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Zusammenfassung 

Einer der größten Herausforderungen in der biopharmazeutischen Industrie ist es eine 

konstante Produktqualität in Zellkulturprozessen zu gewährleisten. Die Zellen werden stark 

von ihrer Umgebung beeinflusst und selbst kleinste Variationen können zu markanten 

Qualitätsabweichungen führen. Die Anwendung einer fortgeschrittenen Prozessüberwachung 

und -regelung kann die Prozessführung flexibler gestalten. Eine solche würde adaptiv auf 

Veränderungen reagieren und somit die Produktqualität auf einen konstant hohen Level 

halten. Dafür wird allerdings grundlegendes Prozessverständnis und –wissen über die 

kritischen Prozessparameter und Produktqualitätsattribute benötigt, welche nur mittels einer 

geeigneten analytischen Plattform generiert werden können.  

Das Ziel dieser Dissertation war es eine solche analytische Plattform für einen Chinese 

Hamster Ovary (CHO) Zellkulturprozess, welche einen industrierelevanten monoklonalen 

Antikörper (mAb) produziert, zu etablieren. Dabei wurden Methoden zur Bestimmung von zell- 

(Zelllyse; zellspezifische Substrate- und Sauerstoffaufnahmerate) und produktrelevanten 

Eigenschaften (Ladungsverteilung; Mannosylierung und Fucosylierung von mAbs) entwickelt, 

welche eine zeitnahe und robuste Messung dieser wichtigen Attribute in einem Zellkultur 

Prozess ermöglichen. Die hier vorliegende Arbeit präsentiert auch deren Anwendung und 

deren Relevanz, hinsichtlich der Etablierung einer fortgeschrittenen Prozessüberwachung und 

–regelung, anhand von simulierten als auch realen Prozessen.  
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Abstract 

Achieving consistently high-quality output in cell-culture processes is a major challenge in 

biopharmaceutical manufacturing of monoclonal antibodies (mAbs), since the outcome is 

highly susceptible to environmental factors and input materials. Only with utilization of an 

advanced process monitoring and control tool the process becomes flexible enough to react 

to variations and set control actions against it. However, this requires an appropriate analytical 

platform to generate in-depth process understanding and knowledge about linkage of the 

critical process parameters (CPPs) and critical quality attributes (CQAs).  

This work focuses on the establishment of an appropriate analytical platform for a Chinese 

hamster ovary (CHO) cell-culture process recombinantly producing industrially relevant mAb. 

It presents the development of mathematical and analytical methods for accurate and precise 

determination of cell-related (cell lysis; oxygen-uptake rate; substrate-uptake rate) and 

product-related attributes (charge variant distribution; glycosylation). Their applicability is 

exemplified by particular cases, and their importance for advanced process monitoring and 

control is elucidated.  

This thesis presents an analytical perspective on the implementation step and shows that 

an appropriate analytical platform is the basis for realization of advanced process-monitoring-

and-control regimes in cell-culture processes. 
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1 Introduction 

1.1 From Quality by Testing to Advanced Process Monitoring 

and Control 

Recombinantly produced monoclonal antibodies (mAbs) are invaluable for the 

biopharmaceutical industry. Since the first mAb (Orthoclone OKT3) was approved in 1985 [1], 

they have become an important factor in the market [2]. Over recent decades, the approval 

rate of mAbs has increased steadily. Between 2015 and 2018, 53% of all new approvals by 

the Food and Drug Administration (FDA) or the European Medicine Agency (EMA) in the 

biopharmaceutical sector were mAb-based products, accounting for around 65% of total sales 

in this industry [3]. Currently, seven of the top ten best-selling biopharmaceutical products are 

mAbs. Worldwide sales reached around 100 billion US$ in 2017, and it is estimated that these 

will grow to $160 billion by 2022. The majority of those products (over 60%) are produced in 

Chinese hamster ovary (CHO) cells [4]. 

Almost all currently approved processes in the biopharmaceutical industry are likely to 

have necessitated extensive product quality testing. This is because manufacturers must 

comply with strict regulatory requirements and also work according to rigorous, self-imposed 

guidelines in order to ensure that their products are safe for patients. Hence, the production 

of biopharmaceuticals is performed in a very conservative way. Processing is fixed, and no 

flexibility is permitted.  

Precious little information is available (or none at all) during the process in terms of cell 

performance, product-formation and -quality. The bioprocess is usually only monitored using 

well-established sensors (for instance, pH or dissolved oxygen and temperature). These few 

process parameters are set to a certain value and are tightly controlled throughout the 

process. Interestingly, although the process seems to be tightly controlled, outcomes in terms 
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of product quantity and quality can be highly variable due to complex interactions between cell 

physiology and the surrounding environment [5]. At the end of the bioprocess, the product is 

purified, and quality attributes are tested to ensure that the product meets relevant efficacy 

and safety criteria, and can be released onto the market (Quality by Testing approach).  

This approach is unfavourable for innovation and leaves almost no room for process 

adaptation. Such processes can be regarded as a black box system, where the user has 

limited knowledge of its mechanism (Figure 1) [5]–[7]. Hence, this results in a rigid process 

that is unlikely to produce the product of interest in a consistently high quality.  

In 2004, the FDA, therefore, launched the process analytical technology (PAT) initiative [8] 

to push the industry towards implementation of a so-called Quality by Design (QbD) 

framework.  

The idea of achieving consistently high product quality via the QbD approach had already 

emerged in the 1980s, described by J. M. Juran [9], who proposed that QbD must be an iterative 

process consisting of three building blocks: 

 Quality planning 

 Quality control 

 Quality improvement. 

Through these criteria, existing knowledge is used to plan processes in such a way as to 

achieve an optimized risk-benefit ratio for the desired product quality (quality planning). 

Throughout the process, quality is controlled via process analysers (quality control), and 

information retrieved from these is used to improve the process and reduce expenditure even 

further (quality improvement).  

The FDA’s intention was to enable manufacturers to establish more flexible and agile 

processes with an enlarged operational space. Process variations can be tolerated to a larger 

extent since the effect on product quality is known. Due to implementation of sophisticated 

process analysers, decisions about product releases can be scheduled earlier in the process 
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chain (Figure 1). Reduction of batch failures, faster product release and reduced costs in the 

generation of high-quality output are the major advantages of this approach.  

 

 

Figure 1: A schematic comparison of the three different methodologies (QbT, QbD & QbC), in terms of process 

control, process knowledge and process monitoring. In QbT, the process is a black box. The underlying mechanism 

of this process is not yet understood. In QbD, the CPPs and CQAs are identified. The mechanism of this process 

is partly known. In QbC, the process is well known and the underlying mechanism well understood. 

In principle, QbD is about identifying critical process parameters (CPPs) and critical quality 

attributes (CQAs), linking them together via black box or grey box models (and, on rare 

occasions, white box models) for the purpose of implementing an advanced online monitoring 

tool. In a black box model, limited information about the mechanism is available. Mathematical 



 Introduction 

 
4 

description of the connection between input and output variables might not necessarily have 

a scientific meaning. In grey box models, the link between output and input variables is partly 

based on sound science. Similarly, in white box models, the link is based on a scientifically 

valid function.  

However, QbD, in particular, does not take the control perspective into account. Due to 

possible lot-to-lot variations in the raw materials used for cell cultures, consistently high quality 

output is often not achieved [10]–[12]. 

The Quality by Control (QbC) approach seeks to fill this gap. In QbC, one of the main 

challenges is the establishment of advanced process control (APC) regimes [13], [14]. 

Established process models (for instance, hybrid models [15]) capture the process dynamics 

and are used to quantitatively forecast the outcome of the system [16]. Feedback loops are 

installed to ensure that the model is frequently updated. Accordingly, the process can react to 

input and process variations, and can set control actions against these. Hence, the upstream 

process becomes more flexible and results in continuously high-quality output (Figure 1).  

Nowadays, the Quality by Design concept is common knowledge within the 

biopharmaceutical industry [17]. As of 15 years ago, the regulatory authorities had already 

started emphasizing and promoting the QbD and PAT approach, with the goal of enhancing 

innovations in process development in order to reduce manufacturing costs. However, the 

concept has not yet been fully implemented in many biopharmaceutical companies for various 

reasons [17], [18]. QbD/QbC implementation is a troublesome task, and the issues that arise 

generally fall into one of the four categories listed below.  

 Variable/parameter identification: describing the impact of CPPs and CQAs alone 

is not sufficient. It is essential that identified CPPs and CQAs can be monitored 

and are controllable.  

 Process setup: an appropriate experimental setup and sampling plan is required 

to generate the data required for robust process models for online monitoring and 

control purposes. 
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 Data generation: utilization of appropriate analytical methods to determine the 

dynamics of CQAs and CPPs is necessary. Time-consuming and complex 

methods can lead to an enormous workload and further costs.  

 Process software: in the absence of a sophisticated software solution, capable of 

controlling, monitoring and running the process in situ, implementation of 

QbD/QbC is not possible. 

 

Hence, the sought-after paradigm shift from a parameter-controlled process 

(conventional) to a performance and product quality-controlled process (advanced) is still not 

achieved. 

1.2 Implementation of advanced process monitoring and control 

Implementation of advanced process monitoring and control requires considerable effort. 

To establish a control algorithm for the desired product or performance-related variable, a link 

must first be established to a controllable parameter. Existing knowledge and available 

literature are usually used to set up a risk analysis to define the appropriate design space [19]. 

A series of experiments is subsequently performed within this particular design space to 

capture the response of the product and/or process-related variable to variations in the 

independent input parameters.  

Several methodologies can be used to design the experimental setup. For instance, to 

describe a two-dimensional space, a full factorial (or Doehlert design) can be used [20], [21]. 

After conducting all the experiments, the response can be mathematically described. For noise 

reduction, retrieved data are often pre- and/or post-processed. The process information 

obtained is then used to establish models and algorithms for prediction and control of the 

desired target variable. 

For a one-dimensional design space, this can easily be performed and results in simple 

solutions, preferably linear ones like the equation below (Eq. 1). 
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𝑑𝑋

𝑑𝑡
= 𝑓(𝑃) = 𝑘 ∗ 𝑃 (1) 

The change in measured outcome for desired target variable X over time is a function of 

controllable parameter P. Parameter k describes the rate of this function. Hence, if k is positive, 

a higher P results in higher output of X per measure of time. Rates like k comprise the 

information about a bioprocess. For instance, for cell-culture cultivation, this would be the 

substrate-uptake rate, the growth rate, the protein production rate and many others. 

But a biological process such as Chinese hamster ovary (CHO) cell cultivation can be 

regarded as a multidimensional system with several layers [22]–[24]. Outcome X is not 

influenced by controllable parameter P alone. Moreover, variables A and B also affect outcome 

X, and it becomes even more complex if variable B exhibits a hidden dependency associated 

with parameter P and variable C (Figure 2). Hence, to describe X as function of B, the 

dependency of B on P and C must also be known. In this respect, the solution becomes more 

difficult, and outcome X is now described as per the equation below (Eq. 2).  

𝑑𝑋

𝑑𝑡
= 𝑓(𝐴, 𝐵, 𝑃) = 𝑔(𝑃) ℎ(𝐴) 𝑖(𝐵(𝑃, 𝐶)) (2) 

 

Figure 2: Three examples of possible functions influencing outcome X. The upper-left and upper-right 

examples show the change in X over time as a linear function of P and as a nonlinear dependency on parameter 

A. Hence, outcome X is directly dependent on parameters P and A. The lower panel exemplifies a typical hidden 

dependency. It seems that X exhibits a nonlinear dependency on B. In reality, B is a function of parameters P and 

C. 
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Establishing an advanced monitoring and control algorithm for a cell-culture cultivation 

process which taking the entire metabolism into account is, therefore, hardly feasible [25] 

because there are only a few adjustable parameters available, and everything must be 

identified in relation to these. Simplification of the correlation is, therefore, desirable so that 

what remains, in the best-case scenario, is outcome X expressed as a function of the single 

controllable parameter P.  

1.3 Establishing an appropriate analytical platform 

For implementation of advanced process monitoring and control in the above-mentioned 

process, it is particularly important that parameter P and variables A and C are controlled or, 

if control is not possible, at least monitored. For this purpose, accurate and precise data on 

these variables are a necessity.  

A suitable analytical platform is, therefore, the key requirement for implementation of 

advanced process monitoring and control. The term “analytical platform” combines all sorts of 

methods and techniques, which are used to measure, determine, monitor and evaluate certain 

variables over the time course of a bioprocess. It should provide values for this particularly 

important variable as accurately and precisely as possible in the shortest time possible.  

It is important to understand that every experiment required to capture the desired design 

space substantially increases the number of analyses. Analysis should, therefore, be fast but 

also accurate and reliable. If not, it will create a bottleneck, impeding implementation of 

advanced process monitoring and control in the bioprocess. Determination of the related 

product species can either be performed directly in the supernatant matrix, or the mAb can be 

captured and purified prior to analysis. Both strategies have advantages and disadvantages, 

which need to be thoroughly evaluated, although analyses of the supernatant are always 

preferable to an a priori sample purification step, as is commonly performed with Protein A 

chromatography. This not only reduces the amount of laborious work but also decreases the 

risk of an incorrect set of data. A priori sample purification can induce unwanted effects and 
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eventually generate misleading data during the process. For instance, it has been reported 

that IgG associated with chromatin elements tends, under elution conditions, to aggregate and 

cross-link to a larger extent with host-cell proteins [26]. In another study, it was shown that 

oxidation of methionine residues can induce a conformation change and thereby decreases 

the affinity with Protein A, resulting in loss of IgG [27].  

However, the surrounding environment of the analyte and potential disturbing matrix 

effects on analytical results also need to be considered during method development. In 

mammalian fed-batch cultivation, the matrix changes throughout the entire process. 

Obviously, a sample taken on the day of harvesting will contain significantly more impurities 

(cell debris, antibody fragments and aggregates, host-cell protein, DNA, etc.) than a sample 

from the day of inoculation.  

The analytical platform must also be able to provide in-depth information about the 

dynamics of the process. In principle, the above-mentioned rate k represents the process 

knowledge. During process development, it is, therefore, of particular importance to retrieve 

such rates as accurately and precisely as possible. Several mathematical solutions are 

available to compute these rates. Due to its simplicity, simple stepwise integral estimation is 

often the method of choice [28]–[31], but more complex algorithms, such as the Gaußian 

distribution or cubic smoothing spline functions, are better at coping with noise [32]–[35].  

Capturing process dynamics increases the analytical workload even more, since the 

trajectory of the parameter over the time course of the process must be described. In this 

regard, more samples are needed, and more analyses must be performed. Hence, it is 

invaluable to design and establish the analytical platform in accordance with the 

implementation purpose. It is important to create a balance between the information content 

needed and the resulting analytical effort. Accordingly, the analytical platform represents the 

basis for implementation of advanced process monitoring and control. 
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1.4 Characterization of cell-related attributes 

1.4.1 Cell lysis quantification and host-cell proteins 

Cell death can occur passively (necrosis) or can be programmed (apoptosis and 

autophagy) and is mostly caused due to nutrient deprivation, external forces or accumulation 

of toxic metabolites in the cell environment [36]. Via necrosis, the inner content of a cell is 

directly released into the environment. In programmed cell death, cell compartments or 

apoptotic bodies remain intact until an external force breaks them apart. Accordingly, dead as 

well as living cells can undergo lysis, but the main fraction of lysed cells derives from the living 

population [37].  

Cell lysis is always accompanied by release into the supernatant of cell contents such as 

host-cell proteins (HCPs) and deoxyribonucleic acid (DNA). HCP exhibits the largest 

contribution to this (up to 70wt%). However, the protein amount per cell can be wide-ranging 

and can be dependent on the size of the cell. Between 200 and 500 pg/cell have been reported 

for mammalian cell lines [23], [38]–[40]. Although lysed cells are usually in a minority 

compared to the total cell count, they are the major source of impurities.  

HCP is considered to be a critical quality attribute and must be below a certain threshold 

in the final drug formulation (<100 ppm) [41]. Hence, the subsequent downstream operation 

units must be effective in clearance of this component. However, the wide-ranging 

characteristics of HCPs make purification steps more challenging, since certain types of HCP 

do not differ significantly from the product in terms of size, isoelectric point (pI) and 

hydrophobicity [42]. A low amount of HCP in the supernatant is, therefore, generally preferable 

to facilitate subsequent downstream processing. 

State-of-the-art cell lysis markers are DNA or the activity of lactate dehydrogenase 

(LDH) [43]. Others are rarely used as the measurement of cell debris or viscosity change is 

more common in microbiological fermentation processes [44], [45]. Use of residual protein 

content (RPC) as a lysis marker has recently been reported [46].  
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However, disregarding cell lysis falsifies process- and performance-related attributes [37], 

[46], [47]. For example, the term “viability” is typically used as a process performance indicator 

and as a harvest criterion, and is defined as follows (Eq. 3): 

𝑉𝑖𝑎𝑎𝑝𝑝 =
𝑉𝐶𝐶

𝑇𝐶𝐶
 (3) 

where apparent viability (Viaapp) is described as the ratio of viable cell concentration (VCC) to 

the total cell concentration (TCC). TCC is the sum of viable and dead cells. If cell lysis is 

considered, viability should be defined as follows (Eq. 4): 

𝑉𝑖𝑎 =
𝑉𝐶𝐶

𝑇𝐶𝐶+𝐿𝐶𝐶
 (4) 

where LCC describes the lysed cell concentration. Since lysed cells can derive from a living 

as well as a dead cell, LCC can be described as a function of TCC (Eq. 5); hence, 

𝑑𝐿𝐶𝐶

𝑑𝑡
= 𝑘 𝑇𝐶𝐶 (5) 

k represents the cell lysis rate, the percentage of cells which undergo lysis per hour in 

relation to the total number of cells. The more and the longer cells are available in the system, 

the more lysed cells will emerge.  

 

Figure 3: (A) depicts changes in the viability pattern at different cell lysis rates (from 0.05% up to 0.55%). (B) 

depicts the ratio of RPC to titer at the harvest time point at different cell lysis rates. Experimental data indicate a 

0.05%/h lysis rate in our study. The entire 0.05% dataset depicts real experimental data. Accordingly, for 0.10%, 

0.15% and 0.55%, the values of residual protein content (RPC) were recalculated (350 pg RPC per lysed cell). 

In our study, a constant cell lysis rate of 0.05%/h was calculated [46]. If this rate were to 

increase, the viability trend would become significantly different (see Figure 3A).  
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Disregarding cell lysis not only affects the viability pattern but is also significant in terms 

of the outcome of the process. Obviously, for the same example at the same harvest time 

point, the impurity level will increase the higher the cell lysis rate is (Figure 3B). Hence, 

utilization of Viaapp as a harvest criterion erroneously suggests a similarity between the 

processes where there is none.  

1.4.2 Oxygen-uptake rate as a process monitoring tool 

Most glucose is usually converted to CO2 during the citric acid cycle under the premise of 

building nicotinamide adenine dinucleotide (NADH). NADH is further recycled/oxidized in 

mitochondria via oxidative phosphorylation under the premise of building energy for the cells, 

adenosine triphosphate (ATP). Oxygen is one of the key substrates, and utilization of this 

boosts energy production [48]. One important performance parameter for mammalian cell-

culture cultivation is, therefore, the oxygen-uptake rate (OUR), given in mol per cell per day. 

OUR provides in-depth information on the bioprocess. Several studies have shown that OUR 

can be linked to the biomass in cultures [49], [50] or to glucose consumption [51]. A recently 

published study reports that in combination with a permittivity probe, even metabolic 

transitions are detectable [52]. 

Three different methods are commonly used to determine OUR: the dynamic technique, 

global mass balance and stationary liquid mass balance. Since the dynamic method uses 

oxygen pulses to measure specific oxygen-uptake rate (qO2), it is impracticable for use in an 

advanced process-monitoring-and-control regime. The physical-chemical perturbations 

introduced can lead to cell stress and distortion of the process performance [49], [53].  

The global mass balance is a non-intrusive method. Here, in a steady state, OUR is 

defined as follows (Eq. 6): 

𝑂𝑈𝑅 = 𝑢𝑓𝑖𝑛 𝑂2,𝑖𝑛% − 𝑢𝑓𝑜𝑢𝑡  𝑂2,𝑜𝑢𝑡% (6) 

where ufin and ufout describe the flow rate, and O2,in% and O2,out% describe the oxygen 

concentration into and out of the system. For this mass balance equation, precise and 
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accurate measurements of the off-gas are necessary. Nevertheless, for large-scale 

cultivations or high cell-density cultures (as is existent in a perfusion system), the accuracy of 

off-gas analysers is not the limiting factor anymore [48].  

The stationary liquid mass balance technique utilizes the fact that oxygen must be 

transferred from the gas phase to the liquid phase to guarantee optimal process performance. 

This is described via the oxygen transfer rate (OTR) and is defined as follows (Eq. 7): 

𝑂𝑇𝑅 = 𝑘𝐿𝑎 (𝑐∗ − 𝑐) (7) 

where c is the oxygen concentration in the supernatant, and c* is the maximum oxygen 

saturation. The term kLa describes the mass transfer rate of this phase transition and is 

dependent on several parameters, for instance, the type of stirrer, stirrer speed, air-flow rate, 

bubble size and coalescence, media viscosity, media composition and the partial pressure of 

oxygen. Methodologies for the determination of kLa for bioreactors have been reviewed 

elsewhere [54]. Furthermore, changes in dissolved oxygen concentration (DO) are dependent 

on the amount of oxygen consumed by cells and transferred into the liquid phase (Eq. 8); 

hence, 

𝑑𝐷𝑂

𝑑𝑡
= 𝑂𝑇𝑅 − 𝑂𝑈𝑅 (8) 

DO is usually kept constant throughout the cell cultivation process. Accordingly, dDO/dt 

equals zero, and the equation is simplified to OTR equals OUR. In this case, OUR is driven 

by the concentration gradient and the term kLa. Since DO is routinely measured and the 

oxygen concentration is known, the concentration gradient can be calculated. Due to the 

changing environment over the time course of the fed-batch process, oxygen mass transfer 

also varies. The stationary liquid mass transfer technique, therefore, requires knowledge of 

the bioreactor geometry and desired operational space.  

OUR represents an efficient, simple and easy-to-use process monitoring tool, which has 

already been shown to be usable for an advanced process control regime [49], [51]. 

Nevertheless, it does not represent a state-of-the-art method for a mammalian cell-culture 
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process. Under the expectations of continuous improvements in process control, OUR 

determination via dynamic kLa should be favoured over alternative approaches. 

1.5 Characterization of product-related attributes 

1.5.1 Heterogeneity of monoclonal antibodies 

The immunoglobulin G (IgG) isotype is the most commonly produced monoclonal antibody 

in the biopharmaceutical industry. It is a dimer linked via a disulphide bridge bond, and it 

consists of two light- and two heavy-chain subunits. IgG is divided into a constant region and 

a variable region. The antigen-binding site exhibits complementary determining regions 

(CDRs) present in the variable regions and is highly specified for a certain type of antigen. 

The constant region is highly conserved and mediates unique effector functions, like antibody-

dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). IgG is 

a large (150 kDA) complex molecule. To achieve desired functionality, IgG has to be precisely 

assembled by the cell. During the assembly process, the protein has to undergo a vast number 

of modifications, which all contribute to the overall number of variations and the heterogeneity 

of the product. On the one hand, they are essential to the product characteristics of relevant 

therapeutic applications, but on the other hand, such modifications can occasionally also have 

unwanted impacts on product quality attributes and can negatively affect efficacy and safety. 

Thus, any alteration in the machinery of modifications which does not comply with set 

requirements must be primarily considered as a potentially hazardous change in product 

characteristics [55], [56]. 

These modifications can be subdivided into the following types: co-translational 

modifications (CTMs), post-translational modifications (PTMs) and chemical modifications 

(CMs). In general, CTMs take place when the polypeptide chain is released into the 

endoplasmatic reticulum (ER), and such CTMs include initial folding of the heavy and light 

chains, attachment of the high-mannose oligosaccharides (N-linked glycosylation) and any 
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other modifications occurring during synthesis [57]. PTMs are closely related to the Golgi 

apparatus. Glycosylation processing, O-linked glycosylation and proteolytic cleavage are 

typical PTMs [58]. CMs can be intra- as well as extracellular and may not be related to any 

enzymatic process. Any modification which falls into the category of protein aging should be 

considered as a CM, for example, glycation, cyclization of glutamine to pyroglutamic acid at 

the N-terminal sequence, deamidation of asparagine and glutamine residues or the oxidation 

of exposed methionine residues [56].  

During production, the protein undergoes numerous modifications. Thus, the product will 

exhibit inherent natural heterogeneity. Hence, setting up control algorithms to maintain 

consistent product quality throughput the process is a difficult and sophisticated challenge. 

Correct assessment of the product’s quality and dynamics is necessary in order to establish 

such process control models.  

1.5.2 Charge variants of IgG 

IgG consists of several acidic, basic and neutral amino acids. Due to the tertiary and 

quaternary structure of the protein, its surface exhibits several charged patches (Figure 4). 

The electrostatic appearance of the entire protein in a solution is based on the sum of the 

patches (the net surface charge). For instance, if the protein appears neutral, the sum of all 

the patches is also neutral, and this is called the isoelectric point of a protein (pI). Electrostatic 

characteristics depend on the amino acid sequence, the tertiary and quaternary structure of 

the protein and any modification that changes the structural conformity of the protein.  

The charge variant patterns of IgG are divided into the main, acidic and basic species. In 

theory, the main fraction is defined as the correctly processed molecule, and this normally 

appears as the peak with the largest area [59]. It exhibits, for instance, a correct glycosylation 

pattern, complete C-terminal lysine clipping and no protein-aging effects (such as deamidation 

or glycation etc.). In reality, the main fraction will still exhibit different modifications which are 

not in accordance with the theoretical classification [60]. However, the natural heterogeneity 
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that occurs during a bioprocess results in a distinct charge distribution pattern [61] – the unique 

fingerprint of the respective protein.  

 

Figure 4: Electrostatic potential of IgG in water at a pH of 7 and at 20°C. Surfaces with a red appearance 

represent acidic patches; blue indicates basic; and white indicates neutral. 

Determination of charge variants is usually done via ion exchange chromatography (IEX), 

(imaged) capillary isoelectric focusing (iCIEF) or isoelectric focusing gel electrophoresis (IEF) 

[61], [62]. However, IEX appears to be the gold standard [59]–[63], with separation of individual 

charge variants commonly achieved by salt gradients. Alternatively, pH gradients would be 

advantageous due to the improved resolution characteristics and their applicability for a variety 

of mAbs [64], [65]. We were even able to demonstrate that for application of IEX with a pH 

gradient, no a priori purification is needed, so direct injection of a crude supernatant is possible 

[66].  

In recent decades, charge heterogeneity of IgG has become a more important research 

objective in antibody drug development. The possibility of capturing certain protein 

modifications or the investigation of single variants and their role in the product quality 

attributes of IgG have been part of several research projects. Still, it remains an open question 

whether charge heterogeneity is as important as other quality attributes, and this is due to two 

reasons [60], [61], [67]–[69]. Firstly, evident modifications are not all critical [60], [68] or 

considered to be as not critical for this particular protein. For instance, glycation (a non-
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enzymatic reaction in which a reactive sugar binds to a peptide rest) is usually grouped in the 

category of less-critical modifications [59], [70]. However, the criticalness of glycation depends 

on how accessible the amino acid sites are and where they are located. Moreover, glycation 

tends to build advanced glycated end products (AGEs) and is likely to enhance aggregation 

behaviour; both characteristics are grouped as critical quality attributes [71]. 

Secondly, the fact that there is a nicely separated peak in an IEX chromatogram does not, 

in itself, imply that it consists of an IgG species with only a single modification [60], [72]. 

Accordingly, there is a lack of techniques that can efficiently separate large quantities of single 

charged species in order to test their immunogenicity. This results in an increased likelihood 

of false assumptions being made about the criticality of single modifications [72]. A recent 

example of this is the C-terminal lysine clipping of IgG, which was considered to be a non-

critical modification [59]. Nevertheless, a recent study reported that complete C-terminal lysine 

clipping, in fact, results in maximal complement activation and increased cytotoxicity potential 

[73], and the researchers claimed that previous studies actually had an issue with separating 

the single species correctly.  

However, charge heterogeneity is a promising fingerprint technique for process monitoring 

purposes and is a suitable tool for the implementation of an advanced process-monitoring-

and-control regime. Any variation in the charge distribution pattern can expose a performance-

related issue and might even hint at an undesirable modification. Detecting these early in the 

process chain helps with identification of possible process implications, enabling an 

appropriate and timely response to be made.  

