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Abstract

Soil organic matter (SOM) is an important component of soil. Organisms like plants,
fungi and bacteria that live in soil excrete proteins into it. At the present, there is little
research done on the stability and interaction of proteins in SOM at an atomistic level.

In this thesis, molecular dynamics simulations were used to investigate selected proteins
in different soil models of different complexity. I found that the stability of proteins is
not impaired if hydrophobic and hydrophilic functional groups are linked in the same
SOM molecule However, spatially differentiation of these functional groups in different
SOM molecules can result in unfolding of proteins. Additionally, I showed that different
functional groups of SOM always order around the protein in a similar pattern, though
the structure of the SOM molecules is different. The interaction energies between
proteins and SOM were primarily governed by electrostatic interactions, mostly repre-
sented as hydrogen bonds. Van der Waals interactions were observed to be significantly
weaker.

By computing Gibbs free energies of mutation of amino acids in water and SOM I
showed that the interaction of proteins and SOM also greatly depended on the amino
acid sequence of proteins. With these results SOMscore, a method that scores proteins
on their interaction strength with SOM, was developed. By applying SOMscore on a
set of 1190 proteins, I found that the majority of these proteins were predicted to be
absorbed by SOM. However, several enzymes that are often found in soils were observed
to be repulsive to SOM. This has biological meaning since enzymes that get absorbed by
SOM cannot longer function correctly. Therefore, there appears to be an evolutionary
benefit for soil enzymes to become repulsive to SOM.
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Kurzfassung

Organische Bodensubstanzen (soil organic matter, SOM) sind ein wichtiger Bestandteil
des Bodens. Organismen wie Pflanzen, Pilze und Bakterien, die im Boden leben,
sekretieren Proteine in diesen. Allerdings sind die Stabilität und Interaktion von Pro-
teinen in SOM auf atomistischer Ebene wenig erforscht.

In dieser Arbeit wurden molekulardynamische Simulationen verwendet, um exemplar-
ische Proteine in verschiedenen SOM Modellen zu untersuchen. Ich fand heraus, dass
die Stabilität von Proteinen nicht leidet, wenn hydrophobe und hydrophile funktionelle
Gruppen in demselben SOM Molekül verbunden sind. Allerdings können sich Pro-
teine entfalten, wenn diese funktionellen Gruppen in unterschiedlichen SOM Molekülen
separiert sind. Außerdem konnte ich zeigen, dass die Anordnung verschiedener funk-
tioneller Gruppen von SOM rund um das Protein sehr ähnlich ist, auch wenn sich die
Struktur von SOM Molekülen stark unterscheidet. Die Interaktionsenergien zwischen
Proteinen und SOM resultieren in erster Linie aus elektrostatischen Anziehungskräften,
welche oft in Form von Wasserstoffbrückenbindungen auftraten. Van der Waals Kräfte
traten signifikant geringer auf.

Mittels Berechnung von Gibbs-Energien von Mutationen von Aminosäuren in Wasser
und SOM zeigte ich, dass die Interaktion von Proteinen und SOM ebenfalls stark von der
Aminosäurensequenz abhängt. Mit diesen Resultaten wurde SOMscore, eine Methode
Proteine nach ihrer Interaktionsenergie zu SOM zu bewerten, entwickelt. SOMscore
wurde anschließend an einem Set von 1190 Proteinen angewandt und prognostizierte,
dass der Großteil aller getesteten Proteine zur Absorption in SOM neigten. Allerdings
wurden einige Enzyme, die häufig im Boden anzutreffen sind, auffällig abstoßend zu
SOM bewertet. Dieser Umstand hat biologische Bedeutung, da es für die Aktivität von
Enzymen wichtig ist, nicht in SOM absorbiert zu werden. Demzufolge scheint es einen
evolutionären Vorteil für Bodenenzyme zu geben abstoßend zu SOM zu sein.
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1. Introduction to Soil Sciences

Soil science seeks to describe the nature and properties of soil, which is the top layer of
earth’s crust. The thickness of the layer usually varies from few to multiple centimeters
and, therefore, constitutes only a tiny part of the whole crust.[1] However, soil is a
fundamental basis for life on earth as we know it and its development is deeply entangled
with the development of life itself.[2] The capacity of soil to absorb a magnitude of
compounds, such as water, organic and inorganic molecules, including pesticides and
toxins, makes it an important part of earths ecosphere. Soil plays a key role in the
carbon cycle and is, therefore, also linked to climate change[3]. Additionally, soil itself
is a habitat for a multitude of organisms, for example animals, plant roots, fungi and
microorganisms.[1] Therefore, soil is an important factor which has multiple influences
on the environment and subsequently on wildlife and humanity.

Soil has been titled the most complex biomaterial on earth.[4] Rather than being ho-
mogeneous, it is highly variable in its composition, porosity, layer size, texture, pH and
many more properties. Soil classification is challenging because the properties are de-
pendent on location as well as depth. In addition, land use has an important influence.[5]

Moreover, changes of soil properties occur on the macroscale but also on the microscale.
Different classification models were developed for and by different groups of people (for
example farmers or nations) which lead to a lot of confusion in the past. Nowadays, a
comprehensive classification system (soil taxonomy) was devised, which bases on objec-
tively measurable soil properties, such as moisture, temperature, color, texture and the
structure of soil.[6] Soil consists of solids (organic and inorganic matter), liquids (water,
dissolved molecules and ions) and gases (mostly air). A typical silt loam soil, which is
a good basis for plant growth, is composed mostly of minerals and a small fraction of
soil organic matter (SOM) (Figure 1.1).[7]

The most abundant elements in the earths crust, and therefore, in minerals are O, Si, Al,
Fe, Mg, Ca, Na and K.[1] Soil minerals are either present as insoluble crystal particles or
dissolved as ions. Soil particles are classified by size (clay < silt < sand). Clay particles
are the finest particles present and their properties (like adsorption and cation-exchange
capacity) play an important role since they affect soil chemical reactions and processes.[7]

The principal components of soil form aggregates which are categorized into micro-
and macroaggregates.[8] Microaggregates mainly comprise organic molecules and clay
minerals. Polyvalent cations such as Si4+, Fe3+, Al3+ and Ca2+ form salt bridges
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Figure 1.1: Soil component fractions for a typical silt loam soil: 45% minerals, 5%
organic mater (SOM), 20-30% water and 20-30% gases such as air.[7]

between them.[9] Multiple microaggregates are bound together by temporary binding
agents to form macroaggregates. Roots and hyphae can release organic molecules that
act as binding agents and thus influence macroaggregate formation.[9, 10] The formation
of aggregates stabilizes organic matter and protects it from microbial decay.[11]

1.1 Soil Organic Matter

Soil organic matter (SOM) is defined as the product of organic molecule degradation
processes in soil. Its major components are decomposing plant parts, microbial remains,
mineral bound organic matter, charcoal from forest fires as well as dissolved organic
matter.[1] Even though SOM is a small fraction of soil, it has great influence on the
carbon cycle.[1] The total amount of organic carbon stored in soil is estimated at 3,500
– 4,800 gigatons which exceeds what is stored in the global vegetation and atmosphere
combined.[12, 13]

1.1.1 SOM Extraction Process

The study of SOM has a long history. The first report was published in 1786.[14] Since
experimental possibilities were limited at that time, a relatively simple alkaline extrac-
tion technique was used to separate SOM from minerals and other soil components.
Even though since then there have been many variations on the method the basic prin-
ciple of extraction stayed.[13] A soil sample is mixed with NaOH for a specific time in
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a specific temperature to make SOM molecules soluble. Subsequently, the mixture is
centrifuged which results in an alkaline supernatant containing humic substances in so-
lution and a non-soluble part containing organic compounds (humin) but also minerals
or undecomposed plant material. The supernatant is then removed and acidified to a
pH of 1 to 2 in which humic acids precipitate, fulvic, however, stay in solution. The last
extraction step usually consists of desalting and washing out of nonhumic materials.[15]

This operational definition of humic substances has been criticized because of the ex-
traction process being incomplete and not representing the entirety of SOM which could
lead to the creation of incorrect models.

1.1.2 SOM Models and the Definition of Humic Substances

To understand the origins of SOM, how and in which form it is stored in soil and how it
is decomposed, several models have been developed. The classical humification model
bases on the assumption that organic matter from vegetation and microorganisms is
firstly degraded into small molecules such as phenols, phenylpropene units and others,
which subsequently react with each other to form higher molecular weight substances
which are referred to as humic substances.[16] Therefore, the classical humification model
describes HS as being distinct from sole degradation products of organic compounds on
a molecular level and differ from SOM by not comprising free, identifiable constituents
such as amino acids, sugars and polysaccharides.[17] However, this model has recently
been heavily criticized, for example by Lehmann and Kleber.[13] They argued that
there is no experimental evidence for the existence of humic substances on a molecular
level. They rather proposed the soil continuum model in which they completely dismiss
the term ’humic’. Instead they propose a linear degradation pathway where complex
organic molecules are gradually digested into smaller subunits until they are either
assimilated by living cells or finally oxidized to CO2. This model, however, has also been
criticized by overstating the biological degradation processes without taking chemical
polymerization reactions into account.[16]

Even though both models are under discussion there is agreement between most re-
search groups on four central assumptions:[16] (1) main starting materials of SOM are
various plants and soil microorganisms which are partially degraded. (2) the degrada-
tion products, for example phenols, phenylpropene units, amino acids and sugars, can
polymerize. These reactions can be catalysed by soil oxidoreductases, mineral surfaces
or soil microorgansims to form organic molecules that are usually referred to as humic
substances. (3) Humic substances have high biochemical stability and are, therefore,
highly resistant to microbial degradation. [18] (4) It is possible to deduct structural mod-
els from the investigation of chemical properties of humic substances.[19–22] Ultimately,
this assumption lead to a more recent molecular dynamics model called VSOMM in-
troduced by Sündermann et al. (2015)[23] (Section 1.1.5).
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1.1.3 IHSS Standard Samples

Due to the considerable variability of SOM it is difficult for researchers to compare and
reproduce their results around the world. A solution to this problem was the foundation
of the International Humic Substance Society (IHSS), which goal is to provide access to
the same humic substance samples.[24] They, therefore, defined a set of standard samples
(Suwannee River, Elliot Soil, Pahokee Peat and Leonardite),[25] used in a multitude of
studies.[23, 26–31] In this work we emphasize the Leonardite Humic Acid (LHA) standard
sample which is extracted from lignite, a low-grade coal obtained from the Gascoyne
Mine in Bowman County, North Dakota, USA.[25]

1.1.4 Chemical Properties of HS

Although soil science has been studied for centuries, there is little knowledge on the
chemical properties and the molecular structure of HS. This is explained by the extreme
complexity of humic substances[4, 17] as well as their previously mentioned extraction
method. However, the introduction of IHSS standard samples in combination with the
emergence of nuclear magnetic resonance (NMR) spectroscopy methods shed light on
SOM functional group content. The most abundant groups in HS are carboxyl, aro-
matic, heteroaliphatic and aliphatic groups.[32] Due to a high content of carboxyl groups
in the HS, molecules carry a negative charge at pH 7. By employing a comprehensive
multiphase NMR technique Masoom et al. concluded that the NMR spectrum of soil is
similar to one from a mixture of carbohydrates, proteins, lignin and lipids.[33] In addition
to NMR other methods, for example MS,[34] FTIR,[35] X-ray[36] or DSC,[37] have been
employed to study HS. Nevertheless, due to the fact that no HS molecule is identical
to another, it is impossible to resolve a complete structure of humic substances.

1.1.5 VSOMM and VSOMM2

To understand SOM on a molecular level, a tool called Vienna Soil Organic Mat-
ter Modeler (VSOMM) was developed, which can be easily accessed over the internet
(http://somm.boku.ac.at/).[23] It uses small organic fragments which are called build-
ing blocks to create molecular models. These building blocks contain different amounts
of carbon, oxygen, nitrogen and sulfur and were designed to have a high diversity in
the number and kind of functional groups. Following functional groups occur in one or
more building blocks: carbonyl, carboxyl, O-aryl, aryl, di-O-alkyl, O-alkyl, methoxyl
and alkyl. Experimentally obtained data can be set as input parameters, such as pH the
carbon and nitrogen fraction as well as the fractions of previously mentioned functional
groups. Additionally, the total number of building blocks and the number of building
blocks per molecule can be set. There is an option to choose between Na+, Ca2+ and
Mg2+ as counter ions. The VSOMM then automatically selects building blocks and
combines them to molecules which subsequently form a model system which matches
the experimental data as closely as possible. The amount of building blocks per SOM
molecule can be defined in the input[23]. Therefore, a large number of different soil
samples can be studied using VSOMM by entering respective experimental data. Sev-
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eral studies have successfully used VSOMM so far and experimental properties were
reproduced.[26, 27, 38–40]

Currently the second generation of VSOMM, VSOMM2, was developed by Escalona
et al.(to be submitted). Several improvements were made to the models. Firstly, new
building blocks were added, which were derived from MS data to represent a greater
chemical variety. Additionally, existing building blocks were altered to represent more
realistic chemical structures. Moreover, a genetic algorithm was introduced to increase
the chemical and geometric diversity of the models. Finally, the primary objective of
the algorithm was changed from fulfilling the atomic fractions to fulfilling the functional
group fractions.

1.2 Proteins in SOM

The presence of nitrogen in soil is explained by the encapsulation of proteins by organic
matter.[41, 42] Originally, studies suggested that proteins are encapsulated by hydropho-
bic domains of humic acids, however, Tomaszewski et al. (2011) experientally observed
that electrostatic forces drive the encapsulation of positively charged proteins with HS
at pH 5 to 8. Moreover, they suggested that attractive forces, likely supported by addi-
tional hydrophobic forces, can overcompensate the electrostatic repulsion of negatively
charged protein patches.[28] The association of proteins into parts of SOM/ HS increases
the protein stability.[28, 41] Additionally, decomposition of proteins is significantly slowed
down when mixed with humic polymers.[43] However, the encapsulation of protein can
lead to structural changes or blocking of active sites, reducing enzyme activity. For
example, a linear relationship between SOM content and decreased enzymatic activity
of laccase and peroxidase was found.[44]

There is a scientific effort to understand the interactions of proteins in SOM, which
includes the mycorrhizal symbiosis, degradation of cellulose and protein toxicity in soil.
Proteins that can be found in soil and, therefore, also in SOM can be split up in two
categories: proteins that are excreted into the soil on purpose to fulfill specific functions
and proteins that enter soil after cell death.[45]

Proteins that are secreted into soil can have different functions, for example, defense,
signalling, symbiosis and nutrient uptake.[46] There is also a class of proteins, glomalins,
that are excreted by plants and which primary function is to go into soil and alter its
structure. Glomalins are secreted by root hyphae in high concentrations and act as glue
to hold soil particles together.[47] Another important class of secreted proteins are lytic
polysaccharide monooxygenases (LPMOs) which are found in many fungi and bacteria.
These proteins are copper-dependent enzymes which cleave glycosidic bonds of cellu-
lose and chitin.[48] The active site comprises of two conserved histidine residues which
coordinate a copper ion.[49] LPMOs are important players in the decay mechanisms of
microbial degradation.[50]
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The pool of proteins that come into contact with soil after cell death is enormous. The
following two paragraphs give examples of proteins and what kind of impact they could
have on soil properties and the environment:

The first example is the Cry toxin family. It is originally found in Bacillus thuringiensis
and, therefore, often referred to as Bt toxin. Due to its known insecticidal properties,
the Cry toxin is popular for introducing new resistances in genetically modified crops.
In 2011 around 40% of all genetically modified crops expressed one or multiple copies
of the protein.[51] The intended purpose of the toxin is to be present in the plant cells
and to act as insects ingest plant material.[52] Nevertheless, there are several ways how
Cry toxins can enter agricultural soils, most notably by decaying plant material and
by excretion by plant roots.[53] It was found the the Cry toxin is strongly absorbed by
SOM.[29] Additionally, the Cry proteins retain full insecticidal activity in SOM.[30] The
crystal structure of the Cry1A toxin was resolved in 2018 showing a large three domain
protein containing 591 amino acids.[54]

A second example for the relevance of studying proteins in SOM is the case of prion
proteins. Prions are infectious misfolded proteins that lead to neurodegenerative dis-
eases in various animals, for example, Creutzfeldt-Jakob disease in humans, scrapie in
sheep and goat, chronic wasting disease in cervids (e.g. deer) and bovine spongioform
encephalopathy in cattle.[55] The prion proteins can exist in two forms: the correctly
folded form (PrPC) and the infectious misfolded form (PrPSc). Upon death of an
infected animal, misfolded prion proteins can shed into the soil and various soil com-
pounds can interact with the protein. It has been shown that murine prion proteins
are absorbed by humic substances, however, they stay structurally intact. The humic
substances-prion protein complexes can, therefore, act as a natural reservoir for these
infectious particles.[31, 56] Conversely, a study found that the humic acid - elk prion
protein mixtures showed reduced infectivity when administered to transgenic mice.[57]

Although the structure of PrPC has been resolved, the structure of the misfolded prion
protein (PrPSc) remains unknown, even though there has been significant effort also by
means of molecular dynamics simulation to create models.[58]

There are several possible applications for proteins in soil, most notably the use of en-
zymes for bioremediation. Soil has a great potential of absorbing and storing pollutants
for long times and removing said pollutants can pose a big challenge.[59] In 2008 scien-
tists estimated a total of 80,000 polluted sites in Austria alone.[60] On the other hand,
enzymes from bacteria and fungi have evolved to degrade many organic compounds.
Enzymes that have been linked to detoxification of organic compounds are, for exam-
ple, oxidoreductases (for phenolic compounds), oxygenases (for chlorinated aliphatics),
monooxygenases (for wide range of alkanes to fatty acids), dioxygenases (for aromatic
compunds), laccases (for phenolic and aromatice substrates) and peroxidases (for lignin)
and many more.[61] A solution for cleaning of contaminated soils, therefore, could be
the administration of said enzymes either in living organisms or directly in a cell-free
manner onto the soil. However, many of potential enzymes only have been tested under
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laboratory conditions and their activity may vary significantly when put into soil.[60, 62]

Further understanding of soil protein interactions could facilitate the engineering of
better enzymes for bioremediation purposes.
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2. Aim

The properties of soil particularly influence agriculture and consequently humanity.
Therefore, studying soil has a long tradition, however, investigation was mainly done by
observation of macroscopic properties, meanwhile molecular level explanations remained
unknown. Many effects cannot be explained on a macroscopic scale which lead to an
increased interest in the molecular description of soil. This, however, is hard because
of the vast complexity of soil components. Classic chemical analysis methods, for
example NMR, are not able to recognize independent chemical fragments, just gross
averages which do not reflect the molecular nature of soil. In recent years atomistic
models were developed to shed light on the molecular interactions of soil components, for
example the Vienna soil organic matter modeler (VSOMM). Molecular dynamics permit
the simulation of these models and also proteins which can answer several unsolved
questions regarding the molecular interactions of proteins with SOM and solving them
could give more clues on how proteins behave upon contact with soil and on their
respective environmental impact.

