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Abstract 

 
Keywords: soil moisture estimation, spatial variability detection, crop-modeling, microwave 

satellite soil moisture product, Marchfeld  

 
Climate change-related extreme weather events emerge more frequently in several parts of 

Europe including, the Marchfeld in Lower Austria. Such drought and heavy rainfall events 

require sound knowledge about soil moisture regimes on an agricultural field scale to 

strengthen future crop production.  

This study investigates different soil moisture measurement methods for agricultural 

application. Tools and management strategies are evaluated to assess spatial variability and 

to identify impacts on soil moisture. 

In-situ measurements on an experimental field in 2019 and 2020 were used to analyze 

statistical, satellite remote sensing, and crop-water-balance simulation methods (ARIS, 

AquaCrop) for soil moisture estimation.  

The analysis shows that spatial variability at the sub-field cannot be detected with the 

investigated satellite sensor products and crop-water-balance simulation methods. 

Nevertheless, the analysis shows a good correlation of soil moisture estimation on field-scale 

between the in-situ sensors and the S1ASCAT satellite remote sensing product as well as the 

ARIS-, and AquaCrop crop-simulation results. The SMAP sensor product underestimates soil 

moisture in winter and correlates inadequately with the in-situ reference sensors. On larger 

scale applications is the SMAP product likewise a viable estimation tool for soil moisture.  

The research shows that complementary methods can estimate soil moisture on the field scale 

reasonably well, which comprise a crucial tool to identify soil moisture limitations for crop 

production. To conclude, the findings provide insight into the spatio-temporal soil moisture 

estimation methodologies of satellite and simulation estimations at field scale without the 

necessity of available in-situ measurements on-site for the conditions in our study.  

Limitations in the scientific field of soil moisture estimation are low to non-existing measuring 

networks of high spatial resolution. Further, to validate satellite or simulation methods with in-

situ sensors, difficulties of comparability of volumetric and relative soil moisture occur.  

To better understand the implications of these results, further research should address the 

spatial variability detection of high spatial resolution data based on drones or sophisticated 

satellite sensors.  
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Zusammenfassung 

 
Schlagwörter: Bodenfeuchtemessung, Bestimmung räumlicher Variabilität, 

Nutzpflanzensimulation, Mikrowellenbasierte Satelliten-Bodenfeuchte, Marchfeld  

 
Klimabedingte Extremwetterereignisse treten vermehrt in Teilen Europas auf, auch im 
niederösterreichischen Marchfeld. Dürre- und Starkregenereignisse erfordern genaue 
Kenntnis über Bodenfeuchteregime auf landwirtschaftlichen Feldern, um zukünftige 
Pflanzenproduktionen zu optimieren.  
Diese Studie untersucht Bodenfeuchtemessmethoden zur Anwendung in der Landwirtschaft. 
Hierbei werden Instrumente und Messstrategien evaluiert, um räumliche Variabilität auf 
Feldebene zu bewerten und negative Auswirkungen von Bodenfeuchtigkeit besser zu 
erkennen.  
In-situ Messungen wurden auf einem Versuchsfeld 2019/20 durchgeführt. Diese wurden mit 
satellitengestützten Fernerkundungsdaten und Simulationen (ARIS, AquaCrop) für eine 
Bodenfeuchteschätzung verglichen und analysiert.  
Die untersuchten Satellitenprodukte und Simulationen zeigen keine räumliche Variabilität auf 
Subfeldebene, da auch die Eingangsdaten auf einem räumlichen Mittelwert basieren. Dennoch 
zeigt die Analyse eine gute Korrelation der räumlich höher aufgelösten, aus einem Gitter 
gemittelten, in-situ-Sensoren zum Satellitenprodukt S1ASCAT, sowie den ARIS- und 
AquaCrop-Simulationen. Das SMAP-Satellitenprodukt unterschätzt die Bodenfeuchte im 
Winter und korreliert unzureichend mit den in-situ-Referenzsensoren. Für großflächige 
Anwendungen ist SMAP dennoch hilfreich zur Bodenfeuchtemessung. Weiters wird gezeigt, 
dass die Darstellung der Bodenfeuchte auf Versuchsfeldebene ein entscheidendes Instrument 
ist, um negative Auswirkungen auf die Pflanzenproduktion zu erkennen.  
Die Ergebnisse geben Einblick in die räumlich-zeitlichen Verläufe und Unsicherheiten von 
Satelliten- sowie Simulationsmesswerten auf Versuchsfeldebene. Mithilfe derer kann 
Bodenfeuchte auch ohne verfügbare in-situ Messungen ermittelt werden.  
Einschränkungen in der Bodenfeuchtemessung sind kaum bis nicht vorhandene in-situ 
Messnetze. Die Validierung von Satelliten- oder Simulationsdaten mit in-situ Sensoren werden 
auch durch unterschiedliche Maßeinheiten von Bodenfeuchte, wie volumetrischer oder 
relativer Bodenfeuchtigkeit, erschwert.  
Weiterführende Forschung zur hochauflösenden räumlichen Variabilitätserkennung von 
Bodenfeuchte sollte Drohnen oder hochauflösende Satellitensensoren beinhalten. 
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1. Introduction 

1.1 Soil moisture and climate change  

In the foreseeable future, an increase in water deficiencies will force global action to tackle 

rising resource emergencies (Lalic, Firanj Sremac, et al., 2018). With climate change 

occurring, extreme weather events emerge, green and blue water shortages surge (WWAP 

(United Nations World Water Assessment Programme), 2015). Consequently, data and tools 

for the assessment and management of water resources need to be developed  (WWAP 

(United Nations World Water Assessment Programme), 2015).  

Overall, global agrarian production will be subject to climate change-related alterations by the 

end of 2050, with spatial differences and impacts (Hoekstra et al., 2011). High spatial 10 
variabilities affect the global climate system with varying consequences (e.g., ice shield 

melting, water body evaporation) (Lalic, Eitzinger, et al., 2018). In addition, increasing 

population coupled with climate change-driven water shortages require optimization in crop 

water use (Ezenne et al., 2019). 

For instance, certain regions in central Europe may experience summer drought events, 

enhanced by low soil water storage capacity (Eitzinger et al., 2008). Such water shortages are 

expected in agrarian production regions.  

Ongoing changes of climatic constraints, like deviations in the meteorological weather mean 

and its variability, will have an increasing impact on agricultural cropping systems (Trnka et al., 

2010; Thaler et al., 2012). Observed changes like this are based on reliable projections related 20 
to anthropogenic climate change impacts (Lalic, Eitzinger, et al., 2018). 

 

Eventually, soil water availability is therefore paramount for crop production. Such soil water 

availability is determined by weather patterns and the ability of the soil to retain the water (Saue 

and Kadaja, 2014). Therefore, crop production depends heavily on the soil-climate 

relationship, with water being the interface for vegetation (Saue and Kadaja, 2014). Indeed, 

different spatio-temporal scales with fluctuations of uncertain ecosystem responses like 

precipitation events control the recharge of soil water (Saue and Kadaja, 2014). The available 

water for plants within the root zone is dependent on rainfall, irrigation, or the capillary rise of 

groundwater (Thaler et al., 2018). 30 
Thus, soil water availability is ultimately determined by the prevalent soil physical 

characteristics of a site, such as particle size, organic matter, and bulk density. These soil 

characteristics control the soil water budget with inflow and outflow processes and the water-

holding capacity determining evaporation, transpiration, and runoff (Saue and Kadaja, 2014). 

Concerning a more in-depth observation, the spatial variability of soil moisture (SM) becomes 

more critical.  

Such spatial variability in SM results from a site’s topography, including different soil textures, 

vegetation cover, and soil hydraulic properties. Moreover, underlaying management practices 

and meteorological patterns with impacts on precipitation influence its variability (METER, 

2020). 40 
Some key factors influencing spatial variability of soil water content is the time constant, which 

changes with seasonal weather impacts of droughts, precipitation, and evapotranspiration. 

For instance, as a climatic phenomenon, a drought damages agricultural systems and other 

sectors, with a high potential of wreaking havoc eventually (Mozny et al., 2012). 

Mozny et al. (2012) demonstrated that models and information on humidity regimes of soils 

could act as a warning system for current and future global climate change scenarios. 

Regardless of that possibility, the basic idea behind sound knowledge of SM is assessing the 

water needs of the plant directly (Lalic, Eitzinger, et al., 2018). 
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The plant's available water is understood as the difference between permanent wilting point 

(PWP) and field capacity (FC). This available water determines the amount of plant-available 50 
water stored in the soil pores ready to be extracted by respected flora. Therefore, to increase 

crop yield or achieve a steady yield, soil water content typically requires values well above the 

PWP (METER, 2020).  

Therefore, an applied irrigation management application can be designed based on SM 

regimes (METER, 2020), resulting from models and available SM data or estimations as a 

combined approach of methods.  

1.2 Why is there the need to research spatial variability of crop soil water 

relations? 

In the lowland regions of East- and Southern Austria, the occurrence of drought- and 

heatwaves are increasing, eventually negatively impacting crop yields (APCC, 2014; Thaler et 60 
al., 2012).  

The Marchfeld region is considered one of Austria’s major field crop production areas (Thaler 

et al., 2012). However, it is also one of the driest. With climate change altering weather 

patterns, the region’s ability to continue crop production may be in question.  

It is predicted that the Marchfeld region will experience seasonal water shortage from April to 

June, which are known to be critical stages in crop production (Eitzinger et al., 2003; Trnka et 

al., 2010).  

As Dubrovsky et al. (2009) indicated, dry agricultural areas will experience droughts and heat 

stresses, limiting crop production at sensitive stages of plant development.  According to 

Thaler et al. (2012), the crop-growing period in the ‘Marchfeld’ region will be shortened by up 70 
to 20 days with a respective temperature increase of 2°C, leading to reduced yield potential of 

winter Wheat. Such a scenario is featured in Lalic et al. (2018), related to the climate normal 

and its spatial scale, indicating global temperature increase regardless of the location.  

 

With inter-annual variability in crop production, these aggravated conditions foster a growing 

necessity for an efficient technique for seasonal forecasting and adapted crop management 

(Lalic, Firanj Sremac, et al., 2018). Digital techniques such as remote sensing with satellite 

images have good applicability to detect crop water stress before irreparable losses occur 

(Ezenne et al., 2019). Such measurements have a high potential to supplement in-situ 

methods like Time Domain Reflectometry (TDR) testing to optimize agricultural production 80 
(Ezenne et al., 2019). Nevertheless, spatio-temporal variability is unaccounted for with in-situ 

measurements.  

Another advantage can be the application of agronomic growth models, interfaced with remote 

sensing data, which accounts for the incorporation of geographic heterogeneity (Todoroff, De 

Robillard, and Laurent, 2010). Precision agriculture’s aim is hereby less input (e.g., water) 

while increasing the quality and quantity of the agricultural output (Ezenne et al., 2019). 

Todoroff, De Robillard, and Laurent (2010) showed that remote sensing data interfaced with 

agronomic models are robust and cheap to estimating the total available water capacity of the 

soil, especially on large-scale applications. 

1.3 Limiting factors in our case study region - Marchfeld 90 

Regions without limited water access will presumably boost production potential with rising 

temperatures and subsequently have more extended vegetation periods (Lalic, Eitzinger, et 

al., 2018). 

However, semi-arid conditions, prevalent within the ‘Marchfeld’ region, combined with scarce 

SM during sensitive growth stages, significantly impact crop yield or even crop failure (Thaler 

et al., 2018). This regional limiting factor strongly influences yield potential (Lalic, Eitzinger, et 
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al., 2018). Lalic et al. (2018) showed in simulations that this low soil water storage capacity 

causes significant yield response with cultivars like winter Wheat. 

One of the most determining factors for crop growth is its soil’s total available water capacity 

affecting physical characteristics and soil depth (Todoroff, De Robillard, and Laurent, 2010).  100 
As Saseendran et al. (2015) mentioned, the failure to supply the root zone with adequate water 

supply is directly connected to plant water stress, which leads to a reduction in crop quality 

and yield (Saseendran et al., 2015). 

 

According to Hall (2001), frequent heat stress leads to intense water stress, causing the plant’s 

stomata to close, resulting in lower yields. Such rising leaf temperatures and reduction of 

transpiration cooling effects occur thus at the same time. 

The resistance to drought depends on the plant or crop and the stage of reproductive 

development concerning flowering and fruit development stages (Hall, 2001). For example, dry 

grain production of crops has relatively higher drought resistance than fleshy fruit production  110 
(Hall, 2001).  

 

Another essential factor is the rise in CO2 atmospheric concentrations, which may boost 

photosynthetic activity and biomass accumulation (e.g., higher water use efficiency) of specific 

plants (e.g., C3 crops) (Lalic, Eitzinger, et al., 2018). Nevertheless, it is crucial to keep in mind 

that lower CO2 concentrations may limit the factor for photosynthesis of plants (Lalic, Eitzinger, 

et al., 2018). 

1.4 Foundation and difficulties of the research 

The research's core foundations are the in-situ measurements of TDR, Frequency Domain 

Reflectometry (FDR), and Parrot sensors. Unfortunately, these point measurements reflect the 120 
spatio-temporal resolution inadequately. In addition, long-term in-situ measurements are costly 

and time-consuming. Thus, remote sensing data and simulation models such as S1ASCAT, 

ARIS, SMAP and, AquaCrop are implemented to increase spatio-temporal resolution to 

measure and subsequently estimate SM on site.  

A combined approach to estimate and measure SM is one of the underlying drivers of this 

research. A sound understanding of coherences between the in-situ sensors and remote 

sensing and simulation data on a small-scale farm paddock is particularly investigated. For 

example, Todoroff, De Robillard, and Laurent (2010) found that field data with probes help 

perform spatial visualization as maps in a geographic information system. Nevertheless, high 

soil heterogeneity complicates such projections (Todoroff, De Robillard, and Laurent, 2010). 130 
Hence, understanding the spatial variability over time is an additional important aspect 

considered in the present study. A combination of remote sensing and simulation methods is 

analyzed to achieve better estimation results.  

The especially coarse spatial resolution of remote sensing images for farm-scale usage might 

require additional input parameters or leverage simulation models to increase SM's spatial 

variability detection and estimation. 

Therefore, combining simulation models with remote sensing is a promising opportunity to 

achieve higher spatio-temporal SM estimation for farm-scale usage. 
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1.5 Research Questions 140 

1. How can satellite-based remote sensing contribute to high spatial resolution crop-soil-

water relation analysis at arable land (using a case study at an experimental field of 

BOKU in Rutzendorf)? 

 

2. In what way are current microwave and modeling remote sensing techniques like 

S1ASCAT and modeling tools, such as ARIS or AquaCrop, applicable in estimating 

spatial variability of SM to contributing towards improved irrigation scheduling and 

further management practices to combat increasing droughts? 

 

3. What are the limitations of various SM estimation methods and the potentials for a 150 
combination of strategies? 

1.6 Objectives 

The main objective of the thesis is to evaluate modeling and remote sensing methods vs. in-

situ methods for spatio-temporal SM assessments in agricultural fields. The idea is to help 

improve land management strategies for crop production and promote easier and reliable 

measurement methods for crop soil-water relations in the spatial context.  

 

1. Examination and comparison of the applied methods of the on-site field measurements 

and the available modeling and remotely sensed data, including delineation of the 

spatial variability of the soil-water relations. 160 
 

2. Analysis of the spatio-temporal relationship (of the grid layer at the test-site Rutzendorf) 

between the soil, soil water content, and crop condition, using the spatial variability of 

results from different approaches (measurements and models) to delineate possible 

enhancement practices for crop production. 

 

3. Identification of potentials, using synergy effects of combined SM estimation methods, 

determines factors and dynamic processes of spatio-temporal variability of soil-water 

relations for crop production enhancement (using crop simulation software).  

1.7 Hypothesis  170 

1. Calibrated S1ASCAT and ARIS data and AquaCrop simulated soil water content are 

beneficial tools to achieve crop-soil-water relations and delineate SM's spatial (and 

temporal) variability compared with in-situ measuring devices. 

 

2. The estimation of SM with S1ASCAT, SMAP, ARIS, or AquaCrop channels further 

developments in management practices or even in irrigation scheduling.  

  

3. A combination of methods such as remote sensing with modeling can improve or 

increase calibration significantly for delineation of spatio-temporal SM.  

  180 
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2. Fundamentals 

2.1 How is SM estimated? 

Modern SM estimation is provided by three different approaches at the current stage, 

comprised of in-situ observations like TDR or FDR, remote sensing techniques with thermal 

infrared (TIR) or microwave sampling, or modeling approaches (Brocca, Ciabatta, et al., 2017). 

These techniques are researched among the scientific society to achieve SM estimation 

methods (Brocca et al., 2017).  

According to Thaler et al. (2018) pose satellite-based SM products an innovative source of SM 

information concerning spatio-temporal scales. Satellite data prepared with geographic 

information systems (GIS), in combination with crop modeling is thus, an essential asset in 190 
analyzing interactions between spatial and temporal phenomena (Todoroff, De Robillard, and 

Laurent, 2010). Hence, the combination of approaches like these is promising for SM 

estimations.  

2.1.1 In-situ measurements  

The overall reference method for SM measurements is the gravimetric technique. However, it 

is time-consuming and invasive, with soil samples being extracted from the site (Brocca, 

Ciabatta, et al., 2017).  

Equation 1 shows how gravimetric water content (w) is calculated. The mass of water is divided 

by the mass of soil.  

 200 

Equation 1: Gravimetric water content (𝜃𝑔 or w) 

𝑤 𝑜𝑟 𝜃𝑔 =
𝑀𝑚𝑜𝑖𝑠𝑡 −  𝑀𝑑𝑟𝑦

𝑀𝑑𝑟𝑦
 

 

In comparison, Equation 2 highlights how volumetric water content is defined. It is like Equation 

1, however, on a volume basis.  

 

Equation 2: Definition of volumetric water content (𝜃𝑣) 

𝜃𝑣 =
𝑉𝑤𝑎𝑡𝑒𝑟

𝑉𝑠𝑜𝑖𝑙
 

 

As a result of this, the volume of water is divided by the volume of soil [
𝑚³

𝑚³
].  210 

 

As featured in Figure 1, the soil comprises soil minerals, fauna, and organic matter. Its pores 

are filled with water and air, depending on the porosity and the soil texture.  
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Figure 1: Components of a known volume of soil (Source: METER, 2020) 

In Equation 3, the volumetric water content equals the gravimetric water content times the bulk 

density of the soil.  

 220 

Equation 3: Calculation of volumetric water content (𝜃𝑣) 

𝜃𝑣 = 𝑤 ×  𝜌𝑏 
 

Nevertheless, new methods are calibrated and tested according to the above reference 

methods. 

A common standard approach for SM measurements was found in TDR sensors, providing 

accurate measurements for a wide range of soils, replacing the initial reference method, the 

gravimetric technique (Brocca, Ciabatta, et al., 2017). The benefits of TDR are its less time 

consumption and little to no disturbance during measurements (Brocca, Ciabatta, et al., 2017).  

As Brocca et al. (2017) show, the FDR technique is currently the most used approach for 230 
applied in-situ SM measurements due to its lower costs than TDR sensors.  

 

However, in-situ measurements, such as TDR and FDR measurements, provide only low 

spatial representativeness, which comes with the point in-situ measurements of SM (Brocca, 

Ciabatta, et al., 2017). Regular point measurements of SM, for instance, require high 

maintenance of the measurement networks with elevated economic costs and human resource 

inputs (Brocca, Ciabatta, et al., 2017). 

2.1.2 Remote Sensing 

Innovations in satellite remote sensing offer modern and new research fields for SM 

measurements, with limitations in-depth and dense vegetation (Rahimzadeh-Bajgiran and 240 
Berg, 2016). According to Brocca et al. (2017), these large-scale SM measurements are best 

to obtain soil water information remotely. Different methods were developed for SM 

measurements, such as microwave, optical, and thermal sensors (Rahimzadeh-Bajgiran and 

Berg, 2016).  

Microwave instruments are the most common methods, designed either as passive or active 

sensors (Brocca, Ciabatta, et al., 2017).  

 

The advantage of microwave remote sensing applications for SM estimation is the relatively 

high Spatio-temporal coverage regarding costs (Brocca, Ciabatta, et al., 2017). However, the 

accuracy is lower than for in-situ measurements as remote sensing applications for SM are 250 
limited by the topsoil layer penetration of radar sensors (2-7 cm), its coarse spatial resolution 

(>10 km), and quality issues with mountainous terrain or highly vegetated surfaces (Brocca et 
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al., (2017). Such high spatio-temporal coverage provides valuable insight into large-scale soil 

water fluxes. 

 

Besides microwave sensors, TIR remote sensing methods are available to determine SM. 

Their high spatio-temporal resolution and long-term acquisition are advantageous, yet, the TIR 

surface penetration is minimal with 1 mm and limited due to vegetation density (Rahimzadeh-

Bajgiran and Berg, 2016). 

2.1.3 Modelling  260 

According to Lalic et al. (2018), process-oriented simulation models can assess complex soil-

crop-atmosphere systems. AquaCrop or other simulation programs such as the Agricultural 

Risk Information System (ARIS) help to model and estimate vital parameters of cropping 

systems (Lalic, Eitzinger, et al., 2018). Several other simulation programs provide modeling 

approaches featuring different scenarios.  

Nevertheless, such agroclimatic models can be used to investigate crop yield or SM content 

under specific boundary conditions and to find adequate strategies for adaptation to mitigate 

adverse climate change effects on crops (Lalic, Eitzinger, et al., 2018).  

Thaler et al. (2018) show in their research how crop model simulations provide an attractive 

tool to monitor drought and water status, which eventually leads to more efficient use of soil 270 
water and improved irrigation practices. It aligns with the research of Aydin (2008), stating that 

strategies for soil water conservation are directly linked to knowledge about soil water balance 

and thus, constitute an effective management strategy. 

Particularly knowledge about characteristics of cropping systems establish the foundation of 

understanding crop available water in the root zone (Aydin, 2008).  

Input parameters of such models are vital to accurately simulate complex models (Thaler et 

al., 2018). Despite that, models still represent simplifications of fairly complex interactive 

systems (Thaler et al., 2012; Lalic, Eitzinger, et al., 2018). 

Abundant modeling concepts have been invented in the past and researched to simulate 

predictions. Nevertheless, assumptions need field data and field experiments for background 280 
information as well as calibration.  

