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Zusammenfassung 
 
Tangentialflussfiltration wird während der Aufreinigung von biopharmazeutischen Produkten 

zu verschiedensten Zwecken im Prozess eingesetzt wie z.B. bei der Zellernte, der 

Virusinaktivierung und Aufkonzentrierung des Produktes. Biotechnologische Prozesse sind 

immer mit Prozessvariabilität verbunden wie Variationen des Produkttiters und 

unterschiedliche Verunreinigungsprofile.. Rein mechanistische Modelle sind bislang nicht in 

der Lage die komplexen Zusammenhänge zwischen Prozessbedingungen und Produktqualität 

ausreichend zu erfassen. 

Im Zuge dieser Arbeit wurden drei Hybridmodelle erstellt, welche die Proteine einer Zwei-

Komponenten-Lösung zu jedem Zeitpunkt des Filtrationsprozesses quantifizieren können. Die 

Modelle wurden für zwei Modellproteinen, BSA und Lysozym, erstellt, die das Produkt und die 

Verunreinigung nachstellen. Die Modelle unterschieden sich in der Art wie die 

Membrandurchlässigkeit für die Verunreinigung (Lysozym) berechnet und aktualisiert wurde. 

In einem Hybridmodell wurde ein konstanter Wert für die Membrandurchlässigkeit der 

Verunreinigung angenommen, während zwei Weitere einen variablen Wert dafür heranzogen. 

Die Vorhersage des Permeatflusses mit Hilfe der Hybridmodelle wurde mit der Vorhersage 

mittels der mechanistischen Filmtheorie verglichen. 

Die Hybridmodelle konnten die Permeatflussabnahme und die Konzentration des Produkts 

und der Verunreinigung gut vorhersagen. Dies war für verschiedenste Kombinationen von 

Konzentrationen und mechanischen Prozessparametern möglich. Die Vorhersagen basierten 

nur auf der anfänglichen Konzentration der Proteine, dem Transmembrandruck und dem 

Querstrom und benötigten nur wenige Trainingsexperimente. Die entwickelten Hybridmodelle 

bilden die Basis für Softsensoren zur Echtzeitmodellierung und modellbasierter 

Prozesskontrolle für industrielle Anwendungen. Solche Modelle ermöglichen das 

Weiterentwickelnd der biopharmazeutischen Industrie nach den Gesichtspunkten der Quality-

by-Design Prozessführung. 

  



 
 

Abstract 
 
Cross-flow filtration is a powerful technique used during several purification processes in the 

biopharmaceutical industry, such as cell harvesting, virus clearance or protein concentration. 

Due to the intrinsic variability of biological processes, the product titers and impurity profiles in 

the fermentation broth commonly differ from batch to batch. Solely mechanistic models do not 

fully describe the complex interactions between these components and the process conditions. 

In the present work, three hybrid model structures were established that accounted for varying 

concentrations of a two-component solution, a model system based on BSA and lysozyme, 

which mimicked product and impurity, respectively. The models differed according to how the 

impurity rejection factor was calculated, ranging from static values to dynamically updating 

structures. The flux predictions of the hybrid models were compared to the predictions obtained 

by the well-established mechanistic stagnant film model and the recently established one-

component-hybrid model. 

The established two-component-hybrid models accurately described the flux and the 

concentration evolution of the two proteins over a wide range of process parameters and 

product-to-impurity ratios. The predictions were solely based on the initial protein 

concentrations, transmembrane pressure and cross-flow velocity parameters and the models 

trained on a minimum set of training experiments. On the opposite, the stagnant film theory 

and the one-component-hybrid models exhibited larger errors for flux and showed poorer 

prediction for the impurity, since they are based on one component only. The presented hybrid 

models are the foundation for the implementation of soft-sensors for real-time monitoring and 

model predictive control of complex multi-component solutions in industry. They thereby pave 

the way for moving biopharmaceutical manufacturing towards the Quality-by-Design initiative 

and next generation bioprocessing.  

  
 



Contents 
 

ABBREVIATIONS...................................................................................................................... 2 

NOMENCLATURE AND SYMBOLS .............................................................................................. 3 

1. THEORETICAL BACKGROUND ............................................................................................... 4 
1.1 Downstream processing ............................................................................................... 4 

1.1.1 Membrane technology................................................................................................. 5 
1.1.1.1 Cross-flow filtration ........................................................................................ 7 

1.2 Modeling of filtration processes .................................................................................... 9 
1.2.1 Mechanistic modeling.................................................................................................. 9 

1.2.1.1 Concentration polarization ........................................................................... 10 
1.2.1.1.1 Resistance models ....................................................................... 11 
1.2.1.1.2 Gel-layer models .......................................................................... 12 
1.2.1.1.3 Osmotic pressure models ............................................................. 13 

1.2.1.2 Other flux limiting phenomena ...................................................................... 15 
1.2.2 Data-driven models ................................................................................................... 17 

1.2.2.1 Artificial neural network (ANN) ..................................................................... 18 
1.2.3 Hybrid modeling ........................................................................................................ 19 

1.3 Host cell impurities ..................................................................................................... 20 
1.3.1 Typical Escherichia coli impurities ............................................................................ 20 
1.3.2 Chinese hamster ovary (CHO) cell impurities .......................................................... 21 

2. OBJECTIVE ....................................................................................................................... 23 

3. MATERIALS AND METHODS ................................................................................................ 24 
3.1 Experimental setup .................................................................................................... 24 

3.1.1 Equipment and chemicals ......................................................................................... 24 
3.1.2 Training and test data generation ............................................................................. 24 
3.1.3 UV absorbance-cp,Lys calibration curve ..................................................................... 27 
3.1.4 Protein analysis ......................................................................................................... 28 
3.1.5 Concentration polarization correction ....................................................................... 28 

3.2 Hybrid modeling ......................................................................................................... 28 
3.2.1 Black box models ...................................................................................................... 28 
3.2.2 White box model ....................................................................................................... 29 
3.2.3 Multi-step ahead hybrid models ................................................................................ 29 

3.2.3.1 One-component-hybrid model ...................................................................... 31 
3.2.3.2 Two-component-hybrid model 1 – static lysozyme rejection factor ................ 31 
3.2.3.3 Two-component-hybrid model 2 – dynamic lysozyme rejection factor with a 
multi-output black box .............................................................................................. 32 
3.2.3.4 Two-component-hybrid model 3 – dynamic lysozyme rejection factor with two 
independent black boxes ......................................................................................... 32 

3.2.4 Stagnant film theory .................................................................................................. 33 

4. RESULTS AND DISCUSSION ................................................................................................ 35 
4.1 Training and test data ................................................................................................ 35 

4.1.1 Flux ............................................................................................................................ 35 
4.1.2 Lysozyme rejection factor ......................................................................................... 37 

4.1.2.1 RLys average from training set ...................................................................... 39 
4.1.3 Concentration polarization correction ....................................................................... 39 

4.2 Flux prediction............................................................................................................ 42 
4.2.1 Comparison between mechanistic and hybrid models ............................................. 42 

4.2.1.1 One-component models trained on one-component protein solution (ocHMBSA 

and SFMBSA) ............................................................................................................ 42 
4.2.1.2 One-component models trained on two-component protein solution (ocHMcomb 

and SFMcomb) ........................................................................................................... 43 
4.2.2 Comparison between two-component-hybrid models (tcHMs)................................. 44 

4.3 Rejection factor prediction .......................................................................................... 52 



 
 

1 

4.4 Final protein concentration prediction ......................................................................... 59 
4.4.1 BSA ........................................................................................................................... 59 
4.4.2 Lysozyme .................................................................................................................. 61 

5. CONCLUSIONS AND OUTLOOK ............................................................................................ 65 

6. BIBLIOGRAPHY.................................................................................................................. 67 

7. LIST OF FIGURES ............................................................................................................... 71 

8. LIST OF TABLES ................................................................................................................ 75 

9. APPENDIX ......................................................................................................................... 77 
9.1 Manuscript ................................................................................................................. 81 

 

  



 
 

2 

Abbreviations 

 
ANN     Artificial neural network  

BSA    Bovine serum albumin  

CF    Cross-flow velocity 

CHO   Chinese Hamster Ovary 

CP    Concentration polarization 

CPP    Critical process parameter 

CQA   Critical quality attribute 

DF     Diafiltration 

E.coli   Escherichia coli 

HCP    Host-cell proteins 

HM   Hybrid model 

HPLC   High-pressure liquid chromatography 

Lys   Lysozyme 

MLR   Multiple linear regression 

MnLR   Multiple non-linear regression 

MPC    Model predictive control 

MWCO   Molecular weight cutoff 

NRMSE   Normalized root-mean-squared error  

ocHM   One-component-hybrid model 

PAT   Process analytical technology 

PBS   Phosphate-buffer saline 

QbD     Quality by design 

SEC    Size exclusion chromatography  

SFM   Stagnant film model 

tcHM   Two-component-hybrid model 

TMP    Transmembrane pressure  

UF    Ultrafiltration  
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Nomenclature and Symbols 

 
A  membrane area [m2] 

An nth virial coefficient [m3n/kgn]  

c0  initial bulk concentration [g/L] 

cB,i  bulk concentration of component i [g/L] 

cG  gel layer concentration [g/L] 

cm   concentration at the membrane surface [g/L] 

cp     permeate concentration [g/L] 

D  diffusion coefficient [m2/s] 

dt  time increment [s]  

J  permeate flux [LMH] or [m3/m2⋅s]  

k  mass transfer coefficient [LMH] 

Ri rejection factor of component i 

Raverage average rejection from training/test experiment  

𝑅𝑏𝑙 hydraulic resistance of the boundary layer [m-1] 

𝑟𝑏𝑙 specific resistance of the boundary layer [m-2] 

𝑅𝑚 hydraulic membrane resistance [m-1] 

𝑟𝑚  specific membrane resistance [m-2] 

V0 initial reservoir volume [mL] 

VB  bulk/reservoir volume [mL] 

Vp  permeate volume [mL]  

 

Symbols 
 

∆𝑃  applied pressure [Pa] 

∆Π𝑏  osmotic pressure difference between the feed and the permeate side [Pa] 

∆Π𝑏𝑙  osmotic pressure difference along the boundary layer [Pa] 

∆Π𝑚  osmotic pressure difference along the membrane [Pa] 

𝛿  thickness of the boundary layer [m] 

𝜂0  viscosity of the solvent [Pa·s] 
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1. Theoretical Background 

During the production of biopharmaceuticals, the product of interest is usually found together 

with a complex mixture of components in the fermentation broth or cell culture supernatant. 

These components are categorized as impurities and contaminants, which have to be removed 

throughout a number of purification steps, so-called downstream processes, in order to ensure 

the quality and consistency of the product. Process-related impurities are those that derive 

from the manufacturing process itself, such as media components, host cellular components -

DNA, RNA, proteins, lipids…-, metabolites or endotoxins. Product-related impurities are 

molecular variants of the product that have the potential to differ from it in terms of activity, 

efficacy or safety – i.e., product precursors, aggregates, glycovariants, isoforms, oxidized or 

deamidated forms. On the other hand, contaminants are adventitiously introduced materials, 

such as viruses, prions, microbial proteases or microbial species. The acceptable amount of 

each of these compounds in the final product is defined by the regulatory agencies through 

the so-called product specifications, which must be fulfilled by the manufacturer to ensure the 

product safety and efficacy1,2.  

In the first part of the introduction, a brief summary of the overall downstream processes used 

in the production of biopharmaceuticals is provided, with a more detailed information on the 

role of cross-flow filtration in the following. Later on, the different modeling approaches for 

filtration processes are described. Finally, the most common impurities found in bioprocessing 

of bacterial and mammalian production systems and their titer compared to the product are 

also explained.  

1.1 Downstream processing  

Downstream processes account for the major part of the production costs of 

biopharmaceuticals, representing up to the 80% of the total costs in some cases3,4. It is for this 

reason, that the development of separation and purification techniques with enhanced 

efficiency, throughput and selectivity have to deal with increasing product titers and high dose 

therapies to reduce the cost of goods5,6. The purification process of a biotechnological product 

typically consist of four main sections: primary recovery, capture, purification and polishing7.  

During the first section, primary recovery, whole cells and cell debris are separated from small 

soluble molecules by mechanical separation methods, mostly centrifugation and depth 

filtration. In the case of microbial fermentations, where the cell debris densities are usually 

higher due to the disruption of the cells from the harvest, a primary clarification step by 

centrifugation usually takes place followed by depth filtration. On the contrary, in mammalian 

cell culture, where the molecules of interest are secreted out of the cell and the cell debris 

densities are lower, depth filtration is used more often8, which has the advantage of lower 
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equipment costs and easier scalability (by the membrane area). Further, some depth filters are 

charged, which allows for additional chemical separation of the host cell impurities9. Finally, a 

second type of filters, known as sterile filters, of uniform and smaller pore size (0.2-0.4 µm), 

are usually used after depth filtration in order to ensure that the subsequent downstream 

processing units are protected from unwanted cell debris or contaminants, thereby preventing 

them from fouling. After the separation of the product from the biomass, the capture phase is 

the next step. The main goal of the capture step is to isolate the product and to reduce the 

volume of the solution. This is essential in order to reduce the material consumption and the 

size of equipment used in the subsequent steps - which are particularly the most expensive 

ones, both in fixed and variable costs. Afterwards, during the purification phase, most 

contaminants are depleted and the concentration of the target component is further increased. 

The most prominent method for the capture and purification phase is ion exchange 

chromatography. Finally, during polishing, the removal of trace contaminants and product-

related impurities such as product aggregates take place achieving the final desired high purity 

levels. The type and number of final polishing steps will depend on the product as well as on 

its required purity. For biopharmaceuticals (purity >90%) the polishing stage usually consists 

of a combination of chromatographic and filtration steps. The reason for using filtration in this 

stage is that chromatographic methods are the most expensive steps during downstream 

processing -representing over one third of the total downstream processing costs7-, and 

therefore, product concentration and volume reduction becomes essential for the economic 

viability of the process. In addition, UF/DF units allow for buffer exchange while concentrating, 

thereby ensuring the most optimal conditions for each chromatographic step.  

1.1.1 Membrane technology 

Membrane processes play a critical role in the purification of biotechnological products, being 

used in several applications such as cell harvest, clarification, sterile filtration, virus removal, 

protein concentration or buffer exchange. Three main types of membranes are used in 

downstream process of biopharmaceuticals, depending on the pore size and therefore their 

removal characteristics. Microfiltration membranes have pore sizes ranging from 0.05 to 10 

µm and are used to retain cells and cell debris, whereas ultrafiltration membranes have smaller 

pores, between 1 and 20 nm, and are designed to retain proteins and other macromolecules. 

The pore size of ultrafiltration membranes is commonly given as the molecular weight cut-off 

(hereafter referred to as MWCO), which is defined as the lowest molecular weight of a solute 

with at least 90% retention by the membrane. Finally, membranes designed for virus filtration 

fall between micro- and ultrafiltration membranes and have pore sizes from 20 to 70 nm. It is 

important to mention that depth filters are not typically considered as membranes, since they 

retain the components throughout their porous structure rather than on their surface9. These 
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filters are made of a matrix of fibers with an appropriate filter aid (e.g., diatomaceous earth, 

perlite or activated carbon) and a binder, which creates their porous filter media and increases 

the mass of particles they can retain before start clogging. Some sterile or virus filters may 

also retain the feed particles throughout their depth, however, in this case this is because they 

have multiple layers of different pore size or because their pore size distribution is graded in 

order to increase the permeability or the capacity of the filter. 

Regardless of the membrane type, there are two operational modes for pressure-driven 

filtration systems: normal filtration (also called dead-end filtration), where the feed flow is made 

pass through (vertical) the membrane filter (Figure 1A), and cross-flow filtration (CFF) (also 

called tangential flow filtration), where the feed is directed parallel to the membrane (Figure 

1B). In both operational modes, the solution that goes through the membrane is known as 

permeate or filtrate, while the solution that is retained on the feed side is called retentate or 

filtrate. In cross-flow filtration, the components that are retained on the membrane surface are 

swept away by the feed flow and the retentate is directed back to the feed reservoir. This 

tangential flow reduces the buildup of concentration gradients on the membrane (so-called 

concentration polarization (CP) layers) and fouling effects and allows for direct recovery of the 

product in solution. Contrary, in dead-end filtration the recovery of the retained material is 

uncommon. Dead-end filtration is mainly used for removing undesired components from the 

working solution in applications such as sterile, depth or virus filtration, when the product of 

interest is recovered on the permeate side.  

Hence, when the goal is to concentrate the product, ultrafiltration membranes with MWCOs 

between 3 and 5 times smaller than the target protein mass are commonly chosen, ensuring 

that there are no losses of product to the permeate. On the contrary, for applications such as 

cell and lysate clarification, the filter pore size should be at least 10 times higher than the 

molecular weight of the target protein, so it can freely pass through the filter and the yields are 

not compromised.  

Figure 1: Schematic representation of (A) dead-end and (B) cross-flow filtration modes. 
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All types of pressure-driven membrane separation processes are dominated by two main 

phenomena: concentration polarization and membrane fouling. Concentration polarization 

(CP) is the accumulation of solutes or particles in a thin liquid layer (called CP layer or 

boundary layer) adjacent to the membrane surface as a result of mass transfer limitations 

during filtration. As a consequence, the retained solutes in this layer will have higher 

concentrations than in the bulk solution and will create an additional hydraulic resistance to 

the flow of solvent through the membrane. Moreover, at high concentrations, these retained 

solutes create higher osmotic pressures towards the permeate side, which will counteract the 

applied effective pressure driving force. Therefore, concentration polarization is an inherent 

phenomenon of all membrane separation processes that starts to occur as soon as the solutes 

are convectively transported to the membrane by pressure-driven feed flows10. On the other 

hand, membrane fouling is a more general term that can be due to either the adsorption on 

and within the membrane pores and/or the deposition on the membrane surface of particles, 

colloids and macromolecules. Hence, it is usually used to describe long-term phenomena, 

where the filtration process has to be stopped and the membrane cleaned11 due to a significant 

reduction of the permeate flux compared to the initial values.  

It is important to mention that within the fouling definition, the term cake layer is usually used 

to refer to the accumulation of retained solids on the membrane in microfiltration, while the 

term gel layer is rather used in ultrafiltration for referring to the precipitation of soluble 

macromolecules when their concentration close to the membrane surface is too high. 

However, these terms are sometimes mixed up and used interchangeably by some authors to 

describe two different mechanisms by which explaining the phenomenon of concentration 

polarization in ultrafiltration, regardless of the operational mode type (cross-flow or dead-end 

filtration). In this case, the cake filtration model states that the concentration in the layer on top 

of the membrane is constant (there is no concentration gradient) and that its thickness 

increases with increasing the permeate volume, while the opposite being for the film theory 

(see Figure 2)10,12,13,14. 

1.1.1.1 Cross-flow filtration 

Cross-flow filtration sweeps out the built-up layer on the filter surface, thereby reducing 

concentration polarization and fouling, which are the key limiting parameters in this process 

unit. This leads to higher permeate fluxes and consequently faster filtration processes. Due to 

this feature, cross-flow filtration systems are commonly used for applications such as cell 

perfusion and medium exchange during cell cultivation by microfiltration membranes, or 

protein concentration and buffer exchange by employing ultrafiltration membranes. 

The basic configuration of a cross-flow filtration system is depicted in Figure 4. Usually they 

are operated under one type of process control mode: either constant transmembrane 
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pressure (TMP) or flux, although they can also be combined by an interplay of several process 

parameters15. In this thesis, the TMP control mode was employed, in which TMP is kept 

constant by adjusting the retentate valve - and if necessary also the permeate valve. Closing 

the retentate valve results in increased flux, while closing the permeate value resulted in 

decreased flux. The TMP control mode can be used at constant feed flow, constant retentate 

flow or constant pressure drop between feed and retentate (∆P). On the other hand, in the flux 

control mode, the flux is maintained at a constant rate either by regulating the feed flow or the 

retentate and permeate flow, thereby increasing TMP with time. This control mode is mostly 

used in microfiltration, where the pores of the membrane are relatively large and the main 

process limitation is the creation of an additional hydraulic resistance to the flow due to the 

accumulation of cells and cell debris. However, in ultrafiltration, the dominant effect is the 

reduction in the effective pressure driving force due to osmotic pressure effects, as a result of 

the high protein retention on one side of the membrane, which increase non-linearly with 

concentration at high concentrated solutions16. Therefore, the flux control mode is not an option 

for ultrafiltration of proteins, where the TMP necessary to keep the same flux rate would 

dramatically increase with protein concentration, especially close to high values, known as 

limiting or critical fluxes. At this point, the flux would no longer depend on the applied 

transmembrane pressure but only on mass transfer affecting parameters, such as protein 

concentration in the bulk, buffer composition, cross-flow velocity or temperature. This region 

is called pressure-independent or mass transfer-limited region (see 1.2.1.1 Concentration 

polarization). Additionally, working at high TMPs in turn increases the risk of entering in this 

region. It is for this reason that the optimal operating TMP range for cross-flow ultrafiltration 

processes is described as those values that are just below the pressure-independent region15.  

 

 

 

 

 

 

 

 

 

Figure 2: Concentration profile next to the membrane according to (A) cake- and (B) gel-layer concentration 
polarization models. 
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1.2 Modeling of filtration processes 

1.2.1 Mechanistic modeling 

The flow of a fluid through a porous medium was first described by Darcy’s law17, which 

established a proportional relationship between the filtrate flux of a fluid, the permeability of 

the porous medium and its thickness, the dynamic viscosity of the fluid and the applied 

pressure drop. In modeling of filtration, however, the permeability of the membrane and the 

membrane thickness are commonly used together under the term membrane resistance (𝑅𝑚), 

in order to describe a membrane-specific parameter which only depends on the membrane 

characteristics -material, porosity, pore size distribution, thickness, geometry…- and that can 

be directly used to relate the flux of any kind of fluid in a certain membrane to the applied 

pressure drop, in the form of Eq. (1): 

 

𝐽 =
𝑇𝑀𝑃

𝜂0∗𝑅𝑚
           (1) 

 

Where 𝐽 is the filtrate flux, 𝑇𝑀𝑃 the applied transmembrane pressure and 𝜂0 the viscosity of 

the solvent. 𝑅𝑚  is drawn from the inverse of the slope of Eq. (1), when recording the flux at 

different TMPs and after dividing it by the viscosity of the fluid. 

