - for part 

of the area in order to inform risk management. Statistical index (SI), frequency 

ratio (FR) and certainty factor (CF) are employed and compared for this purpose. 

Ten predictor layers are used for the analysis, including geology, soil, land use 

and land cover, slope, aspect, elevation, distance to lineaments, distance to 

faults, distance to roads, and distance to streams. 170 landslide polygons are 

mapped based on GeoEye-1 and Google Earth imagery. 119 (70%) out of them 

are randomly selected and used for the training of the methods, whereas 51 
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(30%) are retained for the evaluation of the results. The three landslide 

susceptibility maps are split into five classes, i.e. very low, low, moderate, high, 

and very high. The evaluation of the results obtained builds on the area under the 

success rate and prediction rate curves (AUC). The training accuracies are 

82.1%, 74.3% and 74%, while the prediction accuracies are 80%, 70% and 71%, 

for the SI, FR and CF methods, respectively. The spatial relationships between 

the landslides and the predictor layers confirmed the results of previous studies 

conducted in other areas, whereas model performance was slightly higher than in 

some earlier studies – possibly a benefit of the polygon-based landslide 

inventory. 

4.1 Introduction 

Landslides are common hazardous processes, which frequently cause 

loss of life and property in mountainous and hilly areas all around the world 

(Gutiérrez et al., 2015; Chen et al., 2018; Hong et al., 2018). Besides other types 

of hazards such as earthquakes, droughts and floods, the territory of Uzbekistan 

is also prone to landsliding. Based on the research conducted by the Central 

Asia and Caucasus Disaster Risk Management Initiative (CAC DRMI) from 1988 

to 2007, 23% of all recorded natural disasters in Uzbekistan are the 

consequence of landslide processes. During the past 80 years, 2,600 landslide 

events were documented in Uzbekistan. Around 50 people lost their lives during 

a landslide in the Angren region on 4 May 1991 (CACDRMI, 2018). 
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The Bostanlik district is one of the most landslide-prone areas of 

Uzbekistan. Most of the landslides are triggered by earthquakes, snow melting or 

precipitation, or combinations thereof. The presence of a mountain reservoir 

increases the frequency of landslide occurrence, in particular for areas near the 

water body (Juliev et al., 2017). Around 65% of all landslides in Uzbekistan are 

located in the Tashkent region, which the Bostanlik district forms part of. 

Consequently, the monitoring of existing landslides is necessary, and landslide 

susceptibility assessments are highly recommended as a basis to mitigate these 

hazards. 

Landslide hazard and risk assessments start from landslide susceptibility 

mapping of the territory under investigation (Van Westen et al., 2008; Golovko et 

al., 2017). Generally, landslide susceptibility is the spatial probability of 

landsliding in a given area, depending on a combination of various factors such 

as geology, land use and land cover (LULC), tectonics, slope, aspect, and others 

(Guzzetti et al., 2006; Wu et al., 2016). During the last decades, a variety of 

approaches for landslide susceptibility analysis have been developed. They are 

categorized into heuristic, physically-based and statistical methods (Van Westen, 

2002; Bilasco et al., 2011; Althuwaynee et al., 2012; Devkota et al., 2013; 

Ozdemir et al., 2013; Akbari et al., 2014; Wang et al., 2015; Basharat et al., 

2016; Chen et al., 2016; Hussin et al., 2016; Ilia et al., 2016; Zare M. 2013; 

Vakhshoori et al., 2016; Cui et al., 2017; Fan et al., 2017; Hong et al., 2017).  
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Few studies on landslide susceptibility mapping in the territory of Central 

Asia have yet been documented. Saporano et al. (2015a) conducted research on 

earthquake-triggered landslide susceptibility, whereas Saporano et al. (2015b) 

performed a statistical landslide susceptibility analysis for the entire territory of 

Kyrgyzstan. Golovko et al. (2017) compared an inventory of landslides 

automatically detected from satellite data with an inventory derived from mapping 

by experts.  

The main scope of the present study is to derive and to evaluate a 

landslide susceptibility map for the surroundings of the Charvak Reservoir, a very 

important touristic site in the Bostanlik district. This work is the first attempt of a 

statistical landslide susceptibility analysis for part of the territory of Uzbekistan. 

The main contributions/novelties can be summarized as follows: 

• General: by applying the established techniques to a yet unstudied 

area, the work contributes to increase the robustness of knowledge on the 

relationship between landslides and possible causative factors. 

• Regional: increased knowledge of landslide susceptibility and 

causative factors in the surroundings of the Charvak Reservoir in the Bostanlik 

District, Uzbekistan. The results presented shall represent a valuable basis for 

the government authorities and stakeholders to inform future land use planning 

and risk mitigation activities. 
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• Methodical: assessment of the gain of a polygon-based landslide 

inventory derived from high-resolution satellite data in terms of model 

performance, compared to a point-based inventory. 

4.2 Materials and methods 

4.2.1 Study area 

The Bostanlik district is located in the north-eastern part of Uzbekistan 

between 41°00' and 42°20' North and 69°30' and 71°20' East. With a total area of 

4,982 km2, it is the largest district in the Tashkent region. The administrative 

center is the city of Gazalkent. According to the census of 2000, there were 

142,900 people living in the district, whereas according to the census of 2013, 

about 160,000 people inhabited the area with more than 60% of the residents 

living in rural areas. The largest recreation sites of Uzbekistan are located in 

Bostanlik district.  