The aim of this work was to investigate the interactions between proteins and SOM on
a molecular level. Two proteins that act as a reference were selected based on their
simplicity and simulated in different SOM model conditions by means of molecular dy-
namics. Subsequently we analysed non-bonded interaction energies, especially focusing
on the difference between electrostatic and van der Waals forces, as well as the forma-
tion of hydrogen bonds. Moreover, the change of protein stability and their secondary
structure in the model systems was monitored. Additionally, the spacial arrangement
of solvent molecules and functional groups around the proteins were studied. In a next
step, we computed differences in free energies of mutation of amino acids between wa-
ter and SOM systems. With the results we developed a scoring function that gives an
indication about the interaction strength between proteins and SOM. Finally, several
extracellular and cytoplasmic proteins were scored and results analysed.
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3. Theory of Molecular Dynamics

Molecular dynamics simulations are a powerful tool to investigate molecule scale pro-
cesses and interactions, especially if said processes are inaccessible to experiment.
Molecular dynamics bases in the principles of classical and statistical mechanics as
well as thermodynamics. The following sections provide an overview over the most
important principles and how they are applied.[63]

The choice of the level of detail of a computer simulation is important since it affects
accuracy as well as efficiency. Realistically, this choice is always a compromise. Mat-
ter consists out of atoms which themselves can further be subdivided into electrons
and nuclei. Whereas it is possible to describe trajectories of nuclei with classical me-
chanics, the nature of electrons is different, quantum mechanics are necessary. The
Born-Oppenheimer approximation implies that the movement of nuclei and electrons
can be decoupled since the mass of an electron is several magnitudes lower than the
mass of a nucleus.[64].Biomolecular systems are usually multi-atomic and complex sys-
tems and their interactions are governed by weak non-bonded energies. For molecular
dynamics simulations of such systems the Born-Oppenheimer approximation is reason-
able, and therefore, only atoms are considered explicitly (points in space). In addition,
several more tricks can be applied to reduce the number of degrees of freedom, for ex-
ample the summation of multiple atoms in coarse grained particles to further increase
the efficiency of simulations.

3.1 Force Fields

Force fields define the potential energy landscape experienced by atoms in a molecular
dynamics simulation as a function of the atom’s position r. Several different force fields
are currently developed including AMBER, CHARMM and GROMOS.[65–67] Since they
were used in this work, the GROMOS force fields 54A7 and 54A8 are subsequently
described in more detail.[67, 68] The GROMOS force fields are united atom force fields;
CHn (where n is 1,2,3 or 4) groups are simulated as one particle to further simplify
and accelerate the simulation. The potential energy is defined as the sum of the energy
terms for bonded and non-bonded interactions (Equation 3.1).

V(potential)(r) = V(bonded)(r) + V(non−bonded)(r) (3.1)
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Bonded interactions are further subdivided into bond stretching, angle bending, tor-
sional dihedral angle and improper dihedral angle terms (Equation 3.2). Bond stretch-
ing is defined by a quartic potential, angle bending by a cosine harmonic potential and
improper dihedral angles by a simple harmonic potential with their respective force
constants (Kb

i , K
θ
i , Kξ

i ) and reference values (b0
i , θ

0
i , ξ

0
i ). The torsional dihedral angle

term is approximated by a cosine series expansion with the multiplicity (mi), the phase
shift (δi) and the force constant (Kφ

i ) as parameters.

V(bonded)(r) =

Nbond∑
i

1

4
Kb
i

[
bi(r)2 − (b0

i )
2
]2

+

Nangle∑
i

1

2
Kθ
i

[
cos θi(r)− cos θ0

i

]2
+

Ntorsion∑
i

Kφ
i [1 + cos (miφi(r) + δi)]

+

Nimproper∑
i

1

2
Kξ
i

[
ξi(r)− ξ0

i

]2

(3.2)

Non-bonded interactions are subdivided in a van der Waals term for the interaction
of uncharged atoms and a Coulomb term for electrostatic interactions (Equations 3.3
to 3.5). A visual representation of the non-bonded interaction energy terms is shown
in Figure 3.1.

Vnon−bonded(r) = Vvdw + Vcoul (3.3)

V(vdw)(r) =
∑

pairs i<j

4εij

(σij
rij

)12

−

(
σij

rij

)6
 (3.4)

V(coul)(r) =
∑

pairs i<j

1

4πε0εr

qiqj

rij
(3.5)

In order to solve the previously mentioned equations of potential energy, multiple pa-
rameters have to be defined. The GROMOS force fields 54A7/54A8 were parameterized
to reproduce free energies of solvation for a variety of functional groups in water and
organic solvents. Force fields 54A7 and 54A8 only have minor differences, most notably
the reparametrization of charged amino acid side chains. Since all sets of parameters
have been designed to work as generally as possible the 54A7/54A8 force fields arguably
allow realistic modeling of organic matter of soil.[23]
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Figure 3.1: Comparison of van der Waals potential and Coulombic terms for two par-
ticles with equal and opposite charges (repulsion and attraction respectively).

3.2 Classical Mechanics

3.2.1 Laws of Motion

The origin of classical mechanics were set by Isaac Newton in the 17th century. He
postulated three simple laws to describe the motion of objects.

(1) An object will either rest or travel along a straight line with a constant velocity v
unless force is exerted upon it.

(2) The force F that acts on an object is equals to the object’s mass m multiplied by
its acceleration a.

F = m× a = m
d2r

dt2
(3.6)

(3) If a force is exerted from object A to B the opposite force is exerted from object
B to A.

FBA = −FAB (3.7)
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Even though Newton had no atoms in mind when he postulated his laws they can
be used to describe the movement of such. The force that acts on an atom depends
on the derivative of the potential energy it experiences as a function of its position
(Equation 3.8).

Fi = −
∂V(r)

∂r
(3.8)

3.2.2 Leap-Frog Algorithm

For molecular dynamics simulations several integration algorithms have been proposed
based on Newton’s laws of motion. Most algorithms employ a step-wise integration
scheme with an equidistant time step size of ∆t. A popular example of such an algo-
rithm is the leap-frog algorithm which is here described in more detail.[69, 70] It is called
leap-frog algorithm because with Equations 3.9 and 3.10 it is possible to alternatingly
calculate the velocities and positions of all particles in the system.

v(t+
1

2
∆t) = v(t− 1

2
∆t) + ∆t× a(t) +O[(∆t)3] (3.9)

r(t+ ∆t) = r(t) + ∆t× v(t+
1

2
∆t) +O[(∆t)3] (3.10)

Only the first two terms of the Taylor expansion are calculated by the algorithm, further
terms (here denoted as O) are assumed to be small enough to be ignored. It is important
to note that the total energy of a system cannot be computed at the same time, since
the kinetic energy is dependent on the velocities, whereas the potential energy is a
function of the positions of atoms. Another important consideration to make is the
size of ∆t since it has a direct influence on the simulation time. As a rule of thumb
the time step should be approximately a tenth of the fastest motion of a simulation
which is the vibration of atomic bonds. However, bond vibrations are of no interest for
molecular dynamics and can, therefore, be constrained by algorithms such as LINCS
and SHAKE.[71, 72] This allows a maximum time step of ∆t = 2 fs which is usually
employed for maximum computational efficiency.

3.3 Statistical Thermodynamics

3.3.1 Thermodynamic Definitions

In thermodynamics there is an important distinction between systems and their sur-
roundings. Usually we seek to describe a system, either by absolute values or by relative
differences. A thermodynamic system can be defined by six central state variables, three
of which are extensive and three that are intensive. Extensive variables are proportional

12



Table 3.1: Thermodynamic variables and the properties which they discribe.

Described Properties Extensive Variable Intensive Variable

mechanical volume V pressure P

thermal energy E temperature T

chemical number of particles N chemical potential µ

to the system size whereas intensive variables are not. A pair of state variables as de-
picted in Table 3.1 can describe one property of a system. Both state variables of a
pair can never be kept constant at the same time if their described property changes.
As a consequence a thermodynamic system with changing properties can be described
by a maximum of three constant state variables.

Initially the laws of thermodynamics have been designed to describe macroscopic fea-
tures. For example the heat transfer and work generated or consumed by a system in
regard to its surroundings. There are three central laws of thermodynamics.[63]

(1) The change of the inner energy (U) of a system is depending on the heat absorbed
by the system (Q) and the work performed on it (W ).

dU = δW + δQ (3.11)

(2) For any thermodynamic transformation the total entropy (S) of the universe must
either increase or remain the same.

dStot ≥ 0 (3.12)

(3) The entropy of a thermodynamic system in a temperature of 0 K is 0 J/(mol K).

The first two laws of thermodynamics can be combined to the equation for the charac-
teristic state function. The characteristic state function of systems with constant S,V
and N is give in Equation 3.13.

dU = −PdV +
N∑
i=1

µidni + TdS (3.13)

The characteristic state functions of thermodynamic systems change depending on
which state variables are constant. The most important examples are the definition
of enthalphy H (constant SPN), the Helmholtz free energy A (constant NVT) and the
Gibbs free energy G (constant NPT) (Equations 3.14 to 3.16).
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dH = V dP +
N∑
i=1

µidni + TdS (3.14)

dA = −PdV +
N∑
i=1

µidni − SdT (3.15)

dG = V dP +
N∑
i=1

µidni − SdT (3.16)

Thermodynamic systems can have various interactions with their surroundings. Either
the system is open, heat, work and particle transfer are possible, the system is closed,
so only heat transfer can happen or the system is isolated, there is no interaction with
its surrounding at all. The universe is an isolated system, the number of particles N,
the volume V and the energy E are constant. This kind of systems are called micro-
canonical ensembles. Other important ensembles are the canonical ensemble (constant
NVT), the grand canonical ensemble (constant µVT), the isothermal-isobaric ensemble
(constant NPT) and the isenthalpic-isobaric ensemble (constant NPH).

3.3.2 Statistical Mechanics

Matter consists of microscopic constituents and, therefore, it must be possible to de-
scribe the laws of thermodynamics based on microscopic mechanical laws.[63] This means
that all macroscopic properties of thermodynamic systems can be described as a result
of microscopic states of all particles in the same system which is done by the field of
study of statistical mechanics. Assuming there are N particles in a system which can
be described by their positions (q1, ...,qN) and momenta (p1, ...,pN). One frame in
this systems constitutes one microstate, whereas the sum of all microstates is regarded
as the phase space. A priori every microstate of an NVT ensemble is equally likely
(Equation 3.17).[73]

∞∑
k

P (k) =
∞∑
k

Q−1e−βEk = 1 (3.17)

PNV T = Q−1e−βH(q,p) (3.18)

Where Q is the partition function, H is the Hamiltonian and β is the reciprocal of
Boltzmann constant multiplied by the temperature. The partition function is a di-
mensionless number that defines how many microstates are accessible. For the NVT
ensemble it is defined as in Equation 3.19.

QNV T =
1

N !

1

h3N

∫∫
e−βH(q,p)dq dp (3.19)

14



Where h is Planck constant and N is the total numbers of particles. The Hamiltonian,
H, describes the total energy of the system as a function of positions (q) and momenta
(p) of its particles. The Hamiltonian, H, can be written as the sum of kinetic and
potential energy (Equation 3.20).[63]

H(q,p) =
N∑
i=1

p2
i

2mi

+ V(q) (3.20)

The probability, P , for the isothermal-isobaric ensemble (NPT) is calculated with Equa-
tion 3.21, where Z is the partition function as defined as in Equation 3.22.

PNPT (p, q) = Z−1e−β[H(q,p)+PV ] (3.21)

ZNPT =
1

N !

1

h3N

∫∫∫
e−β[H(q,p)+PV ]dq dp dV (3.22)

Ludwig Boltzmann postulated that the thermodynamic entropy is a function of the
partition function.

S = −kB
∞∑
k

P (k) lnP (k) =
U

T
+ kB lnQ (3.23)

Where U is the inner energy of a system, T the temperature and kB the Boltzmann
constant.

3.4 Free Energy Calculations

Free energy is an important thermodynamic property. It describes if chemical reactions
happen spontaneously (negative values) or not (positive values). The calculation of
the free energy, therefore, can elucidate how strongly molecules react with each other.
The free energy is denoted either as Helmholtz free energy, ∆A, for NVT ensembles
or Gibbs free energy, ∆G, for NPT ensembles. In statistical thermodynamics the free
energy can be calculated using the partition function as following:

A = −kBT × lnQNV T (3.24)

G = −kBT × lnZNPT (3.25)
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The absolute free energy of a systems is not only practically impossible to calculate,
since the whole phase space needs to be sampled, it additionally has no chemical mean-
ing. However, the free energy differences between two states 1 and 2 are of much more
interest. They can be calculated as following.

∆A21 = A2 − A1 = −kBT × ln
Q2(NV T )

Q1(NV T )

(3.26)

∆G21 = G2 −G1 = −kBT × ln
Z2(NPT )

Z1(NPT )

(3.27)

Free energy calculation with molecular dynamics uses the fact that the free energy is
a state function, it is path independent. That means that the difference in free energy
from two states, ∆G, is always constant, regardless of the path going from one state to
another even if there are unphysical intermediates. As a consequence of this property
a thermodynamic cycle as drawn as in Figure 3.2 can be used[74].

1

2

∆G21(free)

free

1

2

∆G21(bound)

bound

∆Gbind(1)

∆Gbind(2)

∆∆Gbind

Figure 3.2: A thermodynamic cycle that can be employed to calculate free energy
differences of binding. The left side of the cycle represents a ligand in an unbound
(free) state, whereas the right side represents a ligand bound to a protein.

It is relatively easy to compute the free energy of changing molecule 1 to molecule 2 in
bound as well as unbound state (∆G21(free) and ∆G21(bound) respectively) compared
to the computation of the binding free energies directly (∆Gbind(1) and ∆Gbind(2)). By
closing the thermodynamic cycle the relative free energy changes of binding of molecule
1 and 2 (∆∆G) can be calculated using Equation 3.28.

∆∆Gbind = ∆Gbind(2)−∆Gbind(1) = ∆G21(bound)−∆G21(free) (3.28)
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Zwanzig (1954) proposed the following energy perturbation formula:[75]

∆A21 = A2 − A1 = −kBT × ln
Z2(NV T )

Z1(NV T )

(3.29)

= −kBT × ln 〈e−(H2−H1)/kBT 〉1 (3.30)

The ergodic hypothesis implies that the molecular properties observed in a simulation
over a period of time approach experimentally measured ensemble averages.[76] There-
fore, the ensemble average of Hamiltonians, 〈H〉, of molecular dynamics simulations
can be used to calculated free energy differences between two states. This, however,
only works well if both conformational ensembles have enough overlap, which is usually
not the case. However, tricks can be applied to enhance sampling. On method is the
use of several λ states, which are usually alchemical states that lie in between two end
states (Figure 3.3 A). They are defined in a way that sufficient conformational overlap
is reached and the free energies of going from each step to the next can be summed up.
Figure 3.3 B shows a second method which employs the definition of a reference state
(R), which is designed to have enough conformational overlap with all end states. This
method is especially advantageous when more than two end states are investigated,
since only one molecular dynamics simulation needs to be done.

Figure 3.3: Methods for overcoming bad sampling in free energy calculations: the use
of (A) multiple λ states and (B) a single reference state.
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Several free energy calculation methods have been developed for molecular dynamics,
for example LIE, LRA, WHAM, (extended) TI, OSP and TPF. In this work one-
step perturbation (OSP) and third power fitting (TPF) were used and are, therefore,
described in more detail in the following sections.

3.4.1 One-Step Perturbation

The idea behind one-step perturbation is to define a reference state that has enough
overlap between its conformational ensemble and the ensamble of a multitude of other
end states (Figure 3.3 B).[77] Therefore, only one molecular dynamics simulation of the
reference state needs to be done for this method and Zwanzig’s equation (Equation 3.30)
is directly applicable. The reference state can then be used as a proxy to compare free
energy differences of several end states as shown in Figure 3.4 and Equation 3.31.

∆A1→2 = ∆AR→2 −∆AR→1 (3.31)

The reference state usually consist out of dummy or soft atoms which are both unphys-
ical particles. A dummy atom is an atom where all interaction parameters are set to
zero, it is, therefore, not seen by other atoms in the simulation. Soft atoms still have
some interaction with their adjacent particles, however, their force field parameters
have been modified, for example it is possible for other atoms to pass through them.
Soft atoms are used to enhance sampling.[78] One disadvantage of the one-step pertur-
bation method, however, is the fact that it performs best when no polarity changes
happens. High polarity changes unfortunately result in poor overlaps of conformational
ensembles of reference and end states.[79]

1

R

2

∆AR→1

∆AR→2

∆A1→2

Figure 3.4: Thermodynamic cycle which can be employed to calculate free energy
differences between physical states (1,2) by going over a non-physical reference state R.

3.4.2 Third Power Fitting

The third power fitting method (TPF) is a relatively new approach proposed in 2011.[80]

TPF is a method that can be used for calculating free energies of uncharging of molecules
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and atoms. It relies on two end state MD simulations of the perturbed molecule: one
state with all atoms with full or partial charges and one without charges. The principle
of TPF is similar to the principle of the linear response approximation (LRA) method.
It assumes an easy mathematical relationship of free energy change going from the
charged to the uncharged state. For, LRA this relationship is assumed linear which
gives unsatisfactory results. By introducing a third-order polynomial, however, as done
by TPF, the precision of the results can be improved without the need to perform
additional molecular dynamics simulations.[80] A visualization of both methods is given
in Figure 3.5.

Figure 3.5: Comparison of the LRA and TPF method for calculation of free energies
of charging.

Since intermediate states between the charged and uncharged state are referred to as
λ states (Figure 3.3 A) the free energy change going from state 1 to state 2 be can
be written as dG

dλ
. By integration of this curve from state 1 to state 2 the free energy

of uncharging is calculated as described in Equations 3.32 and 3.33. The parameters
a, b, c and d of Equation 3.33 are obtained by measuring dG

dλ
and d2G

d2λ
at λ = 0 and

λ = 1 according to Equations 3.34 and 3.35 where V el
ls is the electrostatic interaction

energy between a molecule and its surroundings and the angular brackets 〈 〉 indicate
an ensemble property.
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∆GTPF
A→B =

∫ 1

0

dG

dλ
dλ =

∫ 1

0

f(λ)dλ (3.32)

f(λ) = aλ3 + bλ2 + cλ+ d (3.33)

dG

dλ

∣∣∣∣∣
λ

= 〈V el
ls 〉λ (3.34)

d2G

dλ

∣∣∣∣∣
λ

=
1

kBT
× (〈V el

ls 〉2λ − 〈(V el
ls )2〉λ) (3.35)

The free energy calculations of uncharging are artifacted if the total charge of a charge
group changes, for example by calculating the free energy of going from a protonated
lysine to a neutral reference state. In order to correct for these artifacts a correction free
energy (∆Gcor) can be added to the raw result (∆Graw) (Equation 3.36). The correction
free energy consist out of three terms: ∆Gpol, for spurious solvent polarization, ∆Gdsm,
for the impracticality of calculating the zero of the potential under periodic boundary
conditions using discrete solvent molecules and ∆Gdir, for artifacted direct interactions
between two molecules (Equation 3.37).[81]

∆G = ∆Graw + ∆Gcor (3.36)

∆Gcor = ∆Gpol + ∆Gdir + ∆Gdsm (3.37)

3.4.3 Combining free energy methods

To overcome disadvantages of single free energy methods they can be combined. The
combination of OSP and TPF has been tested to perform well[80, 82] and, therefore, was
applied in this work. With TPF the free energy of uncharging of molecules can be
calculated efficiently. Subsequently, the uncharged molecules can be perturbed into a
reference state by OSP. Both free energy terms are added to get the free energy of going
from charged state to a reference state according to Equation 3.38 where Q, N and R
are the charged, neutral and reference state respectively.