When filtering a protein solution, the flux is usually lower compared to the pure solvent (Figure 

3). The main reasons for this are concentration polarization and membrane fouling, although 

other phenomena such as protein-protein interactions when using protein mixtures or protein 

interactions with buffer salts may also lead to further deviations from the expected flux 

behaviors. Therefore, several factors may explain the flux behavior in a filtration process, being 

this is the reason why different mechanistic models have been developed to describe them14. 

The extent to which each of these factors occur and influence the flux will depend on many 

parameters, both of the used solution and membrane, and they will thus not always be the 

same. Consequently, there is currently -despite all the extensive research conducted in 

membrane technology- no general model able to describe the flux evolution in filtration 

processes in a holistic way. The process data must be instead analyzed in every case in order 

to determine the model that fits the flux best and that therefore better explains the underlying 

mechanism. However, in some cases it has been shown that different mechanistic models can 

describe the same flux behaviors -e.g. limiting fluxes can be described by both, gel-layer and 

osmotic pressure models13. In other cases, the main effect driving the flux evolution may 

change over time -e.g. from concentration polarization to membrane fouling governing flux-, 

therefore making it difficult to choose a single model to describe the entire filtration process14. 

Finally, phenomena that are not fully understood cannot be represented in mechanistic 



 
 

10 

models. All this usually leads the modeler to make some assumptions when using mechanistic 

models, both of the underlying mechanism governing the flux as well as for the determination 

of its coefficients. However, if the overall behavior of the process changes as a result of 

variations in the solution composition, which is especially likely in multi-component systems as 

the treated in bioprocessing, these assumptions might not hold anymore and the predictions 

lose accuracy. 

 

 

 

 

 

 

 

 

 

 

In this section, a general overview of the classical most used mechanistic models for predicting 

the flux in cross-flow ultrafiltration of proteins is provided, with their advantages and 

disadvantages. 

1.2.1.1 Concentration polarization 

Concentration polarization is an inherent and immediately occurring phenomenon of all 

membrane separation processes. In the case of cross-flow ultrafiltration of proteins, it is the 

main parameter governing the flux evolution. The effects of concentration polarization on flux 

might be explained by three different mechanisms: resistance, gel-polarization and osmotic 

pressure models. They are all based on the universal-known film theory model (Eq. (2))10, 

which describes the mass transfer of a solute across a boundary layer of thickness 𝛿 by the 

convective transport towards the membrane and the back-diffusion caused by the 

concentration gradient in the layer.  

 

𝜕𝑐

𝜕𝑡
+ 𝑈

𝜕𝑐

𝜕𝑥
+ 𝐽

𝜕𝑐

𝜕𝑦
=

𝜕

𝜕𝑦
(𝐷

𝜕𝑐

𝜕𝑦
)               (2) 

 

If neglecting axial diffusion (U) of the solute, and assuming that the fluid velocity is constant at 

all positions on the membrane (dx), that the diffusion coefficient (𝐷) is independent of the solute 

Figure 3: Steady-state fluxes in cross-flow filtration of a macromolecular solute as function of the applied 
transmembrane pressure. An increase in temperature or cross-flow velocity or a decrease in the solute 
concentration would lead to higher steady-state fluxes and vice versa. 
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concentration and steady-state conditions, Eq. (2) is then transformed to Eq. (3). Steady-state 

refers to constant thickness and no solute accumulation on the boundary layer under 

unchanged mass transfer conditions. This is usually reached after a short time in cross-flow 

ultrafiltration.  

 

𝐽 =
𝐷

𝛿
ln (

𝑐𝑚−𝑐𝑝

𝑐𝐵−𝑐𝑝
) = 𝑘 ln (

𝑐𝑚−𝑐𝑝

𝑐𝐵−𝑐𝑝
)                                                (3) 

 

Where 𝑐𝑚, 𝑐𝐵 and 𝑐𝑝 are the solute concentrations on the membrane surface, bulk solution 

and permeate, respectively, and 𝑘 is the solute mass transfer coefficient.  

1.2.1.1.1 Resistance models 

According to resistance models, concentration polarization influences the flux by creating an 

additional hydraulic resistance to the solvent on top of the membrane, known as boundary 

layer resistance (𝑅𝑏𝑙), due to the higher solute concentrations there (𝑐𝑚). This additional 

resistance, which depends on the thickness of the boundary layer (𝛿) as well as on the so-

called (solute) specific boundary layer resistance (𝑟𝑏𝑙), is then incorporated together with the 

membrane hydraulic resistance (𝑅𝑚), in Eq. (1) to calculate the flux. 

 

𝐽 =
𝑇𝑀𝑃

𝜂0∗(𝑅𝑚+𝑅𝑏𝑙)
           (4) 

 

Where: 

 

𝑅𝑏𝑙 = ∫ 𝑟𝑏𝑙  𝑑𝑦
𝛿

0
           (5) 

 

𝑟𝑏𝑙 can be calculated by different approaches, depending on the model and whether the 

particles in the fluid are soluble or not. It strongly depends on the solute concentration at the 

boundary layer as well as on other solute specific characteristics such as the particle size or 

the density. In the case of compressible solutes, it depends on the applied pressure drop as 

well14.  

It is important to highlight that resistance models are mainly used for cross-flow filtration of 

solid particles14, but not of soluble solutes, such as proteins. It has been both theoretically and 

experimentally demonstrated that they are equivalent to the osmotic pressure models in non-

gelling, non-adsorption and completely solute rejection conditions18. The reason is that the 

osmotic pressure difference between the bulk solution and the permeate side (∆Π𝑏) is very 

small in most ultrafiltration processes, especially if compared to the applied pressure drop  

(Eq. (6-7)), therefore being the main osmotic pressure difference made on the boundary layer 



 
 

12 

(∆Π𝑏𝑙, Eq. (8)). Thus, under the aforementioned conditions, the derivation into Eq. (9) takes 

place:   

 

∆Π𝑚 = ∆Π𝑏𝑙 + ∆Π𝑏           (6) 

𝑇𝑀𝑃, ∆Π𝑏𝑙 ≫  ∆Π𝑏           (7) 

∆Π𝑚 ≃  ∆Π𝑏𝑙            (8) 

𝐽 =
𝑇𝑀𝑃−∆Π𝑚

𝜂0∗𝑅𝑚
=

𝑇𝑀𝑃−∆Π𝑏

𝜂0∗(𝑅𝑚+𝑅𝑏𝑙)
≃

𝑇𝑀𝑃

𝜂0∗(𝑅𝑚+𝑅𝑏𝑙)
        (9) 

 

Where the first equality term of Eq. (9) is the osmotic pressure model (Eq. (11)) and the latter 

is Eq. (4). Resistance models are more difficult to construct and more prone to errors than 

osmotic pressure models18, this being the reason why the latter are preferred.  

1.2.1.1.2 Gel-layer models 

Gel-layer (or gel-polarization) models explain that as a result of concentration polarization, the 

concentration at the membrane surface cm increases rapidly with the permeate flux and 

reaches a maximum value, the gel-layer concentration, cG. Here, the solution on top of the 

membrane is no longer fluid and a gel-like layer forms due to protein precipitation. cG will be 

constant and any further increase in the applied pressure will result in an increased gel-layer 

thickness, that will prevent the flux from increasing, entering in the pressure-independent 

region. Under these conditions, the limiting or critical flux, Jlim, will only depend on parameters 

affecting the mass transfer rate, as aforementioned. A common assumption of these models 

is that the solute is completely retained by the membrane -Ri=1, and therefore cp=0-, which 

allows Eq. (3) to be derived into Eq. (10). This assumption simplifies the complexity of the 

calculations necessary to determine the models parameters, since, under unchanged mass 

transfer conditions, Jlim can then be linearly plotted over the logarithm of the bulk concentration, 

cB, with the mass transfer coefficient k being the slope and ln(cG) the intercept point with the 

abscissa (Figure 10, Eq. (21)).  

 

𝐽 = 𝑘 ln (
𝑐𝐺

𝑐𝐵
)                         (10) 

 

The gel-polarization model is one of the most used in modeling of cross-flow ultrafiltration 

processes, since it is simple, easy to construct, and moreover many experimental fluxes have 

shown to correlate well with it14. However, due to considering 𝑐𝑚 = 𝑐𝐺 constant all the time, it 

can only explain the pressure-independent region, therefore failing when predicting fluxes at 

low TMPs or solute concentrations, such as at the beginning of a process, before the gel layer 

is formed. Nevertheless, according to this theory, the time to reach the gel-layer formation 
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should be short in filtration processes of proteins10. Furthermore, Zydney et al.12 demonstrated 

that Eq. (10) was mathematically true for small cG/cB ratios. He additionally extended it to 

describe the flux under concentration-dependent diffusivity conditions. 

The most important factor when using this model is the determination of its mass transfer 

coefficient k. On the one hand, its theoretical calculation from proposed correlations in 

literature (e.g., Sherwood) is difficult and not very precise19. These expressions relate the mass 

transfer coefficient with physical properties of the solution (protein diffusivity, viscosity and 

density), geometries of the filtration device and process parameters (flow regime type, 

velocity…). Additionally, many of these properties depend at the same time on others 

parameters, for instance, the protein diffusion coefficient might change with protein charge (pI 

and pH), buffer conductivity, protein concentration, temperature and viscosity - which in turn 

also depends on temperature. Therefore, their calculation a priori is cumbersome and they 

should be measured in every case. Similarly, the coefficients relating the dimensionless 

numbers (Sherwood, Reynolds, Schmidt…) in this expression are highly dependent on the 

flow regime as well as on the velocity and concentration profiles, which in turn are equipment 

geometries specific. Thus, these coefficients should also be measured for accurate results. 

Summarizing, even though the theoretical calculation of the mass transfer coefficient k is 

possible, it is very prone to errors. On the other hand, its experimental determination can be 

very material and time consuming, as well as require good knowledge of the used equipment 

and extensive data fitting. It is for these reasons that the direct measurement of k from the 

experimental flux data has been suggested as the most precise and easier way19. The 

advantage of gel-layer over other filtration models is that its mass transfer coefficient k can be 

directly drawn geometrically from the slope of Eq. (21), J vs ln(cB). However, this requires the 

selection of just the data that are under the pressure-independent region (linear part, Figure 

10), and therefore, it relies on the criterium of the modeler.  

1.2.1.1.3 Osmotic pressure models 

Finally, according to osmotic pressure models, concentration polarization decreases the flux 

by creating an osmotic pressure difference, which reduces the effective pressure driving force 

across the membrane16. In general, the osmotic pressure of a macromolecular solution is very 

small compared to a low molecular salt solution, however, the large concentrations of built up 

material at the membrane surface make the osmotic pressure of the solution increase 

substantially. Therefore, osmotic pressure models combine the film theory (Eq. (3)) with 

Darcy´s law (Eq. (1)) to include the osmotic pressure difference in the membrane, ∆Π𝑚: 

 

𝐽 =
𝑇𝑀𝑃−∆Π𝑚

𝜂0∗𝑅𝑚
            (11) 
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Although the osmotic pressure of an ideal diluted solution can be directly calculated by Van´t 

Hoff´s equation, for more concentrated non-ideal solutions, virial coefficients are needed (Eq. 

(12))16. These coefficients depend on several properties, and can be either directly measured 

for the given conditions20, taken from reported values in literature16 or calculated as a function 

of different parameters such as the particle excluded volume, hydration or Donnan effects21.  

Eq. (12) for calculating the membrane osmotic pressure will only be true for completely protein 

rejection factors (Ri=1), since otherwise the osmotic pressure difference between bulk and 

permeate solution, ∆Π𝑏, should also be considered when calculating  ∆Π𝑚 (Eq. (6)).  

 

∆Π𝑚 = 𝐴1 ∗ 𝐶𝑚 + 𝐴2 ∗ 𝐶𝑚 
2 + 𝐴3 ∗ 𝐶𝑚 

3          (12) 

 

Wijmans et al.13 showed that osmotic pressure models indeed shared many characteristics 

with the gel-layer models: starting from Eq. (11), they derived a ratio between the resistances 

caused by the osmotic pressures and the ones related with the membrane itself (∆Π𝑚 ·

𝑛)/( 𝜂0·𝑅𝑚· 𝑘). They mathematically proofed that the increment of flux with protein 

concentration in the bulk, i.e. ∂J/∂lncB, was almost equal to −𝑘, as it is stated by gel-polarization 

models, at high values of this ratio. Therefore, even though osmotic pressure models do not 

initially describe a full limiting flux -since 𝑐𝑚 is not constant-, they can also simulate the 

pressure-independent region at high osmotic pressures, where the osmotic pressure effects 

would strongly predominate over the membrane resistance. Additionally, they can also explain 

the flux deviation from the pure solvent at low TMPs or protein concentrations -when ∆Π𝑚 ≈ 0,

𝐽~𝑇𝑀𝑃/(𝜂0 · 𝑅𝑚), Eq. (1)-, since they include the membrane resistance 𝑅𝑚, which was omitted 

in the gel-polarization models. Therefore, according to these models, an increase in the applied 

TMP would lead to a higher 𝑐𝑚, which would in turn increase the osmotic pressure difference 

along the membrane and thereby counteract the expected flux increase. At high protein 

concentrations, a further increase in TMP would have almost no effect -∆Π𝑚 increases non-

linearly with solute concentration, Eq. (12)- entering in the pressure-independent region. 

Hence, instead of using a fixed 𝑐𝑚 value like gel-polarization models do, 𝑐𝑚 is a function of 

TMP. Wijmans et al.13 also suggested that depending on the solute and solvent properties, the 

limiting flux can be better explained either by gel-layer formation or by osmotic pressure 

effects. According to them -also in agreement with what was published by Vilker et al.16- for 

small and medium molecular weight solutes (≤100 kDa), the osmotic pressure limitations are 

more likely to occur than the gel-layer, first, because small weight solutes have higher osmotic 

pressures than high weight molecules, and second, because they would also need higher 𝑐𝑚 

in order to form a gel-layer, and the contrary being for high weight molecules. 
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𝑐𝑚 = 𝑐𝐵 ∗ 𝑒𝐽/𝑘            (13) 

𝐽 =

𝑇𝑀𝑃−[𝐴1∗𝐶𝐵∗𝑒
𝐽
𝑘+(𝐴2∗𝐶𝐵∗𝑒

𝐽
𝑘)

2

+⋯ ]

𝜂0∗𝑅𝑚
         (14) 

 

However, although osmotic pressure models provide more information than the gel-layer 

models, their main limitation is the determination of their mass transfer coefficient k. On the 

one hand, even though its direct measurement from the experimental flux data is possible, it 

is more complicated and prone to errors than with the gel-layer models due to not considering 

𝑐𝑚 constant. Contrary, 𝑐𝑚 has to be first determined for each cB by relating the measured fluxes 

to the membrane osmotic pressure expression (Eq. (11) and (12)). Afterwards, the fluxes are 

plotted over the logarithmic ratio between 𝑐𝑚 and 𝑐𝐵 (film theory, Eq. (3)) and the mass transfer 

coefficient k can be obtained from the slope of the linear regression19. By extrapolating the flux 

to 0, a maximum solute concentration at the membrane surface, 𝑐𝑚𝑎𝑥, is also drawn, which 

corresponds to the maximum solute concentration that could be reached in the bulk, when the 

osmotic pressure in the membrane would equal the applied TMP. Hence, by determining k in 

this way, any error when selecting the expression form that relates the osmotic pressure with 

𝑐𝑚 -Eq. (12), which is only true for completely rejected solutes- or the virial coefficients in it –

which are strongly dependent on the pH, the solvent ionic strength as well as on the protein 

size and protein-protein interactions16- will result in k uncertainties. These uncertainties, due 

to how k is arranged in Eq. (14), will subsequently lead to larger errors in the flux predictions.  

Summarizing, whereas accurate enough gel-layer models can be constructed with just 

recording the flux and the solute concentration in the bulk from a set of training experiments, 

more measurements and calculations are necessary for osmotic pressure models 16,19. 

However, when they are accomplished, more precise and reliable models able to better 

describe the flux over wider ranges of process conditions are obtained. 

1.2.1.2 Other flux limiting phenomena 

Finally, in addition to concentration polarization, several mechanistic models have also been 

developed to explain other flux limiting phenomena such as pore-blocking or cake formation 

in applications such as virus22, DNA23, polymers24 or proteins25 filtration. However, the main 

phenomenon governing the flux evolution in most of these processes was also changing over 

time -which is specially common in fouling processes, where the combination of different 

component interactions and fouling mechanisms takes place26- therefore making difficult to 

build valid models able to describe the entire process.  

Moreover, it is important to highlight that for all the previously explained mechanistic models 

the mass transfer coefficient k was assumed to be constant (1.2.1.1 Concentration 

polarization) -and thereby it was also the diffusivity, viscosity and density-, and that therefore, 
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they were independent of the protein concentration. Although this assumption has shown to 

be true for many boundary conditions and specific system geometries12,13,14, it is not the case 

for high concentrated protein solutions27, especially of high molecular weight, such as 

monoclonal antibodies28. In these solutions, the diffusion coefficient and viscosity strongly 

change along the boundary layer as a result of significant protein-protein short-range 

interactions, further complicating the construction of mechanistic models under these 

conditions. Nevertheless, some approaches have been developed to overcome these 

limitations, such as introducing correction factors for the viscosity and diffusivity concentration 

dependencies12,29, or modifying the stagnant film theory in more complex models to account 

for the impact of the intermolecular protein interactions in the thermodynamic -protein 

diffusivity, related by the chemical potential gradient to the virial coefficients- and 

hydrodynamic -viscosity- properties27. These model were even extended to incorporate the 

influence of the buffer conditions28,30 and the membrane resistance20. However, although they 

showed very good results describing the flux, both in the pressure-dependent and independent 

regions, these models relied on the experimental measurement of rather physical properties 

such as the protein diffusivity (by dynamic light scattering), osmotic pressure (by its relation to 

TMP in a stirred cell device) or the concentration-dependent viscosity (by capillary viscometry), 

as well as on an extensive data fitting. Finally, they only considered one component in the 

solution, and therefore the presence of additional components would enormously increase 

their complexity. 

It has been extensively reported in literature that the presence of more than one component 

can affect both the flux and the membrane selectivity in a filtration system, due to the influence 

of protein-protein interactions in the mass transport coefficients, from weak31 and 

moderate32,33,34,35, to strong14,36, depending on several factors such as the proteins’ charge 

and concentration or the pH and ionic strength of the solution. Similar results have been 

reported for chromatographic steps37,3. Nevertheless, the most common assumption in 

modeling of downstream processes is that the overall sample composition is reduced to the 

target molecule only, so the determination of the mechanistic coefficients and parameters is 

easier as well as their model structure. For some process units, such as polishing 

chromatography38,39 or ultra/diafiltration before formulation40, this assumption is realistic, since 

the impurity content in the treated samples is low. For earlier purification steps, however, such 

as filtration after capture or between polishing steps or capture affinity chromatography37, this 

simplification can lead to erroneous models, since the neglected presence of process-related 

impurities such as host-cell proteins, DNA or protein aggregates can significantly distort the 

performance of the purification unit. If these impurities are quantified, such effects can be taken 

into account. In the case of filtration processes, some mechanistic models have been 

developed that include the impact of different components during virus22 or protein dead-end36 
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and cross-flow41 ultrafiltration. However, the construction of such models is complicated, since 

in addition to all the labor- and material-intensive experimental work necessary to determine 

the mechanistic coefficients including all the components, the effects of the impurities are 

usually complex and not always completely understood, which typically leads to make some 

assumptions when using these models. If the overall behavior of the process changes due to 

variations in the solution’s composition, these assumptions might not be true anymore, losing 

model predictability - as mentioned in section 1.2.1 Mechanistic modeling, different 

phenomena can influence the flux during a filtration process, and it is therefore necessary to 

select first which is the dominating phenomenon before determining its coefficients and 

parameters. However, the selected model might only predominate under certain specific 

conditions. Finally, different components might have different permeabilities in the membrane, 

and therefore, in order to include them in the model, it is necessary to first calculate their 

rejection factor. The rejection factor of a solute is commonly set equal to a constant value, 

which is empirically calculated from the obtained final concentration in the bulk and permeate 

solutions. Nevertheless, it has been reported that this value is not constant over time and that 

it is additionally influenced by the applied process conditions33,35. A mechanistic dynamic 

description of the protein rejection factor as a function of the concentration of two proteins in 

cross-flow ultrafiltration was attempted once36, however, it required the labor measurement of 

hydrodynamic and thermodynamic parameters from the solution.  

1.2.2 Data-driven models 

An alternative to mechanistic models are data-driven (also known as statistical or non-

parametric) models, which capture the data underlying relationships between the variables 

(inputs and outputs) by mathematical functions, without explicit knowledge of the physical 

behavior of the system. These models are therefore fast and easy to apply, however, they 

provide little insight into the functioning of the system and have less extrapolation 

predictabilities compared to mechanistic models42. Extrapolation is defined as the estimation 

of a variable based on other variables that are outside the original observation range (also 

known as training data or space, i.e., the data used to construct the model). A model with good 

extrapolation capabilities will therefore make accurate predictions beyond the training 

conditions. Due to the structure of these models is inferred from the data, they need larger and 

more representative amounts of them compared to mechanistic models.  

To establish the relationships between variables, data-driven models make use of machine 

learning, which is an area of computer science that focuses on studying how computer 

algorithms automatically improve their performance (“learn”) through experience43. Therefore, 

based on a set of observations, data-driven models learn the relationship between input and 

output parameters. After the training, these models can make accurate predictions of new data 



 
 

18 

(test data)43. There are two main types of machine learning algorithms: supervised and 

unsupervised. Supervised learning algorithms -the ones used in this work- are those where 

the modeler predefines the causality relationship (input and output variables) in the training 

data, so the supervised algorithm learns the mapping function between them. Supervised 

learning algorithms include tasks such as active learning, classification (categorical output 

variables) and regression (continuous output variables)44. On the contrary, unsupervised 

learning is where no relation between input and output data is given by the user and the 

algorithm finds the structure between them (by clustering or association tasks).  

Within regression, that is the identification of a mathematical expression that relates the data 

with the least error, different models are used in machine learning, mostly classified as linear, 

nonlinear and regression trees. Linear regression -simple or multiple, ordinary or partial least 

squares- models offer good interpretabilities, are simple to construct and require less 

computational time. However, they might have some limitations such as when defining 

nonlinear relationships between predictors and response variables, when there are many 

different predictors, or in cases of small observation points or multicollinearity45. Although linear 

models can be adapted to nonlinear trends by adding model terms (quadratic, logarithmic…), 

it is necessary to know the nonlinearity of the data. On the opposite, this is not necessary when 

using nonlinear regression models, such as artificial neural network (ANN), multivariate 

adaptive regression splines (MARS), support vector machines (SVMs) or K-nearest neighbors 

(KNNs). Finally, regression trees partition the data into smaller groups based on logic 

statements, and they are mostly used in other applications such as in decision making.  

