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Abstract 

Quantifying the rate of carbon uptake in forest ecosystems is essential for understanding how 
forest ecosystems impact the carbon cycle, to analyse the connection between the global carbon 
cycle and vegetation and to study factors which regulate spatial and temporal distribution of 
carbon dioxide (CO2). The MOD17 MODerate Resolution Imaging Spectroradiometer 
(MODIS) satellite product provides estimations of net primary production (NPP) of vegetation 
at 500 m spatial resolution. However, the coarse spatial resolution of MODIS NPP has 
limitations in capturing heterogeneity and fragmentation of forest areas and scaling issues in 
validation against forest inventory data. The aim of this thesis was to adapt the MOD17 NPP 
algorithm to generate high spatial resolution (10-30 m) NPP estimates using high spatial 
resolution input parameters derived from the Harmonized Landsat Sentinel-2 (HLS) project 
and other Copernicus datasets (climate data).  

The new high spatial resolution HLS NPP product was compared to MODIS MOD17 NPP data 
and the connection between NPP and forest inventory data was explored. Moderate consistency 
was found between MOD17 and HLS NPP product for the area dominated by coniferous forest 
with a moderate correlation (R2=0.53, p<0.01). For mixed forest areas correlation was weak 
for the years 2016 and 2018 (R2=0.19 and R2=0.22, p<0.01) and there was no correlation for 
the year 2017. HLS NPP was lower than MOD17 NPP by 18.67% for the study area in Slovenia 
and by 23.24% for the southern part of Austria. Correlation analysis between periodic annual 
timber increment and HLS NPP for inventory plots in Slovenia showed that NPP algorithm 
cannot represent variation in timber volume increment, which was particularly the case for the 
plots with low stand density and low timber volume. The 10 m resolution NPP is feasible to 
obtain for forest areas in Europe and it is useful in estimation of NPP for forest stands and 
polygons of irregular shape. Variation in growing conditions due to effects of different forest 
site parameters cannot be fully represented by HLS NPP. Main limitations were the availability 
of ground data for validation and satellite Leaf Area Index (LAI) and Fraction of 
Photosynthetically Active Radiation (FPAR) data for forest. Therefore, for future work, it is 
significant to develop LAI and FPAR products for forest at high spatial and temporal resolution 
and to have ground-based estimates of NPP for validation. 
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Kurzfassung 

Die Ermittlung der Kohlenstoffaufnahmerate von Waldökosystemen ist von entscheidender 
Bedeutung die Auswirkungen von Waldökosystemen auf den Kohlenstoffkreislauf zu 
verstehen, Zusammenhänge zwischen dem globalen Kohlenstoffkreislauf und der Vegetation 
zu analysieren und Faktoren, welche die räumliche und zeitliche Verteilung von Kohlendioxid 
(CO2) regeln zu untersuchen. Das Satellitenprodukt MOD17 MODerate Resolution Imaging 
Spectroradiometer (MODIS) liefert Schätzungen der Nettoprimärproduktion (NPP) der 
Vegetation mit einer räumlichen Auflösung von 500 m. Diese relativ grobe räumliche 
Auflösung des MODIS-NPP Produktes stößt bezüglich der Erfassung von Heterogenität und 
Fragmentierung von Waldgebieten an seine Grenzen und es bestehen Skalierungsprobleme bei 
der Validierung mittels Waldinventurdaten. Ziel dieser Arbeit war es, den MOD17 NPP-
Algorithmus so anzupassen, dass NPP-Schätzungen mit hoher räumlicher Auflösung (10-30 
m) generiert werden können, wobei die Eingangsparameter mit hoher räumlicher Auflösung 
aus dem Harmonized Landsat Sentinel-2 (HLS Daten) Projekt und anderen Copernicus-
Datensätzen (Klimadaten) abgeleitet wurden.  

Das erstellte HLS-NPP-Produkt mit hoher räumlicher Auflösung wurde mit MODIS-MOD17-
NPP-Daten verglichen bzw. der Zusammenhang zwischen NPP und Waldinventurdaten 
untersucht. In Gebieten mit hoher Nadelwalddominanz wurde eine moderate Übereinstimmung 
(R²=0.53, p<0.01) zwischen MOD17- und HLS-NPP-Produkten festgestellt. Für 
Mischwaldflächen wurden geringe Korrelationen für die Jahre 2016 und 2018 (R=0.19 bzw. 
R²=0.22, p<0,01) gefunden und wurde für das Jahr 2017 war kein Zusammenhang vorhanden. 
Die berechnete HLS-NPP war im Untersuchungsgebiet Slowenien um 18.67% und im 
Untersuchungsgebiet südliches Österreich um 23.24% niedriger als MOD17-NPP. Die 
Korrelationsanalyse zwischen dem periodischen jährlichen Holzzuwachs und der HLS-NPP 
für die Inventurflächen in Slowenien zeigte, dass der NPP-Algorithmus die Variation des 
Holzzuwachses nicht korrekt darstellen kann, insbesondere für die Flächen mit geringer 
Bestandsdichte und geringem Holzvorrat. Die Ermittlung der NPP mit einer Auflösung von 
10 m ist für Waldgebiete in Europa durchführbar und auch für die Schätzung der NPP von 
Waldbeständen bzw. Polygonen mit unregelmäßiger Form nützlich. Variationen in den 
Wachstumsbedingungen aufgrund verschiedener Standortsparameter können jedoch mit dem 
HLS-NPP-Produkt nicht vollständig dargestellt werden. Dies liegt vor allem an der begrenzten 
Verfügbarkeit von Bodendaten für die Validierung und von verlässlichen Satelliten-Leaf Area 
Index (LAI)- und Fraction of Photosynthetically Active Radiation (FAPAR)-Produkten für 
Waldflächen. Daher ist es für künftige Arbeiten essentiell, die vorhanden FAPAR- und LAI-
Datensätze für Wälder mit hoher räumlicher und zeitlicher Auflösung zu verbessern und für 
die Validierung bodengestützte Schätzungen der NPP zu erhalten. 
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1. Introduction 

1.1. Carbon pools and Vegetation carbon sink  

Carbon is a chemical element which is essential component of life, and the carbon content of 
dry biomass is assumed to be 50% (Lewis et al., 2009; Chave et al., 2005). In the atmosphere 
it is found in the form of carbon dioxide (CO2). 

Carbon is cycling between biosphere, atmosphere, geosphere, and hydrosphere through 
processes such as photosynthesis, decomposition, respiration, and mineralization (Pulselli and 
Marchi, 2015), which defines a process of the carbon cycle (Figure 1). 

 

 

Figure 1: Schematic representation of the global carbon cycle, averaged globally for the decade 2010 2019 
(Friedlingstein et al., 2020).  

1 according to Friedlingstein et al. (2020). 

Since the pre-industrial age, carbon dioxide (CO2) content in the atmosphere has been 
increasing, reaching concentration of 404 cm3 m-3 in 2016 (Tum, 2016) and 409.9 cm3 m-3 in 
2019 (Friedlingstein et al., 2020). 

Approximately half of the anthropogenic CO2 emissions (Tum et al., 2016) remain in the 
atmosphere, reaching 5.4 Gigatons (Gt) of Carbon in 2019 (Friedlingstein et al., 2020). 

Plants have important role in carbon cycle in Earth environment by capturing and storing 
carbon dioxide from the air through photosynthesis and putting out carbon dioxide back into 
the air through respiration and litter decomposition.   

According to Dixon et al. (1994) 1146 Gt of carbon is stored in forest vegetation and soils. 
Total area of forest is approximately 4 billion hectares, which is 31% of the total land area 
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(FAO and UNEP, 2020) and contains over 86% of the global vegetation carbon pool (Dixon et 
al., 1994). As such, it is one of the most important parts of terrestrial ecosystems and has the 
highest production and important role in global matter and energy cycle, carbon balance and 
climate change (Yuan et al., 2006). 

Through the process of photosynthesis, approximately 16% of the atmospheric CO2 (121.6 Gt 
C) is absorbed by vegetation annually (Apps et al., 2005).  A little less amount of carbon is 
released back into the atmosphere through respiration, degradation of organic matter, 
heterotrophs feeding on that vegetation (Goel and Agarwal, 2014; Gower, S. T., 2003), which 
results in increase of carbon sink in terrestrial ecosystems. Pan et al. (2011) estimated total 
forest sink of 2.4 ± 0.4 Gt C y-1 for 1990 to 2007 and after subtracting carbon emission losses 
from tropical deforestation and degradation the mean global net forest carbon sink was 1.0 and 
1.2 Gt C y-1 for 1990 to 1999 and 2000 to 2007, respectively. Pugh et al. (2019) observed global 
forest carbon sink increase from 1.74 Gt C year-1 over 1981 1990 to 2.15 Gt C y-1 over 2001  
2010. For the last decade (2010-2019), t

1 according (Friedlingstein et al., 2020). 

1.2. Carbon cycle and climate change  

As the carbon cycle is out of equilibrium and atmospheric concentration of carbon dioxide is 
rising continuously, the global warming is increasing. The biosphere has important role in 

s et al., 2005) and the focus of numerous studies are on the role 
of terrestrial carbon cycle, with the highlight on forest, in mitigating the effects of climate 
change (Apps et al., 2005; Xu et al., 2018; Pugh et al., 2019; FAO and UNEP, 2020) and 
understanding how forest ecosystems impact the carbon cycle (Govind and Kumari, 2014).  

It is expected that the rise of CO2 content in the atmosphere has fertilizing effect on vegetation 
and growth through photosynthetic rate increase and longer growing seasons (Bacastow and 
Keeling, 1973; Alexandrov et al., 2003). Tum et al. (2016) showed the increase of forest carbon 
sink by 1% (0.5 Gt) over the 15 years, between 2000 and 2014 while Nemani et al. (2003) 
found a linearly increasing Net Primary Production trend of 0.19 Gt y-1 for the period of 1982 
 1999. 

However, although Gross Primary Production may increase with increased temperature, some 
authors suggest that heterotrophic decomposition rate may release additional quantities of CO2 
in the atmosphere and that the terrestrial biosphere may become carbon source instead of 
carbon sink (Cramer et al., 1999; Govind and Kumari, 2014). 

Considering the complexity of global carbon cycle and its interconnection with the vegetation, 
it is important to quantify the response of ecosystems to changes in global biogeochemical 
cycles (Apps et al., 2005; Cramer et al., 1999). Moreover, for understanding the processes and 
factors that regulate the terrestrial carbon sink and response of terrestrial ecosystem to future 
climate warming, it is essential to assess the rate of carbon uptake in terrestrial vegetation 
(Tum, 2016). 

1.3. Net Primary Production 

Terrestrial Net Primary Production (NPP) is the rate of atmospheric carbon uptake by 
vegetation through process of photosynthesis minus carbon released by autotrophic respiration 
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and, as such, it is one of the important biophysical variables of vegetation activity and it is a 
beginning link of biogeochemical carbon cycle (Yuan et al., 2006).  

Atmospheric carbon uptake is expressed as Gross Primary Production (GPP) which quantifies 

et al., 2006). After the amount of carbon released during autotrophic respiration is subtracted 
from GPP, NPP is obtained. The forest carbon cycle is presented in the Figure 2. There are 

ecosystem pr
expresses the difference between GPP and total ecosystem respiration Re (the sum of 
autotrophic and heterotrophic respiration). 

 

 
Figure 2: Conceptual diagram of the biological forest carbon cycle. Abbreviation for fluxes: net primary 
production (NPP), gross primary production (GPP), autotrophic respiration (RA), root respiration (RR), 
heterotrophic respiration (RH), decomposition of detritus (D) and herbivory (H). The forest carbon cycle is 
characterized by the presented biological (forest ecosystem) cycle with addition of an industrial (forest products) 
cycle. Adapted from Gower (2003). 

Various large-scale disturbances that affect terrestrial vegetation, such as drought, flood, wind 
disaster, insect pests and human activities (land use change or deforestation) are also 
contributing to the carbon cycle. NEP minus the carbon release due to various disturbances is 
net biome production (NBP) (Yuan et al., 2006). 

Running et al. (2000) argues that the change in terrestrial biological production is the most 
hors (Yuan et al., 2006; 

Running et al., 2000; Cramer et al., 1999) pointed out that NPP is used commonly in carbon 
cycle models for studying global carbon cycle, carbon source and sink of ecosystem, and spatial 
and temporal distribution of CO2, and as an index of ecological change  (Liu et al. 2015).  