Almost the entire area is covered by high mountains such as the Western 

Tien Shan, Karzhantau, Pskem, Ugam and Chatkal. The elevation varies from 

568 m to the summit of Adelung at 4,301 m asl. Elevation generally increases 

from west to east and from south to north. The district further belongs to a 

seismically active zone, resulting in more than eight earthquakes with the 

different magnitude occurring on average per year. Table 4-1 shows the relation 

between the significant Pamir-Hindukush earthquake events and the landslides 

which occurred thereafter (Niyazov and Nurtaev, 2013). 
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Table 4-1. Pamir Hindukush Earthquakes and landslides occurred in Tashkent Province, 

Uzbekistan. 

The area is further characterized by a continental climate: annual mean 

minimum and maximum, and absolute minimum and maximum temperatures are 

-9°C, +21°C, -26°C and +46°C, respectively. The total amount of precipitation 

measured at the meteorological stations reaches up to 800–1200 mm per year. 

The main drainage line of the area is the Chirchik River. Within the district, the 

Charvak Reservoir operates with an area of coverage of 40 km2 and with 2 billion 

m3 of storage volume (Belolipov et al., 2013). 

We have selected the surroundings of the Charvak Reservoir, covering an 

area of approx. 177 km2, for the landslide susceptibility analysis (Figure 4-1). The 

dominant landslide types observed in the study area are translational slides, 

rotational slides, earth flows, debris flows and debris slides, with broadly varying 

volumes.   

Date Depth, km Magnitude Volume of 
landslides, 

mln/m3 

Place of occurrence 

21.05.1969 217 5.8 0.24 Tashkent Province 

06.10.1969 203 5.5 2.0 Tashkent Province 

06.10.1969 203 5.5 0.7 Tashkent Province 

16.05.1995 189 5.9 25.0 Tashkent Province 

20.03.1998 227 6.0 2.0 Tashkent Province 

05.04.2004 187 6.6 0.3 Tashkent Province 

05.04.2004 187 6.6 50.0 Tashkent Province 

03.04.2007 222 6.7 8.0 Tashkent Province 
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Figure 4-1. Location of the study area in the north-eastern part of Uzbekistan. 

4.2.2 Data preparation 

4.2.2.1 Landslide inventory 

Landslide inventories represent an important basis for statistical landslide 

susceptibility analyses and can be prepared in various ways (Sara et al., 2015). 

High and very high-resolution optical images from Google Earth are most 

commonly used in newer studies (Sato et al., 2009). In the present study, Google 

Earth and GeoEye-1 satellite data are employed. 170 landslides are mapped in 

total. Thereby, one polygon is placed in the central part of each observed 

landslide scarp. 119 (70%) out of those landslides are used for training and 51 
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(30%) are retained for the evaluation of the results obtained. Splitting of the 

inventory follows a random procedure. No distinction between different types of 

landslides is made in the present study. 

4.2.2.2 Predictor layers 

The thematic predictor layers for statistical landslide susceptibility 

analyses are often selected according to the geomorphological characteristics of 

the study area, the type of landslides and the method employed (Tien Bui et al., 

2013; Hong et al., 2017). There is still disagreement whether to constrain the 

predictor layers to a small number (Akgun et al., 2012), or to use a large number 

of layers (Catani et al., 2013; Meinhardt et al., 2015). The second type of 

approach is followed in the present study. Ten predictor layers are derived from 

the digital elevation model (DEM) as well as from the geological, soil, 

topographic, and land use and land cover (LULC) maps, in order to be used for 

the landslide susceptibility analysis. The layers are summarized in Table 4-2. 

Base map or layers Thematic layer Source 

DEM derived layers Elevation Worldview 1 stereo images 

(2 m), ASTER DEM (30 m)  Slope aspect 

Slope degree 

Geological map Geology Geological map of Uzbekistan  

1:500,000 Distance to lineaments 

Distance to faults 

Distance to streams 
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Soil map 

 

Soil 

 

Soil map of Uzbekistan 

1:1,500,000 

Topographic map 

 

Distance to roads 

 

Open Street Map 

Land use and land cover map LULC 

 

GeoEye-1 (2m), Landsat 8 
OLI 

Table 4-2. Sources of the thematic layers. 

4.2.2.2.1 DEM derived layers 

Elevation, slope and aspect are the most commonly used DEM 

parameters for landslide susceptibility mapping (Ercanoglu et al., 2004; 

Pourghasemi et al., 2012). For our study area, the elevation varies from 738 to 

182 m and is divided into six classes with intervals of 200 m (Fig. 4-2a). Aspect is 

related to the direction of precipitation, wind and sunlight. It is classified into nine 

categories: flat, north, northeast, east, southeast, south, southwest, west, 

northwest (Fig. 4-2b). The slope values range between 0° and 62° and are 

grouped into five classes (Fig. 4-2c). 

4.2.2.2.2 Layers from the geological map 

Geology plays a very important role for landslide susceptibility studies 

because different lithological classes vary among themselves in terms of 

mechanical and hydraulic characteristics (Pourghasemi et al., 2013; 

Pourghasemi et al., 2018). The study area is divided into two lithological units: 

quaternary with an alluvial complex and carboniferous with a carbonate-
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terrigenous complex. Most of the territory is assigned to the quaternary deposits 

including sand, gravel, conglomerate and loess. The carbonate-terrigenous 

complex consists of limestone and dolomite with a bed of siltstone (Fig. 4-2d). 

