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ABSTRACT 
To establish a new bioprocess in the biopharmaceutical industry is a time-consuming and expensive 

procedure, especially in the field of upstream processing. In order to determine the influences of 

various critical process parameters on the critical quality attributes in proximity to the already 

established optimum of a biopharmaceutical process, the statistical design of experiments is commonly 

used. To generate this demanded process knowledge, guaranteeing the best possible and stable quality 

output of the product, a so-called design space is set up by these critical process parameters. In this 

design space, different critical process parameter combinations are characterized and their influence 

on the critical quality attributes is evaluated. With respect to the chosen number of critical process 

parameters and levels for a full factorial process characterization and until the critical process 

parameters enabling the optimal process output are found, the number of required experiments can 

rapidly exceed a manageable amount. To drastically reduce the needed number of experiments, an 

alternative approach to classical design of experiments was developed, i.e., intensified design of 

experiments, thereby accelerating process characterization. During these experiments, intra-

experimental process parameter shifts are carried out to characterize more than one critical process 

parameter combination setpoint per experiment. 

This work aimed to investigate the usability of an intensified design of experiments approach for 

Escherichia coli fed-batch fermentations. By means of a static full factorial design of experiments with 

the same design space it was examined whether process comparability is attained. Based on the data 

received, a hybrid model to predict the cell dry mass concentration of all static fed-batch fermentations 

in the chosen design space was developed. Therefore, the following points were investigated: 

§ A three-dimensional design space was completely characterized by performing intensified 

Escherichia coli fed-batch fermentations in a 20-L stainless steel reactor. 

§ The possibility of an occurring irreversible memory effect of the cells due to the critical process 

parameter shifts was examined, which would highly complicate the applicability of intensified 

design of experiments. 

§ Consecutively, the intensified design of experiments data were used to train a hybrid model. 

To compare the performance of this hybrid model, a previously developed hybrid model based 

on a historical data set of the same design space, characterized by static fed-batch 

fermentations, was used. 

It has been shown that, by using our set up, no memory effect on the cells emerged. Further, by using 

intensified design of experiments in combination with hybrid modeling, it is possible to accurately 

predict the cell dry mass concentration of the complete static design space with an error of 5.31% (± 
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RMSE 1.27 g/L), while the static hybrid model performed with an error of 4.24% (± RMSE 1.10 g/L). 

Hereby, a comparable model performance was maintained while the required number of experiments 

was reduced by 66%, highlighting the advantage of using intensified design of experiments for process 

characterization.  
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ZUSAMMENFASSUNG 
Die Etablierung eines neuen Bioprozesses in der pharmazeutischen Industrie ist ein zeitaufwendiges 

und teures Verfahren, insbesondere im Bereich des Up-stream. Um die Einflüsse verschiedener 

kritischer Prozessparameter auf die kritischen Qualitätsmerkmale in der Nähe des bereits etablierten 

Optimums in einem biopharmazeutischen Prozess zu bestimmen, wird üblicherweise die statistische 

Versuchsplanung eines design of experiments verwendet. Um das geforderte Prozesswissen zu 

generieren und die bestmögliche und stabile Produktqualität zu garantieren wird durch die kritischen 

Prozessparameter ein sogenannter design space errichtet. In diesem design space werden 

verschiedene kritische Prozessparamter-Kombinationen charakterisiert und ihr Einfluss auf die 

kritischen Qualitätsmerkmale evaluiert. Für eine vollfaktorielle Prozesscharakterisierung, unter 

Berücksichtigung der Anzahl der kritischen Prozessparameter und Ebenen, und die Bestimmung der 

kritischen Prozessparameter, welche einen optimalen Prozessoutput ermöglichen, wird oft eine hohe 

Anzahl an Experimenten benötigt. Um die benötigte Anzahl an Experimenten drastisch zu senken wurde 

ein alternativer Ansatz zu einem klassischen design of experiments entwickelt, ein intensiviertes design 

of experiments, wodurch die Prozesscharakterisierung beschleunigt wird. Während dieser Experimente 

werden Prozessparameteränderungen durchgeführt um mehr als eine Prozessparameterkombination 

pro Experiment zu charakterisieren. 