1.5.3 Galactosylation and fucosylation of IgG 

Glycosylation is a complex but variable mechanism, which mainly occurs within two 

compartments of the cell (the Golgi apparatus and endoplasmic reticulum), and it is managed 

by glycosyltransferases and glycosyl hydrolases. This process undergoes several metabolic 

and enzymatic reactions. All of these are dependent on environmental conditions and/or co-

factors. Since differences in the glycan patterns affect immunogenicity, serum half-life and 
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safety, the glycosylation pattern of IgG is indisputably one of the most important product quality 

criteria. The impact of glycan structure variations on the structure, function, pharmacokinetics 

and pharmacodynamics of the protein has already been extensively reviewed elsewhere [74]–

[76]. Basically, each important therapeutic IgG currently sold on the biopharmaceutical market 

is N-glycosylated, and the glycan structure forms a biantennary assembly [77].  

This structure can be found in a conserved asparagine residue (Asn 297) in the CH2 

domain of the Fc region. In a complex and non-sialylated glycan type (no sialic acid residue), 

the carbohydrate galactose remains as the terminal sugar. The attachment of galactose to the 

glycan structure happens in the Golgi apparatus and is mediated by the galactosyl 

transferase [77]. Three different IgG moieties can be existent during a production process, a 

di-, mono- or non-galactosylated IgG (G2, G1 and G0 type, respectively). 

The galactosylation of Fc-N glycans is important for regulation of antibody effector 

functions (increased potential to induce CDC) [77], [78]. Interestingly, most of the Fc-N glycans 

in serum from healthy human subjects are galactose-terminated (around 50%) [79]. In patients 

with autoimmune disorders such as rheumatoid arthritis, an aberrant proportion of 

glycovariants is often shifted towards non-galactosylated moieties [80], [81]. 

However, galactosylation is influenced by various media components, such as 

manganese, uridine, galactose and ammonia. Ammonia, for instance, is a by-product 

generated during the cultivation process. It shifts the internal pH towards alkaline conditions, 

which results in a decrease of galactosyl transferase enzymatic activity [82]. Process 

parameters such as the culture’s pH and dissolved oxygen are also suspected to impact on 

the galactosylation level [83].  

The core fucose content (fucose bound to the innermost N-acetylglucosamine of the 

glycan structure) is another important attribute. In contrast to galactosylation, the more that 

IgG antibodies have no fucose bound to the core of the glycan structure (afucosilated), the 

better. The presence of core fucose leads to steric hindrance, which significantly affects 

binding to the FcγRIII receptor and, in addition, ADCC activity [84]. 
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According to the published literature, few components and parameters affect the 

enzymatic activity of fucosyltransferase or reduce the enzyme substrate guanosine 

triphosphate (GTP). For instance, substituting fucose with an analogue such as 2F-PerAcFuc 

in the cell-culture media has been found to lead to a significantly reduced level without 

increasing other unwanted glycan species [82]. Osmolality has been found to have a 

substantial influence on the magnitude of fucosylation. This is independent of the scale used 

and supplementing compounds, and is attributed to reduced gene expression of the involved 

enzymes at a low osmolality [85]. In another recently published study, soluble CO2 was found 

to affect afucosylation [86], which is mainly attributed to the fact that it reduced the cell’s 

internal pH.  

However, at first sight, it seems that controlling and maintaining the right glycosylation 

pattern of mAbs is easily feasible, and much is known about process parameters affecting the 

glycosylation pattern. Still, the right analytical methods and process models must be put in 

place, and this remains a challenge [87].  

Mass spectrometry is mainly used for the determination of these glycan structures. 

Multiplexing and high-throughput techniques are available, which are especially useful for 

screening purposes [88] but require considerable expertise and/or a lot of labour. Lectin-based 

microarrays could, therefore, be a promising alternative if the glycan structure of the reference 

protein is basically known [89]. In two recently published studies, the well-established biolayer 

interferometry platform (BLI) was utilized as a lectin-based array for determination of the 

sialyation [90], fucosylation and galactosylation content [91]. Due to the microplate devices, 

the BLI facilitates analysis of many samples in parallel, determining a large variety of glycan 

moieties. The ranking-based outcome is sufficient for assessing the glycan 

deviations/divergences and the impact on process variations. Such a lectin-based method 

reduces the workload, enables automation and is cost efficient. In addition, data allocation is 

simpler compared to MS techniques and, therefore, of particular interest for the 

implementation of advanced process monitoring and control.  
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2 Objectives 

The main objective of this thesis was to establish an appropriate analytical platform for the 

implementation of advanced process monitoring and control in a mammalian fed-batch 

process. This objective was further divided into three major working packages as follows: 

1) Establishing a cell-culture cultivation process  

The focus was on single-cell cloning, media adaptation and design of the experimental 

setup. This was performed for two cell lines, each producing a different industrially 

relevant monoclonal antibody. Test runs were performed in a shake flask, and the 

process was eventually scaled up to a 15 L reactor.  

2) Establishing appropriate analytical methods for capturing process dynamics 

In this phase, a broad analytical platform was established and the important 

parameters identified. For this purpose, analytical methods were developed which 

were able to provide in-depth information content but with a reduced analytical 

workload.  

3) Evaluation of the dataset and generating process models  

In this package, analytical values were set in the context of actual bioprocess 

characteristics in order to generate in-depth process knowledge. In this way, the 

measured analytes were linked to one or more process parameters, preferably via 

linear models and preferably to parameters that were actually controllable.  
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3 Results and Discussion 

3.1 Publications 

Along with this thesis, one mini-review and five original research papers have been 

published. Whereas the mini-review (Publication #1) explained the theoretical nature of 

advanced process control of mammalian cell cultures, the original research article presented 

methodologies and approaches for retrieving key features of the bioprocess and exemplified 

their applicability in simulated as well as real cases (Publications #2–#6). Below, each 

publication is briefly explained, and the most important findings are highlighted.  

Publication #1:  

W. Sommeregger, B. Sissolak, K. Kandra, M. von Stosch, M. Mayer, and G. 

Striedner, “Quality by control: Towards model predictive control of mammalian cell 

culture bioprocesses,” Biotechnol. J., p. 1600546, 2017. 

Publication #2:  

B. Bayer, B. Sissolak, M. Duerkop, M. von Stosch, and G. Striedner, “The 

shortcomings of accurate rate estimations in cultivation processes and a solution for 

precise and robust process modeling,” Bioprocess Biosyst. Eng., 2019. 

https://doi.org/10.1007/s00449-019-02214-6 

Publication #3:  

M. Pappenreiter, B. Sissolak, and W. Sommeregger, “Oxygen Uptake Rate Soft-

Sensing via Dynamic k L a Computation: Cell Volume and Metabolic Transition 

Prediction in Mammalian Bioprocesses,” Front. Bioeng. Biotechnol., vol. 7, pp. 1–16, 

2019. 

Publication #4:  

B. Sissolak, C. Zabik, N. Saric, W. Sommeregger, K. Vorauer-Uhl, and G. Striedner, 
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“Application of the Bradford Assay for Cell Lysis Quantification: Residual Protein 

Content in Cell Culture Supernatants,” Biotechnol. J., vol. 14, no. 7, 2019. 

Publication #5:  

B. Sissolak, N. Lingg, W. Sommeregger, G. Striedner, and K. Vorauer-Uhl, “Impact 

of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: 

an accessory monitoring tool for process development,” J. Ind. Microbiol. Biotechnol., 

vol. 46, no. 8, pp. 1167–1178, 2019. 

Publication #6:  

J. Wallner, B. Sissolak, W. Sommeregger, N. Lingg, G. Striedner, and K. Vorauer-

Uhl, “Lectin bio-layer interferometry for assessing product quality of Fc- glycosylated 

immunoglobulin G,” Biotechnol. Prog., vol. 35, no. 5, pp. 1–9, 2019. 
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3.2 Towards Quality by Control 

The terms QbD and PAT imply development of more flexible processes where CPPs are 

identified and the impact on CQAs is described. In this respect, publication #1 goes one step 

further and illuminates QbD and PAT from a control engineering perspective. This mini-review 

proposes a roadmap (Figure 5) identifying key methodologies for implementation of APC in a 

mammalian cell-culture fed-batch process.  

 

Figure 5: Proposed roadmap for implementation of quality by design and control in the mammalian 

bioprocess. (Taken from reference [13].) 

A solid APC regime can react to input variations, predict the future outcome and set control 

actions in order to maintain consistently high-quality output. Quality is now not only built in by 

design but is also entirely controlled throughput the process (Quality by Control; QbC). For 

this purpose, process models and soft sensors need to be developed which must be 

accompanied by a sophisticated and appropriate analytical platform that returns key figures 

as accurately and precisely as possible. 
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3.3 Utilization of a cubic smoothing spline function for rate 

estimations 

Growth, product and substrate rates are particularly important key figures for gaining 

process understanding and for modelling. Rates are retrieved via the following mass balance 

equation (Eq. 9): 

𝑑(𝐼𝑆,𝑋,𝑃,𝑀𝑉)

𝑑𝑡
= 𝑞𝐼𝑆,𝑋,𝑃,𝑀 𝑥𝑉 +  𝑢𝑓𝐼𝑆,𝑋,𝑃,𝑀 (9) 

where I stands for the respective substance (substrate (S), biomass (X), product (P) or 

metabolite (M)); qI stands for a cell-specific consumption or production rate; x stands for the 

biomass concentration; V stands for the reactor volume; and uf stands for the feeding rate. 

According to Eq. 9, the change in substrate (S), biomass (X), titer (P) or metabolite (M) in a 

bioreactor is dependent on consumption (q IS,X,P,M x V) and the feeding term (uf IS,X,P,M).  

The real trajectory of these parameters (S, X, P and M) is usually hidden beneath random 

noise, which provokes huge variances in the calculated rates. Even a minor variation in the 

feeding term can have a substantial impact on the preciseness of the rates. Publication #2 

elucidated a mathematical methodology for accurate and precise calculation of rates. For this 

purpose, several bioprocesses were simulated at different levels of noise (up to 12.5% 

coefficient of variation) and with different sampling frequencies. Two different methodologies 

had been utilized to calculate the rates: the commonly used integral stepwise approach and a 

cubic smoothing spline function. This study can show that the latter approach was superior for 

the entire experimental setup and reduced variations to a satisfactory level.  

The cubic smoothing spline approach enables precise evaluation of processes without 

applying any pre- and/or post-smoothing methods, even when the data are packed with noise 

(see Figure 6).  
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Figure 6: Estimation of specific substrate-uptake rate (qs) via the cubic smoothing spline function. The left-

plot shows input: simulated bioprocesses (n = 100) depicted at different levels of noise (2.5%, 7.5% and 12.5% 

coefficient of variation in the biomass determination). The right plot shows output: specific substrate-uptake rate 

calculated via the cubic smoothing spline approach. Data are shown for bioprocesses with an error of 12.5% CV 

and an additional 1% variance in the feed term (n = 100). The cubic smoothing spline approach results in very 

precise rate estimation. (Taken from reference [35].) 

3.4 Oxygen-uptake rate and soft sensing of metabolic transitions 

Implementation of an APC regime requires process analysers, which are capable of real-

time monitoring of CPPs and CQAs. In publication #3, we developed a soft sensor for online 

monitoring of wet biomass and for identifying metabolic transitions in real time. In principle, 

this sensor is solely based on process understanding and knowledge. For this, the bioreactor 

was thoroughly characterized to describe the oxygen mass transfer rate (kLa) as a function of 

stirrer speed, and the flow rate of process air and CO2. By ascertaining the trajectory of the 

kLa over the time course of the process, the OUR could be estimated. Moreover, we could 

show that the OUR was linked to biomass in the system and to the metabolic state of the cells 

(Figure 7). A clear transition to less oxygen consumption was evident. This transition was 

closely related to the aspartate-to-glutamate ratio and to alanine production, indicating a 

possible truncated citric acid cycle.  

This study showed that the OUR soft sensor is a powerful advanced online monitoring 

tool, which allows an insight to be gained into the state of the cell culture. Furthermore, this 
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will enable advanced process control regimes to be set up to maintain the metabolic state of 

cells and keep the cell-culture performance at a high level.  

 

Figure 7: OUR as a function of the viable biomass, depicted as packed cell volume (PCV).The change in 

metabolic transition is depicted via the vertical line at around 1.4 PCV. After the metabolic transition, the cells 

reduced their oxygen consumption from 0.04 to 0.01 mol per cell volume per d. (Taken from reference [52].) 

3.5 Residual protein content as a cell lysis indicator 

Another important CPP can be cell lysis, since it contributes to a great extent to the total 

amount of host-cell proteins and DNA. Publication #4 describes a method for indirect 

determination of cell lysis via determination of total protein with Coomassie Brilliant Blue (CBB) 

dye, compared to the commonly used approach involving determination of DNA via Pico 

Green. This CBB method utilizes the simple relationship shown below (Eq. 10), whereby 

𝐴𝑈𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑈𝐵𝑙𝑎𝑛𝑘 + 𝐴𝑈𝑅𝑃𝐶 + 𝐴𝑈𝐼𝑔𝐺 (10) 

The total measured absorbance (AUtotal) is the sum of the absorbance caused by mAb 

concentration (AUIgG), the residual protein content concentration (AURPC) and the surrounding 

matrix (AUBlank). For this purpose, the absorbance characteristics of mAb and the host-cell 

protein must be known first (Figure 8).  

In one long-term study, this method was proven to be more reliable and accurate than 

quantifying cell lysis via DNA. Moreover, the DNA content of cells changed with the phase of 
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the cell cycle. This falsified the cell lysis estimate for the low temperature process, where the 

cells mainly remained in the G1/G0 phase.  

 

Figure 8: Calibration curves for BSA (black circle), the host-cell protein standard (white circle), reference IgG 

(black triangle) and recombinant-produced mAb (white triangle). The host-cell protein standard was made via lysing 

a certain number of cells from the non-producing host-cell line. The mAb and residual protein content exhibits 

distinct absorbance characteristics. (Taken from reference [46].) 

Conclusively, this easy-to-apply method provides important process data, which can be 

further used for the establishment of advanced process monitoring tools and control regimes. 

This study elucidated that RPC is a potential key process indicator for mammalian cell-culture 

processes. 

3.6 mAb charge variant formation during a fed-batch process 

Publication #5 presented a method for determining the charge variant distribution of a 

monoclonal antibody from crude supernatants. No impurities were likely to distort the analysis, 

and the emerged peaks were only due to mAb heterogeneity (Figure 9). The method was 

further applied in a case study which identified the impact on product quality caused by 

process temperature and glucose addition in the feed.  

The basic variant formation could be described as a function of process temperature. The 

acidic variant formation followed a second-order reaction kinetic, showing a dependency for 
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the titer and the glucose concentration. Glycation (the non-enzymatic binding of a reactive 

sugar to a peptide rest) was identified as being one of the biggest contributors to this acidic 

peak formation.  

 

Figure 9: Charge variant distribution measured via ion exchange chromatography using a linear pH gradient. 

1: Direct injection of supernatant derived from the non-producing host-cell line. 2: Direct injection of supernatant 

derived from the cell line producing mAb of interest. 3: Protein A purified mAb from the same supernatant. 4: 

Adalimumab reference material.  

This study presented a robust method, which allows important CQAs to be determined a 

priori without the need for a purification step, making this tool such an interesting fingerprinting 

technique, especially useful for implementation of an APC regime in mammalian cell-culture 

processes.  

3.7 A lectin-based bio-layer interferometry method for detection 

of galactosylation and mannosylation of mAbs 

Another important CQA is undoubtably the glycosylation pattern of mAbs. Publication #6 

addresses this topic, particularly the determination of mannosylation and galactosylation of 

mAbs. This study presents a method based on a lectin-binding assay for identification of end-

terminal mannose or galactose in the Fc region of the protein.  
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This method was established on a platform device, which is well known and commonly 

used in the industry for protein titer and kinetic analysis. The results were in good agreement 

with the mass spectrometry data (Figure 10). Moreover, the paper exemplifies the applicability 

of this approach in a case study, where ammonia production was identified as a critical process 

parameter affecting the galactosylation content. 

 

Figure 10: Lectin-based biolayer-interferometry-method response as a function of the galactosylation content 

measured via mass spectrometry (MS). (Taken from reference [91].) 
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4 Conclusion 

Since mAbs are complex molecules which have to meet specific and detailed 

requirements to ensure efficacy and safety for patients [92], the production process is 

sophisticated, time-consuming and expensive [93]–[96]. In economic terms, the typical key 

process drivers are productivity, batch success rates and duration, as well as raw material 

costs [97]. In the context of cell-culture processes, consistently high-quality output is especially 

important from an economical point of view. However, the genetic heterogeneity of cells [98], 

[99], slight differences in media composition (due to lot-to-lot variations), process conditions 

and/or metabolite concentrations have a substantial impact on the quality of the desired 

product [98], [100]. Advanced process monitoring and control generates a more flexible 

process, which can actually react to deviations in order to maintain consistently high-quality 

output. 

A proper and sophisticated analytical platform that comprehensively covers the wide-

ranging aspects of cell- and product-related characteristics is a necessity for implementation 

of an advanced process monitoring and control regime in a mammalian fed-batch process. 

Nevertheless, the establishment of such an analytical platform can be a very challenging and 

overwhelming task, since several distinct requirements must be fulfilled for each method: 

 Provision of insight into the dynamics of the processes; 

 Keeping the analytical burden at a low level; 

 Returning accurate and precise key figures; 

 Determining key figures as quickly as possible. 

Clearly, not all of these requirements can be achieved at once, and there must be a trade-off 

against each of them. For instance, although accurate and precise determination of a certain 

key figure might be possible using a more sophisticated and time-consuming method, a less-

complicated method might be used to capture complex process dynamics, since the number 

of samples will increase significantly and elevate the analytical burden.  
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However, the link between CPPs and CQAs must be well understood and known to be 

capable of controlling the process properly. This requires data, and a huge number of samples 

need to be analysed to acquire this information. For example, over the course of this thesis, 

about 22,000 single analytes alone (off- and online analyses) were determined to capture the 

desired design space and dynamics of the process. It is, therefore, important to be aware 

which and how many analyses are actually needed to describe the process thoroughly. This 

will decrease the analytical burden and prevent the analytical platform from creating a 

bottleneck during the implementation step.  

In this respect, decisions about sampling frequency are of particular importance. A high 

frequency does not necessarily mean additional information. On the contrary, unnecessary 

samples introduce noise into the data, which can then hide certain information. However, 

sampling frequency is commonly determined on the basis of intuition and experience. This 

can lead to huge quantities of samples which provide no additional information. For example, 

during this thesis, it became apparent that a large number of samples is not necessarily a 

prerequisite for gaining the same amount of information. Hence, identifying the optimal 

sampling frequency for particular key figures can reduce analytical workload and costs.  

However, determining key figures via offline analytical approaches usually takes time. This 

is especially true if product quality attributes are determined. It is obvious that the higher the 

analytical effort, the greater will be the delay before the actual process evaluation and 

decision-making processes for future activities can take place. High-end and sophisticated 

analytical approaches need experts who can implement the methods and evaluate the data 

(as is the case, for instance, with spectroscopic methods). Thus, it is important to invest time 

developing methods for analytical approaches that are capable of detecting important key 

figures as accurately and precisely as possible within a reasonable amount of time. The 

methods of choice should be simple to apply and either return concrete values or have 

algorithms in place that can automatically evaluate the key figures of interest.  
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characteristics. (Taken from reference [46].)................................................................... 26 

· Figure 9: Charge variant distribution measured via ion exchange chromatography using a 

linear pH gradient. 1: Direct injection of supernatant derived from the non-producing host-

cell line. 2: Direct injection of supernatant derived from the cell line producing mAb of 

interest. 3: Protein A purified mAb from the same supernatant. 4: Adalimumab reference 
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· Figure 10: Lectin-based biolayer-interferometry-method response as a function of the 

galactosylation content measured via mass spectrometry (MS). (Taken from reference 
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1    Introduction

Mammalian cells are the most frequently used hosts for 
the production of complex biopharmaceuticals [1]. Large 
scale production of up to 20 000 L is mainly performed in 
fed-batch mode using stirred tank reactors, although the 
interest in continuous production modes is steadily grow-
ing [2]. The cultivation step is one of the key units of 
recombinant protein production, since it impacts on both 
product yield and product quality (e.g. glycosylation pro-
file of the product) [3]. Due to the lack of techniques for 
real-time measurement of product attributes, quality in 
biopharmaceutical processes is still mainly assured by 
repetition of identical process settings and extensive end-
product testing [4]. However, the variability of inputs (e.g. 
raw materials, living cells) in a bioprocess with identical 
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process settings will likely lead to a variable quality out-
put. Already in 2004 the US Food and Drug Administra-
tion published the Process Analytical Technology (PAT) 
guidance for industry [Guidance for Industry: PAT – a 
framework for innovative pharmaceutical development, 
manufacturing, and quality assurance, FDA, 2004], which 
aims to guide the industry to move from the rigid quality 
by testing to a flexible quality by design (QbD) approach. 
There are many possibilities for QbD implementation to 
biopharmaceutical production processes [5, 6]. Usually, 
the QbD strategy starts with the definition of the relevant 
target product profile and the critical quality attributes 
(CQAs) [ICH Harmonised Tripartite Guideline: Pharma-
ceutical Development Q8 (R2), ICH, 2009], which vary 
with regard to the product and area of application [7]. In a 
next step, during process development the likely impact 
of process parameters on the process response is consid-
ered based on a priori knowledge using risk assessment, 
for instance failure mode and effects analysis [8]. Then 
relations between the critical process parameters (CPPs) 
and product quality attributes are sought applying statis-
tical design of experiments (DoE), multivariate data anal-
ysis [9] and mathematical modelling techniques. Subse-
quently, the process operation space can be defined and 
sensor-technologies are applied in order to monitor criti-
cal process variables in real-time. In a final step (advanced) 
control strategies are developed to minimize process 
variability. Ultimately QbD aims at closed-loop CQA con-
trol and for this purpose model predictive control (MPC), 
a methodology successfully applied in so many other 
process industries for multivariate control [10], seems to 
be most suitable. MPC aims at meeting various CQA 
specifications (set-points) by manipulation of the process 
inputs, while also considering process constraints.

Astonishingly enough, or maybe rather intentional, 
the PAT guidance reads much like a guide to realize 
advanced process control, just that the ultimate goal – 
closed loop CQA control – and the intermeshing of the 
different QbD steps for realization of closed-loop control is 
not explicitly addressed. Advanced process control 
requires the measurement of the key attributes (monitor-
ing) and a process model that describes the relation 
between the CPPs and CQAs. Knowledge about the sen-
sitivity of the CQAs with respect to changes in the CPPs 
is key to achieve excellent control performance. The sys-
tematic assessment of these relations via DoE approaches 
and the systematic selection of the critical parameters 
and attributes via risk-assessment, both proposed in the 
QbD strategy, is an excellent approach, but the process 
dynamics should additionally be considered. Thus, each 
part of the QbD strategy builds towards advanced process 
control, only that the implications of each outcome regard-
ing process control are not clear in many cases. This 
review revisits the QbD strategy with the closed loop 
CQA control objective (via MPC) in mind, focusing on 
mammalian bioprocesses. The preconditions for the 

application of advanced process control are assessed 
along the following questions:
(i)	 Which DoE is most suitable to characterize the de-

sign space, capture the relation between CQAs and 
CPPs and the respective process dynamics? 

(ii)	 Is it possible to measure relevant process variables 
and mathematically model the CQA dependencies 
in order to predict process performance and control 
product quality? 

(iii)	 Is a software framework available that allows for 
real-time data-preprocessing, prediction and con-
trol of the CQAs?

2    Design of experiments

DoE describes a statistical methodology that is used to 
systematically screen and assess the impact of CPPs on 
the process response. Process response estimation is 
typically done by using optimization tools such as sim-
plex algorithms (sequential design) or response surface 
methodologies (simultaneous design), respectively [11]. 
Numerous different DoE approaches have been estab-
lished. Selecting the design for an application can have 
vast impact on the amount of gained information [12]. Due 
to the ease of handling, full factorial, fractional factorial-, 
central composite- or Doehlert designs are still in common 
use [13, 14]. When dealing with a large number of factors, 
which exhibit strong non-linear effects and orthogonal 
main effects, definitive screening designs are a notewor-
thy alternative [15]. 

However, depending on the desired resolution and the 
accuracy of the design, a solely, statistically driven 
approach can be extremely laborious. Either to increase 
the amount of information of a given (set of) experiment(s) 
or to decrease the variances of model parameters, a 
model based DoE (MBDoE), also called optimal experi-
mental design can be applied [16, 19]. Since several dec-
ades this approach is known though it is still not com-
monly used as compared to classical DoE concepts [16, 
17]. The approach is based on a semi-mechanistic model, 
built up on given process knowledge, which is employed 
to predict the information content of the next set of 
experiments. The sets can consist of sequential or parallel 
experiments, or can be a combination of both [17]. Recent 
advantages in this field, for instance include a lowered 
computational effort [18] or the development of an on-line 
information-driven redesign optimization approach [19, 
20]. Nevertheless, MBDoE requires a process model, 
which might not be available at the beginning of the pro-
cess development stage. Probably a model from a previ-
ous process could be adopted if the mammalian host and 
media are the same and also the product (CQAs) is similar 
to the previous process.

Recently, von Stosch et al. proposed an intensified 
DoE (iDoE) method, where several points of a classical 
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DoE are evaluated in one experiment, performing intra-
experiment process condition shifts. It was shown that 
such iDoEs can lead to the same information with less 
experimental effort compared to a classical DoE strategy 
for an E. coli process. However, the analysis of the process 
response, which is dynamic, requires the adoption of a 
dynamic modeling approach, such as a semi-parametric 
hybrid modeling approach [21, 22]. The adoption of this 
methodology for mammalian cell culture processes must 
be considered carefully, since metabolic shifts and cell 
memory effects could come into play. However, variations 
of certain variables during operation, e.g. applying pulses 
[23], can help to elucidate the process dynamics better, 
which is important for model development and inevitable 
for the creation of dynamic process control strategies, 
such as MPC.

The MBDoE and the novel iDoE approach are promis-
ing complementary concepts for mammalian bioprocess 
development, due to the ability to significantly reduce the 
workload and also providing information about the 
dynamic nature of the process. 

3    Mathematical modelling

Advanced process control methods, such as MPC, require 
a dynamic process model, which should be sufficiently 
detailed to provide a significant description of the process 
but at the same time considerably simple allowing for fast 
optimization of the control trajectory. The model quality 
in case of mammalian cultures seems to be critical, since 
inappropriate control action could provoke irreversible 
changes in the culture. The models that are reported for 
advanced control of mammalian cell cultures to date 
incorporate a relative small number of compounds [24–
27], typically viable biomass, total biomass, glucose, glu-
tamine, lactate and ammonia concentrations. Also the 
control degrees of freedom are limited to glucose, glu-
tamine or both. Considering that there are several media 
compounds that could be used for control, more complex 
models that take the underlying metabolic network into 
account seem to be warranted. This idea is not new and 
has been used for the modeling of other bioprocesses 
[28–32]. Metabolic flux networks of mammalian cells have 
been investigated by a number of researchers [33, 34]. For 
hybridoma cells a genome scale metabolic network model 
has been described [35], but no Chinese hamster ovary 
(CHO) cell specific genome scale metabolic network was 
reported until recently [36, 37]. Modeling the metabolic 
fluxes provides a better insight into the cellular require-
ments for growth as well as into the metabolism of the 
cells [38], though probably cell line and product depend-
ent. While metabolic modeling might provide direct tar-
gets for metabolic engineering [36], it does not elucidate 
the regulation of the fluxes as a consequence of extracel-
lular stimuli, which would be the most interesting from a 

process control perspective. The development of dynamic 
metabolic network models, such as for CHO [39, 40], 
addresses this shortcoming, but these models are unsuit-
ably complex for process control purposes and they also 
do not take temperature, osmolality or pH dependences 
into account. It seems that the combination of elementary 
flux modes (which are computed from the metabolic net-
work) with the dynamic bioreactor model provides a suit-
able alternative, which has been applied with success 
to describe the dynamics of CHO cultivations [41, 42] and 
for advanced process control of a baby hamster kidney 
cell  cultivation [26]. The latter uses a hybrid modeling 
approach to model the activity of the elementary modes 
(i.e. the regulation) as functions of the extracellular envi-
ronment with an artificial neural network. Since the regu-
lation is not well understood, the modeling of the unknown 
part via data-driven techniques seems particularly prom-
ising. Also the dependence of the regulation on the osmo-
lality, temperature and pH can easily be integrated. The 
combination of fundamental knowledge (white-box) with 
data-driven techniques (black-box), which is referred to 
as hybrid (semi-parametric) modeling, also conforms to 
industrial preferences, as the model development is sys-
tematic and exhibits many of the advantages of funda-
mental models [43, 44]. The pitfalls of this approach are 
the lack of commercial software packages and the current 
shortage on experienced model developers. 