Lineaments as linear features serve as indicators for potential tectonic activity 

(Meten et al., 2015; Teerarungsigul et al., 2016). The distance to lineaments 

layer is classified into seven equidistant categories, using an interval of 300 m 

(Fig. 4-2e). Faults are directly related to the tectonic activity of the region and 

characterized by the presence of weak and fractured rocks (Chen et al., 2016). 

The distance to faults layer is divided into seven equidistant classes with 

intervals of 400 m each (Fig. 4-2f). Further, bank erosion along water courses 

plays an important role as a trigger of landslide processes (Park et al., 2013). 44 

streams with different lengths are mapped in the study area. The distance to 

streams layer is classified into eight categories with intervals of 300 m each (Fig. 

4-2g). 

4.2.2.2.3 Soil map 

The soil cover on the steep slopes strongly influences landslide 

occurrence (Sarkar et al., 2004; Shahabi et al., 2015). The soil map differentiates 

between three different types of soil including eroded soils associated with 

outcrops of bedrock, loamy mountain-forest soils and eroded soils on loess rocks 

(Fig. 4-2h). 
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4.2.2.2.4 Distance to roads 

Previous studies suggest that the distance to roads would be an important 

anthropogenic factor influencing landslide occurrence (Nourani et al., 2014). The 

roads are digitized from the topographic map, and the distance to the next road is 

derived for each raster cell. The distance layer is then divided into eight classes 

with intervals of 300 m each (Fig. 4-2i). 
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Figure 4-2. Predictor layers used for the landslide susceptibility mapping: (a) Elevation, b) Slope 

aspect, (c) Slope degree, (d) Geology, (e) Distance to lineaments, (f) Distance to faults, (g) 

Distance to streams, (h) Soil map, (i) Distance to roads, (j) Land use land cover. 
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4.2.2.2.5 Land use land cover 

According to Constantin et al. (2011) and Pourghasemi et al. (2018) land 

use and land cover (LULC) is the most commonly used predictor layer after 

slope, lithology and aspect. Indeed, LULC is a very important parameter with 

regard to slope stability, even though it has to be considered with care as it may 

introduce a bias to the results (Steger et al., 2017). The land use and land cover 

map is classified into seven categories: grassland, forest, bareland, shrubland, 

water body, agricultural land and settlements (Fig. 4-2j). 

 

4.2.3 Methods 

Various statistical approaches are available for landslide susceptibility 

mapping. Three of these methods are employed and compared within the 

present study: statistical index (SI), certainty factor (CF) and frequency ratio 

(FR). The accuracy assessment of the model results is done using the areas 

under the success rate and prediction rate curves (AUC). 

The SI method is a bivariate statistical model proposed by Van Westen et 

al. (1997). The calculation is based on the correlation of the landslide inventory 

and the predictor layers. The value of each class is defined as the natural 

logarithm of the landslide density in the class divided by the landslide density of 

the study area: 
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where Wij is the weight given to a certain parameter class (e.g. a rock type 

or a slope class), Dij is the landslide density within the parameter class, D is the 

landslide density within the entire map, Nij is the landslide area in a certain 

parameter class, Sij is the total area in a certain parameter class, N is the total 

number of the landslide pixels in the study area, and S is the total number of 

pixels of the study area. 

Also the CF method is widely used for landslide susceptibility mapping 

(Lan et al., 2004): 

 

 

 

Where PPa is the conditional probability of the landslide event in class a 

and PPs is the prior probability of the total number of landslide events occurring 

in the area. The CF value may vary from -1 to 1. Those values closer to 1 

indicate a high certainty of landslide occurrence whereas those values closer to -

1 show a low certainty of landslide occurrence. The CF values are incorporated 

pair wise by using the following combination rule: 

 



83 

 

According to Pourghasemi et al. (2018), the FR method is the most 

utilized approach for landslide susceptibility mapping after logistic regression. As 

a bivariate statistical method, the FR approach shows the correlation between 

the landslides and each single predictor layer (Lee et al., 2007). The landslide 

susceptibility index is derived by summarizing all layer-specific factor values: 

 

 

 

4.3 Results 

4.3.1 Landslide susceptibility mapping using the SI method 

The spatial relationships between the predictor layers and the landslide 

inventory for the SI method are shown in Table 4-3. The final susceptibility map 

is divided into five classes based on the natural breaks method: very low, low, 

moderate, high, and very high (Fig. 4-3). The weights associated to each class of 

each predictor layer vary over a broad range (Fig. 4-4). Among the LULC 

predictor layer classes, bareland and shrubland have the highest weight factors 

of 0.51 and 0.73 respectively, indicating that these two classes are most 

susceptible to landslide occurrence. The alluvial complex covered by loess 

deposits shows the highest weight factor (0.05) among the geological units. 

Among the soil classes, loamy mountain-forest soils show the highest 

susceptibility (weight factor of 0.31), whereas the lowest value is derived for 
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eroded soils associated with outcrops of bedrock (-0.52). Also the DEM-derived 

layers play an important role for landslide susceptibility, whereby the elevation 

class from 1200–1400 m shows the highest weight factor (0.38) and the lowest 

value is derived for the elevation class above 1600 m. East, northwest and 

southeast facing slopes are most susceptible among the aspect classes (0.47, 

0.59 and 0.87, respectively). The weight factor for the slope increases from 20°–

35°onwards and reaches its maximum value of 1.12 in the class 35°–45°. 