Regarding the non-linear artificial neural network regression models, due to their increasing 

popularity as well as their extensive utilization in this work, they are shortly explained in the 

section below. 

1.2.2.1 Artificial neural network (ANN) 

Artificial neural networks are nonlinear machine learning algorithms that recognize the 

underlaying relationships in a set of data through a process inspired by the way the human 

brain works. Particularly, they consist of a collection of interconnected hidden units or nodes, 

also known as neurons, each of which receives several inputs, calculates the weighted sum of 

them (linear activation function, Eq. (24)) and transform it by a non-linear activation function 

(Eq. (25)). Afterwards, these neurons pass the result (“signal”) to the next unit, which receives 

them by also a linear combination of all the previous units or neurons. By combining linear and 

non-linear activation functions these models are able to establish more complicated input-

output relationships. In addition, the attributed weights allow to increase or decrease the 

strength of a variable or neuron under a certain condition, gaining flexibility. The structure of 

the ANN model used in this work for flux prediction is shown in Figure 17. 
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The neurons are organized in hidden layers, which might have different activation functions 

and each of them have a certain bias value that multiplies the linear activation function of all 

the neurons that form that layer. The term hidden refers to the fact that these units are 

unobserved variables, although they modulate the outcome of the model. Hence, in an ANN 

model, the signal travels from the first layer of input variables to the last layer of outputs, with 

the different hidden layers in between.  

The value of each weight and bias is optimized (trained) to minimize the model error, which is 

typically the sum of the squared residuals. This process usually starts with randomly choosing 

the weights and biases and making the first prediction with the inputs provided in the training 

set. By comparing this prediction with the outputs from the training, an error is calculated and 

the ANN backward calculated to fit the prediction. The error between real and backward 

calculated inputs is used each time to update the weights and biases. The optimization can be 

performed by different algorithms. The learning process is complete whenever the error is not 

usefully reduced anymore. The established model structure is finally optimized by applying the 

model to a different data set, called validation, to fine-tune the structure parameters, e.g., the 

number of nodes Therefore, the number and nature of the parameters in these regression 

models are not fixed a priori, but flexible and determined from the data.  

1.2.3 Hybrid modeling 

Hybrid modeling (also called semi-parametric modeling) combines the benefits of both 

modeling approaches. They consist of a data-driven non-parametric part whose structure and 

parameters are inferred from the data, and a mechanistic described parametric part. These 

parts are hereafter referred to as black box and a white box, respectively. The black box 

correlates the input with output variables using the weights/coefficients of a nonparametric 

function - e.g., artificial neural network (ANN), partial least squares regression (PLS), 

multivariate adaptive regression splines (MARS), etc45. On the other hand, the white box 

represents a mechanistically or phenomenologically well-understood function of fixed structure 

typically derived from conservation, thermodynamic or kinetic laws. Therefore, the parameters 

of the white box have a physical meaning. The black and white boxes can be combined in 

multiple ways in a hybrid model, mostly as serial or parallel. Parallel hybrid models are typically 

used when full fundamental mechanistic models are available, but their predictions should be 

improved (corrected) with data-driven models to fit the process data42. On the other hand, 

parallel hybrid models are used when some parts of the process are not well understood by 

the available mechanistic knowledge, and data-driven models are then used to describe them. 

In this case, the black box can proceed the white box or vice versa, depending on the degree 

of available knowledge about the process. In some cases, a combination of parallel and serial 

hybrid models is applied.  



 
 

20 

Hybrid models have been successfully used for modeling of bioprocesses, both in 

upstream46,47 and downstream48 applications. In the case of filtration, they have been used to 

describe the fouling phenomenon49 and different cleaning strategies50 in dead-end wastewater 

ultrafiltration. Recently, a hybrid model for flux prediction of protein solutions in cross-flow 

ultrafiltration was also developed, highlighting its benefits compared to the mechanistic 

stagnant film theory51. However, this model only accounted for single-protein solutions, which 

can substantially deviate from reality in some of the purification stages where ultrafiltration is 

usually used in the biopharmaceutical industry, such as after capture chromatography or 

between polishing steps, where the still high presence of host-cell impurities and contaminants 

can strongly affect the filtration performance. 

1.3 Host cell impurities 

1.3.1 Typical Escherichia coli impurities 

Due to its rapid growth, high yield of product and cost-effectiveness, Escherichia coli is usually 

the first-choice microorganism for the production of heterologous proteins including 

biopharmaceuticals, being about 30% of the current approved therapeutic proteins produced 

by these host cells52. However, due to the presence of both cytoplasmic and outer membrane 

as well as cell wall, the heterologously expressed proteins are not efficiently secreted to the 

extracellular space by E.coli, making cell lysis usually necessary53. This leads to the release 

of several host cell-derived impurities such as endotoxins, dsDNA or host cell proteins (HCPs) 

into the supernatant in excess along with the protein of interest. Moreover, in E. coli the desired 

product is, if expressed at high rates, often deposited in a non-soluble form known as inclusion 

bodies, which have to be re-solubilized afterwards. They are only to minor extend associated 

with host cell proteins such as elongation factors54, subunits of RNA polymerase55, outer 

membrane proteins56 or proteins conferring antibiotic resistance57. Hence, the starting material 

for the purification of recombinant proteins from E. coli is complex, which makes multistep 

downstream processes essential to accomplish with the required limits for each of these 

impurities established by the authorities. An overview of the dominant process-related 

impurities which have to be considered during overexpression in E.coli as well as their imposed 

regulatorily limits are briefly summarized below. 

Endotoxins, also known as lipopolysaccharides (LPS), which are integral components of the 

outer cell membrane of gram-negative bacteria, are extremely toxic when getting into the 

human blood stream. Even small concentrations might lead to systemic inflammatory reaction, 

tissue injury or even the death. For this reason, the current maximum amount per dose for 

intravenous application products is limited to 5 endotoxin units (EU, related to the biological 

activity of the endotoxin, usually between ~ 120-200 pg of endotoxin depending on the type) 
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per kilogram body weight and hour58. DNA is also considered a potentially dangerous 

substance, due to the possibility of cellular transformation by potentially oncogenic DNA. A 

maximum of 10 ng DNA per dose is limited for intravenous application59 and 100 µg for orally 

administrated vaccines60. Host cell proteins (HCPs), are a very common impurity found in 

every host cell line used in bioproduction, and are usually considered critical process 

parameters due to their potential immunogenicity as well as their adjuvant, proteolytic or direct 

biological activity61. The range of HCPs species in a fermentation broth is very extensive. There 

is nearly an infinite variety of HCPs and they strongly depend on the cell type and expression 

modality used62 as well as on the product63 and production process itself64. It is for this reason 

that there is not yet neither an absolute control limit established by the regulatory agencies nor 

an standard quantification method assay regarding HCPs. On the contrary, their acceptance 

level is usually reviewed on a case-by-case basis by the authorities depending on several 

aspects (maximum dose of the drug, route of administration, frequency of dosing, pre-clinical 

and clinical data…). However, it has been reported that most biologic products reviewed by 

the FDA up to 2004 had HCPs contents below 100 ppm or mg/L65. Hence, the imposed limits 

by the regulatory agencies to ensure the safety of a medicament are quite stringent, especially 

if considering the typical impurity concentrations of an E. coli homogenate – about 1 g/L 

dsDNA, 20 g/L HCPTotal and 1·106 EU/mL for a 2 g/L cytoplasmic expressed protein solution. 

After capture steps, however, these amounts are typically reduced to 0.5-1.5 mg/L dsDNA, 0.5 

mg/L HCPTotal and 5000-100,000 EU/mL, while the target protein being concentrated to about 

10 g/L66. 

1.3.2 Chinese hamster ovary (CHO) cell impurities 

Mammalian cell lines are also very important host cells for the industrial production of 

recombinant proteins due to their ability for correct folding, assembly and post-translational 

modifications of proteins, especially glycosylation, for which bacteria lack the required 

intracellular machinery67. Among them, Chinese hamster (Cricetulus griseus) ovary (CHO) 

cells are the most used cell types, being about 70% of the current clinical recombinant products 

produced by them61. From all biopharmaceuticals, monoclonal antibodies (mAb) are the ones 

that have been clearly dominating the pharmaceutical market in the last recent years and 

whose fast growth is expected to keep growing in the future 61,6. These molecules are secreted 

by the cells into the cell culture supernatant, together with many other host proteins, from which 

they have to be afterwards purified to meet with the required product specifications. Recently, 

it was reported that CHO cells secrete hundreds of different HCP species into the cell culture 

supernatant, with a typical range of 300 mg HCP/g mAb63. Furthermore, some of these HCPs 

were described as exceptionally difficult to remove during downstream processes64, due to 

either having similar physiochemical properties to the product, strongly interacting with it or 
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due to being retained on the chromatographic media63. The latter, in Protein A chromatography 

-the most significant step for HCP removal (>90%37) in mAbs and Fc-fusion carrying proteins 

purification processes- was reported to negatively affect its longevity due to the binding of 

impurities to the Protein A ligand63,37. Additionally, it was described that the primary and 

secondary clarification steps influenced the Protein A performance by regulating the HCP 

profile that went through it3,37. Hence, having a control of the content of the impurities 

throughout the downstream processing units is of high interest in the biopharmaceutical 

industry, not only for ensuring the safety and quality of the final product and reduce the risk of 

batch rejection, but also for the efficiency and economic viability of the process62, since 

downstream processes represent the major part of the production costs of biologicals.  
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2. Objective 

The aim of the present study was to extend the previously developed one-component-hybrid 

model51 to account for a second component in the system, lysozyme, which mimicked a 

process-related impurity, and to evaluate its influence on the flux together with BSA, mimicking 

the target product. The used ratios between the two model proteins were based on the 

literature mentioned in 1.3 Host cell impurities about the typical product and impurity titers in 

downstream processing solutions. BSA and lysozyme were selected as model proteins 

because they exhibit different physicochemical properties that facilitate their separation and 

quantification. The advantage of using hybrid models for two-component UF systems is that 

the complex and variable effects that each of the components might have on the flux decline 

do not need to be experimentally quantified, which would be time- and material-consuming, 

but instead, this is done by machine learning algorithms, by establishing mathematical 

relationships between inputs and outputs, thereby drawing the most information out of the 

available data. The classical stagnant film model and the previously established one-

component-hybrid model were also reproduced to compare for the flux prediction. 

Additionally, due to lysozyme was only partially retained by the selected membrane, the data-

driven black box models were also used for predicting its rejection factor (RLys) evolution. For 

this purpose, three overall different two-component-hybrid model (tcHM) structures were 

developed, depending on how RLys was calculated. The structures ranged from static RLys 

values (tcHM1), to dynamically updating RLys in the same or different black box with flux, tcHM2 

and tcHM3, respectively. The white box model in turn consisted of a mass balance that 

calculated the future protein concentrations and remaining reservoir volume based on the 

predictions from the black box models. Hence, the presented hybrid models aimed, from just 

the initial concentration of each protein and the transmembrane pressure and cross-flow 

velocity parameters, to make accurate predictions of both the flux and the RLys over time. These 

predictions were subsequently used to calculate the expected final concentration of each 

component in the bulk and compared to the measured concentrations.  
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3. Materials and Methods 

3.1 Experimental setup 

3.1.1 Equipment and chemicals 

All ultrafiltration runs were performed on an ÄKTA Crossflow system (Cytiva, Columbia, USA) 

controlled by UNICORN 5.31 software. The reservoir tank had a maximum volume of 1100 mL 

and the system featured online pH, temperature, UV-absorbance and conductivity sensors on 

the permeate side as well as a pressure-based reservoir level sensor. The experiments were 

performed with a Sartocon Slice hydrophilic, stabilized cellulose-based membrane (Hydrosart) 

cassette (Sartorius AG, Göttingen, Germany) with a membrane area of 200 cm2. The chosen 

pore size for the membrane was 30 kDa, so that the mimicked protein of interest -BSA, 66 

kDa- was fully and the mimicked impurity -lysozyme, 14 kDa- partially retained. Both model 

proteins were purchased from Sigma-Aldrich, St. Louis, MO, USA. The filtration buffer used 

was 50 mM PBS, pH 8.  

Before all experiments were performed, the filters were flushed with 1 L deionized water and 

conditioned with filtration buffer until a stable conductivity signal was reached. After the 

experiments, the filters were flushed with 1 L deionized water, cleaned for 2 hours with 1 M 

NaOH clean-in-place (CIP) solution and flushed again with 1 L deionized water. Finally, before 

and after each experiment, a clean water permeability (CWP) test was made in order to ensure 

similar membrane permeability properties and thereby the reproducibility of the experiments. 

All test runs performed within less than a 9% Flux/TMP variation compared to the new 

membrane. 

3.1.2 Training and test data generation 

The data for training the black box models were collected using the UNICORN built-in process 

optimization tool. The schematic depiction of the cross-flow filtration unit is shown in Figure 4. 

During training data generation, for each cB,i the CF was first adjusted to the lowest flow rate 

by employing the feed pump (PF), followed by stepwise TMP variations from the lowest to the 

highest value using the valve on the retentate-side (PR). After the TMP variations, the CF was 

also increased stepwise (Figure 4c). During the scouting, the permeate was redirected into the 

reservoir in order to keep cB,i constant (Figure 4a). For each cB,i, three CFs (100, 200 and 300 

mL/min) and five TMPs (0.8, 1.3, 1.8, 2.3 and 2.8 bar) were tested, and the resulting fluxes 

and UV-absorbances were recorded. The UV-absorbances were afterwards used to calculate 

the lysozyme rejection factor, RLys, through a calibration curve (see section 3.1.3 UV 

absorbance-cp,Lys calibration curve) and fed to the black box together with the fluxes for model 

training. At the beginning of each scouting round a sample was taken from the reservoir and 
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analyzed by SEC-HPLC. The obtained cB,is were assumed to be constant during all the 

scouting round. To increase the cB,i between rounds, the samples were concentrated (Figure 

4b) until the desired bulk volumes were reached (Figure 4d). At the beginning of each of these 

concentration steps, a sample was taken from the permeate side and its concentration, cp,i, 

related to the cB,i from the previous round in order to calculate the Ri factor. With all the 

calculated Ri values at each concentration step, a training Ri,average factor was obtained (4.1.2.1 

RLys average from training set). The cross-flow and transmembrane pressure during the 

concentration steps were chosen to be in the middle of the trained process parameters space 

(Figure 4c and Figure 13), 200 mL/min and 2 bar, respectively. 

In total three training experiments were performed. The first one included only BSA, in order 

to test the reproducibility of the previously developed one-component-hybrid model51 in the 

current membrane and its performance for predicting two-component solutions. The second 

one, with only lysozyme, was used to generate the calibration curve between cp,Lys-UV 

absorbance. Moreover the second training set was used to see how pure lysozyme behaved 

with the membrane without BSA. Finally, a third training experiment combining both proteins, 

with the purpose of building the models that simultaneously predicted the flux, rejection factor 

and concentration of two-protein solutions was performed. A summary of all training 

experiments is provided in Table 1.  

 

Table 1: Summary of all performed training experiments, with the number of scouted cBs, their training set size and 
the cBs range for the two proteins. 

Training set 
nº scouted 

cBs 
Training set 

size 
cB,BSAs range [g/L] cB,Lyss range [g/L] 

BSA alone 10 150 3.7-180 - 

Lysozyme alone 12 178 - 0.39-43.9 

Combined (BSA + Lys) 6 90 3.8-77.9 0.28-3.81 
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As it can be seen in Figure 4c, every time before the TMP started to increase stepwise as well 

as at the end of each scouting round, the solution was recirculated with the permeate valve 

closed (TMP=0) during some minutes. The reason for this was to reduce the CP layer on the 

membrane surface, which would lead to smaller fluxes and therefore to flux underestimations 

when building the models, since cB,is had to be constant for all the scouting round. However, 

due to concentration polarization is an inherent phenomenon of all pressure-driven filtration 

processes, its effects should also be considered. This was accomplished by using the data 

from the concentration steps between scouting rounds (Figure 4d, 3.1.5 Concentration 

polarization correction). Hence, in this way it was possible to both build precise models for flux 

prediction and correct for the protein accumulation in the membrane due to concentration 

polarization by just taking samples at the beginning of each scouting round. 

After the data collection for training the black box models, UF test runs with varying initial cB,BSA, 

cB,Lys, CF and TMP were performed (Table 2). The protein solutions, with a volume of > 1000 

mL, were concentrated at constant TMP and CF, and the decrease in flux over the process 

time was recorded and compared to the predictions from the hybrid models. In addition, several 

samples were also taken during the filtration process both from the retentate and permeate 

sides to calculate Ri evolution, which were also compared with the model predictions. The 

exact initial and final reservoir volume as well as the number of samples taken at each test set 

are shown in Table A1.  

The predictive performance of the models was evaluated by the normalized root-mean-square 

error (NRMSE), comparing predicted and measured flux and RLys values as shown in Eq. (15). 

𝑁𝑅𝑀𝑆𝐸 [%] = 100 ∙
√

1

𝑛
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
          (15) 

Figure 4: Schematic overview of the setup of the cross-flow filtration system. (a) and (c): TMP and CF scouting 
rounds. The permeate was redirected into the bulk reservoir in order to keep cB constant. (b) and (d): concentration 
steps of the training experiment, the reservoir volume was reduced in order to increase cB. This setup was the same 
for the test sets. Figure from [51]. 
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where 𝑛 is the number of overserved values 𝑦𝑖, and 𝑦̂𝑖 the corresponding predicted ones. The 

normalization 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 allowed for a fair comparison of fluxes at different conditions. The 

observed permeate flux was recorded online in regular time intervals. The observed RLys values 

were present in irregular time intervals, since they were based on offline measurements. 

 

Table 2: Summary of all performed test sets with varying TMP, CF, cB,BSA and cB,Lys and the ratio between the 
mimicked protein of interest (BSA) and the impurity (lysozyme), simulating the purity degree of the solution. 

Test set number TMP CF c0BSA [g/L] c0Lys [g/L] Ratio (%) 

1 1.8 200 6.68 0.00 100.0 

2 1.8 200 4.00 0.28 93.5 

3 2.8 300 3.82 0.32 92.3 

4 2.1 250 3.71 0.38 90.7 

5 2.5 280 4.56 0.25 94.8 

6 1.8 200 3.79 0.50 88.3 

7 1.6 230 5.97 0.15 97.5 

8 1.4 270 8.80 0.19 97.9 

9 1.8 260 2.38 0.57 80.5 

10 2.0 350 3.62 0.34 91.3 

 

After training and test runs, the permeate valve was closed and the remaining solution was 

recirculated at 300 mL/min cross-flow during about five minutes. Afterwards, the reservoir was 

emptied and the solution weighted and sampled in order to close the mass balance. Later on, 

fresh buffer (50-100 mL) was added to the system and recirculated during approximately half 

an hour at very high cross-flow rates (500-550 mL/min). The reservoir was then emptied again 

and the concentrations measured to evaluate if the missing protein in the mass balance could 

be recovered.  

3.1.3 UV absorbance-cp,Lys calibration curve 

The calibration curve between the UV absorbance at 280 nm and cp,Lys was built during the 

training experiment with only lysozyme. The linear regression curve showed an R2 of 0.998 

and was afterwards used to correlate all the recorded absorbance values at each TMP and CF 

equilibrium combination during the BSA with lysozyme training experiment, to their cp,Lys and 

therefore RLys – in combination with the cB,Lyss from the previous scouting round. The 

regression curve is shown in Figure 11. 

Due to during the training set with only BSA very small amounts of protein were detected on 

the permeate side -≤ 0.05 g/L, below the lowest point of the standard calibration curve in SEC-
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HPLC-, the BSA rejection factor, RBSA, was assumed to be 1. Consequently, all the UV 

absorbance values recorded during the BSA with lysozyme training experiment were assumed 

to be only from lysozyme.    

3.1.4 Protein analysis 

BSA and lysozyme concentrations were determined by an analytical high-performance size 

exclusion chromatography (SEC-HPLC) using a TSKgel G3000SWXL column (5 µm, 7.8 × 

300 mm; TOSOH, Shiba, Tokyo, Japan). The separation was performed under isocratic 

conditions with 50 mM sodium phosphate and 200 mM NaCl at pH 6.5 as running buffer, at a 

flow rate of 0.4 mL/min. The samples were previously diluted with the same buffer to a final 

concentration of 0.08 to 1.5 g/L for BSA and 0.08 to 1 g/L for lysozyme, and filtered through a 

0.22 μm Millex-GV filter (Merck Millipore, USA). The injection volume was 10 μL per sample. 

Due to their difference in size, BSA and lysozyme peaks could be completely separated and 

quantified independently using the standard calibrations for BSA and lysozyme made from the 

stock solutions. The mean elution time for BSA was 23.5 min, while for lysozyme it was 30 

min. 

3.1.5 Concentration polarization correction 

During the concentration steps of the training experiment (Figure 4d, TMP 2 bar and CF 200 

mL/min), the measured cB,BSA at the beginning of each scouting round was lower than expected 

if considering the filtered volumes. This difference -that increased with cB,BSA- between 

expected and measured concentrations was due to the formation of a CP layer on the 

membrane. This phenomenon was accounted by the models by introducing a quadratic 

polynomial function to the calculated cB,BSAs from the training data. In the case of lysozyme, no 

correction function was introduced due to the accumulated amount of protein observed at the 

end of the training set was very small. 

3.2 Hybrid modeling 

3.2.1 Black box models 

The black box part of the hybrid models aimed to predict the flux (output parameter) for a 

combination of input parameters (TMP, CF, cB,BSA and cB,Lys). For that, artificial neural network 

(ANN) was used as the black box model, which was set up using the feedforwardnet function 

and trained with trainbr, a function that uses Bayesian regularization backpropagation to avoid 

overfitting by minimizing the combination of squared errors and weights, thereby penalizing 

the large weights (weight decay). All computations were performed using MATLAB 2018b 

software. The ANN was optimized by varying the number of neurons from 1 to 6 in one hidden 

layer. The inputs and outputs were normalized between 1 and 2 for processing in the black 
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box. The black box models were constrained by setting the flux to 0 when the TMP was below 

0.1 bar - e.g., at the beginning of the process. In this TMP range, the fluxes are neglectable. 

In addition, the predicted fluxes in this range are only based on extrapolations, rending them 

prone to errors. 