With increased atmospheric carbon dioxide and global climate change, NPP over large areas is 
also changing (Cramer et al., 1999; Zhao and Running, 2010; Azhdari et al., 2020, Zhang et 
al., 2020).  

accurate, regular measure of the producti  This 
author presented potential usage of NPP models in both, theoretical and practical aspects. 
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Running et al. (2000) points out that the spatial and seasonal dynamics of CO2 fluxes are 
important for global climate modelling, and they represent the dynamic interaction between the 
atmosphere, biosphere, and oceans, as well as relation of seasonal fluxes of net photosynthesis 
and respiration to seasonal variations of atmospheric CO2. This study highlights the practical 
utility of NPP models in measurement of economically and socially significant products of 
vegetation growth (crop yield, range forage and forest production). 

Cramer et al. (1999) also emphasizes the importance of NPP for studying the response of the 
ecosystems to climate change. 

Estimation of NPP is used to predict and assess the biomass potential related to food and energy 
production (Tum, 2016). 

1.4. Factors governing the level of carbon storage 

Anthropogenic influence through net release of CO2 to the atmosphere and forest conversion 
is the most important factor impacting the carbon pools (Cramer et al., 1999). 

Climate change is causing changes in the rate of carbon storage because of changes in 
atmospheric CO2 (Cramer et al., 1999), disturbances (Yuan et al., 2006), temperature, soil and 
atmospheric moisture (Field et al., 1995). 

Quantity of carbon that is captured by plants depends on processes like photosynthesis and 
respiration. Environmental factors, which impact these processes, bility to 
capture carbon. According to Ruimy et al. (1994) these factors are following: natural or 
cultivated vegetation; water availability; metabolic type of plants (C3 and C4 carbon fixation 
pathways). 

Other factors include the solar irradiance, humidity, nutrient availability, forest age (Govind 
and Kumari, 2014), topography, physical and chemical characteristics of the soil and impact of 
animals through regulating plant community composition (Field et al., 1995). 

Plant characteristics have effects on NPP due to their genetics, capability of access to resources, 
susceptibility to pests and pathogens, development of species composition (Field et al., 1995).    

1.5. Net Primary Production estimation methods 

Ruimy et al. (1994) categorized the models into three groups: (1) statistical, (2) parametric and 
(3) process models.  

Ground-based monitoring of terrestrial primary production (e.g. biomass measurement with 
forest inventories) enables direct measurement and serves as a basis for accurately estimating 
NPP (Pan et al., 2014). Repeated observations of tree carbon stocks are used to measure many 
of the basic components of a tree needed to estimate a volume, which is converted into biomass 
or carbon estimates (Neumann et al., 2016). 

Another method of ground-based monitoring of terrestrial NPP is flux measurement 
of exchanges of carbon dioxide, water vapor, and energy between the biosphere and 
atmosphere using eddy covariance technique (Baldocchi et al., 2001, Pan et al., 2014). 

As these fluxes or NPP obtained from forest inventory data (NFI) cannot be observed directly 
at the regional or global scale (Cramer et al., 1999), there was a necessity to estimate global 
carbon fluxes and establish global consistent database of NPP (Scurlock et al., 1999). To do 
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physical princip
1999). Therefore, these small-scale observations are used to calibrate, parameterize, evaluate 
(Zhao et al., 2005, Turner et al., 2006, Pan et al., 2006) and validate (Cramer et al., 1999, 
Neumann et al., 2016) terrestrial biosphere models. 

As already mentioned, NPP is sensitive to many controlling factors, but climate plays a major 
role in NPP variability (Zhao et al. 2006). First NPP model (MIAMI, Lieth 1975), which is 
used as a baseline for other models (Cramer et al., 1999), relate annual NPP to the annual 
average temperature and precipitation without considering solar radiation and CO2 
concentration. More advanced models use different input data sets to represent global climate, 
vegetation and soils (Cramer et al., 1999). 

Various process-based model (GLO PEM by Prince 1991; CASA by Potter et al., 1993; 

proposed by Monteith (Monteith 1972; Monteith 1977).  This logic linearly relates the NPP of 
well-watered and fertilized annual crop plants to the amount of absorbed photosynthetically 
active solar radiation (APAR). Absorbed photosynthetically active radiation (APAR) is 
determined by the amount and geometry of displayed leaf material (LAI) and the geographic 
and seasonal variability of daylength and potential incident radiation, as modified by cloud 

of APAR converted into organic dry matter (NPP) (Ruimy et al., 1994). Therefore, NPP for a 
location (x) and time (t) is represented as: 

 

   Equation 1 

 

This equation presents the simplified calculation for CASA (Carnegie-Ames-Stanford 
 

primary production and autotrophic respiration separately:   

 

 NPP = GPP  Respiration    Equation 2 

 

Vegetation Indices (VIs), obtained from global satellite data sets, are utilized for 
photosynthetically active radiation (FPAR) estimation (Myneni et al., 2015), and thus the 
absorbed photosynthetically active radiation (APAR). That methodology connects satellite 
observations to biological production on large scales (Maisongrande et al., 1995) and provides 

(Cramer et al., 1999).  

The conversion efficiency of absorbed 
types (Ruimy et al., 1994) and climatic conditions (Running et al., 2004). For some early 

max) is assumed to be 

max is 
adjusted by temperature stress factors and moisture stress (CASA model, (Potter et al., 1993)) 
or minimum temperature and water pressure deficit (MOD17 model, (Running et al., 2004)). 
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max), these models require a land cover 
classification which are also derived from satellite data (Hilker et al., 2008).  

vegetation in a spatially continuous mode and with high temporal resolution. Availability of 
continuous vegetation indices products (such as NDVI) which are used for modelling 
photosynthetically active radiation (FPAR) (Myneni et al., 2015), respiration (Running and 
Zhao, 2019) and land cover classification or vegetation type maps on which biome-parameters 
and the conversion efficiency are based (Running et al., 2000), gives opportunity for 
continuous monitoring of global vegetation production (Running et al., 2004). 

1.6. Global NPP estimates 

Approximately, 550 Gt of carbon exists in terrestrial vegetation (Bar-On et al., 2018). Ruimy 
et al. (1994) estimated from the literature that NPP value is about 60 Gt of carbon (GtC) per 
year for the whole of the continental surfaces, with rather large discrepancies between the 
estimates. 

Tum et al. (2016) calculated, using BETHY/DLR model, global average of 60.2 Gt C per year 
for a period of fifteen years (2000 2014), with the main contribution from the Tropics. Cramer 
et al. (1999) compared seventeen global models of terrestrial biogeochemistry which resulted 
in a range from 44.4 to 66.3 Gt C year 1. 

Mean global GPP and NPP estimates from MODIS (Zhao et al., 2005) from 2001 to 2003 are 
109.29 Gt C y-1 and 56.02 Gt C year-1, respectively. Mean global and European terrestrial NPP 
showed in Figure 3 and Figure 4 are products from MODIS NPP model (read more in the 
chapter 1.7). 

Ito (2011) analysed the literature from 1862 to 2011 and extracted 251 estimates of total 
terrestrial NPP finding the mean value of 56.2 Gt C yr-1 with the standard deviation of ± 14.3. 

Many authors showed a constant increase in annual NPP (Matsushita et al., 2004, Cao et al., 
2004, Li et al., 2017). From 1961 to 2010, total global terrestrial NPP increased by 10.14 Gt C 
with an annual increase of 0.23 Gt C (Li et al., 2017). 

This shows that even that the terrestrial net primary production is influenced by, and sensitive 
to many factors, models based on different types and parameters give similar results on a global 
scale (Field et al., 1995).  



7 

 

 
Figure 3: Global mean terrestrial net primary production (NPP) for 2000  2010 (Running and Zhao, 2019). 

 

 
Figure 4: MODIS NPP on 0.5-km resolution representing annual NPP for 2020. NPP data derived from the 

 https://lpdaacsvc.cr.usgs.gov/appeears/) 
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1.7. MOD17 NPP product  

The MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the primary global 
monitoring sensors on NASA Earth Observing System (EOS) satellites. The TERRA, EOS-
AM platform was launched on December 19, 1999, and since the year 2000, the MOD17 
product provides spatially and temporally continuous NPP estimates across the globe (Zhao et 
al., 2005). 

The latest released MODIS NPP product, MOD17A3H collection 6, is an annual composite at 
500 m spatial resolution delivered as a gridded Level-4 product in Sinusoidal projection 
(Running and Zhao, 2019). MODIS sensor was partly designed for the purpose of monitoring 
critical components of the biosphere carbon cycle at regional and global scales (Turner et al., 
2003), and it has significantly improved vegetation observation capacities (Hasenauer et al., 
2012). Consequently, NPP and GPP estimates obtained with MODIS algorithm has been 

et al., 2021). 

500 m and 1000 m spatial resolution are useful for regional level application if random errors 
in the NPP predictions are not too large and if the landscape is not too fragmented (Lang et al., 
2013). 

1.7.1. Limitations of coarse data and possible improvements with higher spatial 
resolution 

Most of the remote sensing-based models use spatial resolution of 1 km (C-Fix model  
Veroustraete et al., 1994; BEPS - Liu et al., 1997) and 0.5 km (MODIS - Running et al., 2004). 
Even though this spatial resolution is feasible for monitoring of growth for single forest stands 
with 25  100 ha sampling units (Lang et al., 2017), pixels for these spatial scales on European 
continent represent mixed vegetation (Veroustraete et al., 2002), and hence, have errors in 
model parameters (Zhao et al., 2005) and may miss finer scaled variations (Scurlock., et al. 
1999). More authors (Running et al., 2004; Pan et al., 2014; Neumann et al., 2016; Lang et al., 
2017) advocated that finer spatial resolution would be able to better represent specific local 
conditions. 

Moreover, errors in land cover maps may cause large uncertainties (Quaife et al., 2008; Lang 
et al., 2013). Satellite-based model assume a constant land cover type within each pixel (Jay et 
al., 2016) and when landscape is fragmented or not homogeneous, scale patterns such as clear-
cuts, thinning operations or disturbance events are not detectable (Neumann et al., 2016). It 

therefore, land cover classification is causing the largest error (Hilker et al., 2008). Biome-
specific parameters extracted from the Biome Properties Look-Up Table (BPLUT) distinguish 
only between 11 different vegetation types (Turner et al., 2003) and 5 for forest.  

Turner et al. (2003) showed that light use efficiency is highest on overcast days and decreases 
max in MOD17 do not vary in time and it has values which are adjusted 

max should be specified for clear 
sky and overcast conditions and that final value is ranged between those values depending on 
the degree of cloudiness. 

Running et al. (2004) and Lang et al. (2014) argued that MODIS data alone is insufficient for 
regional level planning and decision-making.  
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Calibration of the BPLUT tables used in the MOD17 algorithm most likely represents average 
forest conditions and may not capture heterogeneous, very open or very dense forests 
adequately (Neumann et al., 2016). Therefore, temporal variability (Hilker et al., 2008
genetics, capability of access to resources and physical and chemical characteristics of the soil 
(Field et al., 1995) are not considered. 

As models require field measurements of NPP for parameterization, calibration, and validation 
(Zheng et al., 2018), the plot measurements or field scales may not represent the NPP at the 
500 m grid. Since most measurements are conducted in the small areas ranging from less than 
1 to several hectares (Running et al., 2004), direct comparison of these results with coarse 
resolution models can be misleading (Pan et al., 2014, Ruimy et al., 1994, Kwon and Baker, 
2017).  

According to Hasenauer et al. (2012), MOD17 algorithm assumes a fully stocked forest. Hence, 
as forest management impacts the stand density and allocation of carbon, satellite driven NPP 
model does not detect these effects. To overcome this issue, authors proposed integration of 
stand density effect in the model to enhance NPP predictions. 

The quality of the input climate data to ecosystem models is also critical to the modelled results 
(Matsushita et al., 2004). The current version of GMAO/NASA (used in the MOD17) is hourly 
time step dataset with about half-degree spatial resolution (0.5 Latitude degree by 0.625 
Longitude degree) and the problem of coarse spatial resolution is to some extent solved with 
spatial interpolation. However, the accuracy of final NPP depends on the accuracy of GMAO 
data, properties of local environmental conditions (Running and Zhao, 2019) and on number 
and distribution of weather stations (Matsushita et al., 2004). Regions with low density of 
weather stations and lack of observations as well as with high productivity, such as tropics, 
result in large uncertainties in GPP and NPP (Zhao et al., 2006). 

1.7.2. Improvements of MODIS NPP/GPP model 

of the MODIS land products (Turner et al., 2006). Coarse resolution meteorological data input 
was improved by spatial interpolation and temporal filling of cloud-contaminated LAI/FPAR 
data and the Biome Parameter Look-Up Table (BPLUT) was modified (Zhao et al., 2005) for 
Collection 5 (C5). The latest Collection 6 (C6) has the higher spatial resolution of 500 m, which 
makes the data more useful at local scale (Running and Zhao, 2019). 