Considering the distance to lineaments layer, the range between 300 and 600 m 

has the highest weight factor (0.57), whereas the most susceptible class of the 

distance to faults layer corresponds to the range 800–1200 m (0.44). The highest 

SI value for the distance to streams layer is computed for the class 600-900 m. 

The most susceptible class from the distance to roads layer belongs to the range 

between 900-1200 m. The percentage of the classes very low, low, moderate, 

high and very high of the susceptibility map computed with the statistical index 

method are 11.64, 20.41, 24.58, 35.61 and 7.76%, respectively (Fig. 4-5). 
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Figure 4-3. Landslide susceptibility map derived using the statistical index (SI) method. 

 

Factor Class Class 
pixels 

Slide 
pixels 

Class 
pixels % 

Slide pixels%  SI CF FR 

LULC Grassland 623538 2999 43.59 48.22 0.10 0.09 1.11 

 Forest 517177 2664 36.15 42.83 0.17 0.15 1.18 

 Bareland 36389 265 2.54 4.26 0.51 0.40 1.67 

 Shrubland 31238 284 2.18 4.57 0.73 0.52 2.09 

 Waterbody 5710 0 0.40 0.00 0.00 -1.00 0.00 

 Agricultural 
land 

160702 8 11.23 0.13 -4.47 -0.99 0.01 

 Settlements 55713 0 3.89 0.00 0.00 -1.00 0.00 

Geology C1-2 84203 71 5.88 1.14 -1.64 -0.81 0.19 

 Q III-IV 1347230 6149 94.12 98.86 0.05 0.04 1.05 

Soil 1 343231 889 23.97 14.29 -0.52 -0.41 0.60 
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 2 588508 3516 41.10 56.53 0.31 0.27 1.38 

 3 500223 1815 34.93 29.18 -0.18 -0.17 0.84 

Elevation 738-800 7074 0 0.50 0.00 0.00 -1.00 0.00 

 800-1000 293985 998 20.60 16.03 -0.25 -0.22 0.78 

 1000-1200 503422 1783 35.28 28.65 -0.21 -0.19 0.81 

 1200-1400 446522 2843 31.29 45.68 0.38 0.31 1.46 

 1400-1600 160163 583 11.22 9.37 -0.18 -0.16 0.83 

 1600-1829 15697 17 1.10 0.27 -1.39 -0.75 0.25 

Aspect Flat 164855 642 11.55 10.32 -0.11 -0.11 0.89 

 North 168448 659 11.81 10.59 -0.11 -0.11 0.90 

 Northeast 94694 654 6.64 10.51 0.46 0.37 1.58 

 East 257271 1795 18.03 28.86 0.47 0.37 1.60 

 Southeast 76230 792 5.34 12.73 0.87 0.58 2.38 

 South 199563 418 13.99 6.72 -0.73 -0.52 0.48 

 Southwest 85513 201 5.99 3.23 -0.62 -0.46 0.54 

 West 252155 226 17.67 3.63 -1.58 -0.79 0.21 

 Northwest 85548 672 6.00 10.80 0.59 0.44 1.80 

 Northeast 42586 161 2.98 2.59 -0.14 -0.13 0.87 

Slope 1 325607 496 22.81 7.97 -1.05 -0.65 0.35 

 2 647830 2106 45.38 33.86 -0.29 -0.25 0.75 

 3 418143 3149 29.29 50.63 0.55 0.42 1.73 

 4 32852 441 2.30 7.09 1.12 0.67 3.08 

 5 3090 28 0.22 0.45 0.73 0.52 2.08 

Distance 
to 

lineaments 

300 176158 820 12.31 13.18 0.06 0.06 1.07 

 600 195500 1515 13.66 24.36 0.57 0.44 1.78 

 900 209595 1131 14.65 18.18 0.21 0.19 1.24 

 1200 201533 1208 14.08 19.42 0.32 0.27 1.38 

 1500 176430 103 12.33 1.66 -2.01 -0.87 0.13 

 1800 137282 127 9.59 2.04 -1.55 -0.79 0.21 

Distance 
to faults 

400 200619 413 12.31 13.18 -0.75 -0.53 1.07 

 800 176496 574 13.66 24.36 -0.29 -0.25 1.78 

 1200 144867 985 14.65 18.18 0.44 0.36 1.24 

 1600 109299 453 14.08 19.42 -0.05 -0.05 1.38 

 2000 98704 745 12.33 1.66 0.55 0.42 0.13 

 2400 96885 430 9.59 2.04 0.02 0.02 0.21 

 9000 604420 2620 23.38 21.16 -0.01 -0.01 0.91 

 Distance 
to streams 

300 377667 930 26.39 14.95 -0.57 -0.43 0.57 

 600 341322 1081 23.85 17.38 -0.32 -0.27 0.73 

 900 257924 2016 18.02 32.41 0.58 0.44 1.80 

 1200 195378 1194 13.65 19.20 0.34 0.28 1.41 

 1500 121960 199 8.52 3.20 -0.98 -0.62 0.38 

 2000 93981 621 6.57 9.98 0.42 0.34 1.52 

 3000 39736 179 2.78 2.88 0.03 0.03 1.04 
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 8000 3322 0 0.23 0.00 0.00 -1.00 0.00 

Distance 
to roads 

300 338747 212 23.67 3.41 -1.94 -0.86 0.14 

 600 255531 525 17.85 8.44 -0.75 -0.53 0.47 

 900 187003 655 13.07 10.53 -0.22 -0.20 0.81 

 1200 140898 2208 9.84 35.50 1.28 0.72 3.61 

 1500 114732 705 8.02 11.33 0.34 0.29 1.41 

 2000 152052 1318 10.62 21.19 0.69 0.49 1.99 

 3000 175082 597 12.23 9.60 -0.25 -0.22 0.78 

 9000 67245 0 4.70 0.00 0.00 -1.00 0.00 

                  Table 4-3.Spatial relation between thematic layers and landslides using SI, CF 

and FR methods. 