2.2 Crop Types  

2.2.1 Summer Barley - Hordeum vulgare   

During the vegetation period of April to July 2018, Buckwheat and Grain Pea were cultivated. 

However, due to similarities in cultivation, Barley is used for the AquaCrop simulation and ARIS 

data extraction. Thus, Barley is featured within this descriptive section.  

Barley has the broadest range of production areas worldwide, from high altitudes to deserts 

and towards the arctic circle. Its adaption to climate conditions is intensely competitive. Hence, 

this safe and annual cool-season crop is ranked fourth in the world production behind Maize, 

Rice, and Wheat, concerning yield. Barley is traditionally used for livestock feed and forage as 290 
well as human food and malt beverages. The different uses require quality traits and cultivar 

acceptance to meet demands (Anderson et al., 2009).  

Higher protein levels of winter Barley and its higher yield are subsequently used to boost 

animal fodder production. However, lower protein levels (<11.5%) of summer Barley, on the 

contrary, are thus primarily used for malting and brewing (BMLRT, 2020). 

Moreover, the yields and planting dates differ between winter and summer Barley. Indeed, 

winter Barley is sown at the beginning of October and demanding less quality to soil, utilizing 

humidity more beneficial over the winter. Additionally, composition nutrients of winter Barley 

benefit from an uptake over a more extended period. In contrast, summer Barley is planted in 
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early spring, requires specific soil conditions, and develops less sophisticated or stress-300 
resistant root systems (BMLRT, 2020). 

In Austria, the production of summer Barley declines due to the emerging production of winter 

Barley (BMLRT, 2020). However, especially rising biofuel production efforts with crops like 

Maize, Rapeseed or, Wheat increase the overall expenses of Barley, respectively (Anderson 

et al., 2009). 

Typically, the growth time of summer cereal is only a couple of months, starting with the sowing 

date in spring and harvest in the summer months, depending on the climate (BMLRT, 2018).  

2.2.2 Winter Wheat – Triticum aestivum  

Triticum aestivum (Wheat) has three growth habits. It can be categorized as winter-, 

facultative- and spring Wheat. In contrast, these growth habits need to be seen as a continuum, 310 
starting with winter Wheat in winter over facultative in between and finishing with summer 

Wheat (Anderson et al., 2009).  

According to the crop rotation scheme in Rutzendorf, winter Wheat was cultivated on the 

experimental plot during the period of 2018 to 2019 (Freyer et al., 2013). Its sowing date was 

during the winter months in November of 2018.  

With its ability to withstand prolonged cold temperatures below freezing point, winter Wheat 

also benefits from its drought tolerance. With the worldwide expanded cultivation of Wheat for 

human consumption, it is by far the most planted crop worldwide. Primarily it is used for human 

consumption (Anderson et al., 2009).  

Annual summer crops are complementarily grown in a crop rotation scheme with winter Wheat. 320 
Growth parameters like season and moisture availability determine the crop rotation scheme. 

However, in a broader sense, winter Wheat can be separated into gene pools or groups based 

on end-use properties or agroecological adaptations (Anderson et al., 2009).  

The main crop in Austria is Wheat due to its favorable conditions with an average yield of 5.5 

tons per hectare. In 2019, the yield from the test site was 4.6 tons per hectare.  

Typical regions for Wheat cultivation are central and eastern Lower Austria and the northern 

and central Burgenland with its Pannonian climate zone.  

These regions with deep, humus-rich soils foster high-quality Wheat. Nevertheless, western 

Lower Austria and Upper Austrian Wheat production benefit from higher water availability 

resulting in elevated annual yields (BMLRT, 2020).  330 
In general, winter cereals are planted around September, depending on crop type and weather 

conditions, with final harvests around June to July in the following year (BMLRT, 2020).  

2.2.3 Winter Rye – Secale cereale  

Rye is a minor but traditional cereal originating and mainly grown in Europe (Poutanen, Katina, 

and Heiniö, 2014). Indeed, the countries of Russia, Belarus, Poland, and Germany contribute 

about 75% to the total global production (Anderson et al., 2009).  

The primary benefit of Rye is the overwintering capability and high tolerance towards salt, 

aluminum, and drought stresses (Anderson et al., 2009).  

Its productivity is relatively high on low fertile, sandy, or acidic soils. Thus, Rye can be 

cultivated in regions where low to no suitability for other cereal crops predominates (Poutanen, 340 
Katina and Heiniö, 2014). Its composition is comparable to Wheat, including more dietary fiber 

(Poutanen, Katina, and Heiniö, 2014).  

The main cultivation area in Austria is the Waldviertel region of Lower Austria. Its requirements 

regarding climate are relatively low (BMLRT, 2020). Austrian Rye is mainly cultivated as winter 

cereal, with most of its production used for bread and human food, because of its good source 

of micronutrients, vitamins, and minerals (Poutanen, Katina and Heiniö, 2014; BMLRT, 2020). 
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Regardless, the production of fodder, biofuel, and alcohol are also connected to Rye cultivation 

(Anderson et al., 2009). Winter Rye is planted around September and grows throughout the 

winter months towards maturity in June to July (BMLRT, 2020).  

  350 
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3. Material and Methods 

3.1 Research location 

3.1.1 Study area   

The experimental field for this research is located close to the village Rutzendorf, in the north-

eastern part of Austria (Lat. 48.2075° N, Lon. 16.625° (Figure 2). It comprises one paddock, 

managed by the organic farm of the ‘Landwirtschaftlichen Bundesversuchswirtschaften (BVW) 

GmbH’. Rutzendorf is part of the municipality of Groß-Enzersdorf, situated about 8 km to the 

east of the borders of Vienna in the district ‘Weinviertel’.  

The region is commonly called ‘Marchfeld’ (Figure 2), covering 90’000 ha, known as Austria's 

largest plain and granary (Thaler et al., 2012).  360 
 

 

Figure 2: Map of the study area located in the district of Groß-Enzersdorf, Marchfeld, including an 
orthophoto of the study site with GPS landmarks in yellow  
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Typical rain-fed crop types in the Marchfeld are winter Wheat or cereals. In contrast, other 

essential crop types are often subject to irrigation throughout the year with respect to 

vegetables, potatoes, maize, and sugar beets (Thaler et al., 2012; Novelli et al., 2019).  

The terrain is flat, and the geomorphology is shaped by the river Danube running along the 

west and south. Variations in elevation range between 143 to 178 m above sea level (Thaler 

et al., 2012). Especially the former floodplains and terraces of the river Danube were subject 370 
to sedimentation and deposits from meandering (Stadt Wien, 2020). Over time, Loeß 

depositions from the ice age in the region Weinviertel, one-quarter of the state Lower Austria, 

provide an abundance of soil types and thus foster a great arable plain for crop production 

such as the Marchfeld offers (Brandtner, 1954). 

The test side in Rutzendorf is divided into eight individual sections with different crop types, 

rotating on an annual basis. However, the experimental field researched is section one, with 

its 17 ha and 150 m above sea level (MUBIL project report, 2012).  

3.1.2 Climate 

The climate in the Marchfeld region is warm-temperate and fully humid with warm summers. It 

lies in the transition zone of a semi-humid Western-European and continental East-European 380 
climate (Thaler et al., 2012).  

During summer, the climate is hot and periodically dry. In winter, the conditions are cold with 

frosts and little snow cover. Especially in summer and early fall, stable high-pressure systems 

occur with a tendency to lower wind speeds. Conversely, in winter and especially in spring, 

low-pressure systems convey higher wind speeds to the Marchfeld (Mueller, 1993).  

High levels of sunshine and temperature with low precipitation during the growing period result 

from the phytogeographical and climatological aspects of the Marchfeld, or the so-called 

‘Pannonicum’ (Thaler et al., 2012). A mean temperature of >5° °C throughout the growing 

period from the middle of March until the middle of November provides the region with 

approximately 240 days of growing period (Cepuder and Schlederer, 2002). 390 
Between 1989 to 2020, the total annual precipitation lies at 469 mm, and its mean temperature 

is 11.2° °C per year, characterizing the semi-arid region of Marchfeld (Figure 3). 

 

Figure 3: Climate diagram of the town Groß-Enzersdorf  
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3.1.3 Soil Conditions 

Several soil parameters were determined during the ‘MUBIL’ project started in 2002. With the 

help of a soil survey, these parameters were assessed. Still, a shift from conventional farming 

practices to organic farming practices changed soil parameters throughout the project phase. 

This thesis's current state of the soil parameters is based on ‘eBod’ and the MUBIL project 

reports. 400 

From a geological perspective, the Marchfeld is part of the Viennese basin, with the area 

around Rutzendorf shaped by the ‘Prater Terraces’ with young river depositions of Loeß, 

consisting of loamy silt increasing with depth (Sperl, 2013; Stadt Wien, 2020). The soil's parent 

material in Rutzendorf consists of fine sediments, with Chernozem being the prevalent soil 

type (BFW, 2020). Chernozems are typically rich in organic matter, located predominantly in 

regions with cold winters and hot, dry summers, driven by a continental climate (Micheli, Schad 

and Spaargaren, 2006).  

According to the digital soil map eBod, roughly three different soil types are located within the 

study area, as depicted in Figure 4. The soil depths are primarily deep and medium-heavy to 

heavy. Predominantly the upper soil horizon (A1, A2, AC) of the south- (soil type B1) and 410 
(horizons A, AC) of the western (soil type B2) part of the experimental field is composed of 

loamy sand. However, loamy silt and sandy clay are located in the north-eastern test site (soil 

type B3) (horizons A, AC). Within the C horizons in the south-western parts exists loamy sand 

to sand with gravel starting at a depth of 60 cm. The eastern part (B3) of the study site has a 

C1 and C2 horizon consisting of sandy silt and sand to sandy silt (BFW, 2020)   

 

 
Figure 4: Visualization of soil type A) one (B1), B) two (B2), and C) three (B3) (Source: BFW, 2020) 

The topsoil has a composition of humus and clay. Its soil type is Chernozem, with the mineral 

soil surface layer being loamy sand and sandy silt loam (Eitzinger et al., 2003; Freyer et al., 420 
2003). Figure 5 features the different soil types spread out over the experimental field. 

 

A) B) C) 
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Figure 5: Orthophoto of the experimental field in Rutzendorf, depicting the three prevalent soil types 

(B1, B2, B3) on-site with colored dots indicating the in-situ sensors (Source: modified after BFW, 
2020) 

The soil in Rutzendorf has a high heterogeneity with different soil types (Figure 5). 

However, the prevalent soil type is silt loam, which has a field capacity of around 27 % vol. 

The wilting point lies at 13-14 % vol. in the topsoil layers (METER, 2020).  

The Parrot sensors are ordered according to the prevalent soil types, respectively.  430 
 

The groundwater table in the Marchfeld region is typically below 6 m depth; nevertheless, it 

fosters high spatial variations of water storage capacity (Eitzinger et al., 2003). The influence 

of groundwater on the rooting zone of crops depends on the crop type, respectively.  

 

The available water content (AWC) varies throughout section one from low over moderate to 

low and moderate to high. Field capacity (FC) ranges between 60 – 300 mm. Although, soil 

drainage on-site can be categorized into moderately well-drained to well-drained (BFW, 2020). 

The carbon content and the pH of the chernozem soil in Rutzendorf increases with depth; the 

content is typical for this kind of soil. Overall, its carbon content lies at >5.0% carbonate (Freyer 440 
et al., 2003). The soil of the experimental test site is alkaline per definition and according to its 

respective pH range between 7.3 and 8.0 units (BFW, 2020).  

Generally, the arable land of the experimental test site is classified and fluctuates between 

moderate to high ratings (BFW, 2020). Concerning cation exchange capacity, the rating of the 

soils decreases as the CEC decreases with depth (Freyer et al., 2003). Nitrate retention 

capacity on-site provides moderate (260 – 340 mm) to high (340 – 420 mm) values, according 

to the web-based digital soil map eBod (BFW, 2020). 
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3.1.4 Management Strategy  

The BVW GmbH operates the experimental test fields rain-fed organically since 2002. The 

final goal is a crop rotation scheme featuring six different crop types, alternating during eight 450 
years. Nevertheless, eight different test sections foster the crop rotation scheme accordingly. 

Crops featured in the rotation scheme are summer Barley, winter Barley, Alfalfa, winter Wheat, 

winter Rye, Grain Pea, and Grain Maize. The rearrangement towards organic management 

consists of a fertilizer application scheme comprising mineral fertilizer, liquid biogas manure, 

stable manure, compost, and green manure (Freyer et al., 2003, 2013).  

After the project started in 2002, wildflower strips were applied in accordance with existing 

shrub and forest strips along the edges of the sections throughout the experimental field. The 

total area of wildflower strips counts 5.10 ha. Hedges along the border of sections provide wind 

speed reduction and foster ecological variety for flora and fauna (Freyer et al., 2003, 2013). 

As a previous step to cash crop sowing, basic tillage in the form of plowing is part of the 460 
management strategy. In the case of Lucerne planting, a cultivator is used before seeding. The 

annual harvest is executed mechanically in accordance with organic farming practices (Freyer 

et al., 2013). 

3.2 In-situ sensors for data acquisition 

3.2.1 Time Domain Reflectometry (TDR) 

The TDR sensor was used for data acquisition of reference samples. Throughout the summer 

of 2019 and summer 2020, data samples were acquired on the experimental test field to 

evaluate the accuracy of volumetric water content measurements. 

 

The TDR device in use is portable in a backpack (Figure 6), powered with a 12 V car battery, 470 
and requires roughly 20 seconds to acquire the value of volumetric water content in percent. 

The setup features a voltmeter that gives the final output of volumetric water content.   

Amongst the advantages of TDR measurements is the missing requirement of soil-specific 

calibration (METER, 2020). Moreover, the TDR sensor’s accuracy is superior to other SM 

measurements, with its simple procedure to obtain volumetric soil water content values (Jones, 

Wraith and Or, 2002).  

Another important aspect and benefit of a TDR measurement is the low susceptibility to error 

compared to capacitance sensors. Nevertheless, it is important to stress that the visual 

interpretation of TDR sensor output can be likewise subject to errors (METER, 2020). 

 480 
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Figure 6: Setup of the TDR measuring instrument, comprising of a voltmeter, a car battery, the sensor, 
and a portable backpack 

3.2.2 Concept behind TDR and FDR sensors 

The main principle of TDR measurements is the embedment of the sensor’s probe in the soil 

(Jones, Wraith, and Or, 2002). The TDR in-situ measurement with its probe generates an 

electromagnetic pulse traveling through the soil between the sensor's electrodes (Jones, 

Wraith and Or, 2002; Krzic et al., 2010). Along this transmission line L, the electromagnetic 

wave propagates through surrounding matter with respect to time (Krzic et al., 2010). This 490 
transit time t is related to the dielectric permittivity of the medium k (k is not featured in Equation 

4). Hence, the dielectric permittivity in soils (k) is strongly related to the water content and the 

unique properties of water molecules, respectively (Krzic et al., 2010).  

Equation 4: Transit time through matter 

𝑡 =
2𝐿√𝑥

𝑐
 

 

In Equation 4, the letter t is the transit time of an electromagnetic pulse to return, with relation 

to the dielectric permittivity of the medium k (the letter k is not featured in Equation 4), where 
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L is the length of the transmission line and c is the speed of light  (3 × 108 [
𝑚

𝑠
]  𝑖𝑛 𝑎 𝑣𝑎𝑐𝑢𝑢𝑚) 

(METER, 2020).  500 

As TDR or capacitance probes (FDR sensors) measure reflection or charge in the soil medium, 

an oscillating voltage must be applied. Capacitance probes cover frequencies between 50 and 

100 MHz, whereas TDR probes have much higher frequencies (Jones, Wraith, and Or, 2002). 

Research suggests that frequencies lower <10 MHz are more likely subject to errors related to 

salinity or temperature fluctuations. Thus, oscillation frequencies are essential for the 

respective SM measurements (METER, 2020).  

TDR and capacitance sensor systems are analogical SM measurements assessing the 

dielectric permittivity of the soil. Compared to TDR measurements determining the travel time, 

the capacitance technique determines the charge time of the dielectric permittivity of the 

medium. However, these two techniques frequently get confused because both measurements 510 
define the volumetric soil water content (METER, 2020).   

In comparison, the capacitance technique is featured in Equation 5 and defines the relationship 

between time t to charge a capacitor with a starting voltage Vi towards a voltage Vf. In Equation 

5, the letter C is the capacitance, R is the resistance in series, and the letter t represents the 

charge time (METER, 2020). 

Equation 5: Capacitance calculation 

𝑒
−𝑡
𝑅𝐶 =  

𝑉 − 𝑉𝑓

𝑉𝑖 −  𝑉𝑓
 

 

To get an idea how the charging looks like, Figure 7 provides an illustration of the process.  

 520 

Figure 7: Charging process of a capacitor with respect to time (Source: METER, 2020) 

The charge time t of the capacitor is reached if the voltage and resistance ratios are constant. 

After constant resistance and voltage ratio, Equation 6 gives us the charge time of the capacitor 

(METER, 2020).  

Equation 6: Calculation of charge time t of the capacitor 

𝑡 = −𝑅𝐶 × 𝑙𝑛 ⌊
𝑉 − 𝑉𝑓

𝑉𝑖 −  𝑉𝑓
⌋ 
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According to Equation 7, featuring a parallel plate capacitor, capacitance is a function of the 

dielectric permittivity of the medium (k) between the plates (METER, 2020). 

 

Equation 7: Parallel plate capacitor and its capacitance 530 

𝑐 =
𝑥𝐴

𝑆
 

 

This principle applies to parallel plate capacitors. In Equation 7, A defines the area of the 

plates, whereas S is the separation between the plates or sensor’s plates. Nevertheless, both 

are fixed values. Thus, the charge time of the capacitor is a linear function of the dielectric 

permittivity of the medium (k) and can be calculated with Equation 8 (METER, 2020).  

 

Equation 8: Linear function of the dielectric permittivity 

1

𝑥
=

1

𝑡
[
𝑅𝐴

𝑆
𝑙𝑛 (

𝑉 − 𝑉𝑓

𝑉𝑖 −  𝑉𝑓
)] 

 540 

Due to the relationship of parallel plate capacitors in Equation 7, different sensor rods are 

usable for soil probes. For example, TDR determines the dielectric permittivity (k) based on 

measurements of time t traveling as an electromagnetic wave along the transmission line L 

(METER, 2020).  

Hence, a TDR measurement processes the transit time t of the electromagnetic pulse along 

the transmission line L, with respect to the dielectric permittivity (k) (Equation 9). 

 

Equation 9: TDR determines k based on t along the transmission line 

𝑡 =
2𝐿√𝑥

𝑐
 

Equation 9 features the length of transmission line L and c as the speed of light 550 

(3 × 108 [
𝑚

𝑠
]  𝑖𝑛 𝑎 𝑣𝑎𝑐𝑢𝑢𝑚). However, the propagation time of the electromagnetic wave is a 

function of fixed values (c and 2L). Theoretically, TDR measurements are less susceptible to 

alternating soil and environmental conditions (METER, 2020). 

Concerning the dielectric constant, the air has a value of one, whereas water has a constant 

of 80. Hence, water strongly influences the transit time t of electromagnetic waves in a medium 

(Roth, Malicki, and Plagge, 1992).  

In contrast, several solid soil components have dielectric constants between two and seven 

(Topp, Davis, and Annan, 1980). Therefore, the dielectric constant is a strong function of water 

content yet a helpful predictor of volumetric SM content (METER, 2020). 
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The absolute soil saturation for the TDR device used is expressed in volumetric terms 560 

(
𝑚³𝑤𝑎𝑡𝑒𝑟

𝑚³𝑠𝑜𝑖𝑙
). Relative SM in comparison is determined by a percent of saturation and 

dimensionless. 

3.2.3 Data Generation 

The reference data acquisition with the TDR sensor took place on April 4th, 2019. 35 GPS 

coordinates spread out on the experimental test field were subject to data acquisition. Seven 

more TDR measurements were taken on June 1st, 2019. On July 5th, 2019, 59 GPS coordinates 

were subject to measurements and data acquisition for additional reference data.  

Another set of data acquisition took place on May 18th, 2020, with the TDR sensor and a total 

of 17 GPS coordinates were subject to SM measurements. On June 17th, 2020, 70 SM 

measurements were acquired for the respective GPS coordinates.  570 

In summer 2020, a new approach featuring a zoom effect required additional data points and 

was acquired on July 24th, 2020. The new method consists of 36 data points within a 250x250 

meter grid. A smaller grid comprising 125x125 m was introduced within the respective grid with 

an additional 36 data points. The last and considerably smallest grid with 50x50 m and another 

36 data points is missing 27 observations due to the malfunctioning of the TDR sensor. 

However, nine observations could be acquired within the smallest (50x50 m) grid.  

The different grids featuring a zoom effect are depicted in Figure 8.  
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Figure 8: Orthophoto of the experimental field in Rutzendorf with different grids and different GPS 
points on July 24th, 2020 580 

3.2.4 Parrot Flower Power (Parrot) 

The sensor used in the study for the daily data generation from April to July 2019 was the 

Parrot sensor. It is developed by the French company Parrot SA and designed for private 

indoor usage to provide information about potted plants (Parrot, 2016). The sensor generates 

soil data, comprising air temperature, light intensity, soil humidity, and fertilizer content of the 

respective soil conditions (Parrot, 2016). According to Xaver et al. (2019), the Flower Power 

sensor measures the soil water content with a capacitance probe.  

The capacitance method is widely researched, with an electromagnetic field being generated 

and transmitted into the soil via the sensor’s electrodes (Kizito et al., 2008). The respective 

charge time is related to the capacitance of the soil and thus related to the dielectric permittivity 590 
of the medium between the sensor’s electrodes (Kizito et al., 2008). As a result of the higher 

dielectric permittivity, the probe is sensitive to soil’s water with a dielectric constant of 80, while 

respective soil constituents have constants between two and seven (Topp, Davis, and Annan, 

1980; Roth, Malicki and Plagge, 1992; Kizito et al., 2008). 

The Parrot sensor’s electrodes have a length of ten centimeters constantly in contact with the 

soil (Parrot, 2016). According to Xaver et al. (2019), the Parrot sensor assesses the soil water 

content with two flat rods. The fertilizer level assessment is based on the electric conductivity 
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and is featured in item 3 of Figure 9. Electric conductivity is described as the ability of ions in 

an electrolyte solution to conduct electricity (Otterson, 2015).  