To reduce biases from meteorological inputs, Zhao et al. (2006) proposed adjustment of 
reanalyses based on station observations and modification of parameters in the MOD17 
BPLUT to compensate for the biases from different meteorological reanalyses. 

Some studies were focused on model adjustment to local and regional conditions. Pan et al. 
(2006) incorporated other factors which are expressed at the local scales by developing the 

forests in mid-Atlantic region of the United States. Wang et al. (2013) incorporated the time 
lagged serial correlation analysis to study the relationship between NPP and climatic factors in 
Wuhan in China, and thus, to improve FPAR, PAR and LUE. The authors stated that this 
accurate and operational model can be modified and applied to other regions to map vegetation 
NPP. 
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Neuman et al. (2016) created the NPP product for Europe (MODIS EURO) by running the 
original MOD17 algorithm in which the climate dataset used in MOD17 (NCEP2) 
(approximately 1.875° spatial resolution) was replaced with local European climate data (1-km 
resolution). MODIS EURO decreased the differences with NFI NPP from 26% to 7%. 
 

Yu et al. (2018a) achieved higher NPP/GPP precision for most vegetation types with LAI and 
FPAR products based on Global LAnd Surface Satellite (GLASS). After validation of 
estimated data against the BigFoot NPP, RMSE for MODIS NPP on BigFoot sites was 219.26 
gCm 2 yr 1, while with the RMSE for improved GLASS NPP was 160.16 gCm 2 yr 1. 

High spatial resolution (30 m) GPP and NPP products were developed based on multi-scale 
remote sensing data and with a downscaling method where LAI/FPAR was obtained. Spatial 
and temporal adaptive reflectance fusion model (STARFM) (Yu et al., 2018b) was used, and 
it showed applicability and reliability. 

Validation scaling issues were addressed by the BigFoot project (Turner et al., 2005) in which 
digital maps (25 km2) of land cover, LAI, daily GPP, and annual NPP were developed from 
the Landsat data and ground measurements (Turner et al., 2006). 

Increasing spatial resolution methods were already preformed using fine resolution climate 
data (Matsushita et al., 2004; Neumann et al., 2016), local and regional land cover maps with 
higher spatial resolution (Nilson et al., 2012; Kimball et al., 2017) or improved spatial 
resolution of land cover maps through an image fusion of Landsat and MODIS satellite data 
products (Jay et al., 2016).  

High spatial resolution and reliable climate datasets provide improved quality of GPP/NPP 
products both spatially and temporally (Matsushita et al., 2004; Zhao et al., 2006; Neumann et 
al., 2016).  

 
In essence, possible benefits of using high spatial resolution data are:  

 Using high spatial resolution GPP/NPP (10 to 30 m) would provide the opportunity to 
match the scales of inventory data and modelled NPP, and therefore, improve validation 
and calibration activities;  

 Finer spatial resolution would be able to better represent specific local conditions (Running 
et al., 2004; Pan et al., 2014; Neumann et al., 2016; Lang et al., 2017); 

 Fragmented or heterogeneous areas such as clear-cuts, thinning operations or disturbance 
events are better detectable; 

 Higher spatial resolution of land cover map would possibly provide more spatial variation 
max) and other biome-parameters (Scurlock et al., 1999); 

 Assess potential effects of different forest management practices on the allocation patterns 
of carbon; 

 High spatial resolution NPP maps would be able to separate different forest stands, to 
distinguish ownership boundaries and they would be sufficient for regional level planning 
and decision-making. 
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2. Objectives 

The goal of this thesis is to study the feasibility and to provide a roadmap to estimate forest 
production at high spatial resolution (10-30 m pixel size) using satellite and other data from 
the Copernicus programmes. 

The study is focusing on the assessment of the MOD17 NPP algorithm, and its adaptation with 
USGS Landsat, Copernicus Sentinel-2 and other Copernicus weather data. The model is 
executed on different sites and the results are compared to native MOD17 data and to forest 
inventory data obtained with ground-based monitoring in Slovenia and Austria. 

Benefits of 10-30 m spatial resolution NPP are analysed on a plot level (500 m2) and on a stand 
level.  

A second objective is to assess the relationship between high spatial resolution NPP and annual 
increment at the plot scale (500 m2). 

Furthermore, analysing this model at high spatial resolution would provide better 
understanding of input parameters on a smaller scale (on a stand and on a plot level). Potential 
improvements and directions of further research are presented.  
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3. Materials and Methods 

3.1. Description of MODIS NPP algorithm 

The MODIS algorithm MOD17 is based on an ecophysiological modelling approach and it 
uses remotely sensed satellite-data and climate data to predict spatially and temporally 
continuous NPP and GPP (Gross Primary Production or carbon assimilation) (Running et al., 
2004).  
 

 which was proposed by Monteith (Monteith 1972; 
Monteith 1977).  This logic linearly relates the NPP of well-watered and fertilized annual crop 
plants to the amount of absorbed photosynthetically active solar radiation (APAR).  

The MOD17 algorithm (Figure 5) requires FPAR and LAI (leaf area index) data as well as land 
cover data, which is derived from MODIS reflectance data. The algorithm is combined with 
climatic controls on NPP (Running et al., 2000). For any given pixel within the global set of 
500 m land pixels, estimates of both GPP (on an eight-day time-step) and annual NPP are 
calculated. 
 

 
Figure 5: Flowchart showing the logic behind the MOD17 algorithm in calculating the 8-day average GPP and 
annual NPP (Running and Zhao, 2019; MOD17 user guide).  
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The annual growth respiration and net primary production are calculated as follows (Running 
and Zhao, 2019): 

NPP = GPP  Rm  Rg              Equation 3 

where: 

Rm (annual maintenance respiration) and Rg are obtained as follows:  

 Equation 4 

 

Rg = 0.25 * NPP     Equation 5 

Then:  

NPP = 0.8 * (GPP  Rm)   when GPP  Rm >=0 

   NPP = 0        when GPP  Rm < 0   Equation 6 

The calculation of the GPP is based on the following equations:  

 

GPP      Equation 7 

where:  

 

PAR represents the photosynthetically active radiation which is estimated from incident 
shortwave solar radiation load at the surface (SWRad, provided in the GMAO/NASA dataset) 
of which 45% is photosynthetically active as: 

 

PAR = (incident short wave radiation * 0.45)   Equation 8 

    

fPAR represents the fraction of PAR absorbed by the canopy. It is calculated in the MODIS 
product MOD15 (MOD15A2H) at 500 m pixel size. 

 

 (gC MJ-1) represents the photosynthetic efficiency term obtained as:  

 

 =  max * Tmin_scalar * VPD_scalar    Equation 9 

 
 max represents the maximum radiation conversion efficiency for a given vegetation type and 

VPD_scalar  and Tmin_scalar, which are multipliers between 0 and 1, are addressing water stress 
due to vapor pressure deficit (VPD) and low temperature limits (Tmin, daily minimum 
temperature). VPD_scalar and Tmin_scalar are calculated with the linear ramp functions with 



14 

 

VPDmax, VPDmin, Tmin_max and Tmin_min, values prescribed in BPLUT for each biome category 
(Table 1). 

Values of Tmin  max is 
obtained from the BPLUT. 

The GMAO/NASA daily meteorological data (https://gmao.gsfc.nasa.gov/GMAO_products/) 
is obtained with a spatial resolution: 0.5 Latitude degree by 0.625 Longitude degree (Gelaro et 
al., 2017).  

The BPLUT provides the parametrization for individual biome types that is based on the land 
cover classification derived from MCD12Q1v006 (Friedl and Sulla-Menashe, 2019).  

 
The net photosynthesis - PSNnet (kg C day-1) is calculated as:  

PSNnet = GPP  Leaf_MR - Froot_MR   Equation 10 

where:  

Leaf_MR = Leaf_Mass * leaf_mr_base * Q10_mr [(Tavg - 20.0) / 10.0]    Equation 11 

 

Froot_MR = Fine_Root_Mass * froot_mr_base * Q10_mr [(Tavg - 20.0) / 10.0] Equation 12 

 

Leaf_Mass = LAI (Leaf Area Index) / SLA (projected leaf area)  Equation 13 

  

Fine_Root_Mass = Leaf_Mass * froot_leaf_ratio   Equation 14 

  

The other inputs include:  

- LAI comes from the MOD15 product at 500 m pixel size; SLA, leaf_mr_base, 
froot_mr_base and froot_leaf_ratio are tabulated in the BPLUT table.   

- Q10_mr = 2 for fine root and live wood calculation, Q10= 3.22  0.046 * Tavg for 
maintenance respiration by leaf and Tavg is the average daily temperature from the 
GMAO/NASA dataset.   

The annual maintenance respiration: 

Livewood_MR = livewood_Mass * livewood_mr_base * annsum_mrindex Equation 15 

 

where:  

- livewood_Mass = ann_leaf_mass_max * livewood_leaf_ratio     
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- ann_leaf_mass_max = maximum of Leaf_Mass = LAI / SLA  
- livewood_leaf_ratio and livewood_mr_base are tabulated in the BPLUT table 
- annsum_mrindex is the annual sum of Q10_mr [(Tavg - 20.0) / 10.0]  

3.2. High spatial resolution model input datasets 

To generate high spatial resolution NPP estimates, MOD17 algorithm input parameters were 
replaced with hight spatial resolution parameters which were derived from USGS Landsat, 
Copernicus Sentinel-2 (HLS data) and other Copernicus datasets (climate data). 

3.2.1. Land cover map 

Land cover (LC) map is used for extraction of biome-specific parameters from Look-Up Table 
(BPLUT). The Land Cover Map used for this model is a product of the S2GLC project acquired 
from the Sentinel-2 satellite, which consists of 13 land cover classes (deciduous and conifers 
for forest) at a spatial resolution of 10 m for the year 2017. Its overall accuracy, based on nearly 
52,000 samples, was estimated to be 86 % (Malinowski et al., 2020). 

3.2.2. Climate dataset 

MOD17 uses global meteorological reanalysis data provided by GMAO/NASA with about 
half-degree spatial resolution (0.5 Latitude degree by 0.625 Longitude degree) (Running and 
Zhao, 2019).  

High resolution NPP model uses ERA5-Land Copernicus Climate Change Service Product 
which runs at enhanced resolution of 0.1° (native resolution is 9 km) (Muñoz Sabater, 2019), 
from which hourly surface solar radiation downwards (incident shortwave radiation) is 
obtained. Daily incident shortwave radiation (SWRad) is accumulated for each day (joules per 
square meter per 1-hour time step).  

E-OBS is another dataset from the Copernicus Climate Change Service (C3S) which contains 
series of daily observations at meteorological stations throughout Europe (Cornes et al., 2018).  
E-OBS v23.1e has 0.1° horizontal resolution which provides daily mean temperature, daily 
minimum temperature, and relative humidity, usually at 2-meter height.  

3.2.3. Harmonized Landsat and Sentinel-2 dataset 

The Harmonized Landsat/Sentinel-2 (HLS) project provides a surface reflectance product that 
combines o /Copernicus -2 
satellites at moderate spatial resolution (30 m) (Claverie et al., 2018). The combined 
measurement enables global observations of the land every 2 3 days. HLS has adopted the 
tiling system used by Sentinel-2 and includes 4090 MGRS (Military Grid Reference System) 
tiles.  

For generating a harmonized, analysis-ready surface reflectance data the following algorithms 
are applied to the HLS data: atmospheric correction, cloud and cloud-shadow masking, spatial 
co-registration and common gridding, illumination and view angle normalization and spectral 
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bandpass adjustment (Claverie et al., 2018). In this study, the HLS dataset is used for estimation 
of LAI and FPAR. 

 

With the land cover map obtained from the Sentinel-2 Global Land Cover (S2GLC) project, 
meteorological reanalysis data from ERA5 and E-OBS datasets and reflectance data from HLS, 
higher spatial resolution inputs for all parameters is achievable. Land cover map spatial 
resolution changed from 500 m to 10 m, climate data (Tmin, Tmean, SWrad and RH) from 70 km 
to 9 km (0.625° to 0.1°) and vegetation indices (FPAR/LAI) from 500 m to 30 m (Figure 6).  

 

 
Figure 6: Increase of spatial resolution of model inputs when introducing new datasets. 

3.3. Study area 

area of 20,273 km2. With the mountain ranges in the north, hilly central part with its numerous 
valleys and basins, and Pannonian plain in the northeast, Slovenia is a very diverse country. 
Average inclination of the terrain is 25% and the average altitude is 550 m (Kus et al., 2018). 

