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I 

ABSTRACT 

The production of active pharmaceutical ingredients (APIs) passed through major advancements 

over the last decades, since biopharmaceuticals, also called biologics, gained importance as 

therapeutic agents in modern age. By the aid of biological expression systems as for instance 

mammalian cells, insect cells, etc., biopharmaceuticals are manufactured at industrial scale. This 

calls for a necessity of characterizing and quantifying the manufacturing process and the product 

itself since these molecules are distinguished by structural and chemical complexity. Both, the 

U.S Food and Drug administration (FDA) and the European Medicines Agency (EMA) appealed to 

expand the knowledge in order to improve the process understanding, as well as the control of 

bioprocesses. The aim thereof is to produce more consistent and thus safer biopharmaceuticals. 

The modern approach to achieve these regulatory demands is to extend analytical and 

computational methods and furthermore create suitable process analytical technologies (PAT).  

Within this thesis a strategy to develop and compare prediction models for important process 

parameters during the upstream production process (USP) by the combination of two different 

technologies is described. Investigations of online monitoring by dielectric capacitance probes 

and Raman spectroscopy were exploited. For dielectric capacitance measurements, basic models 

dealing with single frequency mode are well known and even in use. Using the same probes in 

frequency scan mode, the obtained information promises more capabilities. Thus, research for 

the utilization of the full potential of dielectric spectroscopy was done. Dielectric capacitance 

probes feature measurements at several frequencies, and therefore enable the construction of a 

spectrum that encourages the prediction of several parameters concerning the characterization 

of the physiology of cells and the cell density in a fermentation process. The aim of this thesis is 

to analyze whether the use of frequency scan mode is capable of predicting these cell 

characteristics more precisely and provides a guideline on how to develop suitable models for 

different PAT technologies facing a multivariate statistical approach.  

Partial least squares (PLS) models based on dielectric spectroscopy and respectively simple linear 

regression models based on coefficients computed from a dielectric spectrum show promising 

predictions of cell density and viability, not only in the growth phase, but also in the late stage of 

a bioprocess. By adding Raman spectra to the predictive model, the results especially in the late 
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stage of the fermentation process could be considerably improved. Also, additional parameters 

characterizing the physiological state of cells in a culture like average diameter, average 

circularity, early and late apoptosis were elaborated, however those models lack adequate 

predictive power. The application of a dielectric capacitance probe was investigated in two 

different bioreactor scales, namely the 20L development scale and the 13kL large-scale 

production bioreactor.  

  



   

 
III 

ZUSAMMENFASSUNG 

Die Produktion von aktiven pharmazeutischen Inhaltstoffen (API) erfuhr in den vergangenen 

Jahrzehnten einige Weiterentwicklungen, nicht zuletzt, weil Biopharmazeutika, auch „biologics“ 

genannt, in industriellem Maßstab hergestellt werden. Dadurch entstand die Notwendigkeit, den 

Herstellungsprozess und das Produkt selbst zu charakterisieren und zu quantifizieren, denn die 

produzierten Moleküle zeichnen sich durch strukturelle und chemische Komplexität aus. Sowohl 

die U.S Food and Drug Administration (FDA) und die European Medicines Agency (EMA) riefen 

dazu auf das Wissen rund um Prozessverständnis auszuweiten und auch erweiterte 

Prozesskontrolle zu erforschen. Alles in allem führen diese Maßnahmen dazu konstantere und 

dadurch sichere Biopharmazeutika zu produzieren. Der moderne Zugang, um diesen 

Anforderungen gerecht zu werden ist es, die analytischen und rechnerischen Methoden zu 

erweitern und dadurch geeignete Prozessanalytische Technologien zu entwickeln.  

In dieser Arbeit wird eine Strategie beschreiben, um Vorhersagemodelle für wichtige 

Prozessparameter im Upstream Prozess (USP) durch eine Kombination zweier verschiedener 

Technologien zu entwickeln und zu vergleichen. Es werden zusätzliche Möglichkeiten auf dem 

Gebiet online Monitoring mit dielektrischen Kapazitätssonden ausgeschöpft. Einfache Modelle 

zur Messung mit dielektrischer Kapazität, welche sich auf die Signale einer einzelnen Frequenz 

beziehen, sind gut erforscht und bereits weit verbreitet. Durch die Verwendung der gleichen 

Sonden im „frequency scan“ Modus erhält man Daten, in welchen zusätzliche Informationen zu 

dem Prozess enthalten sind.  Daher wird daran geforscht, das volle Potential der dielektrischen 

Spektroskopie auszuschöpfen. Dielektrische Kapazitätssonden ermöglichen Messungen bei 

verschiedenen Frequenzen und dadurch die Erstellung eines Spektrums, das die Vorhersage 

einiger Parameter zur Charakterisierung des physiologischen Zustands einer Zellkultur und der 

Zelldichte in einem Fermentationsprozess verspricht. Das Ziel dieser Masterarbeit ist es zu 

analysieren, ob die Verwendung des „frequency scan“ Modus die Vorhersage solcher Parameter 

ermöglicht und stellt einen Leitfaden zur Verfügung mithilfe eines multivariaten statistischen 

Zugangs geeignete Modelle zu entwickeln. 

Partial least squares (PLS) Modelle basierend auf den Messdaten der dielektrischen 

Spektroskopie, beziehungsweise einfache lineare Regressionsmodelle basieren auf Koeffizienten, 

die vom dielektrischen Spektrum errechnet werden zeigen vielversprechende Vorhersagen der 
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Zelldichte und Viabilität, sowohl in der Wachstums- als auch in der späteren Phase eines 

Bioprozesses. Durch das hinzuziehen von Raman Spektren zu den Vorhersagemodellen kann das 

Ergebnis, vor allem in der späteren Phase des Bioprozesses, noch einmal gravierend verbessert 

werden. Zusätzlich wurde versucht weitere Parameter, die eine Aussage um den physiologischen 

Zustand einer Zellkultur geben, versucht vorherzusagen. Dazu zählt der durchschnittliche 

Zelldurchmesser, die durchschnittliche Rundheit und späte Apoptose. Diesen Modellen fehlt es 

allerdings an angemessener Vorhersagekraft. Die Anwendung von dielektrischen 

Kapazitätssonden wurde an zwei verschiedenen Reaktorgrößen erprobt, und zwar im 20L 

Entwicklungsmaßstab sowie im 13kL Produktionsmaßstab.  
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1 Introduction 

1.1 Biopharmaceuticals and the development of Biosimilars 

Biopharmaceuticals, also known as Biologics, are pharmaceutical products derived from living 

organisms by using biotechnological methods. Biological systems, such as bacteria, yeast or 

mammalian cells that are manipulated in their DNA, aimed at producing therapeutic and 

medical diagnostic products are utilized in industrial processes. Conventional chemical 

medicines like Generics, tend to have small size and simple structure, and appear in identical 

copies generated by predictable chemical process, whereas Biopharmaceutics are derived 

from one unique cell line, making it impossible to ensure identical copies. Biotechnological 

synthesis enables the production of molecules of large size and complex structure, where 

living cells feature specific posttranslational modifications which is of crucial importance for 

the activity as well as the immune tolerance of a biological molecule. [1]  

The class of biopharmaceuticals has been available for over 30 years. Over the last years, 

monoclonal antibodies, hormones, clotting factors enzymes, vaccines, nucleic acid- based 

products as well as cell-based products represent the most important products in the 

Biopharma industry. [1],[2] The demand for approved biopharmaceuticals produced from 

animal cell culture processes increases, not least due to the efficacy of several humanized 

monoclonal antibodies that are required in large doses. The number of sales reflects the 

importance of this sector. In 2017, $80.2 billion were generated by the top ten 

biopharmaceuticals, which represent about 44% of the total revenues in this category. [3] 

So-called biosimilars can enter the market as soon as a biopharmaceutical loses its patent 

protection after 20 years. Biosimilars are replications of approved biopharmaceutical 

products, which are very similar to their originator products in terms of quality, safety, and 

efficacy. Still, it is impossible to generate entirely identical products in a new bioprocess. The 

business of biosimilars gains importance, due to the surge of biologics with expired patents. 

In 2006, Omnitrope® entered the European marked as a first biosimilar preparation, 

distributed by Sandoz. [1],[3],[4] 

To successfully develop a process for manufacturing a biosimilar, excellent process 

understanding and strong control strategies are required, since these processes are equally 
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complex as the originator process, but with pre-defined target ranges for different quality 

attributes. [4] 

For marketing authorization, clinical trial data must be generated, to demonstrate the 

comparability of the biosimilar to the reference biopharmaceutical.  Although there is no 

need to repeat all trials of the reference biopharmaceutical, the necessity to conduct some 

biosimilar trials implies considerable expense and time. [1],[3],[5]  

It is reported that the biosimilar competition has a significant economic impact with EU-wide 

price reductions of 8% to 34% on different product classes. Considering 30% saving across the 

board of biosimilars worldwide, a hypothetical calculation predicts about $22 billion to the 

global healthcare systems. [2] 

1.2 Process analytical technologies (PAT) 

The US federal development agency (FDA) first presented the PAT initiative for modern and 

advanced process control to reach higher health and economic benefits in pharmaceutical 

manufacturing. The development of new biopharmaceutical processes is tightly connected 

with the objective to increase process robustness and understanding. [6] While conventional 

pharmaceutical manufacturing is monitored by laboratory testing of collected samples, there 

are significant opportunities for quality assurance, product and process development, 

analysis, and control. PAT has been defined as a system for designing, analyzing and 

controlling manufacturing through timely measurements (i.e. during processing) of critical 

quality and performance attributes of raw and in-process materials and processes, with the 

goal of ensuring final product quality. The goal of PAT is to raise process understanding and 

control the manufacturing process to obtain a consistent quality.[7]  

PAT can appear as process control based on real-time measurement of a critical quality 

attribute (CQA), of parameters that directly correlate with CQAs of a parameter, which 

ensures the fit for purpose of several unit operations. [8] Application of PAT remains as a 

special challenge for cell culture processes as the biological processes are inherently complex, 

leading to poor understanding of important variables and interactions between variables.  
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Nevertheless, there are some sensors, which have proven reasonable correlations to relevant 

process parameters and CQAs. For example, dielectric spectroscopy probes can be used to 

establish a mathematical correlation to biomass or Raman spectroscopy detects media 

components and metabolites. Those two applications will be discussed in detail below. [8]  

The implementation of PAT in an industrial environment requires the use of a combination of 

multiple of the PAT tools described below:  

• Process analyzers collect all types of process data. This can be at-line (sample is 

isolated from process stream and analyzed in close proximity), on-line/in-line (sample 

not diverted from the process stream an analyzed either invasive or non-invasive) or 

off-line (sample separated and measured independently from time and place). 

• Multivariate tools for design, data acquisition and analysis for making us of the 

relationship between several parameters such as multivariate statistical tools. 

• Process control tools 

• Continuous improvement and knowledge tools [7] 

A process that is designed to enable complete understanding throughout all phases, guided 

by the PAT framework, will boost the fulfilling of consistent quality requirements and thus be 

the base of the Quality by Design (QbD) tenet. The risk to quality and regulatory concerns is 

reduced by applying these tools. [7] 

1.2.1 Dielectric spectroscopy 

Dielectric spectroscopy probes are also called capacitance probes. This points at the 

measurement principle behind this type of probes. An alternating electrical field is applied to 

shortly polarize the sample and the charge stored therein, called capacitance, is measured. 

This signal gives information about the viable cell density (VCD) in the bioreactor. Dielectric 

spectroscopy is therefore an appropriate method for online measurement of the biomass in a 

bioprocess. Unlike other biomass monitoring methods, e.g. optical density, dielectric 

spectroscopy does measure intact cell membrane and thus dead cells are not accounted. [9] 
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1.2.1.1 Theoretical background (electric field and frequency scan) 

 

Figure 1: Cell polarization at the plasma membrane in an electric field applied by a dielectric probe. [10] 

The basic principle of dielectric spectroscopy is based on the membrane properties of a viable 

cell. If an electric field is applied to a suspension of cells in an aqueous ionic solution, a 

polarization profile at the membrane is formed, as all ions migrate to the opposite pole, but 

are hindered by the intact membrane barrier of a cell. A schematic graphic of a polarized cell 

is shown in Figure 1. Thus, a cell can be described as a capacitor in this application since it 

stores a defined amount of charge outside its cell membrane.  Consequently, the capacitance 

of the suspension is a measure of the amount of cell plasma membrane within the suspension 

and can be correlated to the VCD of the suspension.  This field induced polarization is 

measured in Farads per meter (F/m). [10], [11] Conductivity, the charge that can pass through 

the medium is measured in Siemens per meter (S/m). The permittivity (ε) and the 

conductivity (𝜎) are described by the following formulas.  