Given the ultimate QbD objective of controlling the 
CQAs, such as the glycan profile or the charge variants of 
monoclonal antibodies, it is evident that the models must 
describe the formation of these attributes. In case of the 
glycan profile, progress has been made in the modeling of 
the Golgi apparatus and the underlying reaction network 
[36, 45–49]. However, in case of the charge variants only 
data-driven models have been applied to date [50, 51]. 
The sensitivity of e.g. the glycan formation to the changes 
in the extracellular environment, such as temperature, 
ammonia, manganese and nucleotide sugars [48, 49], but 
also that of the charge variants clearly highlight the 
potential for advanced process control to maintain the 
CQAs within the limits by suitable adaptation of the 
media, feeding and other process parameters. To this end, 
hybrid modeling seems to be a suitable modeling meth-
odology as fundamentally known relationships can be 
combined with data-driven techniques that represent the 
unknown parts. 

4    Soft-sensing

For closed-loop product quality control the model predic-
tions of the compounds’ concentrations must be correct-
ed with measured values. Only if measurements of the 
compounds’ concentrations are available, an adaptation 
of the control action with respect to the deviation becomes 
possible, i.e. the control loop is closed. The information 
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from off- and at-line analytical methods becomes avail
able too late to be used for process control, as in many 
cases these techniques require laborious manual working 
steps. Furthermore, they are afflicted with different sourc-
es of error [52, 53]. Therefore, there is a high demand in 
real-time measurements that are capable of providing 
information about the state of the process and the quality 
of the product. Since these characteristics are usually not 
directly measurable, there is the need of so-called soft-
sensing techniques. Soft-sensing is a very promising 
approach, where mostly unspecific measurements (e.g. 
spectra) from sensors are used to estimate/calculate bio-
process variables that can otherwise not be directly meas-
ured in real-time [54]. Even straightforward soft-sensors 
like the real-time calculation of oxygen uptake rate or 
carbon dioxide production rate can be beneficial to moni-
tor the process [55]. Soft-sensors can be knowledge-driv-
en and/or data-driven. Knowledge-driven approaches are 
developed from fundamental knowledge (e.g. first-princi-
ples), describing the relations between the process vari-
ables and the quality attributes. The accuracy of these 
models however depends on the presence of process 
knowledge [56, 57]. Multivariate data analysis tools, such 
as principal component analysis or partial least squares 
are often applied for data-driven sensors, as e.g. dis-
cussed by Kadlec et al. [57], though these methods cannot 
process non-linearity [58]. 

To date, over 1000 soft-sensor applications have been 
published in the area of engineering [59], but in the bio-
tech sector only a few can be found [60]. An explanation 
may be the complexity of the cell’s biology and the 
reproducibility of the monitored process. Successful exam-
ples of soft-sensing implementations in the bio-therapeu-
tics manufacturing are given elsewhere [59]. In the last 
years, non-selective spectroscopically performing sensors 
became more important compared to other sensing meth-
ods. They are highly advantageous due to being non-
invasive, robust, sensitive [61] and allow multi-usage 
concerning bioreactor designs and biological systems [62]. 
Recently, few applications have been reported in the field 
of mammalian bioprocessing. Ohadi et al. showed that 
multi-wavelength fluorescence spectroscopy could be 
used to predict viable and dead cell concentration, product 
titer as well as substrate (glucose) and waste product con-
centrations (ammonia) [63, 64]. Another very attractive 
method that gained high interest in the last years is 
Raman spectroscopy, which allows indirectly measuring 
various key bioprocess metabolic variables [27, 65–67].

In contrary to specific measurement principles, estab-
lished soft-sensors might only be valid within a certain 
range, for a given process, cell line, product or type of 
culture media. Therefore careful validation of established 
soft-sensors before their transfer to new processes is vital. 
Summarizing, the application of soft-sensors in mamma-
lian bioprocesses should lower the need of off-line analy-
sis [59] for monitoring purposes. Additionally, the hope is 

for soft-sensing to provide real-time state estimations that 
allow for correcting the model predictions, ultimately ena-
bling model predictive control.

5    Model predictive control

MPC is probably the most widely adopted advanced pro-
cess control methodology [68]. The methodology opti-
mizes the process inputs, which can be manipulated, 
such that contradicting objectives i.e. minimal deviation 
of selected process states from the set-points and minimal 
control effort, are met in a suitable compromise [69, 70]. 
This optimization, a minimization, is performed by using 
the process model for repeated simulation of a finite pre-
diction horizon. As a result, the optimal process inputs 
fully respect the dynamic behavior of the process and, if 
defined, time-varying constraints. These constraints 
could for instance ensure that the process does not leave 
the predefined design space. For mammalian bioprocess-
es, which have long characteristic times, re-calculation of 
the optimal control strategy will be sufficient within sev-
eral minutes to once an hour. Depending on the complex-
ity of the underlying mathematical model and the applied 
constraints, dedicated mathematical solvers will have to 
be applied for the minimization problem. Mathematical 
frameworks, for instance MATLAB and linkable libraries 
such as CPLEX or GUROBI, cover the mentioned func-
tionalities. Since bioprocesses are highly non-linear sys-
tems, likely the application of non-linear MPC methods 
using non-linear/dynamic models becomes necessary. 
Non-linear MPC strategies have already been success-
fully applied to bioprocesses [24, 69, 71]. The strategies 
reported for mammalian cultivations to date only use one 
or two manipulated variables, Craven et al [27] and Teix-
eira et al [26], respectively, but since MPC allows for mul-
tivariate control, potentially all media compounds could 
be used independently for control of the CQAs e.g. the 
glycan profile or charge variants. It should be stressed, 
that the success of MPC depends on (i) the process 
model; and (ii) on-line measurements of the modeled com-
pounds, sought to be obtained through soft-sensing. If the 
latter is missing (or if a probe fails), MPC will still provide 
the process inputs computed from the process model. 
However, the inputs will not be optimal in the sense that 
a deviation between the model and the plant might occur 
and since the controller does not recognize it, the com-
puted control action will not minimize this deviation 
(referred to as model-plant mismatch). 

6    Software environment

Distributed control systems (DCS) used in industrial auto-
mation environments, do not provide a proper range of 
mathematical toolsets for applying non-linear MPC. One 
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reason is the limited calculation power of the usually 
applied microcontrollers/programmable logic controllers. 
Therefore more complex optimizations need to be per-
formed on the supervisory control and data acquisition 
(SCADA) level. The number of solution providers offering 
a mathematical platform for complex optimization rou-
tines is still limited (f.i. IPCOS, PerceptiveAPC, Wolfram 
MathCore). Besides, these software frameworks are not 
integrated into commercial SCADA systems but linked 
via industrial interfaces.

Using soft-sensors as an input for the model, on-line 
data preprocessing (filtering, smoothing, outlier detec-
tion) also turns out to be relevant. The software environ-
ment (DCS, SCADA system) has to provide the possibili-
ties of connecting advanced sensors and to perform 
complex statistical signal preprocessing steps [72]. There-
fore, the integration of mathematical platforms directly 
into the SCADA becomes increasingly important or even 
inevitable.

7    Conclusions

Beneficial impacts of QbD finally reached the biopharma-
ceutical industry and in 2013 Roche received the first full 
QbD approval for the monoclonal antibody Gazyva® (Obi-
nutuzumab) [6, 73]. However, there is yet no golden 
standard for the routes and methodologies to QbD imple-
mentation. In addition the enhanced process knowledge 
gained by QbD is still rarely used for dynamic control 
purposes. Three challenges have been identified that are 
critical for the realization and success of MPC within the 
QbD framework:

(i)	 Dynamic models are required that allow predicting 
changes in the CQAs resulting from changes in 
CPPs. New DoE approaches will lead to a reduced 
workload and/or better understanding of the biopro-
cess and its dynamics enabling the development of 
more meaningful and predictive dynamic models.

(ii)	 Soft-sensors are required that provide estimations 
of the states to enable correcting the dynamic 
model predictions and closing the control loop. 

(iii)	 Flexible and powerful software frameworks will be 
essential, offering to incorporate different types of 
data sets, at- and in-line, respectively and using the 
built up model in real time [74].

We propose to follow the route depicted in Fig. 1 to realize 
non-linear MPC for mammalian cell culture bioprocesses.
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Figure 1.  Illustration of the roadmap for 
quality by design and control implemen-
tation to mammalian bioprocesses. The 
proposed methodologies necessary for 
dynamic process control are indicated 
in each step.
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Abstract
The accurate estimation of cell growth or the substrate consumption rate is crucial for the understanding of the current 
state of a bioprocess. Rates unveil the actual cell status, making them valuable for quality-by-design concepts. However, in 
bioprocesses, the real rates are commonly not accessible due to analytical errors. We simulated Escherichia coli fed-batch 
fermentations, sampled at four different intervals and added five levels of noise to mimic analytical inaccuracy. We computed 
stepwise integral estimations with and without using moving average estimations, and smoothing spline interpolations to 
compare the accuracy and precision of each method to calculate the rates. We demonstrate that stepwise integration results 
in low accuracy and precision, especially at higher sampling frequencies. Contrary, a simple smoothing spline function 
displayed both the highest accuracy and precision regardless of the chosen sampling interval. Based on this, we tested three 
different options for substrate uptake rate estimations.

Keywords  Bioprocess development · Cubic smoothing spline · Fed-batch fermentation · Growth rate · Substrate uptake rate

Introduction

State variables, such as biomass, substrates, and product, 
are quantified via off-line measurements during cultiva-
tion processes of microbial, mammalian and yeast cells to 
understand how the process states evolve. To shed light into 
the biological subsystem, i.e., the cell state, as well as the 
metabolism [4, 6, 8, 12] or to compare different cultivations 
on the biological level, e.g., for media selection or cell line 

development [13, 16, 19], specific production/consumption 
rates are a necessity.

Principle approaches to rate estimation

There are several approaches for estimating rates of a bio-
process [7, 15, 21]. A very simple method is to calculate the 
first derivative of a cubic smoothing spline function [15, 21]. 
The result is a continuous rate over the whole course of a 
bioprocess such as a fed-batch process, where for every time 
point, a rate value can be derived.

Although the applicability of this non-parametric method 
on bioprocess data is known for a longer time [3, 15], it still 
does not seem to be the method of choice for researchers in 
upstream bioprocess engineering, or related fields of biol-
ogy. In most cases, the integral approach, a simple step-
wise integral estimation is used [5, 10, 11, 25]. Hereby two 
measurements, one derived from sampling time point ti and 
the other from sampling time point ti+1, are considered to 
estimate a rate for this interval (ti, ti+1). The same methodol-
ogy is then applied to the next interval (ti+1, ti+2) and so on, 
estimating one rate value for each time interval, resulting in 
a trend over the course of the cultivation process. This, in 
turn, means that the rate is assumed to be constant for each 
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sampling interval, for which it was calculated, independent 
on its length.

Parameters impacting rate estimation quality

Some parameters do have a high impact on the outcome of 
these rate estimations and if treated in the wrong way result 
in false estimations. For instance, dynamic process trends 
can remain unnoticed, e.g., if the sampling frequency is too 
low. In addition, if larger measurement errors are present, 
the rate is not feasible to describe the process anymore due 
to this inaccuracy. This can lead to a reduction of the accu-
racy of the rates and to a reasonably weakened hypothesis 
on the influences of certain variables or parameters. To 
make the calculations more applicable, different smooth-
ing approaches for rates can be used. An often described 
and simple method is the moving average [9, 26]. Here, the 
rates from several sampling points are smoothed by taking 
the average value from a sampling window. In addition, 
more advanced moving average filters such as low-pass and 
Savitzky–Golay were already retrospectively used for rate 
modeling of bioprocesses [14, 17]. Such advanced filters 
require settings and appropriate knowledge for the ideal 
window size and smoothness, which are dependent on the 
process they are applied on. Using these methods, the true 
covariance matrix is often underestimated and the lack of 
automatic constraints for state variables may lead to subop-
timal performances [23].

Accurate estimation of a rate

Key figures existing in every cultivation process are the 
growth rate µ, which is defined as the time derivative of 
the logarithm of the change in population size and specific 
substrate uptake rates, which are feed dependent. Although 
stepwise integral estimation gives a simple estimation of the 
growth rates, this calculation possesses several drawbacks. 
One discrete estimation from one sampling time point to the 
next one is suboptimal for non-linear trends. Due to inac-
curate biomass measurements, which is, in particular, true 
for cell culture cultivations, cell growth rates vary strongly 
between the samplings, indicating a false process status. On 
the other hand, variations in the amount of fed substrate 
can have substantial impacts on the specific uptake rate 
estimation due to error propagation. A switch in the cell’s 
behavior is more likely to happen continuously and not spon-
taneously. It can be expected that calculations and model 
building attempts with these obtained biased values can lead 
to unreliable results containing much noise. To yield better 
descriptions of cultivation processes continuous rates should 
be preferred over sudden changes to yield.

Since the “true” rate is not accessible in a real fer-
mentation process, because of the existence of analytical 

measurement errors [20] and biological differences from 
cultivation to cultivation, we present a simulated case 
study, at which linear and inhibited cell growth were simu-
lated in-silico. Noise was added to the dataset to mimic a 
range of typical analytical measurement errors. 100 single 
fed-batch processes were simulated to obtain a statisti-
cal meaningful dataset. We compared the performance of 
the stepwise integral estimation including post-smoothing 
with a simple moving average with the cubic smoothing 
spline function. Hereby, different sampling intervals and 
analytical measurement errors have been simulated and 
both approaches were elucidated with respect to their pre-
cision and accuracy to obtain the real rates. Additionally, 
we also highlight an optimal solution to describe the sub-
strate uptake rates, since for estimating substrate uptake 
rates, the feeding rate and feeding substrate concentration 
need to be taken into account. Any analytical error in this 
part can have a huge impact on the level of noise in the 
data.

The unique combination of different rate calculations 
applied on data with varying sampling frequencies and 
analytical deviations is very valuable for process under-
standing and modeling.

Materials and methods

The detailed cultivation settings for the different simulated 
in-silico fed-batch fermentations (table 1) and all the nec-
essary equations (Eqs. 1–4) are given in the Bioprocess 
Simulation section of the Online Resource 1.

Noise generation

To account for process and analytic related variance, ran-
domly generated multivariate normal distributed numbers 
were added, accounting for different precision levels in 
each process variable. Such noise was added to volume 
(1%), substrate (1%), and biomass, for every sampling 
point. For the biomass, five different levels of coefficient 
of variation (CV) were utilized (2.5, 5, 7.5, 10 and 12.5%). 
The CV (Eq. 1) is the standardized standard deviation, 
independent of the extent of the value and, therefore, a 
good estimation for accuracy:

The CV describes the magnitude of variation for 68.2% 
of the data with the standard deviation σ and the average 
value X̄.

(1)CV =
σ

X̄
× 100.
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Stepwise integral estimation

The most commonly used method, the stepwise integral 
estimation, of calculating specific growth rates using 
the measured cell dry mass is described in the following 
equation:

As in Takuma et al. [22], µ is estimated for each time 
interval between two measurements by dividing the cur-
rent total biomass X(t) with the value of the previous 
measurement X(t − 1). This equation assumes that µ is 
constant for the described time interval.

Moving average

A moving average filter was applied to smooth the step-
wise integral estimation by calculating the mean of the 
observations using a fixed window size as stated in the 
following equation:

with �MA as the smoothed value, � the growth rate, and the 
chosen window size n.

Cubic smoothing spline

For the specific growth rate estimation via cubic smoothing 
spline, the MATLAB function csaps(x,y,p) was applied with 
x the total time of the process, the total cell mass y, and the 
chosen value for the fitting parameter p. This function is an 
implementation of the Fortran function SMOOTH [18]. The 
fitting parameter p determines the relative weight to either 
smooth or perfectly match the data. Here, the least-squares 
solution (p = 0) is a straight line fit, while p = 1 is the natural 
cubic spline interpolation matching each data point. To find 
the optimal fit, the p value was screened with a resolution 
of 0.1 and applied to the data. By choosing an appropriate 
value for p, the current growth rate can be determined by 
computing the functions respective time derivative (Eq. 4):

with x representing the biomass concentration and V the 
volume. The MATLAB script to apply the described cubic 
smoothing spline function to real data can be found in the 
Online Resource 2.

(2)� =

ln

(
X(t)

X(t−1)

)

dt
.

(3)�MA =
�(t) +⋯ + �(t+n−1)

n
,

(4)
d(xV)

dt
= �xV ,

Specific substrate uptake rate

For the calculation of the specific substrate uptake rate in g/g/h 
(qS), different approaches were considered and compared with 
regard to the respective accuracy. For the following equations, 
uf represents the feed flowrate, Sf the substrate feed concen-
tration, S the substrate concentration, V the volume, and x the 
biomass concentration. The change in substrate over time is 
determined by the amount of consumed and added substrate 
in the reactor (Eq. 5), accordingly:

Option 1

For the first approach, the total substrate consumption (i.e., 
accumulation minus input) was calculated and set into a rela-
tionship to the qS (Eq. 6). Accordingly, rearranging and inte-
grating Eq. (5) resulted in:

A cubic smoothing spline fit was performed on the total 
consumption ( SV − S0V0 − ∫ ufSf dt ) and on the biomass 
term (xV).

Option 2

For the second approach, the total amount of substrate in 
the supernatant was taken into consideration for the spline 
function and set into relation with the qS (Eq. 7). The cubic 
smoothing spline fit was performed on the substrate term (SV) 
and on the biomass term (xV):

Option 3

The last approach is similar to the second one, but only takes 
the substrate concentration in the supernatant into account. 
Accordingly, it follows from Eq. (5):

(5)
d(SV)

dt
= qSxV + ufSf .

(6)
d(SV − S0V0 − ∫ ufSfdt)

dt

1

xV
= qS.

(7)
(
d(SV)

dt
− ufSf

)
1

xV
= qS.

(8)

d(SV)

dt
= V

dS

dt
+ S

dV

dt
= qSxV + ufS,

with
dV

dt
= uf ,

(9)
V
dS

dt
− ufSf + ufS = qSxV ,

with D =
uf

V
,
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For this, an additional variable must be introduced, the dilu-
tion rate D, which is defined as the ratio of uf to V (Eq. 10). 
The cubic smoothing spline fit was performed on the substrate 
concentration term (S) and on the biomass term (xV).

RMSE and MAPE calculation

The root-mean-square error (RMSE) was calculated according 
to Eq. (11) and the mean absolute percentage error (MAPE) 
according to Eq. (12), where ŷ describes the actual value, y the 
desired target value and n the number of samples:

(10)
(
dS

dt
− D(Sf − S)

)
1

xV
= qS.

(11)RMSE =

�
∑i

t0
(ŷ(t) − y(t))2

n
,

(12)
MAPE =

∑ �
��
y(t)−ŷ(t)

�
��

y(t)

n
× 100.

Results

Bioprocess simulation

The two different bioprocess setups are displayed in Fig. 1. 
Simulation 1 describes a bioprocess were the cells are not 
induced or do not exhibit any growth inhibition (Fig. 1a). 
The second simulation describes a typical biomass trend of 
an induced microbial process (Fig. 1b). Due to this setup, 
we obtained completely different trends for the biomass as 
well as for the substrate concentrations. This allows to test if 
the distinct curvature of those trends leads to any unwanted 
effects when the different methods calculating the growth 
rate are applied.

When a process is performed with exactly the same pro-
cess parameters for an infinite number of runs and with 
the exact same time interval at which samples are drawn, 
still random errors are likely to occur. Due to the analytical 
method precision, which depends on the utilized device dif-
ferent amounts of CV can be expected. The CV of biomass 
determination, for instance, is obviously depending on the 
used method. Gravimetric dried biomass determination for 
E. coli is expected to be quite accurate, whereas the meas-
urement of the viable cell count via a microscope using a 

Fig. 1   Simulated a Monod and b non-competitive model process 
parameters and biomass concentration variation due to random sam-
pling error at 12.5%, 7.5% and 2.5% CV for the Monod model (c) 

with a sampling interval of 0.5 h and the non-competitive model (d) 
with a sampling interval of 1 h are presented. For c, d the number of 
simulated fed-batch processes n = 100
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hemocytometer can be rather imprecise [1, 2]. The generated 
variations between 2.5 and 12.5% already represent very 
precise cell measurements. For instance, at 7.5% CV, the 
biomass at 20 g/L varies with ± 1.5 g/L, which is an abso-
lutely realistic value (see Fig. 1c, d).

Rate estimations via stepwise integral estimation 
and elucidation of sampling interval impact

In the first step, the growth rates for the 100 simulated fed-
batch experiments were calculated and the accuracy and 
precision of the growth rate estimations were determined. 
For each rate µ(i) at time point t(i), the average and the 
standard deviation were calculated (n = 100). On average, 
the stepwise integral estimation is able to determine the rate 
quite precisely, independently if the growth rate is constant 
(Fig. 2a) or not (Fig. 2b). However, it is attended by low 
accuracy and further depends on the sampling interval and 
biomass accuracy. At an interval of 0.5 h, for instance, the 
minimal CV is already around 50% (Fig. 2c, d). Addition-
ally, at a low biomass determination accuracy, the CV even 
increases fivefold. If the growth rate is following a dynamic 

trend, the maximum CV at the highest sampling frequency 
is almost 400%. For both bioprocesses, the CV for almost 
half of the dataset was higher than 50%.

This behavior of the stepwise integration has huge impli-
cations on the evaluation of the current growth rates. For 
instance, if the growth rate would be rapidly changed back 
and forth due to a modification in the experimental condi-
tion, the stepwise integration approach would not be able 
to recognize this and the information would remain hidden 
because of the weak performance.

Rate estimation via cubic smoothing spline

The cubic smoothing spline function was applied to the 
whole data for each run. The performance of the smooth-
ing spline curve is displayed in Fig. 3. Additionally for 
the smoothing spline, also the perfect value for a general 
purpose of p was screened. A fitting parameter p of 1 led 
to a very low error but also to a generalization of the data 
and a p of 0 to an increasingly high error due to the simple 
straight line fit (Fig. 3a). Therefore, both were not displayed 
in Fig. 3b. To obtain the optimal p, the RMSE (Eq. 11) of 

Fig. 2   a, b The estimated growth rates at different sampling inter-
vals and their respective standard deviations (depicted by the area) 
at a biomass determination precision of 2.5% coefficient of variation 
(CV). c, d The resulting CV of the growth rate µ as a function of the 

sampling interval and at different biomass determination precisions 
for Monod model (a, c) and the non-competitive model (b, d) The 
number of simulated processes n = 100. Data above 100% are not 
depicted
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the rates for 100 simulated fed-batch experiments at different 
sampling frequencies and CV for biomass determination was 
calculated (Fig. 3b) and described as a function of p, added 
noise, and sampling frequencies. The RMSEs of all the 
sampling intervals resulted in a similar shape. The surface 
exhibited a minimum at a p around 0.4 for all noise and sam-
pling frequency combinations except for noise levels > 10% 
and the lowest sampling frequency of 4 h where a slightly 
lower p of 0.2 would be more preferable (see also Fig. 3c). 

Consequently, a fitting parameter of 0.4 was chosen for all 
further processes. At this magnitude, also the overall error 
at high sampling intervals and large measurement errors is 
reasonable low. Once the fit is applied sufficiently, the time 
derivative of this function represents the current growth rate. 
A very precise and accurate fit can be generated, which is 
sampling interval independent using the applied smoothing 
spline function. Even if the rate estimations became slightly 
inaccurate at the beginning and at the end of the processes, 

Fig. 3   a Spline fittings with p 0 and 1 of noisy biomass data (12.5% 
CV of biomass determination). b RMSE as a function of the sampling 
interval, the CV of biomass determination and the fitting parameter 
p of the spline function. c RMSE at a p of 0.4 at different sampling 
intervals. The coefficient of variation (CV) of the growth rate for the 

Monod model (d) and the non-competitive model (e) as a function 
of the sampling interval and CV of biomass determination for a fit-
ting parameter p of 0.4. For b–e the number of simulated processes 
n = 100
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still the precision for the rate estimations via spline is high. 
No differences between the estimation of a constant and a 
decreasing growth rate were evident. Also, if large noise was 
present, the spline was still able to estimate the rates correct 
and precise (Fig. 3d, e). With a biomass measurement error 
of 12.5%, the calculated CV ranged around 50% (n = 100).

Methodical comparison: stepwise integral 
estimation and cubic smoothing spline

The combination of stepwise integration and a moving aver-
age is a widely used approach for gathering smoothed rates. 
In the following, we elucidate the differences of using this 
combined method with the cubic smoothing spline.

The rate estimations described via the cubic smoothing 
spline outperformed the stepwise integral estimation. While 
the spline is considering the whole data, the stepwise inte-
gral estimation only takes two consecutive time points into 
account. Hence, smoothing splines can better deal with the 
error in the data compared to stepwise integral estimations. 
Regarding stepwise integral estimation, the error in the data 
is further propagated into the rate calculation. The spline 
fit already smooths the data before it gets even further pro-
cessed. Considering this fact, it is obvious that spline func-
tions are more accurate and precise.

A very common approach to further process the rates 
derived from stepwise integral estimations is to apply a mov-
ing average filter to smooth the data. For this study, we have 
chosen an averaging window size of 3 and 4. As expected 
the larger is the window size, the smaller the variations. 
Even with a window size of 3, the RMSE was reduced to 
an acceptable level. At a window size of 4, the error in the 

rate estimations in some cases was even better than the ones 
calculated with the cubic smoothing spline (Fig. 4).

However, due to the moving average, the rate change will 
seem to occur at different time points than it is the case. This 
is, in particular, a problem for non-constant rates (Fig. 4b). 
This effect will get even stronger at lower sampling fre-
quencies. Further, averaging rates over several time points 
reduces the ability to describe the dynamics in the system, 
whereas exactly this should be described by the rates. The 
more likely process changes occur and the larger the averag-
ing window is, the more likely they are overseen. Hence, the 
increased precision is traded for a reduced rates description.

The user also has to face the so-called endpoint problem. 
Due to the application of the moving average, the end of the 
process is not determined. Depending on the window size, 
the timeline of the rates will be inevitable shorter. Conse-
quently, the utilization of moving average will reduce varia-
tion in the prediction, but will also lead to a reduced descrip-
tiveness of the process and to misleading assumptions.

Specific substrate uptake rate estimations 
via the cubic smoothing spline

Other important process characteristics are substrate uptake 
rates. In this specific case, the amount of fed substrate must 
be incorporated into the calculation and with it any possible 
variations and errors, which might come along. Since we 
already verified the superiority of a cubic smoothing spline 
we only focused on the performance of this approach. A sim-
ulation of 100 fed-batch processes using the non-competitive 
model was performed in which a feed variation of 1% occurs. 
The sampling interval was chosen to be 1 h and the worst 
case of 12.5% CV for the biomass determination was used 

Fig. 4   Comparing the RMSE values of the stepwise integral esti-
mations (a) and stepwise integral estimations using a moving aver-
age (n = 4) as a function of the sampling interval and CV of biomass 
determination. b The timely deviation (%) from the time point when 

the simulated µ changed 15% (non-competitive model) derived from 
utilizing moving average with a window size of 3 and 4. The number 
of simulated processes n = 100
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and the fitting parameter p was set to 0.4. There are three 
possible options for the estimation of a feed-dependent rate. 
Either the total amount of consumed substrate (Option 1), 
the total amount of substrate in the supernatant (Option 2) or 
the substrate concentration in the supernatant (Option 3) can 
be taken into consideration for the cubic smoothing spline 
fitting (Fig. 5a–c).

All three options can in average accurately describe 
the specific substrate uptake rate (Fig. 5d). However, the 
incorporation of the feed into the calculation beforehand 
increased the precision to a great extent (Option 1) and 

also the feeding noise can be almost completely erased. 
Interestingly, between option 2 and 3, respectively, using 
the total amount of substrate or the substrate concentra-
tion, no significant difference was observed (see Fig. 5e). 
Only at the end of the fed-batch process, option 2 under-
estimates the specific substrate uptake rate. However, 
already 1% variation in the feeding system can have a 
substantial impact. As a consequence of using the wrong 
approach, the error will increase almost fourfold (Fig. 5f) 
from around 5% up to 20% MAPE (Eq. 12). If the feed is 
not incorporated into the calculation beforehand, such as it 

Fig. 5   Specific substrate uptake rate estimation via option 1 (a) 2 (b) 
and 3 (c) over the time course of a fed-batch (n = 100) for a sampling 
interval of 1 h and precision of 12.5% CV for the biomass determina-
tion are presented. The averaged values and their respective standard 

deviations of the three different options over the time course of the 
process (d), the resulting RMSE values for each option and sampling 
point (e), and MAPE for all three options (f) are displayed. The num-
ber of simulated processes n = 100
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is the case in Option 2 and 3, the feeding error propagates 
further into the rate estimation.