The three main types of climates in Slovenia are (1) temperate humid climate with hot 
summers, (2) temperate continental climate and (3) mountain climate (Komac et al., 2020). 
Terrain diversity, climate and pedological variety, large forests and the preservation of 
traditional ways of managing parts of the cultural landscape are the reasons for the high 
biodiversity (Kus et al., 2018). Average temperatures of the coldest months do not drop below 
-3° C and at least four months have an average temperature of above 10° C (Komac et al., 
2020). 

According to the Slovenia's National Inventory Report (2020), forest land area in Slovenia in 
2018 was 1,208,010 ha, which is 59.6% of the country. Beech, fir-beech and beech-oak sites 
cover most of the forest land (70%). The share of growing stock of coniferous trees in 2017 
was 46.4% and 53.6% of deciduous trees. Main tree species are beech (Fagus sylvatica), spruce 
(Picea abies), fir (Abies alba), oak (Quercus sp.) and Scotch pine (Pinus sylvestris). 

 

Five districts in the southern part of Austria (Spittal/Drau, Tamsweg, Murau, St. Veit/Glan, 
Feldkirchen) were selected for the second NPP validation. These districts are geographically 
situated between 46° 38' 47° 20'N and 12° 41'-14° 41'E with the area of 7224.34 km2. Most of 
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the study area is mountainous and elevation range from 456 m to 3449 m with the average 
altitude of 1449 m. 

The climate is humid continental, with hot and moderately wet summers and long harsh winters 
with an average temperature of 7.4°C. Forest area covers approximately 45% of the selected 
area. Dominant tree species are Norway spruce (Picea abies) with share of more than 90%, pine 
(Pinus sylvestris), and European larch (Larix decidua). Broadleaf trees like European beech 
(Fagus sylvatica) or oak (Quercus petraea, Quercus robur) are only of local importance (Gutleb 
1998). 

3.4. Reference data 

For the purpose of testing the high spatial resolution NPP model (hereafter called HLS NPP), 
data from Slovenian Forest Ecosystem Condition Survey (FECS) were used for evaluation of 
10 m spatial resolution NPP. Slovenian FECS took place on the systematic grid of permanent 
sampling plots (4 km x 4 km) across the entire Slovenia in the years 2000, 2007, 2012, and 
2018 (Skudnik et al., 2021). Figure 7 shows the distribution of the FECS plots. In the last 
inventory cycle, 759 out of the 1260 plots (60%) were categorized as forests and the NPP was 
modelled at the coordinates of these plots. The data available from the FESC: standing volume 
in 2012 and 2018, total periodic increment, share of deciduous and conifers, ID of the plots 
completely located in forest and ID of the plots were harvesting or mortality did not occur 
between the last two inventories. Plots are circular with the size of 500 m2. National forest 
inventory data was provided by the Slovenian Forestry Institute. 

 
Figure 7: Sampling plots of the Slovenian National Forest Inventory. The green dots represent plots categorized 
as forests in 2018.  
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Due to the Slovenian Forestry Institute regulations only the degraded NFI plot coordinates were 
available which were rough approximations of the exact plot locations. As the real NFI plots 
are located in the area approximately up to 1 km distance from the degraded coordinates, square 
buffer polygons of 1.96 km2 around the available NFI points were created for NPP modelling 
and analysis (Figure 8). 

 

 
Figure 8: NFI plots and polygons in Slovenia for which the NPP is estimated. This map represents part of the NFI 
plots with the shapefile of polygons for NPP estimation and land cover classification. 

As the HLS dataset is available from 2016, and the last inventory cycle was for period 2012-
2018, correlation between the annual average NPP for the period 2016-2018 and annual 
average increment data for the period 2012-2018 was studied. However, HLS dataset is still 
not available for the entire globe and the eastern part of Slovenia is not being processed in the 
HLS dataset. Therefore, 557 NFI plots (73.4 %) are covered with the HLS dataset. 

Out of 759 plots, 714 are completely in forest. On 104 plots harvesting or mortality did not 
occur between two inventory periods and 299 plots are comprised of either only broadleaf or 
conifer species. As there is no data available for the year of harvest, for reliable comparison it 
was only possible to analyse the correlation between the NPP and annual increment for plots 
for which harvesting was not reported between 2012 and 2018. It is assumed that the annual 
increment from 2012 to 2018 did not vary too much. Therefore, periodic annual volume 
increment (PAI) is considered for correlation analysis against the mean NPP for the period 
2016-2018. 

Due to limits on data sharing and actual lack of data, we could obtain only data for standing 
tree volume in years 2012 and 2018 and share of conifers/broadleaves for each plot. Individual 
tree data (dbh  diameter at breast height, age, height) and deadwood data were not available. 
As tree NPP is strongly influenced by age, volume of separate tree compartments and 
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individual taxation data (Thurnher et al., 2013), it was not reliable to calculate the terrestrial 
NPP only with the annual increment for entire plot. Thus, comparison between MODIS NPP 
and HLS NPP as well as correlation analysis between annual HLS NPP and the periodic annual 
increment were performed. For further research it is necessary to compare high spatial 
resolution NPP with the NPP obtained from forest growth observation including individual tree 
measurements, mortality and turnover of foliage. 

For testing the HLS NPP model for five districts in the southern part of Austria (Figure 9) tree 
core samples from 30 plots were analysed. Annual data for growth ring size was provided and 
analysed by BFW within the H2020 Landsupport project and based on the contract for services 
concluded between the Umweltbundesamt and the Bundesforschungszentrum für Wald (BFW) 
(20.10.2021). Annual diameter increment values were measured from 1991 to 2019. For the 
period from 2016 to 2019 NPP is estimated for forest areas in these 5 districts with the HLS 
NPP model. 

 
Figure 9: Selected area (marked in yellow) of the tree core samples taken in 2020. 

Timber volume increment data was not provided by BFW. Therefore, it was not feasible to do 
a correlation analysis between timber volume/biomass growth and the NPP estimation. 
Nevertheless, connection between the annual NPP and annual growth ring size obtained from 
sampled cores was tested. 

We also compared the modelled HLS NPP for study areas in Slovenia and Austria with MODIS 
NPP data. The Collection 6.1 yearly NPP data was downloaded from The Land Processes 
Distributed Active Archive Center (LP DAAC) and projected to the UTM coordinate system 
(UTM zone 33) using nearest neighbour sampling. 

The MODIS NPP data used in this study were gridded at 0.5-km resolution at the global scale. 
To address an issue of scale differences, manually selected polygons of 1 km2 area covering 
homogeneous forest areas were selected for NPP comparison and aggregated weighted mean 
NPP values from both datasets were extracted for the selected polygons. In addition, 1362 
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forest stands located on NFI points in Slovenia were selected for NPP comparison and the same 
method for NPP extraction was used. 

3.5. Input data processing 

The NPP calculation was described in the chapter 3.1. In the following text, more detailed 
explanation of the calculation of photosynthetic efficiency ( ) and vapor pressure deficit is 
presented, as well as how to obtain meteorological data and FPAR/LAI time series at a high 
spatial resolution.  

For HLS NPP model, the MOD17 algorithm scripts were modified to run with HLS and other 
Copernicus data (weather and land cover) to achieve high spatial resolution NPP of 10 m. All 
the raster data were projected to the UTM projection system. The open-access R statistical 
software 4.1 version was used to process all the input data and to run the algorithm.  

Inputs for NPP model are PAR (45% of SWrad), FPAR, LAI, BPLUT parameters (obtained 
max) and weather data (Tmin, Tmean, VPD). 

Areas for NPP modelling were selected around Slovenian NFI coordinates. To cover the whole 
forest stands in which NFI plots are located, areas of 1.96 km2 are selected for NPP estimation. 
Pixel values from the Sentinel-2 Global Land Cover (S2GLC) (Malinowski et al., 2020) map 
were extracted for the selected polygons. Pixels representing non-forest classes were masked 
out. For the study area in Austria, NPP was estimated for entire area classified as forest. 

Based on the land cover map (S2GLC), set of biome-specific parameters were extracted from 
the Biome Properties Look-Up Table (BPLUT) for each pixel. Forest type is classified in two 
classes in S2GLC map (coniferous and broadleaf) and all BPLUT parameters were derived for 
these two classes. Biome-specific parameters are represented in Table 1.  

Table 1. Biome-Property-Look-Up-Table (BPLUT) for MODIS GPP/NPP algorithm (Running and Zhao, 2019). 

S2GLC 
Evergreen Needleleaf 

Forest (coniferous) 
Deciduous Broadleaf 

Forest (broadleaf) 

LUEmax (KgC/m2 /d/MJ) 0.000962 0.001165 

Tmin_min (C) -8.00 - 6.00 

Tmin_max (C) 8.31 9.94 

VPD_min (Pa) 650.0 650.0 

VPD_max (Pa) 4600.0 1650.0 

SLA (LAI/KgC) 14.1 21.8 

Q10* 2.0 2.0 

froot_leaf_ratio 1.2 1.1 

livewood_leaf_ratio 0.182 0.203 

leaf_mr_base 0.00604 0.00778 

froot_mr_base 0.00519 0.00519 

livewood_mr_base 0.00397 0.00371 

*: The constant Q10 = 2.0 is applied to fine roots and live wood, while for leaves, a temperature acclimation is: 
Q10 = 3.22  0.046 * Tavg 
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MOD17 algorithm uses land cover map derived from MCD12Q1v006 which has 2 land cover 
types (needleleaf and broadleaf) for both, evergreen and deciduous forests and mixed forest 
type (5 in total). S2GLC map, which is used in adjusted, high resolution model (HLS NPP), 
differentiate only coniferous (needleleaf) and broadleaf land cover classes. However, evergreen 
broadleaf and deciduous needleleaf forest (except for larch stands) are negligible in the study 
areas. According to MODIS MCD12Q1v006 land cover map, area of deciduous needleleaf 
class is 0.12% of forest areas in selected polygons in Slovenia and 0.1% of forest areas in study 
area in Austria. Area of evergreen broadleaf class is 0.02% of forest areas in study area in 
Austria. Therefore, BPLUT values for coniferous land cover class pixels were obtained from 
parameters based on evergreen needleleaf forest class and for broadleaf class pixels from 
parameters based on deciduous broadleaf class. 

All meteorological values (Tmin, Tmean, SWrad and relative humidity) for each NFI plot in 
Slovenia were spatially interpolated using bilinear interpolation method. For the study area in 
Austria, entire area is gridded at 2 km resolution and 3240 polygons of 4 km2 were created. All 
meteorological values for each polygon were also spatially interpolated with the same method 
because spatial interpolation for each 10 m resolution pixel demands high computing power 
and is unproductive.  

max with scalars of daily Tmin and VPD (Equation 
9). Tmin scalar and VPD_scalar (Figure 10) are linear ramp functions of daily Tmin and VPD and 
they convert Tmin and VPD to scalars ranging from 1 (optimal conditions) to 0 (extremely 
stressed conditions). Tmin is obtained from E-OBS dataset and VPD is calculated for daytime 
as the difference between saturated vapor pressure (SVP) and actual vapor pressure (AVP) 
(Equation 16). SVP is estimated with daytime average air temperature (Equation 17). Daytime 
is determined when hourly downward solar radiation is above zero. AVP is calculated with 
relative humidity (RH) (Equation 18) (He et al., 2018).  

 
Figure 10: The TMIN and VPD attenuation scalars are simple linear ramp functions of daily TMIN and VPD 
(Running and Zhao, 2019). 

Vapor pressure deficit (VPD) is calculated as follows: 

VPD = SVP  AVP     Equation 16                                                       

where: 

SVP = 6.1078 * exp((17.269*Tdaytime) / (237.3+ Tdaytime))  Equation 17                    

Daytime is determined when hourly downward solar radiation is above zero. Thus, only 
temperature for hours when radiation is above 0 is averaged.  

Actual vapor pressure (AVP) is based on the following equation: 

AVP =(RH*SVP)/100      Equation 18                                                 
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RH  daily relative humidity obtained from E-OBS database, spatially interpolated for NFI 
points. 

Finally, VPD scalar and Tmin scalar are linear ramp functions of daily VPD and Tmin (Figure 
10). The following formulas show how Tmin and VPD scalars are calculated: 

Tmin_scalar = (Tmin - Tmin_min) / (Tmin_max - Tmin_min)   Equation 19                 

VPDscalar = 1 - (VPD- VPDmin_min) / (VPDmin_max - VPDmin_min)  Equation 20      

Daily SWrad is accumulated hourly radiation for each day expressed with units in joules per 
square meter (J m-2) and converted into MJ m-2. 

All climate data (Tmin, Tmean, SWrad and relative humidity) are spatially interpolated with the 
four nearest neighbour technique.  

Daily respiration calculation is done in the same way as in MOD17 algorithm, but with high 
spatial resolution of LAI and BPLUT parameters. 