 600 
Figure 9: Composition of the Parrot Flower Power sensor (Source: Parrot, 2016) 

Thus, the concentration of ions is proportional to an increasing electric conductivity. The higher 

the level of fertilizer, the higher the sensor unit’s response. 

In contrast, the temperature and light intensity is measured with the above-ground sensors of 

the Parrot unit. In Figure 9, the four different items of the Parrot sensor are visualized. The 

sensor’s upper construction is shaped like a fork and fosters the thermometer and the light 

sensor, measuring a wavelength range between 400 and 700 nm to capture visible light (Xaver 

et al., 2019).  

According to Parrot (2016), its sensor is powered with one AAA battery, 1.5V. It can operate 

on one battery life between six to twelve months (Xaver et al., 2019). However, weather 610 
conditions shape the time frame of the battery charge. Every 15 minutes, four observations 

can get unloaded and stored on the device. Data storage lasts up to 80 days before overwriting 

occurs (Parrot, 2016; Xaver et al., 2019).  

The manufacturer Parrot SA provides a specialized ‘Flower Power app’ to access the collected 

data from the sensor. It is available for both Android as well as iOS operating smartphones. 

The connection is executed via the Bluetooth interface of any given phone, provided the 

respective application is installed. As soon as the connection is set up, the observed data is 

transferred into the app. While connected to the internet, the observations are uploaded into 

the Parrot SA Cloud. The data periodicity can be displayed in a corresponding graph featuring 

long-term trends regarding the four parameters (Parrot, 2016).  620 

The Flower Power sensors were set up in a 50 x 50 m interval to acquire relevant data for the 

experiments. Overall, 66 Flower Power sensors received temperature, light intensity, soil 

humidity, and fertilizer content from April 4th, 2019, until June 5th, 2019. The Flower Power 

sensors were set up in pairs to ensure optimal data acquisition and comparison of results for 

operational safety and error reduction.  

3.2.5 METEO weather station 

As part of the experimental field setup, various meteorological stations and instruments are 

installed to investigate and measure continuously (Figure 10). One of the weather stations is 

located to the western edge of the experimental field and connected to a data logger, powered 

by a solar panel with live transmission into a ‘Zentra’ cloud.  630 
It is fully equipped, accommodating an air temperature probe, a rain gauge, and a four-

component radiometer probe.  
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Diagonally across the field, a Scintillometer expands, consisting of a transmitter and receiver 

unit. These measurements detect small fluctuations of the refractive index of air parcels 

caused by temperature, humidity, and air pressure. A supplemental weather station is set up 

in the center of the experimental field to acquire data for former MUBIL project partners. 

The relevant data of the METEO weather station in Rutzendorf was generated for the time 

frame of February 2019 to September 2020, including the daily minimum and maximum 

temperatures in °C, the overall daily precipitation [mm], wind speed [
𝑚

𝑠
], the solar radiation 

[
𝑀𝐽

𝑚²
], relative humidity [%], vapor pressure [kPa], and complimentary water content 640 

measurements based on the capacitance technique with an FDR probe in ten and 20 cm soil 

depth [vol. %].   

Complementary meteorological data were acquired from the ZAMG meteorological station in 

Groß-Enzersdorf from January 2018 to February 2019.  

The meteorological data from the Z-station were used as input parameters for the AquaCrop 

simulation. The FDR SM measurements in 20 cm were used for comparison as reference data 

for the vegetation period of 2020. 

 

Figure 10: Orthophoto of the experimental field with locations of the meteorologic measuring 
instruments 650 
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3.3 Remote sensing applications 

Remote sensing applications for SM measurements comprise active- and passive microwave 

sensors and passive optical/thermal infrared remote sensing methods (Rahimzadeh-Bajgiran 

and Berg, 2016). 

However, the most common remote sensing instruments to obtain SM products are active 

microwave sensors (e.g., Synthetic Aperture Radars (SARs) and, for example, scatterometers 

from the Metop-A/B satellite sensor (ASCAT)). Scatterometers have a rather coarse spatial 

resolution (25 km), yet an almost daily and, thus, high temporal resolution (Brocca, Ciabatta, 

et al., 2017; Lalic, Eitzinger, et al., 2018).  

Compared to the scatterometers, the SAR sensors have a low temporal resolution of several 660 
days up to a fortnight. However, its spatial resolution is rather high, with <1 km (Brocca, 

Ciabatta, et al., 2017). 

Passive sensors, on the other hand, with their spatio-temporal resolution, are characterized 

similarly to active microwave scatterometers such as the ASCAT sensor (Brocca, Ciabatta, et 

al., 2017). 

 

There are currently four different coarse resolution-satellite-surface soil-moisture products 

available, either with passive or active sensors (Brocca et al., 2017). The SM Active and 

Passive (SMAP) mission (36 km and three-day spatio-temporal resolution) (Entekhabi et al., 

2010). The Advanced Microwave Scanning Radiometer 2 (AMSR2) mission (25 km and one-670 
day spatio-temporal resolution) (Kim et al., 2015). Onboard, the Metop-A/B satellites are the 

Advanced SCATerometer (ASCAT) sensor (25 km and one-day spatio-temporal resolution) 

(Wagner et al., 2013; Thaler et al., 2018), and lastly, the SM and Ocean Salinity (SMOS) 

mission product (50 km and two-day spatio-temporal resolution) (George, 2013).  

Other subjective remote sensing applications are featured in Rahimzadeh-Bajgiran and Berg 

(2016), indicating advances in the field of passive TIR remote sensing methods for SM 

measurements.  

Especially the high spatio-temporal resolution and long-term acquisition of these sensors like 

LANDSAT, MODIS, or Sentinel 2 are advantages for SM estimation (Rahimzadeh-Bajgiran 

and Berg, 2016). 680 
However, amongst limitations of optical and thermal measurements are, according to Moran 

et al. (2004), impenetrable cloud cover, minimal surface penetration of 1 mm, vegetation 

density, but mostly, that after wetting incidents of the soil surface, rapid drying complicates 

relations of SM estimation (Rahimzadeh-Bajgiran and Berg, 2016). 

3.3.1 Optical and thermal wavebands (Passive Remote Sensing)  

Since the 80s, optical and thermal remote sensing has been subject to soil moisture estimation. 

The normalized digital vegetation index (NDVI) derivation is the most common vegetation 

index generated (Rahimzadeh-Bajgiran and Berg, 2016; Lalic, Eitzinger, et al., 2018).  

However, surface temperature (Ts) is amongst the products produced with optical and or 

thermal wavebands. The soil moisture estimation based on such sensors uses available 690 
information from NIR, TIR, and visible wavebands to determine the state of vegetation and 

phenological dynamics (Rahimzadeh-Bajgiran and Berg, 2016; Lalic, Eitzinger, et al., 2018) 

With the help of combined optical/thermal bands (surface temperature Ts, vegetation index 

VI), an estimation of SM is a promising method, as Ts and vegetation have a dependence on 

SM (Rahimzadeh-Bajgiran and Berg, 2016).  

Thus, according to Rahimzadeh-Bajgiran and Berg (2016), Ts is a good indicator for surface 

energy, which can be used as a surrogate for SM within the first 1-5 mm and estimation of 
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water stress of biomass. In the event of low SM, leaf temperature and surface temperature 

increase (Rahimzadeh-Bajgiran and Berg, 2016).  

The vegetation index and surface temperature relationship are linked to the ET surface rate, 700 
which can be used for small-scale monitoring purposes of soil water or vegetation status to 

reduce topographic variation. The theory is that rising Ts lowers the NDVI and comes with 

reduced ET and vice versa (Rahimzadeh-Bajgiran and Berg, 2016). 

Optical and thermal wavebands or passive remote sensing were not subject to direct SM 

estimation within this research. It comprises complementary information about current 

applications. 

3.3.2 NDVI and LAI to determine Canopy Cover  

In remote sensing, vegetation makes a significant difference, especially the interpretation of 

vegetated areas in general. The normalized digital vegetation index (NDVI) is used in several 

ecological and agronomic studies (Lalic, Eitzinger, et al., 2018).  710 
Earth-observing satellites equipped with multiband radiometers, like the SRS-NDVI, measure 

reflectance effortlessly in the NIR wavebands and provide the necessary information to 

calculate vegetation indices like the NDVI (Campbell, 2020). Based on calculations and 

approximations of NDVI, the LAI can be estimated (Campbell, 2020).  

Hereby LAI allows the tracking of vegetation over time and provides valuable information about 

surface albedo (Lalic, Eitzinger, et al., 2018).  

The definition of LAI is the leaves per unit area of the ground surface of a canopy (Lalic, 

Eitzinger, et al., 2018; Campbell, 2020).  

LAI is highly variable with season and vegetation. However, it is often used in ecological or 

hydrological models to measure crop or forest growth and its productivity for spatial and 720 
temporal patterns (Campbell, 2020).  

 

Direct and destructive measurements of LAI comprise of stripping the biomass off plants to 

assess LAI. An indirect and non-destructive measurement of LAI is related to variables, such 

as the amount of light transmitted or reflected from a canopy. Commercially available 

instruments for outdoor field usage utilize the amount of light energy transmitted by a plant 

canopy to estimate LAI (Campbell, 2020).  

 

In comparison, remote sensing LAI is estimated with the help of reflected light of biomass. Only 

very low reflectance is achieved within the electromagnetic spectrum's visible range (400 – 730 
700 nm). Nevertheless, wavelengths of the NIR (>700 nm) spectrum provide an elevated 

measurable reflection of biomass in correlation to its chlorophyll content (Campbell, 2020).  

Reflections in the NIR wavelength are elevated for an individual leaf under normal illumination 

(Figure 11). 
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Figure 11: Transmittance and reflectance of an individual leaf from 400 to 2000 nm (Source: 
Knyazikhin, Marshak and Myneni, 2005) 

A strong correlation exists between NDVI and LAI (Figure 12). Under field conditions, NDVI 

values range from zero to one, representing low and high LAI, respectively (Campbell, 2020).  

 740 

 

Figure 12: Relationship between NDVI and LAI (Source: Campbell, 2020) 

Theoretically, to directly estimate LAI, a crop-specific correlative relationship using NDVI 

values is necessary. This robust empirical model saves effort and time in the long run. For 
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example, a fitted linear regression model predicts LAI from NDVI measurements (Campbell, 

2020).  

However, only LAI values are processed in this study based on Ramirez-Garcia, Almendros, 

and Quemada's (2012) research. According to Ramirez-Garcia, Almendros, and Quemada 

(2012) exists a relationship between the LAI and the ground cover (GC) or also known as 

canopy cover (CC). This CC or Green Canopy Cover ranges from 0 % (bare soil) to 100 % (full 750 
canopy cover) (Steduto et al., 2012).  

The fraction intercepted of photosynthetically active radiation (FIPAR), or Ground Cover (GC), 

was calculated according to the formula of Monsi and Saeki (1953), depicting the relationship 

between light transmission and leaf area of Equation 10. The radiation extinction coefficient 

(k) is based on experience values and was determined according to the respective crop within 

the time frame. 

 

Equation 10: Relationship between light transmission and leaf area 

𝐹𝐼𝑃𝐴𝑅 = 1 − 𝑒−𝐾 × 𝐿𝐴𝐼 

 760 

The LAI data used was generated with the Google Earth Engine (GEE) as a time series, using 

the MODIS LAI/FPAR 4-Day Global 500 m dataset. The data is available as a time series from 

January 2018 to September 2020, and it is masked with a filter to cancel out high cloud cover. 

The overall number of satellite images usable is reduced as only 10 % cloud cover is accepted.  

On-site indirect LAI measurements were conducted using the PAR inversion technique for leaf 

area index calculation on May 6th, May 20th, July 1st, and July 8th, 2020. The mean LAI values 

of the respective days were used to calibrate and compare the extracted LAI-MODIS dataset. 

The results for the different vegetation periods of the AquaCrop simulation are validated with 

LAI observations of the MODIS LAI/FPAR 4-Day Global 500 m dataset. Eventually, the LAI 

values are transformed to CC according to Equation 10 to allow calibration and validation of 770 
the AquaCrop simulation results for the respective vegetation period and the three soil types. 

3.3.3 ASCAT for SM detection (Active Remote Sensing) 

The ASCAT sensor is a real-aperture radar mounted on the Meteorological Operational 

(METOP) series satellites of the EUMETSAT Polar System (EPS). It is an active microwave 

remote sensing instrument initially designed for ocean monitoring. On land, its services are 

used to monitor and acquire SM patterns driven by precipitation and evaporation (Wagner et 

al., 2013).  

Several meteorological institutions like the Met Office use the ASCAT SM data for monitoring 

or research applications (George, 2013). 

A total of three METOP satellites (A, B, and C, launched in 2006, 2012, and 2018) orbit at an 780 
altitude of 817 km around Earth, providing detailed meteorological observations of the oceans, 

continents, and global atmosphere on a daily all-weather operation. Revisit time of the METOP 

satellites is generally once or twice a day for Central Europe (EUMETSAT, 2020).  

The spatial resolution of the ASCAT sensor is available at a 25 km grid. However, it is limited 

in application for local regions or agricultural purposes. Measurements with scatterometers like 

the ASCAT sensor depend on the dielectric properties of the soil surface layer, the roughness, 

and its vegetation (EUMETSAT, 2020).  
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More water or moisture availability in the soil surface layer results in a significant alternation 

and absorption behavior of the microwave (<10 GHz) frequencies emitted, which leads to SM 

estimation (Lalic, Eitzinger, et al., 2018; EUMETSAT, 2020).  790 
If the SM content increases, the dielectric constant at the air-soil boundary increases and 

backscatters the microwaves (Wagner et al., 2013). The ASCAT sensor operates at a 5.3 GHz 

microwave frequency at C-band using vertically arranged polarized antennas, typically used 

to detect bare or vegetated soil surface moisture content (Lalic, Eitzinger, et al., 2018; 

EUMETSAT, 2020). The electromagnetic waves echo from the ground and are received by the 

instrument, while the backscatter signal is analyzed and detected spectrally (Thaler et al., 

2018).  

The backscattering intensity positively correlates with the SM content and implies a direct 

comparative measurement of bare soil’s SM. One to two cm of the topsoil layer is measured 

with the ASCAT sensor, which is strongly dependent on the C-band backscatter of the 800 
electromagnetic waves. Nevertheless, surface roughness and vegetation have a significant 

impact on the efficiency of measurements and thus need correction (Wagner et al., 2013).  

S1ASCAT for SM detection 

The S1ASCAT satellite data used is based on the ‘BMon’ project led by the TU Vienna. 

S1ASCAT is developing the initial ASCAT satellite images and has resolutions of up to 100 m 

(Kristelly, 2020). The technique combines the ASCAT and Sentinel 1 backscatter, interface 

and process the data in model simulations, and subsequently provides several SM products 

for different soil depths. Thus, the underlying concept in that matter is the temporal stability of 

SM over time (Wagner et al., 2008). SM measured on a local scale (Sentinel 1) with 500 m 

resolution is correlated to the mean SM content over an area (ASCAT) of 25 km (Wagner et 810 
al., 2008). For example, neighboring local pixels with similar physical properties, for example, 

texture or land cover, show higher coherence in SM, respectively (Wagner et al., 2008).  

The rather local Sentinel 1 backscatter, combined with the regional scale ASCAT backscatter, 

is used to downscale towards a pixel size of 500 m, based on directional-weighted average 

calculations (Panic, 2020). The data is validated based on meteorological data, outflow, 

groundwater, and yield (Kristelly, 2020). Moreover, Wagner et al. (2013) describe several 

advisory flags implemented to process the ASCAT data to increase precise SM estimation 

retrieval. Such advisory flags regard frozen soil conditions, snow cover, surface water fraction, 

or topographic complexity (Wagner et al., 2013).  

The SM products are available daily. However, only the years from 2018 through 2020 are 820 
featured in the analysis. The soil water index (SWI) represents soil moisture profile in several 

soil depths as relative soil saturation, ranging from 0 % SM at a PWP to 100 % SM at FC 

(Brocca et al., 2010; Wagner et al., 2013; Kristelly, 2020).  

For comparability reasons, the relative soil saturation [%] of the S1ASCAT-SWI products was 

transformed towards absolute soil moisture in % vol. With knowledge about the soil porosity, 

the volumetric SM content was calculated according to Wagner et al. (2013) and is provided 

in chapter 3.6.4 Transformation of satellite and simulation data based on soil porosity. 

The resolution is 500 m, with used soil profile depths of 0-1, 0-5, and 0-10 cm for the analysis.  

3.3.4 SMAP for SM detection (Active Remote Sensing) 

The SM Active Passive (SMAP) mission was developed by NASA and launched in April 2015 830 
(Brocca, Ciabatta, et al., 2017). It uses an L-band radiometer and an L-band high-resolution 
radar. With the radiometer spatial resolution of the SM product of roughly 36 km, the temporal 
resolution has a two-day revisit time (Brocca, Ciabatta, et al., 2017).  
The L-band radiometer uses a 1.4 GHz frequency, has a spatial resolution for hydro-
climatology at 40 km, and penetrates the bare soil up to 5 cm below ground (Entekhabi et al., 
2010). Its L-band radar uses a frequency of 1.26 GHz and has a spatial resolution for 
hydrometeorology at 10 km. The overall mission’s approach is to integrate radar and 
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radiometer to combine active and passive remote sensing for SM estimation (Entekhabi et al., 
2010). According to Entekhabi et al. (2010), the SMAP mission is designed to observe and 
collect measurements of the surface SM and the freeze and thaw state. The radar backscatter 840 
is highly influenced by surface roughness and the overall vegetation structure, performing 
more adequately in low-vegetation conditions (Entekhabi et al., 2010). 
Amongst its application of space-based SM, observations are drought monitoring for plant 
water stress and information on water availability for SM status to provide data for model 
predictions (Entekhabi et al., 2010). 
 
The SMAP SM product was extracted with the help of the GEE as a time series from January 
2018 to September 2020. The data is available on a three-day basis and features the root zone 
soil depth of 0-100 cm. The given unit is relative soil saturation ranging from 0% SM at a PWP 
to 100% SM at FC. The resolution of the analyzed data has a pixel size of 10 km. According 850 
to Entekhabi et al. (2010), the medium resolution SM product of 10 km combines the coarse 
resolution radiometer and the fine resolution radar observations.  
Like the S1ASCAT-SWI products, the SMAP product of RSS [%] was transformed towards 
absolute soil moisture in % vol. and is described in more detail in chapter 3.6.4 Transformation 
of satellite and simulation data based on soil porosity.  

3.4 Simulation Programs and SM 

Modeling and simulations require data inputs. Therefore lack of data, methods, or information 

impacts future climate assessments, influencing the environment (Eitzinger et al., 2008).  

According to Eitzinger et al. (2008), an increasing simplification of simulation features a higher 

uncertainty in simulated results. Increasing process parameters in a rather complex model 860 
fosters higher uncertainty accordingly. The human factor with the parameters management, 

climate scenarios, spatio-temporal variability, and soil parameters are another driver of 

uncertainty in models (Eitzinger et al., 2008).  

Meteorological inputs represent an essential link between accurately modeled SM data and 

the performance of quality and quantity standards (Brocca, Ciabatta, et al., 2017). These 

standards, in turn, depend on the spatio-temporal resolution of soil information, management 

of land use, and the meteorological data itself (Brocca, Ciabatta, et al., 2017). Thus, for a 

robust model calibration over a range of environmental conditions, it is crucial to include field 

observations regarding soils or climate in particular (Eitzinger et al., 2013).  

3.4.1 ARIS 870 

The ARIS data originates from a web and GIS-based operational monitoring system, the ‘Agro 

Drought Information System’ – ADIS (Eitzinger et al., 2016). However, its abbreviation stands 

for ‘Agricultural Risk Information System’. It was developed during the research project 

‘AgroDroughtAustria’ (ADA) and is applied to important crops to cover diseases, abiotic 

(drought, frost, heat, strong wind) and biotic (pests) stresses (Eitzinger et al., 2016; Eitzinger, 

2018).  

ARIS was developed as a monitoring and prediction tool for climate change adaptation. It is 

closely related to the Austrian climate conditions to provide valuable parameters for decision 

support. The main focus lies in identifying extreme weather and high-risk weather conditions 

with significance to crop cultivation and yield (Eitzinger et al., 2016; lkwarndienst, 2020). 880 

ARIS’s resolution is displayed on a 0.5 km grid (Eitzinger et al., 2016), based on spatial data 

of several parameters like weather data of the INCA product from ZAMG, the available soil 

data of BFW (2020) with its online platform eBod and land use classes from CORINE 

(Eitzinger, 2018). The simulated model considers the soil and site with the phenological 

development of specific crops as well as the relevant water demand, respectively. Two soil 

depths are featured in the soil water balance, with 0-40 cm and 40-100 cm for selected field 
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crops (Eitzinger et al., 2016). There are three indicators in the ARIS data, first the current soil 

water deficit. Second is the site-specific degree of drought (in relatively existing plant-available 

soil water). Third, drought (reference depth 0-20 cm) and heat estimate the crop-specific stress 

level. The simulations are executed daily for the Austrian grid points for several crops like 890 
winter Wheat and spring Barley, grassland, and other crops (Eitzinger, 2018).  

The limitation of the ARIS simulation is the spatial resolution of the 0.5 km grid. Therefore, 

small-scale parameters deviate from the initial resolution, with a constraint of simulation 

results. Considerations of several parameters like soil cultivation, crop variation, and 

fertilization are also unaccounted for. Outdated land-use classes from 2012, like cropland 

conversion or vice versa, are an additional limiting factor for the ARIS monitoring 

implementation (lkwarndienst, 2020). 

The data analyzed starts at the beginning of 2018 until 2020, featuring the three different crop 

types cultivated within its respective season. The resolution is 500 m, featuring the two 

individual soil depths as relative soil saturation. It ranges from 0 % being SM at PWP to 100 900 
% being SM at FC.  

Like the S1ASCAT-SWI and SMAP products of RSS [%], the ARIS estimations were 
transformed towards absolute soil moisture in % vol., which is described in more detail in 
chapter 3.6.4 Transformation of satellite and simulation data based on soil porosity.  
Figure 13 features a simulation for winter Wheat from July to September 2015 with its RSS 

[%]. According to the color scheme, there is a shift from a dry to an elevated SM condition in 

the Marchfeld region.  
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3.4.2 AquaCrop  

AquaCrop, a growth model for crops developed by the Land and Water Division of FAO, is a 910 
software to address food security and an assessment tool for crop production to represent the 

effects of environment and management on crop production (Steduto et al., 2012). This model 

is designed to optimally balance accuracy, simplicity, and robustness (Steduto et al., 2009). 