∆GQ→R = ∆GTPF
Q→N + ∆GOSP

N→R (3.38)

A thermodynamic cycle similar to what is shown in Figure 3.4 can subsequently be
used to calculate free energy differences between two charged states.
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4. Methodology

4.1 Selection of Proteins

In order to study the interactions between protein and humic substances, proteins were
selected from a subset of well known and previously characterized proteins.[83, 84] The
selection considered following criteria: (1) small size, to ensure short simulation times,
(2) different protein net charges, to study possible differences of interactions between
the protein and the strongly negatively charged humic acids, (3) different secondary
structures, to investigate different protein structures. By using the mentioned criteria
two proteins were selected as reference proteins: the villin headpiece and the EGF
domain of spitz (Figure 4.1).

The thermostable subdomain from chicken (Gallus gallus) villin, also called villin head-
piece, is a 36 amino acids (389 atoms) long protein consisting of three α helices according
to its protein database entry (PDB code: 1VII).[85] It contains a number of positively
charged amino acids which leads to 2+ net charge at pH 7. For simplicity reasons the
villin headpice is just referred to as villin in this thesis.

The second reference protein was the EGF domain of spitz from Drosophila melano-
gaster .[86] Although the EGF domain of spitz has a similar size as villin (50 amino
acids, 524 atoms) their properties differ. The protein database structure (PDB code:
3CA7) resolves not only an α helix but also two antiparallel β sheets.[87] Additionally
this protein has three S–S cystein bridges and a 2− net charge at pH 7. For simplicity
reasons, again, the EGF domain of spitz is just referred to as spitz in this thesis.

4.2 Experimental Design

In this master thesis multiple molecular dynamics simulations were performed to under-
stand the structure and dynamics of proteins in humic substances and to get insights on
the forces that command this interaction. The work was split up into two parts. The
first part comprised molecular dynamics simulations of the two reference proteins in sim-
ple solvent environments as well as more complex HS models. The intended purpose
of simple solvent systems was to investigate possible interactions between individual
functional groups of SOM and the proteins. Additionally, only solvent simulations for
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Figure 4.1: Protein database structure of (A) villin (1VII) and (B) spitz (3CA7). The
proteins are colored according to their secondary structure: α helix = red, β sheet =
yellow, loop = green. The figure was rendered with PyMol[88].

the estimation of salting-in/out effects were conducted. To proceed we studied our ref-
erence proteins by putting them into complex leonardite humic acid systems created by
the Vienna Soil Organic Matter Modeler 2 (VSOMM2). In the second part we calcu-
lated the free energy of mutation of amino acid side chains to investigate which amino
acids drive protein – humic acids interactions. With these results we subsequently
developed a scoring method, SOMscore, to rank proteins according to their potential
interaction strength with humic substances. Several extracellular proteins were scored
and compared.

4.2.1 Simple Solvents

4.2.1.1 Simulation Setup

Part one of this work comprises several molecular dynamics simulations of small solvent
molecule systems (Table 4.1). To start, eight replicates of each reference protein were
simulated in water. Then, four replicates were simulated in five different simple solvent
molecule systems which represented properties of humic substances. The simple sol-
vent systems were: (1) calcium chloride (CaCl2), to see high salt concentration effects,
(2) calcium acetate (CaAc2), to see how organic acids behave, (3) calcium benzoate
(CaBenz2), to see changes by adding aromatic groups, (4) calcium acetate with ben-
zene (CaAc2 + Bz), to investigate how interactions change when the carboxyl and aryl
functional groups are not part of the same molecule and, finally, (5) realistic concentra-
tion (Real. Conc.), to see what happens if previously used small molecules are mixed
to represent realistic leonardite humic acid. In Figure 4.2 the chemical structure of the
multiatomic solvent molecules is shown. Solute topologies were parametrised using the
GROMOS united atom force field 54A7.[67] For the creation of simple solvent molecule
topology files, building block templates for benzoate and acetate were downloaded from
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the Automated Topology Builder (ATB) and Repository[89, 90] and subsequently manu-
ally revised using the bb editor. The building block of benzoate was used as a template
to create the topology file of benzene. All created building block files are listed in the
appendix Figure 8.1 and Listings 8.1, 8.2 and 8.3.

A) CH3 C

O

O−

B) C

O

O−

C)

Figure 4.2: Molecular structures of acetate (A), benzoate (B) and benzene (C).

4.2.1.2 Molecular Dynamcis

Molecular dynamics simulations were performed with the GROMOS11 simulation
package.[91] All systems were simulated in rectangular periodic boxes using time steps
of 2 fs. The system charges were neutralized with Cl− and Ca2+ counter ions for villin
and spitz respectively for water conditions. All other simulations were normalized to
approximately 1 mol/L Ca2+ ion concentration. The exact concentrations of ions and
carbon fractions of all simulated systems are depicted in Table 4.1. The temperature
and pressure were coupled to 300 K and 1 bar using weak coupling[92] with a coupling
constant of 0.1 ps and 0.5 ps respectively. The isothermal compressability was set to
4.575×10−4 mol nm3/kJ. The SPC water model[93] was used for water molecules. Bond
length constraints for SPC waters were imposed by the SETTLE algorithm,[94] for all
other molecules SHAKE[72] was used. The non-bonded interactions were estimated
using a twin range cutoff based on a pairlist, for short-range interactions up to 0.8
nm the interactions were computed every time step and for intermediate-range up to
1.4 nm the interactions and the pairlist were updated every 5 time steps. Coulomb
interactions were calculated with an additional reaction-field with a relative dielectric
permittivity of 61. The system equilibration was performed in five steps. The first
step started at 60 K where velocities were randomly assigned according to a Maxwell –
Boltzmann distribution. Solute atoms were positionally restrained with a force constant
of 2.5 × 104 kJ/mol. The molecular dynamics simulation was performed for 20 ps. In
the four following steps the temperature was increased by 60 K and the force constant
decreased by a factor of 10 respectively leading to a fifth equilibration step at 300 K and
without position restraining. The molecular dynamics production run was subsequently
performed for 50 ns of converged potential energy for solvent and protein systems.
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Table 4.1: Solvent concentrations of simulated systems with villin, spitz and solvent
only. Abbreviations: Ac- = acetate, Benz- = benzoate, Bz = benzene, LHA = leonardite
humic acids. As a comparison, the last line shows data given by the International Humic
Substance Society (IHSS) for the concentrations of LHA carbon fractions.[32] Only the
fractions of carboxyl, aryl and alkyl groups were taken into account and normalized to
sum up to 1.

Concentrations (mol/L) Carbon Fractions

Protein System Ca2+ Cl- Ac- Benz- Bz Carboxyl Aryl Alkyl

Villin H2O - 0.02 - - - - - -

CaCl2 1.04 2.11 - - - - - -

CaAc2 1.00 - 2.02 - - 0.50 - 0.50

CaBenz2 0.90 - - 1.83 - 0.14 0.86 -

CaAc2 + Bz 1.06 - 2.15 - 2.12 0.13 0.75 0.13

Real. Conc. 1.04 - 1.98 0.13 1.24 0.17 0.67 0.16

Spitz H2O 0.01 - - - - - - -

CaCl2 1.07 2.11 - - - - - -

CaAc2 1.02 - 2.02 - - 0.50 - 0.50

CaBenz2 0.92 - - 1.82 - 0.14 0.86 -

CaAc2 + Bz 1.12 - 2.23 - 2.23 0.12 0.75 0.12

Real. Conc. 1.06 - 1.97 0.12 1.25 0.17 0.67 0.16

- H2O - - - - - - - -

CaCl2 1.06 2.12 - - - - - -

CaAc2 1.02 - 2.03 - - 0.50 - 0.50

CaBenz2 0.94 - - 1.87 - 0.14 0.86 -

CaAc2 + Bz 0.96 - 1.91 - 1.91 0.12 0.75 0.12

Real. Conc. 0.99 - 1.87 0.11 1.21 0.17 0.67 0.16

IHSS LHA Sample[32] - - - - - 0.17 0.67 0.16

4.2.2 VSOMM2 Systems

The simulation of reference proteins in VSOMM2 systems was performed using different
molecular dynamics software (GROMACS) and thus with different cutoff parameters as
the simple solvents. Therefore, to be able to compare protein stability, villin was simu-
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lated in the Realistic Concentration condition with VSOMM2 parameters as well. The
solvent concentrations of these simulations are depicted in Table 4.2. Four replicates
were made.

Table 4.2: Concentration of the three villin simple solvent system replicates that were
simulated with GROMACS. Abbreviations: Ac- = acetate, Benz- = benzoate, Bz =
benzene.

Concentrations (mol/L) Carbon Fractions

System Ca2+ Ac− Benz− Bz Carboxyl Aryl Alkyl

Real. Conc. 1.01 1.91 0.13 1.20 0.17 0.67 0.17

VSOMM2 models representing LHA were used as basis in which reference proteins
were introduced. All models contained the same total number of building blocks (200)
that comprised the humic acid molecules, however the number of building blocks per
molecule, hence the number of HS molecules changed. The systems were neutralized
with Ca2+ ions. In Table 4.3 the carbon fractions of all simulated replicates is depicted.
As a comparison, the last line shows the data of carbon fractions of experimental LHA
samples provided by the IHSS. All systems were simulated in an aequous solution with
H2O mass fractions of 0.74 to 0.77, which are well above what has been previously
reported as minimum for a water activity of 1.[27]

4.2.2.1 Insertion of Protein into LHA systems

The procedure used to insert the reference proteins into the LHA systems is similar to
the InflateGro method proposed by Kandt et al.[95] In InflateGro an amphiphilic bi-
layer was first inflated until the distances between lipids is big enough to accommodate
a protein in it. Then, the system is again compressed in small steps, where energy min-
imization simulations were performed in between to permit lipids to reassemble around
the inserted protein. However, since there were some differences between inserting a
membrane peptide into a bilayer and proteins to soil organic matter, several adjust-
ments were made. Firstly, SOM systems are not forming membrane bilayers, therefore,
the inflation needed to be applied in three dimensions. Furthermore, InflateGro infla-
tion increased the distance between all membrane molecules, however only one gap is
needed for the insertion of a protein. Lastly, InflateGro inflation worked by multiply-
ing distances with a scalar. For this reasons I wrote a more specific PYTHON script
that was optimized to work for VSOMM2 systems (Appendix Listing 8.5). Rectangular
periodic boxes containing the soil systems were prepared for the insertion process by
removing water and Ca2+ molecules. To insert the reference proteins into the prepared
systems, firstly, the systems were inflated by a summand of +1 nm and the protein was
added. The systems subsequently were deflated in ten steps (summand −0.1 nm) with
the same script each followed by an energy minimization simulation back to its original
box size. The energy minimization was done by the steepest descent algorithm and
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Table 4.3: Functional group concentrations of the VSOMM2 systems. The same systems
were used for both reference proteins. Abbreviations: BB/Mol = number of building
blocks per molecule, Arom. = aromatic, Het.Al. = heteroaliphatic. A table with the
elemental fractions can be found in the appendix (Table 8.3). As a comparison the last
line shows data given by IHSS for the concentrations of LHA carbon fractions[32].

Carbon Fractions

Name BB/Mol Rep Carbonyl Carboxyl Arom. Acetal Het.Al. Aliphatic

BB2 1 2 1 0.076 0.143 0.588 0.039 0.01 0.142

BB2 2 2 2 0.080 0.143 0.589 0.038 0.01 0.137

BB2 3 2 3 0.077 0.143 0.587 0.042 0.01 0.141

BB5 1 5 1 0.076 0.144 0.593 0.039 0.01 0.137

BB5 2 5 2 0.078 0.144 0.591 0.041 0.01 0.135

BB5 3 5 3 0.077 0.144 0.584 0.038 0.01 0.145

BB10 1 10 1 0.081 0.143 0.582 0.039 0.01 0.142

BB10 2 10 2 0.076 0.145 0.593 0.039 0.01 0.134

BB10 3 10 3 0.077 0.144 0.584 0.041 0.01 0.142

BB20 1 20 1 0.077 0.145 0.584 0.039 0.01 0.142

BB20 2 20 2 0.080 0.144 0.582 0.040 0.01 0.142

BB20 3 20 3 0.082 0.143 0.581 0.042 0.01 0.142

IHSS LHA Sample[32] 0.08 0.15 0.58 0.04 0.01 0.14

by positionally restraining the protein with a force constant of 105 kJ/(mol nm2). A
visual representation of the script and its application for protein insertion is shown in
Figure 4.3. The step size of deflation is crucial for the success of this protein insertion
protocol. If the deflation step size is too big, molecules can overlap, which will lead
to errors during energy minimization. If the step size is too small the amount of work
and computational power spent is unnecessarily high. In general the step size has to
be adjusted to work for the molecule density in the used system.
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Figure 4.3: Three frames of the VSOMM2 systems protein insertion protocol. The
protein is represented in gray. The most inflated system state is shown in violet purple.
Half way and complete deflation to the original box size are showen in smudge green
and teal respectively. The figure was rendered with PyMol[88].

4.2.2.2 Molecular Dynamics

After protein insertion the deflated boxes were subsequently processed with tools of
GROMACS version 2019.1.[96–103] The molecular topology files were created with the
54A7 GROMOS force field.[67] The systems were solvated using default van der Waals
radii[104] and subsequently neutralised by the replacement of water molecules with Ca2+

ions. A energy minimization step was performed using the steepest descent algorithm
to a force lower than 103 kJ/(mol nm). An atomistic cutoff-scheme was used for all
molecular dynamics simulations with a cut-off for electrostatic and van der Waals forces
at 1.4 nm. An additional reaction-field with a dielectric permittivity of 61 was applied.
Equilibration was performed in two distinct steps of 100 ps simulation each, starting
with an NVT simulation. The leap-frog algorithm was used for integration with a
step size of 2 fs. The protein was positionally restrained with a force of 103 kJ/(mol
nm2). All bonds were constrained with the LINCS algorithm.[71] The temperature was
restrained at 300 K with a weak coupling thermostat[92] with three different temperature
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groups (protein, SOM, water + ions) and a coupling time of 0.1 ps. The velocities were
initially assigned according to a Maxwell – Boltzmann distribution. The second step of
equilibration is a NPT molecular dynamics simulation. Simulation parameters stayed
the same, except for the addition of a isotropic weak coupling barostat.[92] The coupling
parameter was set to 0.5 ps and the isothermal compressibility of water to 4.5 ×10−5

bar−1. The molecular dynamics run was performed with the same settings except for
no positional restraining of the protein for 100 ns. After 20 ns we observed equilibrium
by convergence of the potential energy and the last 80 ns of each run were used as
production run.

4.2.3 Trajectory Analysis

Several analyses were performed with GROMOS and GROMACS trajectories using
their respective analysis tools[103, 105]. In the following sections the underlying princi-
ples of these analysis methods and the settings are outlined. Unless stated otherwise,
methods, equations and settings are the same for both simulation packages.

4.2.3.1 RMSD

To measure protein stability the positional root-mean-square deviation (RMSD) was
calculated from backbone atoms of the protein using Equation 4.1 where rref,i is the
position of atom i in a reference structure and ri is the position of an atom in the current
frame of a trajectory. Both reference and current frame proteins need to be aligned in
order to assure correct RMSD values. In this work the last frame of the equilibration
trajectory was used as reference structure.

RMSD =

√√√√ 1

N

N∑
i=1

(rref,i − ri)2 (4.1)

4.2.3.2 Hydrogen Bonds

The hydrogen bonds created by the reference protein were tracked over the trajectories.
The interactions were treated separately depending on the partner molecule, either itself
or several solvent molecules. However no distinction was made regarding the donor
and acceptor of the hydrogen bond. The default values for hydrogen bond definition
were used in both analysis packages. For GROMOS++ hbond the maximal distance
between acceptor and the hydrogen was defined as 0.25 nm and the minimal angle
between donor – hydrogen – acceptor as 135°. For the GROMACS analysis the maximal
distance between donor and acceptor was set to 0.35 nm and the maximal angle between
hydrogen – donor – acceptor to 30° (Figure 4.4).
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A) H

DA

> 135◦

B) H

DA
< 30◦

Figure 4.4: Representation of the angles used for definition of hydrogen bonds for A)
GROMOS++ and B) GROMACS. Abbreviations: A = acceptor, D = donor, H =
hydrogen.

4.2.3.3 MDF

The minimum distance function (MDF) is the distance between the closest two atoms
from two previously specified groups of atoms for every frame of a MD trajectory. The
output over the trajectories of similar molecules was averaged and converted into a
histogram. For GROMOS trajectories I used a modified version of the mdf tool which
is able to deal with more than one atom for both selected groups. This tool was kindly
provided by Yerko Escalona.

4.2.3.4 SASA

The solvent accessible surface area (SASA) of proteins is the surface area which can
be accessed by the solvent and, therefore, interacts the most with it. The SASA of
single amino acids or whole molecules can be estimated with the algorithm of Lee and
Richards[106]. The SASA was calculated with the GROMOS++ program sasa. The
probe radius was set to 0.14 nm.

4.2.3.5 DSSP

DSSP is an algorithm developed to identify secondary structures of proteins[107]. Its
implementation to GROMOS++, dssp, was used for trajectory analysis. It can identify
seven different secondary structures: bends, turns, β bridges, β strands as well as 3-,
4- and 5-helices. In order to simplify the secondary structure analysis, in this work 3-,
4- and 5-helices were grouped as helix and β bridges and β strands were grouped as
β strands.

4.2.3.6 Widom Method

Additionally, solvent only simulations of all conditions were performed in quadruplicates
for subsequent calculations of solvation free energies of methane. The exact carbon frac-
tions are depicted in Table 4.1. All molecular dynamics settings were kept as described
above, however, the production run was shortened to 10 ns of converged potential en-
ergy. Solvation free energies of methane were calculated with the Widom method.[108]

At every specified trajectory frame a methane (CH4) united atom was inserted 104 times
at a random position. The non-bonded interaction energy Vnbd was calculated for every
insertion. By using the ensemble average and Equations 4.2 to 4.4 the free energy of
solvation and its enthalpic and entropic terms were computed. Since no volume change
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takes place upon insertion of CH4 ∆U equals ∆H. Methane insertion was done every
10th snapshot. Data convergence was verified for each simulation.

∆GS = −kBT × ln

(
〈V e−V

nbd〉
〈V 〉

)
(4.2)

∆Uuv =
〈VnbdV e−V

nbd/kBT 〉
〈V e−Vnbd/kBT 〉

= ∆Huv (4.3)

T∆Suv = ∆G−∆Huv (4.4)

Where Vnbd is the non-bonded interaction energy, kB is Boltzmann’s constant, V is the
system volume and T is the system temperature.