Moreover, since lysozyme was only partially retained by the membrane, the black box models 

were also used for predicting RLys evolution in tcHM2 and tcHM3 - in tcHM1, RLys was set equal 

to a certain value from the training set. On the one hand, in tcHM2 RLys was introduced in the 

same black box with flux, thereby giving rise to a hybrid model with one black box of four inputs 

(TMP, CF, cB,BSA and cB,Lys) and two outputs (flux and RLys). On the other hand, in tcHM3 an 

additional black box was introduced entirely for RLys prediction. Different black box models 

were utilized for this purpose: ANN, MLR and MnLR. The ANN model for RLys prediction was 

optimized by varying the number of hidden neurons between 1 and 4. MLR, stating for multiple 

linear regression, was optimized by the stepwiselm function, which uses stepwise regression 

for adding or removing predictors from the model based on a certain statistical criterion. In this 

case, the model was both forwards and backwards stepwise optimized both by the p- and AIC 

values for the four input parameters, allowing linear and interaction terms. The MnLR black 

box model, which is  a MLR model with including a logarithmic term for cB,Lys, was forward 

stepwise optimized by the p-value criterion. In MLR and MnLR, the terms which exhibited a p-

value higher than 0.05 were excluded from the model one after the other. 

3.2.2 White box model 

The white box model is the mechanistic part of a hybrid model. In this case, it used the 

predicted fluxes and RLys from the black boxes to calculate the future proteins’ concentrations, 

both in the bulk and permeate, cB,i and cp,i, as well as the remaining reservoir volume, VB, after 

a certain time interval dt by using the mass balances, where A is the membrane area. 

𝑑𝑉𝑝

𝑑𝑡
= −

𝑑𝑉𝐵

𝑑𝑡
= 𝐽 ∙ 𝐴           (16) 

𝑑(𝑐𝐵,𝑖∙𝑉𝐵)

𝑑𝑡
= (𝐴 ∙ 𝐽 ∙ 𝑐𝐵,𝑖)

𝑅𝑖
          (17) 

𝑐𝑃,𝑖 = (1 − 𝑅𝑖) ∙ 𝑐𝐵,𝑖           (18) 

3.2.3 Multi-step ahead hybrid models 

In the present work, different hybrid model structures were investigated in order to describe 

the flux and the rejection factor evolution of two-protein solutions. All models consisted of a 

serial hybrid model structure, where the black box predicted first the change in flux for a 

combination of input parameters (CF, TMP, cB,BSA and cB,Lys), which was fed to the white box 

together with RLys for calculating cB,i and VB after a given time interval dt. The predicted cB,BSA 

and cB,Lys from the white box were fed back to the black box for future flux and cB,i predictions 
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in a multi-step ahead structure (Figure 7B). Multiple iterations were performed until a desired 

stop criterion was reached - in this case the final retentate volume from the test sets, 𝑉𝐵_𝑓𝑖𝑛𝑎𝑙 

(Eq. (19), Table A1).  

 

𝑉𝐵 ≥  𝑉𝐵_𝑓𝑖𝑛𝑎𝑙              (19) 

 

Depending on the way RLys was calculated, the models were classified in three overall structure 

types: tcHM1, tcHM2 and tcHM3, which are all summarized in Table 3. These models were 

further subdivided in different submodels depending on which data they were trained on and 

the black box model type used for RLys prediction. The well-known mechanistic stagnant film 

theory model (SFM) and the previously established one-component-hybrid model (ocHM) were 

also reproduced for comparison of flux prediction. Before feeding cB,BSA back to all models for 

the next iteration step, it was corrected by using Eq. (23) for protein accumulation on the 

membrane as a result of concentration polarization.  

Hence, in addition to the multi-step ahead flux and RLys predictions, the presented hybrid 

models also yielded time-resolved cB,BSA and cB,Lys forecasts. The predictions of final cB,BSA and 

cB,Lys were compared to the measured concentrations by SEC-HPLC to assess the 

performance of the models. 

 

Table 3: Summary of all submodels derived from the one- and two-component-hybrid models, ocHM and tcHM, 
respectively, and the stagnant film model (SFM) structures, depending on the used training data and the black box 
model for RLys prediction.  

Model 
structure 

Submodels Explanation 

ocHM 

ocHMBSA 
One-component-hybrid model based on BSA alone 
training data 

ocHMcomb 
One-component-hybrid model based on combined 
training data (neglecting lysozyme) 

tcHM1 
tcHM1R1 Two-component-hybrid model, RLys set to 1 

tcHM1Raverage RLys=Raverage from training data 

tcHM2 tcHM2 One multi-output black box for J and R prediction 

tcHM3 

tcHM3ANN Neural network black box for RLys 

tcHM3MLR Multiple linear regression black box for RLys 

tcHM3MnLR Multiple non-linear regression black box for RLys 

SFM 

SFMBSA Stagnant film model based on BSA alone training 

SFMcomb 
Stagnant film model based on combined training but 
neglecting lysozyme concentration 
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3.2.3.1 One-component-hybrid model  

In order to analyze the impact that the mimicked impurity, lysozyme, had on the flux evolution 

compared to only BSA, the one-component-hybrid model developed by Krippl et al.51 was first 

reproduced and trained on the BSA alone training data (ocHMBSA). Moreover, due to a common 

assumption in modeling of downstream processes is to neglect the process-related impurities, 

either because they do not significantly influence the performance of the purification unit, they 

are not CQAs or just for simplifying the models, the ocHM was also trained on the BSA with 

lysozyme training data but neglecting the lysozyme concentration (ocHMcomb). The aim of this 

model was therefore to investigate how precise the flux predictions could be without quantifying 

the impurity in the solution. Furthermore, this model also allowed for a fairer comparison strictly 

of flux prediction with the stagnant film model (SFM), since the latter is only suited for one-

component systems. The structure of the reproduced one-component-hybrid model, consisting 

of one black box with three inputs (TMP, CF and cB) and one output (flux), can be consulted in 

51. In these models, the rejection factor of the sole component was set to 1 all the time. 

3.2.3.2 Two-component-hybrid model 1 – static lysozyme rejection factor 

In tcHM1, the ocHM1 structure was extended to introduce lysozyme as second component 

and its influence on the flux prediction. This was done by adding cB,Lys as additional input of its 

black box, as it is shown in Figure 5. The white box was also expanded with the mass balance 

for this second component.  

In tcHM1, the RLys was set equal to a certain fixed value. In the case of tcHM1Raverage, it was 

used the average rejection factor from the training set, 0.77, which was calculated by doing 

trapezoid integration of all obtained RLys and the accumulated permeate volume, Vp, during the 

concentration steps of the training experiment – Eq. (22) (see 4.1.2.1 RLys average from 

training set). Furthermore, in order to evaluate the impact of calculating RLys on flux and cB,Lys, 

RLys was set equal to 1 in tcHM1R1. 

 

 

 

 

 

Figure 5: Schematic representation of the two-component-hybrid model 1 (tcHM1) structure. The lysozyme rejection 
factor, RLys, was provided to the white box as a constant value. 
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3.2.3.3 Two-component-hybrid model 2 – dynamic lysozyme rejection factor with a 

multi-output black box 

In tcHM2, RLys was introduced as output in the black box together with the flux, with the 

objective of having a more precise description of the lysozyme rejection factor, which could be 

updated over time and depend on different process parameters. The tcHM2 structure is shown 

in Figure 6. This model was only trained on the BSA with lysozyme training data. RLys 

predictions were constrained to be ≤1. 

Figure 6: Schematic representation of the two-component-hybrid model 2 (tcHM2) structure with a multi-output 
black box for simultaneous prediction of flux and lysozyme rejection factor from TMP, CF, cB,BSA and cB,Lys input 
parameters. 

3.2.3.4 Two-component-hybrid model 3 – dynamic lysozyme rejection factor with two 

independent black boxes 

In tcHM3, a second black box was introduced entirely for RLys calculation (Figure 7A). This was 

done in order to fully separate the training procedure for J and RLys prediction and to optimize 

the optimal number of hidden neurons independently. In addition, it also allowed to test 

different black box functions for RLys. The RLys ANN black box showed the lowest error for RLys 

at one hidden neuron (Figure 22), suggesting a rather simple correlation. As an alternative to 

the ANN black box, a multiple linear regression (MLR) model was tested, which could provide 

simpler models with less computation times and easier interpretabilities.  

Finally, due to the observed strong influence of cB,Lys over RLys compared to the other input 

process parameters (Figure 12) and its clearly logarithmic-like trend (Figure 24), a logarithmic 

term for cB,Lys was introduced in the MLR model, yielding tcHM3MnLR.  
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Figure 7: Schematic representation of (A) the two-component-hybrid model 3 (tcHM3) structure with two 
independent black boxes for flux and RLys prediction from the same input parameters: TMP, CF, cB,BSA and cB,Lys; 
and (B) the multi-step ahead hybrid model structure. This model calculated cB,BSA and cB,Lys iteratively for each time 
increment until Eq. (19) was fullfiled. 

3.2.4 Stagnant film theory  

The presented hybrid model structures were compared to the classical well-known mechanistic 

stagnant film model, SFM, which derives from the mass-transfer equations that describe the 

boundary layer next to the membrane for flux prediction (1.2.1.1 Concentration polarization). 

This model, which only accounts for one component in the system, predicted the flux 

depending on the BSA concentration in the bulk solution -which was between 4 and 46 times 

in excess compared to lysozyme-, by using Eq. (20) and assuming that BSA was completely 

retained by the membrane:  

 

𝐽 = 𝑘 ln (
𝐶𝐺

𝐶𝐵
)            (20) 

 

where cG is the gel-layer concentration at the membrane surface and k the mass transfer 

coefficient, which mostly depends on the diffusion coefficient and the thickness of the boundary 

layer.  

Therefore, for a given mass transfer conditions (TMP, cross-flow velocity, temperature…), the 

plot J vs ln(cB) will be a linear regression of slope k and interception point with the abscissa cG 

(Figure 10 and Eq. (21)).  

 

𝐽 = −𝑘 · ln(𝑐𝐵) + 𝑘 · ln (𝑐𝐺)          (21) 

 

Thus, different values of k and cG were obtained for every TMP and CF combination from the 

training experiment data (Table A2). Hence, in SFM the black box from the hybrid models was 

replaced by Eq. (20) in order to predict the flux. In this case, however, the provided parameters 
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were k and cG (instead of TMP and CF) and cB,BSA , as it is shown in Figure 8. For those test 

experiments with TMP and CF not covered by the training set, linear interpolation was made 

from the closest points. After flux prediction, the same white box as in the hybrid models was 

applied for VB and cB,BSA calculation for a certain interval dt. These models also used the 

multistep-ahead structure for several iteration predictions. The SFM was trained both on the 

BSA alone and the BSA with lysozyme training data, yielding SFMBSA and SFMcomb, 

respectively (Table 3). 

 

 

 

 
 

 

 
 
 

 
Figure 8: (A) Schematic representation of the mechanistic stagnant film model (SFM) structure. The flux was 
calculated using Eq. (20) for the combination of k, cG and cB,BSA parameters. The flux was then applied to the same 
white box as in the hybrid models, but just for one component, which calculated cB,BSA and VB for a certain time 
interval dt. (B) Multi-step ahead capability. 
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4. Results and discussion 

Many of the results obtained in this thesis have been published as a research article in 

Processes by Krippl et al.68. Here, some parts will be discussed in more detail than in the in 

the manuscript and the graphs that have been published are explicitly referred to the 

publication. The manuscript can be found in 9. Appendix as an attachment. 

4.1 Training and test data 

4.1.1 Flux 

A total of three training sets containing BSA, lysozyme, and a combination of both were 

generated, covering three CF (100, 200, and 300 mL/min), five TMPs (0.8, 1.3, 1.8, 2.3, and 

2.8 bar) and different protein concentrations in the bulk, cB,i (Table 1). The recorded fluxes from 

each training experiment for the combination of cB,i and TMP at 200 mL/min CF are shown in 

Figure 9. The x-axis of Figure 9C and D were reduced for a better comparison between training 

sets. The entire graph with the full cB,i range is shown in Figure A1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Training data sets including different protein concentrations and TMPs at CF 200 mL/min: two-
component training set containing (A) BSA and (B) lysozyme in the same solution (blue). One-component solution 

of (C) BSA (red) and (D) lysozyme (green). Figure from 68. 
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The recorded fluxes versus the logarithmic concentration of BSA in the bulk for the BSA alone 

and BSA with lysozyme training experiments are also shown in Figure 10A and Figure 10B, 

respectively, at different TMPs and 200 mL/min CF. From the linear part of these plots 

(pressure-independent region), the mass transfer coefficient k (negative slope) and the gel 

concentration cG (intercept with the abscissa) are drawn for the stagnant film models (SFM, 

Eq. (21)). 

 

 

 

 

 

 

 

 

 

 

 

In general, increasing cB,i led to lower fluxes, while increasing TMP and CF led to higher fluxes 

in all training sets. This phenomenon is explained differently according to the theoretical model 

(1.2.1.1 Concentration polarization). On the one hand, according to resistance and osmotic 

pressure models, the increase in cB,i led to higher cm, which increased the hydraulic and 

osmotic pressure resistances, respectively. These resistances decreased the effective 

pressure driving force along the membrane and thereby the flux. The increase rate of cm 

decreased with cB,i, explaining the negative logarithmic shape seen in Figure 9. On the other 

hand, in line with the stagnant film model, which considers cm=cG, the decrease in flux with 

increased cB,i was due to a reduction in the logarithmic concentration driving force expressed 

in Eq. (10), as a result of a more prominent protein back diffusion effect along the concentration 

gradient. All models agree that an increase in TMP leads to higher fluxes by increasing the 

convective flow towards the membrane. Finally, higher CF decreased the thickness of the CP 

layer next to the membrane by rectangular displacement thereby increasing the permeate flux. 

When comparing the data between training sets, it was observed that the training set with only 

BSA (Figure 9C) exhibited higher fluxes compared to the training experiment with BSA and 

lysozyme (Figure 9A) - especially at TMPs above 1.3 bar, where the system reached the 

Figure 10: Permeate flux vs logarithmic cB,BSA used to estimate the mass transfer coefficient k and the gel 
concentration cG of the stagnant film model (SFM), when based on the (A) BSA alone and (B) BSA with lysozyme 
training data. For the former, only the first concentration range is shown in order to allow for a better comparison 
of the x-axis. Fluxes recorded at 200 mL/min CF. 
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pressure-independent region even at low cB,BSA. This indicated that lysozyme influenced the 

flux of solvent through the membrane, either by interacting with BSA and/or with the 

membrane. The flux also decreased faster if comparing the two-component solution (Figure 

9B) to the filtration with only lysozyme (Figure 9D). The reason was that being smaller than 

the pore size, lysozyme was only partially retained by the membrane, and therefore less 

accumulated at the boundary layer, giving rise to smaller resistances and subsequently higher 

fluxes. Contrary, when BSA was present, the RLys increased notably -by almost a factor of 3, 

see 4.1.2.1 RLys average from training set- and so did the lysozyme concentration in the bulk 

and the amount of protein accumulated on the membrane. This observation led to the 

assumption that lysozyme influenced the flux most probably by interacting with BSA rather 

than by membrane fouling – which would also have been shown in the training set with only 

lysozyme. Due to the isoelectric points (pI) of BSA and lysozyme were about 5 and 11, 

respectively, and the used buffer had a pH of 8, it was assumed that both proteins were 

interacting electrostatically, in accordance with some previously reported results34. However, 

it is important to mention that at higher lysozyme concentrations, a more pronounced flux 

decrease in the training set with only lysozyme was observed at high TMPs (see Figure A1), 

suggesting that fouling of the membrane by adsorption/pore blockage mechanisms also 

occurred at high lysozyme concentrations. Hence, both phenomena should be considered 

when building the models. The interactions between BSA and lysozyme most probably 

influenced the flux by affecting the mass transfer coefficients of the solution, as already shown 

for these two model proteins21,27,36. In addition, these interactions increased the lysozyme 

rejection factor, and thereby the probability of fouling to occur, since higher amounts of protein 

were retained on the membrane.  

4.1.2 Lysozyme rejection factor  

In addition to the flux, the UV absorbances on the permeate side were also recorded at each 

TMP and CF combination during the BSA with lysozyme training set. These values were 

afterwards related to the lysozyme concentration in the permeate, cp,Lys, by using the calibration 

curve from the lysozyme alone training experiment, which is shown in Figure 11. 
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The obtained cp,Lys were subsequently used to calculate RLys together with the cB,Lys, which 

were considered to be constant during each scouting round - and therefore independent of 

TMP and CF parameters. All the calculated RLys from the training set, for each combination of 

cB,BSA, cB,Lys, TMP and CF, were fed to the black box models of hybrid models 2 and 3 (tcHM2 

and tcHM3). The dependence of RLys over these parameters is depicted in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 12, the influence of TMP and CF on RLys was smaller compared to the 

impact of cB,BSA and cB,Lys, and it was mostly only noticeable at low solute concentrations.  

The main reason for this was that the influence of these two parameters was only recorded for 

cp,Lys, but not for cB,Lys. Consequently, the higher the protein concentration was, the smaller 

Figure 11: Calibration of UV absorbance at 280 nm on the permeate side versus cp,Lys, measured by SEC-HPLC, 
in the lysozyme alone training set,.  

Figure 12: Lysozyme rejection factor, RLys, values recorded during the BSA with lysozyme training set, for a 
combination of TMP and CF (y- and x-axis) and different cB,BSA and cB,Lys (different scouting rounds, colored legend).  



 
 

39 

was the effect of a variation in cp,Lys on RLys, since cB,Lys >> cp,Lys. Further investigations on the 

influence of TMP and CF on RLys would have required a more granular covering of the training 

space and additional measurements of cB,Lys at each TMP-CF combination. However, in order 

to not drastically exceed the number of offline measurements, it was assumed that TMP and 

CF did not influence cB,Lys and consequently only their influence on cp,Lys was measured. It is 

important to choose an equilibrium between model precision and complexity/laboriously. 

4.1.2.1 RLys average from training set 

During the concentration steps of the training experiment -those between scouting rounds to 

increase cB,i, Figure 4b and d-, samples were taken both from the retentate and permeate and 

analyzed by SEC-HPLC to calculate RLys over the filtered volume. From these values, a 

weighted average lysozyme rejection factor from the training experiment, RLys,average, was 

obtained by doing trapezoid integration (Figure 13, Eq. (22)): 

 

 

 

 

 

 

 

 

 

 

𝑅𝐿𝑦𝑠,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∫ 𝑅𝐿𝑦𝑠  𝑑𝑉𝑝
𝑉𝑝

0
          (22) 

 

The calculated RLys,average for the two training sets containing lysozyme is shown in 

Table 4 and Figure 13. The presence of BSA strongly influenced RLys evolution, increasing it 

by almost three times (Figure 13B).   

4.1.3 Concentration polarization correction 

A correction function was built in order to account for the accumulation of BSA on the 

membrane surface as a result of concentration polarization (Figure 14A). This function was 

constructed with data from the concentration steps of the training experiment (2 bar TMP and 

200 mL/min CF). Since these parameters were in the mid-point of the training space (Figure 

18A), the same correction function was used in all models to predict all test sets, regardless of 

Figure 13: Evolution of the lysozyme rejection factor, RLys, over the permeate volume in the concentration steps of 
training experiment with (A) only lysozyme and (B) BSA with lysozyme. 
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their TMP and CF parameters. Therefore, no sampling steps other than for the construction of 

the black box model for flux prediction were necessary, since the correction curve was built 

with just the cB,BSA measured at the beginning of each scouting round. Similarly to RLys 

prediction, including the influence of TMP and CF on the amount of protein accumulated on 

the membrane would have required more sampling steps as well as a separate black box for 

its calculation, which would rather have complicated the usability of the models. This is one of 

the main advantages of the proposed hybrid models, that offer more precise and robust 

predictions not only of the flux, but also of the product and the impurity concentration evolution, 

without requiring any additional sampling step compared to the previously developed one-

component-hybrid model, thereby making their implementation in industry easier. 

 

𝑐𝐵,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐵𝑆𝐴 =  −0.0016 · 𝑐𝐵,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐵𝑆𝐴
2 + 1.039 · 𝑐𝐵,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐵𝑆𝐴       (23) 

 

Regarding lysozyme, the deviations between expected and measured final cB,Lys in the training 

set were very small (Figure 14B). As a result, no correction function for this protein was 

introduced in the models. The reasons for the smaller accumulation of lysozyme were, first of 

all, its lower concentrations compared to BSA, and additionally, that lysozyme was only 

partially retained by the membrane.  

The measured amount of each model protein accumulated on the membrane at the end of 

each training set, calculated by the mass balance, is shown in Table 4.  

In the case of the training set with only BSA, only the final missing amount of the first 

concentration range is shown. For the second training concentration range, the accumulated 

amount of BSA was 35.3%, since the final cB,BSA was 277.3 g/L - confirming again that the 

accumulated amount of protein is dependent on cB,i. 

Figure 14: Difference between measured and calculated concentration in the bulk of (A) BSA and (B) lysozyme, 
during the combined training experiment as a result of concentration polarization. Figure 14A from 68.  
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Table 4: Summary of accumulated amount of BSA and lysozyme on the membrane at the end of each training set, 
in percentage, as well as the RLys,average for the training sets containing lysozyme. 

 

The missing amount of each protein at the end of each test run as well as the amount that was 

recovered after recirculation with fresh buffer, in percentage, is shown in Table 5. As it can be 

seen, there were some deviations depending on the applied process conditions (cB,BSA, cB,Lys, 

TMP and CF, see Table 2). This will be further discussed in 4.4 Final protein concentration 

prediction section. The RLys,average for each test run was also calculated by using Eq. (22). 

 

Table 5: Summary of the amount of each model protein missing in the mass balance at the end of each test run 
and the total amount that was recovered after recirculation with fresh buffer, in percentage. The RLys average for 
each test set is calculated according to Eq. (22). 

 

As it can be seen in Table 5, after recirculating the system with fresh buffer (3.1.2 Training and 

test data generation), most of the protein that was missing in the mass balance was recovered. 

For test set 1 no recirculation was made. 