Small but necessary parameters and intuitive input variables determine the widely applicable 

modeling software (Steduto et al., 2012; FAO, 2020). Nevertheless, its calculation procedures 

and complex biophysical processes accurately simulate the crop’s feedback to the soil-plant 

system (FAO, 2020). 

For instance, AquaCrop simulates several parameters as probable output with input 

parameters like water as the key limiting factor of the planned crop production (FAO, 2020). 

The idea behind the software is to increase agricultural production with the help of efficient 920 
water practices (Araya, Keesstra, and Stroosnijder, 2010). 

The output utilized for the analysis comprises the CC [%] for model validation and the soil 

water content [vol. %] in five and 15 cm soil depths as data acquisition.  

Foundation of the AquaCrop simulation program 

Most of the food production is dependent on plant available water throughout the world. Its use 

is crucial to develop a high standard nutrition supply for civilization, with special regard to arid 

and semi-arid regions. In these territories, precipitation lacks the crop’s demand (Steduto et 

al., 2012).  

However, Doorenbos and Kassam (1979) introduced, under the patronage of the FAO, a 

transparent and straightforward tool to calculate the interdependencies of consumed water and 930 
crop yield (Y), with the eventual description of Y response to Evapotranspiration (ET). This 

simple equation is used for numerous types of crops and vegetables, or by extension, biomass 

A) 

D) C) 

B) 

Figure 13: ARIS simulation of winter Wheat with a classified RSS [%] for A) July 1st 2015, B) August 1st 2015, C) August 5th 
2015, D) September 1st 2015 (Source: Eitzinger et al. 2016) 
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production (herbaceous or woody species) in a general sense (Equation 11) (Steduto et al., 

2012). 

Equation 11, introduced by Doorenbos and Kassam (1979), was innovative and game-

changing at the time. Thus it is seen as standard and foundation of crop yield response to 

water and modern interpretations with simulation models like AquaCrop (Steduto et al., 2012):  

 

Equation 11: Standard of crop yield response to water 

(1 −  
𝑌𝑎

𝑌𝑥
) =  𝐾𝑦 (1 −  

𝐸𝑇𝑎

𝐸𝑇𝑥
) 940 

 

Equation 11 features the relative yield reduction related to the corresponding relative reduction 

of evapotranspiration; Ya = actual yield and Yx = maximum yield (in tons per hectare), ETx = 

maximum crop evapotranspiration and ETa = actual evapotranspiration (in mm per growing 

season), K = yield response factor. Equation 11 applies to all herbaceous plants (Source: 

Doorenbos and Kassam, 1979).  

Another vital component of the initial Equation 11 is determining the maximum crop 

evapotranspiration ETx also known as ETc, visualized in Equation 12. The reference 

evapotranspiration (ETo), featured in Equation 12, is based on the FAO Penman-Monteith 

equation, which represents the modern benchmark of ETo, according to Allen et al. (1998).  950 

 

Equation 12: Determination of maximum crop evapotranspiration 

𝐸𝑇𝑥 =  𝐾𝐶 × 𝐸𝑇𝑂 

 

Equation 12 features ETx = maximum crop evapotranspiration and Eto = reference crop 

evapotranspiration (in mm per growing season), Kc = crop coefficient (Source: Steduto et al. 

2012). 

The simulation software AquaCrop is founded on Equation 12. However, world-renowned 

specialists in their respective fields collaborated to develop AquaCrop further to provide a tool 

for strategic planning and management of water in agriculture. Especially with climate change 960 
on the rise, heavy rainfall events or droughts occur on a more frequent pattern. A valuable tool 

like AquaCrop helps improve future agricultural applications of herbaceous crops to increase 

efficiency and productivity (Steduto et al., 2012).  

Based on the scientific foundation of Equation 11 and Penman-Monteith’s equation to calculate 

ETo, further developments composing of biomass calculation concerning transpired water are 

implemented in AquaCrop, considering the concept linking Y and crop water use (Steduto et 

al., 2009). Nevertheless, AquaCrop separates crucial parameters and estimates biomass 

production directly through productive crop transpiration (Tr), disregarding non-productive soil 

evaporation (E) (Steduto et al., 2012). These advancements are depicted in  

Equation 13, featuring B, WP, and Tr (B = biomass [
𝑘𝑔

𝑚²
], Tr = crop transpiration [mm], WP = 970 

water productivity parameter [
𝑘𝑔

𝑚²
/𝑚𝑚]). 
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Equation 13: Calculation of biomass in AquaCrop 

𝐵 = 𝑊𝑃 ×  ∑ 𝑇𝑟 

 

This separation of Y from harvestable biomass (HI or harvest index) is another critical aspect 

that was improved with the advancement of the AquaCrop modeling software, eventually 

introducing crucial information about stress and environmental parameters on Y (Steduto et 

al., 2012). In modern agriculture, crops are frequently harvested abundantly for fractions of the 

plants or their fruits. The remaining biomass is deemed unprofitable or useless. Equation 14 980 
thus highlights the importance of segregating Y into HI and B (Steduto et al., 2012). 

 

Equation 14: Calculation of yield in AquaCrop 

𝑌 = 𝐻𝐼 × 𝐵 

 

The overall advancements of the AquaCrop software, starting with Equation 11 as foundation 

and Equation 12 and Equation 13 as major improvements, form the heart of the simulation 

program. However, further innovation is the downscaling of time from seasonal growth stages 

towards daily crop response to water dynamics. The previously mentioned HI is quantified daily 

throughout the Y formation period. An accurate determination of daily soil water information 990 
enhances the AquaCrop software to simulate highly dynamic growth models rather than static 

approaches (Steduto et al., 2012).  

With B production being highly dependent on solar radiation as the driving force of the soil-

plant-atmosphere continuum, Figure 14 emphasizes on herbaceous crops as a function of their 

water consumption with respect to solar radiation. The interconnection of distinct parameters 

shows the advanced approach of AquaCrop in comparison with its predecessor from 

Doorenbos and Kassam (1979) (Figure 14) (Steduto et al., 2012). 

Steduto et al. (2012) show the relationship (upper triangle a,) that links B to Tr, expressed in 

Equation 12 and Equation 13. Hereby, water productivity (WP) as a parameter is presented to 

illustrate daily time steps (Figure 14) (Steduto et al., 2012).  1000 
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Figure 14: Interdependencies of parameters influencing B, Tr, Y, ETc (Source: Steduto et al., 2012) 

The former modeling but a rather linear approach concerning Equation 11 from Doorenbos 

and Kassam (1979) features long-term periodical modeling of crop production (Ky) as an input 

parameter. This relationship (lower triangle a’) ties Y to ET with respect to Penman-Monteith’s 

ETo calculation and Equation 12 (Steduto et al., 2012). 

Above the set of advanced Equations, additional relevant model components are incorporated 

into the AquaCrop software (Steduto et al., 2012), following in the next chapter. 

Supplementary model components of AquaCrop  

The final output of AquaCrop simulations is growth, productivity, and water use with respect to 1010 
altered water availability. Nevertheless, the AquaCrop simulation includes shifting water 

availability and varying environmental conditions like climate change scenarios. Yet, 

unpredictable parameters like pests and diseases are not featured in AquaCrop (Steduto et 

al., 2012).  

Nevertheless, the following model components significantly impact the final outcomes of the 

simulation results of the AquaCrop software. 

Crop parameters 

One of AquaCrop’s software components is the crop feature, which has several 

subcomponents comprising phenology, canopy cover, rooting depth, soil evaporation, biomass 

production, and harvestable yield (Steduto et al., 2012).  1020 
However, calibrated default values are implemented in the FAO AquaCrop model to exploit for 

simulation. These default values are subdivided into conservative, cultivar-specific, and less 

conservative parameters (Raes et al., 2018).  

The conservative crop parameters feature non-limiting and favorable conditions as calibration 

input. They remain applicable to stress conditions, yet no changes in management practices 

or geographical location applies. An adjustment to local conditions of the relevant cultivar 

location is not needed for simulation success (Raes et al., 2018). 

In contrast, the cultivar-specific crop parameters involve modifications if environmental 

conditions or crop type deviate from initial FAO crop calibration within the AquaCrop database. 
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These parameters are affected by several components like the soil profile, management 1030 
practices, sowing date, or weather parameters to account for local variability and 

environmental conditions (Raes et al., 2018). 

Subcomponents like phenology are based on growing degree days (GDD), which provide 

valuable information and represent damaging or inhibitory effects of cold temperatures on crop 

phenology (Steduto et al., 2012).  

Another crucial component is canopy development, an essential supplementary component of 

AquaCrop, determining water transpiration and biomass production. It is expressed as a CC 

and can be obtained with the help of remote sensing expertise. Based on leaf senescence, 

declining green canopy covers result in dropping transpiration plus photosynthetic activity and, 

in turn, slows down biomass production (Steduto et al., 2012). 1040 
The soil evaporation is calculated with respect to CC, which on the other hand, determines the 

shading of the wetted soil. Canopy senescence now affects soil evaporation in a positive 

correlation (Steduto et al., 2012).  

In general, crop root growth is co-dependent, pending on the photosynthetic activity of the 

crop. As a result, AquaCrop incorporates the simulation of an effective rooting depth with 

regard to the water extraction pattern of the cultivar (Steduto et al., 2012).  

Another subcomponent is biomass water productivity (WP). It is paramount and sits at the core 

of AquaCrop operation modeling software. As the last subcomponent, harvestable yield is 

simulated in AquaCrop based on the harvest index (HI) (Steduto et al., 2012).  

Soil parameters 1050 

The soil parameters are typically specified by the user of AquaCrop, featuring up to five 

different horizons and their textural layers. AquaCrop can estimate soil hydraulic 

characteristics according to its texture classes, derived through pedo-transfer functions 

(Steduto et al., 2009), determining water retention in the fine soil fraction at saturation (0sat). 

FC constitutes the upper limit of volumetric water holding capacity, the PWP representing the 

lower limit of the volumetric water holding capacity. Additional parameters are the drainage 

coefficient and hydraulic conductivity at saturation (Ksat) (Steduto et al., 2009).  

Water movement parameters, including percolation, runoff, capillary rise, and groundwater 

movements (e.g., saline groundwater table entering the soil profile), are considered and 

derived in AquaCrop from the determined hydraulic characteristics with a variable simulation 1060 
period (Steduto et al., 2012).  

Climate parameters 

Several daily values are associated with climate, including minimum and maximum air 

temperature (Tx and Tn), precipitation, or reference evapotranspiration (ETo). ETo is defined 

according to the FAO Penman-Monteith equation (Allen et al., 1998; Steduto et al., 2012).  

The given temperatures, in general, affect phenology (crop development) and may limit growth 

or biomass accumulation. Furthermore, crop development relies on water stress or, to be more 

precise, on the water balance of the soil root zone, which is driven by precipitation and 

evapotranspiration, which is directly influenced by climate (Steduto et al., 2009).  

Water productivity is affected by atmospheric CO2 concentrations, regulating stomatal 1070 

conductance and canopy expansion. Even though annual CO2 cycles fluctuate with respect to 

time and location (Steduto et al., 2009, 2012). Thus, annual mean carbon dioxide 

concentrations of the atmosphere, precipitation, and temperature are relevant parameters to 

incorporate in the AquaCrop model simulation (Steduto et al., 2012).  

Management parameters 

Management practices in AquaCrop are split up into two categories. It can be chosen between 

specific water management options, like irrigation and non-irrigation (green water or 
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precipitation), and field management practices. The application methods of water management 

are selected amongst sprinkler-, drip- or surface irrigation options, defining the schedules or 

intervals, depth, and quality of the irrigation scheme, or an allowable water depletion with fixed 1080 
percentages. Nevertheless, AquaCrop can automatically generate time schedules and 

schemes (Steduto et al., 2009, 2012).  

Day-by-day irrigation simulations can be applied and observed with effects on crop canopy 

and transpiration or eventually yield responses to deficit irrigation (Steduto et al., 2009). 

The second management category refers to field management practices such as mulching the 

soil for soil evaporation reduction, the control of surface runoff with small ponds and dykes, 

and the definition of soil fertility levels to grow crops during its life cycle (Steduto et al., 2012).  

With the AquaCrop model, no nutrient balances are computed. Yet, fertility regimes concerning 

yield response and biomass accumulation are assessed with several fertility category 

parameters, ranging from near-optimal to poor (Steduto et al., 2009).  1090 

Calculation scheme of AquaCrop 

The AquaCrop simulation features four calculation steps based on few input parameters 

comprising of soil and groundwater data, crop parameters, meteorological parameters, and 

field management practices. These four main steps are composed of the estimation of green 

CC, Tr, B, and the eventual Y as a simulation output. Weed infestation and Tr and other 

stresses like temperature, salt, or water deficiencies directly impact the calculation of the 

AquaCrop simulation (Figure 15) (Vanuytrecht et al., 2014; FAO, 2017).  

 

 

Figure 15: Calculation scheme of AquaCrop implying different pathways impacted by temperature and 1100 
water stress (a-g) (Source: Vanuytrecht et al., 2014) 
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Figure 15 shows the calculation scheme and implies how different pathways are impacted by 

temperature or water stresses (a-g). The dotted lines indicate stress processes, respectively. 

Water productivity is (WP), (Zr) is the rooting depth (Vanuytrecht et al., 2014). 

Input parameters for AquaCrop simulations 

The required input parameters for an AquaCrop simulation are small. However, the simulated 

crop environment is dependent on valid and sound data for a successful crop development 

simulation. Input parameters comprise meteorological data such as precipitation and 

temperature, crop and soil characteristics, and management practices. The relevant 

information is stored in files to easily access the AquaCrop software (Steduto et al., 2012).  1110 
Amongst the input parameters utilized are also default parameters from the existing AquaCrop 

database. For example, the CO2 observations for the climate data origin from the Mauna Loa 

Observatory in Hawaii. 

The remaining climate input parameters utilized for the AquaCrop simulation originate from the 

meteorological stations in Rutzendorf and Groß-Enzersdorf, from 2018 through 2020. The 

meteorological data is uploaded into AquaCrop as a text file (Figure 16).  

For the crop input parameter calibration, field observation data from the BVW is used. It 

comprises the crop rotation, featuring the three crop types. The overall actual yield in [
𝑘𝑔

ℎ𝑎
] dry 

matter. The compilation of the harvest index for the years 2019 and 2020. The overall sowing 

rate in [
𝑘𝑔

ℎ𝑎
], as well as the sowing date and harvest date for the respective periods.  1120 

The remaining crop parameters were either default values or iteratively estimated and adjusted 

based on the actual yield as a reference parameter.  

The soil and groundwater characteristics are based on the digital soil map eBod featuring three 

different soil types with their respective soil profile horizons and textures. The data was, 

wherever possible, validated through the MUBIL project reports. Three individual soil types are 

generated and featured in the simulations. The parameters included are default values and 

feature the volumetric water content of FC, PWP, as well as saturation and hydraulic 

conductivity (Ksat) (Steduto et al., 2012). 

The management data utilized for the AquaCrop simulation comprises the irrigation and field 

management practices.  1130 
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Figure 16: Required input parameters for the AquaCrop simulation (Source: Steduto et al. 2012) 

As the last step, AquaCrop provides an additional option to include parameters of the initial 

conditions of the simulation period. CC, as well as soil water conditions, are amongst the 

specifications possible. This specification provides the user with a tool to compare the 

simulated data.  

For the simulation performed, the initial conditions of the soil water content during 2019 and 

2020 are based on the SM FDR probe from the meteorological station. The initial SM content 

for the growing period 2018 is estimated by climate data and established on behalf of 1140 
precipitation before sowing—the CC for validation origins from the LAI-MODIS remote sensing 

data. 

The soil water content of the model output is divided into 12 individual soil profile compartments 

covering the entire root zone. The default size of the compartments has ten cm steps, starting 

at five cm (Raes et al., 2018).  

For the analysis, only the depth in five and 15 cm were considered.  

3.5 Statistical Analysis  

Statistical analysis was performed using Microsoft Excel and the software R (Version 4.0.2). 

The Pearson Correlation Coefficient was used to characterize and validate the relationship 

between the simulated dataset of the AquaCrop CC and the LAI-MODIS dataset. A strong 1150 
positive relationship was assumed by values from 0.7 to 1, whereas values below 0.5 to 

negative values were assumed to have a strong negative relationship (Mittag, 2014).  

The correlation analysis between in-situ, simulation, and remote sensing measurements was 

a linear regression used to characterize and validate the correlation analysis, respectively.  
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An R² ranging from 0.5 to 1 was assumed to be a good fit. In comparison, moderate correlation 

was assumed with R² values from 0.3 to 0.49. A poor correlation was assumed with R² values 

less than 0.3. The independent variables were either measurements with Parrot or the Met-

station, whereas the dependent variables were the simulation and remote sensing datasets 

(Frost, 2018).  

The data was validated with a residual plot and a residual density curve to check for normal 1160 
distribution. The p-value of the analyses was checked for significant relationships (p<0.05 and 

p<0.001) between the explanatory and dependent variable or null hypothesis dismissal.  

The root mean square error (RMSE) was used to measure the error of the model. It is an 

indicator of how close the observed data points are compared to the predicted values. RMSE 

is an absolute measure of fit, compared to R², which is deemed a relative measure of fit. The 

lower the RMSE values, the better the fit (Mittag, 2014; Frost, 2018).  

Nevertheless, it is vital to check the perspective and statistical application of the RMSE 

conducted. A higher RMSE does not necessarily determine a poor fit, as it depends on the 

results to be compared with each other.  

The mean bias error (MBE) was used to explain and further quantify the bias of the predictions 1170 
compared to the observations (Kato, 2016).  

For example, if the model simulation- and satellite product estimations (predictions) were 

overestimated (MBE>0) or underestimated (MBE<0) compared to the reference measurement 

observations (e.g., TDR, Parrot, and the weather station) (AgriMetSoft, 2019). The mean bias 

error is a standard metric to evaluate forecast accuracy and represent a systematic error of 

over-or underestimations (Pal, 2016).  

3.6 Scaling of the datasets  

3.6.1 Preparation of in-situ, satellite, and simulation data for comparison 

The available satellite datasets are given in different units, opposed to the underlying in-situ 

datasets. Hence, the TDR, Parrot, AquaCrop, and the FDR sensor of the meteorological 1180 
station are given in vol. % as a unit. However, the ARIS, S1ASCAT-SWI, and SMAP product 

units are given in relative SM [%].  

To compare the satellite and simulation datasets, the reference sensors, e.g., Parrot and FDR, 

are converted into relative SM [%], respectively. Hence the transformed Parrot data is indicated 

as follows in the results section: Parrot_rel 

Similarly, the FDR Met-Station is indicated as follows: Weatherstation_20cm_rel 

Likewise, remaining data given in relative soil saturation is indicated as follows: SWI_001_rel; 

SWI_005_rel; SWI_010_rel; ARIS_rel; SMAP_rel 

This practice is deemed a profound procedure to compare in-situ measurements with satellite 

data (Albergel et al., 2010; Brocca et al., 2010).  1190 
For example, the lowest measured value within the measurement periods of the sensors 

defines 0 % relative SM. The highest measured value within the period defines 100 % relative 

SM, such as the research of Albergel et al. (2012) suggests.  

This principle was applied for the datasets of Parrot (2019) and the meteorological station 

(2019-2020). During the operation of the sensors, the lowest and highest measured values set 

the upper and lower boundary range.  

The datasets given in consistent units, e.g., SM [vol. %], are compared without unit adaption. 

Such variables with consistent units of the results section are indicated as follows: 

Weatherstation_10cm; WS_20cm for the weather station; TDR for the time domain 

reflectometry; AquaCrop_B1_5cm or AquaCrop_B1_15cm for the AquaCrop simulation 1200 
variables. 
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3.6.2 Definition of FC and PWP for the experimental field 

The PWP was determined based on TDR measurements on July 5th, 2019. The same applies 

to the FC, which was determined based on TDR measurements on July 24th, 2020.  

The mean FC was characterized as 19 vol. % and the PWP was characterized as 9 % vol. 

Thus, the FC and PWP were part of the correlation analysis of the SM in vol. % for indication 

purposes. The relative SM [%] correlation comparison includes the FC and PWP, as defined 

by the minimum and maximum range of the Parrot and FDR sensors.  

3.6.3 Calibration of in-situ sensors 

Unfortunately, the base reference measurements with TDR were time-consuming and tedious. 1210 
As a result, only little data was available. In comparison, the available Parrot data covers a 

large portion of the vegetation period of Wheat in 2019. Furthermore, it ranges from April 4th, 

2019, until July 6th, 2019. Thus, the Parrots were used as the new independent variable for the 

analysis of 2019. The Parrot time series data was therefore calibrated for the subsequent 

usage. Moreover, the Parrot measurement values were given in an uncalibrated digital value. 

Thus, based on a comparison of linear and polynomial regression results, the Parrot sensors 

were calibrated with the help of polynomial regression.  

In the following step, the TDR sensor values were defined as the independent variable, and 

the Parrot sensor values were defined as the dependent variable (Equation 15).  

 1220 

Equation 15: Polynomial regression of TDR vs. Parrot 

𝑦 =  0.021𝑥2 − 0.021𝑥 + 14.258 

 

For further calculations, all Parrot measurements were inserted in Equation 15. After the 

transformation, all Parrot measurements were assumed to equal volumetric soil moisture. The 

calibrated Parrot sensors are highlighted as follows in the results section: Parrots_cal or 

Parrot_B1 for the Parrot sensors overlain by soil type B1.  

 

The weather station sensor in ten cm soil depth provided insufficient data. Thus, the weather 

station’s 20 cm soil depth sensor was used as the independent variable for the following 1230 
correlation analyses to dismiss lacking SM time-series data for 2020.  

3.6.4 Transformation of satellite and simulation data based on soil porosity 

The soil porosity at the experimental field was established with the HYDROBOD2 raster 

dataset. The dataset is used to characterize hydrologic soil parameters and helped, therefore, 

to determine the soil porosity in the upper soil layer.  

According to the HYDROBOD2 dataset, the soil porosity in the upper soil layer marks at 

41.5 [
𝑚³

𝑚³
]. It is established on the statistical mean over the experimental field.  