4.2.4 Free Energy Calculations

The knowledge of the free energy of solvation of a protein could explain the strength of
absorption of a protein to humic substances compared to water. However, proteins are
too big for efficient free energy calculations and simplifications were necessary. Firstly,
not whole proteins but single amino acid sidechains were analysed, which additionally
allowed us to investigate which amino acids drive protein – humic substances interac-
tions. Secondly, no solvation free energies but mutational free energies of going from
Ala to another amino acid and going from SPC water to LHA systems were computed.
The calculations were performed analogously to Jandova et al. (2018).[82] A scheme of
the applied thermodynamic cycle is depicted in Figure 4.5. An arbitrary amino acid
sidechain (except for Gly and Pro) is represented by X, whereas A stands for alanine
and R for a reference state. In a first step the free energies of going from an amino
acid sidechain to a reference state (∆GX→R) were calculated. For non-polar amino acid
sidechains (Ala, Leu, Ile, Val) this was done only with the OSP method. For polar
amino acid sidechains (all other except Gly and Pro) the free energy estimation was
split up into two steps: TPF (Section 4.2.4.1) and OSP (Section 4.2.4.2). Third power
fitting is used to calculate the free energy of residues going from a charged state Q to
a neutral one N (∆GQ→N). The one-step perturbation approach was then applied to
get free energies of going from the neutral state N to a reference state R (∆GN→R). By
simple addition of both terms the free energy of going from a charged to a reference
state is calculated (Equation 4.5).

∆GQ→R = ∆GTPF
Q→N + ∆GOSP

N→R (4.5)

Since there were polar as well as non-polar amino acid sidechains, in Figure 4.5 the
state of an arbitrary amino acid is depicted as X instead of Q or N. The free energy
of mutation in the same solvent was subsequently calculated as shown in Equation 4.6.
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Finally, the free energy difference of mutation of alanine to an arbitrary amino acid
going from SPC water to LHA VSOMM2 systems (∆∆GSPC→LHA

A→X ) for every amino
acid was calculated using Equation 4.7.

∆GSPC
A→X = ∆GSPC

A→R −∆GSPC
X→R (4.6)

∆∆GSPC→LHA
A→X = (∆GLHA

A→R −∆GLHA
X→R)− (∆GSPC

A→R −∆GSPC
X→R) (4.7)

X

R

A

SPC water

X

R

A

LHA vsomm2

∆∆G

Figure 4.5: Thermodynamic cycle used for free energy calculations where X can stand
for Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr or
Val. A = Ala, R = reference state.

4.2.4.1 Third Power Fitting (TPF)

Third power fitting was done for all amino acid sidechains which contain charged atoms:
Asn, Arg, Asp, Cys, Gln, Glu, Hisa, Hisb, Lys, Met, Phe, Ser, Thr, Trp and Tyr. Two
topologies were created for each of these amino acids; one where sidechain atoms con-
tain their original 54A8 charge and one were all sidechain atom charges were set to 0.
The tripeptide coordinate files were taken from Jandova et al.[82] and were either di-
rectly solvated with SPC water or first combined with modified LHA VSOMM2 54A8
systems and subsequently solvated. Molecular dynamics simulations were performed for
uncharged and charged sidechains as described in Section 4.2.1.2. To analyse the elec-
trostatic interaction energy of the charged and uncharged trajectory the GROMOS++
program ener was used. The output was subsequently processed by the GROMOS++
program tcf which calculated, among others, the ensemble average and an error esti-
mate of that energy. By solving Equations 3.32 to 3.35 the free energy of uncharging
was computed.
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Charge corrections are necessary if the combined charge of a charge group changes
during perturbation which is the case for TPF calculations for charged amino acids
(Arg, Lys, Glu, Asp). Charge corrections consist of three terms that can be calculated
separately and need to be added to the raw values (∆Graw) to result real free energies
(Equations 4.8 and 4.9).[81]

∆G = ∆Graw + ∆Gcor (4.8)

∆Gcor = ∆Gpol + ∆Gdir + ∆Gdsm (4.9)

For the calculation of ∆Gpol and ∆Gdir equidistant frames were taken from the un-
charged and charged trajectories of net charged amino acids. Since both terms are
independent on solvent all SPC water molecules were removed. Initially three frames
were used but since values for Lys and Glu did not converge two additional frames
were taken into account. To remove periodic boundaries all frames were gathered
with the GROMOS++ program frameout. To estimate ∆Gpol the newly rewritten
GROMOS++ program dGslv pbsolv was applied for all non-water molecules. The
probe integer atom code was set to 5 and and radii calculation mode was set to rmin.
The non-bonded interaction parameters were set to values corresponding the ones used
for molecular dynamics simulations. ∆Gdir was calculated with the GROMOS++ pro-
gram ener concerning only atoms with charge changes. ∆Gdsm was calulated by solving
an analytical equation.[81] Several scripts were kindly provided by Christoph Öhlknecht.

4.2.4.2 One-Step Perturbation (OSP)

Two reference states which were proposed by Jandova et al.[82] were used, R4 and R5
(Figure 4.6). The reason for that was the good performance of reference state R5 for
small and medium sized amino acid sidechains and R4 for big ones. The reference
state MD simulations in SPC water were taken from Jandova et al., LHA VSOMM2
systems, however, were performed exclusively. From the 100 ns trajectory the last
80 ns were used for further analysis. Van der Waals interactions were calculated for
the reference states over the trajectory with the GROMOS++ program ener. By
superimposing the five most popular sidechain conformations sampled by Jandova et
al. and utilizing the GROMOS++ program fit ener it was possible to calculate the
van der Waals interaction energies for every frame and for said conformations. Non-
bonded interaction parameters were set as done during the MD simulations. Only the
sidechain atoms of reference and superimposed structures contributed to free energy
calculations. By using the GROMOS++ program dg ener the free energy difference
of both states was calculated for every frame of the trajectory and every amino acid
sidechain. With the output Equations 4.10 to 4.12 were subsequently solved.
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Figure 4.6: Reference states R4 and R5. D = dummy atom, A = soft atom.

∆GOSP
R→N = GN −GR = −kBT × ln〈e−(HN−HR)/(kBT )〉R (4.10)

∆Gconf
i = −kBT × ln(Pi) (4.11)

∆GOSP
R→N = −kBT × ln

(∑
e−(∆GOSP

R→Ni
+∆Gconf

i )/kBT

5

)
(4.12)

The fitness of the two reference states was scored by counting the number of contributing
frames to the free energy term. If the number of contributing frames for reference state
R5 was bigger than 1% the free energy calculated was directly used for comparison.
However, for amino acids where less than 1% of frames of the simulated trajectory
contributed to the free energy calculated the free energy calculated by going to R4 was
used. Thus, in order to compare free energies of amino acids going to R4 and R5 a
correction term was needed. This correction term was determined by linear regression
of the most robust sidechain values. Robustness in this case means that only amino
acids were selected that were not too big or too small (not: Trp, Arg, Lysh and Leu,
Ala, Thr, Ser) since these would be a lot more favorable for one reference state than
the other. Additionally, Ile was not taken into consideration since it was reported to
be problematic using OSP.[82] Moreover, Cys was not used because the calculated free
energy values varied a lot and thus it was identified as an outlier. These considerations
left a set of 11 amino acids used for linear regression (Asn, Asp, Gln, Glu, Hisa, Hisb
Ile, Met, Phe, Tyr and Val).

4.2.4.3 Molecular Dynamics

Similarly to the paper of Jandova et al., methylated tripeptides of the form Ala-X-Ala,
where X can stand for all amino acids, except glycin and proline, were used. Protonation
states were picked according to the most probable state in pH 7, however, for histidine
both neutral tautomers were used: protonation of Nε and Nδ which from now on will
be called Hisa and Hisb respectively according to the GROMOS nomenclature.
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Simulations were performed with the GROMOS11 simulation package in SPC water and
LHA VSOMM2 systems with similar LHA building block concentrations as applied in
previous VSOMM2 simulations of this work. The H2O mass fractions in VSOMM2
simulations averaged around 0.80. Since Jandova et al. used the GROMOS 54A8 force
field, the VSOMM2 building block topologies had to be modified since there are changes
in the charge distribution of carboxyl groups from force field 54A7 to 54A8. Therefore,
for all carboxy groups the charges were altered accordingly and the charge groups were
extended to the adjacent C atom. However, this was not possible for building block
HS13 which was deprecated and replaced by building block, HS37, which contains an
additional carbon atom to solve the problem of overlapping charge groups (Appendix
Figure 8.2 and Listing 8.4). The equilibration setup was changed into a six step process
starting from an initial simulation temperature of 40 K and constant restraining of
2.5× 104 kJ/mol for the protein. In the following steps the temperature of the system
is increased to 80, 120 and subsequently to 300 K in 40 and 60 K steps respectively.
Simultaneously the force constant was lowered by a factor of 10 each step leading to a
force constant of 2.5 kJ/mol at step five and 0 kJ/mol at step 6. All other parameters
concerning the MD simulations were kept the same as in previous GROMOS simulations
(Section 4.2.1.2). The molecular dynamics production run was then performed for 20
and 40 ns for the TPF runs in SPC water and LHA VSOMM2 systems respectively.
The simulation of reference states for OSP was done for 100 ns. For systems containing
LHA we observed an equilibrium of potential energy after 20 ns and, therefore, the first
20 ns of simulation were not used for further analysis.

4.2.4.4 SOMscore

With the results of the free energy calculations a scoring function was developed,
SOMscore, that was able to score proteins on their interaction strength to LHA.
SOMscore relies on ∆∆GSPC→LHA

A→X values of every residue number r and amino acid
X as well as its solvent accessible surface area (Equation 4.13). An additional fitness
value gave an indication on how much of the surface of a protein was described with
this scoring method (Equation 4.14).

SOMscore =

∑
r

∆∆GSPC→LHA
A→X

SASAr

SASAmax,r∑
r

SASAr

SASAmax,r

(4.13)

Fitness =

∑
r

SASAr

SASAprotein
(4.14)

r stands for every amino acid sidechain of a protein that can be scored, SASAmax,r
stands for the maximum SASA that an amino acid sidechain can have, SASAr stands
for the current SASA observed for the respective sidechain r and SASAprotein stands
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for the total protein solvent accessible surface area, including backbone and residues
which are not scored.

SOMscore was implemented in a PYTHON script that requires protein structure files
(.pdb) as input (Appendix Listing 8.6). The SASA of the sidechains was calculated with
the freeSASA PYTHON package.[109] For the definition of maximal SASA values for
various side chains a simulation average of single amino acid simulations was calculated
with freeSASA. The single amino acid simulation data was kindly provided by Matthias
Diem. The ∆∆GSPC→LHA

A→X for both tautomeric histidines were averaged to a single
histidine value weighted with their respective Boltzmann probability (Equation 4.15).

pHisa

pHisb

= e−∆∆∆G/kBT (4.15)

Subsequently, to test our scoring function several proteins with a complete PDB struc-
ture from the UniprotKB database[110] were scored. Firstly, two sample groups were
selected. The first sample comprised proteins from bacteria and fungi that were clas-
sified as extracellular (368 proteins). The second sample group, which was used as
a reference, comprised bacterial and fungal proteins that were classified as cytoplas-
mic (822 proteins). Subsequently, the distributions of SOMscores of both groups were
compared.
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5. Results and Discussion

Villin is a popular protein for molecular dynamics studies, several papers on its folding
have been published.[111, 112] Additionally it has been found that the proximity of three
phenylalanines that comprise the hydrophobic core is crucial for the correct structure.[84]

Although spitz is not as popular as villin, it has been used in several MD studies because
of its simplicity and an existing high quality structure.[83, 113]

5.1 Simple Solvents

The initial simulations of the proteins in water were done as a reference to which
changes in the measured properties can be compared to. To get more reliable statistics
the H2O simulations were done with eight replicates. The simple solvent molecule
structures were selected to represent the most prominent functional groups in humic
substances (alkyl, carboxyl and aryl). These three groups were represented by acetate
(alkyl and carboxyl), benzoate (aryl and carboxyl) and benzene (aryl). By splitting
up a magnitude of properties in the simpler systems it was easier to explore causes
of effects on the protein. Ca2+ ions have been identified to play a significant role
in SOM structure and stability,[23, 114–116] therefore, all conditions were normalized to
approximately 1 mol/L of Ca2+ ions in the system.

5.1.1 Protein Stability

The root-mean-square deviation (RMSD) was calculated for both reference proteins to
investigate the change of protein backbone stability in different simple solvent condi-
tions. The average RMSD over the simulation time is shown in Figure 5.1 A for villin
and B for spitz. Strikingly, there are big differences between both proteins. Villin had
a high structural variability in water which resulted not only in an increased average
RMSD of 0.33 nm but especially an increased standard deviation of 0.15 nm. The high
deviation resulted from one water simulation replicate where villin unfolded drastically
to an average RMSD of 0.67 nm over the trajectory. Similar unfolding events happened
consistently in all replicates of conditions were benzene molecules are present (CaAc2

+ Bz and Real. Conc., the latter represented by the red line in Figure 5.1). Therefore,
significant increases of RMSD in this conditions are observed. However, this is just
the case for villin. Additionally, the RMSD analysis showed that increasing the Ca2+

concentration to 1 mol/L had no significant influence on protein stability. Interestingly,
when the functional aryl groups were part of benzoate rather than its own molecule
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(condition CaBenz2) the RMSD of villin was not affected. Spitz was not only very sta-
ble in water resulting in an average RMSD over all eight replicates of 0.19 ± 0.04 nm,
also in no other solvent conditions significant deviations from the RMSD measured in
water were observed (Figure 5.1 B). The highest measured RMSD as an average over all
replicates was found in CaCl2 (0.31±0.13 nm). The exact values of all RMSD averages
are listed in the appendix in Table 8.1.

Figure 5.1: Running average (1 ns) RMSD timeseries of (A) villin and (B) spitz in
selected conditions (dark lines). The lighter colored area represents the standard devi-
ation of RMSD between different replicates.

The RMSD results of villin in water were slightly higher than what has been reported
in literature (0.33± 0.15 and 0.27± 0.12 nm respectively).[84] However, concerning the
standard deviation we concluded that both results are comparable. The unfolding of
villin in conditions where benzene molecules were present was probably due to disrup-
tions of the hydrophobic core of the protein. Stability studies done on villin found that
the positions of three phenylalanine residues that comprise the hydrophobic core are
crucial for the villin headpiece stability.[84] By introducing benzene molecules to the
environment around the protein, the phenylalanine residues started to interact more
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with the solvent than with each other, which lead to the unfolding of the protein. How-
ever, this did not happen for simulations where benzoate instead of benzene was used,
which indicates that the atomic bond between the carboxyl and aryl group had drastic
impact on protein stability. The unfolding event of villin sampled in an H2O simula-
tion might be an outlier, however, it emphasised the higher conformational variability
of villin compared to spitz. In all simulations where villin unfolded (all replicates of
conditions CaAc2 + Bz and Realistic Concentration as well as one H2O replicate) the
periodic box was too small to ensure that the protein was not interacting with its own
periodic copy. Therefore, numbers obtained from these simulations were interpreted
very carefully. However, they are included in this project work because they can still
elucidate protein solvent interactions. The average RMSD for spitz in water agreed
with Setz (2018).[83] The high stability of spitz can be explained by the presence of
stabilizing cystein bonds which might make the core less susceptible for disruption by
hydrophobic solvent molecules. Interestingly, despite its cystein bridges, spitz is suscep-
tible for destabilisation by high salt concentrations, where the highest average RMSD
value (CaCl2: 0.52 nm) was observed.

Subsequently, the secondary structure of reference proteins in the simple solvent con-
ditions was analysed. In Figure 5.2 the secondary structure of each residue as defined
by the DSSP algorithm (Section 4.2.3.5) is depicted over time for villin (A, C, E) and
spitz (B, D, F). Figure 5.2 A clearly shows that villin formed three distinct α helices
(depicted in red) when simulated in SPC water. The helices were separated by few
amino acids that were defined either as bends, turns or coils. The same held true for
the simulation in CaBenz2 as well as Real. Conc. condition (Figure 5.2 C and E). The
average occurrences of helices in all simple solvent conditions were compared to H2O
conditions and no significant differences were found. In Figure 5.2 B it can be seen that
the secondary structure of spitz is more diverse than for villin. It contained not only
one section that was defined as α helix but also several sections that comprised both
β sheets of the protein. Similarly to spitz a statistical analysis of the average occur-
rences of helices as well as β sheets showed no significant changes in different conditions.
The average occurrences observed can be found in the appendix in Table 8.2.

The results of the secondary structure analysis were interesting, especially in the context
of the unfolding events seen in the RMSD analysis. Even in conditions where there
were significant RMSD changes for villin (CaAc2 + Bz and Real. Conc.) the secondary
structure was kept intact. This indicates that even though the protein structure was
more flexible there was still a degree of organisation kept within the protein and the
unfolding event described by RMSD did not affect the secondary structure.
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Figure 5.2: The secondary structure of selected simulation replicates of villin (A, C, E)
and spitz (B, D, F) in the conditions H2O, CaBenz2 and Realistic Concentration along
the time. On the y axis the residue number and on the x axis the simulation time is
plotted. Notice that villin does not have any β strands.
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5.1.2 Salting in and salting out

Solvents can possess salting in or salting out effects on proteins. Salting in is defined
as a protein solubility increase upon addition of a co-solvent, salting out, conversely,
is defined as a solubility decrease. Since proteins are relatively hydrophobic molecules,
salting in and salting out effects of co-solvents can be deduced from the free energy of
solvation of methane.[117] By calculating these free energies in different conditions and
comparing them to water it is possible to predict how the solubility of proteins would
change.

The free energies of solvation of methane (∆Gs) are depicted in Figure 5.3. The free
energy of solvation of CH4 in water was 8.53± 0.07 kJ/mol. By the addition of purely
charged co-solvents (conditions CaCl2, CaAc2 and CaBenz2) the energy demand for
solvation increased significantly going up as high as 10.09 ± 0.19 kJ/mol in 1 mol/L
CaCl2. 9.87 ± 0.19 and 9.65 ± 0.21 kJ/mol were measured for CaAc2 and CaBenz2

respectively. Interestingly, there were big differences between ∆Gs in CaBenz2 and
CaAc2 + Bz (7.26±0.13 kJ/mol) which demonstrated how much molecular interactions
changed upon having a chemical bond between carboxyl and aryl groups. The values
observed for Realistic Concentration conditions score in between both extremes, close
to water at 8.88±0.26 kJ/mol. In the CaAc2 + Bz systems a phase separation of water
(containing the ions) and benzene was observed.

Figure 5.3: Free energies of solvation of methane in different conditions. The respective
enthalpy and entropy terms can be found in the appendix Figure 8.3.

The solvation free energy of methane calculated in this work is reasonably close to
the experimentally measured 8.4 kJ/mol[118] and can, therefore, be used as a reference
for other results. ∆Gs values higher than water indicate salting out properties of the
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solvents. This can have a stabilizing effect on the protein, since hydrophobic parts of
the protein tend to stick together rather than interact with such solvents. Contrarily,
∆Gs values lower than water can lead to salting in effects increasing the hydrophobic
interactions between solvents and solute. This is the case for CaAc2 + Bz condition
simulations. The free energy data obtained from these simulations agrees with RMSD
data gained for villin, where the standard deviation between replicate averages was
reduced for conditions were high ∆Gs values were measured, for Real. Conc., however,
the RMSD increased significantly. Interestingly the free energy of solvation in the
Realistic Concentration condition scores similarly to the water, which is surprising since
solvent concentrations are close to concentrations in CaAc2 + Bz and the measured
RMSD behaves similarly to CaAc2 + Bz. This could explain why villin was not as
stable in water either which was demonstrated by one H2O condition replicate that
unfolded.