𝜎′ = 𝐺 ∗ (𝑑 𝐴⁄ ) 

𝜀′ = 𝐶 ∗ (𝑑 𝐴⁄ 𝜀0) 

G ... conductance [S] 
C ... capacitance [F] 
d/A ... probe constant [cm-1] 
𝜀0 ... permittivity of vacuum [8.854 * 10-12  F/cm-1] 

Equation 1: relative conductivity and permittivity 
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The probe constant is taken into account for the relative conductivity and permittivity, as the 

signal is highly dependent on the geometry of the two electrodes in the used probe. [12] 

Once the electric field switches poles, all ions are pushed to the opposite of the cell, but the 

magnitude stays the same. The complete formation of this polarization profile takes a finite 

amount of time. This is where the rate of reversing the electric field is coming into play. A low 

frequency enables a high number of ions to travel to the opposite pole, whereas only few ions 

succeed reaching the new pole if the time between reversions is short. In frequency scan 

applications, the capacitance at different frequencies is recorded, whereby the electric field is 

changed within radiofrequencies between 50 kHz to 20.000 kHz. At very high frequencies, the 

timespan for ion movement is so small, that only a few ions can make it. Thus, the 

contribution of the cells to the signal is very small, and almost only background is measured. 

The decrease in capacitance that is caused by increasing frequencies is called β-dispersion, 

whereas the curve at frequencies below this range is called α- dispersion and at higher 

frequencies, there is γ- and δ-dispersion. [11], [12] 

 

Figure 2: The effect of increasing cell densities on the ß-dispersion.  [11] 

The shape of a β-dispersion curve, which is relevant for biomass quantification, is drafted in 

Figure 2. Such a curve can be described as negative sigmoid function specified by a few 

characteristic parameters, the so-called Cole-Cole parameters. As shown in the Figure 2, 
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there are two plateaus, one at very low frequencies and the other at very high frequencies. 

The difference of the capacitance values of these two plateaus is called capacitance 

increment (ΔC) and rises with higher VCD in suspension. The frequency at the inflection point 

of the beta-dispersion curve is called critical frequency (fc). The slope of the curve at the fc 

point is called α. [10],[13] 

𝐶(𝑓) =  

∆𝐶 (1 + (
𝑓
𝑓𝑐
)
(1− 𝛼)

sin (
𝜋
2
𝛼))

(1 + (
𝑓
𝑓𝑐
)
(2− 2𝛼)

+ 2(
𝑓
𝑓𝑐
)
(1− 𝛼)

sin (
𝜋
2
𝛼))

+ 𝐶∞  

Equation 2: Cole-Cole equation based on the Debye equation 

The Cole-Cole equation is derived from the Debye equation, by introducing an empirical value 

alpha. The equation assumes that the polarization of material decays exponentially by 

removing an applied electric field. [10] 

Biomass monitoring by using linear capacitance models correlating a single frequency signal 

to VCD is already of use in industrial production process. [14] This model provides VCD 

estimation during the linear growth phase of a fed-batch fermentation, since the 

physiological state of the cells, as well as cell morphology are nearly stable. Once considerable 

changes occur in these parameters, the signal no longer follows the trend. [15] This limitation 

was shown to be overcome by applying multiple frequencies of dielectric pulses, a frequency 

scan, to gain more information about the capacitance characteristic of the sample and predict 

the VCD by the use of a multivariate statistical model. [10] 

Several researchers investigated in the field of dielectric capacitance application for biomass 

prediction fed-batch processes before. Some of these studies are stated below. 

Dabros et.al. evaluated three techniques of calibrating capacitance spectrometers for 

biomass prediction, namely using the theoretical Cole-Cole equation, linear regression of 

dual-frequency capacitance measurements and multivariate modeling of a dielectric 

frequency scan. The PLS model turned out to be the most robust model in handling signal 

noise. [10] Konakovsky et.al. investigated the model transfer of multivariate prediction 

models for biomass prediction between cell lines and process conditions. A novel approach is 
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able to estimate VCD in real time without further off-line analytics after one biomass 

measurement at inoculation for offset correction. [16] Opel et. al. examined online prediction 

of different routine biomass measurements by linear modeling, Cole-Cole modeling and PLS 

regression. In this paper it is demonstrated, that the definition of viability is critical when 

analyzing biomass online, and also that dielectric spectroscopy is a complementary 

measurement of viable biomass, providing useful information about the physiological state of 

a culture. [17] Cannizzaro et. al. was monitoring CHO perfusion culture experiments by 

dielectric spectroscopy and was able to correlate as well the viable cell number up to 107 

cells/mL as the median cell diameter with minor deviations. [13] Another work demonstrating 

the prediction of VCD by different models was done by Párta et. al., who obtained good 

predictions throughout the whole fed-batch process (early and decline phases) by PLS and 

Cole-Cole models, whereas the linear model only convinced in the early state. [15]  Braasch 

et. al. was measuring the viability of a cell culture by several methods including dielectric 

spectroscopy, flow cytometry and a dielectrophoretic cytometer. They found out, that 

dielectric probes are sensitive to the early apoptotic changes in cells. [18] 

1.2.2 Raman spectroscopy 

Raman spectroscopy is a vibrational spectroscopy technique that makes use of the Raman 

optical activity of molecules of the sample. Considering the possibility of nondestructive, rapid 

analysis, Raman spectroscopy is an appropriate PAT tool. It is established as such in 

bioprocesses, as well as in other applications including polymorph identifications, in situ 

crystallization monitoring or real-time release testing for the last three decades. The 

“molecular fingerprint” that is recorded by a Raman probe can be used to monitor and model 

important process performance parameters. Therefore, it enables better understanding and 

control of bioprocesses. [19],[20] Not only several metabolites like glutamine, lactate, 

ammonia or glutamate can be detected and quantified with this method, but also information 

about viable and total cell densities and debris is found in these spectra. [21]  
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Figure 3: An incoming monochromatic laser light is scattered by the vibration of a molecule. The light is scattered with either 
the same energy (Rayleigh scatter), higher energy (Anti-Stokes Raman scatter) or lower energy (Stokes Raman scatter). [22] 

Raman spectroscopy is a method based on the vibrational transition of molecules. A laser 

light is scattered, and molecules selectively absorb small amounts of the irradiating light. For 

pharmaceutical application, the light wavelength is within near-infrared range (λ=785 or 

830nm). This light has higher energy than needed, to bring the molecules to a higher vibrational 

state.  

Most of the incident rays are scattered in the same frequency as the energy of the molecules. 

This light is called elastic Rayleigh radiation. Only a small number of photons is elastically 

scattered by the molecule, which indicates an energy exchange between the incident light and 

the sample. This light can either have a lower or higher energy than the incident radiation and 

describes the “Raman shift”. Thus, if a molecule is brought to a higher vibrational state by the 

incident radiation it consumes energy. The light returning with lower energy is called Stokes 

scatter. Vice versa, molecules that already are in a higher vibrational state can release energy to 

the incident light and go back to normal state. This phenomenon is termed anti-Stokes scatter. 

Anti-Stokes scatter occurs very rarely in biotechnological applications, because molecules tend to 

appear in normal state at room temperature.  Consequently, Raman scatter can be measured by 

observing the energy changes from one molecular energy level to another. The “Raman shift” is 

very specific to the composition and the concentration of the molecules occurring in the sample. 

Thus, the spectra obtained from a Raman probe can serve to detect metabolites, products or 

even cell densities in a fermentation broth. [23], [24]  
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Figure 4: A schematic representation of elastic and inelastic/Raman scattering. Rayleigh scattering with the same energy in 
both directions whereas stokes scattering comes from a molecule ending up at a higher state and Anti-Stokes scattering 
results from the loss of an excited state. [25] 

 

1.2.3 Soft sensors 

The designation soft sensor is derived from the two words “software” and “sensor” and 

describes a technique to model a functional relationship between process variables (easy-to-

measure variables) and quality variables (difficult to measure variables). [26], [27]  

It can be distinguished between model based and data driven soft sensors. If a first principal 

model accurately describes the process, a model based soft sensor can be used. Indeed, many 

of these first principal models are computationally complicated, what makes a real-time 

application difficult. As opposed to this, the large amount of data measured throughout a 

process can be combined and used for a statistical model that predicts performance or 

quality parameter, which usually demand offline analysis. This approach is called data driven 

soft sensors. Furthermore, many process mechanisms are not well understood, thus empirical 

models, such as multivariate statistical models are used to build regression models. By 

evaluating the use of different combinations of datasets to predict performance and quality 

parameters, data-driven soft sensors can be optimized and can be implemented in processes 
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as PAT tool. [28] There are several applications of soft sensors in use. An example is the use of 

standard bioreactor on-line data like Gas-flow rate, oxygen and carbon dioxide 

concentrations, dissolved oxygen tension (DOT) together with feeding and titration rates, 

which are statistically modelled to predict biomass in microbial applications. [29] 

1.3 Monitoring in cell culture 

1.3.1 Cell density and viability 

Since the monitoring of viable and total cell density in a bioprocess are of high importance 

and thus basic parameters to be analysed, many different methods are developed, to 

measure these parameters. Staining with viability dyes or flow cytometry are two widespread 

options for determining the cell density in a cell culture. 

Trypan Blue Exclusion 

Trypan blue exclusion is a test based on the principle that live cells possess intact cell 

membranes that exclude certain dyes, such as trypan blue, eosin or propidium, whereas dead 

cells do not. When mixing cell suspension with trypan blue, it can be visually examined to 

determine whether cells take up or exclude dye. [30] 

1.3.2 Apoptosis in cell culture 

Apoptosis is one form of the programmed cell death which is actively regulated by the cell. 

Several intra- and extracellular signals are activating an interconnecting cascade of events 

involving various families of proteins. An early indication of apoptosis in mammalian cells is 

the presentation of phosphatidyl-serine on the cell surface. Also, cell shrinkage occurs due to 

ionic cell content regulation and chromatin condensation. Such pro-apoptotic signals trigger 

the cascade of caspase activity within the cell, leading to the late stage of apoptosis, which is 

characterized by DNA fragmentation and loss of membrane integrity. [31], [18] 

The classical approach to detect these stages is by using specific markers with a flow 

cytometer, which is described later. A new approach is to connect the ionic flux over the cell 

membrane with the onset of apoptosis. By the phenomenon of dielectrophoresis, where the 

uncharged particles move along the gradient of a non-uniform electric field, a monitoring for 

dielectric changes is possible, which correlates with the physiological and metabolic changes 

of cells. Further, the heterogeneity of the growth cycle phase of individual cells within a bulk 
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allows only the monitoring of the average dielectric properties of the cell suspension. 