 

Figure 4-4. Weight factors of predictor layers for the statistical index (SI) method. 
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Figure 4-5. The percentage of the different susceptibility classes for the statistical index 

(SI), frequency ratio (FR) and certainty factor (CF) methods. 

 

4.3.2 Landslide susceptibility mapping using the CF method 

The spatial relationships between the predictor layers and the landslide 

inventory for the CF method are shown in Table 4-3. The final susceptibility map 

derived with the CF method was divided into five classes using natural breaks 

(Fig. 4-6). The LULC layer has the highest values for the classes bareland and 

shrubland (0.40, 0.52 respectively), indicating that these two classes are most 

susceptible to landslide occurrence. The alluvial complex covered by loess 

deposits shows the highest weight factor (0.04) among the geological units. 

Among the soil units, loamy mountain-forest soils have a value of 0.27: they 

represent the most susceptible class derived from the soil map layer. The 

elevation class from 1200–1400 m shows the highest weight factor (0.31), 

whereas the lowest value is derived for the elevation class up to 800 m (Fig. 4-7). 
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The northeast, east, southeast and northwest facing slopes show values of 0.37, 

0.37, 0.58 and 0.44 respectively. For the slope layer the susceptibility increases 

from 20° to 65°. The class 300–600 m shows the highest degree of susceptibility 

(0.44) with regard to the distance to lineaments. The class from 800–1200 m is 

most susceptible with regard to the distance to faults, the class from 600–900 m 

with regard to the distance to streams, and the class from 900–1200 m with 

regard to the distance to roads. The percentage of the classes showing very low, 

low, moderate, high and very high landslide susceptibility are 11.04, 25.95, 

26.67, 30.10, and 6.25%, respectively (Fig. 4-5). 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-6. Landslide susceptibility map derived using the certainty factor (CF) method. 
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Figure 4-7. Weight factors of predictor layers for the certainty factor method. 

4.3.3 Landslide susceptibility mapping using the FR method 

The spatial relationships between the predictor layers and the landslide 

inventory for the FR method are shown in Table 4-3. For the FR method values 

less than 1 show a low susceptibility and more than 1 a high susceptibility to 

landslides. The final susceptibility map derived with the FR method is divided into 

five classes using natural breaks (Fig. 4-8). Among the LULC predictor layer 

grassland, shrubland and bareland are most susceptible to landslide occurrence, 

with values of 1.11, 2.09 and 1.67, respectively. The lowest values are 

associated to the classes of water bodies and settlements. Among the geological 

units the alluvial complex has a weight of 1.05 and it is the most susceptible 

class. Among the soil classes the loamy mountain-forest soils have the highest 

susceptibility value (1.38), the lowest value falls on eroded soils among the 

outcrops of bedrock (0.60) (Fig. 4-9). Considering the elevation classes, the 

range between 1200 and 1400 m shows the highest susceptibility (1.46). The 

northeast, east, southeast, and northwest facing slopes are most susceptible with 
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regard to slope aspect (1.58, 1.60, 2.38, and 1.80 respectively). The weight 

factor for the slope increases from 20°–35° to 35°–45° (values of 1.73 and 3.08, 

respectively) and decreases for the class 45°–62° (2.08). Considering the 

distance to lineaments layer, the first four classes have values above 1. Also the 

first four classes of the distance to faults layer show the highest susceptibilities to 

landslide occurrence, and so do the ranges between 600 and 1200 m of the 

distance to streams layer (values of 1.80 and 1.41, respectively). For the layer 

distance to roads, the highest values are displayed for the classes 900–1200 m, 

1200–1500 m, and 1500–2000 m, with values of 3.61, 1.41, and 1.99, 

respectively. The percentages of the classes very low, low, moderate, high, and 

very high throughout the entire landslide susceptibility map are 19.40, 30.62, 

24.05, 18.84, and 7.09%, respectively (Fig. 4-5). 
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Figure 4-8. Landslide susceptibility map derived using the frequency ratio (FR) method. 

 

 

 

 

 

 

 

 

Figure 4-9. Weight factors of predictor layers for the frequency ratio method. 
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4.3.4 Evaluation against the landslide inventory 

The success rates of the SI, FR and CF methods are shown in Figure 4-

10. The AUC value for the SI method is 0.821, corresponding to a training 

accuracy of 82.1%. The AUC value for the CF method is 0.743, corresponding to 

a training accuracy of 74.3%. For the FR method an AUC value of 0.74, 

corresponding to a training accuracy of 74%, is obtained. The prediction rates 

associated to the SI, CF and FR methods are summarized in Figure 4-11: the 

AUC value obtained with the SI method is 0.8 and the prediction accuracy is, 

consequently, 80%. The AUC value for the CF method is 0.7 and the prediction 

accuracy is 70%. For the FR method the AUC value is 0.71 and the prediction 

accuracy is 71%. These evaluation results reveal that the FR and CF methods 

perform in a similar way for our study area, whereas the SI method yields the 

best result in terms of empirical adequacy. 