Discussion

Stepwise integral estimation issues

The key to process development and process modeling is to 
estimate rates accurately and precisely. In average (n = 100), 
the stepwise integral approach calculated an accurate rate 
value. This was expected considering that a large number 
of repetitive experiments should always meet in average the 
desired target value. But, we demonstrated that the step-
wise integral estimation will end up in large variations. It 
is not surprising that the inaccuracy rises with an increased 
sampling frequency [24], but such an increasing variation at 
higher sampling frequencies was on first sight rather unex-
pected. Due to the magnitude of the sampling errors, the 
slope of the linear function will either be more positive or 
negative, in comparison to the real value. Every new sam-
pling point will add its failure to it and, consequently, the 
deviation will increase over the time course of the cultiva-
tion. Therefore, with an increased sampling frequency, the 
rate estimation error increases although the measurement 
error remains constant. Since this behavior is counterintui-
tive, it is most likely overseen. This is a major disadvantage 
since for accurate process characterization and to gather 
process know-how a large dataset, thus a high sampling fre-
quency, is a necessity. The application of the moving average 
would be a simple tool to reduce such variances but the user 
will eventually end up in less accurate values. Therefore, 
rates calculated by stepwise integral estimation should be 
handled carefully for modeling purposes.

Application of cubic spline and specific substrate 
rate estimation

In this study, we focused on the cubic smoothing spline func-
tion as an alternative to rate estimations via stepwise inte-
gral estimation. With a reduced precision of the analytical 
determination, also the variation in the estimation increased 
but not to the same extent as when the stepwise integral 
estimation was applied. In the best case, at a high sampling 
frequency and biomass determination inaccuracy, the CV 
was around a factor of 4 lower. Moreover, the cubic smooth-
ing spline was not affected by the sampling frequency. In real 
bioprocesses, a good trade-off between sampling frequency, 
process dynamics and the analytical error should be consid-
ered. For high analytical errors and slow process dynamic 
changes, a high sampling interval does not increase precision 
and accuracy.

Additionally, we elucidated three different approaches for 
estimating substrate uptake rates via the established spline 
fit. If the substrate feed is not incorporated beforehand a 
cubic spline is performed, feed variations can have a sub-
stantial impact on the propagated error. Hence, it is impor-
tant to first calculate the total amount of consumed substrate 
before the rates are estimated.

The only “drawback” using the cubic smoothing spline 
function is that one degree of freedom is present, the fit-
ting parameter p. Therefore, before processing the optimal p 
must be reconsidered with respect to the given magnitude of 
the x ordinate. Another powerful alternative to spline func-
tions can be found in Gaussian distributions. It was shown 
that for processes with high sampling numbers (100–1000), 
the Gaussian distribution outperforms the spline function 
while for samplings below 100, it is vice-versa [21]. Typi-
cally, mammalian cell culture processes lead to only 10–20 
observations. Likewise, also microbial fermentations do not 
comprise such a high sampling frequency, also resulting in 
only 15–25 observations per process. These considerations 
and the remarkably easy use of this method due to no data 
pre- or post-processing are clearly stating the advantage of 
the smoothing spline compared with other methods.

Conclusion

In this study, the specific growth rate and the specific sub-
strate uptake rate were chosen as representative examples. 
It was shown that cubic spline estimations are a simple but 
powerful tool to determine rates, compared to the most com-
monly used standard procedure the stepwise integral estima-
tion. The presented method:

•	 is easy to apply and to implement for off-line analytical 
purposes,

•	 is to a major extent sample interval independent,
•	 can cope with large analytical variances,
•	 allows the user to assess a rate value at every time point.

In addition, we showed that a small error in the feeding 
system can lead to huge impacts in the estimation of specific 
substrate uptake rates. Hereby, it is important to take the 
feeding into account before the actual spline fit takes part.

For this level of complexity, the spline is sufficiently 
enough and more complex algorithms such as the Gaussian 
distribution or functions with more degrees of freedom (e.g., 
Kalman filters) are not necessary. It is easy to implement 
into existing codes and can add a reasonable value to process 
development and process comparability.
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In aerobic cell cultivation processes, dissolved oxygen is a key process parameter, and

an optimal oxygen supply has to be ensured for proper process performance. To achieve

optimal growth and/or product formation, the rate of oxygen transfer has to be in right

balance with the consumption by cells. In this study, a 15 L mammalian cell culture

bioreactor was characterized with respect to kLa under varying process conditions. The

resulting dynamic kLa description combined with functions for the calculation of oxygen

concentrations under prevailing process conditions led to an easy-to-apply model, that

allows real-time calculation of the oxygen uptake rate (OUR) throughout the bioprocess

without off-gas analyzers. Subsequently, the established OUR soft-sensor was applied in

a series of 13 CHO fed-batch cultivations. The OUR was found to be directly associated

with the amount of viable biomass in the system, and deploying of cell volumes instead

of cell counts led to higher correlations. A two-segment linear model predicted the

viable biomass in the system sufficiently. The segmented model was necessary due to a

metabolic transition in which the specific consumption of oxygen changed. The aspartate

to glutamate ratio was identified as an indicator of this metabolic shift. The detection of

such transitions is enabled by a combination of the presented dynamic OUR method

with another state-of-the-art viable biomass soft-sensor. In conclusion, this hyphenated

technique is a robust and powerful tool for advanced bioprocess monitoring and control

based exclusively on bioreactor characteristics.

Keywords: kLa, oxygen transfer rate, oxygen uptake rate, biomass prediction, metabolic states, quality by control,

CHO

INTRODUCTION

The primary role of a bioreactor is to provide a suitable environment for cell growth and product
formation. Stirred tank reactors (STRs) are currently the most widely used bioreactor type to
cultivate aerobic organisms in suspension culture or on carriers. In aerobic upstream bioprocesses,
the oxygen uptake rate (OUR) is crucial for cellular activity and a good indicator of changes in
the metabolic state of the culture (Deshpande and Heinzle, 2004; Wahrheit et al., 2015), which
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can be induced by changing substrate availabilities (Toye
et al., 2010; Niklas et al., 2011; Young, 2013; Zhang et al.,
2016). Thus, in the context of implementing Quality by
Design and Process Analytical Technology (QbD/PAT) in
bioprocesses, the OUR could be an informative process indicator
(Sommeregger et al., 2017).

According to the QbD/PAT concept real-time measurements
of meaningful process variables are a necessity. Soft(ware)-
sensors can provide information about the actual state and
quality of the process. Thereby on-line process variables are
measured by associated sensors (hardware) using an estimation
algorithm (software) to deliver estimated unmeasured bioprocess
variables (Luttmann et al., 2012).

Before being consumed by cells, oxygen disperses through
the culture medium in a series of transport resistances from
gas bubbles to each individual cell. The highest resistance
occurs during the transport through the liquid film surrounding
the gas bubbles, which is described by the volumetric mass
transfer coefficient (kLa). This coefficient and the concentration
gradient (c∗L-cO2) in the liquid phase defines the gas-liquid
transfer rate and the oxygen transfer rate (OTR), respectively
(Villadsen et al., 2011).

Precise OTR calculations during a bioprocess are challenging,
because different phenomena occur simultaneously. Process
conditions (e.g., pressure, temperature, mixing, and gas-flow)
in a previously chosen operational mode (e.g., batch or fed-
batch cultivation) together with physicochemical properties (e.g.,
media composition or viscosity) may change over time and
influence the overall OTR (Garcia-ochoa and Gomez, 2009).
Temperature and pressure greatly impact the maximum oxygen
solubility in aqueous solutions, and therefore mainly influence
the concentration gradient. Regarding the physicochemical
properties of the medium, the amount of electrolytes (salts,
ions) in so-called non-coalescing fluids can have beneficial
effects on kLa, due to suppressing bubble coalescence (Villadsen
et al., 2011). Other additives, such as Pluronic F68, which
is typically added for shear protection, have been shown to
reduce bubble size at high concentrations (Sieblist et al., 2013).
Moreover, certain antifoam agents, such as silicone oils, can act
as oxygen vectors, resulting in a significant increase in oxygen
transfer and the oxygen transfer capacity in STRs (Quijano
et al., 2009). In contrast, in bubble column reactors, kLa
values decrease with the addition of hydrophilic or hydrophobic
surface active compounds (Mcclure et al., 2015). In addition,
increasing biomass particle size and by-product formation
can reduce kLa values due to enhanced bubble coalescence
(Vandu and Krishna, 2004).

Abbreviations: Ala, Alanine; Asn, Asparagine; Asp, Aspartate; ATP, Adenosine
tri phosphate; BAC, Bacterial artificial chromosome; CHO, Chinese hamster
ovary; CFD, Computational fluid dynamics; DoE, Design of experiments;
FMOC, Fluorenylmethoxycarbonyl; Gln, Glutamine; Glu, Glutamate; HPLC,
High performance liquid chromatography; IgG, Immunoglobulin G; mAb,
Monoclonal antibody; NADPH, Nicotinamide adenine dinucleotide phosphate;
OPA, o-Phthalaldehyde; PA, Process Air; PAT, Process Analytical Technology;
PCV, Packed Cell Volume; PID, Proportional Integral Derivative; QbD, Quality
by Design; RO, Reverse Osmosis; STR, Stirred Tank Reactor; TCA, Tricarboxylic
acid cycle.

In aerobic bioprocesses the dissolved oxygen concentration
should not drop below a certain threshold. Therefore, a
PID control circuit is usually used to counteract shortages.
The output parameters of such a controller can be different
among processes but usually includes stirrer speed, gas-flow
or composition, pressure, or combinations thereof. By utilizing
design of experiments (DoE), the influence of those parameters
on kLa and c∗L can be determined within the operational process
space. Consequently, OTR can be estimated at each time point
during the process.

Though the OTR and kLa in particular are decisive parameters
for the design of bioreactors, the OUR calculated in real-time
provides information about the cells being cultured and the
overall process performance. The OUR is a good indicator of
cellular activity that closely correlates with the viable biomass.
Within a bioprocess, the OUR is usually calculated via oxygen
mass balancing. Therefore, the use of gas-analyzers is required
to determine the oxygen and CO2 concentration in the off-
gas stream, and these compounds can be quantified using flow
rates. Another approach is to use the combination of OTR
and the time-progression of the actual dissolved oxygen (DO)
concentration (Lovrecz and Gray, 1994; Eyer et al., 1995).
However, the published methods usually do not correct for
changes in either kLa or c∗L due to process dynamics, or rely on
empirical kLa calculations based on water experiments.

In this study, a soft-sensor was established for real-time
estimation of the OTR and respectively, OUR. For this purpose,
a 15 L bioreactor was thoroughly characterized to develop a
dynamicmodel for kLa that can account for changing operational
(temperature, PID controller output) and physicochemical
properties of the medium (oxygen transfer and solubility). The
model was applied, to a wide-spread dataset of 13 recombinant
Chinese hamster ovary (CHO) cell culture fed-batch processes
producing a monoclonal antibody (mAb) to elucidate the
association of OUR with biomass and the metabolic states
throughout the process. In summary, this study presents an
estimation of the OUR based on standard measurements (PA
and CO2 inlet gas flow-rates, temperature, volume, pressure)
and precise system characterization that takes into account the
dynamic kLa throughout progression of the process. This OUR
soft-sensor was then used for biomass prediction. We also show
an advanced technique for monitoring metabolic transitions of
cells during cultivation simply by combining the dynamic OUR
with a state of the art capacitance sensor.

MATERIALS AND METHODS

Operational Conditions
A 15 L (max. working volume) stainless steel stirred tank
bioreactor with a tank diameter (D) of 0.242m and total
height (H) of 0.484m (LabQube, Bilfinger Industrietechnik
Salzburg GmbH, Austria) was equipped with two three-bladed
elephant ear impellers (di = 0.1m) connected to a bottom-
driven magnetic impeller shaft. Aeration was maintained by a
submerged I-shaped frit and calibrated mass flow controllers
(8711, Burkert, Germany). The temperature was measured using
the built in Pt100 resistance thermometer. The DO concentration

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 August 2019 | Volume 7 | Article 195

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Pappenreiter et al. Oxygen Uptake Rate Online Sensor

was monitored using an optical oxygen sensor (VisiFerm DO
Arc120, Hamilton Switzerland) and pH by a pH probe (EasyFerm
Plus PH Arc120, Hamilton, Switzerland). The oxygen and CO2

content in the off-gas stream was measured using a gas analyzer
(BlueInOneFERM, BlueSens, Germany). A capacitance probe
(Incyte, Hamilton, Switzerland) was used to evaluate the biomass
estimations and establish the metabolism sensor.

kLa Measurements
The experimental determination of kLa was performed using
the dynamic gassing in/gassing out method (Van’t Riet, 1979).
Dissolved oxygen was measured by step changes in the oxygen
concentration of the inlet gas. kLawas determined from the slope
of the natural logarithmic DO concentration over time in an
oxygen saturation range of 20–80%. Application of this method
is restricted when the oxygen transfer is faster than the probe
response. As proposed by (Van’t Riet, 1979), the time constant
of the measurement probe can be neglected if the following
condition in Equation (1) is fulfilled:

τp ≤
1

kLa
(1)

As the mass transfer coefficients within the chosen process
space for mammalian cell culture bio-production are relatively
low, the response time determined for the used probe
(τp = 49.6 s, experimentally) was sufficient. All measurements
were performed according to a pre-defined experimental set-
up with varying parameters (working volume, impeller speed,
aeration rates, and culture temperature).

Two liquids, RO-H2O and a chemically defined culture
medium (Dynamis AGT, A26175-01, Thermo Fisher Scientific,
USA) both supplemented with 0.1% (v/v) antifoam C (A8011,
Sigma Aldrich, Germany), were used to determine kLa. All
measurements were performed in triplicate. Data accuracy was
within ±5% for all measurements; thus, only the average values
are shown in the respective depictions.

Oxygen Transfer
Methods to quantify OUR and OTR are based on a gas-liquid
mass balance of oxygen as described in Equation (2),

dC

dt
= kLa

(

cL
∗ − cO2

)

− qO2∗X (2)

where the timely changes in oxygen concentration are influenced
by the oxygen mass transfer coefficient (kLa), maximum
solubility of oxygen (c∗L), actual oxygen concentration (cO2),
specific OUR (qO2), and viable cell concentration (X). The OUR
(OUR= q∗O2X) and OTR are equal during steady-state conditions
(controlled DO concentration), hence dC/dt= 0, leaving OTR as
described in Equation (3):

OTR = kLa (cL
∗ − cO2) (3)

The OUR model described in this work is based on a detailed
bioreactor characterization, in which physiological and kinetic
changes from a dynamic process, resulting in varying dynamic

kLa values are considered. The on-line bioprocess data including
the O2 and CO2 aeration rates, temperature, filling level and DO
concentrations measured by an oxygen probe, as well as pre-
determined oxygen solubility in water and cell culture medium
were used for the model derivation.

OUR Calculation by Oxygen Mass
Balancing
One possibility for acquiring the consumed mass of oxygen on-
line involves balancing the oxygen mass between the gas entering
and leaving the bioreactor, which applies to animal cell cultures
(Eyer et al., 1995). An accurate gas analyzer is required for this
technique to measure the Vol.O2,out% in the off-gas stream. In
addition, the gas flow rate (Gin= Gout) and composition of the
aeration gas that enters the bioreactor together with the liquid
volume (VL) and molar gas volume [Vm,in (p,T,R); assumed Tin=

22◦C, Tout=measured gas outlet temperature], needs to be taken
into account to calculate the OUR as described in Equation (4):

OURMB =
O2 in− O2 out

VL
=

(

Vol.O2in%∗Gin
Vm,in

)

−

(

Vol.O2out%∗Gout
Vm,out

)

VL
(4)

Maximum Oxygen Solubility: The
Thermodynamic Approach
The maximum solubility of oxygen in water (c∗) under ambient
air was calculated using Equation (5), the temperature and
pressure dependent thermodynamic equation described by
Tromans (1998):

c∗(T) = pO2∗ exp























0.046 T2 + 203.357 T ln
(

T
298

)

− (299.378+ 0.092 T) (T − 298) − 20.591∗103

R T























(5)

R represents the ideal gas constant and T the temperature in K.

Determination of Oxygen Solubility in
Medium
To investigate the solubility of oxygen in the presence of
(non)ionic compounds and sugars, the solubility in the cell
culture medium was determined experimentally as described by
(Storhas, 2018). Briefly, in two steps, either oxygen saturated or
degassed RO-H2O with known Henry coefficient was mixed in
equal amounts with the cell culture medium and the resulting
dissolved oxygen concentration was measured (DO1). The
second value (DO2) is determined using the same liquids with
vice versa oxygen saturations. The obtained difference was used
to correct the maximum absolute oxygen saturation in media.

CO2 Influence on Solubility in Medium
Changing CO2 concentrations in the gas inlet due to pH
control influence the oxygen solubility in the culture. To analyze
the maximum saturation in the presence of CO2, gassing
experiments applying up to 20% (v/v) CO2 in process air were
performed and the maximum oxygen solubility in cell culture
medium recorded.
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TABLE 1 | Overview of all bioprocess runs at different parameter settings.

Bioprocess run Shift 1

(72 h)

Shift 2

(120h)

Shift 3

(192h)

Shift 4

(240h)

1 36.3◦C/F3 – – –

2 36.3◦C/F3 – – –

3 34◦C/F1 – – –

4 37◦C/F3 - 37◦C/F1 -

5 34◦C/F2 37◦C/F2 34◦C/F1 31◦C/F1

6 31◦C/F2 34◦C/F2 37◦C/F3 34◦C/F3

7 34◦C/F1 31◦C/F1 31◦C/F2 34◦C/F2

8 37◦C/F2 34◦C/F3 31◦C/F2 34◦C/F1

9 34◦C/F3 37◦C/F2 31◦C/F2 37◦C/F3

10 34◦C/F2 – – –

11 34◦C/F2 – – –

12 34◦C/F2 – – –

13 34◦C/F2 – – –

Intra-experimental variations were performed at four shifts in temperature (31, 34, or
37◦C), additional D-glucose concentration in the feed medium (+10, +20, or +30g L−1;
identified as F1, F2, F3), or both.

Fed-Batch Experiments
Cell Line Propagation
We used a recombinant monoclonal Chinese Hamster Ovary
(CHO) cell line (Antibody Lab GmbH, Austria) generated by the
Rosa26 Bacterial Artificial Chromosome (BAC) strategy (Zboray
et al., 2015) using a serum-free derivate of CHO-K1 (ATCC
CLL-61) as the host. The cells produce an IgG1 monoclonal
antibody. The cell line was cultured in chemically defined cell
culture medium (Dynamis AGT, A26175-01, Thermo Fisher
Scientific, USA) supplemented with 8mM L-glutamine. The cells
were maintained in shake flask cultures at 37◦C in a humidified
incubator under 5% (v/v) CO2 in air, shaken at constant rpm
and passaged every 3–4 days for propagation and scale-up. After
four passages, the bioreactor was seeded at a density of 2.5× 105

cells mL−1.

Bioprocess
Thirteen CHO cultivations were performed in a chosen (DoE)
setting with either static or dynamic changes (intra-experimental
shifts) in two varying parameters. The changeable parameters
were temperature and variable D-glucose concentration in the
feed medium (see Table 1). For simplification, runs 1 and 2 were
treated as processes performed at 37◦C.

The feed medium (CHO CD EfficientFeed A, A1442001,
Thermo Fisher Scientific, USA) was supplemented with 0.1%
(v/v) antifoam C (A8011, Sigma Aldrich, Germany) and
additional 10, 20, or 30 g L−1 D-glucose and 7 g L−1 L-asparagine
monohydrate. Temperature was maintained at 37◦C during the
batch phase and changed after 72 h to 31 or 34◦C or remained
constant according to the pre-defined experimental set-up. The
minimum DO level was set to 30% of saturation and maintained
by gassing with process air (PA) flow and increasing stirrer speed.
The agitation rate was variable, from 91 to 228 rpm and the gas-
flow range was 0.3–1.5 L min−1 (maximum values at maximum

PID controller output). The culture pH was kept constant at
7.0 and controlled via the CO2 gas flowrate. Base addition was
not necessary.

Off-line Analyses
The total cell concentration (TCC) was determined by counting
the cell nuclei using the particle counter Z2 (Beckman Coulter,
USA). Therefore, an appropriate amount of cell suspension was
centrifuged at 200 g for 10min. The cell pellet was resuspended
in 0.1M citric acid monohydrate and 2% (v/v) Triton X-
100 buffer to lyse the cells, for a minimum of 1 h before
measurement. Sample dilution was performed using a 0.9%
(m/m) NaCl solution.

Culture viability was assessed using a hemocytometer and
trypan blue exclusion. The viable cell concentration (VCC) was
calculated by multiplying viability by TCC.

Packed cell volume (PCV) was measured using PCV tubes
(#87007, TPP, Switzerland) after spinning the cell suspension
for 1min at 2,000 g. PCV is expressed as a percentage (%v/v)
of the total culture volume. Determinations were performed
in duplicates. Viable PCV was determined by multiplying the
viability by the PCV.

Carbohydrates were determined via ion exclusion
chromatography (HPX 87H, 300 × 7.8mm, #1250140, BioRad,
USA) on an Agilent 1200 series (Agilent, USA) at 25◦C. The
mobile phase consisted of 5mM sulfuric and the flow rate was
set to 0.45mL min−1. Measurement was performed using a
Refractive Index detector (35◦C). The calibration range for
D(+)-glucose was 100–2,000mg L−1. The chromatograms
were evaluated using Chemstation software (revision B.04.01,
Agilent, USA).

The amino acid concentrations were determined by HPLC.
After using an automated pre-column derivatization method,
amino acids were separated on a chromatography column
(Eclipse Plus C18 column) at 40◦C using a flow rate of
0.64mL min−1. As solvent A 10mM K2HPO4 and 10mM
K2B4O7 and Solvent B an acetonitrile, methanol, water mix
(45/45/10; %v/v/v) was used. Amino acids were excited
at 230 nm and the fluorescence signal was detected at
450 nm for OPA derivatives and at 266/305 nm for FMOC
derivatives. Samples were quantified using an internal
standard calibration.

Assessing Model Accuracy
To compare the model’s quality, accuracy, and overall
performance, the mean absolute percentage error (MAPE)
was calculated. Errors were normalized by the inverse of the
number of fitted points (n) regarding the sum of deviation from
actual values (xi) to forecast values (xtarget) divided by the actual
value again, calculated as a percentage error (%) as described in
Equation (6):

MAPE =

∑n
i=1 |

xi−xtarget
xi

|

n
∗100 (6)
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RESULTS

Assessing Parameters for Dynamic
kLa Estimation
As oxygen transfer is determined by the system’s operational and
physicochemical characteristics, varying process conditions can
affect the oxygen solubility andmass transfer properties and need
to be taken into account for kLamodel development.

Viscosity behavior was investigated using the harvest samples
of bioprocess run 2 and media supplemented with antifoam
at two different temperatures (30 and 37◦C; Figure 1A). The
viscosity was close to that of water and significant changes
between the media and harvest sample were not observed. Due
to the insignificance of the divergence, viscosity changes were not
implemented in the present model.

Osmolality within all presented fed-batch processes was
295 ± 26 mOsm kg−1. Similar to the viscosity, the minor
osmolality variations were assumed to only minimally influence
themaximumoxygen solubility in culturemedium or the kLa and
therefore, were neglected.

Volumetric mass transfer coefficients were measured in
a chosen process design space (Figure 1B). Process air and
stirrer speed variation were linked in the PID controller
output; therefore, the influence on kLa was quantified based
on the percentage of the PID controller output. During
all fermentations, the main operational space increased to
a maximum PID controller output of 65%. At maximum
operational stirrer speed (PID65 = 160 rpm), a specific agitation
power of 12Wm−3 was calculated.

The volume dependency of kLa between 10 L (inoculum) and
15 L (max. working volume) was investigated experimentally.
No significant volume influence on kLa was determined in the
bioreactor system.

As the pH in mammalian cell culture processes is typically
controlled by varying the CO2 concentration in the inlet gas,
the maximum oxygen solubility in cell culture medium was
determined under varying CO2 molar fractions in the gas in-flow
(Figure 1C). Gassing with ambient air led to a maximum relative
solubility of ∼95 % in media compared to water under the same
settings. This result is in accordance with the experimentally
determined maximum oxygen solubility in medium compared to
water using the method described by (Storhas, 2018), resulting
in a decrease of 5.2% in culture medium compared to RO-H2O.
With increasing molar fractions of CO2 the oxygen solubility
dropped to 82% at a molar CO2 fraction of 20%. The resulting
linear fit was incorporated into the model to account for O2

displacement by CO2 (Equation 8).
The physicochemical properties of the culture medium had

a strong positive impact on kLa values in this bioreactor setup
(Figure 1D). The kLa values determined with medium were
more than 3-times higher than those generated with water in
the presence of 0.1% v/v antifoam solution. A linear increase
was observed in kLa in cell culture medium with increasing
PID (PID = f(vs,rpm). The increase in superficial gas velocity
together with increasing stirrer speed as a function of PID output
had the greatest impact, whereas temperature had only a slight
effect. A linear curve fit was created with averaged triplicate

values. The kLa determination in medium was performed up
to a PID controller output of 60%, with linear extrapolation of
higher values. This function was used to estimate kLa in real-
time throughout the process as the PID set-up was the same
for all fed-batches. By determining factors that directly influence
oxygen solubility, several correlations have been developed for
the prediction of kLa (Gill et al., 2008; Garcia-ochoa and
Gomez, 2009). The most common and conventional approach
is based on the energy input criterion. However, direct relation
of kLa dependence to volumetric power consumption (Pg/VL) or
superficial gas velocity (vs) was not necessary due to coupling via
the PID controller. The simplified model kLa = f(T, PID) is only
true within the chosen process space and needs to be adapted for
prevalent use. As an alternative, computational fluid dynamics
(CFD) simulations can provide a tool for predicting kLa on larger
scales in which the location of the oxygen probe in the bioreactor
plays a significant role (Kerdouss et al., 2008; Wutz et al., 2016).

OUR Model Set-Up
OUR at time point t is a function of the dynamic kLa and the
oxygen solubility at given temperature c∗(T) as described in
Equation (7) (adapted from Equation 2).

OUR (t) = kLadyn. (t) ∗
(

c∗M (t) − cDO (t)
)

−
dC

dt
(7)

Dissolved oxygen concentrations with the subscript DO were
obtained from the DO values measured by the oxygen probe. The
dC/dt term equals zero if DO is constant. At the beginning of the
processes, when DO was not constant, dC/dt in the short interval
of on-line recording (seconds) was much smaller than OUR.
Therefore, dC/dt was neglected for the on-line OUR calculations
described in this work.

Oxygen solubility in fermentation medium c∗M(t1) was
calculated using the thermodynamic equation in the presence
of medium solutes (Equation 8) and accounts for the O2

displacement by CO2.

c∗M (t1) = c∗(T)

(

−0.638∗yCO2 (t1)+ 95.63

100

)

(8)

with

yCO2 =
QCO2

(QPA + QCO2)
∗100 (9)

Q represents the inlet gas flowrate of CO2 (QCO2) and process
air (QPA) gathered from the mass flow controller. Therefore,
c∗M(t1) is dependent on the process temperature and amount of
dissolved CO2.

DO(t1) is the dissolved oxygenmeasured at the respective time
point. In addition, as the used DO probe performs an internal
temperature correction, a correction factor was introduced for
the temperature dependence of the actual oxygen saturation.
cDO(t1) is then defined as described in Equation (10):

cDO (t1) = c∗M (t1) ∗

(

DO (t1) ∗
c∗ (T1)

c∗ (T2)

)

(10)
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FIGURE 1 | (A) Viscosity as a function of shear rate measured in cell suspension and media supplemented with antifoam at 30 and 37◦C. (B) Stirrer speed and

process air (PA) output as a function of PID controller output (%). (C) Relative dissolved oxygen saturation (DO%) determined in medium upon variation of the molar

CO2 fractions in the inlet gas compared to RO-H2O. (D) kLa as a function of temperature (T ) and PID controller output (%) for water and culture medium

supplemented with 0.1% v/v antifoam solution.