Investigations on the online detection to determine early apoptotic events by dielectric 

spectroscopy are described by Braasch et al. [18] Other studies report of a way to even 

control apoptosis in a bioprocess by the signal of dielectric spectroscopy, as the media 

composition is altered if early apoptotic events start to occur more often. [32] 

Flow cytometry 

By the technology of flow cytometry intrinsic and evoked optical signals from single cells in a 

moving fluid system can be measured. The final data product is generated by the interplay of 

three general systems: a fluidic system, an optical system, and a computer. The fluidic system 

takes up a cell suspension and passes them through a nozzle, so that the cells access the flow 

cell in single file. By passing the flow cell, the optical system is coming into play. The optical 

system consists of a laser as light source, focusing lenses, color-selective mirrors, filters and a 

signal detection and evaluation module with photomultiplier tubes or photodiodes to detect 

the optical signal followed by analog and/or digital electronics to process and evaluate the 

signals. For receiving, storing, further processing and displaying the resulting data a computer 

is required. [33] 

 

Figure 5: A schematic illustration of the basic components of a flow cytometer. The three main components are the laser 
system, fluidic System and optic system. [34] 



  Introduction 

 
12 

The single cells are passing the laser beam, where the light gets scattered by the cells. Two 

kinds of scattering can be measured: the forward scatter (FSC), giving information about the 

particle size and the side scatter (SSC) inferring the granularity of cells. [35] 

Beyond that, by addition of fluorescent dyes specific cell properties can be detected. As an 

example, 7-aminoactionmycin D (7-AAD) is an often-used stain for discriminating living and 

dead cells. As the membrane integrity of dead cells is lost, 7-AAD can enter the cell and 

intercalates in the DNA. If the marked cell passes the laser beam the fluorescent molecule is 

induced and an extinction spectrum can be measured. Annexin V-PE represents another 

fluorescent marker, that binds phosphatidyl-serin which is presented on the surface of early 

apoptotic cells. Treating and detecting a sample with those two markers, a diagram like in 

Figure 6 allows to cluster the cells or also called events in different stages of life cycle. [35] 

[18] 

 

Figure 6: Example of CHO assayed using the Guava Nexin assay. The sample is treated with 7-AAD and Annexin V-PE. This 
allows identification of the different apoptotic stages identified by the Nexin assay: I viable/non-apoptotic cells [Annexin V-PE  
(-) and 7-AAD (-)]; II early-apoptotic cells [Annexin V-PE (+) and 7-AAD (-)]; III late stage apoptotic/dead cells [Annexin V-PE (+) 
and 7-AAD (+)]; IV nuclear debris [Annexin V-PE (-) and 7-AAD (+)]. [18] 
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1.4 Multivariate data analysis and chemometric modeling 

Other than the classic approach, where one single selective signal is measured to provide the 

desired information, modern process analytics commonly deliver many non- selective signals. 

Chemometrics is an interdisciplinary science that enables to combine such signals in a 

multivariate model. It is essential in understanding and diagnosing real-time processes and 

keeping them under multivariate statistical control. Since cell culture processes are complex 

in terms of composition and events occurring throughout a bioprocess within the bulk arising 

from cell growth, death, and metabolism, it is often impossible to match specific process 

values to single signals or peaks of a spectrum. Multivariate data analysis (MVDA) provides 

many tools enabling to screen the essential information within a large multidimensional 

dataset. [36], [37] Prominent examples of such tools are principal component regression 

(PCR), partial least squares (PLS) or multiple linear regression (MLR). [38] 

1.4.1 Data pretreatment 

The quality of MVDA tools can be improved if data pretreatments and signal correction are 

executed in advance. Model building can be needlessly complicated, if redundant signals or 

especially for spectral data unrelated regions are included in the dataset. Also, some 

pretreatment methods manage to highlight significant information within the data. There are 

many approaches for extending the density of information. The common goal is to remove 

undesired systematic variations like baseline drifts or multiplicate polarization and scatter 

effects. In this chapter some frequently used pretreatments are described. 

Data selection 

In dielectric spectroscopy problems due to electrode polarization and baseline distortions can 

appear. Those effects are and can be probe specific and thus can disturb the quality of a 

model including data from several probes. Yardley et. al. discusses strategies to clear these 

errors. A very easy and effective method is to exclude the capacitance data at frequencies 

below 300 kHz. [13], [39] 

Raman devices mostly measure spectra in the range of 100 to 3425cm-1 but not all spectral 

parts are relevant for MVDA and model building as some areas are sensitive to scattering and 

fluorescence effect or instrument instability. Methods to select important regions are 

described in literature. [40] 
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Mean centering 

Mean centering is an approach to alleviate multicollinearity in linear regression approaches. 

In matrix applications it might provide a simpler interpretation of data analysis. The variable’s 

mean is subtracted from all other observations belonging to this variable in the dataset 

attaining the new variable’s mean to be zero. [41] 

Scaling 

This data pretreatment approach divides each variable by a scaling factor, which is different 

for every variable in the dataset. Thus, measured values become values relative to the scaling 

factor, which results in the inflation of small values. [42] 

Standard normal variate 

Standard normal variate (SNV) is a method to normalize data column wise. As it is a weighted 

normalization method not all points contribute to the normalization equally. [43] 

First and second derivation 

First and second order derivation are row wise pretreatments that are used to reduce scatter 

effects for continuous spectra. First derivatives are used to remove additive baselines and 

result in a spectrum of slopes of the original spectra in each point.  

1.4.2 Partial least squares Regression (PLS-R) 

PLS or projection to latent structures by means of partial least squares was developed by 

Herman Wold in the late 1960s and brought to chemometrics by his son Svante Wold in the 

1980s. Nowadays it is one of the most widely used technique in chemometrics, particularly 

for problems where p > n, like spectral data. For performing PLS, there are two different 

algorithms in use, namely NIPALS and SIMPLS, whereas NIPALS is used in this application. 
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Figure 7: schematic depiction of the dataset needed for a PLS calibration. X is a table containing n observations of p variables 
of a new (often spectral) method and Y is a table of the observations measured by conventional methods. 

Generally spoken, PLS is a supervised technique relating two sets of variables, namely Xn x p 

and Yn x k, where one can differentiate between PLS1 with a single response (k equals 1), and 

PLS2 with more than one response variables arranged column wise. 

The data block X is used to predict a variable Y which might be either expensive or time 

consuming to measure. Once a model is built, there is not any more need to measure Y, but 

predict it with X. 

Equation 3: necessary steps to develop a PLS calibration model. 

𝑋𝑛×𝑝
𝑃𝐶𝐴
→  𝑇𝑛×𝑚

𝑚𝑜𝑑𝑒𝑙
→    𝑌 

Ad interim, a principal component analysis is performed on Xn x p, which searches for 

orthogonal directions in p-dimensional space with a maximum of information. This so-called 

loading vector Tn x m determines a new coordinate system containing the most information in 

the first few coordinates. Compared to the original matrix, the new coordinate system is 

rotated.  Other than in a classic unsupervised PCA, PLS also uses the information of the 

response Y. The m linear combinations are latent variables extracted in such, as the 

covariance between the scores and Y is maximized. 

After preprocessing, the data X is called V1 and Y is called U1. 

Equation 4: PLS Step 1 - Preprocessing 

𝑋
𝑐𝑒𝑛𝑡𝑒𝑟
→    𝑉1               𝑎𝑛𝑑             𝑌

𝑐𝑒𝑛𝑡𝑒𝑟
→    𝑈1   
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Now p univariate regression models for each response against the predictors are built and the 

resulting regression coefficients b1j are given by the scalar products. 

Equation 5: PLS Step 2 – get T1 

𝑈1 ~ 𝑉1         𝑓𝑜𝑟        𝑗 = 1, … , 𝑝 

Û1(𝑗) = 𝑏1𝑗  𝑉1𝑗 

𝑏1𝑗 = 
𝑣1𝑗
𝑇  𝑢1

𝑣1𝑗
𝑇  𝑣1𝑗

=
𝐶𝑜𝑣(𝑣1𝑗 , 𝑢1)

𝑉𝑎𝑟(𝑣1𝑗)
 

Each of the p regression equations provides an estimate of the response. The first PLS 

component T1 is now the weighted average. 

Equation 6: PLS Step 3 – Weighting 

𝑇1 = ∑𝑤1𝑗  𝑏1𝑗  𝑉𝑖𝑗

𝑝

𝑗=1

                  𝑤𝑖𝑡ℎ             𝑤1𝑗 = 𝑉𝑎𝑟 (𝑉1𝑗) 

There might be residual information in Y not explained by T1 which is expressed in U2, and 

residual information in Xj that is not explained by T1 which is expressed in V2j  

Equation 7: PLS Step 4 – Preparation for T2 

𝑈2:   𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑈1 ~ 𝑇1 

𝑉2𝑗:  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑉1𝑗  ~ 𝑇1 

Steps 2 and 3 are repeated using U2 and V2j instead of U1 and V1j, to obtain the second PLS 

component T2. The same process is continued until all min {n, p} components are extracted.  

Equation 8: PLS Step 6 – OLS Regression 

𝑦̂ =  𝛼0 + 𝛼1 × 𝑇1  + 𝛼2 × 𝑇2 +⋯+ 𝛼𝑚 × 𝑇𝑚  

By an ordinary least square regression the final model is fit.. X is reproduced exactly, if we 

extract the maximum number of components, but for creating a model that fits for new data 

as well, a reduction of components m is required. Thus, an error term must be added to the 
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formular if the number of components m is reduced. The number of components m used for 

predicting y is determined via k-fold cross validation. [44], [45] 

1.4.3 Cross validation (CV) 

Cross validation (CV) is an important tool in chemometrics to evaluate a predictive model. 

Basically, the predictive ability of a model is tested by comparing predicted values with actual 

Y values. There are plenty of different CV methods sharing the same purpose, which is 

estimating the possible prediction error of an unknown dataset on the one hand, but also for 

determining how many components are needed to characterize the data. 

Leave one out CV, k-fold CV and groupwise CV are three commonly used examples of Cross 

validation, that all are based on the same method. The available dataset is split into a training 

and a test set. The training set is used for building a statistical model, whilst the data box X of 

the test set is used to predict new values by the help of the model. [38] 

A k-fold CV randomly divides the dataset in k groups and keeps excluding one group in order 

to create a training dataset, whereas groupwise CV splits the dataset by any other criteria, 

which could be batchwise splitting. [44] 

k-fold sequential 1 2 3 4 5 6 7 8 9 

          

Group wise 
Batch A Batch B Batch C  Batch D 

 
Figure 8: schematic depiction of methods for splitting a dataset into test and training set to perform a cross validation. 

Once there are scores predicted for the test set, there are two values to be calculated to 

enable a comparison. The root mean squared error of prediction (RMSEP), the mean absolute 

prediction error (MAE) and the mean absolute percentage prediction error (MAPE) are widely 

used parameters for evaluating the goodness of prediction. 
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Equation 9: Calculation of root mean squared error of prediction 

𝑅𝑀𝑆𝐸𝑃 =  √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

Equation 10: Calculation of mean absolute prediction error 

𝑀𝐴𝐸 = 
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

Equation 11: Calculation of mean absolute percentage prediction error 

𝑀𝐴𝐸 = 
1

𝑛
∑(

(𝑦̂𝑖 − 𝑦𝑖)

𝑦𝑖

𝑛

𝑖=1

∗ 100) 

For determining the optimum number of components to use in a PLS model, the RMSEP is 

calculated by CV for a model with 1 to m components. The number components whose 

RMSEP is not significantly worse than the RMSEP with an additional component is chosen as 

number of latent variables. 
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2 Aim of this work 

The use of dielectric capacitance probes in single frequency mode is an established method 

for monitoring biomass in development and production processes. To optimize the prediction 

of viable cell density especially during stationary phase and death phase, the use of dielectric 

frequency scan data and generation of multivariate models should be investigated. Also, it 

should be tested if the addition of Raman data to the multivariate models significantly 

improves the prediction of viable cell density and viability. 

Since it is reported in literature, that other interesting cellular parameter can be related to 

the signal of a dielectric frequency scan probe, investigations in correlating average cell 

diameter, average circularity and apoptotic events with capacitance data will be further 

evaluated. 

Thus, the full potential of dielectric spectroscopy as a PAT tool in cell culture Fed-batch 

process should be exploited and evaluated to enable the most efficient use of dielectric 

spectroscopy.  
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3 Materials and methods 

3.1 Cell culture processes 

For testing and comparing several PAT tools, data from 38 mainstage fermentation processes 

were collected. Those cultivations were CHO cell culture processes, which are used for 

producing monoclonal antibodies in development scale and production scale. All used vessels 

are equipped with online sensors for temperature, pH, pO2, as well as control units, which 

utilize a fully integrated process control system (PCS) that enables to automatically keep the 

relevant operating parameters at the defined set points. The PCS of all bioreactors also 

feature running automated cleaning in place (CIP) and steaming in place (SIP) programs, 

which are performed before and after each mainstage cultivations according to the company 

internal SOPs. 