Of course, there is spatial variability. However, the underlying dataset provides not enough 

resources to feature such high heterogeneity. In contrast, soil porosity can also be established 

based on fieldwork. However, this is tedious and often disturbing the soil layer. 1240 
  

The RSS [%] satellite and simulation data was initially given in the degree of relative soil 

saturation and subsequently transformed into volumetric SM content [%] based on Equation 

16. It was used to convert the satellite and simulation data into volumetric SM content, as 

Wagner et al. (2013) suggest. The S1ASCAT-SWI, SMAP, and ARIS, given in RSS [%], were 
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transformed into volumetric soil moisture [% vol.], accordingly. Eventually, the transformed 

data were compared with the remaining datasets in trendline charts.  

 

Equation 16: Calculation of volumetric soil moisture content (𝜣), based on the degree of saturation 

(𝒎𝒔), and soil porosity (𝝓), (Source: Wagner et al., 2013) 1250 

Θ = 𝑚𝑠  ×  𝜙 

The ARIS data was first adapted to the simulation parameters. The RSS of the ARIS simulation 

was pre-defined with a PWP of 16 % and a FC of 38 %. Thus, the range of the RSS min of the 

ARIS simulation starts at 0 %, which is defined as 16 % PWP. Likewise, 100 % RSS 

establishes the FC at 38 %. Afterward, it was transformed according to Equation 16. 
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3.7 Overview of the analysis scheme  

The following Figure 17 demonstrates a brief overview of the analysis conducted. Each column 

represents the respective vegetation period with the reference sensors of ARIS in 2018, Parrot 

in 2019, and the FDR Met-Station in 2020 in blue. The different SM estimation methods 1260 
investigated in our research are indicated in the white boxes of each column – the statistical 

analysis is based on the reference sensors (highlighted in blue) of each vegetation period and 

calculated with linear regression, respectively. The soil profile depth or soil layer depth of each 

satellite product, simulation result, or in-situ sensor is indicated. 

 

  

Figure 17: Overview of the statistical analysis conducted for all three vegetation periods; The reference 
sensors are highlighted (in blue) and were compared based on linear regression with the SM estimates (white 

boxes) accordingly 
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4. Results  

4.1 AquaCrop simulation analysis based on LAI-MODIS observations 

The first analysis conducted was based on the LAI-MODIS dataset and the AquaCrop 

simulation output. Three simulations per vegetation period (respective growing periods of the 1270 
three crops for the three dominant soil types B1, B2, and B3) were conducted. The AquaCrop 

output in Figure 18 is given as a blue area and determines the green canopy cover [%]. The 

LAI-MODIS observations feature one observation per day, depending on the cloud coverage 

and data availability, indicated by the red dots given in CC [%]. The analysis is based on the 

Pearson Correlation Coefficient and ranges from 70 % to 94 % during 2019 and 2020, 

demonstrated in Figure 18 D-I. The p-value for the dismissal of the null hypothesis was 

determined at values <0.001.  

For the vegetation period in 2018 (Figure 18A-C), insufficient data validity resulted in a negative 

correlation. 

Figure 18A-C shows the vegetation period of Barley from April to July 2018. The AquaCrop 1280 
simulation deviates from the observed LAI-MODIS CC.  

In contrast, Figure 18D-F provides correlations of about 90 % for the AquaCrop simulation 

compared with the LAI-MODIS dataset of 2019. The observations fit with the course of 

vegetation simulated. Figure 18G-I comprises Rye and starts in October 2019, reaching into 

July 2020. Between 70 to 90 % correlation was achieved in Wheat and Rye's statistical 

analysis.  
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A) 

I) H) G) 

F) E) D) 

C) B) 

Figure 18: Validation of fit of the AquaCrop simulation output A) Barley B1, B) Barley B2, C) Barley B3, D) Wheat 
B1, E) Wheat B2, F) Wheat B3, G) Rye B1, H) Rye B2, I) Rye B3; the statistical analysis is based on the Pearson 

Correlation Coefficient; statistical differences were accepted at p>0.05 (B1 – B3 refers to the three applied soil types 
as defined in chapter: 3.1.3 Soil Conditions) 
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4.2 Spatial Variability of soil moisture (SM) 1290 

The spatial variability of SM on the experimental field is visually demonstrated for two days in 

April 2019 and two days in May and June 2019, based on the kriging interpolation method. 

The sensor used for in-situ measurement named Parrot (see methods) was placed in the upper 

soil layer (approximately 0-5 cm soil depth). The sensor output unit is volumetric SM [%]. Figure 

19A-B shows the spatial soil moisture for April 4th and April 15th, 2019, respectively. The 

experimental field perimeter is highlighted in yellow. The locations of the Parrot in-situ sensors 

are marked as black dots. The measured SM range during both days is shown in the colored 

scale in the legend. Dark red indicates low values, whereas dark blue values indicate higher 

SM values.  

The color range, nevertheless, is determined by the daily min. and max. values measured all 1300 
over the field. To better interpret the spatial variation in Figure 19, the overall precipitation 

occurrence two weeks before and during the measurements is featured shown in Figure 20. 

During March 18th and April 15th, there were only three precipitation events with low amounts 

of rain (approximately 12 mm), affecting near-surface soil water content only temporarily.  

Figure 19A on April 4th shows, therefore, slightly higher SM observations compared to April 

15th (Figure 19B), due to the negative soil water balance in between despite some minor 

precipitation of about 5 mm  

Within the experimental field were individual ‘islands’ providing different ranges in SM, 

depending on the site location. Especially in the south and western part of the experimental 

field was less SM measured, indicated in red to dark red. The northwest and eastern part of 1310 
the experimental field fostered higher SM in comparison. Thus, there, the soil water holding 

capacity appeared higher, indicated by the blue areas. 
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A) 

B) 

Figure 19: Spatial variability of soil moisture for A) April 4th, and B) April 15th 2019 across the 
experimental field in Rutzendorf, based on kriging 
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Figure 20: Precipitation graph for March and April 2019, prior to Parrot measurements 

During the time frame from mid-May to the beginning of June in 2019, the weather was 

increasingly wet, with much higher precipitation events than in April 2019. Figure 21 shows the 

precipitation pattern starting on the first of May until the beginning of June 2019. There were 

more precipitation events during a similar time span compared to the precipitation graph of 1320 
April 2019.  
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Figure 21: Precipitation graph for May 2019, prior to Parrot measurements  

 

The spatial variability of SM during the more wet period (Figure 22) is shown for May 15th 

(Figure 22A) and June 1st (Figure 22B). Again, the color range for SM is determined by the 

min. and max. measurements of the respective day. The SM regime, especially regarding the 

soil water holding capacity, corresponds with the higher and lower SM occurrences (see also 

Figure 19). Accordingly, especially in the experimental field's northern part, the soil showed 1330 
the highest measured soil water contents.  

The areas of higher SM during May and June also correspond to the overall SM measured 

during the more dry conditions in April. The middle and south-western parts generally 

appeared to foster a different texture with less water holding capacity than the eastern and 

northern parts of the experimental field. In both days of the investigation in May and June, the 

soil appeared almost at FC or exceeding it as precipitation was high before and during 

measurements.  
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A) 

B) 

Figure 22: Spatial variability of soil moisture for A) May 15th, and B) June 1st 2019 across the 
experimental field in Rutzendorf, based on kriging 
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Figure 23 presents the precipitation course before TDR measurements on July 24th, 2020, 1340 
indicating moderate soil water contents, as shown in Figure 24. Figure 24 features a zoom 

effect with a set of three different resolutions comprising 250x250 m, 125x125 m, and 50x50 

m, fostering the TDR measurement points from July 24th, 2020. Figure 24A shows the 250 m 

grid with an SM range between 29 and 15 % vol. Figure 24B shows the 125 m grid with a SM 

range between 32 and 15 % vol., indicated by higher SM in blue and lower SM in red. Finally, 

Figure 24C shows the 50 m grid, where the SM lies between 29 and 14 % vol. However, only 

a few measurement points were taken on the 50x50 m grid due to a sensor failure.  

The respective SM range is based on kriging calculations and depends on the gridded 

measurement points with their min. and max values of the TDR measurements for that day. 

For example, Figure 24A is based on the 250 m grid and Figure 24B on the 125 m grid. In 1350 
Figure 24C, in the 50 m grid with measurement points, only the upper two rows of 

measurement points are subject to interpretation due to missing data.  

Between some of the measurement points, SM varies up to 10 % in volume.  

Two weeks prior to the TDR measurements, the precipitation pattern shows continuous but 

medium precipitation events (Figure 23). However, even though constant precipitation 

occurred during the summer and July, e.g., relatively high temperatures were monitored, 

leading to high evapotranspiration rates of the canopy. The measured SM was, therefore, 

lower compared to May and June. Nevertheless, some parts of the experimental test field 

foster higher amounts of SM, probably due to higher soil water holding capacity at the 

measurement point.  1360 

 

Figure 23: Precipitation graph for July 2020, prior TDR measurements 



Evaluation of multi-level methodical soil moisture measurements 
 

Page 56  David Marin 

  

C) B) 

A) 

Figure 24: Zoom effect of TDR measurement based spatial interpolated SM on July 24th 2020, for A) measurements 
in the 250 m grid, B) measurements in the 125 m grid, C) measurements in the 50 m grid 
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4.3 Validation of in-situ Parrot sensors 

In the following section, three baseline analyses are featured. Linear regressions were used 

for the analysis of different methodological SM measurements. The RMSE is determined as 

the following step.  

4.3.1 Analysis of Parrot and TDR in-situ measurements in 2019  

The gridded TDR SM output from April 4th, 2019, June 1st, 2019, and July 5th, 2019 was linearly 1370 
regressed with the equivalent SM output of the corresponding Parrot devices at the same 

measurement points (Figure 25A-C). 

 

 

B) 

C) 

A) 

Figure 25: Statistical analysis of TDR vs. Parrot for A) linear regression, B) residual plot, and C) residual density 
curve 
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Overall, the TDR measurements exhibit the base reference and were thus set as the 

independent variable for the statistical analysis. An R² of 0.76 was observed between the TDR 

measurements and the ‘Parrot’ sensors (Figure 25A). The residual distribution was random, 

as shown in Figure 25B-C. Therefore, the null hypothesis was dismissed (p<0.001). In general, 

a correlation of TDR and Parrot measurements was proved.  

4.3.2 Analysis of Parrot and FDR met-station in-situ measurements in 2019  1380 

The following analysis describes the calibrated SM mean of all Parrots (Parrot_cal) over the 

experimental field compared with one meteorological station within the field for 10 cm soil 

depth. It was measured by three FDR-sensors of the Z-weather station (Met-station_10cm) 

from April to July 2019 (Figure 26A-C).  

Since the new independent variable for the vegetation period in 2019 is the Parrot_cal, an 

overall correlation analysis is conducted to check if the weather station’s sensors can be used 

as a proxy for the vegetation period in 2020.  

A) 

C) 

B) 

Figure 26: Statistical analysis of Parrot_cal vs. Met-station_10cm for A) linear regression, B) residual plot, and C), 
residual density curve  
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The linear regression between the Parrot sensors and the FDR Met-station with R² of 0.85 is 

similar but higher than the baseline reference comprising TDR and Parrot.  

Further, just one single Parrot (Parrot_cal_42) was compared for redundancy purposes (Annex 1390 
1). The location of this Parrot device was in closest proximity to the weather station’s sensor. 

It shows a similar correlation with an R² of 0.79 as the mean Parrot measurements of the 

experimental field do. To check for the normal distribution of the two analyses, density plots 

with a confidence interval of 0.95 are shown in Figure 26C and Annex 1C. The density plots 

and residual plots are used to validate the corresponding linear regressions.  

4.3.3 Overview of R² and RMSE   

The RMSE, R², p-value, MBE, and the normal distribution were calculated for the baseline 

sensor analysis. According to the statistical analysis, all data were valid and achieved 

correlation. The R² is good, and the RMSE is relatively low compared to the entire 

measurement range. The RMSE is determined by the errors of the predicted values of the 1400 
linear regression and, thus, is low in the baseline sensor analysis (Table 1). The mean bias 

error calculations indicate an overestimation of the Parrot measurements compared to the TDR 

measurements. The FDR Met-station, on the other hand, underestimates SM according to the 

MBE calculated. Nevertheless, the results are in line and following the behavior of SM for the 

respective soil depths and measurements conducted.  

As a result of the analysis, the Parrot and weather station sensor were used as a proxy 

baseline reference for the following satellite- and AquaCrop simulation data comparisons. 

 

4.4 Temporal correlation analysis 2019 with satellite products and models 

The various remote sensing-based SM estimation methodologies are assessed and analyzed 1410 
for correlation throughout the following chapter. It was executed according to the proxy 

reference of the calibrated Parrot measurements independent variable that continuously 

measured time-series.  

A few key figures are presented as bold examples for better comprehension and a more 

precise overview of the results section. The relative soil water content range starts at 0 and 

goes up to 100 %. The satellite remote sensing SM estimations and the ARIS model can only 

provide one value throughout the experimental field but instead provide a temporal tool to 

compare changes in SM over a period of time.  

For the satellite products and the comparison with the ARIS model, the comparisons were 

made in relative soil water content and related changes (see chapter: 3.6.1 Preparation of in-1420 
situ, satellite, and simulation data for comparison).  

 

The first satellite product compared to was the S1ASCAT-SWI SM. The dependent variable 

SWI_001_rel of the S1ASCAT SM product is regressed against the independent variable 

Parrots_rel in Figure 27A-D. The data are displayed in relative SM [%]. SWI_001_rel 

represents the SM of 0-1 cm of the top soil layer.  

The overall correlation based on the linear regression between the Parrots_rel and 

SWI_001_rel has an R² of 0.6 (Figure 27A). The residual plot in Figure 27C shows a random 

distribution of the predicted values Figure 27B provides the SM trendline of the Parrot_rel and 

Table 1: Summary of the baseline sensor analysis 2019 
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the S1ASCAT SWI_001_rel SM depth from the period April to July 2019. The Parrot data 1430 
shows a higher fluctuation and relative SM [%] than the observed SWI_001_rel SM. In Figure 

27D, the precipitation graph is plotted from April to July 2019. It corresponds well with the 

variations of relative SM during Mai and June, with corresponding moderate to strong 

precipitation events.  

 

The second S1ASCAT SM product is provided for a soil depth of five cm (Annex 2). There is 

a correlation with an R² of 0.82, and the residual errors show random distribution. Compared 

to the S1ASCAT-SWI SM product of 0-1 cm, the SM trendline of SWI_005_rel shows a lower 

fluctuation, which agrees with the theory. It also shows lower values than Parrot_rel. The 

precipitation graph corresponds with the SM trendline of SWI_005_rel. However, the pattern 1440 
is smoother compared to SWI_001. A short time delay can be detected between the actual 

precipitation events and the measured SWI_005_rel values according to the soil moisture 

storage term coming into consideration. 

A) B) 

C) D) 

Figure 27: Statistical analysis of Parrots_rel vs. SWI_001_rel for A) linear regression, B) SM trend of Parrots 
and SWI_001 over time, C) residual plot and D), precipitation graph 
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The third S1ASCAT SM product, taken for comparison, is SWI_010_rel, which reflects the SM 

up to ten cm soil depth (Annex 3). The correlation with Parrot_rel has an R² of 0.64, and random 

distribution is given. The SM trendline follows the precipitation pattern with a time lag. 

Nevertheless, it is smoother than the previous SWI products and has a lower response towards 

changes in precipitation.  

 

The second satellite data compared was the SMAP SM product (Annex 4). The analysis starts 1450 
in April 2019 and ends in July 2019. However, it features only coverage through the SMAP SM 

product for every third day. Thus, the total amount of data obtained is lower compared to the 

previous S1ASCAT-SWI analysis. The R² received between Parrot_rel and SMAP_rel is 0.44, 

and the residuals presented are randomly distributed (Annex 4C). The SM trendline of the 

SMAP SM corresponds with a time lag during the peak with the SM trendline of Parrot_rel. The 

SMAP_rel observations trail behind the precipitation pattern and the Parrot_rel measurements.  

The remaining S1ASCAT-SWI products in five and ten cm soil depths are analyzed and 

featured in the Appendix section (Annex 2 and Annex 3). The SMAP product is visualized in 

Annex 4 in the Appendix section.  

  1460 
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4.4.1 Comparison with simulation models (ARIS and AquaCrop) 

The highest correlation achieved the analysis of Parrot_rel with the ARIS_rel SM output 

(Figure 28A-D). Figure 28A shows a correlation with an R² of 0.92. Some elevated errors are 

presented in Figure 28C. These relative errors accumulate predominantly in the lower and 

higher range of the measurements demonstrated in the residual plot.  

The course of Parrot_rel and ARIS_rel is well matched, with peaks during intense precipitation 

events (Figure 28B and D). During drier periods, the ARIS data shows slightly lower SM values. 

However, during moderate to high precipitation events, its SM corresponds well to the SM 

trendline of Parrots_rel. ARIS’s SM relates well to the overall precipitation events according to 

Figure 28D too. 1470 

 

  

A) B) 

C) D) 

Figure 28: Statistical analysis of Parrots_rel vs. ARIS_rel_rel for A) linear regression, B) SM trend of Parrots and 
ARIS_rel over time, C) residual plot, and D), precipitation graph 
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Another central part of the results section constitutes simulated AquaCrop time series, 

compared with the Parrot in-situ SM measurements, regarding the different soil types.  

All three soil types (B1, B2, B3) in two different soil depths (five and 15 cm) were compared 

with the Parrot measurements. In this case, the comparison was based on the absolute soil 

moisture content in % vol.  

Figure 29A-D presents the comparison between the ‘Parrot’ sensors located on soil type B1 

and the AquaCrop model of soil type B1 for a soil depth of five cm. According to the linear 

regression shown in Figure 29A, the R² is 0.63. The residuals are visualized in Figure 29C. 1480 
The observed SM response concerning the precipitation pattern is shown in Figure 29D. 

Especially during moderate to strong precipitation events, vital feedback in the SM trend can 

be detected.  

The FC and PWP applied in AquaCrop are presented in the SM trendline of Figure 29B.  

 

A) B) 

D) C) 

Figure 29: Statistical analysis of Parrots vs. AquaCrop_B1_5cm for A) linear regression, B) SM trend of Parrots and 
AquaCrop_B1_5cm over time, C) residual plot, and D), precipitation graph  
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The R² of the AquaCrop simulation for the soil depth of 15 cm is 0.43 (Annex 5). The SM 

trendline of the simulation reacts slow, compared to the precipitation graph. Thus, the 

precipitation feedback of the AquaCrop simulation in 15 cm soil depth is smaller than 

measured, indicating that the FC and PWP in the model setting do not match the reality (in 

contrast to ARIS).  1490 
Soil type B2 and type B3, with respective soil depths of five to 15 cm, are statistically analyzed 

with linear regression (Annex 6 through Annex 9)  

Soil type B3 with the soil depth of 15 cm was dismissed for further analysis because of perfect 

fitting data and a lack of random distribution (Annex 9).  

4.4.2 Summary of the year 2019 analysis 

An overview of the independent variable of calibrated Parrot and all dependent variable 

trendlines with its absolute SM in % vol. is presented in Figure 30A-L (see chapter: 3.6.1 

Preparation of in-situ, satellite, and simulation data for comparison; and 3.6.4 Transformation 

of satellite and simulation data based on soil porosity). Figure 30A-C present the S1ASCAT 

SM products and show an effect of decreased dependency on precipitation (Figure 30L) 1500 
concerning volumetric SM [%].  

 

The second row provides the absolute SM featuring ARIS (Figure 30D), SMAP (Figure 30E), 

and the AquaCrop simulation of soil type B1 in five cm depth (Figure 30F). The last two rows 

visualize the AquaCrop simulation of soil type B1 in 15 cm and B2 in five- and 15 cm soil depths 

(Figure 30H-I).  

 

Finally, the AquaCrop simulation of soil type B3 is presented in Figure 30J-K with five and 15 

cm respective soil depths. For individual interpretation, Figure 30L provides the precipitation 

course from April to July 2019. Based on the mean TDR measurements, all SM trendlines have 1510 
the FC and PWP incorporated to assess the trendlines visually. It is visible that shallow soil 

depth seems to foster higher fluctuation and levels in SM regarding precipitation occurrence. 

In Figure 30A-C, it is demonstrated that the S1ASCAT-SWI SM levels decrease with increasing 

soil depth and trail little behind the precipitation emergence. It can be assumed that the deeper 

the soil layer, the better and constant the SM regime is, with less fluctuation and a smoother 

trendline. However, the S1ASCAT-SWI products show a similar offset in SM estimation like 

the AquaCrop simulations compared with the calibrated Parrot reference measurements. This 

circumstance is also indicated in the statistical variable of the MBE calculation. Both the 

S1ASCAT-SWI products and the AquaCrop simulations underestimate SM compared with the 

calibrated Parrot measurements. 1520 
In contrast, the ARIS trendline in Figure 30D aligns nicely with the Parrot SM measurements, 

also for absolute SM. Both methods, ARIS and S1ASCAT-SWI, are prone to high fluctuations 

in precipitation patterns and thus fit well.  

It can be seen that the PWP and FC levels applied for a sandy soil type in AquaCrop do not 

match the reality, which is approximately represented by the lowest and highest absolute SM 

values of the calibrated Parrot sensor. 

 

In Figure 30E, the SMAP product demonstrates a discrepancy or time lag of the SM estimation. 

However, the overall estimation seems accurate according to the Parrot measurements in the 

respective time frame.  1530 
Figure 30F-K demonstrates the remaining AquaCrop simulations for the respective soil depths 

and soil types B1, B2, and B3. The upper soil layer provides a good response regarding the 

precipitation pattern. However, there is a bias on the SM level due to the inadequate setting of 

FC and PWP (which were default values in the AquaCrop software for the respective soil 

types). Nevertheless, with an increasing soil depth of the AquaCrop simulation, a lower 
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response after precipitation events occurs, which agrees with the other methods. SM remains 

longer within the deeper layers of soil, respectively.  

 

 

Figure 30: Trendline comparison of Parrot and A) SWI_001, B) SWI_005, C) SWI_010, D) ARIS, E) 1540 
SMAP, F) AquaCrop_B1_5cm, G) AquaCrop_B1_15cm, H) AquaCrop_B2_5cm, I) 
AquaCrop_B2_15cm, J) AquaCrop_B3_5cm, K) AquaCrop_B4_15cm, and L) Precipitation graph 
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4.4.3 Overview of R² and RMSE   

In the following Table 2, statistical analyses for the compared methods are presented. They 

are presented for the relative soil moisture changes (indicated as Relative Soil Saturation) and 

absolute soil moisture changes (indicated as Absolute Soil Water Content), with the RMSE, 

R², MBE, p-value, and the normal distribution. The lower the RMSE value, the less residual 

variance was observed in the linear regression analysis. However, it is essential to mention 

that the ARIS or SWI_001 data has higher SM fluctuation after precipitation events. Thus, the 1550 
RMSE is higher compared to some sensors less prone to precipitation. Nonetheless, for final 

decision-making, the RMSE, of course, is a starting point as a good indicator to assess further 

management strategies.  