Ziel dieser Arbeit war es, die Anwendbarkeit eines intensivierten design of experiments Ansatzes für 

fed-batch Fermentationen mit Escherichia coli zu untersuchen. Mittels eines statischen vollfaktoriellen 

design of experiments desselben design spaces wurde untersucht, ob eine Prozessvergleichbarkeit 

vorliegt. Basierend auf den erhaltenen Daten wurde versuchsweise ein Hybridmodell entwickelt, um 

die Biomassekonzentration aller statischen fed-batch Fermentationen im gewählten design space 

hervorzusagen. Folgende Punkte wurden untersucht: 

§ Ein dreidimensionaler design space wurde vollständig durch die Durchführung intensivierter 

Escherichia coli fed-batch Fermentationen in einem 20 L-Edelstahlreaktor charakterisiert. 

§ Die Möglichkeit eines auftretenden irreversiblen Memory-Effekt der Zellen aufgrund der 

kritischen Prozessparameteränderungen wurde untersucht, da es die Anwendbarkeit eines 

intensivierten design of experiments stark erschweren würde. 

§ Anschließend wurden die intensivierten design of experiments Daten verwendet, um ein 

Hybridmodel zu trainieren. Um die Leistung dieses Hybridmodels zu vergleichen, wurde ein 

zuvor entwickeltes Hybridmodel verwendet, das auf einem historischen Datensatz desselben 

design spaces mit statischen fed-batch Fermentationen basiert  
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Es wurde gezeigt, dass bei Verwendung des intensivierten design of experiments kein Memory-Effekt 

der Zellen auftrat. Durch Anwendung eines intensivierten design of experiments in Kombination mit 

einem Hybridmodel ist es möglich, die Biomassekonzentration des gesamten statischen design space 

mit einem Fehler von 5.31% (± RMSE 1.27 g/L) genau vorherzusagen, während das statische 

Hybridmodel mit einem Fehler von 4.24% (± RMSE 1.10 g/L) aufzeigt. Hierbei wurde eine vergleichbare 

Modelleistung beibehalten und die erforderliche Anzahl von Experimenten um 66% reduziert, was den 

Vorteil der Verwendung von intensivierten design of experiments zu Prozesscharakterisierung 

hervorhebt. 
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1 INTRODUCTION 
This chapter provides an introduction into bioprocessing and recombinant protein production and 

elaborates on process analytical technology (PAT) and quality by design (QbD). Subsequently, the design 

of experiments (DoE) approach is described in the context of fermentation operation modes in the 

pharmaceutical industry. Further aspects that are treated in this chapter are the different host systems 

that are applied and Escherichia coli (E. coli) as an expression system that is most widely used. 

Finally, the characteristics of process modelling are provided, and some light was shed on hybrid 

modelling in particular, since it was used as part of this thesis for the validation of the generated 

intensified DoE (iDoE) process data  

1.1 Bioprocessing and recombinant protein production 

Biotechnology has gained great relevance when it comes to pharmaceutical and medical applications. 

Biotechnological processes are extremely complex, e.g., cells and microorganisms which form the 

biological system need to be cultivated under accordingly adjusted and defined conditions. To enable 

high productivity of the often sensitive biological systems, a specific physical (e.g., temperature, DO) 

and chemical (e.g., substrates, products) environment have to be provided (Meyer & Beyeler, 1984). 

The main focus lies on the viability, productivity of the cells and the reproductivity of the process. The 

interaction between these three compartments needs to be understood and subsequently controlled, 

i.e., detailed knowledge of the overall-system to drive the biochemical reaction network in the correct 

direction has to be provided (Scheper et al., 1999). 

Especially in the upstream of a biotechnological process, many considerations must be taken into 

account to provide different perspectives and a comprehensive understanding, enabling the transition 

from small to larger scales (Marques, Cabral, & Fernandes, 2010). Usually, the development time for 

biopharmaceutical products is about 5 to 10 years from the first set up to a large-scale production, 

concluding, it is a long-lasting and expensive procedure.  