3.6. FPAR/LAI estimation 

Firstly, FPAR and LAI obtained from S2 (https://github.com/IVFL-BOKU/sentinel2) were 
tested. LAI and FPAR are derived using an Artificial Neural Network (ANN) approach 
implemented for the ESA S2ToolBox (Weiss and Baret, 2016). The ANN was trained with 
simulations from the radiative transfer model PROSPECT+SAIL. The model makes some 
assumptions, particularly regarding canopy architecture, which should be a turbid medium 

able 
performances. However, the algorithm handbook also advices about the possibly to apply 
simple correction for specific canopies that do not respond to the main assumption of the model 
(like forest). 

For Sentinel-2 LAI raster cloud masks was applied to S2 LAI raster data in RStudio to eliminate 
pixels classified as Cirrus, Cloud and Cloud shadow pixels.  Next, data was smoothed using 
the Whittaker smoother (Eilers, 2003) with a Lambda of 1000. Finally, smoothed and gap-
filled images were compared with the MODIS LAI for the forest areas in the western part of 
Slovenia. In Figure 11 the results for the LAI comparison are illustrated and a bias was found 
in the relationship between the two LAI products, with S2 LAI data (range 1.0 to 2.5 LAI) 
constantly lower than MODIS LAI data (range 1.0 to 6.0 LAI). We assume that the problem is 
in the S2 LAI data and correction of this bias would be beneficial.   
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Figure 11: Sentinel-2 LAI vs. MODIS LAI for a large and uniform forest area obtained on 01.05.2019. Scale: 

0.1 

Nevertheless, knowing that there is still a linear relationship between the two datasets, we 
applied the modified MOD17 algorithm in which MODIS LAI was replaced with the Sentinel-
2 LAI to estimate NPP and the results are presented in Figure 12 and Figure 13.  

As respiration calculation is highly sensitive to LAI values and Sentinel-2 (S2) LAI has lower 
values than MODIS LAI, we expected the S2 NPP being higher. The results of the MOD17 
algorithm implemented with the new S2 input parameters (LAI) was compared to the native 
MOD17 product for a large and uniform forest stands where we can assume that the spatial 
resolution has a minor impact. The calculation was applied to the entire year 2019 and we 
obtained a S2 NPP of 1.072 kg C/m2 (NPP per hectare of 10.72 t C/ha). In comparison, the 
MOD17 NPP was 0.836 kg C/m2 (NPP per hectare of 8.36 t C/ha).  

Due to the negative bias in LAI, the NPP model using the 10 m spatial resolution S2 LAI gives 
28.23% higher NPP than MOD17 NPP model. However, the two algorithms showed a linear 
relationship, with S2 NPP showing a much greater (spatial) variability and range of values 
(Figure 12). The next step was to apply a correction for S2 LAI data for the negative bias, 
probably related to the strong assumptions made in the application of the S2 LAI model.  
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Figure 12: S2-derived NPP vs MODIS MOD17 NPP for a large and uniform forest area for 2019. 

 

 
Figure 13: S2-derived NPP vs MODIS MOD17 NPP aggregated at the MODIS spatial resolution (500 m). 
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Considering the limitation in the Sentinel-2 LAI ANN model data and also to obtain better time 
series density, the Harmonized Landsat and Sentinel-2 dataset was used for LAI and FPAR 
estimation that provides better time series density. A simple correlation between the 
Normalized difference vegetation index (NDVI), which is one of the most used vegetation 
indices for estimating LAI and FPAR (Potithepa et al., 2010; Tan et al., 2018), was developed 
to obtain LAI and FPAR. 

First, the NDVI is calculated from the HLS reflectance data and then applied to estimate LAI 
and FPAR. Satellite images for the area of Slovenia for the period of 2016 to 2018 and for the 
study region in Austria for the period of 2016 to 2020 were downloaded from the HLS dataset 

(Claverie et al., 2018), an NDVI band was calculated using the equation  with 

band 8 for Sentinel-2 and band 5 for Landsat as the NIR and band 4 for both satellites as the 
red band. Cloud mask was applied to eliminate pixels of bad quality. Quality Assessment (QA) 
layer was used to create a cloud mask for elimination of pixels classified as Cirrus, Cloud and 
Cloud shadow pixels (Table 2). 

 

Table 2: Description of the bits in the one-byte Quality Assessment layer. Bits are listed from the MSB (bit 7) to 
the LSB (bit 0) 

Bit number QA description Bit combination Description 

7-6 Aerosol Quality 

00 Climatology 

01 Low 

10 Average 

11 High 

5 Water 
1 Yes 

0 No 

4 Snow/ice 
1 Yes 

0 No 

3 Cloud shadow 
1 Yes 

0 No 

2 Adjacent cloud 
1 Yes 

0 No 

1 Cloud 
1 Yes 

0 No 

0 Cirrus 
1 Yes 

0 No 

 

Whittaker smoother (Eilers, 2003) was used to smooth the NDVI time series for 7-days periods. 
The lambda value of 800 was set for this function. Total of 53 NDVI images per year were 
obtained for the study regions. 
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The FPAR NDVI and LAI NDVI relationships were examined to assign the appropriate 
FPAR and LAI estimation. FPAR and LAI were derived from the MODIS LAI/FPAR product 
(MOD15A2H Version 6).  

Due to the coarse spatial resolution of MODIS (500 m), large and uniform forest stands were 
selected for analysis of the FPAR NDVI and LAI NDVI relationships. To determine which 
forest stands in Slovenia were appropriate for regression analysis, standard deviation of NDVI 
was calculated for all the forest stands in Slovenia. Shapefile of Slovenian forest stands is 
available from the open-source database of The Slovenia Forest Service (Zavod Za Gozdove 
Slovenije, 2021). Zonal statistic QGIS plugin was used for calculation of standard deviation 
(SD) of NDVI for each stand. For 22 stands which had the lowest SD of NDVI, in which 
conifers, broadleaves and mixed stands were equally selected, NDVI was extracted as a 
weighted arithmetic mean. Then, MODIS FPAR/LAI values were extracted on the same stands 
as a weighted arithmetic mean. Based on these forest stands, a linear and an exponential 
relationship (Figure 14) were developed showing a good correlation for both, FPAR and LAI 
(R2=0.7707 and R² = 0.7240, respectively). 

 

 
Figure 14: Regression of mean FPAR/LAI (MODIS) as a function of mean NDVI (HLS) for uniform forest 
stands. FPAR is logarithmic function, LAI is exponential function. 

 

  FPAR = (117.52*NDVI) - 14.925                      Equation 21 

  LAI = 0.5998*(e^(4.911*NDVI))                      Equation 22 

 

Next, for estimation of FPAR and LAI for the NFI plots, NDVI annual stack raster data were 
cropped on 564, 1.4 km by 1.4 km polygons in Slovenia. 30 m cells were disaggregated to 10 
m to fit with LC spatial resolution. Finally, regression formulas (Equation 21 and Equation 22) 
were used for estimation of 10 m spatial resolution FPAR and LAI for pixels classified as forest 
in the selected polygons. 
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3.7. HLS NPP estimation  

New high-resolution inputs (FPAR, LAI, Tmean, Tmin, SWrad, VPD) replaced MOD17 inputs, 
and the model described in the chapter 3.1 was run. The 10 m spatial resolution NPP was 
estimated for the entire study area in the southern part of Austria (3295 km2) and for 564 NFI 
polygons of 1.96 km2 area in Slovenia. Adapted 10 m spatial resolution model is referred to as 
HLS NPP in the following text.  

For evaluation of the NPP and comparison with the NFI data in Slovenia and with the MOD17 
NPP, two sets of data were extracted from the obtained NPP rasters from the modelled 
polygons. Firstly, aggregated weighted mean HLS NPP and MOD17 NPP were extracted for 
forest stands located within polygons selected for NPP estimation and then compared to each 
other. 1362 forest stands are located within these polygons, on NFI points or intersecting 70 m 
buffer zone around each NFI point (Figure 15). Then, to test the correlation between the HLS 
NPP and NFI data (timber increment), NPP was extracted as an annual mean value of a raster 
at the coordinates of the FECS plots. FESC plots are circular with the size of 500 m2. Therefore, 
to cover all the pixels which represent these plots weighted average extraction of pixels values 
from 30 m buffer zones (707 m2) was performed. 

 
Figure 15: Example of one polygon for NPP estimation. Square polygon is a shapefile in which the NPP is 
calculated. Mean annual NPP was extracted for the forest stands which are located within this polygon (09095A, 
09096A and 09096B). Pixels represent NPP values [kgC/m2/year]. The background RGB image was obtained 

 

For the area in the southern part of Austria, the same model was run for the entire forest area 
of 3295 km2 in 5 selected districts. The exact coordinates of the plots where tree core samples 
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were obtained were unknown (due to data policy). Therefore, the final rasters showing the 
annual NPP values for 4 years were delivered to BFW to do the extraction of the NPP values 
at the locations of the plots. After the NPP extraction, BFW also provided a dataset of the 
annual growth ring size, which is compared to the NPP dataset for the same plots.  
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4. Results

First, sensitivity analysis of NPP to model parameters was performed to quantify the impact 
and importance of individual input parameters. Then, for the study area in Slovenia, 
relationship between the HLS NPP and periodic annual volume increment (PAI) obtained from 
NFI data was studied. For the study area in Austria, relationship between the HLS NPP and the 
annual growth ring size was tested. Finally, HLS NPP was compared to the NPP derived from 
MODIS dataset. 

4.1. Model parameters sensitivity analysis

Correlation between the model parameters and the annual increment, as well as model 
sensitivity to various parameters were analysed. GPP and respiration were calculated daily and 
NPP on an annual basis. However, during the vegetation period values of GPP and respiration 
are much higher than in winter (Figure 16). Therefore, mean parameter values between 1st May 
and 31st August were considered for correlation analysis. This period, which is one third of a 
year, had 60% share in annual GPP and 66% in annual respiration value. This period had also 
high standard deviation (SD) for daily GPP between the plots. SD of daily GPP for period from 
1st May to 31st August was 0.001295, which was twice as high as SD for the period before 
and after these dates (0.000654). 

Figure 16: Daily GPP (a) and respiration (b) values. Orange vertical lines represent beginning and end of a period 
in which share of GPP and respiration is the highest, and for which mean parameter values are analysed.

All the inputs into the model could be divided into 3 main categories: Biome specific 
parameters, climate data and satellite data. Various parameters are products of more than one 
dataset. Hence, for sensitivity analysis parameters are categorized into 6 different groups:

Biome specific parameters (BPLUT)
o BPLUT and satellite parameters (Leaf mass, Annual leaf mass max)
o BPLUT and climate (Leaf maintenance respiration)
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o  
 Climate parameters (Tmin, SWrad, Tmean) 
 Satellite parameters (FPAR, LAI) 

o Satellite and climate parameters (APAR) 

 

Relationship between the periodic annual increment for NFI plots in Slovenia and individual 
parameters used in HLS NPP algorithm was tested to determine if there are model parameters 
which can individually represent spatial variability of timber growth. Model parameters did not 
show significant correlation with the NFI data. Only satellite derived data (FPAR and LAI) 
showed weak correlation with the periodic annual increment (PAI) with the highest R2 for 2018 
(0.16 and 0.17, p<0.01 for FPAR and LAI, respectively) (Figure 17). Very weak relationship 
between the PAI and 2=0.09, p<0.01) was also detected.  

 
Figure 17: Correlation between FPAR(a)/LAI(b) and PAI (NFI data). Mean LAI/FPAR values between 1st May 
and 31st August are considered for correlation analysis. 

Sensitivity analysis shows how individual model parameters affect the annual NPP. Sensitivity 
analysis is usually performed to examine which parameters have the largest impact on the 
model output (Matsushita et al., 2004). Individual parameters were increased and decreased by 
1% to 25% from the current value and effects of these changes on the model output (annual 
NPP) were examined. 

To quantify the impact of various parameters, two points located in coniferous and deciduous 
forest were selected and the HLS NPP algorithm was run with data representing these two 
points. Next, individual model parameter values were varied in a range of -25% to 25% and 
the modified NPP values were obtained. Then, change of NPP values were presented in 
percentage change relative to the original NPP values. Finally, percentage of change of 
individual model parameters was displayed on a horizontal axis while percentage of change of 
NPP values was shown on a vertical axis (Figure 18 and Figure 19). 