 

 

 

 

 

 

 

Figure 4-10. Success rate curves of the landslide susceptibility maps for the statistical 

index (SI), frequency ratio (FR) and certainty factor (CF) methods. 



94 

 

 

 

 

 

 

 

 

 

 

Figure 4-11. Prediction rate curves of the landslide susceptibility maps for the statistical 

index (SI), frequency ratio (FR) and certainty factor (CF) methods. 

4.4 Discussion 

Landslide susceptibility mapping is important for visualizing potentially 

landslide-prone areas in hilly and mountainous terrain (Dou et al., 2015). Several 

authors have performed statistical landslide susceptibility analyses for various 

areas worldwide. Wu et al. (2016), for example, applied the SI, FR, and CF 

methods for a landslide susceptibility assessment for the Gangu County, China. 

They used 12 predictor layers and a point-based landslide inventory with a cell 

size of 30x30m. The AUC method was used for the evaluation of the models, 

yielding accuracies of the three methods around 75%. Zhao et al., (2015) applied 

the SI and CF methods to analyze landslide susceptibility in the Shangzhou 

district, Shaanxi province, China. They mapped 145 landslide locations as points 
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using a cell size of 50x50m. The AUC method revealed accuracies of the applied 

methods between 68 and 70%. 

Preliminary knowledge about the predictor layers conditioning the spatial 

patterns of landslide occurrence is desired (Guzzetti et al., 1999). Landslide 

susceptibility analyses require several types of input data. The selection of the 

appropriate predictor layers depends on a variety of factors such as study area 

scale and pattern, type of landslide processes, and data availability and quality 

(Manzo et al., 2013; Tien et al., 2016). Hence, the number of predictor layers can 

vary, depending on the study area. According to Pourghasemi et al., (2018), the 

predictor layers selected for the current study are in general the most used layers 

for landslide susceptibility analysis. Some of the landslide-predictor relationships 

are now discussed in more detail: all three methods applied reveal that the 

bareland and shrubland classes from the LULC layer are most susceptible to 

landslides. So is loose material from the quaternary alluvial complex. Further, a 

decrease of landslide susceptibility with elevation is observed (Zare et al., 2013). 

This can be explained by the fact that hard bedrock often prevails at high 

elevation (Mohammady et al., 2012). For our study area the elevation range 

between 1200–1400 m displays the highest landslide susceptibility for all three 

methods, whereas the susceptibility decreases above this range. Due to 

increasing shear stress with increasing slope, slopes between 35° and 45° show 

the highest susceptibility for all three methods. Steeper slopes mostly occur in 

bedrock. Among the slope aspect layer classes, the highest susceptibility values 
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are associated to southeast facing slopes due to the general orientation of the 

geological layers. The patterns of landslide susceptibility with regard to each 

predictor layer are largely similar for all three methods employed, and many 

findings of earlier studies could be confirmed, indicating a certain robustness of 

the results. 

Also the derived AUC results are promising. The maximum accuracy 

(82%) was achieved with the SI method. It is higher than the accuracies yielded 

in many other studies (Regmi et al., 2014; Dou et al., 2015; Zhao et al., 2015; Cui 

et al., 2017; Vakhshoori et al., 2016.; Hong et al., 2016) which commonly arrived 

at accuracies between 70% and 80%. We may assume that this higher accuracy 

is a result of using a polygon-based instead of a point-based inventory, as it was 

done in most earlier studies. However, more research is necessary to confirm 

this hypothesis. In general, the benefit of using polygon-based landslide 

inventories depends on landslide size and geometry (Zêzere et al., 2017). 

The at least 18% of the observed landslide distribution not explained by 

the models are most probably the result of a combination of (i) uncertainties in 

the spatial patterns of the predictor layers; (ii) influence of additional factors not 

considered in the present work; (iii) positional errors (Steger et al., 2016) or 

incompleteness (Steger et al., 2017) of the mapped landslides; and (iv) mistakes 

in the interpretation of the satellite images. 

The study area is seismically active and the precipitation is higher than it 

is reported for adjacent regions. However, there are no high-resolution 
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precipitation and seismic data available for the 177 km2 large study area. 

Extending the landslide susceptibility mapping to larger areas could profit from 

the availability of precipitation and seismic data, as these layers can be crucial 

for the spatial patterns of landslide susceptibility, and their inclusion may 

therefore improve the quality of the results. 

4.5 Conclusions 

The active seismicity and the high amount of precipitation make the 

Bostanlik district highly susceptible to landslide processes. The selection of 

methods and predictor layers used for the landslide susceptibility mapping 

conducted in the present study builds on the available data and on the study area 

size. The three statistical methods statistical index (SI), frequency ratio (FR) and 

certainty factor (CF) were selected for the landslide susceptibility mapping, 

relating a set of ten predictor layers to a landslide inventory. The three landslide 

susceptibility maps were split into five classes, i.e. very low, low, moderate, high, 

very high, based on natural breaks. The model performance was analyzed using 

the area under curve (AUC). The AUC plots showed that the training accuracies 

were 82.1%, 74.3% and 74%, whereas the prediction accuracies were 80%, 70% 

and 71%, for the SI, FR and CF methods, respectively. The FR and CF methods 

performed in a similar way whereas the SI method yielded the highest accuracy 

among all the methods applied. The relationships between the landslide 

inventory and the predictor layers largely confirmed the results of previous 

studies. Model performance was slightly higher than in some previous studies 
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using the same methods for other areas, which is possibly a result of using a 

polygon-based landslide inventory derived from high-resolution satellite imagery. 