5.1.3 Non-bonded Protein Interactions

5.1.3.1 Interaction Energies

To further understand which forces govern the interaction of proteins and their solvents
the non-bonded interaction energies were investigated. They were grouped according
to their respective solvent components and interaction term to gather more insights.
In Figure 5.4 the non-bonded interaction energies of both reference proteins with their
solvent are depicted. The cumulative bars per condition with their respective error bars
represent the total interaction energies and its deviation over the replicates. The color
scheme represents how different solvent molecules contribute to these energies. There
was a significant increase of total non-bonded interaction energies for CaAc2, CaBenz2

for both proteins compared to their respective H2O values. This significant increase
resulted from increased contributions of Coulomb as well as van der Waals energies.
Simultaneously, the contribution of anions and cations (dark and light green bars)
to the interaction energies increased, whereas the contribution of water (brown bars)
decreased. The presence of benzene molecules in solution is responsible for a big part
of the van der Waals energy (blue bars). However, Coulombic forces exceeded all van
der Waals forces by approximately one order of magnitude. A further observation was
that the fraction of contributions of cations and anions to the non-bonded interaction
depended on the charge of the protein. As expected, the interaction energies between
the positively net charged villin and Ca2+ were small. Compared to that the negatively
net charged spitz interacted more strongly with the anions.
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Figure 5.4: Non-bonded interaction energies of both reference proteins in all tested
conditions (top row: villin, bottom row: spitz). The different colors symbolize different
contributions of solvent molecules to the energy term. The following total energies
differ from the H2O reference significantly (α < 0.05): CaAc2, CaBenz2 and CaAc2 +
Bz for villin and CaAc2 and CaBenz2 for spitz.
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The differences in Coulombic energy contributions between villin and spitz were ex-
pected considering their respective net charge. However, both proteins also carry
charges of the opposite type than their net charge, which explains why there are en-
ergy contributions of both positively and negatively charged ions for both proteins.
An explanation of the overall higher contribution of anions to interaction energies is
their higher complexity. The reason for relatively low van der Waals energies even in
systems with benzene was that there were also always a lot of ions in the systems as
well. This lead to the assumption that SOM protein interactions are mostly governed
by electrostatic interactions.

5.1.3.2 Spacial Arrangement of Solvent Molecules

To understand which kind of molecular interface a protein is experiencing in different
solvents it is of interest to investigate how close different ions or molecules get to the
protein. For visualization a minimum distance function (MDF) was calculated and the
normalized frequency of the distance was plotted for all simple solvent conditions (Fig-
ure 5.5 for villin and 5.6 for spitz). It is important to note that the minimum distance
was always calculated between two physical atoms and not the center of geometry of
a group of atoms. To begin with the water simulations (A) only few counter ions to
neutralize the system were monitored. In the figure for spitz (Figure 5.6 A) the single
Ca2+ ion (black line) had a distinct peak at 0.44 nm distance to the protein. Since Ca2+

was present in all simulated systems analogous peaks were visible in all other simula-
tions (B – F) as well with its maximum ranging from 0.44 to 0.46 nm. Interestingly for
both reference proteins the charged carboxy groups (blue line, Figures 5.5 and 5.6 C –
F) showed peaks very close to the protein with maxima ranging from 0.18 to 0.19 nm.
A second distinct peak of carboxyl groups was found between 0.43 and 0.44 nm. The
aromatic peak (green line, Figures 5.5 and 5.6 D – F) always scored in between the peak
for carboxyl groups and Ca2+ with maxima between 0.34 and 0.36 nm. Strikingly, even
in systems where benzoate was present and thus both carboxyl and aryl groups were
on the same molecule the maxima of the peaks did not differ from other simulations.
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Figure 5.5: Frequency of the minimum distances of selected ions and functional groups
to villin. The frequency is depicted in the number of snapshots ×10−3 sampled over
all replicates of the simulation. Normalization was done over the number of ions/
functional groups present in the systems.
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Figure 5.6: Frequency of the minimum distances of selected ions and functional groups
to spitz. The frequency is depicted in the number of snapshots ×10−3 sampled over
all replicates of the simulation. Normalization was done over the number of ions/
functional groups present in the systems.
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The MDF analysis can elucidate how functional groups and ions arrange around the pro-
tein. For example, one can imagine a protein which is completely surrounded by a shell
of molecules of type one and just further distant by molecules of type two. In the MDF
analysis one would expect peaks for both molecule types, the closer peak corresponding
to molecule type one and the more distant peak corresponding to molecule type two.
However, if peaks have big overlaps, as observed in simple solvent conditions, this would
indicate that several different molecule types are close to the protein. As amino acids
have a big variety of properties, it would be expected to see more hydrophobic solvent
molecules to interact with more hydrophobic residues and polar solvent molecules with
more polar residues. However, the order of the peaks still has meaning on how tight
the protein – solvent molecule interactions are, going from close carboxyl interactions
to more distant aryl interactions and to relatively loose Ca2+ interactions. Especially
the close proximity of negatively charged carboxyl groups to the net negatively charged
protein spitz was interesting. This was probably due to positively charged residues
that cause attractive forces. Another reason might be the possibility of the formation
of hydrogen bonds between protein and solvent molecules. This is in accordance with
the fact that the first peak of carboxyl groups is approximately 0.2 nm apart from
the protein which is also the average distance of hydrogen bonds.[119] The proximity of
carboxyl groups to the protein emphasizes the importance of them for the interaction
of protein and solvent. This effect is even more pronounced by the fact that van der
Waals interactions are more distance dependent than electrostatic interactions in the
GROMOS force fields.

5.1.3.3 Hydrogen Bonds

Since the MDF analysis indicated that carboxyl groups of solvent molecules form hy-
drogen bonds with the protein, the hydrogen bonds were monitored and averaged over
the simulated trajectories. Figure 5.7 depicts the number of hydrogen bonds formed by
villin (A) and spitz (B). The total bar heights and their respective error bars represent
all hydrogen bonds formed by the protein and their deviation over the replicates. The
different colors indicate which molecules contribute as hydrogen bond forming part-
ners. In H2O simulations the average numbers of hydrogen bonds were 109.8 ± 1.2
and 154.9 ± 1.4 for villin and spitz respectively. There were significant deviations of
the total number of hydrogen bonds to H2O in conditions CaAc2 + Bz and CaAc2 for
villin and CaAc2 + Bz, CaAc2 and Real. Conc. for spitz (α < 0.05). The number of
hydrogen bonds only within the protein (black bar) was significantly reduced for spitz
in condition CaAc2. For all other conditions and all villin simulations no significant
changes of hydrogen bonds within the protein were measured. When carboxylate anions
were introduced to the systems they formed a considerable amount of hydrogen bonds
with the protein (dark green bars). However, except for condition CaAc2 with spitz,
the introduction of hydrogen bond forming anions did not interfere with number of hy-
drogen bonds within the protein, they rather formed new hydrogen bonds or replaced
SPC waters.
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Figure 5.7: Average number of hydrogen bonds formed by the reference proteins (villin
(A) and spitz (B)) over the simulation time. The errorbars represent the standard
deviation of total numbers between replicates. The color code symbolizes different
hydrogen bond partners. No differentiation was made between hydrogen donors and
acceptors. Significant changes in the total number of hydrogen bonds is marked with
an asterisk.

The total number of hydrogen bonds formed is bigger for spitz than for villin, which
makes sense since spitz is a larger protein. However, when compared relatively results
for both proteins were similar. CaAc2 increased the number of total hydrogen bonds
that are formed compared to CaBenz2. This difference might be due to the aryl group
carried by the benzoate, which is relatively big and could hinder the formation of
additional hydrogen bonds. When benzene was introduced to the systems the number
of hydrogen bonds is reduced (CaAc2 + Bz) which can be explained by the shielding
of hydrogen bond acceptors and donors on the protein surface by a layer of benzene
molecules. Some benzene molecules are observed to form hydrogen bonds, which was
probably an artifact of the broad definition of hydrogen bonds in the algorithm, however,
the amount of benzene hydrogen bonds is in the range of the standard error, so it had
no significant influence. It was again visible that the Realistic Concentration conditions
were more similar to water conditions even though the functional group concentrations
was relatively close to CaAc2 + Bz The high number of hydrogen bonds formed by
the anions and the protein are an explanation why there were considerably higher non-
bonded interaction energies between protein and anions compared to protein and cations
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(Figure 5.4). The secondary structure of a protein is stabilized by hydrogen bonds
within the protein. Although some simple solvent molecules liked to form hydrogen
bonds with the protein they apparently did not disrupt the secondary structure of the
proteins as shown previously. This was true for both major secondary structure classes,
α helices as observed in villin and spitz and β sheets as observed in spitz.

5.2 VSOMM2 Systems

After dissecting protein solvent interactions in more controlled simple solvent environ-
ments we investigated more realistic SOM models, provided by the VSOMM2 tool. We
focused on two properties of these models that were previously not represented: (1) the
influence of a bigger number of functional groups on proteins and (2) the influence of
humic substance molecule length on protein - solvent interaction.

5.2.1 Protein Stability

To investigate the backbone stability of protein the average root-mean-square deviation
was calculated. Table 5.1 shows the RMSD of the reference proteins. No significant
changes were measured between the different sizes of LHA molecules. There was also no
significant difference between the average RMSD of the Realistic Concentration and the
LHA VSOMM2 systems for villin. However, there was a significant difference between
the variance of the Real. Conc. replicates compared to the variance of the VSOMM2
systems.

As recent studies suggest proteins are more stable when simulated with atomistic cutoffs
compared to group based cutoffs.[120] Since the simple solvent models were simulated
with a group based cutoff and VSOMM2 systems with an atomistic cutoff it is difficult
to compare protein stability. To solve this problem villin in Real. Conc. conditions
replicates were simulated with both settings. As expected the average RMSD value for
atomistic cutoffs was lower (0.44±0.21 nm compared to 0.69±0.06 nm). There were no
significant differences in the mean of the RMSDs measured between Real. Conc. and
VSOMM2 systems, which is most likely due to the high variance of the Real. Conc.
RMSDs. This theory is supported by the fact that there are significant differences in
variances between Real. Conc. and VSOMM2 replicates which indicates that there is
higher variability in the protein structure in Real. Conc. systems. It is, therefore, save
to assume that proteins are more stable in VSOMM2 systems compared to Real. Conc.
systems.
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Table 5.1: Average RMSD values obtained from all simulations of part two of this work
in nm. Note that for the Real. Conc. conditions four replicates were made only for
villin. Abbreviations: Rep. = replicates, Real. Conc. = Realistic Concentration, Std.
Dev. = standard deviation.

Rep. BB2 BB5 BB10 BB20 Real. Conc.

Villin 1 0.26 0.30 0.20 0.32 0.43

2 0.25 0.20 0.24 0.21 0.72

3 0.29 0.32 0.38 0.23 0.22

4 - - - - 0.40

Mean 0.27 0.27 0.27 0.25 0.44

Std. Dev. 0.02 0.06 0.09 0.06 0.21

Spitz 1 0.22 0.20 0.18 0.16 -

2 0.34 0.31 0.37 0.15 -

3 0.25 0.18 0.52 0.20 -

Mean 0.27 0.23 0.36 0.17 -

Std. Dev. 0.06 0.07 0.17 0.03 -

5.2.2 Non-bonded Protein Interactions

5.2.2.1 Interaction Energies

In addition to protein stability investigation, the protein - solvent interaction energies
were monitored and grouped. Figure 5.8 depicts the non-bonded interaction energies
of both reference proteins. The whole bars and the black error bars show the total
interaction energy acting on the respective protein and its variability over the repli-
cates, respectively. The colours symbolize different solvent components contributing
to the energies. The left and middle graphs show the Coulombic and van der Waals
forces respectively, whereas the right graph depicts the sum of both. For Coulombic
interactions it is visible that the contribution of water (brown bars) increased as the
number of building blocks per molecule increased. However, the overall Coulombic
interaction energy did not change significantly for both proteins. In contrast the van
der Waals energies of simulations with two building blocks per LHA molecule (BB2)
differed significantly to ones from other LHA molecule sizes (α < 0.05). Additionally,
the contribution of humic acids (dark green bars) to the van der Waals energies was sig-
nificantly increased. Similarly to what was demonstrated for simple solvent molecules
in a previous part of this work the van der Waals interactions were approximately ten
times smaller than Coulombic interactions which translates to no significant differences
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in the total interaction energies for both proteins (right graphs).

Figure 5.8: Non-bonded interaction energies of the reference proteins to their solvent
(villin: top row, spitz: bottom row). The colour code represents the average contribu-
tion of different types of solvent to the energy term. There are significant differences
between van der Waals interactions of protein at condition BB2 compared to the others.

Overall VSOMM2 sytems contained similar amounts of functional groups, only the size
of humic substance molecules was altered. Therefore, it was expected that all interaction
energies and their respective contributions would be comparable. However, this was not
the case, especially striking with the increased van der Waals interaction energies of BB2
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replicates. Therefore, it should be evident that the size of humic substance molecules
causes this differences. BB2 molecules were still relatively small with an average of 24
atoms per molecule. It was possible for them to align to the protein in a way that polar
and hydrophobic groups interact with respective amino acids of the protein. BB20
molecules, however, were ten times larger than BB2 ones. They could not align as well
to the protein and, since the Coulomb energies were significantly higher than van der
Waals energies, optimized polar alignment which lead to a further decrease of van der
Waals energies. Moreover, the results of non-bonded energies for VSOMM2 systems
were similar to the non-bonded interaction energies measured in CaAc2 and CaBenz2

systems (Section 5.1.3.1). Despite of the different complexity between VSOMM2 and
simple solvent systems the forces that act on the protein are very similar in size and
origin. As can be seen in the following chapter this observation also holds true for the
spacial arrangement of LHA molecules around the protein.

5.2.2.2 Spacial Arrangement of LHA

To investigate how functional groups of the humic substances order around proteins
a minimum distance function analysis was made. We observed a similar pattern for
different LHA molecule lengths (Appendix Figure 8.4 and 8.5). For easy comparison to
previous results Figure 5.9 shows the results of the CaBenz2 simple solvent condition
and of the shortest and longest HS molecule conditions. The left column of the figure
refers to villin, the right to spitz. Similarly as found in simple solvent conditions Ca2+

ions showed a distinct peak with a maximum ranging from 0.44 to 0.45 nm distance to
the reference proteins. Interestingly, also the MDF of carboxyl groups were similarly
close to the protein with a peak maximum at 0.19 to 0.20 nm for villin and 0.18 to
0.19 nm for spitz. In between the relatively distant Ca2+ peak and the relatively close
carboxyl peak there were less distinct aryl peaks with maxima ranging from 0.32 to
0.37 nm and 0.32 to 0.35 nm for villin and spitz respectively.

The big distinct peak of Ca2+ can be used as reference to compare results from simple
solvent and VSOMM2 conditions, since the properties of Ca2+ have not been changed.
Both peaks were at a very similar distance (approximately 0.45 nm) to the protein.
However, even though the composition of solvent molecules of part one and part two of
this work have changed drastically the characteristic peaks of the functional groups stay
at constant distances from the reference proteins. This gave an additional indication
that even though there was high variability in the arrangement of functional groups
in the solvent molecules the protein was experiencing a relatively similar environment
around itself.
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Figure 5.9: A comparison of MDF analyses. The left column (A, C, E) refers to villin,
the right (B, D, F) to spitz. The frequency is depicted in the number of snapshots
sampled over all replicates of the simulation. Normalization was done over the number
of ions/ functional groups present in the system.
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An attraction between humic substance molecules and proteins was observed in all
simulations. To quantify this behaviour a cluster analysis was done. Two molecules
were considered a cluster if at least one hydrogen bond was connecting them. The
hydrogen bond definition for GROMACS was used as described in Section 4.2.3.2.
Figure 5.10 A depicts the number of clusters made of humic substance molecules and
villin at a certain time of simulation. After an initial random distribution of molecules
the number of clusters quickly decreased until a lower limit is reached where the number
of clusters stayed roughly constant. Figure 5.10 B shows the average number of clusters
of the last 50 ns of simulation. There was a non-linear correlation of humic substance
molecule size and the number of clusters observed.

Figure 5.10: A) Running average (1 ns) time series of the number of clusters formed
by humic substance molecules and villin. The colors represent the different sizes of
the LHA molecules and the filled area represents the standard error of the respective
three replicates. B) The average number of clusters of the last 50 ns of the simulation
is plotted against the average number of united atoms per molecule for both reference
proteins.

The cluster analysis showed the structure of humic acids during the simulation. They
started at random positions but it is clearly visible that in the first 20 ns they associ-
ated with the protein and each other to form fewer and larger clusters. The number
of clusters which is actually formed on average depends heavily on the size of LHA
molecules, which can easily be explained by the fact that if there are less humic sub-
stance molecules present, less hydrogen bonds need to be formed to create one big
cluster. The quick formation of protein – HS clusters indicates that proteins are likely
absorbed by SOM in soil.
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5.2.2.3 Hydrogen Bonds

The preliminary results with simple solvent systems indicated that hydrogen bonds
were potentially formed between protein and humic substance molecules. Therefore,
the hydrogen bonds were monitored over the simulation trajectories. Figure 8.6 in
the appendix shows the average number of hydrogen bonds formed by both reference
proteins in different VSOMM2 systems. No significant differences of the total number
of hydrogen bonds between the conditions were observed. Moreover, no significant
differences were measured regarding the average number of hydrogen bonds within the
proteins. However, BB2 conditions showed significantly more hydrogen bonds formed
with HS than BB10 and BB20 for villin and all other conditions and spitz. Figure 5.11
depicts the total non-bonded interaction energies between HS and protein against the
number of hydrogen bonds formed. A linear trend with coefficients of determination of
0.83 and 0.99 for villin and spitz respectively was observed.

Figure 5.11: The total non-bonded interaction energies between HS and protein are
plotted against the number of hydrogen bonds formed for villin (A) and spitz (B).

The increased number of hydrogen bonds matched the observations made for non-
bonded interaction energies. At simulations where the LHA molecules were small,
for example 2 building blocks per molecule, the multiple molecules could occupy more
space around the protein and, therefore, could replace SPC water to form more hydrogen
bonds. However, when the LHA molecules reached a certain length it became impossible
for them to align as perfectly to the protein and, therefore, some hydrogen bonds were
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rather formed by the solvent SPC water than by the LHA molecules.

5.3 Free Energy Calculations

In the previous sections the interactions of SOM with proteins was described. Interest-
ingly the non-bonded interaction energies as well as the spacial arrangement of solvent
molecules around proteins observed were very similar in most conditions, even though
the solvent molecule properties were diverse. Additionally, many relevant soil proteins
have an unknown structure, are very large or have multiple chains, which makes them
hard to simulate with MD. Therefore, we concluded that it is more feasible to predict
the strength of protein – HS interaction by investigation of interaction energies of each
amino acid separately and subsequent analysis of the amino acid sequence of a protein
of interest. The investigation of interaction energies of separate amino acids was done
by calculation of free energies of mutation going from Ala to an arbitrary amino acid
X and going from SPC water to LHA VSOMM2 sytems. The raw results of the free
energy calculations are depicted in Tables 8.4 and 8.5 in the appendix. Since two dif-
ferent reference states (R4 and R5) were used for the OSP method they could not be
directly compared. Since for most amino acids reference state R5 is more preferable, all
values where R4 was more preferable were converted, which was done by using a linear
equation. The equation was obtained by linear regression of the free energy calculation
results of selected amino acids (Figure 5.12). The exact procedure is described in the
methods chapter (Section 4.2.4.2). In the top left corner of both graphs the linear
equation which was used for the conversion of free energies is shown.