The biggest error can be caused by wrong LC classification because all BPLUT parameters are 
completely based on LC class of a pixel.  BPLUT parameters are also used for calculation of 
scalars of daily Tmin and VPD. Wrong LC classification leads to 25-33% error of NPP. 
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For sensitivity analysis, pixel representing coniferous LC (Figure 18) and pixel representing 
deciduous LC class (Figure 19) were chosen for analysis. Biggest impact on NPP change have 
changes of parameters used to calculate GPP (FPAR, Radiation use efficiency and shortwave 
radiation). These three parameters have all the same impact on the final NPP. NPP is increasing 
linearly with the increase of one of these three parameters. For example, change of radiation 
use efficiency ( ) of 15% results in a change of annual NPP of 21% for deciduous (NPP = 
542g/m2) and 25% for coniferous forest type (NPP = 725g/m2). As for meteorological 
parameters, NPP is less sensitive to change in temperature than to change in radiation. 
Minimum daily temperature (Tmin) is a parameter used to calculate GPP while average daily 
temperature (Tavg) is used to calculate respiration. Therefore, individual increase of Tmin of 
10% increases NPP by 2.7% on average, while increase of Tavg of 10% leads to a decrease of 
NPP by 4.8% and 8.3% for deciduous and conifers, respectively. LAI is part of the algorithm 
which estimates respiration. Hence, increase of LAI leads to decrease of NPP.  

 

 
Figure 18: Sensitivity analysis of annual NPP to model parameters for conifers. Impact of change of parameters 
values in a range -25% to 25% on a change of NPP were calculated. Sensitivity of NPP to SWrad and  is the 
same as to FPAR. Therefore, FPAR is the only shown on the graphs.   
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Figure 19: Sensitivity analysis of annual NPP to model parameters for broadleaf. Impact of change of parameters 
values in a range -25% to 25% on a change of NPP were calculated. Sensitivity of NPP to SWrad and  is the 
same as to FPAR. Therefore, FPAR is the only shown on the graphs.   

4.2. Slovenia 

Mean NPP for the years 2016, 2017 and 2018 obtained with HLS satellite dataset and European 
climate dataset for 71 NFI plot is 651.6 gC/m²/year (Table 3). Periodic annual increment for 
the period 2012  2018 is 7.6 m3/ha. NFI data showed much higher variation in PAI values 
than NPP with relative standard deviation of 70.7%. HLS NPP model estimated all the NPP 
values in a range 516.7 to 798 gC/m²/year with the relative standard deviation of 10.4%. 
Table 3: Mean values of NPP estimation and forest inventory data. Relative standard deviation is used to show 
the difference of two sets of data with different units (gC/m²/year and m3/ha). 

 

Relationship between the estimated 10 m spatial resolution HLS NPP and periodic annual 
increment of volume (PAI) of the NFI plots was analysed. With the assumption that the current 
annual increment (CAI) from 2012 to 2018 was consistent, correlation analysis between the 
PAI for this period and the mean NPP for the period 2016-2018 was conducted. For sampled 
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 Mean Range 
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deviation [%] 
HLS NPP 

[gC/m²/year] 
651.6 516.7  798.0 10.4 

Periodic annual 
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7.6 0.28  28.5 70.6 
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17.39 0.13  39.8 52.6 

Timber volume 2018 
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19.67 0.20  41.50 50.4 
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plots in Slovenian NFI, PAI represents timber annual increment of sampled trees which have 
diameter larger than 10 cm at height of 1.3 meters. NPP represents total carbon uptake by all 
vegetation, including below-ground production. Connection between the NPP and PAI was 
tested. 

NFI plots (500 m2) on which harvesting or mortality between the two sampling periods were 
not detected were reliable for correlation analysis between the modelled NPP and periodic 
annual increment of timber volume. For 71 plots which met this criteria, 3-year annual average 
NPP (2016-2018) was not correlated to 6-years periodic annual increment (PAI) (2012-2018) 
(Figure 20). 

 

 
Figure 20: 6-years periodic annual increment (2012-2018) vs. 3-years annual average NPP (2016-2018). 

After removing plots of low timber density and low timber volume (less than 18 m2 in 2018) 
from analysis and keeping 60% of the plots with the highest timber volume, we obtained an R2 
of 0.1 (Figure 21).  
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Figure 21: 6-years periodic annual increment (2012-2018) and 3-years annual average NPP (2016-2018) of 60% 
of the plots with highest timber volume. 

Linear regression model showed weak correlation between the NPP and PAI for the plots which 
had average and above average timber volume. NFI plots which had very low timber volume 
in 2012 and 2018 NFI and low PAI, had average or above average NPP estimations. Figure 
22a, Figure 22b andFigure 22c show examples of the plots which had only 1 - 2 trees for 
sampling (dbh larger than 10 cm) and therefore, have low PAI (0.08  0.22 m3/ha/year) 
compared to the mean PAI of 7.6 m3/ha/year. On the contrary, plots representing fully stocked 
forest shown on the Figure 22d, Figure 22e and Figure 22f had 14 - 19 trees for sampling. PAI 
on these plots was in a range 11.1 - 13.7 m3/ha/year. NPP for all the plots in the Figure 22 was 
in a range 550 to 700 and not correlated to PAI which suggests that NPP is not correlated to 
increment in stands with extreme low density and timber increment. 
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Figure 22: Examples of NFI plots with low stem density (a,b,c) and high stem density (d,e,f). The green point is 
the centre of a plot. Plots a, b and c have low PAI. Plots d, e and f have above average PAI. The background RGB 

 

4.3. Austria 

NPP was estimated for the period 2016 - 2020 obtained with HLS satellite dataset 
and European climate dataset for five districts in the southern part of Austria for the 3295.6 
km2 area classified as a forest according to the LC map from Malinowski et al. (2020). Mean 
annual NPP for this area is 555.5 gC/m²/year. Table 4 gives the HLS NPP values for all the 
five districts for the analysed period. Figure 23 shows the variation of aggregated mean NPP 
for all the districts through the years. Estimated NPP showed an increase from 2016 peaking 
in 2018 for the entire study area, dropping in 2019 and high variety between the districts in 
2020. 

Table 4: HLS NPP for each region separately and for each year. 

District 2016 2017 2018 2019 2020 Mean 

Sankt Veit an der Glan 565.1 589.0 616.4 551.8 570.0 578.5 

Spittal an der Drau 533.5 536.5 587.8 536.5 521.2 543.1 

Feldkirchen 568.3 581.9 609.6 544.4 560.2 572.9 

Tamsweg 500.5 517.4 571.7 533.1 508.0 526.1 

Murau 533.9 556.7 601.6 549.2 542.8 556.8 

Mean NPP 540.3 556.3 597.5 543.0 540.4 555.5 

 

 

 

a b c 

d e f 
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Figure 23: Annual HLS NPP for the period 2016-2020 for the 5 districts in the southern part of Austria. 

For the study area in Austria connection between the annual NPP (net primary production) and 
annual growth ring size obtained from sampled cores was tested. Annual NPP is extracted from 
plot locations and a connection between the NPP and growth ring size obtained from sampled 
cores was analysed. Firstly, available data were plotted with one colour and symbol for each 
year (Figure 24). 

 

 
Figure 24: Growth ring width (1/100 mm) versus NPP 
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It is apparent that there is no clear dependency. The overall correlation is 0.07 and for the 
individual years it never exceeds 0.1, if the two outliers with NPP < 0.45 are omitted. 

The same was carried out for the changes between the years (Figure 25). The highest found 
correlation is between the changes of the NPP and the changes of the year ring width from the 
year 2016 to 2017, again with the two outliers removed. However, it is only 0.26 (meaning that 
a linear model would have an R² of only 0.07) and it is obvious from the second figure that 
there is no discernible trend. 

 
Figure 25: Change of year ring width versus NPP-change 

 

Finally, boxplots for different years for NPP and growth ring width are presented (Figure 26) 
showing that estimated NPP has significant differences between the years while the sizes of 
the growth rings are very similar between the years. 
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Figure 26: Boxplots of NPP (2016-2019) (a) and growth ring width (2016-2019) (b). 

4.4. HLS NPP and MODIS NPP comparison  

NPP derived from MODIS dataset was compared to the NPP estimated with high spatial 
resolution inputs (HLS NPP) for the location of NFI plots in Slovenia. Firstly, both NPP 
datasets were compared for forest stands located in the polygons selected for the NPP analysis. 

1362 forest stands for which NPP is estimated are located on 546 NFI points or intersecting 70 
m buffer zone around each NFI point. NPP is estimated for years 2016, 2017 and 2018 (Table 
5Table 6Table 7). NPP is expressed as a mean value in grams of carbon per square meter per 
year. HLS NPP has 17.93% lower net primary production than MOD17 NPP for year 2016, 
14.47% for 2017 and 9.27% for 2018. 

Table 5: Statistics for two modelled NPP for forest stands 2016. NPP [gC/m²/year]. RSD  relative standard 
deviation [%]. 

 

 

 

 

Table 6: Statistics for two modelled NPP for forest stands 2017. NPP [gC/m²/year]. RSD  relative standard 
deviation [%]. 

 

 

 

 

 

 
HLS NPP 

[gC/m²/year] 
MOD17 NPP 
[gC/m²/year] 

Difference 

Mean 659.3 803.3 144.1 
Median 658.5 784.5 126.0 

Standard deviation 76.1 90.4  
RSD [%] 11.5 11.3  

 
HLS NPP 

[gC/m²/year] 
MOD17 NPP 
[gC/m²/year] 

Difference 

Mean 633.1 740.2 107.1 
Median 621.5 722.6 101.2 

Standard deviation 64.6 97.6  
RSD [%] 10.2 13.2  

a b 
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Table 7: Statistics for two modelled NPP for forest stands 2018. NPP [gC/m²/year]. RSD relative standard 
deviation [%].

On average, NPP estimated with high spatial resolution inputs (HLS NPP) for years 2016, 2017 
and 2018 is 13.02% (107.81 gC/m²/year) lower than MOD17 NPP (Table 8). Mean HLS NPP 
for years 2016, 2017 and 2018 for 1362 forest stands in Slovenia is 666.5 gC/m²/year (standard 
deviation 79.7 gC/m2 /year). Final spatial resolution is 10m (HLS dataset spatial resolution is 
30m, spatial resolution of S2GLC land cover and BPLUT values derived from LC is 10m and 
climate dataset has spatial resolution of 0.1°, which is spatially interpolated for every plot with 
the nearest neighbour interpolation). Mean MOD17 NPP for the same forest stands for the same 
period is 774.3 gC/m²/year (standard deviation 97.0 gC/m2 /year). MOD17 NPP has spatial 
resolution of 500 m on average. For each forest stand, NPP is extracted as a weighted arithmetic 
mean.

Table 8: Statistics for two modelled NPP for forest stands for 2016-2018. NPP [gC/m²/year]

For almost all forest stands, HLS NPP values are lower than MOD17 NPP (Figure 27), but 
there is no correlation between the two variables (Figure 28).

Figure 27: Comparison of HLS NPP and MOD17 NPP for forest stands in Slovenia: The boxes represent the 
median and the 25th and 75th percentile, the symbol x represents the arithmetic mean.

HLS NPP 
[gC/m²/year]

MOD17 NPP 
[gC/m²/year]

Difference

Mean 707.1 779.3 72.2
Median 723.7 764.4 40.7

Standard deviation 79.1 92.1
RSD [%] 11.2 11.8

HLS NPP 
[gC/m²/year]

MOD17 NPP 
[gC/m²/year]

Difference

2016 659.3 803.3 144.1
2017 633.1 740.2 107.1
2018 707.1 779.3 72.21

Average 666.5 774.3 107.8
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Figure 28: Scatter plot which shows the correlation between HLS NPP and MOD17 NPP. Solid line is identity 

line. 

To avoid the effect of irregular shape of forest stands, which leads to disparity in spatial 
resolution with 500 m resolution MOD17 NPP, homogeneous and square-shaped forest 
polygons were selected to compare the NPP from the two datasets. For 50 polygons of 1 km2 

area covering homogeneous forest areas (29 broadleaves and 21 conifers) annual mean MOD17 
NPP and HLS NPP were aggregated.  

For the years 2016 and 2018 MOD17 NPP and HLS NPP datasets showed linear correlation 
with an R2 of 0.19 and 0.22, respectively (Figure 29a). There was no correlation for the year 
2017. There was also a difference between the correlation for coniferous and broadleaf forests. 
For the year 2018 MOD17 NPP and HLS NPP had stronger correlation for coniferous forest 
type (R2=0.37) in comparison to broadleaf forest type (R2=0.14) while broadleaf forests also 
had a larger range of NPP values for both datasets (Figure 29).  
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Figure 29: (a) Correlation between HLS NPP and MOD17 NPP for homogeneous 1 km2 forest polygons of all 
forest types and (b) for coniferous and broadleaf forests separately in the year 2018 
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Mean NPP for the years 2016, 2017 and 2018 obtained with HLS satellite dataset and European 
climate data set for 50 forest polygons of 1 km2 is 653.9 gC/m²/year (mean standard deviation 
is 89.3 gC/m2 /year) (Table 9). Mean MOD17 NPP for the same polygons and for the same 
period is 804.0 gC/m²/year (standard deviation is 116.8 gC/m2 /year). For each polygon NPP 
was extracted as a weighted arithmetic mean. HLS NPP values are lower than MOD17 NPP 
for all the years (Figure 30). On average, NPP estimated with high spatial resolution inputs for 
years 2016, 2017 and 2018 is 18.67% (150.1 gC/m²/year) lower than MOD17 NPP. 