3.1.1 Development Process 

The experiments are performed with 20L or 30L Sartorius stainless steel bioreactor systems 

(BIOSTAT® D-DCU, Satorius Stedim). Whereas the entire USP process from vial break to 

harvest takes about 34 days, the main-stage fed-batch process takes 14 days. PH, DO and 

temperature are controlled at setpoint via closed-loop control. The feeds are added as daily 

bolus shots. All runs are part of a study focusing on improvement of process robustness to 

reduce variability in process performance concerning VCD, harvest titer and product quality. 

The process parameters that were varied purposely during the study were the seeding VCD 

(0.35, 0.60 and 0.85 [106 cells/mL]), the pH after T-shift (pH6.70, pH6.72 and pH6.74), VCD at 

T-shift (2.0, 4.0 and 6.0 [106 cells/mL]), the gassing strategy and the feeding regime. Also, the 

implementation of capacitance probes will be tested. For this study, the standard main-stage 

medium and the standard feed solutions were used and prepared according to company 

internal SOPs. For doing at-line and offline measurements, daily samples were taken from 

each batch and the relevant process parameters were measured according to the company 

internal SOPs (more details in chapter 2.2 offline analytics). 26 batches of this study were 

used for this thesis. 
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3.1.2 Production Process 

The production Process is a highly standardized process with the aim of producing plenty 

batches with equal product quality of monoclonal antibodies for pharmaceutical use. The 

main stage of this process is performed in a 13000 L stainless steel tank reactor. After vial 

break 17 days of a cascade of preculture steps are performed to prepare the mainstage 

inoculum. The mainstage fermentation is then harvested 10 days after inoculation. PH, DO 

and temperature are controlled at setpoint via closed-loop control. The feeds are added as 

daily bolus shots. A mainstage medium and the feed solution for re-supplementation of 

nutrients, prepared according to the company internal SOPs. For doing offline VCD 

measurements, daily samples are taken from each batch according to the company internal 

SOPs. 19 batches of this process were used for this thesis.  



  Materials and methods 

 
22 

3.2 Data acquisition and modeling workflow 

 

Figure 9: A sketch of the workflow from measuring data of a bioprocess to model selection and evaluation 

 

model 
selection 
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The general workflow sketched out in Figure 9, from collecting data of a bioprocess to 

generating a model to predict cell densities and viability includes the steps described below. 

Data acquisition 

For the generation of online data like dielectric spectroscopy and Raman spectroscopy the 

probes must be assembled before the sterilization of the bioreactor. Once the fermentation 

run has stopped all data can be extracted from the data source. For all offline measurements, 

the daily samples are collected. These samples are analyzed by ViCellTM and the GUAVA Easy 

Cyte. 

Data alignment 

Since those data arise from different devices, different data formats must be connected. First 

all data are imported to the statistical program R and brought to the same format. Then the 

online data and offline data are aligned to the closest common timepoint. Later, all batches 

are connected to one big data frame. 

Data preprocessing 

Especially for spectral data it appears that redundant information exists in the large dataset, 

which makes modelling unnecessarily complicated. Therefore, columns with redundant and 

meaningless information are excluded. All other data undergo specific pretreatments like 

mean centering, scaling, standard normal variation 1st derivation and 2nd derivation to amplify 

the information content. 

Model building 

Several simple linear regression (lm) and partial least squares (PLS) models are built varying 

the data input, the data pretreatments and the response parameter.  

Model selection 

To compare and validate the quality of those different models, “leave one batch out” cross 

validation was performed. 
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3.3 Offline analytics 

As mentioned before, each fermentation process is sampled daily to perform associated 

offline analytics. An overview of the process parameters measured as standard, and the 

comprehensive methods and devices are listed below. Additionally, flow cytometric 

measurements are performed for some batches.  

Table 1: offline standard process analytics 

Parameter Device / Method 

VCD, Viability Vi-Cell XR 

pH, pCO2 Nova pHOx 

Osmolality Advanced Instruments Fiske 2020 

GLUC, GLN, NH4
+, LAC Nova Bioprofile 100+ 

 

For the modeling performed in this thesis the relevant measurements are the Vi-Cell 

measurements and the flow cytometric measurements by the GUAVA system. 

3.3.1 Vi-Cell™ 

The reference values for VCD and viability are measured using the Vi-CELL™ Cell Viability 

Analyzer (Beckmann Coulter), which is an automated system based on trypan blue exclusion. 

After pipetting 0.6 mL of the sample into a Vi-CELL™ vial, the device automatically mixes the 

sample with a reagent in a 1:1 ratio and incubates the sample for a defined time. Later the 

system takes 50 pictures of the sample and analyzes the suspension by different grey scales. 

Living cells appear light grey, whereas dead cells are dark dots on the picture. Further, cell 

diameter and average circularity can be measured by the Vi-Cell device. The viability is 

calculated as it is the quotient of the viable cell density and the total cell density. 
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Figure 10: pictures of the cell suspension analyzed by Vi-Cell 

In Figure 10 two exemplary pictures of a sample in an early fermentation step (left) and a late 

state (right) are shown. The green circles present cells recognized as viable cells, whereas the 

red circles point out the dead cells. The Vi-Cell Analyzer also computes the diameter of those 

circles. 

3.3.2 Guava technology 

All flow cytometric analysis were done by the help of the GUAVA Easy cyteTM Plus, which is a 

tabletop device providing several Kits for predefined assay. The device features an 488nm 

Argon Laser, forward scatter (FSC), fluorescence detectors in yellow (PM1) at 583 +/- 26 nm, 

red (PM2) at 680 +/- 30 nm and green (PM3) at 525 +/- 30 nm, samples in 1.5 mL tubes or U-

shaped 96-well plates, sample volume of less than 20 µL, counting accuracy of +/- 10 % and 

precision of < 10% CV. The Guava Easy cyteTM Plus can be controlled by a connected PC 

running the GUAVA CytoSoftTM software. The data acquisition can be evaluated by the GUAVA 

Express® Pro software module and the obtained data can be exported as Excel-file for further 

evaluations. To check the accuracy of the device daily before starting a measurement, a 

GUAVA Check Kit, consisting of fluorescent beads is provided.  

GUAVA ViaCount Assay 

To determine the cell count and the viability, the GUAVA ViaCount Assay is performed. The 

ViaCount reagent contains two different DNA-staining dyes:  

- LDS 751 staining all cells and detectable in red fluorescence channel (PM2) 

- 7-AAD staining dead cells and detectable in yellow fluorescence channel (PM1) 
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Figure 11: dotplot of a ViaCount measurement 

In Figure 11 a dotplot of PM1 against PM3 is depicted, where every event represents a cell in 

viable, apoptotic, or dead state. Since the ViaCount Assay does not specifically stain apoptotic 

cells, it cannot be classified as apoptosis Assay. 

GUAVA Nexin Assay 

The GUAVA Nexin Assay is a specific apoptosis assay to distinguish between vital, early 

apoptosis, late apoptosis, and dead cells. A vital cell stores phosphatidylserine on the inside of 

the cell membrane. Once a cell turns into apoptotic state phosphatidylserine is transferred to 

the cell surface, where the reagent Annexin V can bind. In the Nexin-reagent Annexin V is 

conjugated to a fluorescent marker. 

- Annexin-V-PE staining apoptotic cells and detectable in yellow fluorescence channel (PM1) 

- 7-AAD staining dead cells and detectable in red fluorescence channel (PM2) 

In Figure 12 the four different populations of cell can be identified and assigned to its actual 

vital or apoptotic state. 
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Figure 12: Dotplot of a Nexin Assay measurement 

 

3.4 Aber FUTURA 

For dielectric spectroscopy, an ABER Futura biomass monitoring System was chosen. The 

System consists of four major components.  

First, there is the 25mm probe, which is placed into the solution and can be replaced for 

cleaning purposes. The probe is attached to an amplifier, the so called Futura, which is the 

main processing engine in the system. Up to four FUTURA probes can be connected to the 

Aber Hub, which facilitates the communication of the Probe with a PC. The PC runs a software 

called FUTURA Scada that enables to control the system. This software provides data 

collection for any number of Futura systems with an event timeline. It also supplies frequency 

scanning and directly calculates additional parameters like delta C, critical frequency, and 

Cole-Cole alpha. Data can be exported as .csv file for further processing. 
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Figure 13: Components of the Aber Futura System 

The probe is built into the bioreactor before the sterilization process is started. Once the 

medium is filled the Zero function is applied to tare the capacitance output of the instrument. 

The stability of the signal is monitored until inoculation. To start data logging cell culture 

mode is chosen in the Scada software.  

This mode is optimized for cell suspensions of large cells and features a polarization 

correction that treats electrochemical effects at low frequencies, a noise correction of level 

30. In this mode typically 0.1 pF/cm resolution on the instrument represents 105 cells/mL. The 

data are exported to a .csv file by adding no additional filter and including data in the interval 

of 30 minutes. The exported parameters are Capacitance at 50 kHz, 64 kHz, 82 kHz,  

106 kHz, 136 kHz, 174 kHz, 224 kHz, 287 kHz, 368 kHz, 473 kHz, 580 kHz, 779 kHz, 1000 kHz, 

1120 kHz, 1648 kHz, 2115 kHz, 2714 kHz, 3484 kHz, 4472 kHz, 5740 kHz, 7368 kHz, 9457 kHz, 

12139 kHz, 15650 kHz, 20000 kHz, which are logarithmically distributed frequencies and the 

Cole-Cole parameters delta Cap, Alpha and critical frequency. 
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3.5 Raman spectroscopy 

For the Raman spectra acquisition, a Kaiser Raman System is used. Therefore, four bio-Pro 

Raman Probes were attached to a multi-channel RamanRXN2 analyzer that is equipped with a 

785 nm excitation laser system (Kaiser Optical Systems Inc., MI).  

Before the first start of the bioreactor runs, intensity calibrations were performed using the 

routine calibration set recommended by the vendor. Before the insertion of the probes into 

the Bioreactors (20L and 30L, Biostat D DCU, Satorius), a spectra validation was performed 

using 70% Ethanol. Once the probes are inserted, the fermentation vessels were cleaned and 

sterilized according to company’s internal standard operating procedures (SOPs). The four 

probes work independently from each other in a sequential way. Spectra acquisition was 

performed using the RunTime software with 75 scans of 10s each per resulting spectrum and 

a spectrum range between 100 to 3425 cm-1. After the end of each batch, spectra acquisition 

was halted, and the spectra were exported as .spc files. For further processing, the spectrum 

range of 400 to 1800 cm-1 is extracted, because the rest of the spectrum covers mostly 

redundant information.   

3.6 Statistics software 

All statistical tasks occurring in this thesis are handled via R. R is an environment for statistical 

computing and graphics, that evolved from the statistical programming language S. As it is an 

open source, R became a popular tool for statistical computing and thus is highly advanced. 

RStudio is an integrated development environment that is in use as user interface. By the 

installation of several additional packages the capabilities of R are enriched. In Table 2 below 

some important packages used for this thesis are listed. 

Table 2: List of some important R packages 

Package name usage 

pls multivariate regression methods 

data.table handling of large data 

ggplot, ggplot2 declaratively creating graphics 

prospectr processing spectrometric data 

hyperspec way to work with hyperspectral data like .spc files 
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3.6.1 data preparation 

Alignment 

Once a batch is finished all data from the different on- and offline sources are adapted to a 

corporate data format. Subsequently it is possible to align all data to the closest common 

timepoint. Thereby a data table arises, that presents the online signals and the reference 

values, which are the limiting data in terms of observation densities. Also, the batch name is 

included. Thus, all available batches can be connected to one large data set. 

Pretreatment 

To increase the information content of especially spectral data, different pretreatments like 

mean centering, scaling, standard normal variation and first- or second derivation are applied 

to selected columns of the data frame.  

For model creation, the data set is split into a training- and a test dataset to have the 

possibility to evaluate a model, which will be explained later. All observations of one or more 

batches are separated to a test-dataset.  

3.6.2 linear and multivariate models 

linear model 

In the simple linear regression model a single numerical variable y, the so-called response is 

correlated by a single variable x, the so-called predictor. A mean function described by an 

intercept β0 and a slope β1 is created to enable the calculation of a response for new 

predictors. 

multivariate model 

For the regression of a wide dataset, partial least squares (PLS) models are chosen. Therefor 

all relevant parameters found in the data frame are predictors and get correlated to a 

response variable. The principle behind a PLS model is described in detail in chapter 1.4.2 . 