Further research is necessary to clarify the influence of the type of landslide 

inventory on the performance of statistical landslide susceptibility analyses. In the 

future, landslide susceptibility mapping will be extended to larger areas with the 

cooperation of local, regional and national authorities, who need the results for 

prioritizing areas requiring further attention. 
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CHAPTER 5 

Conclusions and Outlook 

Current research was based was formulate based on the Resolution of the 

Cabinet of Ministers (RCM) of the Republic of Uzbekistan № 585 dated 

19.02.2007 “On the activities on prevention and recovery of emergency situations 

related to floods, mudflows, avalanches and landslides" and national program for 

forecast and prevention of emergency situations. Uzbekistan is one of the data 

scarce regions of Commonwealth Independent States (CIS). Nevertheless, Earth 

observation (EO) datasets can be helpful for the territories like Uzbekistan to 

conduct the research combining the ancillary and EO data. This research is one 

example of this combining workflow. In chapter 2 we tried to evaluate land use 

land cover (LULC) change over 28 years in Bostanlik district, Tashkent province 

using EO datasets. The achieved results show that within 28 years the LULC of 

the Bostanlik district changed significantly. We observed an increment for the 

forests, built-up areas, waterbodies and agriculture classes and we verified the 

obtained results with already existing results from fellow using other methods of 

assessment. LULC maps resulting from this study was used for landslide 

susceptibility mapping of the district. Chapter 3 shows the first automated surface 

displacement map using object-based image analysis (OBIA) and very-high 

resolution (VHR) GeoEye1 EO data for the Bostanlik district, Uzbekistan. We 

reported on the suitability of the method to obtain detailed surface displacement 

information for landslide susceptibility and risk mapping. Remote and isolated 
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villages in high altitude areas are especially vulnerable to surface displacements 

resulting in total cut-off from the outside world, obstructing rescue workers and 

aid efforts. Therefore, mapping landslide hotspots near such villages is vital. We 

conclude VHR optical sensors (i.e. GeoEye-1) and OBIA are providing highly 

accurate results for detecting surface displacements. The obtained result can be 

used and upscaled to a national level to create a detailed landslide inventory and 

can be combined with the existing manual maps.  

Chapter 4 presents the comparative research on landslide susceptibility 

mapping using three statistical methods statistical index (SI), frequency ratio (FR) 

and certainty factor (CF). The three landslide susceptibility maps were split into 

five classes, i.e. very low, low, moderate, high, very high, based on natural 

breaks. The area under curve (AUC) plots showed that the training accuracies 

were 82.1%, 74.3% and 74%, whereas the prediction accuracies were 80%, 70% 

and 71%, for the SI, FR and CF methods, respectively. The FR and CF methods 

performed in a similar way whereas the SI method yielded the highest accuracy 

among all the methods applied. Model performance was slightly higher than in 

some previous studies using the same methods for other areas, which is possibly 

a result of using a polygon-based landslide inventory derived from high-resolution 

satellite imagery. Further research is necessary to clarify the influence of the type 

of landslide inventory on the performance of statistical landslide susceptibility 

analyses. In the future, landslide susceptibility mapping will be extended to larger 



112 

 

areas with the cooperation of local, regional and national authorities, who need 

the results for prioritizing areas requiring further attention. 

Landslide monitoring and forecasting is the very important topic for the 

researchers and Tian-Shan and Pamir regions of Central Asia are seismically 

active and consequently prone to landsliding. Further new approaches will be 

implemented to the different study areas of Uzbekistan. 
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Multispectral Data Analysis, Hyperspectral Data Analysis, Change Detection, 

Classification Methods, Mineral Mapping Techniques, Spectroradiometer 

measurements, Field data collection, Application of Remote Sensing in Geosciences 

http://www.uzgeolcom.uz/en/#_blank
http://www.baunat.boku.ac.at/en/ian/#_blank
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09/2010–11/2010 Short course on Geo-informatics  

Indian Institute of Remote Sensing, Dehradun (India)  

Main topics: Remote Sensing and GIS concepts, Multispectral Data Analysis, Image 

interpretation techniques 

09/2007–06/2009 MSc in Geosciences  

Tashkent State Technical University, Tashkent (Uzbekistan)  

Main courses: Developing of Mineral Resource Base of the Republic of Uzbekistan, 

Petrology, Formation processes of Mineral Resources Deposits, Sampling of Mineral 

Resources, Prospecting Geophysics of Ore and Non-metallic Deposits, Geochemical 

Methods of Prospecting Mineral Resources Deposits, Mathematical Modelling of 

Geological Objects, Modern Technologies of Well Drilling, Modern Methods of 

Investigation of Mineral Resources Base, Geological Economic Evaluation of  Mineral 

Resources Deposits 

09/2003–06/2007 BSc in Geosciences  

Tashkent State Technical University, Tashkent (Uzbekistan)  

Main courses: General geology, Basics of mineralogy and crystallography, Structural 

geology and geo-mapping, Geology of mineral resources, Geochemistry, Petrography, 

Lithology, Prospecting geology and safety, Methods of Remote-sensing, Stratigraphy, 

Topography, Regional Geology and Geology of Central Asia etc. 