Assessing the Model Performance
During the dynamic fed-batch processes (see Table 1) up to four
temperature shifts were applied to capture the process dynamics
(Figure 2A). Process air-flow at the beginning of the process was
usually set to 0.3 L min−1 to constantly strip CO2, and increased
with cell density when the set point of 30% DO was reached
(Figures 2A,B).

Temperature-shifts influenced the PID output, as a reason of
the temperature dependency of the maximum oxygen solubility.
It follows that the temperature shifts are also evident in the
concentration gradient (Figures 2A,C). With changing PID
output and temperature, kLa changes over the progression
of the fed-batch process. These dynamic profiles are very
similar to those of the PID and PA-flow, as the main factor

influencing kLa within the chosen process space is the superficial
gas velocity (Figures 2B,C). After temperature correction and
incorporating oxygen solubility, the OUR profile is calculated in
real-time (Figure 2D).

Total amounts of mol O2 consumed during each process
were determined for five bioprocesses (Figure 3A). The results
obtained with the generated model and values calculated by
the mass-balance method were in good agreement (Equation 4).
The O2 solubility approach in medium compared to the mass-
balance method for all runs obtained slightly lower values.
The mean relative deviation of the model compared to off-gas
analysis was 8%. Due to humidity in the off-gas stream as well
as handling errors, not all reactor runs could be evaluated by
mass balance.
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FIGURE 2 | Process variables (A) temperature (T), dissolved oxygen (DO% sat), and PID output (%), (B) process air (PA) and CO2 flow rates, (C) calculated solubility

difference (c*M-cDO), kLa and (D) OUR over the time course of an intensified fed-batch process (run 9).

For example, Figure 3B shows the calculated OUR trend
of a static fed-batch (run 3) in the developed model and the
mass-balance method over the duration of cultivation. The
same trends were gathered from both methods. However, the
generated model seems to be unaffected by process disturbances.
In particular, the rate calculation at the beginning of the
processes, was mostly negative for the gas balancing method,
whereas the soft-sensor illustrates the initial process phase in
an exponential increase. Step changes and fluctuations during
the process (especially temperature shifts) also impacted other
reactor runs for the mass-balance method.

Linking OUR to Cell Numbers
In principle, estimation of the OUR provides broad information
on cell performance during the process. The OUR is the
direct product of specific consumed oxygen rates (qO2) and the
number of viable metabolically active cells. Thus, the OURs
calculated by the model can be theoretically given as a function
of VCCs measured off-line at each time point (Figure 4A).
However, the OUR was linearly dependent only up to a cell
concentration of ∼107 cells mL−1. At higher cell densities and
later process stages, variations occur and the data are widely
scattered: OURs no longer exhibit a clear relationship with the
VCC. The data distribution indicates two process stages in the
cells. Volumetric oxygen uptake is temperature-independent in a

sigmoidal progression of cell numbers. The cell-specific oxygen
consumption rate (qO2) is independent on the growth rate (µ)
and the cell cycle, with constant, but temperature-dependent
behavior (Figure 4B). Linear regression was carried out for each
culture temperature.

Linking OUR to Cell Volume
An alternative means for biomass quantification in cell culture
processes is the determination of PCV, which represents the
average cell volume and closely correlates with oxygen uptake
(Wagner et al., 2012). A growth profile comparison of cell
numbers and PCV showed different curve characteristics (see
Appendix Figure 1). Due to intra-experimental shifts in two
parameters (added D-glucose in the feed medium and culture
temperature), the viable PCV data as a function of time in all
fermentation runs spanned a broad range. Nevertheless, these
variations are not visible when correlating the viable cell volumes
measured off-line to the OURs of all runs (Figure 5A).

Figure 5A shows that the magnitude of the OUR was highly
dependent on PCV. No significant temperature dependence or
association to the cell viability (>80%) was evident. The data are
less scattered and a more accurate correlation, in comparison
to cell number is observed. However, the OUR as a function of
PCV exhibited a sharp kink at ∼1.4% (v/v) PCV. Thus, a linear
regression was calculated for each section. For this purpose,
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FIGURE 3 | (A) Total oxygen consumption determined by the two different methods for five bioprocesses (B) Volumetric oxygen uptake rates (OURs) over the time

course of fed-batch run 3. For clarity, only every 20th data point is displayed.

FIGURE 4 | (A) Volumetric oxygen uptake rates (OURs) as a function of viable cell concentrations (VCCs) measured off-line for all bioprocesses. Data <80% viability

were excluded. (B) Specific consumed oxygen rates (qO2) as a function of the growth rate (µ) for three culture temperatures (31, 34, and 37◦C).

the data were divided into a training data set and a test data
set. The test set consisted of three similar experiments with
static conditions (runs 10, 11, and 12). All other experiments
were used for development of the model. The optimal point of
intersection between the two linear fits was calculated iteratively
at 1.395% (v/v) PCV. For the first section, a linear function
of f1= 0.042∗x−0.011 and for the second one f2 = 0.001∗x +

0.032 was calculated, where the slope k represents the specific
uptake rate per cell volume in the respective section. After
the transition, the OUR decreased and k2 was roughly one-
fourth the value of k1. The error for the biomass prediction
was calculated as MAPE = 19% for the training data set and
14% for the test data set (Figure 5B). Good performance of
the predicted PCV was also seen in comparisons with the real
PCV data for the test data sets (Figure 5C) over the time
course of the process. Interestingly, two growth curves (runs
12 and 13) were still during exponential growth phase when
reaching a PCV of ∼1.4% (v/v). Therefore, partitioning the data
into two stages could not be linked to the cell cycle (growth
and maintenance).

Capacitance Measurements for
Soft-Sensing of Cell Volumes
Off-line PCV data correlated with the permittivity and
conductivity signals of an on-line capacitance probe (Figure 6A).
The permittivity exhibited linear behavior relative to the viable
PCV, and conductivity output was used to correct the model
for temperature changes. The cell factor determined by linear
regression was used to predict the viable PCV. Again, data
were split into a training data set and a test data set and
the model’s performance was evaluated using MAPEtraining =

15% and MAPEtest = 18% for the on-line biomass soft-sensor
(Figure 6B). The on-line soft sensor estimated the PCV trends for
the test data sets over time in a meaningful manner (Figure 6C).

Monitoring Metabolic Transitions
The transition step in the OUR profile indicated that a metabolic
shift occurred (see Figure 5A) at a viable PCV of 1.4% (v/v) in
the given process set-up.

The evolved OUR model combined with the viable PCV
predictions via on-line permittivity and conductivity signals from
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FIGURE 5 | (A) Linear correlation of OUR and viable PCV for three culture temperatures (31, 34, and 37◦C). Data with <80% viability were excluded. (B) PCV

estimated by the segmented linear model vs. viable off-line PCV data. (C) PCV model predictions over time for the test data compared to values measured off-line.

a capacitance sensor of all fed-batch runs is shown (Figure 7A).
The combination of the two models led to the development
of an on-line metabolic soft-sensor (see Appendix Figure 3).
Hereby, the objective function is that the linear function PCVOUR

(function 1) must intercept with PCVOUR (function 2) and
the PCVcapacitance. The sensor specifies the first metabolic state
with the value 0 and the second with the value 1. If both
conditions are fulfilled, hence, a metabolic shift is evident, the
sensor jumps from 0 to 1. For 12 runs the application of the
metabolic sensor was successful. In average, the metabolic shift
was detected at a viable PCV of ∼1.4% (v/v). As an example,
the performance of run 12 is depicted in Figure 7B. During the
process the metabolic shift can be traced by the output signal of
the metabolic sensor.

The variations in the amino acid concentrations of glutamine
(Gln), glutamate (Glu), asparagine (Asn), aspartate (Asp), and
alanine (Ala) are of particular importance in mammalian cell
culture (Zhang et al., 2016). Though Glu and Gln exhibited
a similar trend over the course of the fed-batch for all
experimental runs, Ala, Asn, and Asp progressed differently (see
Appendix Figure 2).

In a recent study, the ratio of asparagine and glutamine
was found to be important, to some extent, in terms of
process performance (Zhang et al., 2016). However, glutamine

was depleted and asparagine concentrations were sufficiently
high throughout the process (Figure 7C) and did not exhibit
significant dependence. In the metabolic fate of glutamine
and asparagine, glutamate and aspartate, respectively follow as
secondary key products (Figure 7D). The Asp concentration
decreased, whereas the Glu concentration increased consistently.
These amino acids exhibited a linear relationship with OUR (data
not shown).

Glu and Gln as a function of PCV exhibited reciprocal
behavior. At ∼1.4% (v/v) PCV, glutamine was almost completely
consumed and glutamate plateaued at∼6mM (Figures 7C,D).

The Asp/Glu ratio as a function of PCV exhibited a significant
pattern (Figure 7E). The Asp/Glu ratio decreased linearly. At a
PCV value of ∼1.4% (v/v), the progression bent and resulted
in a shallower slope. Accordingly, at an Asp/Glu ratio of 2, cell
volumes and specific OURs changed after a metabolic alteration.
The observed inflection point was at the same value as in the
OUR vs. PCV regression (1.4% (v/v) PCV; see Figure 5A).

The Ala profile suggested the same metabolism switch
(Figure 7F). The Ala concentration slightly increased at
high Asp/Glu ratios until a certain point (around 2), when
Ala production started to increase steeply (Asp/Glu =

low). Ala accumulated in the cell culture supernatant to a
great extent.
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FIGURE 6 | (A) Linear model of on-line capacitance signals as a function of viable PCV off-line data. (B) Estimated vs. real off-line PCV. (C) PCV capacitance model

predictions over time for the test data.

DISCUSSION

Benefit of Dynamic kLa Determination and
Real-Time OUR Calculation
The dynamic technique for kLa determination provided reliable
results. We showed that the assumption of a dynamic volumetric
mass transfer coefficient is necessary to calculate the OTR
and, subsequently, the OUR throughout a changing process.
Temperature and PID controller output were the two main
bioreactor operating variables affecting the OTR in this setting.
The influence of physicochemical properties of certain substances
in the cell culture medium led to a strong kLa increase more than
3-times higher compared to water. This is probably due to the
presence of Pluronic F68 within the medium, which has been
reported to mainly change bubble size at higher concentrations.
Smaller bubbles lead to an increase in gas holdup and available
surface areas for overall mass transfer (Sieblist et al., 2013).
Similar results were reported in the presence of ionic solutes,
which generally exhibit coalescence-inhibiting characteristics,
resulting in smaller bubbles and greater surface area and overall
kLa (Puthli et al., 2005). Moreover, the effects of so-called oxygen
vectors (e.g., hydrocarbons, oil as antifoam agents) can enhance
mass transfer rates to significantly higher levels than in water.

The enhancement was mainly due to an increase in the air/water
transfer rate, which is partially explained by the change in the
water surface tension (Morao et al., 1999; Quijano et al., 2009).

According to these observations, the influence of culture
medium composition on oxygen mass transfer has to be
considered. Moreover, a maximum decrease was recorded in the
relative oxygen saturation of ∼18% in fed-batch medium during
CO2 stripping. These results demand particular consideration
of solubility changes with shifts in gas composition and
temperature. Considering only the saturation O2 concentration
in water instead of determining the prevailing saturation
concentrations would lead to inaccuracies during specific OUR
calculations (Henzler and Kauling, 1993).

The application of the dynamic OTR as a soft-sensor for
calculating the OUR is demonstrated by the highly linear
relationship between OUR calculated by a global mass-balance
and OUR calculated by the model for a wide range. The
presented model enables real-time prediction of the OUR
without sophisticated off-gas measurements. The advantage of
this approach is that it is simply based on DO measurement,
knowledge of oxygen solubility properties in the medium,
and recording process temperatures, pressure and volumetric
inlet flow- rates of PA and CO2. The established model
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FIGURE 7 | (A) OUR combined with PCV prediction by on-line capacitance probe signal of all bioprocesses. (B) The performance of the metabolic sensor in run 12

predicts the metabolic shift occurring in the culture. (C) Metabolic profiles of all fed-batch runs of glutamine (Gln) and asparagine (Asn) (D) glutamate (Glu) and

aspartate (Asp) as a function of viable PCV. (E) The ratio of aspartate/glutamate (Asp/Glu) vs. viable PCV. (F) Alanine concentration (Ala) vs. the Asp/Glu ratio.

is in good agreement with the conventional technique. The
minor off-set due to the inlet gas flow temperature for
the mass-balance method was not determined, as it was
generally assumed to be 22◦C. More importantly, the generated
profiles were smooth and, even at temperature shifts, no great
disturbances were observed. Due to fluctuations from the off-
gas analyzer, the methods could not be compared for every
process run.

Overall, the established model with incorporated dynamic
kLa determination demonstrated high potential for online
monitoring of (specific) OURs during a cell culture bioprocess.

This concept can be realized for all aerobic bioprocesses.
However, in the field of microbial fermentation, where the kLa
values can be up to more than 10-times higher, the probe
response time used for kLa determination needs to be considered.

Moreover, the developed method has high potential in parallel
bioreactor systems since it only relies on physical parameters.
Therefore, once one bioreactor is characterized, the model may
be transferred to all equivalent ones. However, in small-scale
systems the experimental design may need to be adapted due
to diverging influence factors arising from difference in scales
or media.
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Application of Dynamic OUR for Cell
Monitoring
In principle, an estimation of the OURs provides broad
information on the overall process performance during the
process but does not report detailed information about cell
growth and physiology. The OUR is the direct product of the
specific consumed oxygen rate qO2 and the biomass (Wagner
et al., 2012). Conclusively, the prediction of biomass via oxygen
consumption should be possible if qO2 was constant over the
process progression.

Temperature changes impact cell growth and size, and this
applies to respiration as well (Moore et al., 1997; Goudar et al.,
2011). By presenting the OUR as a function of viable cell
concentration, no clear temperature dependency was observed
(see Figure 4A). Data from all bioprocesses were equally
distributed in a sigmoidal progression. At later process stages
no linear behavior was observed between the OUR and VCC.
After a switch in the cellularmetabolism, OURs seem to approach
a plateau, independently of increasing cell concentrations.
However, the cell physiology changed during the progression,
affecting the OUR but this was not accounted for by the model. A
minor temperature influence on qO2 was observed when plotted
against the growth rate,µ, of the viable cells. Cells seem to require
less oxygen at lower temperatures. Nevertheless, a dependency on
cell cycle and growth was ruled out.

Applying the model for accurately predicting viable cell
number has its limitations, especially during later process stages,
most likely due to changes in the cell size. In this study,
we showed that oxygen consumption is rather related to cell
volume than to cell count. Another study has also pointed
to this fact (Wagner et al., 2012). A segmented linear model
was established, able to cope with the metabolic shift occuring
during the process. Remarkably, the clear metabolic shift was
evident for all process runs despite massive variations within
the design space and the segmented linear model could cope
with it. The prediction error was calculated using a MAPEtraining
of 19% and MAPEtest of 14%, but due to the shallower slope
in the second segment, the PCV prediction was more prone
to error at higher cell volumes. This can be explained by
the fact that cell growth includes an increase in both cell
volume and number. Thus, deviations occur, particularly in
stationary and death phases, when cell lysis is followed by the
presence of cell fragments and increased aggregates (Lovrecz
and Gray, 1994). The shift in the metabolic state of the
cells led to roughly a quarter less oxygen consumption in
the second stage, which may be driven by a truncated TCA
cycle (Figure 8). Glutamine and other amino acids can have
alternative fates entering the citrate cycle to supply ATP and/or
NADPH. In a truncated cycle, less energy is produced and
less oxygen is consumed. The OUR soft-sensor allows the

FIGURE 8 | A simplified metabolic network of CHO-K1 cells. The detection of two metabolic states led to possible pathway assumptions in the TCA cycle and amino

acid metabolisms for product synthesis.
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viable cell volume to be predicted with reasonable accuracy.
The method represents a simple and economic solution for
bioprocess monitoring as no additional (off-gas) sensor systems
are required.

On-line Soft-Sensing of Cell Volumes Using
a Capacitance Probe
The on-line monitored permittivity signal during each
bioprocess was converted directly into a more meaningful
dimension, the viable PCV, using the correlation (cell)
factor predetermined with a linear regression. As a result,
a temperature-independent function was generated using
the conductivity signal for temperature correction, but no
metabolic transition was observed. The estimated vs. measured
values exhibit a normal distribution and, with respect to
accuracy, all states could be determined with an adequate
MAPE which is comparable to deviations in the two-segment
linear model predictions (Figure 6B). The trends for the test
data set were calculated with acceptable estimated errors: a
drift in the estimation was observed only in the stationary
and death phases. The time-resolved information obtained by
the soft-sensor could be linked to the OUR soft-sensor for
real-time identification of metabolic behavior in mammalian cell
culture processes.

OUR as a Metabolic Sensor
We assumed that varying process conditions (e.g., altered
temperature profiles and D-glucose concentrations) during all
bioprocesses may trigger different cellular responses with respect
to oxygen consumption. However, all cells tended to alter
their metabolic activity to a different state at a certain point,
regardless of whether they were cultured in a dynamic or
static process. In all fed-batch cultivations, we observed a clear
effect of Gln consumption on the excretion of ammonia, Ala
and Glu, as expected due to their direct connection to Gln
metabolism (Doverskog et al., 1997; Zhang et al., 2016). A clear
link was also evident between Asp and Glu (see Figure 7D).
Both amino acids could be linearly linked to viable PCV;
Glu increased constantly, whereas Asp was fleetly consumed.
Asn can be converted into Asp and then further into Glu,
followed by the building of alpha ketoglutarate. However, after
a certain threshold [1.4% (v/v) PCV] presumably caused by
a high glutamate concentration, the cells were assumed to be
pressured to break down Glu and build alpha ketoglutarate out
of pyruvate. Accordingly, Ala was produced and transported
out of the mitochondria (see Figures 7F, 8). This behavior
has been described in several publications (Altamirano et al.,
2001; Sellick et al., 2011; Duarte et al., 2014; Pereira et al.,
2018). Most interesting is the fact that this switch happened
at an Asp/Glu ratio of ∼2 (Figure 7E). We propose that,
at this threshold, the cells tend to by-pass the citrate cycle,
resulting in less oxygen consumption (see Figure 8). The results
indicate that Asp and Glu, in particular, need to be taken
into consideration to maintain the respiratory activity and
energy metabolism.

The combined technique presented here (capacitance and
OUR) will add great value for process characterization and allow

the development of control algorithms, especially to maintain
respiratory activity. The technique exemplifies a simple tool for
metabolic sensing. The metabolic status of the cultured cells
can be tracked in real-time. To the best of our knowledge,
real-time estimation of a metabolic transition in mammalian
cell culture processes has not been reported previously. Future
research in this field could include investigations of detailed
amino acid fluxes, as well as the dependence of product titer
on OURs.

CONCLUSION

We have demonstrated that simple bioreactor characterization
in terms of kLa coefficients and measurement of standard
parameters can provide broad information about the cells
cultured in this system. Compared to conventional off-gas
analyses, the dynamic kLa strategy was equally or better suited
to calculate OUR trends. Thus, the strategy is highly applicable
and easy to implement on multiple scales and in a wide
variety of processes, organisms, and cell lines. The generated
model allows for real-time visualization of OURs, enabling
enhanced understanding of growth characteristics and metabolic
reactions with varying process conditions. The presented soft-
sensors provide numerous insights: (i) a dynamic kLa model
needs to be considered in a varying process, (ii) OURs are
related more to cell volume than viable cell counts, and
(iii) the model cell line switches to another metabolic state
when the proportion of Asp to Glu drops in the chosen
process setting.

The OUR profile alone gives a first indication of the cellular
activity in a process and will add great value to process
development. Moreover, a combined soft-sensor with an on-
line capacitance measurement presents opportunities for more
advanced process optimization through real timemonitoring and
control of metabolic states.

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and/or the Supplementary Files.

AUTHOR CONTRIBUTIONS

WS and BS designed the experiments. MP performed the
experiments. MP and BS derived the models and analyzed the
data. MP and BS wrote the manuscript in consultation with WS
and GS.

FUNDING

The authors declare that this study received funding from
Bilfinger Industrietechnik Salzburg GmbH and The Austrian
Research Promotion Agency (FFG) (Competence Headquarters,
Grant Number 849725). Bilfinger Industrietechnik
Salzburg GmbH participated in the study design, data
collection and analysis and decision to publish. The

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 August 2019 | Volume 7 | Article 195

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Pappenreiter et al. Oxygen Uptake Rate Online Sensor

Austrian Research Promotion Agency (FFG) had no role
in study design, data collection and analysis, decision
to publish.

ACKNOWLEDGMENTS

We would like to thank Nataša Sarić and Markus Kneißl as
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NOMENCLATURE

a Specific interfacial area [m–1]
c∗ Maximum solubility in water at

equilibrium
[mol L–1]

cDO Temperature corrected actual
oxygen concentration

[mol L–1]

cL∗ Maximum solubility of oxygen in
the broth under prevailing
gas-phase composition,
temperature, and pressure

[mol L–1]

cM∗ Maximum oxygen solubility in
media

[mol L–1]

cO2 Actual oxygen concentration in the
broth

[mol L–1]

D Tank diameter m
di Impeller diameter m
DO Dissolved oxygen [%]
Gin/out Gas flow rate at real conditions

in/out of bioreactor
[mL min–1]

H Tank height m
kL Mass transfer coefficient [m s–1]
kLa Volumetric oxygen mass transfer

coefficient
[s–1]

MAPE Mean absolute percentage error [%]
N stirrer speed [s–1 or rpm]
OTR Oxygen transfer rate [mol L–1 d–1]
OUR Oxygen uptake rate [mol L–1 d–1]
pO2 Partial pressure of oxygen [Pa]
Q Gas flow rate [m3 s–1]
qO2 Specific oxygen uptake rate [mol cell–1 day–1]
R Gas constant [J mol–1 K–1]
T Temperature [◦C];[K]
TCC Total cell concentration [cells mL–1]
τP Response time [s]
vs Superficial gas velocity [m s–1]
VCC Viable cell concentration [cells mL–1]
VL Volume of the liquid in vessel [m3]
xtarget target value
xi value of sample
n number of samples
X Biomass concentration [g L–1]
yCO2 Molar fraction of CO2 [%]
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Application of the Bradford Assay for Cell Lysis
Quantification: Residual Protein Content in Cell Culture
Supernatants

Bernhard Sissolak,* Christian Zabik, Natasa Saric, Wolfgang Sommeregger,
Karola Vorauer‐Uhl, and Gerald Striedner

Frequently measured mammalian cell culture process indicators include
viability and total cell concentration (TCC). Cell lysis, an additional important
process characteristic that substantially contributes to the overall product purity
profiles, is often not addressed in detail. In the present study, an inexpensive
and simple application of the Bradford assay is developed to determine the
residual protein content (RPC) in cell culture supernatants. The reliability and
reproducibility of the method are tested in a long‐term study and compared
with lysis quantification via the DNA measurement. The results show that its
performance is more robust and accurate over time and the respective
concentration range. Additionally, both methods are used for cell lysis process
monitoring in a recombinant Chinese hamster ovary fed‐batch process. In the
presented process, by applying the established assay, the lysis rate kDL is
determined to be constant over time at 4.6 × 10−4 lysed cell concentration (LCC)
per TCC and time (LCC/TCC/h). In contrast, DNA data did not confirm the
constant lysis rate due to variations of the content per cell during cultivation.
Thus, information on the RPC can facilitate the determination of the optimal
harvest time point with respect to purity and in improving process
characterization.

1. Introduction

Total cell concentrations (TCCs) and viable
cell concentrations (VCCs) are typical
process performance indicators for mam-
malian bioprocesses. These, their time
derivatives, and their respective rates are
commonly used to describe the state of
bioprocesses. Viability is a commonly
derived key process indicator used to
illustrate the vitality status of cell culture
processes, but it is dependent on the
magnitude of the lysis rate.[1] However, cell
lysis and the amount of host cell proteins
(HCPs) in the culture broth are often not
determined during cultivation although
these variables significantly affect further
process steps.[2] Consequently, the amount
of living, dead, and lysed cells must be
considered to achieve a comprehensive
picture of the process.

The lysis of a mammalian cell is
defined as the loss of an intact membrane
and the release of the intracellular content.
Therefore, lysed cells cannot be directly

detected via cell counting methods. Thus, they are usually
indirectly measured through the detection of the released
internal constituents, such as DNA,[3,4] lactate dehydrogenase,[3]

or via the detection of cell debris.[10] The change in rheological
characteristics represents an additional opportunity to account
for cell lysis;[11,12] however, this is only applicable for microbial
systems or high cell density cell culture systems.

An additional lysis research opportunity involves the detec-
tion of HCPs in the supernatant.[13] Although the HCP content
is regarded as a critical quality attribute of the final product,[14]

the implementation of HCP as a routine process variable in
mammalian cell culture has not been reported to date.
Nevertheless, for integrated or continuous processes, monitor-
ing and control of HCP content could be of particular
importance,[15] such as in avoidance of fouling or blocking in
chromatography resins[16,17] during downstream operations.

Enzyme‐linked immunosorbent assay (ELISA) is a common
method used to quantitatively determine the HCP content of a
given sample though it lacks coverage of the complete spectrum
of HCPs and is likely to miss weak or nonimmunogenic
species.[18,19] Moreover, this procedure is costly and can result

© 2019 The Authors. Biotechnology Journal Published by WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim. This is an open access article
under the terms of the Creative Commons Attribution‐NonCommercial
License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for
commercial purposes.

B. Sissolak, Prof. K. Vorauer‐Uhl, Prof. G. Striedner
Department of Biotechnology
University of Natural Resources and Life Sciences (BOKU)
Muthgasse 18, A‐1190
Vienna, Austria
E-mail: bernhard.sissolak@boku.ac.at

C. Zabik, N. Saric, W. Sommeregger
Research and Development
Bilfinger Industrietechnik Salzburg GmbH
Mooslackengasse 17, A‐1190
Vienna, Austria

DOI: 10.1002/biot.201800714

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/biot.201800714.

Biotechnol. J. 2019, 14, 1800714 1800714 (1 of 9) © 2019 The Authors. Biotechnology Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

https://doi.org/10.1002/biot.201800714


in a huge work, particularly when many samples need to be
analyzed. The application of ELISA for the routine tracking of
HCP generation during a bioprocess to uncover cell lysis can be
regarded as not economically feasible. This is also true for
1D‐ or 2D‐polyacrylamide gel electrophoresis or any type of
mass spectrometry‐based methods.[14]

In the present work, we describe a simple and inexpensive
Bradford assay method to determine the HCP content in culture
supernatants, which is referred to as residual protein content
(RPC). The present study provides critical considerations regard-
ing the reliability and precision of the developed RPC method in
comparison to the standard DNA technique to estimate cell lysis.
Furthermore, we demonstrate that RPC data allows the identifica-
tion of the process state and provides additional information for
the understanding and modeling of the process.

2. Experimental Section

2.1. Fed‐Batch Process

For the fed‐batch model process, a recombinant monoclonal
Chinese hamster ovary (CHO) cell line (The Antibody Lab GmbH,
Austria) producing an anti‐tumor necrosis factor‐α (TNF‐α)
immunoglobulin G1 (IgG1) was used. The cell line was generated
by applying the Rosa26 bacterial artificial chromosome expression
strategy[20] to a serum‐free adapted host cell line derived from
CHO‐K1 (American Type Culture Collection [ATCC] CCL‐61). A
working cell bank, where each vial contained 5× 106 cells, served
as the starting material for all experiments. Cells were thawed in
chemically defined culture medium (Dynamis AGT, A26175;
Thermo Fisher Scientific, USA) supplemented with 8mM

L‐glutamine (25030081; Sigma‐Aldrich, Germany), 3mL L−1

phenol red solution (RNBD642; Sigma‐Aldrich, Germany),
1:1000 anti‐clumping agent (0010057DG; Thermo Fisher Scien-
tific), and 1mgmL−1 G418 (G8168; Sigma‐Aldrich, Germany).