The number of latent variables used for the final models was chosen by calculating the 

RMSEPs of one to twenty latent variables by cross validation. One component less than the 

point when the RMSEP stops improving was determined as optimal number of latent 

variables. 
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3.6.3 Evaluation 

The evaluation of all created models is performed by batch wise cross validation. Therefore, 

the model, which is built based on the training data set gets applied on the test data set. The 

obtained response is compared to the original response value. MAE and RMSEPs are 

calculated to compare the quality of the models.  
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4 Results  

4.1 Pretreatment of the dielectric frequency scan 

In order to receive the most possible information from the spectral data of the dielectric 

frequency scans, the most effective data pretreatment must be figured out. Therefore, a set 

of spectral data from 26 Batches of the Development Process was submitted to different 

methods of pretreatment followed by fitting a PLS model that correlates VCD with the 

pretreated spectra. By performing a batch wise cross-validation and comparing RMSEPs, the 

best performing pretreatment can be chosen for further model construction. The RMSEPs of 

all versions of pretreated data are depicted in the bar chart below. 

 

Figure 14: RMSEP of untreated frequency spectra (raw), frequency limited spectra (raw & g368), mean centered (mc), mean 
centered and frequency limited spectra (mc & g368), scaled spectra (sc), scaled and frequency limited spectra (sc & g368), 
mean centered and scaled data (mcsc), mcsc and frequency limited spectra (mcsc & g368), standard normal variated data 
(snv), first differentiation of Spectra (1dv) and second differentiation (2dv). The bar of the untreated model is blue. 

Mean centering (mc), scaling (sc), standard normal variate (snv) and first or second 

differentiation (1dv, 2dv) were applied to the full data of the frequency scan and on a 

selection of capacitance data at frequencies above 368 kHz. Therefore, the limitation of the 
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capacitance data is examined, as there are probe specific distinctions at low frequencies due 

to polarization effects.  

Only the RMSEP values of the model with the mean centered data and the first derivative 

data are smaller than the RMSEP of the untreated data. Considering the dynamics of the first 

derivative data model, this treatment does not support the prediction of the growth curve.  

The gap between mean centered and untreated data is not very high. Nevertheless, since this 

treatment copes the probe specific differences of capacitance at low frequencies, mean 

centering is taken as suitable pretreatment for dielectric frequency scan data. 

 

Figure 15: Plot of the raw (left) and mean centered (right) dielectric frequency scan data. Each line represents the Spectrum at 
a certain time point. The bright lines represent early time points whereas dark lines arise of data from the end of the process. 
Raw data are plotted on the left side. Mean centered data are plotted on the right. The scale of the X-Axis is logarithmic to 
emphasize the characteristics of a frequency scan. 

Comparing the plots of raw and mean centered capacitance data in Figure 15, it is visible that 

the scale of capacitance per frequency at different time points don´t change, but the absolute 

values are shifted towards the negative direction. This effect eliminates the probe specific 

differences in the low frequencies and thus standardizes the input data of the seven different 

probes used in the development bioreactors.  
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4.2 Model fitting for the Development Process 

4.2.1 VCD prediction 

To determine the best model for predicting VCD, the same 26 development batches are used. 

A dataset with the mean centered frequency scan data, the three Cole-Cole parameters and 

the reference data of those batches are aligned. Several linear and multivariate models are 

constructed and applied to an exemplary chosen test batch.  

First, the “state of the art” model, a simple linear regression model, later on mentioned as 

linear model (lm), correlating the VCD with the capacity of one single frequency (580kHz) is 

built. Next, each of the cole-cole parameters, namely the cole-cole Alpha (CCAlpha), the 

critical Frequency (cF) and the delta Capacitance (dCap) is separately correlated to the VCD in 

a lm. To correlate the VCD to all the frequency scan data, a PLS model was created (fs). 

Another PLS model uses all, the three Cole-Cole parameters and the frequency scan data in 

one model (fscc). 

 

Figure 16: Plot of RMSEPs of the different liner (lm) and partial least squares (PLS) models for VCD prediction. The bar of the 
“state of the art” model is marked in blue.  

Per cross validation, the RMSEP were calculated to enable a first assessment of the different 

models. 

There are two models, the linear model of the Cole-Cole Alpha and the linear model with the 
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critical Frequency that end up with a significantly high RMSEP value, to be seen in Figure 16. 

Thus, those two models are no longer considered since there does not seem to be a good 

correlation with the VCD.  

The other four models, namely lm 580kHz, lm dCap, PLS fs and PLS fscc are further evaluated 

in terms of dynamics. 

Table 3: RMSEP values belonging to the chart presenting the different VCD models. The number of latent variables of the PLS 
models is listed in the bracket. 

VCD Model lm 580 lm ccA lm cF lm dCap PLS fs (2) PLS fscc (3) 

RMSEP [10^6 cells/mL] 1,006 2,060 2,177 0,592 0,742 0,715 

 

Figure 17: Plot of the mean average error (MAE) of VCD prediction by different models over process time. The grey dashed 
zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) the VCD. 

The MAE of prediction of several batches were calculated for each day and plotted in Figure 

17 against the process time to get an insight of the model dynamics throughout the 

bioprocess. Values above the zero line are underestimations of the actual VCD, whereas 

values below the grey dashed line are overestimations. Until day five, there are no significant 

differences between the models, showing, that during the linear growth phase it is easy to 

predict the VCD. As soon as the curve flattens, all models start to underestimate the actual 

VCD. In death phase, during the last two to four days, the VCD is overestimated. This reveals 

the fact that it is hard to fit a model for VCD prediction that performs well during all stages in 
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bioprocess. Nevertheless, all tested models proof a better performance, than the “state of 

the art” model lm 580kHz, depicted in black. The best performing model is the lm with dCap, 

leaving the assumption that two frequencies would suffice for a strong improvement of VCD 

prediction. The PLS models show a very similar and good performance in the beginning of the 

process. Later, the addition of the Cole-Cole parameters have a visible influence on the 

model. The PLS fscc Model shows slightly better results than the PLS fs.  

Table 4: MAPE values belonging to the different VCD models. The number of latent variables of the PLS models is listed in the 
bracket. 

VCD Model lm 580 lm ccA lm cF lm dCap PLS fs (2) PLS fscc (3) 

MAPE [%] 15,43 57,40 59,46 11,92 11,87 12,39 

 

Looking at Table 4, the mean absolute error is expressed as percentage error (MAPE) in 

relation to the actual measurement value, which allows another assessment of the goodness 

of fit of the prediction by the models. The values again point out, that lm dCap and PLS fs are 

equally strong models. 

Looking at Figure 18, the plot shows observed and predicted values over process time for 

three batches confirming that especially during the first phase of the process (growth phase) 

there is close agreement between predicted and the observed values.

 Figure 18: Plot of VCD from three different development batches. The green curve presents the reference values, the brown 
graph presents the “state of the art” model, the red and blue graph present the new models. 
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To get an idea of the noise obtained by the online data, the PLS fscc model was applied to the 

mean centered online data of the frequency scan in Figure 19. As expected, the noise is 

within an acceptable range, so there is no need to use a filter to even the output curve. 

 

 

Figure 19: Application of the PLS fscc model on the online data set (blue) of a random development batch. The green points 
indicate the corresponding Vicell measuring data.  
 
 

4.2.2  Viability prediction 

Again, the 26 development batches were utilized, to create models for viability (VIA) 

prediction. Linear models (lm) with single frequency (580 kHz), Cole-Cole Alpha (ccAlpha), 

critical Frequency (cF) and the delta Capacitance (dCap) as well as multivariate PLS models of 

frequency scan (fs) data and frequency scan data including Cole-Cole parameter (fscc) were 

correlated to the percental viability, measured with the ViCell technology.  
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Figure 20: Plot of RMSEPs of the different linear (lm) and partial least squares (PLS) models for viability (VIA) prediction. The 
bar of the “state of the art” model is marked in blue.  

Unlike the VCD prediction, there seems to be significant information in the frequency scan 

data, that cannot be pooled in a single parameter. Whereas a linear correlation with the dCap 

worked well for VCD prediction, viability needs more specific information from the 

capacitance data at different frequencies that cannot be summarized by one of the Cole-Cole 

parameters. The PLS models perform better than all the linear models. The PLS fs and PLS fscc 

seem to predict similarly alike. Thus, the MAE of these two models, the lm dCap and the lm 

580 kHz were plotted over process time, to view the dynamic behavior of these models.  

Table 5: RMSEP values belonging to the chart presenting the different VIA models. The number of latent variables of the PLS 
models is listed in the bracket. 

VIA Model lm 580 lm ccA lm cF lm dCap PLS fs (6) PLS fscc (8) 

RMSEP [%] 2,995 3,814 3,822 3,549 2,617 2,709 
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Figure 21: A plot presenting the mean average error (MAE) of VIA prediction by different models over process time. The grey 
dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) the 
viability measured by the ViCell technology. 

Looking at the MAE plot in Figure 21, the error range of the linear models is very large, 

reaching from -7.5% to 5.0 %. The MAE curves for PLS models are still big, but closer to the 

zero line throughout the process. It is seen, that in the end of the Process the PLS models can 

mimic the trend again. 

Table 6: MAPE values belonging to the different VIA models. The number of latent variables of the PLS models is listed in the 
bracket. 

VIA Model lm 580 lm ccA lm cF lm dCap PLS fs (6) PLS fscc (8) 

MAE [%] 3,03 3,30 3,23 3,27 2,32 2,43 

 

In Table 6 the mean absolute percentage Error is presented as a measure for the goodness of 

fit. 

In the next Figure, the same four models, are applied to four different exemplary batches of 

the dataset and plotted over process time. For reference, the ViCell viability measurement is 

printed in green. To be noticed, the prediction quality differs a lot within the four batches. In 

batch one and four there is a quite strong correlation between the frequency scan data and 

the viability of the cell culture, whereas prediction for batch two and three is hardly able to 

follow the viability profile of the reference. It can also be seen that some of the calculated 
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viability values are greater than 100 %, which cannot happen in real life and naturally is an 

artefact of the model.  

It must be mentioned that all the development batches have remarkably high viability until 

the end of the process. It is not common, that a process is ended at a viability of more than 

85 %. Thus, the range of viability change in the training data set for model creation is little as 

well. It is supposed, that in this instance the PLS models could perform remarkably better if 

the training dataset would exhibit more variability in terms of viability.  

 

Figure 22: Plot of VIA from four different development batches. The green curve presents the reference values, the brown 
graph presents the “state of the art” model, the red (linear) and blue (multivariate) graphs present the new models. A strong 
divergence between viability predictions by the same models in different batches is visible. 
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4.2.3 TCD prediction 

Basically, TCD is the result from dividing VCD by viability. As there already are models for 

predicting those two parameters, the TCD could be calculated from those values. Since the 

viability does not deliver satisfyingly accurate results investigations have been done to create 

models for predicting the TCD separately.  

Executing the same approach as described earlier, the mean centered data of the 26 

development batches were used to create the three linear models (lm 580kHz, lm ccAlpha, lm 

cF) and the two multivariate models (PLS fs, PLS fscc) for predicting the TCD.  

Table 7: RMSEP values belonging to the chart presenting the different TCD models. The number of latent variables of the PLS 
models is listed in the bracket. 

TCD Model lm 580 lm ccA lm cF lm dCap PLS fs (4) PLS fscc (2) 

RMSEP [10^6 cells/mL] 0.902 1.993 2.272 0.651 0.901 0.655 

 

 

Figure 23: Plot of RMSEPs of the different linear (lm) and partial least squares (PLS) models for TCD prediction. The bar of the 
“state of the art” model is marked in blue. 

Looking at the models, the TCD models behave in analogy to the VCD prediction. The linear 

correlation of Cole-Cole Alpha and the critical frequency produce extremely high RMSEPs, 

whereas the lm dCap seems to improve the quality compared to the “state of the art” model 

correlating a single frequency (lm 580 kHz). Likewise, smaller RMSEP values arise from the lm 

dCap and the PLS fscc. 