Overall the MBE shows that SM of the S1ASCAT-SWI estimations and the AquaCrop 

simulation estimations are underestimated compared with the Parrot measurements. However, 

AquaCrop deviates more than the S1ASCAT-SWI products. ARIS shows the best estimation 

outcome with an MBE of 0.95 compared with the reference of Parrot. Based on the MBE, 

SMAP estimations are highly overestimated compared with the reference measurement. 

The normal distribution's lower or upper boundary observations result in a flattened out peak 

(100 %) and bottom (0 %) of relative SM range observations.  1560 
Nevertheless, the ARIS data was deemed normally distributed. The same applies to the SMAP 

data. However, only a low volume of observations for the SMAP data was available for the 

respective period. One variable was dismissed due to a perfect fit and missing normal 

distribution (Annex 9C). Thus, the output of Parrot_B3 vs. AquaCrop_B3_15cm could not be 

calculated with the underlying software of R.  

 

 

 

  

Table 2: Summary of the sensor comparison analysis 2019 
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4.5 Temporal correlation analysis 2020 with satellite products and models 1570 

The timeframe for observations lasted from October 2019 to July 2020. The S1ASCAT-SWI 

SM product in 0-1 cm soil depth was regressed against the independent variable of the weather 

station FDR sensor in 20 cm soil depth (Figure 31). According to the linear regression statistics 

conducted, Figure 31A shows an R² of 0.52. The residual errors of the following Figures were 

checked for normal distribution. A residual-plot summary is presented in Annex 19G in the 

Appendix section.  

Figure 31C visualizes the correlation of the independent variable WS_020cm_rel compared 

with the dependent variable of SWI_001_rel. The SM trendline response matches the 

precipitation pattern (Figure 31B), which shows a similar sequence of peaks and troughs. A 

lower increase in SM can be observed during the summer months, starting in April towards 1580 
July, even though precipitation events are more potent and enduring due to much higher 

evaporation rates of the canopy.  

 

A) B) 

C) D) 

Figure 31: Statistical analysis of WS_20cm_rel and SWI_001_rel for A) linear regression, B) precipitation 
graph, and C) trend of WS_20cm_rel and SWI_001_rel 
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A lower fluctuation in SM response is shown in the data of the weather station WS_20cm_rel 

and thus, aligns well with the satellite data of S1ASCAT-SWI.  

In Annex 10, the correlation analysis for the S1ASCAT SWI_005 variable is demonstrated and 

features a soil depth of 0-5 cm. The observed R² is 0.61, and the SM response matches the 

precipitation pattern. Starting in October 2019, the SM trendline of SWI_005_rel compared 

with the variable WS_20cm_rel shows a similar correlation. Fewer peaks and troughs in the 

SM values can be observed compared to Figure 31, with the SWI_001_rel as a variable.  1590 
The final S1ASCAT-SWI product is presented in Annex 11, and, according to the correlation 

analysis, it presents an R² of 0.57. Both the trendline and the precipitation graphs align, and 

the S1ASCAT-SWI products in lower soil depths are smoother in SM estimation and lag little 

in their visualization after precipitation events. 

The second satellite remote sensing SM data is the SMAP_rel SM product which was 

regressed with the independent variable of WS_020_rel (Annex 12). The observed R² is 0.32. 

Compared to the SMAP_rel observations for 2019, the time series during the vegetation period 

of 2020 provides significantly more observations. The two primary peaks in the SMAP_rel data 

trail behind the in-situ sensor data during winter. Its peaks and troughs are correlating better 

in the summer period. However, during winter, an overestimation of SM with a significant lag 1600 
was observed. Especially during February and March, a significant peak of the SMAP_rel 

product was observed (unknown reason).  

4.5.1 Comparison of simulation models (ARIS and AquaCrop) 

Figure 32 presents the ARIS simulation for relative SM (see Figure 33 for absolute SM 

comparison), where an R² of 0.55 was estimated. The random distribution is presented in 

Annex 19J, featuring the trendlines. The ARIS data responds to the precipitation pattern well 

(Figure 32B), especially during the growing season. 

There is a high fluctuation of SM during the summer month for the ARIS data, correlating with 

the weather station’s sensor. However, with a bit higher variability range. This circumstance is 

probably caused by local deviation of soil water holding capacity from the ARIS setting. During 1610 
the early vegetation period starting in October 2019, the SM product of ARIS is mostly at FC 

overestimating SM compared to the in-situ sensor. A biased crop factor probably causes this 

behavior for evapotranspiration for the winter dormancy period in ARIS.  

According to precipitation pattern and season, the ARIS data strongly reacts to rain fluctuations 

with peaks and troughs, reflecting depletion of SM close to wilting point or vice versa an 

increase towards FC. Especially in April 2020, the ARIS dataset visualizes a low volume in 

precipitation. After this dry phase, intense precipitation events from May onward increase the 

highly fluctuating response of the ARIS data.  

 

  1620 
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The AquaCrop B1_5cm simulation result of absolute SM was likewise regressed with the 

variable WS_20cm (Annex 13). In that case, an R² of 0.49 is estimated. According to the SM 

trendlines of the sensors, there is a slight offset. The independent variable WS_020 achieves 

higher SM observations compared to the AquaCrop B1_5cm observations. The peaks and 

troughs are respectably ordered according to the precipitation pattern and similar intensity. 

The absolute SM trendline of WS_020 and B1_005 has a high response concerning 

precipitation events if looked closely.  

The variable of AquaCrop B1_15cm correlates with an R² of 0.57 to the WS_20cm variable 

(Annex 14). According to the precipitation pattern, the SM trendline is smoother with no peaks. 1630 
Instead, a leveling of SM at FC or PWP is observed. The 15 cm soil depth in the AquaCrop 

simulation has very low fluctuation in SM response. The soil types B2 and B3, with their 

respective soil depths of five to 15 cm, were likewise statistically analyzed with linear 

A) B) 

C) D) 

Figure 32: Statistical analysis of WS_20cm_rel and ARIS_rel for A) linear regression, B) precipitation graph, 
and C) trend of WS_20cm_rel and ARIS_rel 
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regression with the independent variable WS_20cm, respectively. Due to similar results, Annex 

15 and Annex 16 feature soil type B2 in five and 15 cm soil depth with R² of 0.49 and 0.57. 

Annex 17 and Annex 18 likewise show the two soil depths in five and 15 cm of soil type B3 

with values of R² of 0.60 and 0.54.  

All residual plots are presented in Annex 19. The best random distribution is achieved by the 

satellite estimations of S1ASCAT_SWI and SMAP. The ARIS residual distribution plateaus 

during the winter period and biases the random distribution. The same applies to the AquaCrop 1640 
simulation estimations. Especially the AquaCrop data for 15cm soil has a plateau in maximum 

SM and minimum SM estimations resulting in a biased residual plot, respectively.  

4.5.2 Summary of year 2020 analysis 

An overview of the relationship between the independent variable of WS_20cm and all 

dependent variable trendlines with its absolute SM % vol is presented in Figure 33. As 

calibrated Parrot values were not available for 2020, the WS_20cm sensor was used as the 

reference, which proved to be a good proxy for the Parrots in 2019 (see chapter: 4.3 Validation 

of in-situ ‘Parrot’ sensors). 

Figure 33A-C present the S1ASCAT-SWI SM products and show an effect of reduced 

response to precipitation (Figure 33L) with increasing soil depths concerning volumetric SM 1650 
[%].  

The second row provides the absolute SM featuring ARIS in Figure 33D, SMAP in Figure 33E, 

and the AquaCrop simulation of soil type B1 in five cm depth in Figure 33F. The last two rows 

visualize the AquaCrop simulation of soil type B1 in 15 cm in Figure 33G, and B2 in five and 

15 cm in Figure 33H-I.  

Finally, the AquaCrop simulation of soil type B3 in five and 15 cm is presented in Figure 33J-

K. For individual interpretation, Figure 33L provides the precipitation graph of the vegetation 

period. The FC and PWP for the site based on the TDR measurements are indicated in the 

dotted lines. The S1ASCAT-SWI products in Figure 33A-C show a similar response of SM with 

increasing depths as in the previous chapter for the Parrot sensors in 2019. Overall, the SM 1660 
feedback correlates nicely but smoothens with depth. ARIS overestimates the SM more than 

in 2019, as demonstrated in Figure 33D. The potential reasons were mentioned there, but 

further, we have to consider that for 2020, in contrast to 2019, just a single measurement point 

from the field is used as the reference, rather than an average on measurement points which 

adds uncertainty.  

Similar results were obtained for the SMAP product (Figure 33D). It seems that SMAP 

overestimates the SM regime in general during winter, too (as the ARIS model). However, 

during the summer period, SM estimations are underestimated if compared with the weather 

station sensor. The AquaCrop simulations fit best for the top soil layer in five cm soil depth to 

the WS_20cm and to the level of FC and PWP for that single point. The five cm soil depth has 1670 
much higher fluctuations, responds differently, and is more prone to precipitation events than 

the 15 cm simulation data. Soil type B3 behaves differently during winter regarding SM 

estimation, related to the texture and structure, probably because the B3 soil characteristics 

do not meet the measurement point soil characteristics. 

The MBE of the vegetation period 2020 shows a lower over- and underestimation of the 

S1ASCAT-SWI products and the AquaCrop simulations. This circumstance is also visible in 

Figure 33A-C and F-K with its closer correlating trendline plots.  

The same applies to the SMAP product with overestimations of SM and a higher deviation in 

measurements.  

  1680 
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Figure 33: Trendline comparison of Parrot and A) SWI_001, B) SWI_005, C) SWI_010, D) ARIS, E) SMAP, F) 
AquaCrop_B1_5cm, G) AquaCrop_B1_15cm, H) AquaCrop_B2_5cm, I) AquaCrop_B2_15cm, J) AquaCrop_B3_5cm, 

K) AquaCrop_B4_15cm, and L) Precipitation graph  
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4.5.3 Overview of R² and RMSE 

In Table 3, the sensor’s statistical analysis of the compared methods for the relative soil 

moisture changes (indicated as Relative Soil Saturation) and absolute soil moisture changes 

(indicated as Absolute Soil Water Content) is presented. It comprises all R² values, the p-

values defined as <0.001, MBE, and the RMSE are presented. The normal distribution is 

presented in the Appendix section Annex 19. 1690 
The lack of normal distribution in the AquaCrop data is related to the low sensitivity of the SM 

in the soil depth of 15 cm and a stepwise change of SM, which could be based on a software 

algorithm characteristic. The low volume of variation and persistent SM in the respective soil 

depth of 15 cm was the reason for such plateaus of mainly maximum SM estimations and 

minimum SM observations. Thus, they set an upper and lower boundary in the data.  

ARIS shows somehow similar behavior, with less sensitivity and positive bias of SM, especially 

during winter when it comes near the cutting effect of FC. However, below FC and during the 

growing period, the response improved compared to the in-situ sensor. The reason for this 

behavior of ARIS lies in an inadequate KC factor for evapotranspiration during winter. It 

resulted in a high volume of simulated values for the RSS, causing a clustering in the scattering 1700 
of the variance in residuals (Annex 19). If looking at the ARIS and SMAP relative SM (RSS) 

results, the RMSE analysis based on the variable WS_20cm is unsatisfactory. However, this 

is related to the high scattering of the residuals. In the case of ARIS, it is mainly based on the 

deviation during the winter period. Vice versa, the low volume of residual scattering for the 

AquaCrop simulations causes better RMSE values than the S1ASCAT-SWI and the ARIS data 

(Annex 19). However, based on absolute SM values, the span is reduced to a range of about 

0-60%. In contrast, the RSS span ranges between 0-100%.  

In Table 3, the MBE presented shows an overestimation of the S1ASCAT-SWI products. 

However, especially the SMAP product features an overestimation. The overrepresentation of 

the MBE in the ARIS SM data originates in the deviation during the winter period, respectively. 1710 
Likewise, the AquaCrop simulation estimations are over-and underestimating the SM data, 

dependent on the soil type, compared with the FDR Met-station, indicated in the MBE value.  

In general, the lower over-and underestimations in MBE compared to 2019 are related to fewer 

deviations in the mean of the observations (FDR Met-station) vs. predictions (S1ASCAT-SWI 

and AquaCrop).  

Like for the year 2019, in 2020, the normal distribution's lower or upper boundary observations 

result in a flattened out peak (100 %) and bottom (0 %) of relative SM range observations.  
 

 

  1720 

Table 3: Summary of the comparison analysis 2020 
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4.6 Temporal correlation analysis 2018 with satellite products and models 

For the vegetation period in 2018, there was no reference in-situ sensor data available. Thus, 

the ARIS SM product was used as the independent variable, as it was proved to fit reasonably 

well in compared to the spatial mean Parrot in-situ measurements in 2019. For better 

comprehension and a more precise overview, only selected Figures are presented. 

The dependent variables for the analysis in 2018 are the two S1ASCAT-SWI SM products, the 

SMAP product, and the simulation results from AquaCrop. Higher peak fluctuation of the ARIS 

product is connected to a strong response towards precipitation and a potential bias of water-

holding capacity and FC and PWP setting in the ARIS simulation. This fluctuation effect is 

visually boosted by the short observation interval from April to July.  1730 
Figure 34 presents the analysis of ARIS_rel with the dependent variable of SWI_001_rel. 

Figure 34A reveals an R² of 0.69. Next, the residuals are presented in Figure 34C and the 

trendline is visualized in Figure 34B. Figure 34D presents the precipitation graph. Both SM 

trendlines show a dependency on precipitation. However, ARIS Is fluctuating higher than the 

S1ASCAT SWI_001_rel estimation, as it was characteristic behavior in the other investigation 

years.  
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  1740 

A) B) 

C) D) 

Figure 34: Statistical analysis of ARIS_rel vs. SWI_001_rel for A) linear regression, B) SM trend of ARIS_rel and 
SWI_001_rel over time, C) residual plot, and D), precipitation graph 
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The second S1ASCAT-SWI product reflects SM for a 0-10 cm depth with an R² value of 0.33 

and a normal distribution (Annex 20). Similar behavior is observed when checking the trendline 

of SM. A relatively smooth trend of the SWI_010_rel product faces the high fluctuating ARIS 

data, also in that soil depth.  

 

The second satellite sensor product compared was the SMAP product with an R² of 0.15 and 

a normal distribution (Annex 21). There is an exceedingly low correlation due to the time lag 

of the SMAP SM product, which was also evident in the other two years. The SMAP trendline 

over the short period from April to July has a negative movement compared to the ARIS data's 

high fluctuating positive SM response.  1750 
 

The AquaCrop simulation data correlate little with the ARIS simulation results, too. Especially 

for the level of SM rather than the variation of SM (see below). This circumstance could lie in 

differences, as already mentioned in the analysis of the two other years. Soil types B1 and B2 

in five and 15 cm soil depth have R² values of 0.16 and lower (Annex 22, Annex 23, Annex 24, 

and Annex 25). The residuals are normally distributed. The soil type B3, compared with the 

ARIS model, achieves an R² of 0.15 (Annex 26). In comparison, soil type B3 has a better 

correlation in the soil depth of 15 cm and an R² of 0.36 (Annex 27). However, the normal 

distribution has flaws with clustering in low and high SM ranges, probably based on a software-

specific characteristic of SM output at the deeper soil depth. 1760 
The analysis's SM trendline courses of the AquaCrop simulations show a similar trend 

(fluctuation) of precipitation in five cm soil depths. There is an offset of the ARIS trendline 

compared to the AquaCrop simulation trendlines.  
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As a final and competitive correlation analysis, Figure 35 shows the independent variable 

SWI_001 versus the AquaCrop simulation B2 in five cm soil depth. In Figure 35A, the linear 

regression with an R² of 0.45 is shown. Figure 35B visualizes the SM trendline in % vol. The 

S1ASCAT-SWI was recalculated to absolute SM for better comparison, respectively (see 

chapter: 3.6.4 Transformation of satellite and simulation data based on soil porosity). Figure 

35C-D shows the residual plot and the precipitation graph.  1770 
The independent variable SWI_001 was used in particular for the correlation analysis in Figure 

35. It shows how the satellite data of S1ASCAT-SWI performs compared to the simulation data 

of ARIS in the previous examples. As there is lower fluctuation in the S1ASCAT-SWI data, a 

bias of SM holding potential of ARIS is possible. According to the SM trendline graph, the top 

layer of the AquaCrop simulation data and the top layer of the S1ASCAT-SWI product seem 

to match well.  

  

Figure 35: Statistical analysis of SWI_001 vs. AquaCrop_B2_5cm for A) linear regression, B) SM trend of SWI_001 
and AquaCrop_B2_5cm over time, C) residual plot, and D), precipitation graph  

D) C) 

B) A) 
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4.6.1 Summary of year 2018 analysis 

In Figure 36, all trendline graphs are presented. Figure 36A-B comprises the S1ASCAT-SWI 

SM estimations. The individual sensor’s SM units are presented in % vol. The increased 1780 
precipitation volume causes the high fluctuation of the ARIS data during June and July 2018.  

The SMAP SM trendline is presented in Figure 36C. Figure 36D-I features the AquaCrop 

simulations of all three soil types B1, B2, and B3, with five and 15 cm respective soil depths.  

 

 

  

Figure 36: Trendline comparison of ARIS and A) SWI_001, B) SWI_005, C) SMAP, D) AquaCrop_B1_5cm, E) 
AquaCrop_B1_15cm, F) AquaCrop_B2_5cm, G) AquaCrop_B2_15cm, H) AquaCrop_B3_5cm, I) 

AquaCrop_B4_15cm and item J) the precipitation graph  
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According to Figure 36, the trendlines of the upper soil layers seem to match the ARIS data 

better than deeper layers (e.g., AquaCrop in 15 cm soil depth and the S1ASCAT-SWI data of 

0-10 cm soil depth). ARIS fluctuates higher and closely tracks and responds towards distinctive 

precipitation patterns. Thus, SWI_001 correlates with the ARIS data better than S1ASCAT 1790 
SWI_010 or SMAP. The same applies to the AquaCrop simulations in the five cm upper soil 

layer compared to the 15 cm soil layer depths. The upper layers are prone to substantial 

variations in precipitation patterns and meteorological events resulting in a strong response in 

SM fluctuations. Hence they fit the course of ARIS better compared to layers less prone to 

fluctuations and variations. 

The trendline offset featured in Figure 36A-B and D-I can be explained with the statistical 

variable of MBE similarly. For example, the higher an over-and underestimation, indicated by 

the MBE variable, the higher the deviation of SM estimations in the mean of observations 

(ARIS) vs. predictions (S1ASCAT-SWI and AquaCrop).  

  1800 
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4.6.2 Overview of R² and RMSE 

The method comparison analysis for 2018 is presented in Table 4. According to the statistical 

analysis of relative SM change for ARIS_rel and SWI_010_rel, an R² of 0.33 was observed. 

The results for SWI_010_rel are presented in Annex 20. The SMAP_rel SM product has an 

R² of 0.15 (Annex 21). Likewise, the AquaCrop simulations for soil types B1, B2, and B3 with 

their two soil depth are featured in the Appendix section (Annex 22, Annex 23, Annex 24, 

Annex 25, Annex 26, and Annex 27). 

The simulation results of AquaCrop (absolute SM change) in the upper soil compartment do 

not correlate well with ARIS's independent variable. Similarly, the S1ASCAT-SWI data lacks 

correlation with the ARIS simulation product regarding absolute SM changes (Figure 36). 1810 
However, the dependent variable SWI_001_rel has the highest correlation with ARIS_rel and 

thus correlates well with the ARIS simulation product regarding relative SM change (Figure 

34). The higher fluctuation and exposure of SWI_001_rel than SWI_010_rel result from the 

difference in considered soil layer depth. The deeper the measurement, the smoother is the 

course of SM. The AquaCrop simulations in 15 cm soil depth have a better but still very weak 

correlation than the five cm soil depth. 

Regarding the MBE statistics, the S1ASCAT-SWI SM products are underestimating, compared 

with the ARIS reference estimations. SMAP is overestimating SM like in 2019 and 2020. 

AquaCrop underestimates the SM compared with the ARIS simulation estimations. The higher 

offset of the SM estimations, indicated in the trendlines of Figure 36A-K, results in a higher 1820 
MBE (Table 4), as it is also presented for the data of 2019.  

The S1ASCAT-SWI_001 SM and the AquaCrop B2_005 estimation correlates well with the 

absolute SM change.  

However, the trendline shows that both methods underestimate the overall SM during 

precipitation events and the overall time of observation (Figure 35B and D) compared to ARIS. 

It appears that AquaCrop is more sensitive towards precipitation events than S1ASCAT-

SWI_001. However, compared to the ARIS simulation, AquaCrop’s upper soil layer simulations 

of five cm underestimated SM after all.  

The MBE of the AquaCrop simulation compared with SWI_001 shows an overestimation with 

a value of 1.79.  1830 
 

  

Table 4: Summary of the comparison analysis 2018 
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5. Discussion 

High spatial variability of soil conditions requires improvements in the agricultural management 

of crops to overcome anthropogenic climate change impacts on yields. Thus, the accurate 

determination of soil water availability in a high space and time scale is crucial to estimate and 

mitigate drought impacts on crops, e.g., through precision farming techniques. Furthermore, 

seasonal water shortages increase the risk for yield failures, especially during the sensitive 

stages of crop growth.  

Consequently, the soil-climate interface regarding SM determines yield and, overall, agrarian 1840 
production. To overcome high fluctuations in yield, a sound understanding of the SM regime 

is essential. Monitoring and estimation techniques are thus paramount to detect and optimize 

agricultural production.  

Due to a gap of state-of-the-art in-situ SM grid networks, a sound basis of data is expensive 

and time-consuming. For example, spatio-temporal TDR and FDR sensor datasets are scarce 

and limited for operational application. Even point-in-situ measurements on a large-scale 

resolution are limited and are mostly part of weather station networks. Low-cost sensors such 

as the Parrot sensors applied in our study could fill these gaps partly. However, they are often 

weak in robustness and calibration. Further, they are time-consuming to read out the data if 

not integrated with an automatic data transfer system. Which again will raise the costs of 1850 
implementation.  