Subculturing was performed three times (every third or fourth
day) using the aforementioned media without any anti‐clumping
agent and G418. Fed‐batch experiments were performed in shake
flasks (#431147; Corning, USA) with a starting volume of 300mL
and an initial cell density of 2.5× 105 cells per mL. The medium
for the batch was additionally supplemented with 0.1% v/v
antifoam C (A8011; Sigma‐Aldrich, Germany) to mimic the
typical large‐scale cultivation conditions. A 2D (glucose and
process temperature), three‐stage, factorial design of experiments
was used to capture the design space. To the feed medium, 0.1%
antifoam (CHO CD EfficientFeed A AGT Kit, A1442002; Thermo
Fisher Scientific) was added alongwith 10 g L−1, 20 g L−1, or
30 g L−1 glucose (G7021; Sigma‐Aldrich, Germany). Pulse feeding
started at day 3 and lasted until day 13, which involved a linear
pulsed feed rate with a total added volume of 33% v/v with respect
to the end volume. The process starting temperature of 37 °C was
changed at day 4 to 31 °C or 34 °C, or kept constant at 37 °C.
Sampling was performed once per day, and the experiments were
terminated after cell viability dropped below 70%. All cultivations
were conducted in a humidified CO2 incubator (Heracell VIOs
160i; Thermo Fisher Scientific) with 5% v/v CO2 in ambient air
and at 200 rpm on an orbital shaker (MaxQ 2000 CO2 Plus;
Thermo Fisher Scientific). For the mock control experiment, the
serum‐free host cell line was cultivated at a constant temperature

of 37 °C using the feed containing an additional 30 g L−1 glucose.
Further fed‐batch conditions were as previously described.

All cell culture experiments were performed in duplicate.

2.2. Cell Cycle Staining

Two samples of 1.5 × 106 cells from the cell broth were taken
and centrifuged (10min, 180× g); and the pellets were washed
two times with 1.0 mL of phosphate‐buffered saline (PBS)
(9150.1; Roth, Germany). The remaining cell pellet was
dissolved in 1.0 mL of ice‐cold 70% high‐purity ethanol, added
dropwise. The fixed cells were stored at 4 °C.

Prior to analysis, the samples were centrifuged and washed
twice. Then 1.0mL of Tris buffer (T3253; Sigma‐Aldrich,
Germany) was added dropwise. In the last step, cells were
resuspended in 500 µL of Tris, including 1 µgmL−1 4′,6‐
diamidino‐2‐phenylindole (DAPI) (10236276001; Sigma‐
Aldrich, Germany), incubated for 30min, and subsequently
measured using the Gallios Flow Cytometer (B43620; Beckman
Coulter, USA) (FL9, number of events is equal to 10 000). The
percentages of cells in the G1/G0 and G2/M phases were
determined by calculating the respective peak areas.

2.3. Cell Lysate Generation

For the cell lysate generation, a fed‐batch process with the
producing cell line was carried out as described in the previous
section. The process temperature was set to 34 °C, and the feed
with an additional 20 g L−1 glucose was used. In the stationary
phase (day 12), a sample was drawn for lysate generation. A
total of 1.5 × 106 cells were washed with PBS and resuspended
in 0.7 mL radioimmunoprecipitation assay (RIPA) lysis buffer
(20‐188; Merck, Germany) supplemented with an ethylenedia-
minetetraacetic acid (EDTA)‐free protease inhibitor (COED-
TAF‐RO Roche; Sigma‐Aldrich, Germany). The solution was
then incubated for 1 h at 4 °C, centrifuged at 8000× g for
10min; the supernatant was stored overnight at 4 °C.

2.4. Antibody Titer Quantification

The antibody titer was determined via bio‐layer interferometry (BLI)
using the Octet system (Octet QK; Pall ForteBio, USA) with protein
A tips (18‐5010; Pall ForteBio). For sample preparation, the culture
broth was centrifuged at 180× g for 10min at room temperature.
The supernatant was stored at −20 °C until measurement. All
dilutions were performed in PBS with 1% Tween 20 (P2287;
Sigma‐Aldrich, Germany). The binding to protein A was measured
at 30 °C, and the resulting binding rate was calculated using Octet
data analysis software 6.4 (Octet QK; Pall ForteBio). Sample
readings were quantified using an IgG calibration curve in
concentrations ranging from 10.0 µgmL−1 to 50.0 µgmL−1.

2.5. Residual Protein Content

The RPC in the bioprocess supernatants of CHO cells was
determined using the Bradford assay (B6916; Bio‐Rad Labora-
tories, USA) and the absorbance of Coomassie brilliant blue G
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(CBB) was measured at 595 nm. Sample preparation was
performed as previously described for the titer quantification.
Measurement was performed using a plate reader (Infinite
M1000; Tecan, Switzerland) in 96‐well plates (P7366; Nunc,
USA). Bovine serum albumin (BSA) (5000002; Bio‐Rad
Laboratories) and IgG (Lot‐No. 046M4855V, 12511; Sigma‐
Aldrich, USA) were measured in a concentration range of 81.0–
520.0 µgmL−1 and 40.6–325.0 µgmL−1, respectively, along with
the analysis of each unknown samples.

2.6. DNA Assay

Double‐stranded DNA (dsDNA) concentration in the fermenta-
tion supernatants of CHO cells was determined by fluorescence
measurements using Picogreen dsDNA reagent (P7581; Ther-
mo Fisher Scientific). The dye was excited at 480 nm, and
emissions were measured at 520 nm. All dilutions were
performed in Tris‐EDTA buffer (10mM Tris‐HCl, 1 mM EDTA,
pH 7.5). Two different DNA standards were used: Lambda DNA
standard (P7589; Thermo Fisher Scientific) and Calf Thymus
DNA standard (1702482; Bio‐Rad Laboratories). A calibration
curve was recorded for concentrations ranging from 13.13 ng
mL−1 to 1680 ngmL−1. Measurements were performed using a
plate reader (Infinite M1000; Tecan) in a 96‐well black bottom
plate (NNC#237108; Thermo Fisher Scientific).

2.7. Statistics

Statistical analyses were performed using SigmaPlot13.0 software
(Systat Software Inc., USA). Residual distributions were tested on
normality (Shapiro–Wilk test) and on constant variance (Levene’s
median test). The confidence bands, prediction bands, and
variances were calculated using the delta method.[21]

The mean deviation of the parameters k and d was calculated
according to Equation (1):

x x

x
mean deviation % 100

target actual

target

( ) =
−

× (1)

3. Results and Discussion

3.1. RPC: Method Development and Evaluation

A recombinant CHO‐K1 cell line consists of roughly 70 wt%
protein,[22] which is released when a cell undergoes lysis. For
the measurement of the RPC in cell culture supernatants of
recombinant cell lines cultivated in serum‐free media, the
secreted recombinant product must be considered. It is well
known that the CBB dye interferes differently depending on the
protein composition.[23] In the present study, we used a set of
experiments to elucidate this interference.

The cell lysate from the producer cell line was obtained by
incubating in the RIPA lysis buffer; the RPC was determined
using the Bradford assay. The cell lysate contained 676 µgmL−1

protein on average. This corresponds to 315± 16 pg protein per
cell, which is fairly a reasonable value, in the view of the
reported values for mammalian cells such as 180 pg per cell for
HEK293T,[24] 246 pg per cell for a producing CHO‐K1 cell
line,[22] and 410 pg per cell for Madin–Darby canine kidney
cells.[23] In a recent study even >500 pg of protein per cell was
reported for a CHO cell line, which was cell size‐dependent.[25]
The first and the last study used the Lowry assay, the second
measured the amino acid composition of a cell pellet, and the
third used a CBB dye to determine the protein content.

However, the resulting absorbance of dilutions from the
lysate resulted in a linear function matching the slope of the
BSA standard curve (Figure 1A). As expected, the standard
curve of the reference IgG and the polyclonal IgG standard were
different from the BSA function.

Linear regression was obtained for both standards. Residuals
were normally distributed and followed homoscedastic beha-
vior. The BSA calibration range was from 81 µgmL−1 to
520 µgmL−1, whereas the calibration from IgG ranged from
40 µgmL−1 to 325 µgmL−1. The slope of the linear function
represents the extinction coefficients ε of BSA and IgG.
Accordingly, considering the resulting path length in the well
(8.4 mm), a ε of 1.4 AUmg−1 mL−1 cm−1 and 1.7 AUmg−1

mL−1 cm−1 for IgG and BSA, respectively, was determined.

Figure 1. A) Absorbance of the BSA standard (●) and polyclonal IgG standard (▼) as a function of the respective concentration (n= 10). Measured
triplicates of the total protein content of a cell lysate (○) and the anti‐TNF‐α reference standard (▽). Linear function is depicted. B) Linear regression
of the calculated BSA value versus the theoretical values of different spike‐in IgG/BSA mixtures (n= 7).
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The binding of CBB to proteins obeys the Lambert–Beer
law.[26] Accordingly, the absorbance A of a sample is related to
its concentration and the path length. As more species are
present, the total absorbance A can be described as a linear
function of each individual absorbance Ai (Equation (2)):

AU AU AU AUtotal RPC IgG Blank= + + (2)

This implies that the absorbance of the residual protein
(AURPC) content should be quantifiable by subtracting the
medium (AUBlank) and the IgG blank (AUIgG), derived from the
BLI measurements and recalculated using the extinction factor,
from the total absorbance value. The residual protein concen-
tration is then subsequently calculated via the BSA calibration.

To support this relationship, different sets of BSA/IgG
mixtures were measured (Figure 1B). The experiment con-
tained 45 measurements in total. The IgG concentration was set
from 40 µgmL−1 to 218 µgmL−1, and 81 µgmL−1 to 280 µg
mL−1 for BSA. The absorbance values ranged from 0.15 AU to
0.62 AU, respectively. The BSA concentration was recalculated
after subtraction of the resulting absorbance value of a given
IgG concentration from the total absorbance (calibrations used
are depicted in Figure 2A). The slope of calculated and added
concentrations of BSA was 1.04, representing a good recovery of
the added BSA. The coefficient of variation (CV) had an average
of 8%, an initial indicator for the error of this analysis.

Matrix effects were not observed. Different concentrations of
BSA, from 65 µgmL−1 to 130 µgmL−1, were spiked into two
host cell culture supernatants, from the beginning of fed‐batch
and from the harvest time point, respectively. The recovery was
94.6± 9.2% (n= 18).

Furthermore, the media and feed used exhibited the same
absorbance value as the PBS buffer. As expected, smaller
peptide molecules and single amino acids did not have any
impact on the CBB absorbance.[23]

The experiments conducted demonstrated that the total
absorbance can be separated into two absorbance attributes,
which are linearly related (Equation (2)). As a result, the
absorbance of a known substance, calculated via its extinction
coefficient, can be subtracted from the total absorbance to
obtain the concentration of remaining constituents.

3.2. RPC: Long‐Term Assessment

The consistency of this method was tested in a long‐term study
of over two years by three different operators. For each assay,
a set of standards was measured and a linear regression was
performed. The limit of quantitation (LOQ) and limit
of detection (LOD) were calculated using the standard devia-
tions of the blank responses and were 70.9 µgmL−1 and
23.4 µgmL−1, respectively.

Figure 2. A) Obtained mean deviation from the slope k, B) the intercept d derived from the BSA standard measurements, and C) the mean deviation
to the target concentration at 0.45 AU, calculated according to Equation (3) during a time course of 690 days. The solid line represents the average
value. The gray dashed line and the dashed dot line represent 95.4% and 99.7% of the sample population (n= 10), respectively. The mark “a”
indicates where the operator had changed. D) Maximal error as a function of the measured absorbance, which could be obtained through the
deviations of k and d.
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The mean deviations (see Equation (1)) of the resulting
values of the slope k and intercept d were monitored throughout
the study (Figure 2A,B). The first ten values were taken to
calculate the average and standard deviation of those para-
meters. If k or d was outside of the value x 3σ̅± , 99.7% of the
sample population was within, the assay was discarded.
Consequently, the method was stable and robust over the time
course. No obvious trends occurred that could indicate any
altering effects of the standard or the CBB dye. Also, the change
in the operator had no effect on the analysis performance.

While k resulted in low variation, d exhibited larger
deviations; however, considering the absolute values it did not
affect the measurements to a great extent. Therefore, the
possible impact on the determination of the variances of k and d
was evaluated. This was done by the addition of the absolute
deviation of k and d to the linear function and then calculating
the concentration for different absorbance values along the
calibration range (Equation (3)). The resulting value was then
substituted into Equation (1) to assess the mean deviation
compared to the target concentration xtarget:

x x
y d d

k k
target

target
( )+ ∆ =

− ( +∆ )

+ ∆
(3)

For the limits of the chart plots, the first ten assays were
again taken to gather a statistically meaningful population for
determining the average and standard deviation. The resulting
values can be considered as having maximal possible error that
could occur if the stated calibration was invalid (Figure 2C,D).

For most of the calibration range, the error was below 20%
(Figure 2D). The intercept d affects the determination in the
low‐concentration region though the maximal possible error at
higher absorbance values is dependent on the slope k. At low
concentrations, higher variation had to be accepted. Therefore,
when a larger quantity of protein is in the supernatant,
particularly at a later stage of a process, the method is more
accurate. At the beginning of a bioprocess or during the batch
phase, RPC results with higher variances could be estimated.

Error propagation within this methodology can be obviated,
since the antibody titer quantification via the BLI is a robust and
reliable procedure.[27,28] The standard prediction error of this
measurement was in the range of ±9.096 µg (equivalent to
±0.003 AU in the RPC method). It was apparent that the impact
of the variance of antibody determination was very small and
thus did not have a significant influence on RPC estimation.

3.3. Picogreen Method Evaluation and Long‐Term Assessment

As a comparative method for cell lysis determination, DNA was
quantified using the Picogreen assay.[3] The calibration range
was established to be 52.5 ngmL−1 to 840 ngmL−1 (Figure 3 A).
Both the ordinate and the x‐axis were logarithmized to pass the
constant variance and normal distribution test and, evidently, to
establish a linear regression (n= 10). The LOD for this method
was 9.4 ngmL−1 and LOQ was 28.4 ngmL−1.

Similar to the RPC method, mean deviations (see Equation
(1)) from the slope k and intercept d were monitored over a time

course of over 690 days (Figure 3B,C); both exhibited variation
under 20%. The change in the operator had a greater impact on
the parameter distribution, indicated by “a”; as such, a new
calibration was necessary.

The impact on variations of k and d on the evaluation of the
DNA concentration was recalculated (Equations (1) and (3)).
Observation six, indicated by an arrow, was regarded as an
outlier (Figure 3D).

With increasing fluorescence, maximal error decreases and
will be less than 30%. DNA quantification using the Picogreen
assay is highly sensitive[29] and thus susceptible to errors.
Consequently, it is unremarkable that such deviations occurred
during this long‐term assessment. Data obtained from blank
measurements substantiated these observations due to the fact
that the CV was approximately 32%, which is a reasonable level
of background variation.

Matrix and dilution effects were also occasionally apparent.
DNA spiked into a mock supernatant demonstrated that the
spiked DNA amount was more accurately estimated at a higher
dilution factor. For the last five dilution steps, a recovery rate of
93.4± 13.4% was achieved. In contrast, DNA spiked into fresh
media was not heavily influenced by the dilution. The achieved
recovery rate was 110.1± 13.9%.

3.4. RPC and DNA as a Cell Lysis Marker

To compare both methods, the concentration range was
transferred into the lysed cells per mL by assuming that a cell
contained 315 pg of protein and 5.60 pg of DNA.[30] The
working ranges for both methods were different. The RPC
method covered a range from 2.6 × 105 to 1.7 × 106 lysed cells
per mL, whereas the DNA method spanned a broader range
from 9.4 × 103 to 1.5 × 105 lysed cells per mL. While DNA is
more sensitive, RPC offers the advantage of being more
accurate. The RPC showed a reasonable error level of below
20% over nearly the entire working range. Furthermore, the
RPC longtime robustness, without repeated calibration effort,
makes this tool useful for both research and industrial
applications, as no additional calibration was required.

Furthermore, the characteristics of both methods could be
easily monitored. The mean deviations of slope k and intercept
d are practical and reasonable indicators.

3.5. Improved Process Characterization Based on Cell Lysis
Monitoring

The developed RPC and DNA method was applied during a
CHO shake flask study, where a 32 full factorial experimental
design was conducted. It was assumed that variations in the cell
size throughout the course of the fed‐batch cultivation had no
impact on the protein content per cell. The two independent
parameters included the glucose concentration in the feed
phase and the process temperature. In total, 18 experiments
were conducted and 180 samples measured. Increasing the
glucose content in the feed had no influence on the VCC,
HCPs, or the product titer. Therefore, the complete data set for
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each particular temperature profile was summed up and
averaged (Figure 4). The duration of the process was controlled
via the viability of the cell culture (stopped at <70%).

Depending on the temperature, the fed‐batch processes
reached TCCs of between 1.2 × 107 cells per mL and
2.5 × 107 cells per mL, with product titers ranging from
400 µgmL−1 to 600 µgmL−1. Specific productivity qp decreased
over time and achieved maximum values of approximately
12 pg cell−1 d−1. The processes at 31 °C lasted 1.6‐ and 1.3‐fold
longer compared to the experiments at 37 °C and 34 °C,
respectively, until the stop criterion (viability <70%) was
reached (Figure 4A,B). At lower temperatures, more cells were
in the G1/G0 phase and the growth slowed or even stopped
(Figure 4C,D), which is why temperature shifts are widely used
for proliferation control.[31]

Apparently, cell lysis accounted for a maximum of 8.8% of
the total produced biomass in the system (Figure 5A), whereas
the HCP content reached values up to 500 µgmL−1, corre-
sponding to 50% of total protein in the supernatant for this
model process. Despite this small fraction of lysed biomass, the
resulting impurities were rather substantial.

Since dead and living cells can undergo cell lysis, the ITCD
was calculated (Equation (4)), which we defined as

tITCD TCC d
t

t

0

end

∫= (4)

This was plotted against the RPC (Figure 5B). The fed‐batch
process exhibited a constant specific protein release rate of
1.5 × 10−7 µg/Xtotal/h, which corresponds to a constant lysis rate

Figure 3. A) DNA concentration as a function of RFU. The first calibration set is depicted (n= 10). B) The mean deviation of the slope k, C) intercept
d, and D) the mean deviation to the target concentration at 3.8 log RFU, calculated according to Equation (3), over a time course of 690 days. The
mark “a” indicates when the operator changed and when a new calibration was performed. The solid line represents the average value. The gray
dashed line and the dashed dot line represent 95.4% and 99.7% of the sample population (n= 10), respectively. E) The maximal error for the first
calibration as a function of the measured fluorescence, which could be obtained through the deviations of k and d. RFU, relative fluorescence units.
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kDL of 4.6 × 10−4 lysed cell concentration (LCC)/TCC/h, and is
subsequently temperature‐independent. It is proposed that the
majority of lysis in this process is derived from dead cells since
cell damage in bioprocesses is largely bubble‐associated.[32]

The amount of DNA in cultivations at 31 °C was lower than
those in processes at 34 °C and 37 °C cultivation temperature
(Figure 5C). The two linear regressions exhibited different
slopes, k34+ 37 °C of 4.8 pg per cell and k31 °C of 2.0 pg per cell, for
the combined data set of 37 °C and 34 °C and for the process at
31 °C, respectively. In the process at 31 °C, substantially more
cells were in the G1/G0 phase[31] (Figure 3C,D). Since the cells
in the G1/G0 phase (N) have a different amount of DNA
compared to the cells in the S G2/M phase (N to 2N), the lysis
of a G1/G0 cell releases a lower amount of DNA into the
supernatant than an S G2/M cell. In this respect, it was
remarkable that k2 was approximately one half of k1. However,
the derived amount of DNA per cell was lower than expected.[30]

Therefore, DNA would be inappropriate for cell lysis estimation
in the type of experimental setup used in the present study.

3.6. RPC as a Key Process Indicator

In the best case, the cell culture supernatant should exclusively
contain the target protein. This would provide the best starting
conditions for ensuring high purification performance.

Conventionally, viability or a death marker protein is used as a
performance indicator and harvest criterion.[33] However, from the
downstream perspective, cell viability is only relevant when the
amount of RPC and DNA increases, which only occurs during cell
lysis. This could also be of significant relevance for the yield,
longevity, and overall performance of the subsequent protein
purification strategies.[2,16] In general, reducing the soluble impurity
level can simplify early‐stage downstream processing.[34] It is known
that certain HCP species affect the downstream process more than
others. HCP constituents can associate with the monoclonal
antibody (mAb) product or they might even co‐elute due to
noncharacteristic binding to the chromatography resin. Among
others, clusterin, actin, or nidogen‐1, are some of the most
prominent proteins interacting with mAbs. Most of these sticky
proteins are intracellular proteins.[17] Hence, cell lysis leads to an
increased level of these proteins in the supernatant, which increases
the probability of their association to the mAb and their sticking to
the chromatography resins. Owing to the wash and cleaning in
place (CIP) procedures of the protein A columns, HCP precipitates
and deposits on the resin, which contributes to fouling. Moreover
the diversity of HCP species also changes over the lifetime of the
protein A resin, which can lead to clearance problems in the
subsequent purification steps.[35]

In terms of purity, the ratio of RPC to mAb, and also other
overexpressed active pharmaceutical ingredients, could be used to
identify an optimal and a consistent stop criterion for a cell culture

Figure 4. A) The absolute (37°C▲, 34°C△, and 31°C ) and VCC (37°C , 34°C and 31°C ) amount over the time course of fed‐batch processes
performed at different temperatures. B) Total cell amount (Xtotal) ,viable cell amount (Xv) , and viability trend of the process at 31°C. The time
period where the change in the viable biomass over time was zero is marked with an arrow. C) Total amount of cells remaining in the G2/M phase at
37°C , 34°C , and 31°C . D) Percentage of cells in G1/G0 and G2/M phases over the time course for the fed‐batch process at 31°C (measured
by flow cytometry). The time point of the temperature shift is also depicted.
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process. Although the fed‐batches were all harvested with similar
viability, the supernatant quality differed (Figure 5D). The process
using the lowest temperature exhibited the worst ratio of impurities
to the target protein, and could not accomplish similar ratios to the
other two processes. The results clearly demonstrate that the RPC/
mAb ratio could be an alternative process indicator for CHO cell
cultures. It can give an appropriate impression of the impurity level
in the supernatant. However, to understand the dynamics and the
complexity of HCPs, a qualitative analysis must be further
applied.[15,19,36]

4. Conclusions

Cell lysis is an important parameter to correctly characterize
bioprocesses. Lysed cells have a substantial impact on the
upstream and downstream performance. Information regard-
ing the RPC is beneficial for establishing and maintaining a
consistent process performance. Notably, RPC determination
adds great value for further improvement to integrated
bioprocesses as well as to the development of process models
for process control purposes.

One particularly important aspect is that a producing CHO
cell consists largely of proteins (>70%), whereas DNA remains
a minority (1.4%). Therefore, changes to the protein spectrum
will not have a great impact on the overall protein content, since
the majority of the proteins are necessary for cell maintenance

and protein production.[37] Indeed, HCP production can be very
similar throughout the different growth phases.[1] We showed
that the DNA content subsequently depends on the phase of the
cell cycle. A cell in the S or G2/M phase contains more DNA
than a cell in the G1 or G0 phase. Notably, the amount of cells
at a certain cell stage will differ depending on the process
conditions.

With this established methodology, the user has a very
precise, fairly accurate, and robust tool for depicting the state of
a cell culture bioprocess, apart from relying only on the viability
of a cell population. The presented assay could be implemented
as a high‐throughput technique, as it can be performed in
multiwell plate format and thus the use of pipetting robots may
also be feasible. Furthermore, the method described in this
study does not include light‐sensitive or time‐dependent steps;
it is easy to implement and cost effective, and thus it could be
applied to arbitrarily large experimental settings. The generated
data are most suitable for establishing soft sensors and process
models. Moreover, RPC[14] can now be monitored inexpensively
and easily throughout the entire process, which makes it an
interesting approach also for continuous processing.
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Abstract
Recombinant monoclonal antibodies are predominantly produced in mammalian cell culture bioprocesses. Post-translational 
modifications affect the micro-heterogeneity of the product and thereby influence important quality attributes, such as sta-
bility, solubility, pharmacodynamics and pharmacokinetics. The analysis of the surface charge distribution of monoclonal 
antibodies provides aggregated information about these modifications. In this work, we established a direct injection pH 
gradient cation exchange chromatography method, which determines charge heterogeneity from cell culture supernatant 
without any purification steps. This tool was further applied to monitor processes that were performed under certain pro-
cess conditions. Concretely, we were able to provide insights into charge variant formation during a fed-batch process of a 
Chinese hamster ovary cell culture, in turn producing a monoclonal antibody under varying temperatures and glucose feed 
strategies. Glucose concentration impacted the total emergence of acidic variants, whereas the variation of basic species was 
mainly dependent on process temperature. The formation rates of acidic species were described with a second-order reaction, 
where a temperature increase favored the conversion. This platform method will aid as a sophisticated optimization tool for 
mammalian cell culture processes. It provides a quality fingerprint for the produced mAb, which can be tested, compared to 
the desired target and confirmed early in the process chain.

Keywords  Product quality · Recombinant mAbs · Charge heterogeneity determination · Mammalian cell culture · CHO

Introduction

Recombinantly produced monoclonal antibodies (mAbs), 
as well as biosimilars, are key products in today’s pharma-
ceutical industry [1, 2]. Post-translational product modi-
fications induced by chemical and enzymatical intra- and 
extracellular mechanisms during the production process lead 
to micro-heterogeneity of mAbs, in turn affecting product 
characteristics (e.g., efficacy, safety, pharmacodynamics 
and pharmacokinetics) [3]. The recombinant cell line, the 
culture media and the process settings affect these quality 

attributes [4, 5]. During process development, it is important 
to ensure a reproducible, distinct and preferably homogenous 
pattern of the product. For the establishment of biosimilars, 
it is important to match the characteristics of the originator 
product [6]. The effects of various extra- and intracellular 
influences on different aspects of product quality have been 
evaluated in great detail. For instance, N-glycosylation is 
by far the best-studied quality attribute and there are several 
strategies available for glycosylation control [7].

One additional important measure of mAb heterogeneity 
is the distribution of surface charge variants. Due to numer-
ous modifications, the net surface charge of mAbs can be 
altered [8–11]. Charge species with a lower isoelectric point 
(pI) than the main fraction of the product are defined as 
acidic variants and generated by sialylation, deamidation of 
asparagine and glutamine, glycation and other mechanisms. 
Glycation, for instance, is a non-enzymatic reaction where a 
reducing sugar molecule, most commonly glucose, is cova-
lently bound to a reactive amino group [12]. Basic variants 
are defined as species with a higher pI than the main fraction 
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and generated by incomplete C-terminal lysine clipping of 
the heavy chains, as well as by fragmentation and aggrega-
tion [13]. Several studies indicate that mAb variants can 
lead to varying biological responses [14–16]. For instance, 
it was shown that the basic variants exhibited an increased 
binding to the FC and the neonatal receptor, indicating an 
increased half-life [15]. Another study reported that only 
a few specific variants of the tested mAb had a statistical 
relevant impact on the cell proliferation assay [10]. Hence, 
to know and understand the mechanism behind the charge 
heterogeneity is of particular importance.

Common analytical methods for the determination of 
charge heterogeneities of mAbs are capillary isoelectric 
focusing (cIEF) and ion exchange chromatography (IEX) 
[17]. Both methods are widely used in various applications 
[18], but IEX methods, using a salt gradient elution, are 
recognized as the gold standard and routinely in use [19–22]. 
The major limitation of IEX is when using a salt buffer sys-
tem to coerce the user to adapt it for every new kind of 
mAb. However, the use of pH gradients was shown to be 
product-independent [23] and recently, a cation exchange 
chromatography (CEX) method with a linear pH gradient for 
the determination of charge heterogeneity of mAbs was pub-
lished [24]. This technique was shown to be robust, exhibit 
a high resolution [25], result in similar precisions compared 
to imaged cIEF [26] and be scalable for semi-preparative 
purposes [14, 15].

Monitoring and controlling of product quality are 
required for the whole production chain [27]. The success-
ful application of process analytical technology (PAT) and 
quality by control (QbC) to bioprocesses [28] requires reli-
able and unbiased product quality data over the time course 
of a fermentation process. Samples taken from crude cul-
ture supernatants should be analyzable with a minimum of 
manipulation. In this respect, pre-purification of relevant 
samples would possibly falsify the results [29–31]. Moreo-
ver, the avoidance of purification steps reduces the workload, 
while the method becomes more applicable as a process-
monitoring tool and allows for decision making early in the 
process chain.

In this work, we aimed to adjust the method developed 
by Lingg et al. [24] for the measurement of charge het-
erogeneity directly from cell culture supernatants without 
prior purification or additional sample manipulation. This 
approach offers the possibility to assess any quality changes 
already in the early stages of cell line, media and process 
development. Eventually, the derived data enable advanced 
process characterization and monitoring. In the first part of 
this manuscript, we explain the applicability of CEX sep-
aration for the analysis of crude culture supernatants and 
evaluate the influence of matrix effects. In the following, it 
is used as a process-monitoring tool for a model antibody, 
expressed in Chinese hamster ovary (CHO) cells, within an 

experimental setting, while varying glucose concentration in 
the feed media and cultivation temperature. Process relevant 
samples were analyzed by CEX to study the impact of these 
variations on mAb charge heterogeneity.