  Results 

 
42 

 

Figure 24: A plot presenting the mean average error (MAE) of TCD prediction by different models over process time. The grey 
dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) the TCD 
measured by ViCell. 

To distinguish the dynamic manner of those models, the MAE is calculated and plotted over 

process time. Again, there is similarly good performance of all models in the early stage of the 

process. The lm dCap sticks out with being close to the zero-line throughout the whole 

process. Also, the PLS fscc shows good performance in the late stage of the process. 

Applying these models on four exemplary batches to be seen in Figure 25, it can be 

recognized, that the prediction is difficult in the death phase of the cultivation. For batch two, 

there seems to be an outlier in the end of the process, whereas in batch one and four the PLS 

fscc model plotted in light blue shows consistently good TCD prediction. Overall, the lm dCap, 

printed in light red, seems to deliver the most constant and nicely fitting TCD prediction. 
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Figure 25: Plot of TCD from four different development batches. The green curve presents the reference values, the brown 
graph presents the “state of the art” model, the red (linear) and blue (multivariate) graphs present the new models. A good 
correlation between TCD predictions is visible, but it is recognizable, that the TCD prediction in during the death phase of the 
cultivation is hard to be captured by the prediction models.  

 

4.2.4 Average diameter prediction  

Using the same 26 mean centered frequency scan data sets of the development batches, 

several linear (lm 580kHz, lm ccA, lm cF, lm dCap) and multivariant models (PLS fs, PLS fscc) 

were created to predict the average diameter of the cell culture throughout the process. 

Getting a first idea for the fit of those models, RMSEPs produced by batchwise cross 

validation are compared. 
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Figure 26: Plot of RMSEPs of the different linear (lm) and partial least squares (PLS) models for average DIA prediction. The 
bar of the “state of the art” model is marked in blue. 

Guided by Cannizzaro et. al we would expect a strong correlation of the Cole-Cole parameter 

critical Frequency with the average cell diameter, as in this study large differences occur at 

intermediate frequencies. Thus, a decrease in cell size will cause the characteristic frequency 

to shift to a higher value because the cells are polarized faster. Conversely, for larger cells the 

characteristic frequency will be lower. [13] Nevertheless, this assumption was not confirmed 

by this study, as the RMSEP is the highest of all six tested models. Once again, the combined 

PLS fscc has the most promising RMSEP value of all models for average diameter prediction.  

Table 8: RMSEP values belonging to the chart presenting the different average DIA models. The number of latent variables of 
the PLS models is listed in the bracket. 

DIA Model lm 580 lm ccA lm cF lm dCap PLS fs (6) PLS fscc (4) 

RMSEP [µm] 0.720 0.885 0.898 0.790 0.676 0.561 

 

To prove the dynamic fit of these models, again the MAE is calculated and plotted over 

process time in Figure 27. Except of the PLS fscc model, all the models depicted in the Figure 

below show similarly large prediction errors. The error line of the PLS fscc model (green) is 

the only one, being slightly closer to the zeroline, indicating a stronger correlation with the 

average diameter value measured by ViCell. Nevertheless, all the models produce high error 

values. 
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Figure 27: A plot presenting the mean average error (MAE) of average diameter prediction by different models over process 
time. The grey dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative 
value) the average diameter measured by ViCell. 

Considering the graphs in Figure 28 which present the average diameter values produced by 

applying those models on four different, exemplary chosen batches it is obvious, that the 

linear models, as well as the PLS fs model, cannot at all predict the average diameter in any of 

the test batches. Only the PLS fscc model, shown in light blue, reflects the curve shape in 

understated form in batch number two and three. Even in these two test batches, the 

correlation is too week to predict the measured average diameter of the cell culture 

adequately well.  

All in all, the prediction of average diameter by any of the tested models is not satisfying and 

thus dielectric capacitance data cannot be used to estimate this parameter. 
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Figure 28: Plot of DIA from four different development batches. The green curve presents the reference values, the brown 
graph presents the “state of the art” model, the red (linear) and blue (multivariate) graphs present the new models. A week 
correlation between DIA predictions is visible, but there is no satisfying DIA prediction model within. 
 

4.2.5 Average circularity prediction 

The last parameter provided by ViCell, namely the average circularity (CIRC), will be 

correlated to the 26 development batches in the same way as described earlier. Linear (lm 

580, lm ccA, lm cF, lm dCap) and multivariate (PLS fs and PLS fscc) are created and compared 

by calculation of the RMSEP values. All the CIRC models produce a similarly high RMSEP, 

mentioning, that the PLS fs delivers the best results in this case.  

Table 9: RMSEP values belonging to the chart presenting the different average CIRC models. The number of latent variables of 
the PLS models is listed in the bracket. 

CIRC Model lm 580 lm ccA lm cF lm dCap PLS fs (2) PLS fscc (3) 

RMSEP  0.022 0.020 0.026 0.021 0.017 0.018 
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Figure 29: Plot of RMSEPs of the different linear (lm) and partial least squares (PLS) models for average CIRC prediction. The 
bar of the “state of the art” model is marked in blue. 

Calculating the MAE and plotting it over the process time in Figure 30 enables an insight to 

the dynamic performance of the models. Even though all models have curves strongly 

divergent from the zero line, the PLS fs (red) and the PLS fscc (green) tend to be closer to the 

reference during the late stage. 

 

Figure 30: A plot presenting the mean average error (MAE) of average CIRC prediction by different models over process time. 
The grey dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) 
the average CIRC measured by ViCell. 
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Figure 31: Plot of DIA from four different development batches. The green curve presents the reference values, the brown 
graph presents the “state of the art” model, the red (linear) and blue (multivariate) graphs present the new models. A week 
correlation between DIA predictions is visible, but there is no satisfying DIA prediction model within. 

Looking at the reference values, printed in green in Figure 31, there seems to be a high 

circularity straight after inoculation of the preculture to the main stage, followed by a massive 

drop within the first days. Almost all the prediction models are incapable of predicting this 

phenomenon. Anyways, in the prediction of batch three and four, the prediction of circularity 

by the PLS fscc model results in impressive results after this starting phase. For the batches 

one and two it can be said, that the PLS fscc is the strongest but still not convincing.  

Analogue to the prediction of the average diameter, a certain relationship between the 

dielectric frequency scan data and the average circularity is captured. Since the prediction 

does not work for all batches, the quality of the PLS fscc model is not satisfying. 
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4.3 Inclusion of Raman Signal 

Even if the dielectric frequency scan enables an enhancement of biomass prediction models, 

there is still much room for improvement in terms of predicting all phases of the cell culture 

adequately well. A strategy to approach more accurate prediction dynamics, especially during 

stationery and death phases of the cell culture, is, to include the signal of the Raman probe to 

the multivariate models. Since Raman probes have the ability of capturing properties of other 

components within the fermentation brew than active cell membrane like metabolites and 

the chemical environment of cells, there is an assumption of improving the prediction during 

death phase when the data of Raman spectroscopy are used simultaneously to the 

capacitance data. 

4.3.1 VCD prediction 

A dataset providing dielectric frequency scan data including Cole-Cole-parameters, raman 

spectra and referential ViCell data of eleven batches is used to create new prediction models 

for the VCD in a bioprocess. These data were generated by the development process.

 

Figure 32: Plot of RMSEPs of the different PLS models for VCD prediction, comparing different input datasets. The bar marked 
in blue represents the “PLS fscc” model of the previous chapter. 

As the PLS fscc, a multivariate model correlating the mean centered capacitance data and the 

Cole-Cole parameters of the dielectric frequency scan with the VCD measured by ViCell, was 

the best performing PLS model in the earlier investigation, this dataset is used as base for 

including further data. In this chapter, a set of five different PLS models is created and 

compared by cross validation. 
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In this Comparison, the PLS model with the frequency scan and the Cole-Cole parameters is 

called (Cap). Another PLS model correlates the raw Raman spectra to the VCD (Ram). Next, 

the dataset of Cap and Ram is combined in one model (CR). Two more models were tested, in 

which the raman spectra were submitted to different pretreatments, namely the first 

derivation (CR 1dv) and the first derivation with standard normal variation (CR 1dvsnv). 

Table 10: RMSEP values belonging to the chart presenting the different VCD models by usage of capacitance and raman data. 
The number of latent variables of the PLS models is listed in the bracket. 

VCD Model Cap (2) Ram (13) CR (15) CR 1dv (6) CR 1dvsnv (3) 

RMSEP [10^6 cells/mL] 0.792 0.937 0.887 1.774 0.699 

 

For a first impression, the RMSEP values are calculated by cross validation. The Cap model 

and the CR 1dvsnv model seems to perform best. The RMSEP bar of the CR 1dv is about 

double as high as the others. Thus, this model is not further investigated. Since it is of interest 

if the models can predict the VCD during steady and late stage of the fermentation, the MAE 

is calculated and plotted over time again, to be seen in Figure 33. Those two models that had 

a low RMSEP ended up in crossing the zero line for two times, whereas the other models (CR 

in blue and Ram in green) stay close to the zero line, implying a rather consistent prediction 

offset over time. This result is promising, as it indicates that these models can at least 

reproduce the dynamics of the VCD of the cell culture at any stage. The Cap and the CR 

1dvsnv model have big absolute errors in the late stage. 
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Figure 33: A plot presenting the mean average error (MAE) of VCD prediction by different models over process time. The grey 
dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) the VCD 
measured by ViCell. 

Table 11: MAPE values belonging to the different VCD models. The number of latent variables of the PLS models is listed in the 
bracket. 

VCD Model Cap (2) Ram (13) CR (15) CR 1dv (6) CR 1dvsnv (3) 

MAPE [%] 17.80 14.66 10.75 26.33 18.72 

 

The MAPES stated in Table 11 present another value to measure the goodness of fit of the 

prediction models. 
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Figure 34: Plot of VCD from four exemplary chosen development batches. The green curve presents the reference values, the 
brown graph presents the best model created from capacitance data only, the red and blue graphs present the new models. A 
good correlation with VCD predictions throughout the whole process is visible. 

All the presented models perform better than the linear VCD models from the prior chapter. 

Nevertheless, the best model arising in this comparison is CR. Applying these models to some 

exemplary batches some processes appear very well predicted (batch 3 and 4), whereas some 

inconsistent deviations appear in other processes (batch 1 and 2), but still, the trend is well 

predicted by the CR model. Looking at the predictions of all available batches (data not 

shown), it can be concluded, that less than a third of the prediction batches show such 

abnormalities, meaning, that the overall prediction capability still lacks a certain robustness. 

4.3.2 Viability prediction 

The prediction of another important factor in a bioprocess, the viability, could benefit from 

adding Raman spectra to the capacitance data as well. In the following chart the same models 

as in the previous chapter are compared for viability prediction. The mean centered 
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frequency scan model (Cap) representing the best PLS model of the dielectric dataset, the 

raw Raman spectra (Ram) and the combined PLS model (CR), the model with pretreated 

Raman signal (CR 1dv and CV 1dvsnv) are compared by RMSEP values (Figure 35). 

 

Figure 35: Plot of RMSEPs of the different partial least squares models for VIA prediction, comparing different input datasets. 
The bar marked in blue represents the “PLS fscc” model of the previous chapter. 

Reviewing the bar chart, the addition of the Raman signal to the capacitance data seem to 

have a massive impact on the prediction quality, as all of the models containing Raman data 

have a significant lower RMSEP value than the Cap model. In this case, the raw Raman signal 

seems to predict the viability within the cell culture best. 

Table 12: RMSEP values belonging to the chart presenting the different VIA models by usage of capacitance and Raman data. 
The number of latent variables of the PLS models is listed in the bracket. 

VIA Model Cap (3) Ram (5) CR (5) CR 1dv (5) CR 1dvsnv (4) 

RMSEP [%] 3.223 1.330 1.433 1.797 2.477 

 

To evaluate the dynamic fit of the models, the MAE is calculated and plotted over process 

time. There are prominently big errors of the Cap (black) models crossing the zero line several 

times. Two models (Ram and CR) tend to cling to the zero line throughout most of the 

process. Remarkably, the viability prediction with these models turns out being even more 

precise in the late stage of the process.  
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Figure 36: A plot presenting the mean average error (MAE) of VIA prediction by different models over process time. The grey 
dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) the VIA 
measured by ViCell. 