Figure 5.12: Correlation of free energies of mutation to reference states R4 and R5 in
SPC water (A) and LHA VSOMM2 (B) systems. Only selected amino acids were used
for the calculation of the regression line. y corresponds to ∆GN→R5 and x to ∆GN→R4.
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In Figure 5.12 the correlation between both reference states was fitted with a linear
regression. Physically, the free energy difference between two reference states should be
constant, and therefore a linear regression is already overfitting the values. However,
the coefficient of determination is generally low in In Figure 5.12 B.

In Figure 5.13 the end results of the free energy calculations are depicted. The range of
∆∆GSPC→LHA

A→X was between -13.7 kJ/mol for Arg and 6.9 kJ/mol for Asp. Interestingly,
positively charged amino acids like Arg and Lys had the lowest values measured, whereas
negatively charged amino acids had the highest values. Polar and hydrophobic amino
acids were not as clearly grouped, however, it is clearly visible that the majority of
amino acid residues tested scored lower free energy values than Ala.

The low values of positively charged and high values of negatively charged amino acids
made sense since previous results showed that electrostatics have a high influence on
the interaction of proteins and SOM. As expected hydrogen bonds that could be formed
by the negatively charged amino acids are not enough to counteract strong repulsive
forces. This indicated that SOM acts mainly as hydrogen bond acceptors which in this
case had little influence on a single negatively charged amino acid. It is important
to note that error bars are missing in this figure. In the paper of Jandova et al.[82]

the error was estimated with bootstrap replicates. However, this method could not
be completely adopted for VSOMM2 systems which had two reasons. Firstly, since
for the OSP method a lot of simulated frames did not contribute to the free energy
(up to 99%), it takes big samples to get converged results. Additionally, when there
were several SOM molecules in the system the number of frames until convergence
was expected was even more increased. Secondly, there is intended variation between
several VSOMM2 systems with the same input parameters. This variability cannot be
reflected by creating bootstrap replicates. Therefore, to get realistic errors it is necessary
to create replicates with different VSOMM2 systems, which unfortunately exceeds the
scope of this master thesis. A previous study done by Moon et al. (2016) found that the
relative concentration of positively charged amino acids (Arg, Lys and protonated His)
increases with the age of the tested soil, whereas the relative concentration of negatively
charged amino acids drops[42]. Our results could explain this observations: it is easy to
imagine that positively charged amino acids which stick tighter to SOM (low values of
∆∆GSPC→LHA

A→X in Figure 5.13) are less prone to degradation and washing out, whereas
the opposite is true for negatively charge amino acids.
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Figure 5.13: Free energies of going from Ala to a desired amino acid and going from
SPC water to LHA systems. The color code represents the amino acid type.

5.4 SOMscore

With the results of the previous chapter and the solvent accessible surface area the
SOMscore of proteins but also distinct amino acid residues was calculated as described
in Section 4.2.4.4. The SOMscore is a scoring function which can estimate the strength
of protein – humic substances interactions based on free energy differences. It is fur-
thermore capable to predict which parts of a protein are more likely to be affected by
SOM, since the score can be calculated for every amino acid separately. High scoring
values would indicate that for the protein it is less favorable to be surrounded by HS
compared to water, low values conversely would indicate that protein HS interactions
are preferred. The free energy and maximum SASA input data for the SOMscore script
as well as the code is listed in the appendix (Table 8.6 and Listing 8.6). In Figure 5.14
the surface of the scored reference proteins is shown. Negative values are colored in red
whereas positive values are colored in blue. The highest occurrence of SOM molecules
over a 80 ns trajectory is depicted in green. The total score of villin (A) was -1.96 kJ/-
mol and of spitz was -0.61 kJ/mol with a fitness of 0.77 and 0.74 respectively. It is
visible that both proteins exhibited positive (blue) as well as negative (red) patches.
Some strongly negative patches are deeply covered by green SOM molecules, however
there are also negative patches that point to water. Conversely, several positive patches
were pointing away from SOM molecules but some were still covered.
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Figure 5.14: Visualization of SOMscore for villin (A) and spitz (B). Proteins were
colored according to the SOMscore of each amino acid. Low values are red, high values
are blue. The green volume comprises the most popular residence locations of humic
substance molecules. Renderings were made with Pymol.[88]

With its implementation in a PYTHON script and the possibility to process PDB files
it is an easy way to quickly score proteins. However, these estimations are still very
rough with a fitness factor of 70 to 80% for most proteins. This means that between
20 to 30% of the proteins surface are not represented in the score at all. This surface
area is comprised of basically two components, amino acid residues that could not be
calculated with the used free energy estimation method, namely proline and the protein
backbone. An additional disadvantage of this method results from the use of the solvent
accessible surface area for residue influence normalization. Even though this method
allows to asses if an amino acid residue is contributing to possible SOM interaction
or if it is deeply buried inside the protein it makes the SOMscore very sensitive to
structural changes. This can be shown by comparing the top clustered structure of
villin in a VSOMM2 simulation resulting in a score of -1.96 kJ/mol whereas its PDB
structure 1VII only scores at -1.60 kJ/mol. The same, however not as extreme, is true
for spitz with a score of -0.61 kJ/mol and -0.54 kJ/mol respectively. For this reasons it
is necessary to understand what SOMscore is capable to predict and what its limitations
are in order to use it correctly.

By scoring multiple proteins of a database, for example UniProt,[110] with SOMscore
it was possible to systematically investigate how selected protein groups differ from
each other. In Figure 5.15 the SOMscore distribution of extracellular (red line) and
cytoplasmic (black line) proteins is shown. The averages of both curves were similar
(-1.37 kJ/mol and -1.33 kJ/mol respectively). Interestingly for both curves there were
two peaks close to the center and additional, smaller more peripheral peaks were vis-
ible (single and double arrows in Figure 5.15 respectively). The range of SOMscores
predicted went from -4.89 kJ/mol to 0.63 kJ/mol in extracellular proteins and from
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-5.70 kJ/mol to 0.92 kJ/mol in cytoplasmic proteins. The range of fitness was 0.62 to
0.95 and 0.01 to 0.93 respectively. The extremely low value of fitness is an outlier, since
it results from an structure were the protein is associated to DNA, which is not scored
by SOMscore.

Figure 5.15: The SOMscore distribution of selected UniProtKB proteins. Black line =
cytoplasmic proteins, red line = extracellular proteins. Normalization was done by the
number of proteins scored. 1190 proteins were scored in total (368 extracellular, 822
cytoplasmic).

To further investigate the protein distribution the ten highest and the ten lowest scored
extracellular proteins were monitored (Table 5.2). Out of the ten extracellular proteins
with the lowest scores eight were derived from four potentially pathogenic organisms
(Mycobacterium tuberculosis, Streptococcus pneumoniae, Escherichia coli and Lecani-
cillium psalliotae) which are less present in soil. Only two proteins from soil organisms
were found. Contrarily, among the then highest scored proteins eight were derived from
organisms that survive in soil (Neosartorya fumigata,[121] Aspergillus niger,[122] Saccha-
romyces cerevisiae [123], Actinomadura sp.,[124] Bacillus subtilis [125] and Salipaludibacillus
agaradhaerens [126]). Additionally, six proteins out of the eight soil organisms were en-
zymes. The single highest and lowest scored proteins are depicted in Figure 5.16.
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Table 5.2: List of the ten lowest and highest scored proteins of the UniProtKB search
of extracellular proteins. The SOMscore is given in kJ/mol.

PDB SOM

Protein Type Code Organism Score Fitness Ref.

Signaling Protein 6CJ8 Streptococcus pneumoniae -4.89 0.86 [127]

Signaling Protein 6COT Streptococcus pneumoniae -4.80 0.86 [127]

Signaling Protein 2A1C Streptococcus pneumoniae -4.79 0.84 [128]

Antifungal Protein 1AFP Aspergillus giganteus -3.28 0.79 [129]

RNA binding protein 4PT4 Mycobacterium tuberculosis -3.23 0.74 [130]

Hydrolase 4CGE Mycobacterium tuberculosis -3.13 0.70 [131]

Toxin 2F1N Escherichia coli -3.00 0.72 [132]

Thiol Peroxidase 1XVQ Mycobacterium tuberculosis -3.00 0.72 [133]

Ribonuclease 1BUJ Bacillus intermedius -2.87 0.75 [134]

Protease 3F7M Lecanicillium psalliotae -2.87 0.71 [135]

Protein G 1EM7 Streptococcus sp. -0.01 0.80 [136]

Elastase Inhibitor 3W0D Neosartorya fumigata -0.01 0.76 [137]

Ferulic Acid Esterase 1USW Aspergillus niger -0.01 0.74 [138]

Xylanase 2UWF Bacillus halodruans 0.00 0.77 [139]

Endopolygalacturonase 1NHC Aspergillus niger 0.01 0.77 [140]

Pathogen Related Protein 5JYS Saccharomyces cerevisiae 0.11 0.70 [141]

Peptidase 1W79 Actinomadura sp. 0.27 0.69 [142]

Glutamyl Transferase 2V36 Bacillus subtilis 0.33 0.72 [143]

Pathogen Related Protein 3Q4H Mycolicibacterium segmantis 0.59 0.75 [144]

Endoglucanase 1A3H Salipaludibacillus agaradhaerens 0.63 0.75 [145]
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Figure 5.16: Visualization of SOMscore for to highest and lowest ranked protein of the
UniProtKB analysis of extracellular proteins 6CJ8 (A) and 1A3H (B). Proteins were
colored according to the SOMscore of each amino acid. Low values are red, high values
are blue. Renderings were made with Pymol[88].

The UniProtKB analysis had no statistical significance. The average SOMscore of
extracellular and cytoplasmic proteins are very similar. However, this did not come as
a surprise. Since proteins have so many different functions, it is not hard to imagine
that there are proteins that evolved to associate to SOM whereas others did not. Taking
a very broad approach and averaging over all extracellular proteins, therefore, might
be too coarse to elucidate the properties of different protein families. What is striking,
however, is the fact that almost all proteins scored negative SOMscores, which means
that almost all tested proteins tend to get absorbed by SOM. Additionally, the study
of highest and lowest scored proteins indicated that enzymes connected to biomass
degradation score high, thus interact less with SOM. This would make evolutionary
sense since the proteins might not be able to show full enzymatic activity if they are
completely associated with and immobilized by SOM, which has been shown for laccase
and peroxidase.[44] Contrarily, most of the lowest scoring proteins were either no enzymes
or found in organisms which usually live in different environments. However, this
analysis is very speculative as just twenty proteins were examined. To get statistical
evidence further investigations need to be done, which unfortunately exceeds the scope
of this master thesis. The SOMscore PYTHON script which is provided in the appendix
(Listing 8.6) is an easy tool to do so.
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6. Conclusion

6.1 Simulation of Proteins in SOM models

Experimental data suggested that protein – humic substance interaction is particu-
larly governed by electrostatic interactions with weak contributions of van der Waals
forces.[28] however, the exact molecular mechanisms stayed unknown. In this work we
investigated the influence of two major functional groups of humic substances (carboxyl
and aryl) on the stability and interaction with proteins. With simple solvent systems
we found that both groups have different effects on protein stability. Whereas carboxyl
groups stabilized the hydrophobic interactions within the proteins, aryl groups have the
potential to interfere and to significantly destabilize proteins. Additionally, we found
that there is difference if aryl and carboxyl groups are linked by atomic bonds in one
molecule or if they are separate. The analysis of non-bonded energies showed that
Coulombic interactions are significantly higher than van der Waals interactions. We
traced the root of Coulombic interactions and found that protein and carboxyl groups
of solvent molecules formed hydrogen bonds. However, they did not decrease the num-
ber of hydrogen bonds the proteins formed with themselves. Additionally, we found
that even though high concentrations of benzene molecules are present in simulations,
carboxyl groups stay close to the protein. The secondary structure of proteins was not
significantly disrupted by the addition of several solvent molecules.

By introducing proteins into SOM models made by VSOMM2 we observed an associ-
ation of HS molecules and proteins to clusters. This could suggest that soil proteins
are absorbed by clusters of humic substances. The formation of clusters did not differ
depending on the net charge of the protein. The non-bonded interaction energies in
this more complex systems still were governed by Coulombic interactions agreeing with
what was found experimentally. Interestingly, differences in the van der Waals energies
experienced by the protein were found when the size of HS molecules changed. However,
taking also electrostatic energies into account no significance was left. We verified that
also for this more complex SOM models multiple hydrogen bonds were formed between
protein and HS molecules. Therefore, we concluded that simple solvent systems can
resemble more complex models when it comes to protein – SOM interactions.

We tested multiple different conditions and observed similar results regarding the spacial
arrangement of solvent molecules and non-bonded interaction energies, therefore, we
concluded that even though soil and HS are very variable, it is possible to assume that
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proteins in SOM experience very similar interactions with their environment. However,
not only soil is very variable, also proteins are. We subsequently used this observation
to create a scoring method which is able to predict the interaction strength of proteins
in SOM.

6.2 SOMscore

To measure how each of the proteinogenic amino acids (minus glycine and proline)
drive protein – humic substance interactions free energies were calculated. We applied
a combinatorial approach using two different methods, TPF and OSP, analogously to
Jandova et al.[82] The resulting free energy of mutation of going from alanine to an
arbitrary amino acid and going from SPC water to an LHA VSOMM2 model showed
that postively charged amino acids increased protein – humic substance interactions,
whereas negative charges decreased them. Polar and hydrophobic amino acids scored
between both extremes. This information was subsequently used to create a scoring
method, SOMscore. In this work we publish the PYTHON3 code for scoring proteins
with SOMscore, the only additional input needed is a PDB file of the three dimensional
structure of a protein of interest. The script outputs not only a total score of protein
but also writes out the score for each amino acid, therefore, it can elucidate which part
of a protein is more likely to interact with humic substances than another.

We subsequently scored two sets of proteins (extracellular and cytoplasmic) containing
more than 1000 proteins combined. This analysis showed that averaging large numbers
of proteins lead to very similar SOMscore distributions. However, by examining the
edges of the distribution of extracellular proteins we showed that enzymes produced
by organisms that are commonly found in soil tend to have high scores. We suggest
that this property could have evolved in order for enzymes to stay in solution and to
be better protected against absorption to and immobilization by soil organic matter.

In conclusion, SOMscore (and its PYTHON3 script) was shown to be a powerful tool
that can be used for the quick analysis of many proteins. We hope that this lays a
good foundation for further studies regarding the interaction of proteins and humic
substances. It could especially help to investigate big proteins and protein complexes,
like the Cry toxins, and explain why they associate so closely to humic substances with-
out losing their activity, whereas enzymes like laccase and peroxidase are less functional
upon absorption. In addition, with SOMscore enzyme candidates for bioremediation
can be assessed and possible strengths or weaknesses can be elucidated.
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Thomas C Terwilliger, and Jean-Denis Pédelacq. Functional and structural characterization of a
thiol peroxidase from mycobacterium tuberculosis. Journal of molecular biology, 361(5):850–863,
2006.

[134] M Ya Reibarkh, DE Nolde, LI Vasilieva, EV Bocharov, AA Shulga, MP Kirpichnikov, and
AS Arseniev. Three-dimensional structure of binase in solution. FEBS letters, 431(2):250–254,
1998.

[135] Chunzi Liang, Antje Bruckbauer, and Michael B Zemel. Leucine modulation of sirtuins and
ampk in adipocytes and myotubes, 2012.

[136] Pavel Strop, Andrei M Marinescu, and Stephen L Mayo. Structure of a protein g helix variant
suggests the importance of helix propensity and helix dipole interactions in protein design.
Protein Science, 9(7):1391–1394, 2000.

72

https://www.rcsb.org/structure/2a1c


[137] Mayuko Sakuma, Katsumi Imada, Yoshiyuki Okumura, Kei-ichi Uchiya, Nobuo Yamashita,
Kenji Ogawa, Atsushi Hijikata, Tsuyoshi Shirai, Michio Homma, and Toshiaki Nikai. X-ray
structure analysis and characterization of afuei, an elastase inhibitor from aspergillus fumigatus.
Journal of Biological Chemistry, 288(24):17451–17459, 2013.

[138] Juan A Hermoso, Julia Sanz-Aparicio, Rafael Molina, Nathalie Juge, Ramon Gonzalez, and
Craig B Faulds. The crystal structure of feruloyl esterase a from aspergillus niger suggests evo-
lutive functional convergence in feruloyl esterase family. Journal of molecular biology, 338(3):495–
506, 2004.

[139] Gashaw Mamo, Marjolein Thunnissen, Rajni Hatti-Kaul, and Bo Mattiasson. An alkaline active
xylanase: insights into mechanisms of high ph catalytic adaptation. Biochimie, 91(9):1187–1196,
2009.

[140] Gertie van Pouderoyen, Harm J Snijder, Jacques AE Benen, and Bauke W Dijkstra. Structural
insights into the processivity of endopolygalacturonase i from aspergillus niger. FEBS letters,
554(3):462–466, 2003.