Materials and methods

Fed‑batch experiments

A recombinant CHO monoclonal cell line, generated by the 
Rosa26 bacterial artificial chromosome expression strategy 
[32], producing an antitumor necrosis factor (TNF) alpha 
IgG1, was used (Antibody Lab GmbH, Austria). The cell 
line originated from the host cell CHO-K1 (ATCC CCL-
61), which was serum-free adapted for prior use. A working 
cell bank of the recombinant cell line with 5 × 106 cells per 
vial was used as the starting material for all experiments. 
The cells were thawed in chemically defined culture medium 
(Dynamis AGT, A26175, Thermo Fisher Scientific, USA) 
supplemented with 8 mM l-glutamine (25030081, Sigma 
Aldrich, Germany), 3 mL/L phenol red solution (RNBD642, 
Sigma Aldrich, Germany), 1:1000 anti-clumping agent 
(0010057DG, Thermo Fisher Scientific, USA) and 1 mg/
mL G418 (10131027, Thermo Fisher Scientific, USA).

The culture was subsequently passaged three times (every 
3–4 days) in the above-mentioned media without G418 and 
anti-clumping agent and used as the starting material for 
the inoculation of the batch with a starting cell density of 
2.5 × 105 cells/mL. The fed-batch cultivations were per-
formed in shake flask (#431147, Corning, USA) with a 
starting volume of 300 mL. As batch medium, the culture 
medium was additionally supplemented with 0.1% (v/v) 
Antifoam C (A8011, Sigma Aldrich, Germany) to repre-
sent typical large-scale cultivation conditions. Within the 
experimental setup, the parameters of temperature and glu-
cose addition during the feed phase were changed. In this 
study, the feed (CHO CD EfficientFeed™ A AGT™ Kit, 
A1442002, Thermo Fischer Scientific, USA) was supple-
mented with 0.1% antifoam as well as additional 10, 20 or 
30 g/L glucose, which will be referred to as Feed 1, Feed 2 
and Feed 3, respectively. The pulse feeding started at day 3 
and lasted until day 13. A linear feed rate was carried out 
with a total added feed volume of 33 vol% (v/v) with respect 
to the end volume. The process temperatures were changed 
at day 4–31 °C or 34 °C or remained constant at 37 °C.

An 11 mL sample was drawn each day for several offline 
analyses. The cultivations were terminated when the viabil-
ity dropped below a threshold of 70%. All cultivations were 
conducted in a humidified CO2 incubator (Heracell™ VIOs 
160i, Thermo Scientific, USA) at 5% (v/v) CO2 in ambient 
air, at the temperature defined in the experimental design 
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with an orbital shaker (MaxQ 2000 CO2 Plus, Thermo Sci-
entific, USA) at 200 rpm.

For the mock control fed-batch bioprocess, the host cell 
line was cultivated at a constant 37 °C with Feed 3 (+ 30 g/L 
glucose). The fed-batch was performed applying the same 
settings as mentioned above.

All experiments were carried out in duplicates

For the LC–MS and the boronate affinity chromatography 
analysis, samples from a stirred tank reactor (V = 15 L) were 
used. The same procedure, cell line and parameters as stated 
above were utilized.

Analytics

The total cell concentration (TCC) was determined by count-
ing the cell nuclei using the particle counter Z2 (Beckman 
Coulter, USA). Therefore, an aliquot of the cell suspension 
was centrifuged for 10 min at 200g at room temperature. The 
cell pellet was resuspended in a 0.1 M citric acid monohy-
drate (C1909, Merck, Germany) and 2% (v/v) Trition X-100 
(Merck, Germany) buffer. A minimum of 1 h later, an aliquot 
of the lysate was diluted with 9 mL of a 0.9% NaCl solution 
and measured.

Viability was measured by the trypan blue (K490, 
Amresco, USA) exclusion assay [33]. The viable cell con-
centration (VCC) was calculated by applying the viability 
to the TCC.

The product titer was determined by bio-layer interferom-
etry (BLI) using Protein A tips (Octet System, QK, Forte-
Bio, USA) as already described by [34].

The carbohydrates were measured via ion exclusion chro-
matography (HPX 87H, 300 × 7.8 mm, #1250140, BioRad, 
USA) on an Agilent 1200 series device (Agilent, USA). The 
column was tempered at 25 °C. The mobile phase was 5 mM 
sulfuric acid and the flow rate was 0.45 mL/min. The used 
detector was a refractive index detector tempered at 35 °C. 
The calibration range for d(+)-glucose was between 100 and 
2000 mg/L. The chromatograms were evaluated with Chem-
Station software (Revision B.04.01, Agilent, USA).

Gel electrophoresis was performed with an Invitrogen 
NuPage™ 4–12% Bis–tris gel (NP0321BOX) in a Novex 
Mini-cell chamber (both Thermo Fisher Scientific, USA). 
A SeeBlue® Plus2 pre-stained protein standard (LC5925, 

Thermo Fisher Scientific, USA) was used for size com-
parison. The samples were applied with 4 × sample buffer 
(NuPAGE LDS, NP0007, Thermo Fisher Scientific, USA), 
while the used running buffer contained 0.3% (w/v) Tris, 
1.5% (w/v) glycine and 0.1% (w/v) SDS. Gels were run at 
150–200 V. Adalimumab (Humira™, AbbVie, USA) was 
used as a reference.

Protein A purification was done via a Proteus Protein A 
mini spin column (PUR 006, Bio-Rad, USA) according to 
the manual instructions.

Glycated mAb species were determined via boronate 
affinity chromatography (BAC) (0013066, Tosoh Biosci-
ence, Japan). Solvent A consisted of 50 mM EPPS (E9502, 
Merck, Germany), 10 mM Tris (65837, Fluka, USA) and 
200  mM NaCl (S7653, Merck, Germany), which were 
adjusted to a pH 8.7 with 10 M NaOH. Solvent B was 
500 mM sorbitol (85529, Merck, Germany) in Mobile Phase 
A. Chromatography was performed according to a previ-
ously published study [35].

For the peptide analysis, the samples were digested in gel 
and analyzed via LC–MS as previously published [36–38].

Charge heterogeneity determination

For the method, as previously described in two publications 
[24, 25], a weak cation exchange resin (Dionex ProPac 
WCX-10 4 × 250 mm, 088768, Thermo Fisher Scientific, 
USA) was utilized. Due to the fact that supernatants were 
directly applied, a guard column (4 × 50 mm) was also 
installed (054994, Thermo Fisher Scientific, USA). Two 
complex, four-component buffers were used to ensure a 
highly linear pH gradient. The compounds were 3-mor-
pholino-2-hydroxypropanesulfonic acid (MOPSO, M8389), 
4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid 
(HEPES, H3375)), N,N-bis(2-hydroxyethyl)glycine (Bicine, 
B3879,), 3(cyclohexylamino)-2-hydroxy-1-propanesulfonic 
acid (CAPSO, C2278) and 3-(cyclohexylamino)-1-pro-
panesulfonic acid (CAPS, C2632, all Merck, Germany). 
To ensure elution was only based on the pH shift, sodium 
chloride (S7653, Merck, Germany) was added to Buffer A 
according to Table 1 to obtain constant conductivity. The 
pH was adjusted with sodium hydroxide (Merck, Germany). 
The two different buffer systems used are listed in Table 1.

In this study, supernatants were applied using a flow rate 
of 1.0 mL/min, while the injection volume was 100 µL. The 

Table 1   Running (A) and 
elution (B) buffer compositions 
used in the CEX method

System Buffer HEPES MOPSO Bicine CAPSO CAPS NaCl

pH 7–10.5 A (mM) 0.0 7.1 5.3 14.9 0.7 12.6
B (mM) 0.0 14.6 4.9 1.4 7.1 0.0

pH 8–10.5 A (mM) 5.5 0.0 4.2 9.5 0.8 6.3
B (mM) 0.0 0.0 10.5 2.5 7.0 0.0
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elution gradient for both buffer systems was set to 0.07 pH/
min. The chromatograms were evaluated with ChemStation 
software. As a reference, the same adalimumab standard as 
stated above was used. Statistical analysis was performed 
with SigmaPlot 13.0 software.

Results and discussion

Assessment of the method’s appropriateness 
concerning the cell culture matrix

Since the IEX method has already been thoroughly verified, 
this study is entirely focused on the adaptation for cell cul-
ture samples. Critical considerations were taken in terms of 
possible matrix effects and the qualitative evaluation of the 
resulting peak areas.

The recombinantly produced anti-TNF-alpha antibody 
was compared to a pharmaceutical adalimumab reference, 
which is a well-described mAb [21]. The reference standard 
analyzed by a CEX with a linear pH gradient exhibited a 
distinct peak distribution (see Fig. 1a). Due to the use of 
a strictly pH-dependent system, the charge variants were 
only separated according to their net surface charge, where 
acidic forms were eluted prior to the neutral and basic vari-
ants. Both buffer systems (pH 7–10.5 and pH 8–10.5) and 
different flow rates were tested in terms of their applicability 
for supernatants. The pH gradient itself was set to a con-
stant slope of 0.07 pH/min. In conclusion, the pH 7 variant 
resulted in a better separation of the acidic species. It is 
obvious that the close proximity of the calculated pI of the 
mAb (8.60) and the starting pH conditions affect the sepa-
ration profile of the acidic isoforms. The tested flow rates, 
between 0.5 and 1 mL/min, did not significantly affect the 
measurement’s resolution characteristics. This confirms the 

Fig. 1   a HPLC-chromatogram of a recombinantly produced protein 
measured directly from the supernatant at harvest (1), the same sam-
ple but pre-purified via Protein A (2) and the adalimumab reference 
(3), using the pH 7 buffer system. b Amount of IgG as a function of 
the integrated total peak area for the shaker data [grey-filled circle] 
and control standards [filled triangle]. c Amount of host cell proteins 
(HCPs) and IgG of fed-batch experiments at 37 °C [filled hexagon], 

34 °C [unfilled hexagon] and 31 °C [grey hexagon]. d CEX chroma-
togram of a mocking supernatant (1), a standard spiked into the same 
supernatant (2) and the standard (3). K0 main variant, K1 1-lysine 
variant, K2 2-lysine variant, A1 acidic variant without further charac-
terization. Linear regression was performed on the adalimumab data-
set
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excellent mass transfer properties of the core shell particle-
based stationary phase. Therefore, the pH 7 buffer system 
was chosen and the flow rate was set to 1 mL/min for the 
following studies. Due to the fact that the resolution was 
already sufficient, no attention was paid to optimize the run-
ning conditions any further.

Under these conditions, several samples and the refer-
ence standard in different matrices were analyzed as shown 
in Fig. 1. The most abundant variant was allocated to the 
main variant and marked as K0, where K0 represents the 
complete cleavage of the C-terminal lysine. In the basic 
region, two peaks were evident, which caused incomplete 
lysine clipping, enumerated as K1 and K2, where one or 
both lysine residues remained attached to the heavy chain 
C-termini [21]. In the acidic area, there was only one pro-
nounced peak (A1) evident for the standard. The anti-TNF-
alpha antibody produced in our process revealed a different 
chromatographic pattern. The main variant (K0) was identi-
fied at a similar retention time, while the basic and the acidic 
region exhibited more variants. These differences are not 
remarkable due to the fact that the reference standard was a 
purified API, while the anti-TNF-alpha antibody expressed 
in a certain cell line with a defined media was produced 
under variable process conditions and not purified at all.

During repeated test sequences, it became apparent that 
slight variabilities in the buffer system resulted in minor 
retention time shifts caused by these sensitive gradients (see 
Fig. 1a, d). Consequently, the reference material was ana-
lyzed each time when a new buffer was prepared, both to 
control the performance characteristic and to ensure correct 
integration. To make the set of data comparable, the reten-
tion time was normalized. This was done by dividing the 
retention time ti by the retention time of the main variant 
tmain peak. Thereafter, peak area integration was performed 
within a tnormalized of 0.76–1.23 for all analyses; in the fol-
lowing, this is referred to as the total peak area.

After the performance optimization, the reference stand-
ard and various samples were evaluated according differ-
ent criteria. For the indication, whether or not the samples 
were affected by matrix proteins, both supernatant samples 
(n = 36) and standards (n = 46) were analyzed. The relation-
ship between the total area and the amount of IgG, previ-
ously determined with BLI was assessed. The linear relation-
ship of both indicated that the established performance was 
sufficient to obtain reliable data for standards and superna-
tants (see Fig. 1b).

Furthermore, for a comprehensive quantitative evalu-
ation, it is important that the interprecision of the distri-
bution is appropriate. The calculated coefficient of vari-
ation (CV) for the acidic, main and basic variants of the 
control standard (n = 15) was below 10% for all variants 
(see Table 2). These results are in accordance with the 
comprehensively verified data published by Lingg et al. 

[25]. For demonstrating the charge distribution reproduc-
ibility of the recombinantly produced mAbs in superna-
tants, as fed-batch samples, which were collected at day 
4, were analyzed. Day 4 was at the end of the batch phase 
assuming that the experiments were performed in a simi-
lar manner. All temperature shifts were performed after 
the batch phase. The acidic and main variant distribution 
exhibited a CV of 4% and 10%, respectively (n = 8). The 
CV of the basic variant area was higher at 26%, caused by 
the low amount of this variant (see Table 2). Compared to 
the standard, the quantitative distribution of the fed-batch 
sample at day 4 was different. Acidic species were the 
most abundant variants, evidencing a possible impact of 
the chosen bioprocess conditions.

Although it can be shown that a linear relationship 
between the total area and the amount of IgG exists, the 
variable amount of HCPs could falsify the chromatographic 
results, for instance, in the later stages of the cell culture 
process, when the viability decreases and the cells start to 
lyse. The HCP population is highly heterogeneously com-
posed, but the majority should exhibit a pI below 7 and a 
molecular weight lower than 150 kDa [39, 40]. The ratio 
of HCP to IgG titer ranged between 20 and 50% and was 
independent of the feeding strategy (see Fig. 1c). Co-elution 
of any proteins or antibody fragments was not observed. 
Silver-stained fractionated samples revealed only one pro-
nounced band at around 150 kDa (data not shown). Addi-
tionally, in the mock control, where the HCP content was 
even higher (up to 700 µg/mL), no additional peak occurred 
within the elution period of the mAb. In this respect, only 
a slight baseline drift of around 0.2–0.4 milli-absorbance 
units was detectable, primarily indicating an effect of super-
natant compositions, which is not caused by HCPs. Spiking 
experiments in the mock control supernatant confirmed the 
assumption that HCPs do not affect the elution pattern (see 
Fig. 1d). Therefore, the contribution of HCPs and the culture 
supernatant matrix to the measured charge variant distribu-
tion was considered as not significant. Co-elution of any 
other proteins or other cell culture components did not affect 
the quality of the obtained data.

Table 2   Charge heterogeneity distribution consistency of the control 
standards and supernatant samples determined by the described CEX 
method using the pH 7 buffer system

Sample Variant Relative area ± σ (%)

Pharmaceutical standard 
(n = 15)

Acidic 16.2 ± 1.3
Main 59.2 ± 1.6
Basic 24.5 ± 0.8

Fed-batch samples drawn 
at day 4 (n = 8)

Acidic 69.2 ± 3.0
Main 24.6 ± 2.5
Basic 6.6 ± 1.7
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In summary, the results indicate that the determination of 
mAb charge distribution directly from supernatants is prac-
ticable. It has also been shown that the method is reliable 
and reproducible.

Process monitoring of cell culture processes

The optimized method was used to monitor mAb charge 
heterogeneity during a cell culture process to elucidate the 
influences of temperature and glucose concentration.

The batch phase exhibited similar trends in all measured 
variables for each experiment. The process temperatures 
had a significant impact on overall productivity, growth 
rates and viability of the cells (see Fig. 2). Such observa-
tions have already been described in several publications 
[41–44]. Reduced process temperature can, moreover, be 
used for the proliferation control of cell culture processes 
[45]. Even though glucose concentrations in the cultures 
varied from 2 to 15 g/L (Fig. 2d), depending on the feed 
and temperature, almost no impact on the monitored process 
variables could be detected. Only the osmolality could be 
partly linked to the glucose concentration in the superna-
tant, which ranged from 345 (high glucose) to 233 mOsm/kg 
(low glucose) (see Fig. 2d, e). Lactate production was only 
observed in the batch phase, while consumption took place 
during the remaining process (Fig. 2c), independent of the 
temperature and glucose profile. Interestingly, no difference 
in specific nutrient uptake and byproduct formation rates 
was determined, due neither to the elevated glucose level 
nor to the change in process temperature. qgluc was independ-
ent in respect of the feed or process temperature used (see 
Fig. 2f), with such behavior previously reported in other 
publications [46, 47]. The observation may be correlated 
with the fact that glucose uptake is not only dependent on the 
amount of glucose but also on amino acids such as leucine, 
lysine and serine [48].

To evaluate the impact of process variation on charge 
distribution, several fed-batch samples from day 4, followed 
by samples after the temperature shift until the harvest 
criteria with a viability of 70%, were applied to the CEX 
column (n = 36). In turn, it became obvious that variation 
in the process parameters, glucose concentration and tem-
perature affected the charge variant distributions to a great 
extent (see Fig. 3). Since the glucose concentration had no 
apparent influence on cell metabolism, it was supposed to 
have affected the mAb charge distribution in an extracel-
lular manner (see Fig. 3a, c, e, g). This is also evidenced 
by the fact that the K0 main proportion correlates linearly 
with the percentage of acidic species (Fig. 3a). The result-
ing basic species are in opposition to this observation due to 
the fact that they mostly derive from incomplete C-terminal 
lysine processing, which is a known intracellular process 
(see Fig. 3b, d, f).

Under these defined process conditions, the basic spe-
cies were generally rare, which suggests that C-terminal 
lysine processing occurred almost completely. However, 
process temperature predominantly affected the basic vari-
ant formation. As the amount of basic species was independ-
ent of the amount of the main variant, no trend could be 
identified; only two cluster regions were obvious (Fig. 3b). 
However, three linear relationships between the total basic 
area and K0 peak area could be determined by separating 
the data into three distinct groups according to the applied 
temperature (Fig. 3d). Evidently, lowering the temperature 
resulted in imperfect C-terminal lysine processing. This 
temperature-based occurrence was in accordance with pre-
viously published data [49]. The expression levels and the 
specific activity of the enzyme carboxypeptidase (B and H), 
which is considered to play a major role in C-terminal lysine 
cleavage, is temperature dependent [50, 51]. Hence, the pro-
cessing of C-terminal lysine clipping, an important quality 
attribute [16], can be influenced by process temperature and 
sufficiently monitored with this method. The extracellular 
glucose concentration had no impact at all on basic species 
variations (Fig. 3f). The dataset could only be divided into 
two distinct groups: a 37 °C + 34 °C and a 31 °C cluster. No 
correlation was evident. Thus, in conclusion, the accumu-
lated amount of basic species was the result of an intracel-
lular process and most probably regulated by the amount and 
activity of the carboxypeptidase.

The vast impact of glucose on the micro-heterogeneity of 
the mAb was evident. The highest main variant (K0) content 
was observed at 34 °C with Feed 1 (low glucose). At an 
elevated glucose concentration, the amount of K0 was signif-
icantly reduced. For instance, the process at 31 °C with Feed 
3 (high glucose) resulted in the highest charge heterogeneity. 
Acidic variants were the most abundant variants and ranged 
from 60 to 90% of the total peak area. It was obvious that an 
increase in the acidic species was attended by a decrease in 
the main variant (see Fig. 3a). The process at 31 °C, how-
ever, exhibited a slight parallel shifted linear correlation, 
due to the increased amount of basic species. At 31 °C, the 
proportion of basic variants was, on average, 5% higher 
than in the case of the other processes, which resulted in a 
decreased offset value of around the same proportion. How-
ever, both correlations exhibited a similar slope (Fig. 3a). 
The acidic heterogeneity was mainly dependent on the feed 
used; thus, an increase in glucose in the supernatant resulted 
in an enriched fraction of acidic variants (see Fig. 3c, e). 
It was lowest at 34 °C and 37 °C when a low glucose feed 
was applied. An induction of mAb alteration effects, due to 
osmolality and differences in the elution pattern, as reported 
by Schmelzer and Miller [52], was not evident. Acidic vari-
ant formation was mainly provoked by two parameters: the 
increasing total amount of main variants and incremental 
glucose concentration in the supernatant. Interestingly, 
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regarding the latter, a saturation plateau was reached. At 
glucose concentrations higher than 7 g/L, the ratio of the 
total acidic area to the K0 main peak area remained almost 
unaffected (Fig. 3e).

According to these results, three assumptions were 
made: first, during those bioprocesses, acidic variants 
mainly evolved from the main ones already present in the 
supernatant; second, considering that the different feeds 

had no influence on any major process parameter, among 
others, biomass and productivity, the glucose concentra-
tion in the supernatant directly influenced the formation of 
acidic variants; and, third, there was a predefined number 
of possible glucose-inducible acidic variants. Under the 
selected process conditions, glycation, the non-enzymatic 
attachment of a reactive glucose to a protein, was most 
likely a feasible cause of acidic peak formation. It has 

Fig. 2   Fed-batch process parameters: a VCC, b protein titer, c lactate 
and d glucose concentration and e osmolality as a function of pro-
cess time. f Specific glucose consumption (qgluc) as a function of the 
growth rate (µ). 37 °C + Feed 1 [filled square], 37 °C + Feed 2 [filled 
diamond], 37  °C + Feed 3  [filled hexagon], 34  °C + Feed 1  [unfilled 

square], 34 °C + Feed 2 [unfilled diamond], 34 °C + Feed 3 [unfilled 
hexagon], 31  °C + Feed 1  [grey square], 31  °C + Feed 2  [grey dia-
mond], 31  °C + Feed 3  [grey hexagon]. Fed-batch process started 
at day 3. Vertical dashed line indicates temperature shift (≈ day 4). 
Short dashed lines indicate trends
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already been related to the protein content and the glucose 
concentration [12] and also seems to be substantiated by 
this study.

Due to that fact that acidic species, induced by glucose, 
were most likely extracellularly formed, a second-order 
reaction, as proposed for typical non-reversible glycation 
reaction [53], was constructed. Unlike Yuk et al. [53], we 
set up some constraints. First, only a certain amount of the 
antibody is susceptible to be transformed into an acidic spe-
cies. Second, if one antibody is not transformed within the 
certain time period, then a transformation will not occur 
during the rest of the process. We defined the second-order 
reactions as follow (Eqs. 1–3):

Setting up the second-order reaction in its differential 
form, as well as integrating and rearranging, yielded:

with

where [mAbacidic](t) represents the concentration of the 
acidic variants at time point ti, k is the reaction constant and 
D(t) is the integrated product at time point ti of the newly 
built IgG and the glucose concentration. If the second-order 
reaction assumption is true, the plotting of [mAbacidic](t) 
against D(t) should yield in a straight line with a slope of k 
(Fig. 3g).

Evidently, the data are separated into three distinct 
groups, in respect of their applied process temperature. A 
linear regression was carried out. In conclusion, the reac-
tion rate, and consequently the slopes of the representative 
lines, were dependent on the process temperature: 0.09, 
0.04 and 0.03 gacidicL

gIgGgglucosed
 , for 37 °C, 34 °C and 31 °C, respec-

tively. These findings are in agreement with published 
research data. Typical antibody alteration effects, which 
result in acidic variant formation, for instance, deamida-
tion [54, 55] or glycation [56, 57], can be modulated by 
temperature [51].

(1)[ΔmAb] +
[

glucose
]

→

[

mAbacidic
]

(2)
[

mAbacidic
]

(t) = k × D(t),

(3)D(t) =
ti

∫
t0

[ΔmAb] ×
[

glucose
]

× dt,

Finally, it can be speculated that the glycosylation pat-
tern may also contribute to the acidic charge heterogene-
ity (Fig. 4a). Nevertheless, this is not the case, because 
anti-TNF-alpha antibodies do not contain any sialic acids, 
while the proportion of high mannose types is similar to 
the reference material [13, 21]. Additionally, the BAC 
analysis indicated that a substantial proportion of the mAb 
was glycated (Fig. 4b). The reference material, when incu-
bated in a high glucose solution, exhibited a peak at a 
similar retention time. Thus, in conclusion, it was deter-
mined that glycation was the main driver for the formation 
of variable amounts of acidic species under the adjusted 
process conditions.

To the best of our knowledge, this is the first study that 
provides insights into the formation of charge variants dur-
ing a cell culture process without using any pre-purification 
steps. Evidently, within the chosen process conditions, the 
formation of variable acidic species is of dominant impor-
tance. To achieve an understanding of consistent product 
quality, appreciating the mechanism of charge variant forma-
tion is inevitable. Rapid determination of the charge distri-
bution pattern can significantly facilitate process optimiza-
tion. This can be useful for process development and control 
of antibody and biosimilar production. Medium composition 
effects, such as glucose concentration and physical varia-
tions (e.g., temperature), on the generation of charge variants 
can be analyzed accordingly; thus, product quality attributes 
can be determined very early on in the process chain. That 
said, when assigning the occurring variants to distinct post-
translational modifications, a more detailed and thorough 
characterization is necessary. The chromatographic pat-
tern alone does not imply the occurred modifications [58]. 
Combination with other methods, such as LC–MS or BAC, 
could help to significantly improve the understanding of the 
mechanism of peak formation.

Conclusion

In this work, we established a process-monitoring tool for the 
determination of charge heterogeneity of mAbs directly from 
cell culture supernatants. This method is based on cation 
exchange chromatography using a linear, basic pH gradient, 
with which cell culture supernatant samples can be directly 
analyzed for mAb charge heterogeneity without the need for 
prior protein purification. This represents a potential power-
ful tool for process development, since changes in product 
quality due to changes in process parameters can be detected 
earlier. It also has potential to serve as an in-process control 
method for any mAb production process, which can offer 
invaluable process knowledge. Under the Quality by Design 
paradigm, this increase in knowledge about the relationship 

Fig. 3   K0 main peak ratio as a function of the acidic (a) and basic 
variant (b) ratio. c Acidic area and d basic area as a function of the 
K0 main peak area. The ratio of the K0 peak area to the e acidic area 
and the f basic area as a function of glucose concentration. g Acidic 
peak area concentration at time point t as a function of D(t), that is, 
the product of newly built IgG concentration and glucose concentra-
tion integrated over time. 37 °C + Feed 1 [filled square], 37 °C + Feed 
2  [filled diamond], 37  °C + Feed 3  [filled hexagon], 34  °C + Feed 
1 [unfilled square], 34 °C + Feed 2 [unfilled diamond], 34 °C + Feed 
3  [unfilled hexagon], 31  °C + Feed 1  [grey square], 31  °C + Feed 
2 [grey diamond], 31 °C + Feed 3 [grey hexagon]

◂
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of product and quality parameters can lead to a more consist-
ent product quality through improved process control.

We also present a case study, in which the process param-
eter glucose level and temperature where analyzed for their 
effect on product quality. We showed that target protein 
production was predominantly affected by the process tem-
perature, whereas the acidic variant formation and thus the 
product quality were highly influenced by the glucose level in 
the cell environment. The formation of acidic variants could 
be conclusively linked to an extracellular mechanism. These 
observations confirm the importance of the control of glucose 
level to ensure consistent high-quality mAb output. The pro-
cess temperature, however, remains important as well, since, 
next to the titer, it secondarily affected the rate of acidic peak 
formation as well as basic variant formation.