Precision farming techniques may help future agricultural applications to fill the gap between 

in-situ point measurements and the required spatio-temporal resolution for crop management. 

Thus, selected SM spatio-temporal data from satellite remote sensing products combined with 

crop-soil-water balance models were investigated at field-scale in our study.  

5.1 Tools for detecting SM at high spatial resolution by satellite remote sensing 

and model simulations  

Our study demonstrates that satellite remote sensing techniques can support crop-soil-water 

relation analysis. Amongst the satellite data assessed are the LAI-MODIS-based observations 

that show a good agreement in the time course of observed LAI and the simulated AquaCrop 1860 
LAI. The results indicate that LAI-MODIS can validate the AquaCrop simulation from sowing 

to final yield. It demonstrates that remote sensing, like LAI-MODIS, is a good predictor for the 

AquaCrop simulation performance.  

 

Additional satellite remote sensing applications for crop-soil-water relation analysis are the 

S1ASCAT-SWI and SMAP products for SM estimates. Based on the correlation analysis 

results to a trustful reference (grid TDR in-situ measurements), the data suggests that the 

S1ASCAT-SWI products are a valuable and objective source for SM estimation on a field scale 

(500x500 m). Especially the SWI data for 0-5 cm soil depth is the most robust indicator for SM 

near the soil surface. However, the SM estimates for soil depths of 0-1 and 0-10 cm of the 1870 
S1ASCAT-SWI products likewise provide valid and valuable SM estimations at the field scale. 

Of course, this high spatio-temporal resolution of the S1ASCAT-SWI products is related to the 

overall expenditure of the calculations and the spatial resolution of the satellite sensor, which 

determines the final resolution of the satellite image.  

The SMAP SM product is the second method tested, though it is less reliable to generate valid 

SM estimations. The correlation with the reference sensors is low, and data suggests a lower 

validity of the estimated results.  

 

Amongst the two crop simulation methods analyzed are the AquaCrop simulations and the 

ARIS simulation. In the ARIS simulation, the results indicate a similarly good estimator for SM 1880 
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as the S1ASCAT-SWI. The strong fluctuations of peaks and troughs within the SM range of 

the ARIS models are related to the underlying setting of FC and PWP. This bias may be 

introduced through the setting of soil map, which has a higher spatial resolution. These peaks 

and troughs, or more precisely, this ‘cutting’ effect of the SM calculations, result from the 

cascade method used in the ARIS model at the specific soil layers, respectively. This 

circumstance leads to a distortion of the statistical analysis by accumulating the extreme 

values compared to the in-situ data from the measurements.  

The analyzed AquaCrop products suggest a sound and robust correlation for the five cm soil 

depth. The 15 cm soil depth outputs are likewise an adequate source for rough SM estimations, 

which is probably an effect of a simplified soil-water-balance calculation procedure in 1890 
AquaCrop for that specific soil depth. However, dependent on the input data, higher spatial 

variability of soil conditions can be considered by the AquaCrop application on high spatial 

resolution (compared to ARIS, which is fixed to 500x500 m resolution in soil properties). For 

example, we implemented three individual soil types in the AquaCrop simulation calculations. 

Nevertheless, a good soil survey with reliable and high spatial resolution data is still required 

for sound spatial SM estimates.  

 

During verification of the LAI-MODIS data, the pixel location was checked for possible 

deviations. However, the experimental test site is perfectly overlaid by the LAI-MODIS pixel. 

Thus, neighboring fields do not intercept or impact the canopy cover feedback of the satellite 1900 
imagery.  

In conclusion, the validation of the AquaCrop simulation based on LAI-MODIS data is a 

promising tool and works nicely for larger cultivated fields. Smaller fields, however, might 

require on-site LAI measurements for calibration. This circumstance is related to the limitations 

of spatial resolution of this satellite imagery product. For the LAI-MODIS dataset, a spatial 

resolution of 500x500 m per pixel set the boundary for an application. Thus, higher resolution 

analysis seems impossible with the LAI-MODIS satellite data. However, much higher spatial 

resolution LAI data from other satellite sensors (e.g., Sentinel) are already available.  

Cloud coverage limits the number of observations or clusters observations during particular 

cloud-free meteorologic events too. Thus, in few circumstances, cloud coverage may distort 1910 
observations negatively.  

In contrast to the hypothesis, delineating spatial variability in SM is impossible, based on 

calibrated S1ASCAT-SWI, SMAP products. For the crop simulation tools, ARIS and AquaCrop, 

the spatial resolution is bound to the resolution on soil property inputs (especially FC and 

PWP), which was also not available below the field scale in our study. Of course, the temporal 

resolution is high with the daily time step simulation based on daily weather data in the two 

crop models and the S1ASCAT-SWI product.  

Only the SMAP product provides a lower temporal pattern of three-day observations. 

Nevertheless, based on our research methods, the SM spatial variability on field-scale could 

only be assessed with gridded in-situ measurements like the Parrot sensors. The spatial 1920 
resolution of the crop simulation- and satellite estimations is too low (for the reasons mentioned 

above) for a possible high-resolution field-scale application. The circumstances shift in favor 

of these satellite products on a lower resolution or pixel size of 500x500 m.  

However, a good and substituted delineation of spatial variability could only be visually 

presented with the help of the gridded Parrot measurements.  

 

The Parrot spatial-variability data clarifies how the SM variability expands over the 

experimental field. There are ‘islands’ of high and low SM, which have different reasons. These 

reasons could be ‘fostered’ by local extremes, even in a smaller grid. One of them is 

undoubtedly connected to the overall texture and structure of the upper soil compartment. Soil 1930 
properties such as soil texture, soil pore volume, organic content, or soil structure determine 

how long and how much water the soil retains and thus, determines the overall SM regime. 
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The dominating differences in soil texture at our experimental site are defined by the Prater 

Terraces' geomorphology and the Danube River's former meandering while shaping the 

Marchfeld region.  

 

During the day and night operation of the Parrot sensors were rain periods and dry periods. 

Very high SM observations of the Parrot devices do not depict the plant's available water, 

rather the short-term saturation above FC during and briefly after precipitation events. 

Therefore, no tendencies towards PWP were observed during some stages of observation, 1940 
which suggests that the experimental field is at or above FC during wet phases. Nevertheless, 

the different soil textures spread out over the experimental field. They show that drainage is 

higher in some parts of the field than others, depending on infiltration and soil water 

conductivity, which is again related to soil properties such as soil texture.  

A refined approach applying a zoom effect provided a deeper insight into the relationship 

between spatial variability and spatial resolution. Dependent on the resolution, the tendencies 

of the SM estimations across the experimental field were correct. However, if one zooms in on 

a respective area, the spatial resolution increases if the range scaling steps applied are 

automatically adapted to the – normally decreasing – full range during zooming.  

Spatial variability detection based on remote sensing techniques works currently on a field 1950 
level resolution (one pixel per 500x500 m). If higher spatial variability detection for SM 

estimation is required, gridded in-situ sensors on a smaller grid size than 500 m are viable.  

For example, between the in-situ measurement points of the grid, we see a variability of up to 

10 % vol. It is essential to mention that there was continuous moderate precipitation during the 

phase of our grid in-situ measurements. However, even when constant precipitation occurred 

during the summer season (July in particular), significant spatial variation in SM was measured. 

The energy balance during this time of year strongly drives evapotranspiration of the upper 

rooted soil layers. Thus, some parts of the experimental field foster higher amounts of SM than 

others due to the variations in soil water holding capacity over the field.  

5.1.1 Results achieved in the context of state-of-the-art 1960 

While previous research has focused on in-situ SM measurements and weather variables to 

detect crop water status, the research of Ezenne et al. (2019) demonstrates that spatio-

temporal variability of SM can be achieved with the help of unmanned aircraft systems (UAS), 

such as drones. Of course, the UAS’s aim determines the camera application, whether thermal 

or hyperspectral cameras are used for the crop-water-stress indication (Ezenne et al., 2019). 

The UAS presented in their study work with different equipment than satellite missions like 

ASCAT or SMAP that work with microwave detection systems. It was demonstrated that higher 

spatial variability in SM could be detected with UAS and thermal camera systems based on 

water stress detection through crop canopy temperature measurements.  

The research of van Opstal et al. (2019) likewise demonstrates that a combination of flying 1970 
sensors with AquaCrop helps to assess the heterogeneity adequately and increase spatial 

variability. The combination of UAS and simulation programs can provide a better 

understanding of water productivity assessment and nutrition deficiencies on a spatial scale 

with higher resolution. Moreover, the research proved that strengths in crop simulation come 

with the possibility of applying future scenarios (van Opstal et al., 2019).  

The work of Zappa et al. (2019) demonstrates a different approach to access higher spatial 

variability at the sub-field level with a resolution of 30 m to cover spatial heterogeneity. They 

used machine learning and training sets based on ASCAT and SMAP satellite data combined 

with model prediction. A comparable approach also was presented by Vergopolan et al. (2020), 

interfacing remotely sensed vegetation indices with meteorological conditions, soil physical 1980 
properties, and a model simulation for predictions. They achieved sub-farm scale spatial 

variability of 30 m, respectively. 
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These results indicate that satellite remote sensing like S1ASCAT, SMAP, and modeling tools 

such as AquaCrop or ARIS provides an innovative solution for SM estimation.  

However, our study demonstrated that an application for high-resolution spatial variability of 

SM at the sub-field level is not feasible due to inadequate satellite sensor resolution. All sensor 

products except SMAP provide moderate to good correlation to SM's spatial mean and 

temporal course, according to the reference SM analysis on a field scale (500x500 m). 

Especially the S1ASCAT-SWI products, the AquaCrop, and ARIS simulation seem to be a 

significant asset in close to real-time SM estimation. Thus, considering the underlying problem 1990 
of increasing climate extremes, close tracking of the SM status on a field scale is vital to counter 

drought conditions and poor crop growing conditions in agronomy. Nevertheless, it is vital to 

mention that a bias occurred for the AquaCrop and S1ASCAT-SWI estimations during our 

study. The bias is assumed to be based on inadequate PWP and FC settings in the soil water 

calculation algorithm, which underestimates the SM occurrence in the AquaCrop simulations 

and the S1ASCAT-SWI products. 

SMAP, in contrast, was less reliable in our study for field-scale usage than the three other 

products.  

5.2 Estimation of SM to combat increasing droughts 

Suppose one takes a closer look at the calibrated satellite and crop simulation data used as a 2000 
beneficial tool to achieve crop-soil-water relations compared with in-situ measuring devices. In 

that case, the study demonstrates that the hypothesis is in line with the results. The data 

contributes a clearer understanding of the application to estimate SM and use satellite imagery 

to validate, e.g., the AquaCrop model for the specific conditions.  

 

If directly looked at the simulation and remote sensing applications, the ARIS simulation of SM 

responds to precipitation events more intensely and in good agreement with the grid-based 

calibrated in-situ measurements compared to the S1ASCAT-SWI data. High fluctuations of the 

ARIS SM estimations aggravate comparability with remote sensing data.  

The way the ARIS input data are set up, comprising different parameters including 2010 
meteorological and soil input data at the field scale, is sound. The SM estimates correlate well 

with the Parrot data, especially during the growing period. Just during winter and the early 

vegetation period starting in October 2019, the SM estimate of ARIS is mostly at FC due to 

underestimated evapotranspiration during the non-growing season. The underestimation is 

based on a biased KC (crop coefficient) that needs adaptation.  

In 2020, during the summer month, there is also high fluctuation observed in the ARIS data. 

Still, it correlates with the weather station’s sensor with some overestimation in SM. However, 

the weather station sensor is just one reference point within the field and could be biased 

compared to the field mean level in 2020.  

According to precipitation pattern and season, the ARIS data strongly reacts to precipitation 2020 
with peaks and troughs, reflecting depletion of SM close to PWP or vice versa an increase 

towards FC. Especially in April 2020, the ARIS SM estimates dataset visualize a low volume 

in precipitation. After this dry phase, intense precipitation events from May onward increase 

the highly fluctuating response of the ARIS data. However, the models fit the actual soil water 

storage and retention potential. Biases within a selected point in the field may result from 

temporal deviations, besides the soil-water-balance calculation simplifications. For example, 

the ARIS software applies the soil layer setting and cascade approach (see above).  

 

The results of the S1ASCAT-SWI fit with the theory that microwave satellite remote sensing 

SM estimation is a beneficial tool for crop-soil-water analysis at a larger scale. However, 2030 
dependent on the soil depth of the SM product, a time delay can be observed.  
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According to the statistical analysis, the S1ASCAT-SWI products correlate well and are robust 

data. Nevertheless, the S1ASCAT-SWI products show a strong negative bias in absolute 

calculated SM and lower SM fluctuations than the calibrated Parrot in-situ measurement. The 

S1ASCAT-SWI products compared with the single weather station sensor foster similar 

correlation and robustness while having a lower negative bias in SM, which could be a local 

effect, as the weather station sensor does not represent the field scale. Overall, the trendline 

of the SM estimation matches the precipitation pattern well. However, it is smoother than the 

ARIS data for both years of surveillance. In general, there is a lower fluctuation and response 

to the precipitation pattern in the S1ASCAT-SWI data than in the crop simulation programs.  2040 
The primary asset of the S1ASCAT-SWI data, SMAP, and ARIS is the interpolation of the data. 

This results, for example, in the higher resolution of the S1ASCAT-SWI products and a 

smoothened SM pattern. However, the smoothed pattern and negative bias could reflect a bias 

in the S1ASCAT-SWI product instead.  

 

Considering the SMAP product, the results demonstrate low correlation and low validity of SM 

estimation. The data is inadequate to explain SM occurrence on a field scale. Overall, the SM 

estimation lacks accurate trends. The SMAP product temporarily over- and underestimates the 

SM with a strong delay to precipitation occurrences. This circumstance is probably related to 

the reference soil depth of root-zone up to 1 m instead of specific soil layers of defined depths. 2050 
Compared to the in-situ reference sensors, the SMAP SM occurrence response consequently 

trails behind precipitation events and the moister winter period. This strong delay of SM trend 

in SMAP does not reflect rooting depths of most shallow rooting crops and is probably related 

to soil depths of >1m of perennial plants such as tress and representing an average of a deeper 

soil depth only.  

Nevertheless, SMAP is still an adequate source for long-term SM trend estimation, reflecting 

a deeper soil depth. An advantage over other data is the public accessibility and availability 

with the Google Earth Engine.  

Porosity is likewise required for better visualization or interpretation of relative soil saturation 

data but at lower resolution online available for Lower Austria. 2060 
 

The AquaCrop results suggest that a good correlation can be achieved with model simulations 

for SM estimation, given that representative information about the site characteristics is 

available, especially the PWP and FC. Thus, accurate input data is crucial for precise 

simulation results, especially for modeling scenarios. According to the theory, the model 

simulation for five cm soil depth fosters higher fluctuation and aligns with the precipitation 

pattern well. Compared to the ARIS and in-situ measurements, the FC and PWP are 

underestimated in all three soil types.  

In contrast, the correlation analysis of AquaCrop in 15 cm for the year 2019 seems to have 

little correlation or fosters a lower SM estimation explanation. The situation changes for the 2070 
year 2020 and the weather station sensor in 20 cm soil depth. Here the AquaCrop simulation 

in 15 cm soil depth fits better with higher correlation and validity. The FC is constantly high 

during the winter, even though the precipitation volume is moderate to low (see the reasons 

for deviations for the 15 cm soil depth simulation that were already explained before).  

According to the theory, in low precipitation periods, the AquaCrop simulation approaches the 

PWP (which is given as an input soil property) but never drops lower. The peaks and troughs 

are respectably ordered according to the precipitation pattern. If looked closely at 2020, the 

absolute SM trendline of WS_020 and B1_005 show a high response concerning precipitation 

events. This incident is most likely associated with AquaCrop, and its software design as the 

simulation program incorporates daily meteorological data and creates its output based on this 2080 
data. Hence, peaks and troughs correlate nicely with the precipitation pattern accordingly.  
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Furthermore, the AquaCrop simulation process incorporates crop growth and crop water 

demand and accordingly generates the CC [%]. This circumstance, in turn, can be validated 

through the LAI-MODIS dataset as presented.  

However, due to the way AquaCrop is set up, the LAI-MODIS dataset helps just as a guide to 

validate the simulation. It cannot incorporate the acquired LAI-MODIS observations directly in 

the software. One has to return to the data input interface of AquaCrop and adjust all data 

entries manually to increase model validation (e.g., adapting the plant and plant-canopy 

specific characteristics).  2090 
It is important to mention that the simulated CC of Barley in 2018 in AquaCrop shows no 

correlation with the LAI-MODIS dataset's observations. In reality, Buckwheat and Grainpea 

were grown in the experimental field. However, AquaCrop has no pre-defined crop growth 

parameters for Buckwheat nor Grainpea. Thus, Barley was used for the initial simulation in 

2018 due to its similar growing season. 

Compared to the original LAI-MODIS response of Grainpea and Buckwheat, the in AquaCrop 

executed simulation of Barley as crop type could falsify the simulation process. Another 

probable explanation of the misfit of LAI-MODIS and the Barley-based simulated CC is that 

there is a lower volume of LAI-MODIS observations for comparison. Hence, outliers intensify 

the deviation.  2100 
An additional probable factor is that a test with two different crops was conducted in the 

experimental field. Buckwheat and Grainpea were sown simultaneously with a lower sowing 

rate in kg/ha, resulting in a lower plant density on site. Thus, a more possible explanation of 

the deviating feedback of the LAI-MODIS dataset is that fallow land or/and the grown crops 

have a significantly different reflection characteristic than Barley. For example, higher 

chlorophyll content with its reflection in the NIR spectrum of the wavelength is picked up by the 

LAI-MODIS mission, which results in higher reflection feedback.  

 

Eitzinger et al. (2003) showed that simulation of future crop management scenarios and the 

modeling of different climatic scenarios improve the understanding of effects on crop-soil-water 2110 
balance effects. With the help of simulations, counter measurements to mitigate drought 

impact and low water availability are valuable assets to understand climatic pressures on 

agricultural production more in-depth. Lalić et al. (2018) likewise demonstrated model 

simulations and their ability to help improve forecasts in mitigating crop damage risks and 

water management or policy measures. Such simulations provide thus, valuable insight into 

further planning and mitigation of drought events.  

However, agro-climatic models can only predict well, as long as the data input is sound, 

representative for the respective sites, and complete. Nevertheless, uncertainty remains, 

especially for unpredictable biotic and abiotic diseases caused by, for example, increased leaf-

wetness (Thaler et al., 2012).  2120 
One of the benefits of simulations like in the ARIS-based drought monitoring is to access the 

SM estimation via the internet on maps for specific crop types and dates (Eitzinger et al., 2016). 

Such simulations foster high interest for insurance companies or stakeholders in general, that 

are involved in the agricultural sector (Eitzinger et al., 2016). However, for many practical 

applications at the field level and below, a higher spatial resolution than 1 km is necessary.  

In case of drought, or crop stress in general, the decision-making process can thus profit from 

simulation programs available to the public. AquaCrop, on the other hand, needs individual 

input on field-scale about the conditions prevalent. Nevertheless, as FAO (2017) mentions, 

AquaCrop can be used as a planning tool or support management decisions, e.g., irrigation 

scheduling and water demand assessments of irrigation projects. 2130 
 

Complimentary satellite remote sensing data such as the ASCAT-SWI soil moisture product is 

highly beneficial in providing reliable SM monitoring, even though it was initially not designed 

for that specific purpose (Brocca, Crow, et al., 2017). Nevertheless, the technology and multi-
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angle measurement capabilities allow reliable SM estimations (Brocca, Crow, et al., 2017) for 

practical applications with already useable spatial scales of 1 km. Amongst the benefits of 

remote sensing applications, as the S1ASCAT-SWI product is, are the high spatio-temporal 

coverage compared to the relatively low costs for large-scale applications (Brocca, Ciabatta, 

et al., 2017). Nevertheless, L. Brocca et al. (2017) debate three critical limitations related to 

satellite SM products. For once the shallow penetration (1-2 cm) of the topsoil layer, second a 2140 
coarser spatial resolution as in-situ measurements, and third, low quality of SM estimations 

under specific surface conditions (Brocca, Ciabatta, et al., 2017). Of course, spatial 

downscaling techniques and root-zone SM estimation by coupled soil water balance algorithms 

seem to overcome some of the critical limitations presented. The work of Zappa et al. (2019) 

demonstrates that such downscaling procedures from coarse remote sensing data can help to 

receive higher resolution SM estimations. However, for high spatial resolution, a local 

calibration, and validation, considering specific soil conditions, is highly recommended, 

especially for detecting absolute soil moisture and crop available soil water content.  

Compared to the S1ASCAT-SWI products, the SMAP product has lower spatio-temporal 

resolution and falls shorter in representing the SM conditions on the agricultural field scale 2150 
(Vergopolan et al., 2020). Nevertheless, on a larger scale, the SMAP product shows promising 

results in SM estimation (Suman et al., 2020). Suman et al. (2020) also mentioned an 

overestimation of SM and high RMSE. They relate it towards vegetation effects on the sensor-

based SM product. Likewise, as in this research, Suman et al. (2020) experienced a lower 

SMAP SM estimate during the winter months. They related them to higher complexities of 

snow cover or frozen soil. Among the benefits of the SMAP data are the dataset's better 

availability and cloud computing capability, for example, with the Google Earth Engine. 

Nevertheless, as Luca Brocca et al. (2017) point out, missing cloud computing facilities, web 

mapping services, and tools need to be developed to provide nonexperts access to the ASCAT 

SM data. These beneficial SM products could provide end-users with valuable information 2160 
about the on-site SM regime. However, large datasets and formatting foster technical 

constraints (Brocca, Crow, et al., 2017). 

 

This study suggests that close to real-time SM estimations are available or possible with the 

satellite sensors and the modeling programs researched. Thus, temporal irrigation during the 

most sensitive growth stages can likely be an option to apply, built on close monitoring of the 

SM regime. Based on the analysis, it supports the theory that considering long-term 

observations, all products closely track the SM and provide crucial information about the trend 

of SM over time. This valuable information suggests that management practices can be 

adjusted to mitigate high-stress periods, respectively. In theory, if the SM status on field-scale 2170 
is known, a shift in management strategies like crop type changes or an increase in hedgerows 

can preserve SM better to overcome droughts. Of course, short-term management practices 

like no-tillage approaches or a change of crop-rotation schemes towards a more persistent 

water stress level may have adequate results in maintaining crop yields stable.  