There is a distinction between product and process development. The product development refers to 

the discovery of the product and the initial steps, which are obtained through research and are focussed 

on the mode of action. On the other hand, with goals such as persistent product quality and economic 

targets, e.g., cost-effective process flowsheets (Hassan et al., 2015), the manufacturability of the 

product is processed in the process development. This concurrent engineering of product and process 

development phases can be carried out with a certain degree of overlapping, e.g., through frequent 

information exchange of upstream and downstream activity (Krishnan, Eppinger, & Whitney, 1997).  
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The overlap of both phases continues form screening of product and process parameters to the scale-

up phase until the full scale manufacturing is reached. Typically, the strategy used to set up a new 

bioprocess is trial and error based (Neubauer et al., 2013). 

To enhance the process and early product development phase, structuring these approaches, 

engineering strategies are applied which lead to drastic paradigm shifts. Strategies typically used in 

process development are so-called statistical DoE, process modelling and control tools. Using these 

strategies, a systematically approach is provided to facilitate process characterization, offering a higher 

success rate and the opportunity to faster find the optimal process parameters (Kumar, Bhalla, & 

Rathore, 2014). In future, (semi-)automated platforms and models can support bioprocess 

development by increasing the product quality and productivity of the overall process (Alzari et al., 

2006). 

For the recombinant protein itself, the early development phase involves essential decisions for the 

final protein production process (Gräslund et al., 2008). A high number of variables need to be 

characterized and evaluated during this phase, e.g., host system and critical process parameters (CPPs) 

for the growth and production phase (Rohe, Venkanna, Kleine, Freudl, & Oldiges, 2012). In order to 

decrease the number of experiments that have to be carried out for process characterization, statistical 

approaches and strategies, such as DoE, are applied. Thereby, the maximum information for the 

accurate range and the interaction between the investigated CPPs are discovered (Neubauer et al., 

2013). 

When it comes to therapeutic protein production, the highest priority is to properly control the process 

to minimize process variability. Therefore, strategies for direct and targeted product quality control and 

assurance are developed. A detailed process characterization results in an all-embracing process 

understanding, identifying the influencing factors on the product yield and quality. As a result, the batch 

variability is lowered, leading to fewer rejected batches (Sommeregger et al., 2017). 

1.2 Fermentation operation modes 

The fermentation process can be performed in different modes of operation: batch, continuous and 

fed-batch fermentation. As the simplest and most common way, a batch mode is applied. For the 

manufacturing process, the production host (e.g., bacteria), the substrates and supplementary 

nutrients are inoculated in the reactor with controlled set points, e.g., temperature, pH and DO (Meyer 

& Beyeler, 1984). The process is finished when a certain CDM concentration is reached or the substrate 

is consumed, which results in stopped cell growth. An advantage of performing in batch mode is the 

ease of operation and low risk of contamination (Yang & Sha, 2020) . A disadvantage of batch processes 
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is that comparatively low cell densities are reached, which is not preferred in microbial fermentations. 

They are time-consuming due to the sterilization period of the reactor between the batches and the 

requirement to further maintain complete sterility during processing (Amelio et al., 2016; Yang & Sha, 

2020). To avoid the expensive rejection of time-consuming batches it is of great importance to execute 

reproducible processes and in a predefined manner to enable the guarantee of safety (Gnoth, Jenzsch, 

Simutis, & Lübbert, 2008). 

To overcome the disadvantages of the batch mode production, the superior production approach of 

fed-batch fermentation, e.g., for microbial processes and mammalian cell culture in industrial 

applications was developed. It is defined as a technique where one or more nutrient supplements are 

added to the bioreactor during the process. The cultured product remains in the vessel until the end of 

the run, consequently, no CDM is discharged (Yamanè & Shimizu, 2005). During a fed-batch 

fermentation the changing nutrient concentrations affect the productivity and thereby the yield of the 

desired product. By controlling the nutrient supply cell growth is increased or inhibited. The respectively 

needed amount of nutrients are added to the reactor during the process in a timely manner. Until 

finishing the production of e.g., the particular recombinant product no cells are removed. Various by-

products like primary or secondary metabolites, proteins and biopolymers are produced using fed-

batch fermentations (Lee, Lee, Park, & Middelberg, 1999). Often theoretical mathematical models are 

compared to experimental results to gain a better understanding of the process and to facilitate 

developing of a cultivation method that allows a cost-effective production for high product yield and 

high productivity of the production host (Yamanè & Shimizu, 2005). 