In Table 13 the MAPE is listed for the different models to get another idea of the goodness of 

fit. 

Table 13: MAPE values belonging to the different VIA models. The number of latent variables of the PLS models is listed in the 
bracket. 

VIA Model Cap (2) Ram (13) CR (15) CR 1dv (6) CR 1dvsnv (3) 

MAE [%] 2,43 0.96 0.96 1,19 1,85 
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Figure 37: Plot of VIA from four exemplary chosen development batches. The green curve presents the reference values, the 
brown graph presents the best model created from capacitance data only, the red and blue graphs present the new models. A 
very nice correlation with VIA predictions throughout the whole process is visible. 

Applying these models on four exemplary batches in Figure 37, it is seen that in three out of 

four batches the Ram and the CR models are overlying each other. This points out, that the 

addition of capacitance data does not add value to this model. Also, it is obvious, that none of 

the other models can reproduce the dynamic of the viability as well as those two models. It 

can also be seen that some of the calculated viability values are greater than 100%, which 

cannot happen in real life. These faults are due to the prediction errors.  

4.4 Prediction of apoptosis 

As the programmed cell death has effect on the cell membranes of living cells, a relation 

between the dielectric capacitance signal and apoptosis is hypothesized. Therefore, the 

apoptosis is measured via two different flow cytometric assays. On one hand there is the 

Guava Nexin assay, delivering information about percentual early apoptosis, late apoptosis, 

debris, and healthy cells. On the other hand, the Guava Viacount assay is performed, giving 

the percentual viability. 
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There are measurements of samples from 20 different development batches, mentioning that 

it was not possible to perform the experiments daily. Thus, the data density is not as high as 

the standard Vi-Cell values.  

A multivariate model was chosen to predict the different parameters describing the viability 

status of the cultivated cells. A dataset of mean centered dielectric frequency scan data and 

the appropriate Cole-Cole parameters was correlated to the following parameter: % healthy 

cells, % early apoptotic cells, % late apoptotic cells, % cell debris and % viability (by Viacount). 

To outline the quality of the resulting models, two different sets of plots were created. In the 

first set (Figure 38), the % early apoptosis, % late apoptosis and % cell debris are plotted, 

accompanied by the respective predicted value by a PLS model. Three exemplary picked 

batches are shown. In the second set of plots (Figure 39) the % viability measured by Viacout 

and the % healthy cells measured by nexin assay, again accompanied by the respective 

predicted values by a PLS model of the same batches are presented. 

The PLS model for early Apoptosis has 3, for late apoptosis has 4, for debris and healthy cells 

has 5, and for viability has 3 latent variables.  
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Figure 38: Depiction of three data pairs presenting the measured (continuous line) and predicted (dashed line) percentages of 
early apoptosis (green), late apoptosis (blue) and cell debris (red) obtained from Guava Nexin assay. Three batches are 
exemplary chosen for illustrative plotting. 
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Figure 39: Depiction of three data pairs presenting the measured (continuous line) and predicted (dashed line) percentages of 
healthy cells from Guava Nexin assay (red) and viability by Guava Viacount assay (blue) Three batches are exemplary chosen 
for illustrative plotting. 
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Looking at the first set of plots in Figure 38 it needs to be said, that the quality of this Nexin 

assay seems to be quite poor. There are almost no cell Debris found throughout the process. 

Also, it would be expected, that the late apoptosis curve is a timewise shift from early 

apoptosis as these states follow each other in the biological life cycle. Talking about the 

second set of plots, the measured values seem to be a bit more trustworthy, since there is, 

except for the outliers in batch two and three, a shared trend of those two parameters.  

Generally speaking, the prediction of the measured parameters by a PLS model delineate the 

trends, even if the absolute error is relatively high. Considering that the precision of the 

method to measure the reference values might not be sufficiently good at any timepoints, 

these models are not very reliable. 

 

4.5 Model testing for large scale production process 

Regarding the prediction of biomass parameter in 13 kL production scale, some models for a 

specific production unit (PU) were created and compared. Generating a global model was not 

tested here, since the available data from production and development processes arise from 

different processes for different products, process parameters and varying working 

procedure for the capacitance probe. There are several batches of one process available, to 

train and test statistical models. Dielectric frequency scan data including Cole-Cole parameter 

are available for all these batches. VCD and VIA measured by Vi-Cell serve as reference values. 

Utilizing the knowledge from the previous chapters five different models were built to predict 

firstly the VCD and later the viability of the cell culture in the bioreactor. The dielectric 

frequency data were mean centered. Mentioning that there is no possibility to zero the 

probes between two runs in the production bioreactor, those data are lacking a baseline 

correction in contrast to the development batches. To recreate the model currently used in 

the PU, a linear model correlating the capacitance at 580 kHz was made (lm 580kHz). As the 

Cole-Cole parameter dCap convinced with good performance earlier, again a linear 

correlation was built (lm dCap). Next, the best performing PLS model including all frequency 

scan and Cole-Cole data was created for the production scale (PLS PU). Lastly, the model from 
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the development batches was transferred to the production data (PLS 20L) to check whether 

the model is transferrable between different scales and processes. 

4.5.1 VCD prediction 

Using the same procedure as in previous chapters, the RMSEP was calculated for all four 

models via cross validation and depicted in Figure 40.

 

Figure 40: Plot of RMSEPs of the different linear (lm) and partial least squares (PLS) models for VCD prediction in production 
scale. The bar of the “state of the art” model is marked in blue. 

Surprisingly, the lm dCap has the highest error bar of all tested models. Thus, the Cole-Cole 

parameter seems not to be as significant for non-zeroed data, because the baseline probably 

irritates the computation for the dCap. At the first look, the PLS seems to predict the VCD 

more precisely than the linear “state of the art” model, whereas the transferred PLS model 

has a high RMSEP. 

Table 14: RMSEP values belonging to the chart presenting the different VCD models by usage of capacitance and raman data. 
The number of latent variables of the PLS models is listed in the bracket. 

VCD Model lm 580kHz lm dCap PLS PU (8) PLS 20L (2) 

RMSEP [10^6 cells/mL] 1.332 2.159 1.211 1.742 

 

For having a closer insight on the dynamics of those models, the MAE is calculated again. 

Whilst the first few days the lm 580 kHz plotted in black is very close to the zero-line 

indicating a smooth VCD prediction. Later in process, the green model (PLS PU) performs best 
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in having the smallest deviation from the reference values. The lm dCap and the PLS 20L 

neither promise a good prediction in the early, nor in the late stage of the process. 

 

Figure 41: A plot presenting the mean average error (MAE) of VCD prediction by different models over process time. The grey 
dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) the 
average VCD measured by ViCell. 

Again, the MAPE is calculated for the prediction of VCD by the four different models to 

measure the goodness of fit. 

Table 15: MAPE values belonging to the different VCD models. The number of latent variables of the PLS models is listed in the 
bracket. 

VCD Model lm 580kHz lm dCap PLS PU (8) PLS 20L (2) 

MAPE [%] 29.31 89.65 20.89 44.13 
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Figure 42: Plot of VCD from four exemplary chosen production batches. The green curve presents the reference. The best 
correlation with VCD predictions throughout the whole process is observed for the PLS PU model. 

Applying the models to four exemplary chosen batches of production process it is obvious, 

that the PLS PU is the only model following the trend of the measured reference values. The 

lm dCap has almost no correlation throughout the whole process. The other models fail in 

predicting the death phase of the process. 

Summarizing, the PLS PU delivers the most promising results to predict the VCD by an online 

technology during the whole process.  

4.5.2 Viability prediction 

Calculations of RMSEPs by cross validation were done for the four models described before 

predicting the percentual viability in the production process. 
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Figure 43: Plot of RMSEPs of the different linear (lm) and partial least squares (PLS) models for VIA prediction in production 
scale. The bar of the “state of the art” model is marked in blue. 

The bar chart in Figure 43 points out, that there is a big reduction of error by the PLS PU, 

compared to the linear model. Comparing the value 7.51 % to the RMSEP received in chapter 

3.2.2. (VIA prediction for development process), it seems still very high. Looking at the 

measured range of viability in the production process the viability decreases towards ~50 % 

(development process: ~85 %), allowing larger absolute errors. 

Table 16: RMSEP values belonging to the chart presenting the different VIA models by usage of capacitance data. The number 
of latent variables of the PLS models is listed in the bracket. 

VIA Model lm 580kHz lm dCap PLS PU (9) PLS 20L (2) 

RMSEP [%] 16.31 18.02 7.51 20.03 
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Figure 44: A plot presenting the mean average error (MAE) of VIA prediction by different models over process time. The grey 
dashed zero line indicates whether the model is underestimating (positive values) or overestimating (negative value) the 
average VIA measured by ViCell. 

The MAPE for the prediction by the 5 prediction models are listed in Table 17. 

Table 17: MAPE values belonging to the different VIA models. The number of latent variables of the PLS models is listed in the 
bracket. 

VIA Model lm 580kHz lm dCap PLS PU (9) PLS 20L (2) 

MAE [%] 18.16 18.85 7.90 21,99 

 

Figure 44 showing the MAE of the four VIA models over process time emphasize the relatively 

good fit of the PLS PU model for the whole process. The green graph is much closer to the 

reference line than any of the other models. It can also be seen that some of the calculated 

viability values are greater than 100 %, which is an artefact of the model and cannot happen 

in real life. These faults are due to the prediction errors.  

As the error of the PLS 20L model is the highest in the plot, it can be concluded, that the 

transfer of a model between different processes is not suitable to predict process parameters 

like viability or cell density. This was expected, as besides the use of differing process 

parameters a different working procedure for the capacitance probe has been applied. 
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Figure 45: Plot of VIA from four exemplary chosen production batches. The green curve presents the reference. A very nice 
correlation with VIA predictions throughout the whole process is visible in the PLS PU model. 

Applying the models to some exemplary batches in Figure 45, the PLS PU model is the only 

model capturing the trend of the VIA.  
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5 Discussion 

5.1 VCD prediction 

The performance of the VCD prediction models generated from capacitance data is varying a 

lot. The two linear models based on critical frequency and the Cole-Cole alpha are remarkably 

worse, compared to the other models, which was expectable, as those parameters are 

described to comprise information about cell size in the literature [13] and [32], which is not 

necessarily correlating with the VCD or the total biomass volume. Compared to the linear 

model based on the single frequency data, which represents the state-of-the-art model, the 

linear model correlating VCD with a single frequency measurement and the PLS model based 

on the combined data with the delta capacitance perform better. Considering the overall 

performance, those two models are similarly good with MAPEs of 11.92% (lm dCap) and 

12.39 % (PLS fscc), but viewing the performance during specific phases, the lm dCap model 

performs better in the early stage whereas the PLS fscc model performs better in the end of 

the fermentation process. Thus, it is hard to create a model that fits well throughout the 

whole process. Nevertheless, all these models enhance the prediction quality against the 

state-of-the-art model. Especially in the late stage of the fermentation, a systematic 

overestimation of the viable cell density is noticed. 

Extending the input data with the spectra of the Raman probe, the overall RMSEP value did 

not improve, but viewing the dynamic performance of the combined models (CR and CR 

1dvsnv), outstandingly good results are seen, as the MAE is only slightly below the zero line 

throughout the whole process. Thus, it is of note that the overall RMSEP can sometimes 

trigger insufficient conclusions, as it represents an average error and does not provide the 

information on how well the growth curve and, hence, the process dynamics are captured by 

the model. The generated models show a good fit to the trend of the offline measurements, 

but still an overestimation is visible. Also, the fact that the model including only Raman data 

and the model including Raman and Capacitance data are showing similar performance 

indicates, that the Raman signal gives very good information about the VCD in a process. But 

still, the inclusion of capacitance data improves the resulting prediction quality. The MAPEs of 

the two best models are 14.66 % (Ram) and 10.75 % (CR).  
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Considering the models for the production process, the lm dCap turns out as not suitable at 

all. Since this model fits well for predicting VCD in the development process, it is expected 

that this might be due to the fact, that the capacitance probe is not zeroed before each 

process in the production scale. Thus, the baseline might have an impact on the computation 

of the Cole-Cole parameter delta capacitance, which makes it impossible to predict the VCD 

from these values. However, the PLS model based on the dielectric frequency scan data and 

the Cole-Cole parameter is capable of predicting the VCD with a MAPE of 20.89 % (PLS PU), 

which is better than the state-of-the-art model with a MAPE of 29.31 % (lm 580).  