 

 
Figure 30: Comparison of HLS NPP and MOD17 NPP for homogeneous 1 km2 forest polygons in Slovenia: The 
boxes represent the median and the 25th and 75th percentile, the symbol x represents the arithmetic mean. 

Table 9: Statistics for two modelled NPP for 1 km2 homogeneous polygons for 2016-2018. NPP [gC/m²/year] 

 

 

 

 

 

 

Comparison between the NPP estimations for coniferous and broadleaf forest types was 
calculated for the year 2018 (Table 10). Mean HLS NPP for broadleaf forests (762.1 
gC/m²/year) was larger than for coniferous forests (597.2 gC/m²/year). The trend was the same 
for MOD17 NPP with 839.7 gC/m²/year for broadleaves forest type compared to 756.3 
gC/m²/year for conifers. NPP values for broadleaves had larger standard deviation for both 
datasets with a lot larger variability for MOD17 NPP estimations. MOD17 NPP had standard 
deviation of 140.2 gC/m²/year (RSD = 16.7%) compared to 38.9 gC/m²/year for HLS NPP 
(RSD = 5.1%). 

 

 

 
HLS NPP 

[gC/m²/year] 
MOD17 NPP 
[gC/m²/year] 

Difference 

2016 642.8 828.6 185.8 
2017 626.0 778.6 152.6 
2018 692.9 804.7 111.9 

Average 653.9 804.0 150.1 
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Table 10: Statistics for two modelled NPP for 1 km2 homogeneous polygons for 2018. Data for conifers and 
broadleaves are given separately. NPP [gC/m²/year]. RSD  relative standard deviation [%]. 

 

 

 

 

 

 

 

For the polygons in the study area in Slovenia, distribution of NPP values for the two datasets 
were compared in a histogram (Figure 31). Majority of the pixels for the selected polygons in 
the HLS NPP dataset have NPP values in a range of 500 - 850 kgC/m2/year. MOD17 dataset 
gives most of the pixel values in a range of 600 - 850 kgC/m2/year. For the HLS NPP dataset, 
pixels classified as conifers have clearly lower values than pixels representing broadleaf forest 
type.  

 

 
Figure 31: Distribution of aggregated NPP values for HLS NPP and MOD17 NPP products for the period 2016-
2018 for the study areas in Slovenia. Two datasets differ in size and spatial resolution. Vertical axis shows 
frequency of the two NPP datasets relative to the total forest area of the analysed polygons. HLS NPP values for 
conifers and broadleaves have two peaks in distribution showing bimodal distribution. 

For the region in the southern part of Austria, 10 m resolution HLS NPP was compared to 500 
m resolution MOD17 NPP. Dominant land cover type for the study area in the southern part of 
Austria is coniferous tree cover (more than 90% of forest area).  

To avoid the impact of non-forest areas within 500 m MODIS pixels and mismatch in scale of 
the two datasets, 64 polygons of 1 km2 area covering homogeneous forest areas were selected 
for NPP comparison. For each polygon and for each year mean NPP was aggregated.  

For every year MOD17 NPP and HLS NPP datasets showed linear correlation (32). 2018 has 
the lowest correlation (R2=0.32), while 2020 has an R2 of 0.54. 

 
HLS NPP 

[gC/m²/year] 
MOD17 NPP 
[gC/m²/year] 

Difference 

Broadleaves 762.1 839.7 159.1 
Conifers 597.2 756.3 77.6 

Average (total) 692.8 804.7 111.9 
RSD Broadleaves [%] 5.1 16.7  

RSD Conifers [%] 4.9 5.4  
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Figure 32: Correlation between HLS NPP and MOD17 NPP for homogeneous 1 km2 forest polygons. 
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HLS NPP values are lower than MOD17 NPP for all the years (Figure 33). On average, NPP 
estimated with high spatial resolution inputs for years 2016 - 2020 is 23.24% (165.32 
gC/m²/year) lower than MOD17 NPP.  

 

 
Figure 33: Comparison of HLS NPP and MOD17 NPP for homogeneous 1 km2 forest polygons in Austria: The 
boxes represent the median and the 25th and 75th percentile, the symbol x represents the arithmetic mean. 

Mean NPP for the years 2016 - 2020 obtained with the HLS satellite dataset and the European 
climate data set for 64 forest polygons of 1 km2 is 543.0 gC/m²/year (mean standard deviation 
is 40.0 gC/m2 /year) (Table 11). Mean MOD17 NPP for the same polygons and for the same 
period is 711.5 gC/m²/year (standard deviation is 61.9 gC/m2 /year). For each polygon NPP is 
extracted as a weighted arithmetic mean. 

Table 11: Statistics for two modelled NPP for 2016-2020 for 1 km2 homogeneous polygons. NPP [gC/m²/year] 

 
 
 
 

 

 

 

 

Figure 34 gives the annual mean HLS NPP estimation for the period 2016-2020 at the spatial 
resolution of 10 m using high spatial resolution inputs for the forest area in the study region in 
Austria. Figure 35 shows the forest NPP map for the same area obtained from the MOD17A3H 
Version 6 product which has spatial resolution of 500 m on average. It is evident that for entire 
area HLS NPP estimation is producing lower values than MOD17 NPP, where 90% of the 
average NPP values were between 477 gC/m²/year and 711 gC/m²/year while MOD17 NPP 
had 90% of the average NPP values between 577 gC/m²/year and 815 gC/m²/year. MODIS 

 
HLS NPP 

[gC/m²/year] 
MOD17 NPP 
[gC/m²/year] Difference 

2016 533.3 701.8 167.5 
2017 542.6 735.3 190.1 
2018 580.8 733.9 147.3 
2019 530.0 682.6 151.7 
2020 528.3 703.9 170.0 

Average 543.0 711.5 168.5 
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  was used to mask out pixels which were 
not classified as forest. It resulted in the MOD17 NPP forest map which has forest area of 
5374.0 km2 while HLS NPP algorithm, which uses 10 m resolution S2GLC map, produced the 
map that has forest area is 3295.6 km2. In comparison, forest area based on dataset collected in 
National Forest Inventory in Austria (Die österreichische Waldinventur, 2007/09) in the study 
area is 4120±310 km2 including non-productive forests. Therefore, LC map used in HLS NPP 
algorithm covers forest area which is 20% less than the area obtained in the forest inventory, 
and MODIS LC map (500 m resolution) used in MOD17 NPP algorithm overestimates forest 
area for 30.4% (Table 12). Considered that the area of non-productive forests (Holzboden außer 
Ertrag and Schutzwald außer Ertrag) is 550 km2, which two thirds of the area consists of shrubs 
and open areas (Hauk and Perzl, 2013), we can assume that the difference between S2GLC 
map and forest inventory data is lower than 20% and that the accuracy of S2GLC map is 
satisfactory and represents forest areas better than 500 m resolution MODIS LC map. 

Table 12: Forest area according to two satellite-derived land cover maps (MODIS and Copernicus) and official 
Austrian forest inventory (BFW). Area and Rel. Area are the differences between the forest areas of satellite-
derived LC maps (MCD12Q1 and S2GLC) and forest area obtained from NFI dataset.  

 
MCD12Q1v006 

LC [km²] 
S2GLC [km²] 

BFW total forest 
area [km²] 

BFW non-
productive forest 

area [km2] 
 5374 3295.6 4120±310 550 

Area [km2] 1254 824.2   
 30.4 20.0   
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Figure 34: HLS NPP on 10-m resolution representing average NPP for the period 2016 2020 for the southern part 
of Austria. Estimated NPP was obtained with S2GLC map, meteorological reanalysis data from ERA5 and E-
OBS datasets and reflectance data from HLS. 
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Figure 35: MOD17 NPP on 500-m resolution representing average NPP for the period 2016 2020 for the 
southern part of Austria. NPP data derived from the MOD17A3HGFv006 

  https://lpdaacsvc.cr.usgs.gov/appeears/) 

Distribution of NPP values for the two datasets were compared (Figure 36). LC map used in 
MOD17 NPP algorithm has a lot larger area that was classified as forest compared to 10 m 
resolution LC used HLS NPP product. It resulted in 2078 km2 larger forest area in MOD17 
NPP. MOD17 NPP product has also NPP values which have larger range in comparison to the 
high spatial resolution NPP. HLS NPP values are mainly concentrated in a range of 500-600 
kgC/m2/year for conifers and 700-800 kgC/m2/year for broadleaves, while the majority of the 
MOD17 NPP values were spread from 650 to 850 kgC/m2/year. 
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Figure 36: Distribution of aggregated NPP values for HLS NPP and MOD17 NPP products for the period 2016-
2020 for the study region in the southern part of Austria. Two datasets differ in size and spatial resolution. Vertical 
axis shows frequency of the two NPP datasets relative to the total forest area. 
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5. Discussion and conclusion 

MOD17 algorithm is adapted to run with the land cover map obtained from the Sentinel-2 
Global Land Cover (S2GLC) project (10 m spatial resolution), meteorological reanalysis data 
from ERA5 and E-OBS datasets (0.1° spatial resolution, 9 km on average) and reflectance data 
from HLS (30m spatial resolution). Adapted algorithm (HLS NPP) produces final annual NPP 
data at the spatial resolution of 10 m. The structure of the algorithm remains the same as for 
MOD17 NPP product, while the source and spatial resolution of the input parameters are 
replaced. Another difference between the two products is FPAR and LAI dataset. As FPAR 
and LAI derived from S2 are not applicable for forest areas, NDVI derived from HLS was used 
to estimate FPAR and LAI at the spatial resolution of 30 m. 

In this study, HLS NPP algorithm was applied to derive the 10 m resolution NPP and analyse 
its potentials and limitations. Firstly, sensitivity of the NPP to input parameters was quantified 
in a sensitivity analysis. Then, HLS NPP was compared to 500 m resolution MOD17 NPP for 
the study areas in Slovenia and Austria to test the consistency between the two products and to 
compare the results of the coarse and high spatial resolution NPP. To assess the potential of 
the NPP algorithm to represent and capture spatial heterogeneity of timber growth at the high 
spatial resolution, NPP results were compared to data obtained from forest inventory in 
Slovenia. Pixels of spatial resolution of 10-30 m can match the scales of forest inventory which 
plots usually have small area (500 m2 in Slovenian NFI). This is particularly useful for 
validation of NPP results. Finally, potential improvements of the NPP model for estimating 
forest production was presented. 

Sensitivity analysis showed that wrong LC classification is causing the biggest error in NPP 
estimation. S2GLC map of 10 m resolution, which was used for the HLS NPP algorithm, has 
two classes for forest areas (deciduous and conifers). All the biome specific parameters are 
derived from LC classification which generates the only distinction of vegetation types in this 
model. Biome specific (BPLUT) parameters are calibrated to global conditions for each LC 
type and as such, cannot capture local forest conditions. Among other parameters, FPAR, 
SWrad and radiation use efficiency have the biggest impact on the final NPP values. NPP is 
increasing linearly with the increase of one of these three parameters and at the same rate for 
all the parameters. 

Individual model parameters were also compared to annual increment of timber volume 
obtained in NFI on a plot level (500 m2) to analyse which parameters can represent spatial 
variability of timber growth and local forest conditions. Radiation use efficiency, FPAR and 
LAI are all weakly correlated to timber increment and thus, can only to a small extent represent 
spatial variability of timber growth. 

 

Comparison of PAI of NFI plots in Slovenia with the 10 m resolution HLS NPP showed weak 
correlation. Potential reasons for this are presented:   

1. MOD17 algorithm parameters were created to represent average global conditions. 
Biome specific parameters are calibrated at the global conditions, and therefore, they 
cannot represent all the variations in local conditions because they do not distinguish 
diversity in vegetation apart from Land Cover types. Forest type is classified in two 
classes in S2GLC map (deciduous and conifers) and all BPLUT parameters are derived 
for these two classes. On the other hand, there is a high variability between various 
species within each of these classes. Factors such as humidity, nutrient availability, 
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forest age (Govind and Kumari, 2014), physical and chemical characteristics of the soil, 
impact of animals, plant genetics (Field et al., 1995) are all important for the final 
quantity of captured carbon and biomass growth.  