 

The study results align with the hypothesis that SM estimation based on different 

methodologies channel further developments in management practices or irrigation 

scheduling. Especially if the stress on field-scale is high and yields declined in the past years, 

there will be an incentive to find explanations of yield losses. Thus, tools such as S1ASCAT-

SWI, SMAP, ARIS, or AquaCrop will be crucial assets to estimate SM and make decisions to 2180 
mitigate drought losses, given that they are well-calibrated for the relevant site conditions. The 

results suggest that close to real-time SM estimation can provide crucial information for 

irrigation scheduling. Of course, given that meteorological data is accessible in real-time or 

close to real-time to apply in simulation programs.  
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The results of continuous SM estimation tracking should be taken into account when 

considering how the warming of 2°C in the air temperature impacts yield of crops. A shortened 

growing period of up to 20 days due to the warmer climate towards 2100 maybe even 

worsened by light-textured soils, respectively. Thus, changes in management strategies from 

plowing towards minimum tillage could increase the mean yield of winter Wheat by up to 8 %. 2190 
This effect can be associated with higher soil water storage and the improved supply of crop 

soil water (Thaler et al., 2012).  

Thaler et al. (2012) also demonstrate that alternative adaptation options like hedgerows are 

predicted to reduce wind speeds and positively affect soils like Chernozems or Fluvisols with 

medium and moderately fine-textured soils. The regional mean-yield level thus can be 

positively impacted with management strategies for future elevated water stress scenarios. 

Amongst the benefits are that unproductive evaporative losses from the crop are reduced with 

hedges (Thaler et al., 2012).  

 

Hence, farm practice adaptations to reduce crop growth-limiting factors like water stress or 2200 
heat aim to beneficially use production resources (Thaler et al., 2012). Nevertheless, such 

long-term adaptations require significant structural changes in the farming system and need 

careful agro-economic planning (Eitzinger et al., 2010). Additionally, several stakeholders, 

such as policymakers and water and land planning organizations, have stakes in structural 

transformations (Eitzinger et al., 2010). 

Another focus comes toward the management strategy of mulching. It has a high potential to 

reduce the soil evaporation from the soil surface and subsequently reduces the green water 

footprint in crop growth (Hoekstra et al., 2011; van Opstal et al., 2019). The research of van 

Opstal et al. (2019) addresses the benefit of an AquaCrop simulation to adjust management 

strategies for soil water retention. Thus, they demonstrate that mulching practices impact 2210 
seasonal water consumption and, subsequently the water productivity. These results build on 

existing evidence, also mentioned in the research of Eitzinger et al. (2008), that soils with low 

soil water storage capacity benefit from water-saving production techniques and constitute an 

essential requirement for climate adaptation. Lalic et al.'s (2018) research also promotes new 

management strategies for long-term adaptation strategies to improve water use efficiency. 

Among these innovative strategies, such as tillage improvements and crop rotation schemes, 

mulching constitutes a good source for increasing water use efficiency. 

While this present research has focused on satellite and simulation data to estimate SM and 

to monitor spatial variability, the results of Ezenne et al. (2019) show that unmanned aerial 

systems (UAS) like drones with thermal sensors can monitor and quantify spatial- and temporal 2220 
SM variability for irrigation scheduling. UAS thermal imaging can be directly linked towards 

automated real-time irrigation scheduling, respectively (Ezenne et al., 2019). 

The primary finding comprises a sound understanding of the SM estimation based on satellite 

remote sensing and simulation products. The study demonstrated how such SM estimation 

could assist further management decisions as an agricultural application. However, the 

research supports the claim that only sound metadata combined with simulations and satellite 

remote sensing can assist high spatial resolution SM estimations.  

5.3 The combination of methods for SM estimation 

Combining the AquaCrop simulation with the LAI-MODIS remote sensing data provides a 

better understanding of the validity of simulations. Nevertheless, as demonstrated beforehand, 2230 
missing plug-in adjustments in AquaCrop aggravate end-user applications.  

For example, a combination of methods such as remote sensing with modeling can improve 

or increase calibration significantly for delineation of spatio-temporal SM and improve yield 

estimation (Wagner et al., 2020). Methods, for example, simulations interfaced with remote 
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sensing, can likewise help assess soil heterogeneity at the field scale. In van Opstal et al.'s 

(2019) research, it is demonstrated that such a combination helps to assess the spatial 

variability of soil properties and crop conditions. For example, water productivity assessment 

and nutrition deficiencies can visually be demonstrated with higher resolution. The work of 

Zappa et al. (2019) and Vergopolan et al. (2020) demonstrates a different approach to access 

higher spatial variability at the sub-field level with resolutions of 30 m to cover spatial 2240 
heterogeneity. They used machine learning and training sets based on satellite data and 

combined it with model prediction.  

5.4 Limitations of simulation and remote sensing techniques 

The generalizability of the results is limited by the underlying soil type of a site. At our 

experimental site, Rutzendorf, the prevalent soil type is Chernozem, and thus, the upper soil 

layers behave regarding the SM accordingly. Amongst the limitations is the inter-comparability 

of different soil depths. The research suggests that different soil depths and depth ranges of 

measurements determine the outcome of the statistical analysis. Due to the lack of data (e.g., 

PWP and FC) on some soil layers, the results show deviations and cannot provide the best 

statistical outcome. For high SM estimation results, good accurate input data is required. Thus, 2250 
a limitation comprises the actuality in time and the accuracy of the simulation, the remote 

sensing data, and the in-situ sensors.  

The SM TDR reference measurements, on the other hand, were constrained by time and costs, 

and thus, only a low volume of measurements could be provided. These reference SM 

measurements were used for the FC and PWP trendline charts to compare the data visually. 

Likewise, a higher volume of observations would have enhanced the credibility of the 

measurements. The same applies to the regression analysis of the TDR reference 

measurements and the Parrot devices. In general, more and more frequent measurements 

would have increased credibility. Nevertheless, the underlying data for comparing Parrot and 

TDR measurements was enough to deviate correlations for further analysis using calibrated 2260 
Parrot values for absolute spatial soil moisture estimates.  

Due to the lack of in-situ sensor data for the Rye vegetation period from October 2019 till June 

2020, the methodological choice was constrained by an already existing sensor setup. Thus, 

during the evaluation process, the meteorological station was the only existing reference in the 

experimental field during the time frame in question.  

Regarding the met-station observations, the one-point measurement of a satellite-based pixel 

(representing the field average), compared to the one-point soil sensor measurement of the 

meteorological station at the edge of the experimental field, inadequately compares an 

exceedingly complex soil heterogeneity. In that matter, a measurement grid like the Parrot 

setup in spring and summer 2019 would be a more adequate approach to compare one remote 2270 
sensing pixel with a size of 500x500 m. However, long-term in-situ monitoring on-site was 

beyond the scope of this study. Such long-term monitoring would be more beneficial to 

understand better the overall SM regime of the experimental field based on simulated and 

satellite-based remote sensing techniques. Nevertheless, only a grid network would most likely 

accurately determine the SM estimations and be feasible for further comparisons with satellite 

remote sensing data.  

Similar circumstances apply to the existing Parrot in-situ measurements compared to the 

meteorological station. The Parrot setup was pre-defined, and the sensors were thus used for 

comparability reasons. Luckily, three consecutive months were monitored with about 70 Parrot 

sensors scattered across the experimental field. Nevertheless, it would have been interesting 2280 
to see the performance of the Parrot devices during the winter and spring period as well. For 

once, whether performance is good, for others to have an extended time frame of correlation 

analysis.  
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If we take a closer look at the analysis in 2018, data reliability was affected by a lack of in-situ 

reference sensor observations or measurements in general. It can be assumed that, however, 

based on the good performance of ARIS in 2019, that the ARIS simulations for 2018 meet the 

SM fluctuations well. 

 

Overall, the reliability of the generated data might be impacted by a consistent transformation 

of units from relative SM (of the satellite products) into volumetric SM, which reduces accuracy 2290 
in the long run. Thus, a limiting factor is missing information about soil properties such as 

porosity compared with volumetric in-situ SM observations or crop simulations.  

The porosity used in our study originates from the HYDROBOD2 data and can be seen as an 

asset to achieve visual comparability of the trendline diagrams regarding the various 

measurement methods. However, limitations are indeed the accuracy of the raster data of 

HYDROBOD2. The porosity in our study has a coarse scale of 500x500 m. The low resolution 

does not depict the high spatial variability in porosity at the experimental field and thus, bears 

a bias in the data.  

Nevertheless, suppose porosity information is unavailable for a site, according to state-of-the-

art research, it is common practice to transform volumetric in-situ measurements into relative 2300 
SM values for comparability reasons. This principle, however, is merely executed if no further 

knowledge about the porosity on site is available, and a transformation of relative soil 

saturation towards volumetric soil saturation is thus not entirely accurate.  

Such transformation procedures are increasingly relevant if the SM information is needed for 

irrigation scheduling or water demand assessments. Especially where information on absolute 

moisture and site-specific soil properties (in specific soil water holding capacity information) is 

necessary. However, this unit-juggling is also necessary if volumetric and relative SM 

observations need to be compared. Nevertheless, it is vital to acknowledge how well the in-

situ reference measurements determine SM. Substantially, the accuracy of sensors is 

paramount to adequately relate the in-situ measurements to satellite remote sensing 2310 
measurements given in relative SM.  

The SM heatmaps in chapter 4.2 (Spatial Variability of soil moisture (SM)) lack an identical SM 

range for comparison. This circumstance is visible in very dry periods compared to moist 

periods. Especially if April 2019 is compared to May and June 2019. The SM range deviates 

from one Figure to another.  

Similarly, the three zoom images lack the same SM range, respectively. Misinterpretation or 

confusion of the presented results may be the consequence.  

However, the software was the limiting factor in that matter. Thus it is vital to indicate all SM 

ranges for all individual images to minimize errors.  

  2320 
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6. Conclusion and prospects for future 

The research aimed to identify effective methodologies to estimate spatio-temporal SM of crop 

fields and test methods to identify spatial variability. After climate change-related extreme 

weather events increase steadily, the estimation and prediction of SM in the presence of 

drought and heavy rainfall events require sound knowledge to strengthen future crop 

production.  

 

Based on the field measurements and statistical analysis conducted, it can be concluded that 

S1ASCAT-SWI, AquaCrop, and ARIS are suitable tools based on successful calibration and 

validation in estimating SM at field scale for application in crop production. For an above-field 2330 
scales trend application and a deeper integrated soil depth, SMAP constitutes a valid product 

to estimate SM. However, SMAP is less feasible for field-scale, short-term assessments, or 

higher spatial variability detection.  

The research has shown that direct high-resolution (below field scale, in the range of few 

meters) spatial variability detection of SM is currently impossible with the methods researched 

comprising S1ASCAT-SWI, SMAP, AquaCrop, and ARIS. The crop simulation applications of 

ARIS and AquaCrop are limited mainly through unavailable high spatial resolution soil 

properties, needed as inputs and the satellite products by technical constraints of sensor 

resolution for validation. Nevertheless, the results indicate that these applications are currently 

beneficial at field scale and daily time-steps to estimate SM and provide decision support for 2340 
crop management options to mitigate crop drought stress situations. The data assessment has 

shown that climate-mitigating efforts can be derived from existing knowledge about SM 

regimes. Moreover, current research showed various strategies to combat SM limitations in 

the agricultural sector.  

While missing in-situ SM measuring networks in high spatial resolution grid scales limit a 

broader above-field assessment of satellite and simulation products, our result provides new 

insight into a better understanding of SM estimation for agricultural applications. Several 

studies, including the underlying analysis, show that combining remote sensing techniques 

interfaced with simulation tools fosters accurate SM estimation. The research clearly illustrates 

that SM estimation techniques without in-situ measurements are generally applicable but need 2350 
to be tested and validated for biases or deviations before using specific applications. However, 

it raised the question of end-user-friendly accessibility for satellite remote sensing data too. 

Based on these conclusions, data availability should be improved with consideration to expand 

access for end-users and non-GIS experts. Especially, the SM unit-juggling needs 

development to achieve better comparability of different SM estimations in relative and 

volumetric units. It would also support validation efforts on in-situ measured data sets by 

stakeholders themselves. In general, the data availability with cloud computing or publicly 

available data access should be improved.  

Future studies should consider that sub-field level spatial variability in soil heterogeneity is 

challenging to monitor based on remote sensing applications as the S1ASCAT-SWI or SMAP 2360 
products are. The more background knowledge about the agricultural field exists in terms of 

meteorological data, soil physical properties, e.g., the clearer a distinction of spatial variability 

can be made with simulation models. However, the limiting factor is missing knowledge about 

such background information as soil surveys are expensive, labor-intensive, and often 

unavailable at suitable spatial scales. A transition towards an extensive in-situ measurement 

grid like in the United States would help to generate profound background parameters to 

calibrate and aim for spatial variability detection based on simulations.  

To better understand the implications of these results, further research could address the 

spatial variability detection of SM based on UAS and drones in particular. 
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Appendix 

Complimentary Baseline Analysis 

 

 

 

 

 

 2370 

B) 

C) 

A) 

Annex 1: Statistical analysis of Parrot_cal_42 vs. Met-station_10cm for A) linear regression, B) residual plot, and 
C), residual density curve  
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Vegetation Period 2019 

 

   

A) B) 

C) D) 

Annex 2: Statistical analysis of Parrots_rel vs. SWI_005_rel for A) linear regression, B) SM trend of Parrots and 
SWI_005_rel over time, C) residual plot, and D), precipitation graph 
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A) B) 

C) D) 

Annex 3: Statistical analysis of Parrots_rel vs. SWI_010_rel for A) linear regression, B) SM trend of Parrots and 
SWI_010_rel over time, C) residual plot, and D), precipitation graph 
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A) B) 

C) D) 

Annex 4: Statistical analysis of Parrots_rel vs. SMAP_rel_rel for A) linear regression, B) SM trend of Parrots and 
SMAP_rel over time, C) residual plot, and D), precipitation graph 
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A) B) 

D) C) 

Annex 5: Statistical analysis of Parrots vs. AquaCrop_B1_15cm for A) linear regression, B) SM trend of Parrots and 
AquaCrop_B1_15cm over time, C) residual plot, and D), precipitation graph 
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A) B) 

D) C) 

Annex 6: Statistical analysis of Parrots vs. AquaCrop_B2_5cm for A) linear regression, B) SM trend of Parrots and 
AquaCrop_B2_5cm over time, C) residual plot, and D), precipitation graph 
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A) B) 

D) C) 

Annex 7: Statistical analysis of Parrots vs. AquaCrop_B2_15cm for A) linear regression, B) SM trend of Parrots and 
AquaCrop_B2_15cm over time, C) residual plot, and D), precipitation graph 
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A) B) 

D) C) 

Annex 8: Statistical analysis of Parrots vs. AquaCrop_B3_5cm for A) linear regression, B) SM trend of Parrots and 
AquaCrop_B3_5cm over time, C) residual plot, and D), precipitation graph 
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A) B) 

D) C) 

Annex 9: Statistical analysis of Parrots vs. AquaCrop_B3_15cm for A) linear regression, B) SM trend of Parrots and 
AquaCrop_B3_15cm over time, C) residual plot, and D), precipitation graph 
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Vegetation Period 2020 

   

A) B) 

C) D) 

Annex 10: Statistical analysis of WS_20cm_rel vs. SWI_005_rel for A) linear regression, B) precipitation graph, 
and C) trend of WS_20cm_rel and SWI_005_rel 
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  2380 

 

 

 

 

  

A) B) 

C) D) 

Annex 11: Statistical analysis of WS_20cm_rel vs. SWI_010_rel for A) linear regression, B) precipitation graph, and 
C) trend of WS_20cm_rel and SWI_010_rel 
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A) B) 

C) D) 

Annex 12: Statistical analysis of WS_20cm_rel and SMAP_rel for A) linear regression, B) precipitation graph, 
and C) trend of WS_20cm_rel and SMAP_rel 
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  2390 

 

  

A) B) 

C) 

Annex 13: Statistical analysis of WS_20cm and AquaCrop_B1_5cm for A) linear regression, B) precipitation 
graph, and C) trend of WS_20cm and AquaCrop_B1_5cm 
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A) B) 

C) 

Annex 14: Statistical analysis of WS_20cm and AquaCrop_B1_15cm for A) linear regression, B) precipitation 
graph, and C) trend of WS_20cm and AquaCrop_B1_15cm 
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A) B) 

C) 

Annex 15: Statistical analysis of WS_20cm and AquaCrop_B2_5cm for A) linear regression, B) precipitation 
graph, and C) trend of WS_20cm and AquaCrop_B2_5cm 
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A) B) 

C) 

Annex 16: Statistical analysis of WS_20cm and AquaCrop_B2_15cm for A) linear regression, B) precipitation 
graph, and C) trend of WS_20cm and AquaCrop_B2_15cm 
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A) B) 

C) 

Annex 17: Statistical analysis of WS_20cm and AquaCrop_B3_5cm for A) linear regression, B) precipitation graph, 
and C) trend of WS_20cm and AquaCrop_B3_5cm 
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A) B) 

C) 

Annex 18: Statistical analysis of WS_20cm and AquaCrop_B3_15cm for A) linear regression, B) precipitation 
graph, and C) trend of WS_20cm and AquaCrop_B3_5cm 
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A) 

J) 

G) 

D) 

B) 

K) 

H) 

E) 

C) 

I) 

F) 

Annex 19: Statistical analysis of random distribution for WS_20cm and A) AquaCrop_B1_5cm, B) AquaCrop_B1_15cm, 
C) AquaCrop_B2_5cm, D) AquaCrop_B2_15cm, E) AquaCrop_B3_5cm, F) AquaCrop_B4_15cm, G) SWI_001_rel, H) 

SWI_005_rel, I) SWI_010_rel, J) ARIS_rel, and K) SMAP_rel 
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Vegetation Period 2018 

 

 

 

  

A) B) 

C) D) 

Annex 20: Statistical analysis of ARIS_rel vs. SWI_010_rel for A) linear regression, B) SM trend of ARIS_rel and 
SWI_010_rel over time, C) residual plot, and D), precipitation graph 
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A) B) 

C) D) 

Annex 21: Statistical analysis of ARIS_rel vs. SMAP_rel for A) linear regression, B) SM trend of ARIS_rel and 
SMAP_rel over time, C) residual plot, and D), precipitation graph 



Evaluation of multi-level methodical soil moisture measurements 
 

Page 112  David Marin 

 

 

 

  

A) B) 

C) D) 

Annex 22: Statistical analysis of ARIS vs. AquaCrop_B1_5cm for A) linear regression, B) SM trend of ARIS and 
AquaCrop_B1_5cm over time, C) residual plot, and D), precipitation graph 
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D) C) 

B) A) 

Annex 23: Statistical analysis of ARIS vs. AquaCrop_B1_15cm for A) linear regression, B) SM trend of ARIS and 
AquaCrop_B1_15cm over time, C) residual plot, and D), precipitation graph 
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D) C) 

B) A) 

Annex 24: Statistical analysis of ARIS vs. AquaCrop_B2_5cm for A) linear regression, B) SM trend of ARIS and 
AquaCrop_B2_5cm over time, C) residual plot, and D), precipitation graph 



Evaluation of multi-level methodical soil moisture measurements 
 

Page 115  David Marin 

 

 

 

  

D) C) 

B) A) 

Annex 25: Statistical analysis of ARIS vs. AquaCrop_B2_15cm for A) linear regression, B) SM trend of ARIS and 
AquaCrop_B2_15cm over time, C) residual plot, and D), precipitation graph 
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D) C) 

B) A) 

Annex 26: Statistical analysis of ARIS vs. AquaCrop_B3_5cm for A) linear regression, B) SM trend of ARIS and 
AquaCrop_B3_5cm over time, C) residual plot, and D), precipitation graph 
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D) C) 

B) A) 

Annex 27: Statistical analysis of ARIS vs. AquaCrop_B3_15cm for A) linear regression, B) SM trend of ARIS and 
AquaCrop_B3_15cm over time, C) residual plot, and D), precipitation graph 
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List of Acronyms 

B 

B  ............................................................................................. Above Ground Biomass 

BVW ..................................... Landwirtschaftliche Bundesversuchswirtschaften GmbH 

C 

CC .......................................................................................................... Canopy Cover 

E 

E  ........................................................................................................ Soil Evaporation 

ETa ................................................................................................. Actual Evaporation 

ETc ........................................................................ Maximum Crop Evapotranspiration 

ETo ................................................................................ Reference Evapotranspiration 

ETx ................................................................................. Maximum Evapotranspiration 

F 

FC ........................................................................................................... Field Capacity 

FDR ......................................................................... Frequency Domain Reflectometry 

FIPAR ............................... Fraction Intercepted of Photosynthetically Active Radiation 

G 

GC .......................................................................................................... Ground Cover 

GDD .......................................................................................... Growing Degree Days 

GEE ............................................................................................. Google Earth Engine 

GIS ....................................................................................... Geo-Information Systems 

H 

HI .................................................................................................................................. 

 ............................................................................................................ Harvest Index 

K 

kPa .............................................................................................................. Kilo Pascal 

L 

LAI ....................................................................................................... Leaf Area Index 

M 

Met-station .................................................................................... Meteorologic Station 
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N 

NDVI ..................................................................... Normalized Digital Vegetation Index 

NIR .......................................................................................................... Near-Infrared 

P 

Parrot ................................................................................ Parrot Flower Power Sensor 

PWP ....................................................................................... Permanent Wilting Point 

R 

RSS ......................................................................................... Relative Soil Saturation 

S 

SM ............................................................................................................ Soil Moisture 

SWI ..................................................................................................... Soil Water Index 

T 

TDR .................................................................................. Time Domain Reflectometry 

TIR ...................................................................................................... Thermal-Infrared 

Tn ................................................................................................................................. 

 ........................................................................................ Maximum Air Temperature 

Tr .................................................................................................................................. 

 .............................................................................................................. Transpiration 

Tx ................................................................................................................................. 

 ......................................................................................... Minimum Air Temperature 

W 

WP ................................................................................................... Water Productivity 

Y 

Y  .................................................................................................................. Crop Yield 

Ya ............................................................................................................... Actual Yield 

Yx ................................................................................................................................. 

 .......................................................................................................... Maximum Yield 

Z 

ZAMG ................................................ Zentralanstal für Meteorologie und Geodynamik 
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