Table 18: Overview of Error values derived in this thesis, the reference method and comparable studies [16]. 

 Source Comment Error [%] 

Results Frequency scan lm dCap 
PLS fscc 

11.92 % (MAPE) 
12.39 % (MAPE) 

Raman Ram 
CR 

14.66 % (MAPE) 
10.75 % (MAPE) 

Large scale PLS PU 20.89 % (MAPE) 

Reference method Vi-Cell  5 % (Error estimate) 
[46] 

Literature Cannizzaro, 2003 Batch Phase 9 – 22 % (CVRMSE) 

Opel, 2010 Batch and Fed-batch 7 – 23% (CVRMSE) 

Konakovsky, 2014 Fed-batch 7 – 38 % (CVRMSE) 

 

In Table 18, the mean percentual Error (MAPE) of the best performing models generated in 

this thesis, the estimated error of the reference method for VCD measurement, which is the 

day-to-day precision and rather underestimated in this application, and some comparable 

results from literature are stated. [46] It has to be considered, that the models are based on 

the ViCell data and thus these approximately 5 % error are an inherent part of the error of the 

prediction models. Comparing the errors to the literature, it is seen that the models created 

in other studies have percentual errors in the same or equally larger dimension of the 

selected new models. Comparing the MAPE values of the capacitance models and the Raman 



  Discussion 

 
68 

models, it is seen that the overall performance of the Ram model is not better than the lm 

dCap or PLS fscc.  

5.2 Viability prediction 

Comparing the models created for viability prediction, it is seen that the linear model 

correlating a single frequency to the viability does not follow the trend of the offline viability 

measurement ending up with a MAPE of 3.03 % (lm 580), whereas the PLS models fs and fscc 

show better performance in some batches with a MAPE of 2.32 % (PLS fs) and 2.43 % (PLS 

fscc). Crucial for the quality of the prediction is the significant decrease of the viability, which 

is adequately predicted in most of the fed-batch processes.  

Apparently, the signal to noise ratio is too low, if batches exhibit high viability until the end of 

the process. Viability values decreasing to less than 90 % are relevant for the establishment of 

a significant model. That phenomenon is reported by Ma et al. [32], as they observed a 

correlation between Cole-Cole parameters and viability in batch processes, where the viability 

drop is much greater than in a fed-batch process. 

 Adding the Raman signal enhanced the quality of the prediction considerably. The PLS 

models of Capacitance and Raman data appear to be almost identical to the model of Raman 

data only. The MAPE of those models is 0.96 % (Ram and CR). This shows that Raman 

spectroscopy is a more promising tool for online viability prediction in cell culture processes. 

Different from the VCD prediction models, for viability prediction the data pretreatments 

reduce the quality of viability prediction.  

Confirming the signal-to-noise issue discussed for the viability prediction in the development 

process by capacitance data, the viability prediction works out well for the production 

process. In these processes, the viability drops down to 50 % and this enables a good viability 

prediction with a MAPE of 7.9 % which looks a lot compared to the other models. Considering 

the range of viability in these processes, it is reasonable that the error is higher. 

  

https://www.dict.cc/?s=unincisive
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Table 19: Overview of error values derived in this thesis and the method for reference measurements. 

 Source Comment Error [%] 

Results Frequency scan PLS fs 
PLS fscc 

2.32 % (MAPE) 
2.43 % (MAPE) 

Raman Ram 
CR 

0.96 % (MAPE) 
0.96 % (MAPE) 

Large scale PLS PU 7.9 % (MAPE) 

Reference method Vi-Cell  0.8 % (Error estimate) 

 

In Table 19 the MAPEs of the best models derived in this thesis and the error estimate of the 

reference method, which is an estimate of the combined instrument-to-instrument and 

operator-to-operator precision and again rather underestimated in this case, which are 0.8 %. 

[46] This error again influences all the other models, since they are based on the viability 

values measured by ViCell. As already discussed, the frequency scan models from the 

development process show inadequate performance, also due to the relatively narrow 

viability range covered by the data set, whereas the capacitance models in the production 

process convince with better predictions. dynamics Adding Raman data to the frequency scan 

improves the viability prediction in batches with high signal-to-noise ratio. Nevertheless, the 

production process indicates the applicability of the capacitance data for viability prediction. 

5.3 TCD prediction 

For TCD prediction models effects similar to the VCD prediction are found, as the linear 

models with the Cole-Cole alpha and the critical frequency again deliver unsatisfying 

predictions. The predictions provided by the pls fscc model and the lm dcap are close to the 

reference values. This is not surprising, as the VCD and TCD parameter are closely related in 

the development process, since the viability is high throughout the whole process.  

5.4 Average cell diameter prediction 

Successful predictions of cell size are reported by Ma et. al. [32], as they found a correlation 

between the Cole-Cole parameter critical frequency with the average cell diameter. This 
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observation didn´t occur in this study, as the lm ckrit did not follow the trend of the reference 

data at all. The only model that seems to correlate with the reference data is the PLS fscc, but 

still the deviation is too high, to take it as a successful model. Hence, the prediction of the 

average cell diameter cannot be done by measurement of dielectric capacitance in a 

bioprocess. 

5.5 Average circularity prediction 

Similar observations as for average cell diameter predictions are made with the prediction of 

the average circularity of a cell culture in a bioprocess. The only model that features a slightly 

correlation to the reference values is the PLS fscc. But again, the predicted values have large 

deviations, so it is not useful for predicting this parameter.  

5.6 Prediction of apoptosis  

Before talking about the models for predicting the different stages of apoptosis it must be 

said, that within the measured data some irregularities are noticed. It would be expected that 

the measured early apoptotic fraction turns into late apoptotic cells later. So, the function of 

late apoptotic cells should be a delayed function of the early apoptotic cells which did not 

occur in the experiments for this thesis. Altogether only little data is available which makes it 

hard to create a convincing model. The batches underlying these measurements show, as 

discussed earlier, high viability and thus the fraction of apoptotic cells is small, making it even 

harder to generate a meaningful model. Considering these effects, the created PLS models 

are not very reliable. 
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6 Conclusion and Outlook 

Dielectric spectroscopy provides a practicable opportunity to be used as a PAT tool for the 

continuous online monitoring during USP process of CHO cells. Its nondestructive properties 

and the ability to discriminate between different conditions and densities of the cells in a 

reactor are notable properties, where only one probe is capable of generating online data for 

various different process parameters and cell characteristics. The use of dielectric 

spectroscopy prediction models makes the reduction of frequent offline sampling as well as 

the implementation of quick and smart online control strategies possible. This thesis overall 

present a strategy of generating and assessing the reliability of these prediction models. The 

milestones within the workflow comprise the gathering of all available online and offline data 

to one data frame and the extraction and preparation of the relevant information for building 

a prediction model. For the assessment of the predictive capability of the models, the batch 

wise CV approach for calculating the RMSEP and the MAE/MAPE, which is described in this 

thesis, offers a better comparison between different models unlike the standard k-fold CV 

approach. This provides more realistic errors as output. Thus, by applying these steps the 

most reliable and useful prediction models can be selected. 

A relevant process parameter for online prediction in a bioprocess is the VCD. The simple 

linear regression of the Cole-Cole parameter dCap provides promising results in all stages of 

the process. Also, the pls fscc model delivered good results, but requires more sophisticated 

modeling approaches. Thus, by implementing a software that calculates the Cole-Cole 

parameters of the dielectric frequency scan in real-time and which is also connected to the 

control system, the lm dCap model can be used for online control strategies.  

Another crucial process parameter, namely the viability is revealed as solid predictable 

parameter by a prediction model based on a capacitance probe. However, it is essential to 

have a training dataset that includes batches with strong variations in the percentual viability. 

This is affirmed, as the model for the production process shows a better fit than the model for 

the development process. Nevertheless, a PLS model is required for predicting the viability of 

a cell culture Since the TCD is the result from dividing VCD by viability, the same is valid for 

TCD prediction. 
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Even though in literature successful modelling approaches for predicting average cell 

diameter are reported, the correlation results obtained in this thesis are weak. Hence, this 

effect reported in literature is not confirmed. Also, an online prediction of average cell 

circularity did no prove realizable for process monitoring. Online monitoring of apoptosis by 

dielectric spectroscopy would need further investigation, as the data set for early and late 

apoptosis available for this thesis is very small and, similar to the viability prediction in the 

production process, due to high viabilities the number of apoptotic cells was too small for 

generating a qualitative model. The resolution of this method makes a capture of apoptotic 

events impossible in this experiment. 

Adding a Raman signal to the dataset for predicting VCD and viability increased the quality of 

the prediction models. At the same time, processing the spectral data of a Raman probe to 

generate predicted VCD or viability values are more complex than a prediction by a 

capacitance model described before. Keeping in mind that the implementation of additional 

Raman probes is an expensive acquisition, the improved analysis and prediction capabilities 

needs to be balanced against the additional cost. 

Nevertheless, considering the fact that many other process parameters like metabolites can 

be predicted by Raman spectroscopy, it is a promising technology for process monitoring in 

upstream processing. 

In conclusion, it can be stated, by the comparison of the results with the reference method 

and literature, that the use of capacitance probes in frequency scan mode can improve the 

VCD prediction, especially in the middle stage of a fed-batch process, in comparison to the 

state-of-the-art model. Adding Raman data to the prediction model improves the prediction 

in the later stage, whereas the prediction in early stage does not benefit from this upgrade. 

Since the early stage is of high importance in bioprocesses, the generated models by 

capacitance data are reliably applicable.  

For online viability prediction, the capacitance models are sufficient, if the viability range in 

training data is large, whereas for high viability processes the resolution of the capacitance 

models is not good enough. In this case, a Raman probe is a good remedy to provide online 

viability prediction with high resolution.  
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For the prediction of average circularity, average cell diameter and apoptotic events using 

dielectric frequency scan data, no adequate model could be generated in this thesis. 

To further improve the models developed in this thesis further investigations should be done. 

One approach could be the development of phase specific models for predicting the VCD and 

viability during growth phase, stable phase and death phase separately. The models could be 

improved in terms of robustness, if more variation in the process settings of the training 

batches would be introduced. Since these models are built on optimized processes, batches 

with completely divergent growth behaviour are missing.  

Other machine learning methods could be tested for more precise models.  

Also, models based on data pre-processing that are feasible for all processes and scales can 

be developed, to enable a generalized model for model transfer between different scales. 

As there are some batches that turned out having significantly higher errors than other ones, 

investigations in finding a pattern behind this effect can be done.  
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7 List of Abbreviations 

1dv First derivative 

2dv Second derivative 

7-AAD 7-aminoactionmycin D 

API Active pharmaceutical ingredients 

cc Cole-Cole parameters 

CCAlpha, cca Cole-Cole Alpha 

cF critical Frequency 

CHO Chinese hamster ovary 

CIP cleaning in place 

CIRC Average circularity of cells 

CQA Critical quality attribute 

CV Cross validation 

CVRMSE coefficient of variation of the root mean 

square error 

dcap Delta capacitance 

DIA Average cell diameter 

EMA European Medicines Agency 

FDA U.S. Food and Drug administration 

fs Frequency scan 

FSC Forward scatter 

fscc Frequency scan and Cole-Cole parameters 

g368 Greater than 368 kHz 

lm Simple linear regression model 

MAE Mean absolute error 

MAPE Mean average percentage error 

mc  Mean centering 

MLR multiple linear regression 

MVDA Multivariate data analysis 

PAT Process analytical technology 
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PCR principal component regression 

PCS process control system 

PLS Partial least squares 

PU Production Unit 

QbD Quality by Design 

RMSEP Root mean squared error of prediction 

sc Scaling 

SIP steaming in place 

snv Standard normal variate 

SNV Standard normal variate 

SOP standard operating procedures 

SSC Side scatter 

TCD Total cell density 

USP Upstream production process 

VCD Viable cell density 
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