  

Training set BSA accumulated [%] Lys accumulated [%] RLys,average 

BSA alone 12.7 - - 

Lysozyme alone - 0 0.27 

Lysozyme + BSA 10.3 1.68 0.77 

Test set 
number 

 BSA missing 
[%] 

Total BSA 
recovered after 

recirculation [%] 

 Lys missing  
[%] 

Total Lys 
recovered  after 
recirculation [%] 

RLys,verage 

1 26.1 - - - - 

2 22.0 80.3 4.3 100.0 0.78 

5 11.8 100.0 2.7 100.0 0.77 

6 8.8 92.0 6.0 100.0 0.81 

7 9.2 100.0 6.9 100.0 0.74 

8 25.3 96.3 8.1 100.0 0.80 

9 26.8 93.7 7.7 100.0 0.75 

10 21.5 97.0 9.5 100.0 0.79 
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4.2 Flux prediction  

4.2.1 Comparison between mechanistic and hybrid models  

4.2.1.1 One-component models trained on one-component protein solution (ocHMBSA 

and SFMBSA) 

As a first step, the previously developed one-component-hybrid model for a membrane with 

10 kDa MWCO51 was reproduced with the current membrane cut-off of 30 kDa. A training run 

based on solely BSA was first performed, and the hybrid model built on that data (ocHMBSA) 

was evaluated for the flux prediction of test set 1 (only BSA, Table 2 and Figure 15A). The 

classical one-component stagnant film model (SFM) was also built on the same data (SFMBSA) 

for comparison of flux prediction. As it can be seen in Figure 15A, both models were able to 

predict the ultrafiltration process with only BSA - with the hybrid model having an NRMSE of 

1.8% compared to the 4.9% of the SFM. However, they both failed when predicting the flux of 

solutions where lysozyme was additionally present - Figure 15B gives an example for test run 

4. This demonstrated that the presence of even low amounts of an additional component can 

significantly influence the flux evolution in UF processes. This is also shown in Table A3 for 

the rest of the test sets, where the NRMSE of ocHMBSA went up to 12.1% for some of the test 

runs with both proteins. Hence, in order to build accurate models, the generation of training 

data under conditions where all the components were present in the system was necessary. 

In this direction, a training experiment consisting of a solution of BSA with lysozyme was 

carried out (Table 1).  

Figure 15: Comparison of flux prediction of (A) test set 1, with only BSA (TMP 1.8 bar, CF 200 mL/min, initial cB,BSA 
6.68 g/L), and (B) test set 4, with BSA and lysozyme (TMP 2.1 bar, CF 250 mL/min, initial cB,BSA 3.71 g/L and initial 
cB,Lys 0.38 g/L) between the one-component-hybrid model 1, trained on only BSA (ocHMBSA, short-dashed light red 
line) and BSA with lysozyme (ocHMcomb, long-dashed dark red line), and the SFM model based on k and cG values 



 
 

43 

from only BSA (SFMBSA, dot-dot-dashed light blue line) and BSA with lysozyme (SFMcomb, dot-dashed grey line) 
training sets. 

4.2.1.2 One-component models trained on two-component protein solution (ocHMcomb 

and SFMcomb) 

A common approach in modeling of downstream processes for simplification is to neglect the 

process-related impurities. The previous one-component models were trained on the BSA with 

lysozyme training data but just including the BSA concentration as model input. The aim of 

these models (ocHMcomb and SFMcomb), was to investigate the flux predictions without having 

to quantify the impurity concentration from the solutions. Additionally, ocHMcomb allowed for a 

fairer comparison strictly of flux prediction between the hybrid and the stagnant film model, 

since the latter is only suited for one-component systems.  

As shown in Figure 15B and Table A3, both ocHMcomb and SFMcomb could predict the flux of 

two-component test runs when built on the BSA with lysozyme training data, with the hybrid 

model providing again superior predictions in all the test sets compared to the SFM (Table A3). 

This confirmed that the hybrid model was a better candidate for flux prediction, both in one and 

two-component solutions. The main reason for this was that, while the SFM just considered 

the filtration process to take place under the pressure-independent region -i.e., that a gel-layer 

was already formed from the beginning on the membrane surface and the flux was thereby 

only influenced by mass transfer affecting parameters-, the hybrid models could explain both 

the pressure dependent and independent regions. This was possible due to the good 

interpolation properties of the ANN functions (1.2.2.1 Artificial neural network (ANN)) in their 

black box models. These functions can represent both linear and non-linear relationships, 

thereby making the models more flexible and precise. This phenomenon also explained why 

the SFM typically tends to overestimate the fluxes at the beginning of the process14 (see Figure 

20), when the solute concentrations are small, or at low TMPs and high CFs conditions – since 

the assumed linear relationship between flux and ln(cG) is not true under the pressure-

dependent region, see Figure 10 and Eq. (21). 

Nevertheless, both ocHMcomb and SFMcomb failed in predicting those test runs where the initial 

cB,Lys was lower than in the training experiment – test sets 1, 7 and 8 (Table A3 and Figure 

15A). Being based on the training run containing BSA with lysozyme, these models 

incorporated the fouling effects related to the training lysozyme concentration. Therefore, 

regardless the test sets had lower lysozyme concentrations, the models kept making 

predictions assuming the same degree of fouling as in the training experiment and therefore 

underestimating the flux. In the SFM, for example, the k values from the two-component 

training set were generally smaller than the ones calculated with BSA only (Table A2), since 

membrane fouling by lysozyme hindered the solute mass transfer in the boundary layer - 

reaching the pressure-independent region earlier, Figure 10B.  
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Hence, even though ocHMcomb and SFMcomb gave acceptable results where test and training 

concentrations were comparable, variations in the amount of the not included impurity 

component would lead to wrong flux predictions.  

4.2.2 Comparison between two-component-hybrid models (tcHMs) 

To further improve the model predictions and incorporate cB,Lys and RLys, three types of two-

component-hybrid models (tcHMs) were built. These models differed in the way RLys was 

calculated. The performance of the models was compared for flux, RLys and final cB,i prediction.  

In the first hybrid model, tcHM1Raverage, RLys was assumed to be equal to the RLys,average from the 

BSA with lysozyme training set, namely 0.77 (4.1.2.1 RLys average from training set). 

Furthermore, in order to evaluate the impact of calculating RLys on the flux, a hybrid model with 

no lysozyme rejection factor (RLys=1) was built as control (tcHM1R1). Finally, RLys was predicted 

dynamically by a black box model, either by the existing one for flux (tcHM2) or by introducing 

a completely new black box solely for RLys (tcHM3).  

The optimal ANN structure for flux prediction in all the hybrid models was determined by 

varying the number of hidden nodes from one to six in one hidden layer and testing the 

obtained models on a validation data set, which was not used for training. The flux NRMSE 

out of 20 repetitions was recorded and averaged. The ANN with four hidden nodes yielded the 

lowest NRMSE in all models. Further increase of the hidden nodes led to higher errors due to 

training set overfitting as well as to less model consistencies (more prediction variabilities, 

higher standard deviations). As an example, the results from the ANN structure optimization 

process for tcHM1R1, tcHM2 and tcHM3 (with an ANN black box model with one hidden node 

for RLys) are shown in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: ANN node size optimization. The NRMSE is plotted over the number of neurons in the hidden layer of 
the ANN flux predicting black box model of tcHM1R1, tcHM2 and tcHM3ANN. 
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The structure of the chosen optimal ANN black box model for flux prediction is shown in Figure 

17. This model consisted of four input parameters (TMP, CF, cB,BSA, cB,Lys), one output 

parameter (J) and one hidden layer with four hidden nodes. The result of each hidden node in 

the hidden layer (see Eq. (24) as an example for the first neuron x12) is the sum of each 

multiplication of an input parameter and the corresponding weight (w1
11, w1

21, w1
31, w1

41), 

multiplied with the bias (b1) of the entire hidden layer. The sigmoid activation function then 

transforms the output of each hidden node by using Eq. (25). The inputs were normalized 

between 1 and 2, rendering them comparable. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑥1,2 = 𝑏1(𝑤11
1 𝑇𝑀𝑃𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑤21

1 𝐶𝐹𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑤31
1 𝑐𝐵,𝐵𝑆𝐴,𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑤41

1 𝑐𝐵,𝐿𝑦𝑠,𝑠𝑐𝑎𝑙𝑒𝑑)   (24) 

 

ℎ1(𝑥) =
1

1+𝑒−𝑥1,2
           (25) 

 

In order to evaluate both the inter- and extrapolation capabilities of these models, different test 

runs were conducted in a variety of conditions, some of them being only partially covered by 

the training sets. Ten test experiments were performed in total at different TMP, CF, initial 

cB,BSA and cB,Lys, which are all depicted in Figure 18 and listed in Table 2. Test runs 2-6 were 

performed within the training space, meaning that TMP and CF were within the trained 

parameters (Figure 18A) and that the initial cB,BSA and cB,Lys were higher than the initial training 

Figure 17: Structure of the ANN black box model used for flux prediction, indicating the input, output and hidden 

layers and the number of hidden nodes (neurons) and activation functions. Figure adapted from68.  
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concentrations (Figure 18B – blue area). From them, test runs 2 and 6 were performed in the 

center of the TMP and CF training space, while test run 3 was performed at the outer limit in 

order to investigate how the models behaved at the border. Additionally, test runs 4 and 5 were 

performed under TMP and CF conditions that were within the training space but not under the 

exact conditions used in the training set, in order to investigate the interpolation capabilities of 

the models. On the contrary, the test runs 1 and 7-10 were performed under conditions that 

were partially outside the training space such as initial cB,Lys (1, 7, 8), initial cB,BSA (9) and CF 

(10), to test the models’ extrapolation capabilities. The observed and predicted fluxes are 

depicted in Figure 20 for the test sets inside the training space, and in Figure 21 for the test 

sets partially outside. The NRMSE of the flux prediction of each test run by each developed 

model is shown in Table A3.  

 

 

 

In Figure 19, the average NRMSE of the different models for flux prediction of all test runs is 

shown. As it can be observed, the two-component-hybrid models (tcHM) performed very well, 

both inside (Figure 19B, 3.2% NRMSE) and outside (Figure 19C, 4.5% NRMSE) the training 

space - tcHM2 was an exception, which is explained in the following. On the contrary, the one-

component models particularly failed when predicting the test runs with initial cB,Lys lower than 

in the training set. The average NRMSE for the flux prediction outside the training space was 

6.4% and 7.6% for ocHMcomb and SFMcomb models, respectively. This demonstrated that the 

established two-component-hybrid models were able to differentiate between the influence 

that each of the components had on the flux decline. This is in line with the fact that the best 

Figure 18: Schematic depiction of (A) training space for TMP and CF parameters of the training (white dots) and 
test (grey dots) runs and (B) initial to final cB,BSA and cB,Lys of the three training (white dots with black solid lines) and 
the test (grey dots with grey solid lines) runs. The covered concentration area of the BSA with lysozyme training 
set (training space) is shown in blue. Figure adapted from68. 
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simulated test set by all tcHMs was test set 1, without lysozyme, with just a flux NRMSE of 

1.7%. Furthermore, no significant difference in flux prediction was observed between tcHMs, 

indicating that the way of calculating RLys did not have a notable impact. The reason for this 

was that the concentration of lysozyme was 4 to 46 times lower than BSA and therefore, a 

difference in its rejection factor calculation only led to small differences in cB,Lys predictions, 

which did not change the flux predictions notably. If the processes would take longer (e.g. 

larger bulk volume or small membrane area) or if the initial cB,Lys had been higher, the way of 

calculating RLys would have had a higher impact on flux, since it would lead to bigger 

differences in cB,Lys prediction and thereby in flux. Finally, the only two-component-hybrid 

model where the calculation of RLys influenced the flux predictions was tcHM2. In this model, 

the fact of combining RLys and flux under the same black box showed to negatively affect the 

calculation of both parameters, especially for the test sets that were partially outside the 

training space (Figure 19C). This was most probably due to a different optimal node size 

structure as well as optimal weight values for both predicted parameters. This will be further 

discussed in section 4.3 Rejection factor prediction.  

Due to the very similar predicted fluxes of the tcHMs, only the predictions from tcHM1Raverage, 

tcHM2 and tcHM3ANN are shown in Figure 20 and Figure 21, together with the predictions from 

ocHMcomb and SFMcomb and the experimentally measured values. Despite the overall good flux 

predictions by these models, small initial flux underestimations were observed in all test sets 

(Figure 20 and Figure 21). This phenomenon was, first of all, due to a difference in the 

experimental setup between training and test experiments. While the recorded fluxes in the 

training set were taken at equilibrium for each combination of cB,BSA, cB,Lys, CF and TMP, in the 

test sets the processes started with a completely clean membrane and therefore the 

Figure 19: Average NRMSE for flux prediction of test sets (A) all, (B) inside and (C) outside the training space, out 
of 20 repetitions, by the different constructed models.  
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equilibrium had to be reached during the test process (3.1.2 Training and test data generation). 

Nevertheless, the time to reach such concentration polarization steady-state in cross-flow 

ultrafiltration of proteins is described to be very short14. This was the reason why this 

phenomenon was quickly corrected and actually only noticeable for the test sets that exhibited 

high TMPs, where the concentration polarization effects were more pronounced, such as test 

sets 3 and 5 (Figure 20B and D, see the initial recorded fast decline in flux (black solid line)). 

Therefore, the further observed deviations between predicted and measured fluxes were due 

to other phenomena that are explained in the following. 

The initial offset between measured and predicted fluxes became more pronounced for those 

test sets with initial cB,Lys higher than 0.3 g/L (test runs 3, 4, 6, 9 and 10), suggesting that there 

was a stronger membrane fouling behavior at these concentrations. In the test runs it took 

some time until the increasing membrane resistance due to fouling of lysozyme reached the 

equilibrium. However, the hybrid models were falsely simulating equilibrium membrane fouling 

conditions already from the beginning. After this time, however, the fluxes were predicted 

correctly. Related to this phenomenon, the test set with highest obtained initial offset -and also 

highest flux prediction error- was test run 9 (Figure 21C) with an NRMSE of 8%  for flux 

prediction. This test set had the biggest initial cB,Lys and therefore the strongest fouling. 

Additionally, its initial cB,BSA was lower than in the training set (Table 2), thereby reducing its 

influence on the flux and further contributing to the error. The second worst predicted test run, 

although with a much lower NRMSE, of 4.9%, was test set 7 (Figure 21A). In this case, the 

initial cB,Lys was lower than in the training set and therefore required the models to extrapolate 

for these initial input values. Moreover, it is thought that no fouling at all occurred during this 

test set, further increasing the error and explaining why the observed initial offset in this test 

run was not corrected until late in the process (Figure 21A).This is in accordance with the 

results shown in section 4.3 Rejection factor prediction, where the highest obtained error for 

RLys prediction was in this test set (Table A4). Finally, the third largest obtained deviation in 

flux prediction was in test set 10 (Figure 21D), which was performed at CF 350 mL/min, which 

was outside of the training space. However, its small error, of only 4.5% NRMSE, 

demonstrated that the models had good extrapolation capabilities for this parameter and that 

therefore were not limited by the training space. The rest of test runs were predicted very well, 

with an average NRMSE of 3% in spite of being tested in a variety of different process 

conditions. For example, for TMP and CF interpolations, test runs 4 and 5 were predicted with 

an average of 3.3% NRMSE, while test set 3, at the outer edge of the training space, was 

predicted with just a 3.2% NRMSE.  

The predictions were also very good for the test sets with cB,BSAs more than two times higher 

than in the training space -test set 8, 3.3% NRMSE-, or with only BSA and no lysozyme - test 

set 1, 1.7% NRMSE. The reason why ocHMcomb yielded such good flux predictions within the 
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training space (Figure 19B, with 3.1% average NRMSE), was because it did not include 

lysozyme, and therefore did not underestimated the initial flux by falsely assuming lysozyme 

related fouling equilibrium conditions. Similarly, this was the reason why the best test set 

predicted by tcHMs was test set 1, with only BSA.  

Summarizing, good flux predictions of two-component test sets could only be achieved if both 

components were present during the training experiment. Furthermore, the incorporation of 

each of the components in the models was also necessary for accurate results, especially for 

input parameters combinations that were outside of the training space. This was particularly 

crucial when extrapolating for the mimicked impurity concentration, which was not included in 

the one-component models. Therefore, both one-component models (the mechanistic SFM 

and the ocHM), were outperformed by the two-component models. Regarding one-component 

models, however, the ocHM outperformed SFM due to its good interpolation properties and its 

capability to shift between pressure-dependent and independent region. Moreover, the hybrid 

models could include both components by simply adding an input parameter that represented 

the new component. The relationship between variables was established by machine learning 

algorithms, without requiring in-depth knowledge of the underlaying mechanism -fouling, CP 

layer formation rate, protein interactions…- nor measuring any physical property, which are 

the main limitations for implementing mechanistic multi-component models. The established 

two-component-hybrid models were very precise and consistent, over a broad range of TMP, 

CF, cB,BSA and cB,Lys input parameters, exhibiting excellent interpolation capabilities as well as 

very good extrapolations for CF and higher cB,BSA. Extrapolations for smaller cB,Lys were also 

good, however, these models faced some problems when predicting test runs with cB,Lys higher 

than the training set due to not incorporating the time-dependent fouling of lysozyme. 

Nevertheless, in most of the downstream processing units where ultrafiltration is commonly 

used, the impurities content is rarely that high - e.g., after capture or between polishing steps.  
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Figure 20: Comparison between observed and predicted fluxes over time of the test sets within the training space: 
(A) test set 2, (B) test set 3, (C) test set 4, (D) test set 5 and (E) test set 6. 
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Figure 21: Comparison between observed and predicted fluxes over time of the test sets partially outside the training 
space: (A) test set 7, (B) test set 8, (C) test set 9, (D) test set 10 and (E) test set 1. 
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4.3 Rejection factor prediction 

The ANN black box model for RLys prediction was optimized by changing the number of hidden 

nodes from one to four and recording the average RLys NRMSE out of 20 repetitions for the 

validation data set. In tcHM2, where the same black box was used for flux and RLys prediction, 

independent hidden node optimization was not possible. Therefore, the optimal number for 

flux prediction was chosen. Contrary, in tcHM3, the number of nodes for flux was kept at four 

during the optimization, since it was the optimum. The results for the ANN model optimization 

are shown in Figure 22. 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen in Figure 22, one hidden node exhibited the lowest error for RLys prediction 

in both models. When increasing the number of nodes, the error and standard deviation 

increased due to model overfitting. Since in tcHM2 the flux and RLys were predicted by the 

same black box, increasing the number of hidden nodes led to a decreasing error for flux while 

increasing the RLys error. Due to this discrepancy, the flux error of tcHM2 was higher than in 

tcHM3. Contrary, in tcHM3 changing the RLys node size did not affect the flux prediction, due 

to being both outputs in two independent black boxes. 

Since the correlation between RLys and input parameters (TMP, CF, cB,BSA and cB,Lys) was 

shown to be rather simple, with only one hidden node as optimum, a multiple linear regression 

(MLR) model was set up as alternative to the black box of tcHM3. MLR required less 

computation times and was easier to interpret than ANN due to its fewer coefficients.  

The MLR model was both forwards and backwards optimized both for the p- and the AIC 

statistical values. The resulting regression equation out of the four different optimization 

Figure 22: ANN structure optimization of tcHM2 (black) and tcHM3 (grey) by changing the number of hidden 
neurons from one to four in one hidden layer. The average NRMSE for RLys (circles) and flux (triangles) prediction 
out of 20 repetitions is shown. In the case of tcHM3, only the black box for RLys was optimized, since the black box 
for flux was kept at four nodes. 
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strategies was the same, which is shown in Eq. (26) together with its statistical coefficients 

(Figure 23).  

 

𝑅𝐿𝑦𝑠 = −0.4 · 𝑇𝑀𝑃 + 0.3 · 𝐶𝐹 + 1.2 · 𝑐𝐵,𝐵𝑆𝐴 + 3.2 · 𝑐𝐵,𝐿𝑦𝑠 + 0.2 · 𝑇𝑀𝑃 · 𝑐𝐵,𝐿𝑦𝑠 − 0.1 · 𝐶𝐹 · 𝑐𝐵,𝐿𝑦𝑠 

   −1.3 · 𝑐𝐵,𝐵𝑆𝐴 · 𝑐𝐵,𝐿𝑦𝑠           (26) 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen in Eq. (26) and Figure 23, all four input parameters were included in the final 

regression model both as linear and as interactions terms with cB,Lys. Quadratic terms were not 

included in the model because they provided much worse results during model validation.  

Finally, due to the clear predominance of cB,Lys over the other three input parameters on 

determining RLys evolution (Figure 12), and its clearly logarithmic trend, shown in Figure 24, 

the MLR model was modified by introducing a logarithmic term for cB,Lys, resulting in tcHM3MnLR.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Statistical coefficients of the multiple linear regression (MLR) model with the p-value for each of the 

predictors. 
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Figure 24: Lysozyme rejection factor values from the combined training set over cB,Lys for different TMPs at 200 
mL/min cross-flow velocity. 
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The MnLR model was forward stepwise optimized by the p-value criterion. The final regression 

equation and its statistical coefficients are shown in Eq. (27) and Figure 25, respectively.  

 

𝑅𝐿𝑦𝑠 =  4.5 −  0.4 · 𝑇𝑀𝑃 +  0.3 · 𝐶𝐹 −  3.2 · 𝑐𝐵,𝐵𝑆𝐴  +  5.4 ∗ 𝑙𝑜𝑔(𝑐𝐵,𝐿𝑦𝑠) +  0.2 · 𝑇𝑀𝑃 · 𝑐𝐵,𝐵𝑆𝐴  

+  1.5 · 𝐶𝐹 · 𝑐𝐵,𝐵𝑆𝐴 − 1.67 · 𝐶𝐹 · 𝑐𝐵,𝐿𝑦𝑠          (27) 

 

 

 

 

 

 

 

 

 

 

 

The average NRMSE for RLys prediction out of 20 repetitions of all the test sets and all the 

developed hybrid models is shown in Figure 26A. The errors were differentiated between the 

prediction of the test sets inside (Figure 26B) and partially outside (Figure 26C) the training 

space.  

Figure 26: Average NRMSE for RLys prediction of the test sets (A) all, (B) inside and (C) outside the training space, 
out of 20 repetitions, by the different constructed hybrid models. 

 
As clearly seen in Figure 26A, tcHM3ANN was the model that best predicted RLys over time, with 

an overall average NRMSE of 14.3% and keeping good performances both inside -12.1% 

NRMSE, Figure 26B- and outside -16.6% NRMSE, Figure 26C- the training space. tcHM2 

Figure 25: Statistical coefficients of the multiple non-linear regression (MnLR) model. 
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performed second best. However, it was not a good model candidate due to its aforementioned 

worse flux predictions, especially outside the training space.  

MLR and MnLR models were able to make acceptable RLys predictions of the test sets that 

were inside the training space (Figure 26B), but they failed for those outside (Figure 26C). This 

was due to the estimated coefficients in their regression equations. In particular, in MLR model 

a negative interaction term between cB,BSA and cB,Lys (Eq. (26)) made that the predicted RLys 

values started to decrease close to the end of the process, when the concentration of both 

proteins started to be high enough to make this term of the equation governate over the others. 