However, charge heterogeneity of a mAb can be an ade-
quate fingerprinting technique to confirm the desired product 
quality attributes, already early in the process chain. Depend-
ing on the mAb, the method can be adapted to gain informa-
tion in an even shorter period of time. In general, this method 
will add great value to process optimization.
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Abstract

Glycosylation, as the most prominent posttranslational modification, is recognized as

an important quality attribute of monoclonal antibodies affected by various

bioprocess parameters and cellular physiology. A method of lectin-based bio-layer

interferometry (LBLI) to relatively rank galactosylation and fucosylation levels was

developed. For this purpose, Fc-glycosylated immunoglobulin G (IgG) was recombina-

ntly produced with varying bioprocess conditions in 15 L bioreactor and accumulated

IgG was harvested. The reliability, the robustness and the applicability of LBLI to dif-

ferent samples has been proven. Data obtained from LC–MS analysis served as refer-

ence and were compared to the LBLI results. The introduced method is based on

non-fluidic bio-layer interferometry (BLI), which becomes recently a standard tool for

determining biomolecular interactions in a label-free, real-time and high-throughput man-

ner. For the intended purpose, biotinylated lectins were immobilized on disposable optical

fiber streptavidin (SA) biosensor tips. Aleuria aurantia lectin (AAL) was used to detect the

core fucose and Ricinus communis agglutinin 120 (RCA120) to determine galactosylation

levels. In our case study it could be shown that fucosylation was not affected by varia-

tions in glucose feed concentration and cultivation temperature. However, the

galactosylation could be correlated with the ratio of mean specific productivity (qP) and

ammonium (qNH4+) but was unrelated to the ratio of mean qP and the specific glucose

consumption (qgluc). This presented method strengthens the applicability of the BLI plat-

form, which already enables measurement of several product related characteristics, such

as product quantity as well as kinetic rates (kd,kon) and affinity constants (kD) analysis.

K E YWORD S

bio-layer interferometry, CHO cell culture, fucosylation, galactosylation, glycosylation

1 | INTRODUCTION

Monoclonal antibodies (mAbs) continue to dominate biopharmaceuti-

cal approvals and constitute about 40% of biotherapeutics that are

available on the market and thus form a major class of molecules pro-

duced and developed by the biopharmaceutical industry.1 Product

quality and quantity are important measures in antibody discovery

and in process development. These requirements are driven by

numerous influential factors such as process performance and cell

physiology. The complexity of such a multifactorial system makes itJakob Wallner and Bernhard Sissolak contributed equally to this work.
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difficult to identify the parameters with relevant influence on product

quality. Thus, direct control of product quality in the individual

bioprocess, a central goal of the quality by design approach, is

severely limited.2 Consequently, it is crucial to get a deeper under-

standing of the biological system, the process, the product and the

interdependencies amongst each other.

In respect of product quality, the glycosylation is among others, a

relevant characteristic, which can profoundly affect protein stability and

the functions, which are relevant to their therapeutic application.

Recently, the correlation between the glycoform profiles and the safety

and efficacy of a drug, in particular, has achieved significant attention of

researchers worldwide.3 The glycan structure is affected by the enzy-

matic machinery of the host cell, transit time in the Golgi bodies, envi-

ronmental factors and the availability within the sugar nucleotide

pool.4-6 With respect to process conditions, several publications have

shown that the osmolality level (in combination with pH),7 availability of

glucose,8,9 ammonium production rates10 or dissolved CO2 level7,11 can

lead to alternations in glycosylation patterns. In order to study such

mechanisms in more detail and to measure product quantity and rele-

vant quality parameter, appropriate analytical assays are required.

Several techniques already exist to measure those quality specifi-

cations. The most commonly applied technique for the complete

structural elucidation of glycoprotein oligosaccharides is the applica-

tion of a combination of chemical, enzymatic, and chromatographic

techniques combined with mass spectrometry.12,13 Another promising

approach is the application of lectin-binding assays.14 Lectins are

glycan-binding proteins that selectively recognize glycan epitopes of

glycoproteins, which enables the specific monitoring of oligosaccha-

ride structures. The interactions of lectins with glycan structures can

be measured via the bio-layer interferometry (BLI), a well-established

biosensor technology.15 The BLI technology is performed in an open

shaking micro-well plate format without any micro-fluidics and using

disposable optical fiber biosensors. The physical principle of this tech-

nique is based on the correlation of the spectral shift Δλ with a

change in thickness (nm) on the biosensor surface. The platform also

allows the measurement of biomolecular interactions, enabling full

kinetic measurements and facilitates the quantitation of biomole-

cules.16 Accordingly, several product quality characteristics and the

product quantity can be determined on a single platform.

A recent study showed the applicability of the BLI platform as a

high-throughput technique for determining the sialylation of mAbs.17

This was done by measuring the binding rate of Maackia amurensis

lectin II (MALII) to (a-2,3)-linked sialic acids of highly sialylated pro-

teins bound in a native state to Protein A sensors. However, all oligo-

saccharides, except (a-2,3)-linked sialic acids are normally hidden

located within the folded structure of immunoglobulin G (IgG) and are

not accessible to related lectins. This induces the necessity for reduc-

tion of the disulfide bonds, which lead to the opening of the tertiary

and quaternary protein structure of IgG, and enables lectins to bind to

oligosaccharides attached in the Fc component.18,19 In the present
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study a non-sialylated antitumor necrosis factor (anti-TNF-α) IgG1

(Figure 1) recombinantly produced in Chinese hamster ovary (CHO)

cells in a 15 L pilot scale fed-batch process under varying conditions

was used as a model protein. For this study the mAB was purified

from the harvest of 13 fed batch cultivation runs t with variations in

feed media glucose concentration and cultivation temperature.

Ricinus communis agglutinin 120 (RCA120) and Aleuria aurantia

lectin (AAL) were used to determine the terminal galactose and core

fucose content of the pre-purified IgG.14 The resulting galactosylation

and fucosylation levels were compared with results obtained by the

well-established analysis technique using MS detection.20 Since the

harvest samples represent the accumulated product of the entire

bioprocess, the glycosylation was further related to the overall pro-

cess performance. To the best of our knowledge this study presents

for the first time application of the BLI platform to determine the

galactosylation and fucosylation levels of CHO culture samples.

2 | MATERIAL AND METHODS

2.1 | Bioprocess set up

As a model protein Fc-glycosylated anti-TNF-α IgG1 was used, produced

by a recombinant monoclonal CHO cell line (Antibody Lab GmbH, Aus-

tria). Generation of the cell line was conducted by applying the Rosa26

bacterial artificial chromosome (BAC) expression strategy to a serum-free

adapted host cell line derived from CHO-K1 (ATCC CCL-61).21

A vial of the working cell bank (5 × 106 cells) was thawed in a chem-

ically defined culture medium (Dynamis AGT, A26175, Thermo Fisher

Scientific) supplemented with 8 mM L-glutamine (25030081, Sigma

Aldrich, Germany), 3 mL/L phenol red solution (RNBD642, Sigma

Aldrich, Germany), 1:1000 Anti Clumping Agent (0010057DG, Thermo

Fisher Scientific) and 1 mg/mL G418 (G8168, Sigma Aldrich, Germany).

Every three to 4 days the cells were passaged with the aforemen-

tioned media but without anti-clumping agent and G418. Cultivation

was performed in a humidified incubator (HeracellTM VIOs 160i,

Thermo Scientific) at 37�C, 5% vol/vol CO2 and 200 rpm (MaxQ 2000

CO2 Plus, Thermo Scientific).

With the fourth passage the cells were transferred into the 15 L

bioreactor (LabQube, Bilfinger Industrietechnik GmbH, Austria) with a

seeding concentration of 2.5 × 105 cells/mL and a starting volume of

10 L. The batch phase was kept identical for every experiment. The

experimental setup included the variation of temperature, at 31, 34,

and 37�C, in addition to variation in the amount of glucose (G7021,

Sigma Aldrich, Germany), with the addition of 10, 20, or 30 g/L of glu-

cose, and aspartate concentration with additions of 0 or 7 g/L aspar-

tate, in the feed phase (CHO CD EfficientFeed A, A1442001, Thermo

Fisher Scientific). Additionally, the feed medium was also sup-

plemented with 0.1% antifoam (A8011, Sigma Aldrich, Germany) to

maintain a constant antifoam concentration during the process. A

constant feed rate of 418 g/d was used during the feed-phase.

The process was controlled via process air mass flow (PA) and stir-

rer speed to maintain the dissolved oxygen level (DO) above 30% and

CO2 mass flow to keep the pH constant at 7.0. The total gas-flow

range was kept within 0.01–0.1 vvm.

The experimental setup used is displayed in Table 1.

2.2 | Off-line analyses

The total cell concentration (TCC) was determined by counting the

cell nuclei using a Z2 particle counter (Beckman Coulter). Therefore,

an appropriate amount of cell suspension was centrifuged at 180g for

10 min. The cell pellet was subsequently resuspended in a 0.1 M citric

acid monohydrate and 2% (vol/vol) Triton X-100 buffer to lyse the

cells for a minimum of 1 hr before measurement. Sample dilution was

performed using a 0.9% NaCl solution.

Culture viability was assessed using a haemocytometer and trypan

blue exclusion. The viable cell concentration (VCC) was determined by

multiplying viability with the TCC.

Glucose was determined via ion exclusion chromatography (HPX

87H, 300 × 7.8 mm, #1250140, BioRad) using an Agilent 1,200 series

(Agilent) at 25�C. The mobile phase consisted of 5 mM sulphuric acid

TABLE 1 Experimental design of the fed-batch processes

Run number Shift 1 Shift 2 Shift 3 Shift 4

1 36.3�C/F3

(72 hr)

2 36.3�C/F3

(72 hr)

3 37�C/F3 37�C/F1

(72 hr) (192 hr)

4 34�C/F1

(72 hr)

5 34�C/F2

(72 hr)

6 34�C/F2

(72 hr)

7 34�C/F2

(72 hr)

8 34�C/F2

(72 hr)

9 34�C/F2 37�C/F2 34�C/F1 31�C/F1

(72 hr) (120 hr) (192 hr) (240 hr)

10 31�C/F2 34�C/F2 37�C/F3 34�C/F3

(72 hr) (120 hr) (192 hr) (240 hr)

11 34�C/F1 31�C/F1 31�C/F2 34�C/F2

(72 hr)r (120 hr) (192 hr) (240 hr)

12 37�C/F2 34�C/F3 31�C/F2 34�C/F1

(72 hr) (120 hr) (192 hr) (240 hr)

13 34�C/F3 37�C/F2 31�C/F2 37�C/F3

(72 hr) (120 hr) (192 hr) (240 hr)

Note: Experiments are presented by the time point (hours [hr]), type of shift,

temperature or feed change. F1, F2, and F3 represent the additional glucose

concentration in the feed, consisting of 10, 20, and 30 g/L, respectively.
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and the flowrate was set to 0.45 mL/min and measured via a Refrac-

tive Index Detector (35�C). The calibration range for D(+)-glucose was

100–2000 mg/L. The chromatograms were evaluated using

Chemstation software (revision B.04.01, Agilent).

Ammonium was measured via an ion selective electrode (ISE, GZ-

27512-00, Cole-Parmer). Therefore, the cell suspension was cen-

trifuged at 180 rpm for 10 min and two times 3 mL of the supernatant

were stored at −20�C. Before each measurement the ISE was filled

with the reference solution (0.1 M NH4Cl, GZ-27503-71, Cole Palmer)

and calibrated (from 1 to 100 mM, GZ-27503-00, Cole Palmer). The

60 μL of 10 M sodium hydroxide solution (221,465, Merck, Germany)

were added to each sample and the solution was vortexed, shortly

before measurement.

Osmolality was measured by using a freezing point osmometer

(Osmomat 030-D, Gonotec, Germany). Thawed samples of the cell

broth supernatant were measured in duplicates.

The product titre was determined by BLI using Protein A tips

(Octet System, QK, ForteBio).22

2.3 | Lectin assay

2.3.1 | Immunoglobulin G purification

The mAb was purified from clarified supernatants using Protein A

affinity chromatography. The experiments were performed on an Äkta

Pure system (GE Healthcare). A POROS A 20, 2.1 × 30 mm column

was used for the stationary phase (Thermo Scientific). The column

was equilibrated with phosphate buffered saline (PBS), pH 7.4 for

25 column volumes (CV). The column was loaded with 2 mL clarified

supernatant at a residence time of 0.1 min (except for sample ID

160714 and 180,202 where only 1.5 mL was available). After sample

application the column was washed with PBS for 20 CV. The mAb

was eluted with 100 mM glycine pH 3.0 in a 10 CV step gradient elu-

tion and the collected fractions were immediately neutralized with

1 M Tris HCl pH 8.0. The column was cleaned with 6 M guanidine

HCl, 50 mM Tris, pH 8.0 solution for two CV and immediately

re-equilibrated with PBS. The outlet was monitored by measuring UV

absorbance at 280 nm to detect eluting antibody. Due to tailing of the

elution, only the main portion of the peak was collected, resulting in a

loss of ~5% in the tail.

2.3.2 | Reduction of disulphide bonds

Purified IgG was diluted with PBS to a concentration of 100 μg/mL

(± 5 μg/mL), as determined by absorbance at 280 nm, using ε 1.43.23

Nine volumes of the diluted IgG sample were mixed with one volume

of 2-mercaptoethanol (1 M in PBS) Sigma (Vienna, Austria) and incu-

bated for 2 hr at 37�C. To block thiol-groups, one volume of 0.2 M

iodoacetamide Sigma (Vienna, Austria) was added to the reduced sam-

ple (final concentration 0.1 M). Incubation was performed overnight,

in the dark and at room temperature.19

2.3.3 | Bio-layer interferometry for analysis of
galactose and fucose content on IgG

Octet Red96e (ForteBio, Menlo Park, CA) was used for lectin/carbohy-

drate binding studies. Typical assay performance is shown in

Figure 2a. Samples were diluted in black 96-well plates (Nunc F96

MicroWellTMPlates, ThermoFisher Scientific, Langenselbold, Germany).

Puffer (Sample diluent) contained PBS, 0,005% P20, Sigma (Vienna, Aus-

tria) and 0.1 mg/mL BSA. The total working volume for each step was

210 μL per well and the rpm setting for each baseline, loading, and asso-

ciation was 1,000 rpm. The test was performed at 25�C. Prior to each

assay, streptavidin (SA) biosensor tips (ForteBio, Menlo Park, CA) were

pre-wetted in 210 μL sample diluent for at least 10 min followed by

equilibration with sample diluent for 60 s. Afterward, SA biosensor tips

were non-covalently loaded with biotinylated Ricinus communis aggluti-

nin I (RCA I) or biotinylated AAL, both obtained from Vector Labs, UK, in

a sample diluent concentration of 0.83 μg/ for 120 s, followed by an

additional equilibration step (60 s) with sample diluent. Prior to analysis,

reduced samples were diluted three times in sample diluent, yielding an

IgG concentration of 15 μg/mL (± 5 μg/mL). Association was carried out

for 600 s. All measurements were performed in triplicate. Raw data,

F IGURE 2 (a) Sensorgram of a typical test performance, including baseline steps (A, C), lectin loading (B) and association of reduced
immunoglobulin G (D). (b) Dose–response curve of IgG by serial dilution of one reduced sample (run 12), diluted to 15, 7.5, 3.75, and 1.875 μg/mL
in sample diluent. RCA120 lectin was immobilized on streptavidin sensor tips prior IgG association. The linear signal curve resulted in an equation
of y = 0.0381 × −0.0084 and in a correlation coefficient of 0.9986
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obtained with the Octet Software (Version 11.0, Menlo Park, CA)

were exported to Excel spreadsheets (Version 2003, Microsoft,

Redmond, WA). Raw data of the IgG association response were

aligned to the individual association step. The individual specific

response R at a defined time t (Rt) for each concentration was calculated

as an average of three independent measurements. The reproducibility

of (Rt) was determined with n = 8. The responses at 600 s (Rt) of the

harvest 13 fed-batch experiments were compared with the outcomes of

mass spectrometry measurements, using linear regression analysis. The

computations were performed using Mathematica (Version 11.3 of

2018, Wolfram Research Inc., Urbana-Champaign, IL). The statistical

analysis was based on 95% significance. The quantitation limit (LOQ) for

IgG association was assumed by measuring the minimum concentration

at which the analyte can be reliably quantified. A typical signal-to-noise

ratio is 10:1. The baseline noise was determined during the initial 60 s

PBS buffer step (n = 8).

2.3.4 | Monosaccharide analysis performed with
mass spectrometry

The samples were digested in gel. The proteins were S-alkylated with

iodoacetamide and digested with trypsin (Promega). The digested

samples were loaded on a BioBasic C18 column (BioBasic-18,

150 × 0.32 mm, 5 μm, Thermo Scientific) using 65 mM ammonium

formiate buffer as the aqueous solvent. A gradient from 5% B

(B: 100% ACCN) to 32% B in 35 min was applied, followed by a

15-min gradient from 32 to 75% B that facilitates the elution of large

peptides, at a flow rate of 6 μL/min. Detection was performed with

QTOF MS (Bruker maXis 4G) equipped with the standard ESI source

in positive ion, DDA mode (i.e., switching to MSMS mode for eluting

peaks). MS-scans were recorded (range: 150–2,200 Da) and the three

highest peaks were selected for fragmentation. Instrument calibration

was performed using ESI calibration mixture (Agilent). Manual glyco-

peptide searches were made using DataAnalysis 4.0 (Bruker). For the

quantification of the different glycoforms the peak areas of the

extracted ion chromatograms (EICs) of the first four isotopic peaks

were summed, using the quantification software Quant Analysis

(Bruker). Note that MS of glycopetides only allows identifying the

composition of the glycan and as a consequence only one possible

isomer is annotated.20,24

3 | RESULTS AND DISCUSSION

3.1 | Development of an appropriate bio-layer
interferometry method for the determination of
galactose and fucose

Selected IgG samples of defined bioprocesses were purified using Pro-

tein A affinity chromatography to remove potential inferring host cell

proteins. For this approach, in principle also other procedures

(e.g., immunoprecipitation, etc.) could be applied as long as the glycosyl-

ation of IgGs is not affected. After the purification procedure, IgG was

diluted to a concentration of 100 μg/mL determined by absorbance at

280 nm. In a first step lectin binding to non-reduced IgG was tested. As

expected, binding of non-reduced IgG to the immobilized lectins could

not be achieved (see Figure S1). These results are in excellent agreement

with published data and provide additional evidence that reduction of

IgG is a prerequisite to obtain freely accessible carbohydrate structures

attached to the Fc part of the IgG.18,19,25 Consequently, IgG was

reduced with β-mercaptoethanol followed by carboxymethylation of

cysteines with iodoacetamide to avoid reformation of the disulphide

linkages.26 For the BLI assay, the lectin and the IgG concentration was

adjusted to gain an optimized test performance as described in the

materials and methods section. Finally, SA biosensor tips were captured

to saturation with biotinylated lectins (data not shown). An additional

equilibration step with buffer was applied to remove the excess of bio-

tinylated lectins and to obtain a constant loading baseline. The equilibra-

tion time was 60 s to achieve a sufficient baseline signal. Moreover, the

lectin-coated SA biosensor tips were incubated with the purified,

reduced IgG to measure the corresponding association profiles. In pre-

liminary experiments, different IgG concentrations were tested and

finally optimized. After reduction the samples contained 0.1 M

β-mercaptoethanol and 0.1 M iodoacidamid. During the test optimiza-

tion it became evident that these concentrations are already too high to

accurately associate the IgG to the lectins. A simple threefold dilution

step with sample diluent was sufficient to obtain reliable signals. Non-

specific interactions of the reduced IgG with the biosensor were elimi-

nated by introducing 0.005% P20 and 0.1 mg/mL BSA to the sample

diluent. No unspecific interaction of samples with uncoated SA biosen-

sor tips occurred, which confirms the selectivity of the procedure.

Finally, a standardized IgG concentration of 15 μg/mL was used. Dose–

response linearity was demonstrated with a serial dilution experiment

(Figure 2b). Therefore, one sample (No 12) was diluted to 15, 7.5, 3.75,

and 1.875 μg/mL in sample diluent, attached to the pre-coated AAL lec-

tin sensor and measured. A linear signal curve resulted in a correlation

coefficient of 0.9986. The coefficient of variation for triplicate determi-

nations of each concentration was <10%. The assay sequence begins

with the equilibration of the SA biosensor tips with the PBS buffer in

order to measure the baseline signal for calculation of the LOQ, which is

defined as the lowest concentration at which the analyte can not only

be reliably detected but at which some predefined goals for bias and

imprecision are met. To obtain LOQ datasets for the evaluation of

significant/reliable measurements, the average baseline noise of SA bio-

sensor tips in PBS was determined and the LOQ assumed to be a signal-

to-noise ratio of 10:1.27 The baseline noise of the initial 60 s was

0.004 nm (n = 8). Thus, the LOQ was calculated as 0.04 nm. From the

dose–response linearity measurements, as explained above, it was found

that the mean Rt of the lowest used IgG concentrations (1.875 μg/mL)

toward the pre-coated RCA120 lectin sensor was 0.068. Prior reduction

IgG was diluted to a concentration of 100 μg/mL. However, dose–

response linearity experiments and estimation of LOQ demonstrate that

significant lower initial IgG concentration can be applied. For both, galac-

tose and fucose, it could be demonstrated that the lectin-BLI (LBLI) is a

promising tool when the accessibility of the protected sugar moieties can

be achieved.
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3.2 | Determination of fucosylation of IgG in
different mammalian cell culture processes

In a next step the LBLI method was compared to a widely used standard

approach for determining glycan structures. Therefore, the selected

13 harvest samples were purified and glycosylation levels were mea-

sured via LC–MS and the LBLI method as described above (data is

shown in Table S1). In general, the fucosylated forms of the harvest

product were constant within the experimental setup. With both

methods a similar fucosylation level (Figure 3a) was determined. The

level range was found to be 82.3 ± 1.2% with respect to the LC–MS

analysis. The new established LBLI method obtained a mean value of RT

1.11 ± 0.09 nm. A regression analysis in order to compare both methods

was not feasible due to the constant output.

3.3 | Determination of galactosylation of
immunoglobulin G in different mammalian cell culture
processes

Significant variations were observed for the galactosylation of the mAb.

They ranged from approximately 16.5–33.1% calculated by LC–MS and

0.24–0.70 nm RT for the LBLI analysis (Table S1 and Figure 3b). A linear

relationship between the LC–MS and the LBLI responses was observed.

Specifically, a function of r = a + b*p with a = −0.277 nm (confidence

limits: −0.428–0.126) and a significantly positive parameter b = 0.031 nm

(confidence limits: 0.023–0.038) was obtained. Hence, higher LBLI-

responses corresponded to higher proportions of galactosylation

(Figure 3b). It follows that with the LBLI tool the galactosylation levels

can be successfully measured and data obtained from LC–MS analysis

were equal compared to the LBLI results.

3.4 | Process parameters affecting glycosylation

The product is continuously secreted into the supernatant. The finally

determined glycosylation pattern, represents the accumulated profile

from the entire production process. Connecting the overall process

performance with the glycosylation can already provide an appropri-

ate picture about certain impacts. However, for a comprehensive

understanding of the impact of process and cellular dynamics on gly-

cosylation, straightforward techniques that enable the analysis of

samples throughout the process, will be beneficial.

Since, fucosylation levels stayed constant in all samples of the test

case we merely focused on the evaluation of the galactosylation.

According to recent studies10,28-30 glucose and ammonium can be

environmental key factors in context of mAb galactosylation.

Since the IgG is accumulated during the process in the superna-

tant, the average production (NH4+) and consumption (glucose) rate

for the entire process should, presupposed that there is an impact,

may reflect the overall variance of the glycosylation pattern. The rates

�qn were calculated according to Equation (1). However, in the experi-

mental runs different product titres were achieved, which means that

different amounts of protein were available and susceptible to post-

translational modification. Accordingly, the rates �qNH4+ and �qgluc were

set into a relationship with the specific protein production rate �qp,

which was also calculated according to Equation (1).

�qn =

Ptharvest
t0

nt+1−nt + nfeed
Ptharvest

t0
Xv,t+ 1 −Xv,t

μt

, ð1Þ

n represents the glucose, ammonium or mAb, respectively, Xv the

amount of viable cells and μ the growth rate to a given time point.

The variable nfeed represents the amount of substrate feed into the

system. Hence, for mAb and ammonium this term becomes zero.

The results obtained from different experimental setups indicate

that the average specific glucose uptake rate does not correlate with

the galactosylation content (Figure 4a). This finding may be attributed to

the fact that glucose concentrations were never limiting throughout the

processes. Reduced glucose level can negatively influence the

galactosylation index due to a reduced availability of uridindiphsophate

F IGURE 3 (a) The proportion of fucosylated glycoforms determined via LC–MS and the responses of the lectin based BLI (LBLI) assay in nm
depicted for all runs. (b) Linear regression analysis of all 13 CHO cell culture fed batch runs performed in 15 L pilot scale. The responses in [nm] of
LBLI assay were compared with obtained galactosylated glycoforms in (%) of LC–MS measurements. Dots and error bars represent the mean Rt
values and standard deviation of LBLI triplicate measurements, and the corresponding results from a single LC–MS run (without SD). The
regression line and its single confidence band (dashed line) are plotted. The linear regression line resulted in the equation of y = 0.0309 × −0.277
and a correlation coefficient of 0.8925
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(UDP) sugars and decrease the galactosylation index.8,9 This observation

points to the fact that other additional factors might influence the

galactosylation.

In this respect, the ratio of mean qp to qNH4+ was calculated

(Figure 4b). A linear relationship with the galactosylation levels of the

mAb could be determined. The less ammonium per mAb produced,

the more galactosylation occured. A regression analysis performed

with all runs resulted in the equation of y = 0.502 × x + 0.100 with a

regression coefficient of 0.660. In conclusion our results indicate that

the ammonium production impacts the galactosylation profile. This

finding is in agreement with the already known fact that high ammo-

nium concentrations can increase the internal pH of the Golgi bodies

and subsequently promote the inhibition of the enzymes required for

the oligosaccharide processing. Galactosylation and sialylation of

mAbs are mainly influenced by this regulation.3,29 This result suggests

that the production of ammonium per product is a crucial parameter.

In this study we assumed that the rates were constant for an

entire process run. Due to this simplification certain dynamics and

correlations might be undetectable. For instance, the availability of

glucose, due to glucose depletion or a low glucose uptake rate,

might have had an influence on the galactosylation level (Figure 4c).

It also remains unclear if the ammonium production rate or the

ammonium concentration in the supernatant was the real cause for

the determined glycosylation pattern (Figure 4d). A clear under-

standing of the dynamics can only be achieved if the whole process

progression is taken into consideration. In principle the presented

LBLI method is capable of high throughput analysis. In this respect,

the protein purification step still remains a bottleneck for this

analysis. Therefore, future research will focus on different high

throughput (HT) protein purification procedures to reduce the work

load and to be capable to identify such process dynamics.

4 | CONCLUSION

The glycosylation is a relevant key quality attribute for monoclonal

antibodies. It can be affected by many different factors, such as the

expression system, process conditions, or media composition and feed

protocols and thereof vary from batch to batch.3 In this study we

showed that the developed LBLI method, verified with data resulted

from LC–MS, is feasible to determine the Fc fucosylation and

galactosylation of an anti-TNF alpha antibody. Samples containing

mAbs with varying glycosylation profiles were used to show the

method applicability. By both applied analytical techniques it could be

shown that fucosylation remained constant within the experimental

design, while galactose varied. Based on the monitored glucose and

ammonium levels it could deduce that a low ratio of qp to qNH4+

resulted finally in a reduced galactosylation level in harvest samples.

To gain more insight into the very complex process dynamics individ-

ual, additional in-process measurements and intra-cellular analysis

would be necessary.

The application of HTX-BLI-based instruments in the 32-channel

mode and 384 well plates enables 32 individual glycoanalytic mea-

surements to be performed in less than 15 min. Antibodies either cap-

tured by Protein A or complementary methods prior reduction under

standardized conditions, allows the identification of protected glycan

structures within the protein in an efficient manner. This is a huge

advantage compared to conventional techniques, where determina-

tion of glycosylation patterns are still accompanied with a high

F IGURE 4 The impact of
the ratios qP to qgluc (a) and to
qNH4+ (b) on the LBLI response
or respectively the
galactosylation proportion of
the mAb. The regression lines
and coefficients are depicted.
(b) Regression line depicted was
performed without the outlier.
The arrow indicates the outlier.
The confidence band (dashed
line) are plotted. Example trends
of process run 12 for (c) glucose
concentration and the
respective specific rate and
(d) ammonium concentration
and the respective specific rate
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workload, expenditures costs and usually requires an advantage

expertise.31 For the future, the LBLI method and the in general the

BLI platform offer a simple and inexpensive high throughput

(HT) technique for the analysis of several important product related

parameters such as the product titer, the antibody antigen binding

kinetics and the glycosylation pattern. Although, in research very

often different techniques and equipment are used, in R&D and pro-

duction the use of only one machinery is definitely advantageous to

fulfill all the regulatory needs and the future goals of automatization.

The presented technique will accelerate cell line, media and process

development but also will be important as a process monitoring tool.

To transfer the proposed platform to industrial application, automati-

zation of protein capture need to be established to overcome this bot-

tle neck for future analysis. Currently, different HT purification

systems are under examination with the aim to complete the pro-

posed platform.
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