PERSONAL SKILLS 
  

Mother tongue(s) Uzbek 

  

Foreign language(s) UNDERSTANDING SPEAKING WRITING 

Listening Reading Spoken interaction Spoken production  

Russian C2 C2 C2 C2 C2 

English C1 C1 C1 C1 C1 

German A2 A2 A2 A2 A2 

 Levels: A1 and A2: Basic user - B1 and B2: Independent user - C1 and C2: Proficient user 

Common European Framework of Reference for Languages  

Communication skills Sociability, diplomacy, tact, facile and rapid integration in different social groups and 

spaces, good human relation, public speaking and communication skills 

Organisational / managerial 

skills 

Experience in Research Project Management, coordinating and training, the 

experience of working on international projects. 

http://europass.cedefop.europa.eu/en/resources/european-language-levels-cefr
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Digital skills SELF-ASSESSMENT 

Information 

processing 

Communic

ation 

Content 

creation 
Safety 

Problem 

solving 

 
Proficient user Proficient user 

Independent 

user 

Independent 

user 

Independent 

user 

 
Digital skills - Self-assessment grid  

  Adobe Photoshop, Corel Draw, ArcGIS, ENVI, Erdas Imagine, Global Mapper 

Driving licence B 

http://europass.cedefop.europa.eu/en/resources/digital-competences
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ADDITIONAL 

INFORMATION 
  

Conferences and 

workshops 

1. International Symposium on Earth Observation for Arid and Semi-Arid 

Environments 20-22 September 2012, Kashgar, China 

2. Field investigation to the Gissar mountains with the German scientists from 

Freiberg Institute October 15-27, 2011, Surkhandarya, Uzbekistan. 

3. Seminar on Geo-Enabling Uttarakhand: Opportunities and the Way Forward. 

November 30, 2012 Indian Institute of Remote Sensing, Dehradun, India. 

4. National Symposium on Frontiers of Meteorology with Special Reference to the 

Himalaya November 20-22, 2012 Dehradun, India. 

5. National Symposium on Space Technology For Food & Environmental Security & 

Annual Convention of Indian Society of Remote Sensing & Indian Society of 

Geomatics, December 5-7, 2012 New Delhi, India. 

6. Scientific-practical seminar: The soil Resources of Uzbekistan: Status, Protection 

and the perspectives their rational using, 5 December 2013 Tashkent. 

7. “1st JAXA training for ALOS-2 Data Applications using ALOS archived data”, at 

Ulugh-Beg Astronomical Institute, Academy of Sciences of Uzbekistan, 29-31 

January, 2014. 

8. “5th SCO National Academies of Sciences Summer School for Young Scientists 

on Remote Sensing Technology and Applications” sponsored by CAS and organized 

by the Institute of Remote Sensing and Digital Earth, CAS from 20 July to 6 of 

August 2014 in Kashgar, Xinjiang, China. 

9. Excursion to the Suchdol Station and Káraný Waterworks organized by Czech 

University of Life Sciences. Date: May 19 - 20, 2016 

10. Field trip on Mountain Risk Engineering from 22.5.2016 to 25.5.2016 to 

Imst/Tyrol, Austria. 

11. United Nations Office at Vienna “Shadowing Programme 2017“ with the United 

Nations Office for Outer Space Affairs (UNOOSA), Vienna, Austria. 

12. INTERNATIONAL SUMMER SCHOOL ON NATURAL DISASTERS in 

Ljubljana, Slovenia from May 21st−June 10th, 2017. 

13. 4th World Landslide Forum “LANDSLIDE RESEARCH AND RISK REDUCTION 

FOR ADVANCING CULTURE OF LIVING WITH NATURAL HAZARDS” Ljubljana, 

Slovenia, May 29 – June 2, 2017. 

14. European Geoscience Union General Assembly 2018, 8–13 April 2018. 

15. United Nations/Pakistan/PSIPW 4th International Conference on the Use of 

Space Technology for Water Management in Islamabad, Pakistan, from 26 February 

to 2 March 2018. 

16. "Environmental Monitoring and Information Systems with focus on 

Environmental priority areas Air and Waste” Seminar under the WECOOP-2-Project, 

14 – 20 Oct. 2018, Environment Agency Austria, Vienna 
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Memberships 1. Member of Indian Society of Remote Sensing (ISRS).  

2. Member of International Association for Mathematical Geology (IAMG). 

3. National Committee of Geologists of Uzbekistan (NCGU). 

4. Debris Flow Association. 

5. Student member of European Association of Geoscientists and Engineers (EAGE) 

6. Member of the European Geoscience Union. 

Honours and awards 1. UN scholarship award for Postgraduate Diploma Course, 2012 

2. Diploma for the best scientific research in Scientific-practical seminar: The soil 

Resources of Uzbekistan: Status, Protection and the perspectives their rational using, 

5 December 2013 Tashkent. 

3. Ph.D. scholarship award of TIMUR (Training of Individuals through Mobility to EU 

from the Uzbek Republic) project funded by Erasmus Mundus Action 2 program, 

2015. 
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Abdulaziz International Prize for Water - 4th International Conference on the Use 
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