This was the reason why this model especially failed for the test sets with the highest initial 

cB,BSA and cB,Lys: test sets 8 and 9, respectively (Table A4 and Figure 28B and C). In a similar 

way, MnLR model gave very bad predictions in test set 9 -Figure 28C, with a 89.9% NRMSE- 

and to a smaller extent in test 10 -Figure 28D, 34.5% NRMSE-, due to the incorporation of a 

negative interaction term between cB,Lys and CF (Eq. (27)), which counteracted the positive 

logarithmic term for cB,Lys at high lysozyme concentrations. This phenomenon highlighted one 

of the main limitations of data-driven models: their extrapolation capabilities. Since the 

structure and coefficients of these models were inferred from the data, they were adjusted in 

order to fit them in the best possible way. Consequently, they faced some problems when 

predicting data at completely different conditions. This is why larger and more representative 

amounts of data are necessary to build these models compared to mechanistic models - where 

the parameters have a physical meaning and thereby have better extrapolation capacities. In 

this case, it was assumed that the relationship between RLys and input variables was not linear, 

and consequently, MLR and MnLR models over-fitted to explain the training data as a linear 

combination of parameters. This yielded acceptable results for the test sets inside the training 

space but strongly failed outside.   

Finally, the tcHM1Raverage predictions of the test sets inside and outside the training space were 

very similar (Figure 26B and C), despite exhibiting higher errors due to its static RLys value, 

with an average NRMSE of 37.7% for all test sets. This indicated that the RLys average obtained 

from the training set fitted all independently generated test data quite well. The RLys values 

were overestimated at the beginning and underestimated at the end of the process, regardless 

of the applied process parameters. This was true as long as the total concentration factor -

ratio between initial and final reservoir volume- was kept similar. This feature made 

tcHM1Raverage a good model candidate for those scenarios where model simplicity and 

interpretability are preferred over accuracy and complexity. This will be further discussed in 

section, 4.4.2 Lysozyme prediction. 

The measured and predicted RLys evolution over Vp by the different models is shown in Figure 

27 and Figure 28 for the test sets inside and outside the training space, respectively. In spite 

of the overall good RLys predictions of tcHM3ANN, test sets 7 and 8 showed a great discrepancy 
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between the predictions inside and outside the training space (Figure 28A and B). These test 

sets had the highest cB,BSAs and lowest TMPs and cB,Lyss values of all tested runs (Table 2). 

Due to not incorporating the time-dependent protein accumulation on the membrane (see 4.2 

Flux prediction), the models assumed that the BSA CP layer was at equilibrium from the 

beginning of the process. This led to a higher RLys compared to the test runs, since the BSA 

CP layer was still building up. Moreover, the lower TMP and cB,Lys of these test sets additionally 

prolonged the time to reach the CP layer -and also the lysozyme-related membrane fouling- 

equilibrium, further increasing the RLys overestimations and thereby the errors. Furthermore, it 

is important to highlight that the RLys values that were fed to the black box for training the 

models already accumulated some small errors from their calculation (Eq. (18)). First of all, 

these values were calculated assuming that the cB,Lys was constant during each scouting 

round, and therefore independent of TMP and CF. This also explained why the effect of these 

two parameters in RLys was basically only seen in the first scouting rounds (Figure 12), where 

cB,Lys was lower and therefore variations in cp,Lys had a higher impact on RLys. Moreover, in 

some parameters -in particular at small TMPs and high CFs- of the first scouting rounds of the 

training experiment, the recorded UV values were below the recorded absorbances for 

constructing the calibration curve (Figure 11), and therefore outside the linear regression 

range. This resulted in underestimated cp,Lys values under these conditions and in turn in 

overestimated RLys (Eq. (18)). This would further explain the initial RLys overestimations -and 

therefore the higher errors- seen for the predictions of the test sets with lower initial cB,Lys than 

the training set, since in addition to extrapolating for cB,Lys, the models used data with some 

errors in this vicinity. It is for this reason that the quality of the provided data and in this 

particular case the determination of the regression curve, is of utmost importance for the 

predictions of all hybrid models that iteratively update RLys.  

Hence, taking into account all the aforementioned results and the simple performed 

experimental setup, it can be concluded that the RLys predictions made by tcHM3ANN  were very 

good and robust over a wide range of process conditions, with excellent interpolation 

capabilities as well as extrapolations for CF and smaller cB,BSA. However, this model faced 

some problems when predicting test sets with higher cB,BSA and lower initial cB,Lys than the 

training set, due to not including the time-dependent BSA CP and lysozyme fouling formation, 

which led to initial RLys overestimations. These overestimations were additionally accentuated 

by the fact that the provided RLys values for training the models had some errors accumulated 

from their calculation.  



 
 

57 

 

*The obtained RLys curve in test set 3 (Figure 27B), with such a sharp shape, is thought to be 

due to a problem with the HPLC column when analyzing the samples. This column was 

dispensed after this run due to it was difficult to build a good calibration curve with the 

standards. It was not possible to analyze these samples again with a new column due to Covid-

19 lockdown issues. However, in order to have more test sets for comparing the models 

performance, these results are shown in the present work, despite increasing the overall 

average NRMSE. Without this test set, the tcHM3ANN average RLys NRMSE for all the test sets 

would be 13.5%, and 9.3% inside the training space.  

 

Figure 27: Comparison between measured and predicted RLys values over permeate volume, Vp, for (A) test set 2, 
(B) test set 3*, (C) test set 5 and (D) test set 6, by the different developed hybrid models.  
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Figure 28: Comparison between measured and predicted RLys over permeate volume, Vp, for (A) test set 7, (B) test set 8, 
(C) test set 9 and (D) test set 10, by the different developed hybrid models. 
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4.4 Final protein concentration prediction 

4.4.1 BSA 

The final goal of modeling the rejection factor of any protein during a filtration process is to be 

able to accurately describe its concentration evolution over time, both in the bulk and permeate 

solutions. In the case of the mimicked product in this work, BSA, its rejection factor with the 30 

kDa MWCO membrane was 1, and consequently, all models predicted the same cB,BSA at the 

end of the process. The predicted cB,BSA was calculated solely by using the ratio between 

filtered and reservoir volumes (Eq. (16-18) and Table A1) and the correction function 

accounting for the accumulated protein on the membrane as a result of concentration 

polarization (4.1.3 Concentration polarization correction, Eq. (23)). By using these equations, 

the average difference between predicted and measured final cB,BSA for all the test sets was 

9.8%, which would have been 24.3% if no correction function would have been used at all, as 

it is shown in Figure 29. 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen in Table 6, in most of the test sets the predicted final cB,BSA was higher than 

the measured one, giving place to the errors displayed in Figure 29. The reason for these final 

cB,BSA overestimations could be derived from the fact that the predictions were made using the 

cB,BSA correction function from the concentration steps of the training experiment (Eq. (23)). 

These data were generated using the training set process conditions (TMP of 2 bar and CF of 

200 mL/min), without considering their potential effects nor the effect of cB,Lys on cB,BSA. 

Nevertheless, as shown in Table 6, these parameters indeed had an impact on the final 

amount of protein accumulated on the membrane – one of the clearest examples was test set 

Figure 29: Difference between observed and predicted final cB,BSA by all the hybrid models using the correction 
function (dark red) or not (light red) for protein accumulation on the membrane, in all the test sets, and in the test 
sets inside and outside the training space.  
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7, where despite its high final cB,BSA, only a 9.2% of the total initial amount was missing at the 

end of the process, while in test set 1, with similar final cB,BSA but no lysozyme, this amount 

increased to 26.1%. Furthermore, the fact that during the training experiment the reservoir 

solution was recirculated for about five minutes at the end of each scouting round with zero 

TMP, it is thought to have contributed to the overestimations in final cB,BSA. In the test runs, the 

reservoir solution was completely filtered at once, without any recirculation step in between, 

thereby leading to higher amounts of accumulated protein on the membrane. Finally, in some 

test sets the cB,BSA range was partially outside the training space -from 77.9 to 162.5 g/L,  

Figure 18B-, thus requiring the correction function to extrapolate and leading to final cB,BSA 

underestimations. Actually, except for test run 1, all the test sets with underestimated final 

cB,BSA were those with higher cB,BSA range than the training set: test sets 5, 7 and 8, (Figure 

18B and Table 6).  

 

Table 6: Measured and predicted final BSA concentration in the bulk, cB,BSA, for each test set by the models, using 
or not the correction function for BSA accumulation on the membrane. 

 

Summarizing, all models predicted the final cB,BSA rather well, especially in the test sets inside 

the training space, with only an average error of 5.5% compared to the experimental measured 

values. These differences were most probably due to using a correction function from the 

training experiment, which was generated with a different experimental setup compared to the 

test sets and without considering the influence of TMP, CF and cB,Lys parameters as inputs of 

the equation. Consequently, higher errors were observed for the predictions of the test sets 

with some parameters outside the training space. Nevertheless, the errors in cB,BSA prediction 

were too small to notably influence the flux predictions (4.2 Flux prediction). The errors 

increased with cB,BSA, that is, exponentially with time, and therefore they started to gain 

importance only close to the end of the process. However, without using the correction 

function, the errors for final cB,BSA prediction increased to almost 3.5 times, with an average 

Test set 
# 

Measured cB,BSA 

[g/L] 

Predicted cB,BSA 

[g/L] 
Difference 

[%] 

c_corr no corr c_corr no corr 

1 132.7 135.0 179.6 1.7 35.4 

2 78.1 87.9 100.1 12.6 28.2 

5 97.6 95.4 110.7 2.2 13.4 

6 62.5 63.6 68.5 1.8 9.6 

7 132.8 117.7 146.3 11.3 10.2 

8 162.5 150.3 217.5 7.5 33.9 

9 45.4 58.3 62.0 28.3 36.5 

10 73.6 83.3 93.8 13.2 27.4 

   Average 9.8 24.3 
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error of 24.3% for all the test sets, and 17.1% and 28.7% for the test sets inside and outside 

the training space, respectively.  

It is important to highlight, that the correction function used in this work was developed from 

just the cB,BSA values used for flux prediction, without requiring any additional sampling step. A 

more precise correction function could be established if incorporating the other parameters as 

inputs to the regression model. This, however, would require much more experimental efforts, 

since one sample should then be taken at each TMP-CF combination -i.e., 15 measurements 

compared to currently only 1 per scouting round (Figure 4A)-, as well as more complex models, 

due to a separated black box just for the cB,BSA correction function calculation would be 

necessary.  

4.4.2 Lysozyme 

Regarding the prediction of the final concentration in the bulk of the mimicked impurity, 

lysozyme, the obtained results were different than the expected if considering the RLys NRMSE 

(Figure 26). It is for this reason that the discussion of these results was divided into the test 

runs inside and outside the training space, since the hybrid models performed differently in 

these two scenarios. 
 

 

Figure 30: Average difference between observed and predicted final cB,Lys values by the different hybrid models in 
(A) all test sets and (B) test sets inside and (C) outside the training space. 

 

When reviewing Figure 26, one would expect that the model with smallest RLys errors also 

yielded the smallest errors in final cB,Lys. However, this was only true for the prediction of the 

test sets that were inside the training space (Figure 30B), where tcHM3ANN predicted the final 

cB,Lys with an average error of only 5.6% difference compared to the experimental measured 

values.  

 



 
 

62 

Contrary, tcHM1Raverage performed as the worst -excepting tcHM1R1, which was a control- , with 

an average error of 24.8% due to not iteratively adapting the RLys over time. Finally, if the RLys 

was assumed to be 1 (tcHM1R1), the average final cB,Lys error for the test sets inside the training 

space increased to 54.4% (Table 7). This confirmed the importance of correctly calculating the 

rejection factor of a protein whenever modeling its concentration evolution.  

In contrast, for the test sets that were performed partly outside the training space (Figure 30C), 

tcHM1Raverage performed best, with an average error of 11.4%, followed by tcHM3MnLR with 

19.2%. On the contrary, tcHM3ANN yielded worse predictions (25.7%), despite having shown 

to better predict RLys than the previous two models for these same test sets (Figure 26C). This 

switch in the models’ performance between final cB,Lys and RLys predictions was due to several 

reasons. On the one hand, tcHM3ANN overpredicted RLys throughout most of the test runs -

especially outside the training space (Figure 28)-, which led to higher final cB,Lys predictions 

and therefore higher errors. Conversely, in tcHM1Raverage and tcHM3MnLR, the predicted final 

cB,Lys were balanced between the RLys overpredictions at the beginning and the 

underpredictions at the end of the process, thus yielding smaller final cB,Lys predictions and 

thereby smaller errors, regardless of their higher error for RLys. In tcHM1Raverage, the 

counterbalancing effect was due its constant RLys value, while in tcHM3MnLR it was due to the 

shown parabolic shape (Figure 27 and Figure 28). This difference between models was 

additionally accentuated by the fact that the final amount of protein accumulated on the 

membrane was underestimated by all models -which means cB,Lys overestimations-, due to the 

difference in experimental setup between training and test sets when constructing the 

correction function. It is important to highlight, that in the case of lysozyme no correction 

function accounting for its accumulation on the membrane was introduced in the models, due 

to the observed small missing amount at the end of the training set (1.7%, Figure 14B). 

Nevertheless, in the test runs, the accumulated amounts ranged from 2.7 to 9.5% of the total 

initial lysozyme content (Table 5). Hence, as a result of not introducing any correction function, 

all models overpredicted the final cB,Lys, thereby further increasing the errors in tcHM3ANN and 

decreasing them in tcHM1Raverage and tcHM3MnLR - which were already underpredicting the final 

cB,Lys in most test sets. Therefore, with a correction function the error differences between 

tcHM3ANN, tcHM1Raverage and tcHM3MnLR for the test sets outside the training space would be 

expected to be smaller. Nevertheless, these results showed that tcHM1Raverage can work as a 

better candidate than tcHM3ANN for predictions of final cB,Lys in test sets with different conditions 

to the training experiment, rendering it a valuable tool for stable process extrapolations. This 

model is easier to construct and can be a good option for situations where simplicity is 

preferred over accuracy. For example, it could be used in early downstream filtration units, 

where the impurity content is high and variable and therefore the main interest is to ensure 

good flux predictions - rather than accurate predictions of the impurity.  
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It could also be used in multi-component solutions, where several solutes go to the permeate 

and thereby make difficult to construct black box models for dynamic rejection factor 

calculation for each of the components. However, it is important to remark that this model is 

only able to yield accurate predictions of the impurity concentration at the end of the process, 

since it does not update its RLys over time, and as long as the concentration factor is similar to 

the training set.  

Finally, tcHM3MnLR, even though it showed superior predictions than its homolog tcHM3MLR and 

was in fact the model with smaller errors for final cB,Lys predictions (Figure 30A), it exhibited 

very strong deviations when predicting RLys close to the end of the process. This was due to 

model over-fitting, since the model fitted the training data as a linear combination of parameters 

(see 4.3 Rejection factor prediction), which gave rise to even time-decreasing RLys curves 

(Figure 27 and Figure 28). Due to the relationship between RLys and input variables was 

assumed to not be linear, the black box of tcHM3MnLR fitted the training data as best as possible 

but sacrificing predictability at the borders and outside of the trained region, leading to extreme 

over- or underestimations. The RLys black box, however, required exact predictions especially 

at the training space border, since an error in RLys prediction at this point has a stronger impact 

on cB,Lys, due to the higher concentrations. Hence, taking all of this into account, tcHM3MnLR was 

not suited for cB,Lys predictions.  

Finally, the final cB,Lys predictions from tcHM3ANN and tcHM1R1 for each test set are compared 

to the experimental measured values in Table 7. As it can be seen, with tcHM3ANN the 

prediction errors were 4.5 times lower compared to tcHM1R1, thereby highlighting the 

importance of modeling the rejection factor of a protein for predicting its concentration. 

 

Table 7: Measured and predicted final lysozyme concentration in the bulk, cB,Lys, and their difference in percentage 
by tcHM3ANN and tcHM1R1 models. 

Test set # 
Measured 
cB,Lys [g/L] 

Predicted cB,Lys [g/L] Difference [%] 

tcHM3ANN tcHM1R1 tcHM3ANN tcHM1R1 

2 4.4 4.3 6.8 1.8 56.4 

3 4.4 4.1 6.6 5.8 51.6 

5 3.5 3.8 5.9 7.3 66.8 

6 6.2 5.7 8.8 7.4 43.0 

7 2.0 2.5 3.6 28.4 85.8 

8 2.8 3.5 4.6 24.4 65.2 

9 6.8 8.8 14.8 29.4 116.2 

10 4.7 5.6 8.7 20.5 86.6 

   Average 15.6 71.4 
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Summarizing, the hybrid model with an ANN black box model of one neuron, tcHM3ANN, yielded 

the most accurate results for predicting the cB,Lys evolution over time, both in the test sets inside 

and outside the training space. However, for the latter, the predictions of final cB,Lys were worse 

than in other models, due to not incorporating the time-dependent BSA accumulation and 

lysozyme membrane fouling effects in the models. This led tcHM3ANN to overpredict RLys and 

consequently the final cB,Lys when extrapolating for the initial concentration of both proteins. 

These errors were additionally accentuated by the fact of not incorporating any correction 

function for lysozyme accumulation on the membrane. For BSA, on the other hand, even 

though a correction function was used the models overestimated the final predicted cB,BSA. In 

contrast, tcHM1Raverage yielded stable final cB,Lys predictions for the test sets outside the training 

space. This was due to its constant RLys, obtained from the training experiment fitted all 

independent generated test data in the same way, since the concentration factor was kept 

comparable. Nevertheless, this model could not make accurate predictions of cB,Lys over time 

in any test set, due to not updating its RLys. 

  



 
 

65 

5. Conclusions and outlook 

All the models developed throughout this work for the prediction of flux, rejection factor and 

concentration in two-component cross-flow ultrafiltration systems are summarized in Table 8, 

with their pros, cons and suggested possible applications.  

Table 8: Summary of all developed models with their pros, cons and suggested possible applications. SFM: stagnant 
film model; ocHM: one-component-hybrid model; tcHM: two-component-hybrid model; ANN: artificial neural network; 
MLR: multiple linear regression; MnLR: multiple non-linear regression. 

Model Pros Cons 
Possible 

applications 

SFMcomb 

-Simple, easy to develop (geometrical 
solution), interpret and use 

 

-Robust (no prediction variability)  

-For pressure-independent region only 

-Assumptions: CP as (only) flux limiting 
phenomenon, completely solute rejection, 

constant solution diffusivity, viscosity, 
density... 

-For one component only. Extension to more 

components requires: 

-Measurement several physical parameters  

-Knowledge interaction mechanisms 

-Complex models and calculations  

-Poor interpolation capabilities 

-Fails predicting the flux off the design space 

Current workhorse in 
industry due to its 

simplicity and shown 
good correlation with 
rather experimental data 

ocHMcomb 

-Both pressure-dependent and 
independent regions  

-No quantification of impurity  

-No knowledge of underlaying flux 

governing mechanism necessary 

-Very good flux predictions inside the 
design space 

-For one component only 

-Little insight into functioning of the system 

-Poor extrapolation capabilities especially for 
variations in the impurity concentration 

-One-component 
solutions: more precise 

and flexible model than 
SFM  

-Complex multi-

component solutions of 
many impurities/difficult 
quantification  

tcHM1R1 

-Two-components. Easy incorporation 
second component into the model:  

-Simple structure adaptation 
-No knowledge interactions between 
components necessary 
-No additional sampling step compared 
to ocHM 

(of all tcHMs): Flux 

 Excellent interpolation capabilities  

 Very good extrapolations for CF and 

higher cB,BSA 

-Not incorporates the time-dependent fouling 
of lysozyme  

 Higher errors in flux extrapolations for 
higher initial cB,Lys  

 

-No RLys prediction  cB,Lys overestimation 

Only when the solute is 
completely retained by 

the membrane 

tcHM1Raverage 

-Simplicity. Easy to construct 

-Interpretability 

-Robust. No variation in impurity prediction 

-Faster computation times 

-Only prediction of final protein concentration 

-The concentration factor must be 

comparable to the training set 

-Early filtration units 
where impurity 
composition is variable 

-Complex multi-
component solutions  

tcHM2 
-Good RLys predictions 

-Faster computation times 
-Wrong flux predictions  

This model is not 

suggested for utilization 
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tcHM3ANN 

-Best model for dynamic RLys and cB,Lys 
prediction 

-Simple offline analytics (based on UV 
absorbance record) 

-Not incorporates the time-dependent BSA 
CP and lysozyme fouling formation 

-Influence of TMP and CF only on cp,Lys  

-No lysozyme correction function 

 RLyes and final cB,Lys overestimations 

outside the design space   

Most precise developed 

model  

Applicable to all UF units 
and systems as long as 

there are enough offline 
analytics for the 
separate quantification 

of each component  

tcHM3MLR/ 
tcHM3MnLR 

-Easier to interpret 

-Faster computation times 

-Failed predicting RLys (non-linearity between 

RLys and input parameters) 

These models are not 

suggested for utilization 

 

 
Summarizing, the presented multistep-ahead hybrid models, and particularly tcHM3ANN, are 

promising candidates to build digital twins for virtually designing and optimizing processes by 

varying the input parameters and the product to impurity ratios. In addition, due to predicting 

the concentration evolution of the mimicked impurity, lysozyme, tcHM3ANN could also be 

implemented as soft-sensor for real-time monitoring. By just determining the initial 

concentration of each of the components and the applied CF and TMP parameters, this model 

could make forecasts of the duration and final product and impurities concentration. Finally, 

when combined with closed-loop process controllers, this model could be used for model 

predictive control, taking the adequate measures depending on changes in the process 

conditions, thereby ensuring the safety and the quality of the product and reducing the risk of 

batch rejection.  

To conclude, the developed models lay the basis for multi-component systems and next 

generation bioprocessing towards the PAT and QbD initiative. In addition to its extension for 

more than two-component solutions, these models could also consider the implementation of 

a black box model for better predicting the product concentration and its quality based on all 

CQAs.   
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solution and single component solution of (C) BSA (red) and (D) lysozyme (green).Figure from  
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9. Appendix 

Table A1 gives a summary of all test sets that were performed to assess the errors of the 
developed hybrid models. It includes the process parameters (TMP and CF), the initial protein 
concentrations in the bulk (c0,BSA and c0,Lys) as well as the initial (V0) and final bulk volume (Vf)  
and the numbers of samples taken during each test run. 
 

Table A1: Summary of test set parameters. 