2. FPAR and LAI are the only parameters that can represent local conditions and impact 
of forest management at high spatial resolution. Copernicus climate parameters have 
0.1° spatial resolution which is higher than GMAO/NASA dataset (0.5° by 0.625°) that 
is used by MOD17, but it still cannot capture microclimate and forest stand conditions. 
Therefore, climate data and FPAR/LAI cannot completely represent high variability of 
forest stand factors (stand density, age, site production, type of management).  

3. PAI obtained from Slovenian NFI represent timber annual increment of sampled trees 
which have diameter larger than 10 cm at height of 1.3 meters. NPP, on the other hand, 
represents total carbon uptake by all the vegetation, including below-ground 
production. In addition, NPP includes root exudates, carbon transfer to microbes that 
are symbiotically associated with roots, and biomass that dies or is removed by 
herbivores before it can be measured (Chapin and Eviner, 2007). Therefore, it is 
causing inconsistency between the estimated NPP and measured increment of timber 
volume for the NFI plots. 

 

The greatest inconsistency between the NPP and PAI was for NFI plots which had very low 
timber volume and PAI. If a certain plot has low canopy cover and low stem density it is 
expected that the ground vegetation is dense during vegetation periods. As NPP algorithm 
quantifies total vegetation cover, it produces average NPP values (653.9 gC/m2/year for 
Slovenia) for such plots. On the other hand, inventory data represent trees with diameter larger 
than 10 cm, and therefore, do not consider growing stock of small trees and ground vegetation. 
Therefore, it is causing inconsistency between the estimated NPP and measured timber volume 
increment for the plots with low canopy cover. 

Low correlation between the HLS NPP and PAI of NFI plots in Slovenia showed that this 
model cannot accurately represent heterogeneity and variability in forest stand conditions. 
Relative standard deviation (RSD) of 10.4 % for HLS NPP is much lower than RSD of periodic 
annual increment of timber volume for NFI plots (70.6 %). Variability of biomass growth is 
evidently much higher than the NPP model can capture. MOD17 algorithm and its parameters 
are created to estimate NPP on a large scale (region, country, globe) and BPLUT parameters 
represent only land cover class (deciduous and conifers) which leads to generally uniform NPP 
estimation for a given LC class.  

 

Relationship analysis between the annual NPP and annual growth ring size obtained from 
sampled cores for the study area in Austria showed that at the current moment, it is not possible 
to make any predictions regarding growth ring width using NPP. Possible reasons for this are:  

1- NPP estimation gives the annual carbon production for entire vegetation on the plots. 
On the other hand, growth ring size data does not provide us with the information on 
timber volume/biomass increment. It shows only tree ring growth, regardless of tree 
dbh, species, age, or stem density. Therefore, it is not possible to estimate the extent of 
biomass growth.  

2- As mentioned previously, calibration of model parameters for the global conditions and 
variability of biomass growth that cannot be represented by NPP algorithm are causing 
inconsistency between the estimated NPP and tree growth data.  
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However, annual trend of NPP does not follow the yearly change in the size of the growth 
rings. Figure 26 (left side) showed that there are significant differences between the years, with 
2018 having particularly high values. On the right side, the sizes of the growth rings are very 
similar between the years. This leads to the conclusion that either the NPP is not connected to 
growth ring size or that the variability and uncertainty in the measurement of NPP are too high 
so that the possibly existing connection is not discernible. 

To have reliable comparison of time series, it would be necessary to compare data for periods 
longer than 4 years. As Sentinel-2 satellites have been in function from 2016, they cannot 
provide NPP data for a longer period. One way to address this issue is to use only Landsat 
satellite data. 

Comparison between 10 m resolution HLS NPP and 500 m resolution MOD17 NPP showed 
good consistency between the two datasets for homogeneous coniferous forest areas. Dominant 
land cover type for the study area in the southern part of Austria is coniferous tree cover (more 
than 90% of forest area). Correlation between the two datasets was stronger for this area than 
for polygons in the study area in Slovenia where broadleaf tree cover type is dominant (29 
polygons with broadleaf and 21 with coniferous LC class). This might be explained with the 
higher variability in NPP values for broadleaves than for conifers for both spatial resolutions. 

Estimated HLS NPP of 10 m spatial resolution produce lower NPP estimates in comparison to 
MOD17 500 m resolution NPP. Lower NPP estimates using European climate dataset are 
expected considering previous research (Neuman et al., 2016). In this research, comparison of 
European national forest inventories datasets with MODIS EURO estimates (NPP with the 
European climate data on 1-km resolution) and with MOD17 algorithm (MODIS NPP) showed 
that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only 
differs by 7%. For Austria, MOD17 NPP differs from NFI NPP by 17%. Both models produce 
larger NPP values than NPP calculated with the NFI data for Europe. Neuman et al. (2015) 
estimated forest NPP for Austria for the period 2000 - 2009 using National Austrian Forest 
Inventory data of 486.3 gC/m2/year. For the study region in the southern part of Austria for the 
years 2016  2020 our HLS NPP estimates give an average of 555 gC/m²/year, while MOD17 
algorithm produces NPP of 711.5 gC/m²/year. 

High spatial resolution HLS NPP for the forest areas at NFI plots in Slovenia also differ from 
MOD17 NPP, giving 18.67% lower values on average. For homogeneous forest polygons in 
Austria, which are mainly coniferous forest areas, HLS NPP for the period 2016-2020 is 
23.24% lower than MOD17 NPP. 

Therefore, HLS NPP model is producing lower NPP values than MOD17. Considering 
European average NPP values and previous research, NPP estimated with ground-based 
monitoring approach for the central Europe and the whole Europe is also lower than MOD17 
NPP. Based on this data, we can state that the HLS NPP algorithm is producing NPP values 
closer to the NPP obtained from terrestrial forest inventory data in comparison to MOD17 NPP. 

Another research (Park et al. 2021), which shows discrepancies between the global forest NPP 
estimates derived from MODIS and forest inventory data (Global Forest Resources Assessment 
FRA), claims that Slovenia is one of the countries for which absolute value of the difference 
between the two NPP estimates was less than 5% of their mean. 

To precisely compare field data with both, MOD17 and HLS NPP, it is necessary to have 
bottom-up NPP estimates using terrestrial forest inventory data for the period from 2016 to 
present. 
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Comparison between HLS NPP and MOD17 NPP showed a linear correlation when 
homogeneous and square-shaped forest polygons were selected for comparison of the NPP 
from the two datasets. On the other hand, when weighted arithmetic mean NPP of forest stands 
was compared (Figure 28) there was no correlation. 

MOD17 NPP 500 by 500 m pixels rarely fully fit into a forest stand and usually are highly 
affected by neighbouring areas of a different LC class or different forest stands. Additionally, 
forest stands usually have irregular shape and area less than 25 ha (area of an average MODIS 
pixel). Hence, coarse spatial resolution cannot represent NPP of forest stands because of 
mismatch in scale.  

It leads to a conclusion that reliable comparison and estimation of NPP cannot be performed 
with MOD17 NPP for polygons of irregular shape and areas which have heterogeneous land 
cover and forest characteristics. HLS NPP has spatial resolution which can differentiate 
between the forest stands or different administrative units. 

 

High spatial resolution NPP estimation is producing NPP that has values of lower range in 
comparison to 500 m resolution MOD17 model. This is particularly the case for forest areas 
classified as conifers.  

Most important difference regarding methodology of NPP estimation between HLS and 
MOD17 NPP is FPAR/LAI estimation. For HLS FPAR/LAI estimation (Section 3.6), 
regression analysis with the HLS NDVI is applied and smoothing technique (Whittaker 
smoother) is used to get NDVI time series. Comparison of weekly time series of FPAR showed 
that MODIS FPAR has higher range of values and higher temporal variation than HLS-derived 
FPAR, especially for the summer period. FPAR and LAI are derived from regression formulas 
(Equation 21 and Equation 22) and majority of the values for the summer period have low 
range (FPAR = 0.8 - 0.9). On the other hand, MODIS-derived FPAR/LAI have much higher 
variation in this period (FPAR = 0.4  1). 

Larger variability of FPAR/LAI dataset for MOD17 algorithm is the main reason for larger 
range and spatial variability of MOD17 NPP values in comparison to 10 m resolution HLS 
NPP. 

In addition, even though the forest polygons with the homogeneous land cover are selected for 
comparison, impact of diversity of forest areas within 1 km2 on MOD17 NPP pixels might still 
be an issue. Moreover, in the study area in Austria total area classified as forest in MOD17 
dataset is 2078.4 km2 larger than in HLS dataset. Larger area for NPP estimation, together with 
the impact of various LC classes on 500 m MODIS pixels, is another cause of high spatial 
variability of MOD17 NPP dataset.  

 

We can conclude that high spatial resolution data (satellite reflectance data, climate, land cover 
map) are feasible to implement in MOD17 algorithm. With the increase in spatial resolution 
(from 500 m to 10 m) NPP values for the areas in Slovenia and southern part of Austria are 
lower and closer to the expected values. The 10 m resolution NPP raster data provide an 
opportunity to extract mean NPP for forest stands or forest compartments of irregular shape, 
which might be useful for forest management. Quantifying forest net primary production on a 
forest stand level could provide an opportunity to assess the impact of forest management 
practices on small areas (e.g. clear cuts, thinning operations) or forest disturbances (forest fires, 
bark beetle outbreak) and observe the change and recovery of annual NPP in the period after 
the change caused by abiotic or biotic factor. The 10 m spatial resolution S2GLC map can 
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capture small patches of land which are not classified as forest, and therefore, exclude them 
from NPP estimation.  

HLS NPP model can easily be validated, provided that bottom-up estimation of NPP is 
available. NFI plots usually have size of less than 1 hectare. Therefore, it is not feasible to 
compare NPP of spatial resolution of 500 m to data of biomass growth collected at the plots of 
much smaller area. HLS NPP estimation gives possibility to match the scale for validation and 
direct comparison of results collected with different methodologies. 

One of the shortcomings of this model is the fact that using high spatial resolution inputs is 
leading to longer processing time and for making NPP maps on a country or continental level 
it would be necessary to have high computing power. Another current drawback is inability of 
the HLS NPP to represent local forest conditions and high spatial variability of timber growth 
as discussed previously. Potential improvements and necessary validation are considered in the 
following section. 

5.1. Future work 

To precisely compare field data with both, MOD17 and HLS NPP, it is necessary to have 
bottom-up NPP estimates using terrestrial forest inventory data for the period from 2016 to 
present. After comparison of NPP obtained with MOD17 (and HLS NPP) algorithm with the 
ground truth NPP data, steps presented in the following paragraphs could be applied. 

LAI and FPAR data were obtained from HLS NDVI data. This is considered not optimal and 
only a temporary solution for the study areas in Slovenia and Austria. For reliable and robust 
FPAR and LAI data that could be used for other areas in Europe and to better represent local 
forest conditions and improve the HLS NPP model it is necessary to develop LAI and FPAR 
product for forest at high spatial resolution.  

Since there is high variability in growing conditions and tree characteristics, modification of 
the model with terrestrial (NFI) or remote sensing data could potentially improve the NPP 
estimations and increase the correlation between the NPP and NFI data. Stand density effect, 
which impacts growth variation and accumulation of carbon, is not fully detectable with 
satellite driven NPP estimates. Integrating stand density, stand age and site index into HLS 
NPP model might provide an opportunity to quantify changes of NPP which are attributed to 
stand conditions and forest management effects.  

As consistent forest inventory data are rarely available for large-scale, it is not feasible to obtain 
spatio-temporally continuous NPP product using terrestrial forest growth data as inputs. 
However, forest inventory data would be useful for validation of HLS NPP. By grouping the 

 between the HLS NPP and ground based NPP estimates according to 
various stand parameters, impact of these parameters on deviation of estimated HLS NPP could 
be calculated. Addressing the effect of stand parameters (stand density, stand age, site index, 
elevation, dominant tree species) on NPP would decrease the differences between the two NPP 
estimates and lead to better correlation between the NPP and NFI data. In addition, it would 
contribute to better representation of variation in growing conditions which satellite driven 
NPP cannot reflect. 

More remote sensing data, in addition to FPAR and LAI, would be practical to implement into 
the HLS NPP model and keep the possibility to implement the model at the large scale. These 
input data could include: digital elevation model (DEM), tree species classification maps, 
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global forest canopy height database from Potapov et al. (2021) or tree height estimation maps 
with lidar. 

For model validation and for analysing the connection between HLS NPP and forest inventory 
data, it is essential to have reliable ground-based NPP estimates for forests of various type, 
production, stand characteristics and at different altitudes. Further research should be based on 
comparison of HLS NPP and ground-based NPP, on addressing the impact of forest stand 
parameters on NPP estimates and on integration of available remote sensing data into the HLS 
NPP model. 
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