[141] Rabih Darwiche, Alan Kelleher, Elissa M Hudspeth, Roger Schneiter, and Oluwatoyin A Asojo.
Structural and functional characterization of the cap domain of pathogen-related yeast 1 (pry1)
protein. Scientific reports, 6:28838, 2016.
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8. Appendix

Figure 8.1: Atom nomenclature of simple solvent building blocks. (A) acetate, (B)
benzoate, (C) benzene.
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1 TITLE

2 Exported from new Building Block Editor (browser based)

3 END

4 FORCEFIELD

5 54A7

6 END

7 PHYSICALCONSTANTS

8 # FPEPSI: 1.0/(4.0* PI*EPS0); (EPS0 is the permittivity of vacuum);

9 0.1389354E+03

10 # HBAR: Planck ’s constant HBAR = H/(2* PI);

11 0.6350780E-01

12 # SPDL: Speed of light (in nm/ps);

13 2.9979245800 E05

14 # BOLTZ: Boltzmann ’s constant

15 8.31441E-03

16 END

17 LINKEXCLUSIONS

18 #nearest neighbour exclusions when linking

19 #NRNE

20 2

21 END

22 MTBUILDBLSOLUTE

23 # building block created using TopologyBuilder

24 # by

25 ACET

26 #

27 # number of atoms , number of preceding exclusions

28 # NMAT NLIN

29 4 0

30 # preceding exclusions

31 #ATOM MAE MSAE

32 # atoms

33 #ATOM ANM IACM MASS CGMICGM MAE MSAE

34 1 O2 2 16 -0.63500 1 3 2 3 4

35 2 C1 12 12 0.27000 1 2 3 4

36 3 O1 2 16 -0.63500 1 1 4

37 4 C2 16 5 0.00000 1 0

38 # bonds

39 # NB

40 3

41 # IB JB MCB

42 1 2 6

43 2 3 6

44 2 4 27

45 # bond angles

46 # NBA

47 3

48 # IB JB KB MCB

49 1 2 3 38

50 1 2 4 22

51 3 2 4 22

52 # improper dihedrals

53 # NIDA

54 1
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55 # IB JB KB LB MCB

56 2 1 3 4 1

57 # dihedrals

58 # NDA

59 0

60 # IB JB KB LB MCB

61 # LJ exceptions

62 # NEX

63 0

64 # IB JB MCB NCO IND CON

65 END

66

67 POSITIONS

68 4

69 1 396.60 416.14

70 2 366.38 398.49

71 3 366.63 363.47

72 4 335.96 415.76

73 END

Listing 8.1: Acetate 54A7 mtb file.
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1 TITLE

2 Exported from new Building Block Editor (browser based)

3 END

4 FORCEFIELD

5 54A7

6 END

7 PHYSICALCONSTANTS

8 # FPEPSI: 1.0/(4.0* PI*EPS0); (EPS0 is the permittivity of vacuum);

9 0.1389354E+03

10 # HBAR: Planck ’s constant HBAR = H/(2* PI);

11 0.6350780E-01

12 # SPDL: Speed of light (in nm/ps);

13 2.9979245800 E05

14 # BOLTZ: Boltzmann ’s constant

15 8.31441E-03

16 END

17 LINKEXCLUSIONS

18 #nearest neighbour exclusions when linking

19 #NRNE

20 2

21 END

22 MTBUILDBLSOLUTE

23 # building block created using TopologyBuilder

24 # by

25 BENZ

26 #

27 # number of atoms , number of preceding exclusions

28 # NMAT NLIN

29 14 0

30 # preceding exclusions

31 #ATOM MAE MSAE

32 # atoms

33 #ATOM ANM IACM MASS CGMICGM MAE MSAE

34 1 OD2 2 16 -0.63500 0 3 2 3 4

35 2 CG4 12 12 0.27000 0 8 3 4 5 6 7 11

36 13 14

37 3 O1 2 16 -0.63500 1 1 4

38 4 C4 12 12 0.00000 1 9 5 6 7 8 9 11

39 12 13 14

40 5 C3 12 12 -0.14000 0 8 6 7 8 9 10 11

41 13 14

42 6 H3 20 1 0.14000 1 4 7 8 9 13

43 7 C2 12 12 -0.14000 0 6 8 9 10 11 12 13

44 8 H2 20 1 0.14000 1 3 9 10 11

45 9 C1 12 12 -0.14000 0 5 10 11 12 13 14

46 10 H1 20 1 0.14000 1 3 11 12 13

47 11 C6 12 12 -0.14000 0 3 12 13 14

48 12 H6 20 1 0.14000 1 2 13 14

49 13 C5 12 12 -0.14000 0 1 14

50 14 H5 20 1 0.14000 1 0

51 # bonds

52 # NB

53 14

54 # IB JB MCB
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55 1 2 6

56 2 3 6

57 2 4 27

58 4 5 16

59 4 13 16

60 5 6 3

61 5 7 16

62 7 8 3

63 7 9 16

64 9 10 3

65 9 11 16

66 11 12 3

67 11 13 16

68 13 14 3

69 # bond angles

70 # NBA

71 21

72 # IB JB KB MCB

73 1 2 3 38

74 1 2 4 22

75 3 2 4 22

76 2 4 5 27

77 2 4 13 27

78 5 4 13 27

79 4 5 6 25

80 4 5 7 27

81 6 5 7 25

82 5 7 8 25

83 5 7 9 27

84 8 7 9 25

85 7 9 10 25

86 7 9 11 27

87 10 9 11 25

88 9 11 12 25

89 9 11 13 27

90 12 11 13 25

91 4 13 11 27

92 4 13 14 25

93 11 13 14 25

94 # improper dihedrals

95 # NIDA

96 13

97 # IB JB KB LB MCB

98 2 1 3 4 1

99 4 2 5 13 1

100 4 5 7 9 1

101 5 4 6 7 1

102 5 4 13 11 1

103 5 7 9 11 1

104 7 5 8 9 1

105 7 9 11 13 1

106 9 7 10 11 1

107 9 11 13 4 1

108 11 9 12 13 1

78



109 13 4 11 14 1

110 13 4 5 7 1

111 # dihedrals

112 # NDA

113 1

114 # IB JB KB LB MCB

115 3 2 4 5 10

116 # LJ exceptions

117 # NEX

118 0

119 # IB JB MCB NCO IND CON

120 END

121

122 POSITIONS

123 14

124 1 257.87 386.96

125 2 227.08 370.30

126 3 226.16 335.31

127 4 197.26 388.62

128 5 166.47 371.95

129 6 165.52 336.96

130 7 136.65 390.27

131 8 105.87 373.60

132 9 137.60 425.26

133 10 107.78 443.58

134 11 168.39 441.93

135 12 169.33 476.91

136 13 198.21 423.61

137 14 228.98 440.28

138 END

Listing 8.2: Benzoate 54A7 mtb file.
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1 TITLE

2 Exported from new Building Block Editor (browser based)

3 END

4 FORCEFIELD

5 54A7

6 END

7 PHYSICALCONSTANTS

8 # FPEPSI: 1.0/(4.0* PI*EPS0); (EPS0 is the permittivity of vacuum);

9 0.1389354E+03

10 # HBAR: Planck ’s constant HBAR = H/(2* PI);

11 0.6350780E-01

12 # SPDL: Speed of light (in nm/ps);

13 2.9979245800 E05

14 # BOLTZ: Boltzmann ’s constant

15 8.31441E-03

16 END

17 LINKEXCLUSIONS

18 #nearest neighbour exclusions when linking

19 #NRNE

20 2

21 END

22 MTBUILDBLSOLUTE

23 # building block created using TopologyBuilder

24 # by

25 C6H6

26 #

27 # number of atoms , number of preceding exclusions

28 # NMAT NLIN

29 12 0

30 # preceding exclusions

31 #ATOM MAE MSAE

32 # atoms

33 #ATOM ANM IACM MASS CGMICGM MAE MSAE

34 1 C4 12 12 -0.14000 0 10 2 3 4 5 6 7

35 9 10 11 12

36 2 H4 20 1 0.14000 1 6 3 4 5 9 11 12

37 3 C3 12 12 -0.14000 0 8 4 5 6 7 8 9

38 11 12

39 4 H3 20 1 0.14000 1 4 5 6 7 11

40 5 C2 12 12 -0.14000 0 6 6 7 8 9 10 11

41 6 H2 20 1 0.14000 1 3 7 8 9

42 7 C1 12 12 -0.14000 0 5 8 9 10 11 12

43 8 H1 20 1 0.14000 1 3 9 10 11

44 9 C6 12 12 -0.14000 0 3 10 11 12

45 10 H6 20 1 0.14000 1 2 11 12

46 11 C5 12 12 -0.14000 0 1 12

47 12 H5 20 1 0.14000 1 0

48 # bonds

49 # NB

50 12

51 # IB JB MCB

52 1 2 3

53 1 3 16

54 1 11 16
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55 3 4 3

56 3 5 16

57 5 6 3

58 5 7 16

59 7 8 3

60 7 9 16

61 9 10 3

62 9 11 16

63 11 12 3

64 # bond angles

65 # NBA

66 18

67 # IB JB KB MCB

68 2 1 3 25

69 2 1 11 25

70 3 1 11 27

71 1 3 4 25

72 1 3 5 27

73 4 3 5 25

74 3 5 6 25

75 3 5 7 27

76 6 5 7 25

77 5 7 8 25

78 5 7 9 27

79 8 7 9 25

80 7 9 10 25

81 7 9 11 27

82 10 9 11 25

83 1 11 9 27

84 1 11 12 25

85 9 11 12 25

86 # improper dihedrals

87 # NIDA

88 12

89 # IB JB KB LB MCB

90 1 3 5 7 1

91 3 1 4 5 1

92 3 1 11 9 1

93 3 5 7 9 1

94 1 3 11 2 1

95 5 3 6 7 1

96 5 7 9 11 1

97 7 5 8 9 1

98 7 9 11 1 1

99 9 7 10 11 1

100 11 1 9 12 1

101 11 1 3 5 1

102 # dihedrals

103 # NDA

104 0

105 # IB JB KB LB MCB

106 # LJ exceptions

107 # NEX

108 0
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109 # IB JB MCB NCO IND CON

110 END

111

112 POSITIONS

113 12

114 1 403.38 398.26

115 2 433.20 379.94

116 3 372.59 381.59

117 4 371.64 346.60

118 5 342.77 399.91

119 6 311.99 383.24

120 7 343.72 434.90

121 8 313.90 453.22

122 9 374.51 451.57

123 10 375.45 486.55

124 11 404.33 433.25

125 12 435.10 449.92

126 END

Listing 8.3: Benzene 54A7 mtb file.

Figure 8.2: HS37 Building block.
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1 TITLE

2 Exported from new Building Block Editor (browser based)

3 END

4 FORCEFIELD

5 54A8

6 END

7 PHYSICALCONSTANTS

8 # FPEPSI: 1.0/(4.0* PI*EPS0); (EPS0 is the permittivity of vacuum);

9 0.1389354E+03

10 # HBAR: Planck ’s constant HBAR = H/(2* PI);

11 0.6350780E-01

12 # SPDL: Speed of light (in nm/ps);

13 2.9979245800 E05

14 # BOLTZ: Boltzmann ’s constant

15 8.31441E-03

16 END

17 LINKEXCLUSIONS

18 #nearest neighbour exclusions when linking

19 #NRNE

20 2

21 END

22 MTBUILDBLSOLUTE

23 # building block created using TopologyBuilder

24 # by

25 HS13

26 #

27 # number of atoms , number of preceding exclusions

28 # NMAT NLIN

29 16 1

30 # preceding exclusions

31 #ATOM MAE MSAE

32 0 3 1 2 16

33 # atoms

34 #ATOM ANM IACM MASS CGMICGM MAE MSAE

35 1 C1 12 12 0.45000 0 4 2 3 16 17

36 2 O1 1 16 -0.45000 1 1 16

37 3 C3 14 3 0.26600 0 7 4 5 6 7 9 16

38 17

39 4 OH3 3 16 -0.67400 0 3 5 6 16

40 5 HO3 21 1 0.40800 1 0

41 6 C4 14 3 0.26600 0 6 7 8 9 10 12 16

42 7 OH4 3 16 -0.67400 0 2 8 9

43 8 HO4 21 1 0.40800 1 0

44 9 C5 14 3 0.26600 0 4 10 11 12 13

45 10 OH5 3 16 -0.67400 0 2 11 12

46 11 HO5 21 1 0.40800 1 0

47 12 CX 15 4 0.16000 0 3 13 14 15

48 13 CG 12 12 0.27000 0 2 14 15

49 14 OD1 2 16 -0.71500 0 1 15

50 15 OD2 2 16 -0.71500 1 0

51 # trailing atoms

52 #ATOM ANM IACM MASS CGMICGM

53 16 C2 14 3 0.00000 1

54 # bonds
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55 # NB

56 16

57 # IB JB MCB

58 1 2 5

59 1 16 27

60 3 4 18

61 3 6 5

62 3 16 27

63 4 5 1

64 6 7 18

65 6 9 27

66 7 8 1

67 9 10 18

68 9 12 27

69 10 11 1

70 12 13 27

71 13 14 6

72 13 15 6

73 16 17 27

74 # bond angles

75 # NBA

76 22

77 # IB JB KB MCB

78 0 1 2 27

79 0 1 16 27

80 2 1 16 27

81 4 3 6 13

82 4 3 16 13

83 6 3 16 13

84 3 4 5 12

85 3 6 7 13

86 3 6 9 13

87 7 6 9 13

88 6 7 8 12

89 6 9 10 13

90 6 9 12 13

91 10 9 12 13

92 9 10 11 12

93 9 12 13 13

94 12 13 14 22

95 12 13 15 22

96 14 13 15 38

97 1 16 3 13

98 1 16 17 27

99 3 16 17 27

100 # improper dihedrals

101 # NIDA

102 6

103 # IB JB KB LB MCB

104 1 0 2 16 1

105 3 4 6 16 2

106 6 3 7 9 2

107 12 9 10 6 5

108 14 12 13 15 1
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109 16 1 3 17 2

110 # dihedrals

111 # NDA

112 15

113 # IB JB KB LB MCB

114 -1 0 1 16 12

115 2 1 16 3 40

116 6 3 4 5 23

117 4 3 6 7 34

118 4 3 16 1 34

119 3 6 7 8 23

120 3 6 9 12 34

121 7 6 9 12 34

122 3 6 9 10 34

123 12 9 10 11 23

124 6 9 10 11 23

125 6 9 12 13 34

126 10 9 12 13 34

127 9 12 13 14 40

128 9 12 13 15 40

129 # LJ exceptions

130 # NEX

131 0

132 # IB JB MCB NCO IND CON

133 END

134

135 XYPOSITION

136 19

137 -1 306.55 476.08

138 0 338.76 489.79

139 1 366.72 468.55

140 2 398.91 482.21

141 3 389.94 412.40

142 4 422.28 425.16

143 5 449.93 403.75

144 6 384.51 377.58

145 7 411.46 355.64

146 8 444.34 367.71

147 9 351.60 365.58

148 10 325.08 388.91

149 11 292.07 377.34

150 12 344.70 331.68

151 13 369.75 307.51

152 14 403.51 316.81

153 15 361.21 273.41

154 16 362.24 433.93

155 17 329.87 420.44

156 END

Listing 8.4: HS37 54A7 mtb file.
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Table 8.1: RSMD averages over the simulations and replicates in nanometers of both
reference proteins in simulated conditions. Significant differences to H2O conditions are
labelled with an asterisk (α < 0.05).

H2O CaCl2 CaAc2 CaBenz2 CaAc2 + Bz Real. Conc.

Villin 0.20 0.36 0.30 0.29 0.27 0.73 0.78

0.36 0.67 0.28 0.27 0.25 0.83 0.69

0.23 0.33 0.25 0.20 0.21 0.58 0.63

0.29 0.19 0.21 0.46 0.33 0.57 0.66

Mean 0.33 0.26 0.31 0.27 0.68* 0.69*

Std. Dev. 0.15 0.03 0.10 0.04 0.11 0.06

Spitz 0.19 0.17 0.52 0.25 0.16 0.26 0.20

0.18 0.21 0.20 0.34 0.16 0.19 0.26

0.17 0.29 0.34 0.41 0.27 0.24 0.29

0.17 0.17 0.19 0.19 0.21 0.27 0.29

Mean 0.19 0.31 0.30 0.20 0.24 0.26

Std. Dev. 0.04 0.13 0.08 0.05 0.03 0.04
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Table 8.2: Average secondary structure occurrence of helices and β sheets for villin and
spitz in %.

Helix H2O CaCl2 CaAc2 CaBenz2 CaAc2+Bz Real. Conc.

Villin 65.0 64.9 65.1 64.3 66.6 57.8 55.6

63.3 46.7 65.5 63.7 66.6 63.9 55.5

61.2 62.6 65.1 65.4 66.8 50.6 61.9

61.3 50.4 65.7 62.0 66.2 49.8 53.5

Mean 59.4 65.4 63.9 66.6 55.5 56.6

Std. Dev. 6.9 0.3 1.4 0.3 6.6 3.6

Helix H2O CaCl2 CaAc2 CaBenz2 CaAc2+Bz Real. Conc.

Spitz 14.2 13.9 1.7 14.1 12.1 14.2 14.0

11.8 11.0 15.1 14.7 14.3 13.9 13.3

13.2 12.1 14.0 14.0 9.6 14.2 12.1

14.3 13.6 13.8 10.4 13.3 14.8 14.6

Mean 13.0 11.2 13.3 12.3 14.3 13.5

Std. Dev. 1.2 6.3 2.0 2.0 0.4 1.1

β Sheet H2O CaCl2 CaAc2 CaBenz2 CaAc2+Bz Real. Conc.

Spitz 33.2 34.4 35.0 30.6 31.2 34.2 27.5

27.9 34.0 34.1 25.8 31.5 30.3 33.1

32.9 35.7 34.5 27.1 29.4 40.5 30.0

35.7 34.7 29.1 32.3 33.8 31.6 36.2

Mean 33.6 33.2 29.0 31.5 34.2 31.7

Std. Dev. 2.5 2.7 3.0 1.8 4.5 3.8
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Figure 8.3: Free energies of solvation with their respective enthalpy and entropy terms
calculated for all solvent conditions.
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Table 8.3: Elemental fractions of used VSOMM2 systems and their respective IHSS
experimental data.

Elemental Fractions

Name C H O N S

BB2 1 0.536 0.033 0.401 0.014 0.016

BB2 2 0.531 0.032 0.395 0.014 0.028

BB2 3 0.544 0.034 0.400 0.013 0.009

BB5 1 0.524 0.028 0.409 0.014 0.025

BB5 2 0.534 0.028 0.404 0.014 0.019

BB5 3 0.557 0.030 0.394 0.015 0.005

BB10 1 0.547 0.028 0.396 0.015 0.015

BB10 2 0.530 0.026 0.403 0.014 0.027

BB10 3 0.557 0.027 0.401 0.012 0.002

BB20 1 0.536 0.027 0.404 0.014 0.020

BB20 2 0.533 0.026 0.402 0.015 0.025

BB20 3 0.558 0.027 0.394 0.014 0.006

IHSS LHA Sample[32] 0.638 - - 0.012 -
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1 #!/usr/bin/env python3

2

3 import numpy as np

4 import argparse

5

6 #-----INFORMATION -----------------------#

7

8 # version 1.1

9 # This script reads in .gro files specified by (-i) which contain HS

with a specific amout (-s) of building blocks.

10 # It then inflates the system by adding a specified factor (-f).

11 # Finally , the program writes out a new coordinate file (-o).