Test set number TMP CF c0,BSA [g/L] c0,Lys [g/L] V0 [mL] Vf [mL] 
Number of 
samples 

taken 

1 1.8 200 6.7 0.00 1031.3 38.3 12 

2 1.8 200 4.0 0.28 1031.4 41.2 12 

3 2.8 300 3.8 0.32 1081.4 51.0 4 

4 2.1 250 3.7 0.38 1081.4 50.8 - 

5 2.5 280 4.6 0.25 1081.4 44.6 12 

6 1.8 200 3.8 0.50 1031.4 57.1 15 

7 1.6 230 6.0 0.15 1081.4 44.2 11 

8 1.4 270 8.8 0.19 1081.4 43.8 9 

9 1.8 260 2.4 0.57 1072.9 41.1 8 

10 2.0 350 3.6 0.34 1081.4 41.8 8 

 
 
In Table A2 the mass transfer coefficient k and gel concentration cG for the flux prediction using 
the SFM are summarized. Due to the SFM is based on one-component only, and that the BSA 
concentration was 4 to 46 times higher than the lysozyme concentration, BSA was chosen as 
the modeled component. k and cG for BSA were calculated both in the BSA alone (Table A2 
left) and the BSA with lysozyme (Table A2 right) training data. k from the two-component 
solution was generally lower than for one-component, as a result of the fouling of lysozyme, 
which reduced the solute mass transfer along the membrane. 
 

Table A2: Mass transfer coefficient k and gel concentration cG for the SFM based on the BSA alone (left) and BSA 
with lysozyme (right) training data. Both parameters were in general smaller in the two-component solution than for 
one-component, due to the reduced transmembrane mass transfer as a result of lysozyme fouling. 

k based on BSA k based on BSA with lysozyme 

 Feedflow [mL/min]  Feedflow [mL/min] 

100 200 300 100 200 300 

T
M

P
 [

b
a
r]

 0.8 47.36 36.23 31.63 

T
M

P
 [

b
a
r]

 0.8 17.61 33.84 14.03 

1.3 54.67 41.97 32.33 1.3 25.03 36.12 27.92 

1.8 54.51 42.14 30.13 1.8 27.59 36.75 39.06 

2.3 53.40 41.63 28.99 2.3 28.11 38.22 44.73 

2.8 53.75 42.97 27.95 2.8 27.70 38.58 46.84 

cG based on BSA cG based on BSA with lysozyme 

 Feedflow [mL/min]  Feedflow [mL/min] 

100 200 300 100 200 300 

T
M

P
 

[b
a
r]

 

0.8 277.83 303.41 279.25 

T
M

P
 

[b
a
r]

 

0.8 665.40 280.12 4421.42 

1.3 302.79 330.45 323.30 1.3 355.06 312.56 887.24 
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1.8 322.39 345.88 355.30 1.8 288.49 277.52 419.22 

2.3 332.29 353.74 369.46 2.3 264.69 273.21 304.56 

2.8 323.99 327.45 378.28 2.8 256.72 252.80 263.97 

 

In Table A3 the NRMSE for flux prediction by all developed models (excepting tcHM3MLR and 
tcHM3MnLR) for each test set is shown. 
 

Table A3: Summary of flux NRMSE for all test sets by all the hybrid (HM) and stagnant film (SFM) models built 
during this work. 

NRMSE flux [%] 

Test set 
number 

ocHMBSA SFMcomb ocHMcomb tcHM1R1 tcHM1Raverage tcHM2 tcHM3ANN 

1 1.8 ± 0.2 9.7 9.0 ± 0.1 1.6 ± 0.4 1.7 ± 0.5 11.9 ± 1.4 1.7 ± 0.4 

2 8.8 ± 0.4 5.3 2.2 ± 0.2 2.0 ± 0.2 2.3 ± 0.3 2.0 ± 0.2 2.1 ± 0.3 

3 11.1 ± 0.3 3.0 2.3 ± 0.2 4.1 ± 0.2 3.6 ± 0.2 4.6 ± 0.3 3.2 ± 0.2 

4 10.5 ± 0.2 3.0 1.8 ± 0.1 3.6 ± 0.2 3.3 ± 0.3 3.7 ± 0.6 3.0 ± 0.2 

5 7.2 ± 0.2 5.0 4.9 ± 0.2 4.1 ± 0.1 3.9 ± 0.3 3.4 ± 0.4 3.7 ± 0.2 

6 12.1 ± 0.3 7.2 4.5 ± 0.1 3.8 ± 0.2 4.3 ± 0.2 4.1 ± 0.6 4.1 ± 0.1 

7 2.3 ± 0.2 8.5 8.5 ± 0.2 5.0 ± 0.3 4.8 ± 0.3 3.6 ± 0.4 4.9 ± 0.4 

8 2.5 ± 0.3 9.3 6.7 ± 0.2 3.3 ± 0.3 3.4 ± 0.3 5.2 ± 0.9 3.3 ± 0.5 

9 10.9 ± 0.2 6.3 5.0 ± 0.1 8.0 ± 0.2 8.2 ± 0.2 9.5 ± 0.4 8.0 ± 0.3 

10 7.9 ± 0.4 4.4 2.7 ± 0.3 4.9 ± 0.2 4.7 ± 0.3 5.4 ± 0.4 4.5 ± 0.4 

 
 

Table A4 contains the NRMSE for RLys prediction of all developed two-component-hybrid 
models (tcHMs). 
 

Table A4: Summary of RLys NRMSE. 

NRMSE RLys [%] 

Test set 
number 

tcHM1R1 tcHM1Raverage tcHM2 tcHM3ANN tcHM3MLR tcHM3MnLR 

2 91.2 ± 0.0 32.5 ± 0.0 4.7 ± 0.1 6.2 ± 0.2 9.9 ± 0.0 8.7 ± 0.0 

3 70.2 ± 0.0 40.3 ± 0.0 25.3 ± 0.6 20.4 ± 0.5 20.9 ± 0.0 21.8 ± 0.0 

5 70.1 ± 0.0 34.9 ± 0.0 4.6 ± 0.4 6.9 ± 0.6 21.1 ± 0.0 10.2 ± 0.0 

6 80.0 ± 0.0 39.7 ± 0.0 20.8 ± 1.4 14.7 ± 2.2 26.9 ± 0.0 30.0 ± 0.0 

7 75.3 ± 0.0 32.6 ± 0.0 19.6 ± 2.6 25.7 ± 1.3 34.5 ± 0.0 29.4 ± 0.0 

8 65.9 ± 0.0 45.3 ± 0.0 34.9 ± 5.6 24.5 ± 1.3 69.4 ± 0.0 23.8 ± 0.0 

9 89.8 ± 0.0 35.6 ± 0.0 45.6 ± 0.8 10.0 ± 2.0 55.5 ± 0.0 89.9 ± 0.0 

10 78.3 ± 0.0 40.6 ± 0.0 11.8 ± 0.5 6.2 ± 0.7 20.0 ± 0.0 34.5 ± 0.0 

Average  77.6 ± 0.0 37.7 ± 0.0 20.9 ± 1.5 14.3 ± 1.1 32.3 ± 0.0 31.0 ± 0.0 
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Table A5 contains the difference, in percentage, between the measured and predicted final 
cB,Lys by all two-component-hybrid models for each test set. 
 

Table A5: Summary of the difference, in percentage, between measured and predicted final cB,Lys for each test set 
by the different tcHM. 

Final cB,Lys difference [%] 

Test set 
number 

tcHM1R1 tcHM1Raverage tcHM2 tcHM3ANN tcHM3MLR tcHM3MnLR 

2 56.4 25.8 3.9 1.8 7.0 6.7 

3 51.6 25.3 1.7 5.8 0.9 5.5 

5 66.8 20.3 1.6 7.3 13.2 1.1 

6 43.0 27.6 8.4 7.4 15.0 15.5 

7 85.8 11.2 33.6 28.4 22.3 23.0 

8 65.2 21.3 46.5 24.4 31.3 10.3 

9 116.2 0.9 67.7 29.4 85.2 30.6 

10 86.6 12.3 26.0 20.5 36.6 13.0 

Average  71.4 18.1 23.7 15.6 26.4 13.2 
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Figure A1 gives the entire training data set of Figure 9, for the recorded fluxes of each 
training experiment for the combination of cB,i and TMP at 200 mL/min   
 
 

 
 

  

Figure A1: Training data sets including different protein concentration and TMPs at CF 200 mL/min. (A), (B) Multi-
component training set containing BSA and lysozyme (blue) in the same solution and single component solution of 
(C) BSA (red) and (D) lysozyme (green).Figure from  68. 
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9.1 Manuscript 

The results obtained in this work were published as a research article in the journal Processes, 

in the volume 8, issue 12, article 1625 (2020), as “Hybrid modeling for Simultaneous Prediction 

of Flux, Rejection Factor and Concentration in Two-Component Crossflow Ultrafiltration”, by 

the authors Maximilian Krippl, Ignasi Bofarull-Manzano, Mark Duerkop and Astrid Dürauer.  

https://doi.org/10.3390/pr8121625 

The manuscript of such publication is attached in the following. 
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Abstract: Ultrafiltration is a powerful method used in virtually every pharmaceutical bioprocess.
Depending on the process stage, the product-to-impurity ratio di↵ers. The impact of impurities on
the process depends on various factors. Solely mechanistic models are currently not su�cient to
entirely describe these complex interactions. We have established two hybrid models for predicting
the flux evolution, the protein rejection factor and two components’ concentration during crossflow
ultrafiltration. The hybrid models were compared to the standard mechanistic modeling approach
based on the stagnant film theory. The hybrid models accurately predicted the flux and concentration
over a wide range of process parameters and product-to-impurity ratios based on a minimum set of
training experiments. Incorporating both components into the modeling approach was essential to
yielding precise results. The stagnant film model exhibited larger errors and no predictions regarding
the impurity could be made, since it is based on the main product only. Further, the developed hybrid
models exhibit excellent interpolation properties and enable both multi-step ahead flux predictions
as well as time-resolved impurity forecasts, which is considered to be a critical quality attribute in
many bioprocesses. Therefore, the developed hybrid models present the basis for next generation
bioprocessing when implemented as soft sensors for real-time monitoring of processes.

Keywords: semi-parametric model; neural network; tangential flow filtration; downstream processing;
advanced process monitoring

1. Introduction

Membrane separation is a unit operation used in virtually all bioprocesses. One prominent
type, crossflow ultrafiltration, is widely used from cell harvest and virus clearance approaches to
product concentration steps. In downstream processing of biopharmaceuticals, ultrafiltration (UF)
is commonly applied for concentration and bu↵er exchange after the capture step. It is also applied
after virus filtration in single-pass mode to concentrate the sample before it is loaded onto the
polishing chromatography, or after polishing to reach the final conditions for product formulation [1].
These process steps entail varying ratios of process and impurities to product concentration.

Modeling of process steps is of increasing importance for bioprocesses. Such process models
increase understanding of processes, facilitate the discovery of optimal process conditions and are
indispensable for model predictive control. The latter is a cornerstone of Quality by Design and
Process Analytical Technology, which is recommended by authorities for biopharmaceutical production.
The right balance of model complexity and usability is crucial to employ such models e↵ectively for
di↵erent unit operations.
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To simplify the modeling of downstream processes, a common assumption is to reduce the overall
sample composition down to a single target molecule. Coe�cients and parameters used in mechanistic
models, such as mass transfer models, are often approximated, taking only the target molecule into
account. Such models may be limited if the sample contains high levels of impurity.

For some process steps, such as polishing chromatography [2] or ultra/diafiltration [3,4] before
formulation, this assumption of one-component solutions is realistic, since the product is already of high
purity at this process stage. For earlier process steps, however, this simplification deviates substantially
from reality and can lead to erroneous models, e.g., for filtration steps after the capture step. Here,
the neglected presence of host cell proteins [5], DNA [6], or protein aggregates [7] can strongly distort
the prediction of the model, since e↵ects like membrane fouling and interactions between the product
and impurities are not considered. In more complex mechanistic models, if the impurities are well
characterized, such e↵ects can be considered. For example, for crossflow filtration, a hard sphere-based
mixture model, including multiphase computational fluid dynamics and concentration polarization,
was applied to a whey protein solution, leading to a permeate flux prediction error within 20% [8].
Other work has shown that mechanistic models of pore blockage and cake filtration can also predict
filter fouling during virus filtration, as a function of the protein of interest, virus and membrane [9].
The initial and late stage of the filtration, however, was dominated by di↵erent mechanisms, rendering it
di�cult to build a valid model for the entire process. The influence of two components on (crossflow)
UF was found to a↵ect the process in di↵erent ways, from strong [10] to weak [11] to varying [5,12–14]
protein-protein (or protein-membrane) interactions. To account for the highly di↵erent e↵ects of
all components on the process, the experimental part of data generation to estimate the parameters
for mechanistic models might become very labor-intensive and the calculations rather complex.
Further, if the overall behavior of the process changes because of varying concentrations of impurities,
the assumptions of mechanistic models might not hold, to the detriment of the prediction.

One advantage of machine learning supported modeling approaches is that the e↵ects of the
impurity on flux and membrane fouling do not need to be fully quantified by the operator [15].
The quantification of these phenomena is performed by machine learning tools, such as an artificial
neural network (ANN) [16]. Hybrid models combine the advantages of data-driven black box models
(such as ANNs), correlating input with output variables (such as the concentration of impurity with
the decrease in flux) with knowledge-based mechanistic models (white box models) derived from
conservation of kinetic laws [17]. Hybrid models have been applied to bioprocesses for upstream [18]
and downstream applications [19,20].

To compare the predictive power of a model concerning the training space, two terms are often used:
interpolation and extrapolation. Interpolation allows the model to make predictions for parameters that
lie within the range of training experiments. A model with good interpolation capabilities can make
predictions with fewer training observations, since it is able to make reliable estimates of the spaces
between the observations. A model with poor interpolation capabilities requires more granular coverage
of the training space to make accurate predictions of test experiments. Extrapolation (also called
range extrapolation) describes the extent to which a model can make predictions if the tested input
parameters are outside the training space. A model with good extrapolation capabilities can make
accurate predictions for parameters beyond the training space. A detailed explanation of interpolation
and extrapolation in hybrid modeling is given in [21].

Recently, we have shown the benefits of hybrid modeling for the prediction of UF flux evolution.
However, this previous model was only established for a one-component system [22]. In the present
study, we extended the hybrid model to describe the impact of a modeled protein impurity on the
decrease of the permeate flux over time in crossflow UF including the rejection behavior of the product
and the impurity. This enables the operator to gain a more detailed understanding of the process.
In addition, the impurity concentration is a critical quality attribute (CQA) in almost all manufacturing
bioprocesses and if it is too high, the produced batch must be discarded. The presented hybrid models
can predict the impurity concentration up front, and potentially minimizes the risk of batch rejection.
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Product and impurity were mimicked with di↵erent ratios of bovine serum albumin (BSA) to
lysozyme concentrations in the starting solution. BSA and lysozyme exhibit di↵erent physicochemical
properties to facilitate separation and quantification. While BSA was fully retained by the membrane,
lysozyme was only partially retained, rendering the predictions of the permeate flux over time even
more complex. In a first assessment, we compared the abilities of the well-established mechanistic
stagnant film model (SFM) and the recently established one-component hybrid to predict the filtration
progress of a two-component solution. Further, we presented two hybrid model structures to predict
the evolution of permeate flux and protein concentration of product and impurity by multi-step
ahead predictions. One hybrid model included a static lysozyme rejection factor (RLys), while the
other updated RLys dynamically in an iterative way. These model outputs were influenced by the
transmembrane pressure (TMP), crossflow velocity (CF), the initial BSA concentration cB,BSA and
lysozyme bulk concentration cB,Lys. Finally, these novel hybrid model structures were compared to the
SFM regarding flux and concentration prediction.

2. Materials and Methods

2.1. Equipment and Chemicals

All UF experiments were performed on an ÄKTA Crossflow system (Cytiva, Marlborough,
MA, USA) controlled by UNICORN 5.31 software. The reservoir tank held up to 1100 mL of
bulk solution. The system featured an inline pH probe and UV monitor on the permeate side and a
pressure-based reservoir level sensor. The experiments were performed with a Sartocon Slice Hydrosart
Cassette hydrophilic, stabilized cellulose-based membrane (Sartorius AG, Göttingen, Germany) with
a membrane area of 200 cm2. The model proteins were BSA and lysozyme (A2153 and L6876,
both purchased from Sigma-Aldrich, St. Louis, MO, USA). The molecular weight cuto↵ (MWCO) of the
membranes was 30 kDa, chosen so that BSA (66 kDa) was fully retained and lysozyme (14 kDa) was
partially retained. BSA and lysozyme were chosen to mimic the protein of interest and process-related
impurities, respectively. A filtration bu↵er of 50 mM phosphate-bu↵ered saline (PBS), pH 8, was used.

2.2. Training and Test Data Generation

For the training experiments, the bulk reservoir was filled with 1000 mL of the lowest bulk BSA
and/or lysozyme concentration cB,BSA and cB,Lys (see Table A1). The following two steps were then
alternated. First, the TMP and CF were increased stepwise, while the permeate was redirected to
the feed reservoir to keep the protein concentration cB constant. For each combination of TMP and
CF, the permeate flux was recorded. Second, the sample was concentrated until the next desired
cB was reached. These two steps were repeated at all concentrations given in Table A1. A total of
90 equilibrium fluxes were recorded for di↵erent concentrations and combinations of TMP and CF.
Our previous work with a one-component system [22] showed that this training set size was su�cient
to develop a well-trained hybrid model with accurate flux predictions. A detailed summary of all
scouted TMPs, CFs, cBs and recorded fluxes is given in Table A1. Samples were taken after each
concentration step for o✏ine measurement. A more detailed description of the methodology for the
training experiment is given in an earlier publication [22].

During the test experiments, samples were taken from the retentate and permeate. The measured
retentate and permeate concentrations were used to calculate the rejection factor R of the model
proteins. A summary of the performed test sets is provided in Table A2.

2.3. Concentration Polarization Correction

When concentrating the sample throughout the training experiments, we observed that the
measured cB,BSA was lower than the expected concentration calculated from permeate volume (VP)
and mass balance. The di↵erence between observed and calculated concentration increased with
concentration (see Figure A3B). This was because the concentration polarization (CP) layer—the
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protein gradient that forms on the surface of the membrane—increased with cB,BSA. This deviation
was considered for the test experiments by employing a quadratic polynomial function (Equation A1)
and used to correct the calculated cB,BSA.

2.4. Protein Quantification

BSA and lysozyme concentrations were determined with an analytical high-performance
size-exclusion chromatography (SEC-HPLC) using a TSKgel G3000SWXL column (5 µm, 7.8 ⇥ 300 mm;
TOSOH, Shiba, Tokyo, Japan). The separation was performed under isocratic conditions with 50 mM
sodium phosphate, 200 mM NaCl, pH 6.5 as running bu↵er at a flow rate of 0.4 mL/min. Samples were
diluted to a final concentration of 0.1 to 1.0 g/L using 50 mM PBS, pH 8 and filtered through a 0.22 µm
Millex-GV Filter (Merck Millipore, Billerica, MA, USA) prior to analysis. The injection volume was
10 µL per sample. Due to the di↵erence in the size of BSA and lysozyme, the peaks were fully
separated and could be quantified independently, using standard calibrations from BSA and lysozyme
stock solutions.

2.5. Hybrid Modeling

2.5.1. Black Box Model

The black box inside the first hybrid model (HM 1) aimed to predict the flux based on the
combination of inputs parameters: TMP, CF and the bulk protein concentrations of BSA and lysozyme,
cB,BSA and cB,Lys, respectively. In the second hybrid model (HM 2), an additional black box was
employed to predict the rejection factor of lysozyme RLys (Figure 1B). An ANN was utilized for this
purpose and optimized by varying the number of hidden nodes from 1 to 7. The ANN was set up with
the feedforwardnet function and trained with the trainbr function, using MATLAB 2018b. A detailed
description is the ANN structure and optimizer function is given in the Appendix A.

2.5.2. White Box Model

The white box model is the mechanistic part of the hybrid model and consisted of a mass balance.
The incrementally decreasing bulk volume (dVB in Equation (1)) was derived from the permeate
flux (J), which is the output of the black box, and the membrane area (A). The rejection factor R for
component i was calculated with Equation (2), considering the concentration of i in both the retentate
(cR; in crossflow filtration cR is equal to cB) and the permeate (cP). Equation (1) and Equation (2) were
used to predict cB of each component and Equation (3) to calculate the VB after dt.

dVB
dt

= �A·J (1)

Ri = 1� cP,i

cR,i
(2)

d(cB,i·VB)

dt
= (A·J·cB,i)

Ri (3)

2.5.3. Training and Test Data

RLys was calculated from the training set with the UV absorbance at 280 nm on the permeate
side. A separate lysozyme training run was performed to correlate the UV signal at 280 nm with the
permeate concentration determined by SEC-HPLC. The correlation curve (Figure A3A) with an R2 of
0.97 was used to calculate cP,Lys, and subsequently RLys for all observations of the training set was used
to train the black box.
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The observed flux and RLys were compared to the predictions of the hybrid models using the
normalized root-mean-square error (NRMSE)

NRMSE = 100·

q
1
n
Pn

i=1

⇣
yi � ŷi

⌘2

ymax � ymin
(4)

where n is the number of overserved fluxes yi and the corresponding predicted fluxes ŷi.
The normalization ymax�ymin allows a fair comparison of various fluxes due to di↵erent concentrations
and process parameters.

Figure 1. Schematic representation of the two hybrid model and mechanistic model structures,
with implementation in the multi-step ahead model. (A) Hybrid model 1 (HM 1) using static,
average RLys from the training set, (B) hybrid model 2 (HM 2) with two separate black boxes for flux and
dynamic RLys prediction, (C) stagnant film model (SFM). (D) Multi-step ahead hybrid model structure.

2.5.4. Multistep-Ahead Hybrid Model

The structures of the investigated hybrid model are given in Figure 1. The first and simplest HM 1
(Figure 1A) assumed a constant RLys of 0.77 for all test sets based on the weighted average of all permeate
and retentate concentrations samples taken throughout the training experiment. The weighted average
considered the variation in cB,Lys and sample intervals using trapezoid rule integration. For the second
HM 2 structure (Figure 1B), the flux and RLys were predicted separately, using two di↵erent black
box models. The flux and RLys were fed into the same white box model, which yielded the predicted
cB,BSA and cB,Lys after a defined time increment. The developed hybrid model is capable of predicting
multiple steps ahead, as depicted in Figure 1D. The multi-step ahead structure uses HM 1, HM 2 or
the SFM to predict cB,BSA and cB,Lys for a time increment (dt). The concentrations of the first iteration
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were used to calculate future fluxes and cBs of the second iteration, and so on. Multiple iterations were
performed until the desired stop criterion was reached. In our case, the stop criterion was the final
retentate volume.