12

13 #-----PARSING -ARGS ----------------------#

14

15 parser = argparse.ArgumentParser ()

16 parser.add_argument(’-i’,help = ’input.gro , required , only containing

humic substances and without pbc’, required = True)

17 parser.add_argument(’-o’,help = ’output.gro , default is output.gro’,

default = ’output.gro’)

18 parser.add_argument(’-f’,help = ’float , required , factor that will be

added to the coordinates ’, required = True)

19 parser.add_argument(’-s’,help = ’int , number of building blocks per

humic substance , default is 5’, default = 5)

20 args = parser.parse_args ()

21

22 #-----INPUT -----------------------------#

23

24 input = args.i

25 output = args.o

26 factor = float(args.f)

27 hslength = float(args.s)

28

29 #-----PRINTING -INFORMATION --------------#

30

31 class bcolors:

32 green=’\033[0;32m’

33 nc=’\033[0m’ # No Color

34

35 print(’\n’+bcolors.green+’

############################################################ ’+’\n##

’)

36 print(’## Input file: ’+args.i)

37 print(’## Output file: ’+args.o)

38 print(’## factor: ’+str(args.f))
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39 print(’## Number of BB per HS: ’+str(args.s)+’\n##’)

40 print(’############################################################ ’+

bcolors.nc+’\n’)

41

42 #-----PARSING -TEXT ----------------------#

43

44 HS = {}

45 box = {}

46 y = 1

47 z = 1

48 oldline = ’x’

49 counter = 0

50 newhs = []

51 newhs = np.zeros (2)

52 gro = open(input , ’r’)

53 lines = gro.readlines ()

54 temp = []

55 temp = np.append(temp ,1)

56 x = 0

57 for line in lines:

58 if ’HS’ in line:

59 x = 1

60 else:

61 box[z] = line.split()

62 z += 1

63 if x == 1:

64 HS[y] = line.split ()

65 y += 1

66 if not oldline in line.split():

67 if not counter == hslength:

68 counter +=1

69 else:

70 temp = np.append(temp ,oldatom)

71 newhs = np.vstack ((newhs ,temp))

72 counter = 1

73 temp = [float(line.split()[2])]

74 oldline = line.split()[0]

75 oldatom = float(line.split()[2])

76 gro.close()

77 newhs = newhs [1:]

78 #newhs is a list of the start and end atoms of every molecule

79

80 #-----PARSING -COORDS --------------------#

81

82 coords = np.loadtxt(input , skiprows = 2, usecols = (-3,-2,-1))[:-1]

83 boxcoords = np.loadtxt(input , skiprows = 2, usecols = (-3,-2,-1))[-1]

84 #print(coords) # this is the numpy array of the coordinates of the

molecules

85 #print(boxcoords) #this is the numpy array of the box size

86

87 #-----DEFINING -CENTER -OF-BOX ------------#

88

89 xlim = boxcoords [0]/2

90 ylim = boxcoords [1]/2
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91 zlim = boxcoords [2]/2

92 #these are the limits of the quadrants

93

94 #-----CALCULATING -GEOMETRIC -AVGS --------#

95

96 avg = {}

97 mol = 0

98 for i in newhs:

99 #print(int(i[0]), int(i[1]))

100 minatm = int(i[0]) -1

101 maxatm = int(i[1]) -1

102 tempavg = []

103 tempavg = np.append(tempavg ,np.mean(coords[minatm:maxatm ,0]))

104 tempavg = np.append(tempavg ,np.mean(coords[minatm:maxatm ,1]))

105 tempavg = np.append(tempavg ,np.mean(coords[minatm:maxatm ,2]))

106 avg[mol] = tempavg

107 mol += 1

108

109 #print(avg) #avg is the dictionary of the geometic mean of all humic

substances

110

111 #-----LIST -OF -MOLS -2-INFLATE ------------#

112

113 inflatex = []

114 inflatey = []

115 inflatez = []

116

117 for mol in avg:

118 #print(avg[mol])

119 if avg[mol ][0] > xlim:

120 inflatex = np.append(inflatex ,mol)

121 if avg[mol ][1] > ylim:

122 inflatey = np.append(inflatey ,mol)

123 if avg[mol ][2] > zlim:

124 inflatez = np.append(inflatez ,mol)

125 print(’Molecules to inflate in x:’)

126 print(inflatex)

127 print(’Molecules to inflate in y:’)

128 print(inflatey)

129 print(’Molecules to inflate in z:’)

130 print(inflatez)

131 #these list are the mol number of molecules whose coordinates are

going to be inflated

132

133 #-----CHANGE -COORDS ---------------------#

134

135 for mol in inflatex:

136 mol = int(mol)

137 minatm = int(newhs[mol ][0]) -1

138 maxatm = int(newhs[mol ][1])

139 coords[minatm:maxatm ,0] = coords[minatm:maxatm ,0] + factor

140

141 for mol in inflatey:

142 mol = int(mol)
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143 minatm = int(newhs[mol ][0]) -1

144 maxatm = int(newhs[mol ][1])

145 #print(minatm ,maxatm)

146 coords[minatm:maxatm ,1] = coords[minatm:maxatm ,1]+ factor

147

148 for mol in inflatez:

149 mol = int(mol)

150 minatm = int(newhs[mol ][0]) -1

151 maxatm = int(newhs[mol ][1])

152 coords[minatm:maxatm ,2] = coords[minatm:maxatm ,2]+ factor

153

154 # this corrects the coords for the factor

155

156 #-----REMOVING -LAST -ENTRY -OF-HS ---------#

157

158 i = len(HS)

159 del HS[i]

160

161 #-----WRITEOUT -FILE ---------------------#

162

163 file = open(output , ’w’)

164 file.write(’\t’+box [1][0]+ ’\n’+box [2][0]+ ’\n’)

165 space = ’ ’

166 counter = 0

167 for i in HS:

168 first = space + HS[i][0]

169 second = space + HS[i][1]

170 third = space + HS[i][2]

171 forth = str(round(coords[counter ,0],3))

172 if len(forth) == 4:

173 forth = forth + ’0’

174 elif len(forth) == 3:

175 forth = forth + ’00’

176 forth = space + forth

177 fifth = str(round(coords[counter ,1],3))

178 if len(fifth) == 4:

179 fifth = fifth + ’0’

180 elif len(fifth) == 3:

181 fifth = fifth + ’00’

182 fifth = space + fifth

183 sixth = str(round(coords[counter ,2],3))

184 if len(sixth) == 4:

185 sixth = sixth + ’0’

186 elif len(sixth) == 3:

187 sixth = sixth + ’00’

188 sixth = space + sixth

189 file.write(first [-9:]+ second [-6:]+ third [-5:]+ forth [-8:]+ fifth

[ -8:]+ sixth [ -8:]+’\n’)

190 counter += 1

191 x = str(round(boxcoords [0] + factor ,3))

192 print(’New box size:’)

193 print(x)

194 if len(x) == 4:

195 x = x + ’0000’

93



196 if len(x) == 3:

197 x = x + ’0000’

198 x = space + x

199 file.write(x[ -10:]+x[ -10:]+x[ -10:]+’\n’)

200 file.close()

201

202 print(’\n’+bcolors.green+’... done’+bcolors.nc+’\n’)

Listing 8.5: Script for inflation of VSOMM2 systems. The script uses four input
parameters; an input GROMACS coordinate file (.gro suffix) with coordinates of the
VSOMM2 molecules, a float that is used as a summand to either inflate or deflate the
system in nm, an integer which specifies the number of building blocks per molecule
and an output filename where the inflated GROMACS coordinate output file is stored.
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Figure 8.4: Frequency of the minimum distance functions of Ca2+ and selected func-
tional groups to villin. The frequency is depicted in the number of snapshots sampled
over all replicates of the simulation. Normalization was done over the number of ions/
functional groups present in the system.
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Figure 8.5: Frequency of the minimum distance functions of Ca2+ and selected func-
tional groups to spitz. The frequency is depicted in the number of snapshots sampled
over all replicates of the simulation. Normalization was done over the number of ions/
functional groups present in the system.
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Figure 8.6: Average number of hydrogen bonds formed by the reference proteins over
the simulation time. The errorbars represent the standard deviation of total numbers
between replicates. The color code symbolizes different hydrogen bond partners. No
differentiation was made between hydrogen donors and acceptors.
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Table 8.4: Different ∆G values calculated for all amino acid residues in water. The %
column shows the % of snapshots that contribute to the free energy calculation. For
all values that were marked with * the ∆GTPF+OSP

Q→R4 were used and then corrected by

a linear term to approximate ∆GTPF+OSP
Q→R5 (Figure 5.12). Abbreviations: AA = amino

acids.

AA ∆GTPF
Q→N ∆GOSP

R4→N R4 % ∆GOSP
R5→N R5 % ∆GTPF+OSP

Q→R5

Ala - -10.26 65.0 -12.30 90.2 12.30

Arg 298.26 -4.16 0.8 -0.17 0.0 302.82*

Asn 254.55 -10.12 31.1 -8.75 18.9 263.29

Asp 351.37 -9.45 29.0 -8.70 17.8 360.07

Cys 18.29 -3.47 1.7 -1.42 0.9 22.34*

Gln 254.78 -10.81 16.8 -9.58 2.6 264.36

Glu 340.94 -9.32 16.0 -7.13 2.7 348.07

Hisa 31.67 -13.80 12.9 -11.48 1.3 43.15

Hisb 64.09 -12.25 10.9 -11.70 1.3 75.79

Ile - -9.55 3.7 -9.56 2.6 9.56

Leu - -12.84 14.7 -7.25 4.6 7.25

Lysh 336.35 -7.46 7.3 -7.38 0.4 343.39*

Met 12.73 -17.29 13.8 -13.97 2.4 26.71

Phe 0.80 -13.75 3.3 -9.93 0.1 12.56*

Ser 46.69 -5.81 43.0 -8.34 65.2 55.03

Thr 45.73 -4.71 17.6 -7.88 26.2 53.61

Trp 53.12 -15.93 0.2 -4.87 0.0 66.51*

Tyr 100.77 -14.72 1.9 -14.28 0.0 113.25*

Val - -6.78 8.5 -6.59 13.4 6.59

98



Table 8.5: Different ∆G values calculated for all amino acid residues in LHA systems.
The % column shows the % of snapshots that contribute to the free energy calculation.
For all values that were marked with * the ∆GTPF+OSP

Q→R4 were used and then corrected

by a linear term to approximate ∆GTPF+OSP
Q→R5 (Figure 5.12). Abbreviations: AA =

amino acids.

AA ∆GTPF
Q→N ∆GOSP

R4→N R4 % ∆GOSP
R5→N R5 % ∆GTPF+OSP

Q→R5

Ala - -11.21 54.0 -10.25 87.6 10.25

Arg 307.32 -8.30 1.4 -13.25 0.6 314.49*

Asn 251.97 -11.30 24.4 -9.33 21.1 261.30

Asp 408.59 -10.96 23.6 -10.25 21.0 351.16

Cys 18.70 8.59 1.7 -1.00 4.1 19.70

Gln 254.46 -14.94 9.9 -10.15 4.0 264.61

Glu 401.96 -14.82 10.4 -7.90 4.6 340.33

Hisa 29.41 -17.34 8.0 -12.94 3.5 42.35

Hisb 61.29 -14.50 6.3 -12.11 2.7 73.40

Ile - -6.70 5.4 -9.81 6.6 9.81

Leu - -10.31 13.0 -8.30 6.9 8.30

Lysh 269.05 -13.63 4.3 -10.34 1.9 347.40

Met 11.91 -18.99 9.5 -15.73 4.5 27.64

Phe 0.08 -12.84 2.9 -13.39 1.1 13.48

Ser 51.43 -7.91 43.2 -6.27 63.5 57.69

Thr 45.05 -1.40 20.5 -6.94 30.8 51.98

Trp 52.27 -15.17 1.2 -24.38 0.6 64.51*

Tyr 100.07 -14.47 2.3 -14.83 0.9 112.01*

Val - -5.83 14.5 -7.85 18.6 7.85
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Table 8.6: ∆∆G and SASA values for each amino acid residue used in the SOMscore.

Residue ∆∆G in kJ/mol average SASA in nm2

Ala 0.00 0.68

Arg -13.71 2.09

Asn -0.06 1.25

Asp 6.87 1.19

Cys 0.58 1.01

Gln -2.29 1.54

Glu 5.69 1.47

His -0.70 1.59

Ile -2.30 1.50

Leu -3.10 1.56

Lys -6.05 1.75

Met -2.98 1.62

Phe -2.96 1.82

Ser -4.71 0.82

Thr -0.42 1.16

Trp -0.05 2.20

Tyr -0.81 1.95

Val -3.31 1.30

Gly - 0.00

Pro - 1.16
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1 #!/usr/bin/python3

2

3 #---------------------------------------#

4

5 import freesasa as fs

6 import os

7 import numpy as np

8 import argparse

9

10 #---------------------------------------INFORMATION

11

12 #Version 10

13 #Introduced multiple chain compatibility

14 #Works also for empty chain in pdb file

15 #Gives error when interrupted protein (also when interruption by

selenomethionine , etc.)

16 #To Do

17 #Negative residue names give incorrect SASA values

18

19

20 #---------------------------------------Argument parsing

21 parser = argparse.ArgumentParser ()

22 parser.add_argument(’-pdb’,help = ’Single pdb coordinate file of the

protein ’, default = ’/pool/gotsmymathias/saturation_mutagenesis/

score/comparison/villin.pdb’) #PDB file for the protein of interest

23 parser.add_argument(’-sasa’,help = ’Table with SASA values for

residues ’, default = ’/pool/gotsmymathias/saturation_mutagenesis/

score/comparison/pdb_sasa_avg.lib’) #List of maximum SASA values

for each amino acid

24 parser.add_argument(’-dG’,help = ’Table with dG values for residues ’,

default = ’/pool/gotsmymathias/saturation_mutagenesis/score/

comparison/pdb_dG.txt’) #List of ddG value for each amino acid

25 parser.add_argument(’-log’,help = ’Boolean. Write out log file.’,

default=True)

26 args = parser.parse_args ()

27

28 pdbfile = args.pdb

29 sasafile = args.sasa

30 dgfile = args.dG

31 log = args.log

32

33 #---------------------------------------Calculate SASA

34 def dosasa(id ,o1 ,o2):

35 x = fs.Parameters ()

36 x.setProbeRadius (1.4)
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37 x.setNSlices (10000)

38 x.setAlgorithm(fs.LeeRichards)

39 cls = fs.Classifier.getStandardClassifier(’protor ’)

40 structure = fs.Structure(pdbfile ,cls)

41 result = fs.calc(structure ,x)

42 area_classes = fs.classifyResults(result , structure)

43 total = result.totalArea ()/100 #to get from A2 to nm2

44 sasa = {}

45 #The backbone atoms are deselected

46 sele = ’CA+C+O+N’

47 if o1 == True:

48 sele += ’+O1’

49 if o2 == True:

50 sele += ’+O2’

51 for i in id:

52 if not i[2]:

53 chain = ’’

54 else:

55 chain = ’ and chain ’+i[2]

56 selections = fs.selectArea ((’tot , resi ’+i[0],’resi , resi ’+i

[0]+’ and not name ’+sele+chain),structure , result)

57 sasa[i[0]+i[2]] = selections[’resi’]/100

58 return sasa , total

59

60 #---------------------------------------Read the PDB file

61 def readpdb(dir):

62 file = open(dir ,’r’)

63 lines = file.readlines ()

64 file.close()

65 res_start_end = []

66 old = ’x’

67 for line in lines:

68 if ’ATOM’ in line [:4]:

69 temp = []

70 temp.append(line [22:26]. replace(’ ’,’’))

71 temp.append(line [17:20]. replace(’ ’,’’))

72 temp.append(line [20:22]. replace(’ ’,’’))

73 if temp == old:

74 pass

75 else:

76 res_start_end.append(temp)

77 old = temp

78 if ’ENDMDL ’ in line [:6]:

79 break

80 #Check if O1 or O2 exists:

81 o1 = False

82 o2 = False

83 for line in lines:

84 if ’ATOM’ in line [:4]:

85 if line [13:15]. replace(’ ’,’’) == ’O1’:

86 o1 = True

87 if line [13:15]. replace(’ ’,’’) == ’O2’:

88 o2 = True

89 return res_start_end , o1 , o2
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90

91 #---------------------------------------Read list of ddG/SASA

92 def loaddG(dir):

93 dic = {}

94 file = open(dir ,’r’)

95 lines = file.readlines ()

96 file.close()

97 for line in lines:

98 if ’#’ in line:

99 pass

100 else:

101 dic[line.split() [0]]= float(line.split()[1])

102 return dic

103

104 #---------------------------------------Back up if an old log.txt file

exists , so nothing is overwriten

105 def backuplog ():

106 count = 1

107 filename = str(count)+’log.txt’

108 if os.path.isfile(’log.txt’) == False:

109 filename = ’log.txt’

110 else:

111 while os.path.isfile(filename) == True:

112 count += 1

113 filename = str(count)+’log.txt’

114 print(’Backed up old log file to ’+filename+’.’)

115 command = ’mv log.txt ’+filename

116 os.system(command)

117 return

118

119 #---------------------------------------Main

120 print(’##################################################

###################################################### ’)

121 print(’##

##’)

122 print(’## This program scores proteins based on free energy

differences of sidechains in water and SOM. ##’)

123 print(’##

##’)

124 print(’##################################################

###################################################### ’)

125 print(’pdb file :\t’,pdbfile)

126

127 if log == True:

128 backuplog ()

129 logfile = open(’log.txt’,’w’)

130 logfile.write(’# pdb_SOMscore_v10.py\n’)

131 logfile.write(’# pdb file :\t’+pdbfile+’\n’)

132 logfile.write(’# SASA :\t’+sasafile+’\n’)

133 logfile.write(’# dG :\t’+dgfile+’\n’)

134 logfile.write(’# \tAA\tchain\tSASA\tRel.SASA Score\n#\n’)

135

136 dG = loaddG(dgfile)

137 max_sasa = loaddG(sasafile)
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138 res_start_end ,o1 ,o2 = readpdb(pdbfile)

139

140 #---------------------------------------Check if protein is

interrupted

141 oldnr = 0

142 oldchain = 0

143 err = False

144 for i in res_start_end:

145 oldnr += 1

146 if int(i[0]) == oldnr:

147 oldnr = int(i[0])

148 elif i[2] != oldchain:

149 oldnr = int(i[0])

150 oldchain = i[2]

151 else:

152 print(’Interrupted protein.’)

153 oldnr = int(i[0])

154 oldchain = i[2]

155 err = True

156 break

157

158 #---------------------------------------Calculate Score and write

output file

159 if err == True:

160 if log == True:

161 logfile.write(’# The protein is interrupted .\n’)

162 logfile.write(’# Interruption ends at residue ’+str(oldnr)+’

chain ’+oldchain)

163 logfile.close()

164 else:

165 sasa , totprotsasa = dosasa(res_start_end ,o1 ,o2)

166 sum = 0

167 used_surface = 0

168 rel_surface = 0

169 for i in res_start_end:

170 try:

171 temp_dg = dG[i[1]. lower()]

172 temp_msasa = max_sasa[i[1]]

173 temp_sasa = sasa[i[0]+i[2]]

174 sum += dG[i[1]. lower()] * temp_sasa / temp_msasa

175 used_surface += sasa[i[0]+i[2]]

176 rel_surface += temp_sasa / max_sasa[i[1]]

177 if log == True:

178 logfile.write(’ ’+i[0]+’\t’+i[1]. lower()+’\t’+i[2]+’\

t’+str(round(temp_sasa ,3))+’\t’+str(round(temp_sasa / temp_msasa ,3)

)+’\t’+str(round(dG[i[1]. lower ()] * temp_sasa / temp_msasa ,3))+’\n’

)

179 except:

180 temp_sasa = sasa[i[0]+i[2]]

181 if log == True:

182 logfile.write(’# ’+str(i[0])+’\t’+i[1]. lower()+’\t’+i

[2]+’\t’+str(round(temp_sasa ,3))+’\n’)

183 sum += 0

184 print(’#---------------------------------------#’)
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185 fitness = used_surface/totprotsasa

186 print(’Score :’,round(sum/rel_surface ,3))

187 print(’Fitness :’,round(fitness ,3))

188 if log == True:

189 logfile.write(’#\n# total protein ’+str(round(totprotsasa ,4))+

’\n’)

190 logfile.write(’#\n# Score : ’+str(round(sum/rel_surface ,4))+

’\n’)

191 logfile.write(’# Fitness : ’+str(round(fitness ,3))+’\n’)

192 logfile.close()

Listing 8.6: Script for SOMscore.
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