The presented hybrid models were used to predict the evolution of flux and RLys throughout the
UF process. Furthermore, the models yielded a prediction for the final cB,BSA and cB,Lys. The final
cB,BSA and cB,Lys predictions were compared to the final cB,BSA and cB,Lys measured by SEC-HPLC.
The model errors were compared using the NRMSE.

Figure 2 shows a flowchart of the hybrid model methodology applied for crossflow filtration.
Training experiments were performed by variations in the parameters that are expected to influence
the flux. Following this, the model was trained on this training set with a defined experimental
design space. The established models were applied to a validation data set that was not used for
training. The model structure was optimized by varying the tuning parameters, e.g., number of nodes
in an ANN and adding or removing training parameters. The model with the tuning parameters
that led to the lowest error in the validation set was then applied to independent test runs with static
process conditions.

Figure 2. Flowchart of the hybrid model methodology for application in crossflow filtration.

2.5.5. Stagnant Film Theory

The presented hybrid models were compared to the established SFM. The SFM derives
predictions from the mass transfer model described by convective transport toward the membrane and
back-di↵usion caused by the concentration gradient [23]. According to the SFM, the flux J is related to
the bulk concentration cB of a single component by

J = k· ln
 

cG
cB

!
(5)

where cG is the gel layer concentration at the membrane surface and k is the mass transfer coe�cient
that depends on the di↵usion coe�cient and the thickness of the gel layer [23]. The SFM is valid in the
pressure-independent region of the filtration. Since k and cG cannot be adjusted directly during the
filtration, a correlation between the adjustable parameters TMP and CF, and k and cG was required.
When plotting the flux versus log(cB) for a constant TMP and CF, k and cG are estimated by the slope
of linear regression and cG was estimated by extrapolating the regression line to the intersection with
the abscissa (Figure A6). It has been shown that this way of calculating k yields more accurate results
than the Sherwood correlation [24–26] and more solid predictions compared to the osmotic pressure
model [27] for similar settings. To compare the SFM to the hybrid models, the black box was replaced
by the SFM in Equation (5) using the parameters k and cG instead of TMP and CF (Figure 1C). In test
runs, where the TMP and CF conditions were not covered in the training set, k and cG were estimated
using linear interpolation.

3. Results and Discussion

3.1. Training Data Description

The data sets for training the hybrid models were generated from filtering BSA and lysozyme with
a 30 kDa MWCO cellulose-based membrane (Hydrosart). A total of three training sets were generated
covering three CFs (100, 200 and 300 mL/min) and five TMPs (0.8, 1.3, 1.8, 2.3 and 2.8 bar). The three
training sets containing BSA, lysozyme and a combination of both are shown in Figure 3. In the
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combined training set, the protein concentration of BSA cB, BSA ranged from 3.77 g/L to 77.93 g/L and of
lysozyme cB, Lys from 0.28 g/L to 3.81 g/L. The concentration ranges for all training sets are summarized
in Table A1. For a better comparison of Figure 3A–D, the x-axis of Figure 3C,D are reduced. The entire
graphs are given in Figure A2.

Figure 3. Training data sets including di↵erent protein concentrations and di↵erent TMPs at CF
200 mL/min: two-component training set containing (A) BSA and (B) lysozyme in the same solution
(blue); one-component solution of (C) BSA (red) and (D) lysozyme (green).

Generally, increasing bulk concentrations cB led to lower fluxes, while increasing TMP and CF led
to higher fluxes in all training sets. This is in accordance with the underlying mechanisms: higher bulk
concentrations lead to higher concentrations in the boundary layer and a more prominent e↵ect of the
back di↵usion along the concentration gradient. An increased TMP leads to higher convective flow
towards the membrane, but also to a faster accumulation of the protein at the boundary layer. High CF
decreases the thickness of the concentration polarization layer by rectangular displacement. The training
set obtained from experiments using only BSA exhibited higher fluxes then the two-component training
set. Additionally, the flux decreased faster during filtration of the two-component solution (Figure 3B)
compared to the filtration of lysozyme only (Figure 3D). This indicated an increased membrane
resistance through the fouling e↵ect on the Hydrosart membrane caused by lysozyme. Being smaller
than the pores, lysozyme adsorbed at the inner pore channels [28,29] and reduced its diameter and
subsequently the flux through the membrane and the membrane’s selectivity.

The two-component training set (Figure 3A,B) was used to train the black box of the hybrid models
and to obtain the mechanistic model parameters k and cG. The data set with lysozyme solely (Figure 3D)
was used for two reasons: first, to investigate the e↵ect of TMP and CF on the permeability of lysozyme
and whether RLys had to be recalculated for varying input parameters (Figure A5); second, to correlate
the permeate lysozyme concentration with the UV signal on the permeate side. This correlation was
used to calculate RLys (Equation (2)) for each observation of the combined training set (Figure 3A,B),
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using solely the permeate UV signal. Another training experiment was performed with BSA solely
(Figure 3C). The observed fluxes and estimated SFM parameters k and cG were used to investigate
model behavior and error when lysozyme was present in the test set but absent in the training set.

3.2. Comparison of the Hybrid Models to the Stagnant Film Theory

The optimal ANN structure in the hybrid models was determined by varying the number of
hidden nodes from one to seven and recording the average error of 20 repetitions on the training
set. The ANN with four hidden nodes yielded the lowest NRMSE for both HM 1 and HM 2, with an
average of 3.4% NRMSE. Higher numbers of hidden nodes led to an error increase due to training set
overfitting (Figure A1).

With the SFM, the flux can only be modeled for a one-component system; no adaptations for a two-
or multi-component system have been published in the literature so far. In the following, BSA was
assumed to be the only component since its concentration was four to 46 times higher than lysozyme
in the test runs (Table A2). The k and cG values of BSA, however, change in the presence of lysozyme.
To allow a fair comparison between the hybrid models (which can incorporate multiple components as
inputs) and the SFM, both sets of k and cG were evaluated. Both experiments were carried out with
BSA alone. The combination of BSA with lysozyme was used for flux prediction and the results were
compared to the prediction of the hybrid models.

The hybrid model trained solely on BSA (Figure 4, red dotted line) and the SFM using k and cG
based solely on BSA (Figure 4, dark grey dot-dashed line) were able to predict a UF process with only
BSA present (Figure 4A, black line), but failed to predict the UF flux of BSA and lysozyme (Figure 4B,
black line). The latter failed due to membrane fouling by lysozyme and therefore the reduced flux and
prolonged process times could not be described by any of these models.

Figure 4. Comparing flux prediction of the test set containing (A) BSA (TMP 1.8 bar, CF 200 mL/min,
initial cB,BSA 6.68 g/L) and (B) BSA with lysozyme (TMP 2.1 bar, CF 250 mL/min, initial cB,BSA 3.71 g/L,
initial cB,Lys 0.38 g/L), with: hybrid model HM 1 trained on BSA solely (red dotted line) and the BSA
and two-component training set (blue dashed line); SFM based on BSA solely (dark grey dot-dashed
line) and two-component training set (light grey dot-dot-dashed line).

In contrast, the hybrid model trained with BSA (Figure 3C) and BSA with lysozyme (Figure 3A,B)
training runs (Figure 4, blue dashed line) were able to predict both UF processes: BSA solely and BSA
with lysozyme (Figure 4, black lines). These results showed that already low amounts of lysozyme
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drastically changed the initial flux and flux evolution of the UF process and that incorporating both
components in the model was essential for accurate predictions. On the contrary, SFM based on the
training run containing BSA with lysozyme was also able to predict the two-component test run well
(Figure 4B, light grey dot-dot-dashed line), but showed a drastic o↵set when predicting a test run with
only BSA (Figure 4A, light grey dot-dot-dashed line). The k values from the two-component training
set (Table A5) were generally lower than those calculated from solely BSA, since membrane fouling
due to lysozyme was assumed. In the absence of lysozyme, however, no membrane fouling occurred
and the flux for the same cB,BSA was higher.

In summary, the HM could predict both scenarios, since the varying concentration of lysozyme
and its influence on the membrane fouling was integrated into the black box. However, the SFM only
predicted one scenario well, depending on which k and cG were used. For the following two-component
predictions, the SFM parameters were based on the two-component training set.

3.3. Comparison of Hybrid Model Performance

To further investigate both the interpolation and extrapolation capability of both HMs and the
SFM model, a series of test runs were conducted under conditions that were partially not covered by
the training sets. To test the hybrid models based on the two-component training set, additional test
runs on BSA solutions spiked with lysozyme were performed. The two established hybrid model
structures were compared for their RLys, flux and final cB predictions individually. RLys e↵ects the
in-process cB,Lys prediction and subsequently the flux and final cB,Lys. Additionally, the two hybrid
models were compared to the SFM in terms of flux and cB,BSA prediction. cB,Lys, and RLys could not be
compared, since SFM can be applied to one-component only.

The test data consisted of nine UF runs performed at di↵erent TMP, CF, initial cB,BSA and cB,Lys
conditions. Test runs 1�4 were performed within the training space. This meant that TMP and CF
were within the training parameters (Figure 5A, blue area) and the initial cB,BSA, and cB,Lys was higher
than the initial training concentrations (Figure 5B, blue area). The test runs 1, 2 and 9 were performed
in the center of the TMP and CF training space (Figure 5A), with test run 9 containing no lysozyme.
Test run 3 was performed at the outer limit of the TMP and CF training space, to investigate how
the predictions of the hybrid models changed at the border. Test run 4 was performed under TMP
and CF conditions not covered by the training set but within the training space, to investigate the
interpolation capabilities of the model. Test runs 5, 6, 7 and 8 were performed under conditions that
were partially outside the training space, such as initial cB,Lys (8), initial cB,Lys (5, 6) and CF (7), to test
the extrapolation capabilities. The test run parameters are summarized in Figure 5 and Table A2.

3.3.1. Flux Prediction

Regarding the prediction of the flux evolution, the two hybrid models performed similarly
(Figures 6A,C,E, 7A,C,E and A4A,C,E). Most test run predictions exhibited a small initial o↵set. At the
beginning of the test experiments, the membrane was clean, while during the training set the membrane
exhibited some lysozyme fouling and equilibrium of the concentration polarization layer due to the
long training process time. This led to an initially underestimated flux. The o↵set became more
pronounced when initial cB,Lys was higher than 0.3 g/L (test runs 2, 3, 4, 5 and 8; Figures 6C,E, 7A and
A4A,C), indicating a stronger membrane fouling at this concentration. Even though all hybrid models
were trained with cB,Lys higher than 0.3 g/L, the timely increasing membrane resistance due to fouling
reached an equilibrium only after several minutes. After this point, the flux was predicted correctly.
The highest initial o↵set was given in test run 8 (Figure A4A), which exhibited the highest initial cB,Lys
and therefore more fouling. Test run 7 (Figure 7E) was performed at CF 350 mL/min, which was outside
the training space. Both hybrid models predicted the flux of test run 7 (Figure 7E) well, indicating
that the models were not necessarily limited by the training space and showed good extrapolation
capabilities of the input parameter CF. Test runs 4, 5 and 6 (Figures 6C,E and 7C) exhibited TMPs and
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CFs within the training space parameters and all predicted well. The good flux predictions of these
test runs showed the excellent interpolation capabilities of the ANN-aided hybrid models.

Figure 5. Schematic depiction of the training space (blue area) for: (A) TMP and CF of training runs
(white dots) and test runs (grey dots); (B) initial to final cB,BSA and cB,Lys of the test runs (grey dots with
grey solid lines) and the covered concentration range of the three training runs (white dots with black
solid lines).

The SFM predicted the initial flux and flux evolution inside the training space well (test runs 1,
3 and 4; Figures 6A,C, and A4C). However, for the test runs outside the training space, higher errors
were exhibited (test runs 5, 6 and 8; Figures 6E, 7C and A4A). Outside the training space, k and cG
were extrapolated from the training data, which potentially increased flux prediction uncertainty.
Furthermore, high lysozyme concentrations also led to higher errors due to stronger fouling over time
and not being able to incorporate the second component in the SFM. Here, the SFM underestimated the
initial flux drastically (test runs 2 and 8; Figures 7A and A4A). For test run 9 (Figure A4E)—only BSA,
no lysozyme—the SFM with k and cG were exceptionally based on BSA training data (Figure 3C) to
allow fair comparison. In this case, the SFM yielded good initial flux predictions, but deviations at the
end of the process, while HM 1 and 2 both showed excellent flux prediction over the entire process. On
average, the flux prediction error of SFM was 6% NRMSE, while the error of the two hybrid models
was 4.1% and 3.9% NRMSE (Figure 8A).

3.3.2. Rejection Factor Prediction for Lysozyme

The rejection factor for lysozyme RLys increased throughout the UF run, from around 0.6 to almost
1.0, as shown in Figures 6, 7 and A4. The pores became increasingly blocked throughout the UF
process, most probably because lysozyme was absorbed in their inner wall, increasing the rejection
factor. Results showed that there was no consistent correlation between the TMP and RLys, or CF and
RLys (Figure A5). Therefore, the influence of TMP and CF on cP,Lys was neglected when creating the
calibration between UV absorbance and lysozyme permeate concentration. The rejection factor of BSA
was 1 for all experiments. The model errors are given in Figure 8B.
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Figure 6. Comparison of observed and predicted flux and RLys. (A) The flux over time of test run 1,
(B) RLys over permeate volume of test run 1, (C) the flux over time of test run 4, (D) RLys over permeate
volume of test run 4, (E) the flux over time of test run 5, (F) RLys over permeate volume of test run 5.
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Figure 7. Comparison of observed and predicted flux and RLys. (A) The flux over time of test run 2,
(B) RLys over permeate volume of test run 2, (C) the flux over time of test run 6, (D) RLys over permeate
volume of test run 6, (E) the flux over time of test run 7, (F) RLys over permeate volume of test run 7.
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Figure 8. Summary of the prediction errors of HM 1, HM 2 and SFM in terms of (A) flux, (B) RLys,
(C) final cB,Lys for test runs 1 to 4 with all parameters—TMP, CF, initial cB,BSA and cB,Lys—inside the
training space and (D) final cB,Lys for test runs 5 to 8 performed partly outside the training space.

Hybrid Model 1: Constant Lysozyme Rejection Factor

In HM 1 the rejection factor for lysozyme RLys was assumed to be constant over time for all
test runs, where lysozyme was present and therefore exhibited the largest RLys error (38% NRMSE)
compared to HM 2 (see Figure 8A). All test runs (Figures 6, 7 and A4) show that HM 1 overestimated
RLys at the beginning of all UF runs and underestimated it at the end. The average RLys based on
training data fitted all independently generated test data very well but lacked the ability to adjust to
the increasing RLys.

Hybrid Model 2: Dynamic Lysozyme Rejection Factor

In contrast to keeping the rejection factor constant, as in HM 1, a second black box was introduced
in HM 2 to predict RLys dynamically. This prediction was independent of the flux prediction but was
based on the same four input parameters, namely TMP, CF, initial cB,BSA and initial cB,Lys. The NRMSE
of the newly introduced black box was evaluated by comparing the observed RLys values to the
predicted RLys. Since the correlation of RLys and VP is quite simple, an ANN with one hidden node
was used for RLys prediction (Figure A1C). For comparison, a multiple linear regression (MLR) model
was also tested as an alternative black box, resulting in a less complex hybrid model that required less
computation time and facilitated easier interpretability. However, the ANN with one node was chosen
instead of the MLR, because of the lower prediction error regarding RLys and final cB,Lys (see Table A4).

HM 2, with an average RLys NRMSE of 14%, performed better than HM 1. The improvement
was achieved as HM 2 considered the increasing RLys over the process, which subsequently strongly
influenced the final cB,Lys prediction (Section 3.3.3). In test runs 5 and 6 (Figures 6F and 7D) the
prediction from HM 2 overestimated RLys. These test runs exhibited a low TMP and high cB,BSA.
The hybrid model assumed that the CP layer of BSA and fouling due to lysozyme were at an equilibrium,
at which the lysozyme transmission was lower than in the test runs, where the CP layer was still
building up. Low TMP additionally prolonged the time to reach flux steady state. RLys of the other test
runs 1, 2, 4, 7 and 8 (Figures 6B,D, 7B,F and A4B) were predicted accurately with HM 2.

Even though HM 2 performed better than HM 1 in RLys prediction, the flux predictions were
almost identical (NRMSE 3.9 and 4.1 %). This indicated that they were not a↵ected by small variations
or changes in cB,Lys.

3.3.3. Endpoint Bulk Concentration

Since RBSA was 1, all models—HM and SFM—predicted the same cB,BSA at the final retentate
volume, with an average error of 4.2% (Table A3). BSA did not show membrane fouling and was
quantitatively recovered at the end of the process. The predictions of the final cB,Lys varied because
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of the di↵erent RLys predictions. The discussion for cB,Lys prediction was divided into the test runs
performed strictly inside and outside the training space, since the hybrid models performed di↵erently.

Within the training space—test runs 1�4—HM 1 and HM 2 performed in accordance with the
RLys predictions (Figure 8C). HM 1 exhibited the highest error of 9% since RLys was not adjusted over
the processing time. HM 2 recalculated RLys with every iteration; its cB,Lys predictions were in good
accordance with the measured concentrations, with an NRMSE of 4% and superior to HM 1. Similarly
to the RLys, the accuracy of the final cB,Lys prediction benefited from two separately trained black boxes.

In cases where at least one input parameter was outside of the training space—test runs 5�8—HM
1 performed best with an average NRMSE of 4% (Figure 8D). In comparison, HM 2 yielded worse final
cB,Lys predictions, exhibiting a three-fold increase in NRMSE (12%). Even though RLys was updated in
HM 2, it was overestimated throughout most of the test runs, leading to higher cB,Lys prediction and a
cumulated NRMSE that increased with the duration of the process. In contrast, using HM 1 the initial
RLys over-prediction and under-prediction balanced out and yielded acceptable final cB,Lys predictions.

In summary, the more complex HM 2 showed superior performance within the trained space,
which is the case for most modeling applications. It can predict the flux, RLys and therefore the
concentration, of both components at any time point of the process. For predictions outside the trained
space, the simpler and more robust HM 1 performed better, giving accurate predictions on flux and the
fully retained main component BSA. It can o↵er valuable insights when exploring parameter ranges if
the desired optimal process conditions are not met in the trained space, before it is expanded and used
to retrain new hybrid models.

4. Conclusions

UF modeling increases process understanding which is key for predicting process performance.
The interactions of various components means that mechanistic modeling approaches for
multi-component solutions might become very complex and require many experiments.

We developed and compared hybrid models to predict flux, rejection behavior and concentrations
for UF of two-component solutions. The models were trained on training experiments that were
generated in less than eight hours and tested on independently performed UF runs with varying
product and impurity concentrations, TMPs and CFs. We showed that the hybrid model HM 2,
with a dynamic impurity rejection factor containing two black boxes, exhibited the best predictions
for impurity rejection behavior and final concentration within the trained parameter space and had
excellent interpolation properties. The simpler HM 1 yielded stable predictions beyond the trained
space, rendering it a valuable tool for extrapolation. Both hybrid models performed similarly well in
predicting flux and mimicked product concentration. The SFM with mechanistic parameters exhibited
higher flux prediction errors than both hybrid models and could not predict the lysozyme rejection
factor and final concentration, since it can only assume a one-component system. Our results show that
it is crucial to quantify and incorporate all components, including the impurities, to gain accurate and
reliable process models. These variations can be included more easily in the hybrid model approach
than in mechanistic models such as SFM, with low experimental e↵ort and no mechanistic parameter
adaption required.

A limitation of the presented models is the time-dependent fouling of the mimicked impurity at high
initial concentrations. However, at the expected concentration ranges, e.g., after the chromatography
capture step, the e↵ect can be neglected.

The proposed hybrid model structure can be used not only for the reliable prediction of
final product concentrations, but also of the concentration of various quantifiable classes of
impurities. Since impurities are a critical quality attribute (CQA) in many manufacturing bioprocesses,
time-resolved concentration predictions help to better understand the process’s outcome upfront.
Furthermore, by taking adequate measures a potential batch rejection due to high impurity concentration
can be avoided. The product and impurities can be measured with online sensors or correlated with
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o✏ine analytics using soft sensors. In combination, with closed-loop process controllers, these hybrid
models are a valuable tool for increased process understanding and advanced process control.
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Symbols and Abbreviations

ANN artificial neural network
BSA bovine serum albumin
CF cross-flow velocity
CP concentration polarization
HM hybrid model
MWCO molecular weight cuto↵
NRMSE normalized root-mean-squared error
SEC size exclusion chromatography
SFM stagnant film model
TMP transmembrane pressure
UF ultrafiltration

A membrane area [m2]
cB bulk concentration [g/L]
cG gel layer concentration [g/L]
cP permeate concentration [g/L]
cR retentate concentration [g/L]
dt time increment [s]
J permeate flux [LMH] or [m/s]
k mass transfer coe�cient [LMH]
RLys lysozyme retention coe�cient [-]
VB bulk/reservoir volume [mL]
Vp permeate volume [mL]

Appendix A

Appendix A.1. Neural Network Model Optimization
To choose the best-suited ANN structure, varying numbers of hidden nodes were tested. Each ANN was

trained on the combined training set and validated. Figure A1A gives an overview of the optimal ANN structure
including the inputs TMP, CF, cB,BSA, cB,Lys, and the output permeate flux (in HM 2 a second ANN with RLys
as output was added) with four hidden neurons. The input and output parameters were scaled between 0
and 1 before optimizing the ANN. This step is necessary to have the parameters on the same scale rendering
them comparable. Each node in the hidden and output layer in Figure A1A forms a linear equation. As an
example, the first hidden node x21 is the sum of each multiplication of an input (TMP, CF, cB,BSA, cB,Lys) and the
corresponding weight (w1

11, w1
21, w1

31, w1
41) multiplied with the bias (b1) of the entire hidden layer.

x21 = b1
⇣
w1

11TMPscaled + w1
21CFscaled + w1

31cB,BSA,scaled + w1
41cB, Lys,scaled

⌘

To determine the values for the weights and biases that result in the desired prediction the model is optimized
in multiple epochs. As a first step, the weights and biases are randomly chosen and the first prediction with
inputs from a given training set is performed. Since the weights and biases are not optimized the flux prediction
will be of poor quality and the prediction error will be high. Using the desired output from the training set,
the ANN is calculated backward which results in inputs parameters that fit the prediction. The error between the
real and the backward calculated inputs is estimated and used to update the according to weights and biases.