Another approach is a continuous fermentation system, which offers important economic advantages 

and significantly improved rates as opposed to traditional systems. Steady-state operation, high 

volumetric productivity, streamlined process flow and low capital cost of continuous processing enable 

the slow introduction of this new process methodology into biotech industries. During the process, the 

reactor is fed with a continuous substrate flow and a continuous flow of product is transported out of 

the system. However, the higher productivity does not provide the same high product concentration 

compared to a batch process. Thereby the genetic stability of the host systems are insufficient the 

approach for recombinant protein production is still under development (Verbelen, De Schutter, 

Delvaux, Verstrepen, & Delvaux, 2006; Warikoo et al., 2012).  

In the field of biotechnological industry, shortest development times and cost control on basis of strict 

quality and regulatory requirements are the driving force for development (Varsakelis, Dessoy, von 

Stosch, & Pysik, 2019). These requirements resulted in implementing new technologies like process 

modelling and process simulation, where mathematical equations describe physical systems (Brass, 
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Hoeks, & Rohner, 1997). Mechanistic, empirical, or hybrid models have been developed over the years 

and are rising more and more in the importance of process characterization (Varsakelis et al., 2019).  

Besides the optimal manufacturing process, the choice of the ideal host system must be made to 

guarantee high yields and high quality of the recombinant products, as well as to guarantee the correct 

expression of the protein of interest (POI), e.g., the glycosylation pattern (Waegeman & Soetaert, 2011). 

1.3 Host systems 

There is no universal expression system for the production of recombinant proteins. Every antibody, 

enzyme, or other protein has its expression difficulties and limitations, e.g., different codon usage, the 

need for chaperones or post-translational modifications such as glycosylation or disulphide bridges 

(Pourmir & Johannes, 2012). Solubility, correct folding, stability and the size of the protein are examples 

of decisive factors that affect yield and biological activity of recombinant proteins. The unique and 

specific amino acid sequences are reasons for the difficulties, i.e., the optimal expression system for 

one antibody might not be suitable for another antibody. Which system is selected depends on many 

factors, such as the molecule being expressed (e.g., IgG or Fab), the antibody itself, the required 

quantity and the quality of the final product (Verma, Boleti, & George, 1998). The choice of the ideally 

suited system is therefore challenging due to the purpose and physicochemical characteristics of the 

POI. Existing expression systems are constantly improved and optimised while new approaches are 

developed to satisfy the demands of producing complex proteins (Gomes & Byregowda, 2016). 

Typical host systems for the expression of recombinant products are bacteria, yeast, plants, insects and 

mammalian expression systems. Amongst others, they have been developed with the purpose of 

producing a functional molecule at adequate cost and minimal effort. To guarantee appropriate protein 

expression, the efficient and correct transcription and translation of the cloned gene must be provided 

(Waegeman & Soetaert, 2011).  

Mammalian cells have become the dominant system for the production of recombinant proteins. 

Approximately 60-70% of all recombinant pharmaceuticals are produced in mammalian cells (Omasa, 

Onitsuka, & Kim, 2010). The most frequently used production host are immortalized Chinese hamster 

ovary (CHO) cells. Their abilities to proper protein folding and assembling are essential for the 

expression of some proteins and lead to higher quality and efficiency for recombinant proteins that 

require post-translational modifications such as antibodies, hormones and cytokines (Pourmir & 

Johannes, 2012). They can be considered as the host of choice in terms of correct synthesis and human-

like modifications such as glycosylation patterns, which do not occur in lower organisms, e.g., bacteria 

and yeast. The achievement of high product titers are due to the long-term experience and knowledge 
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about CHO cells (F. M. Wurm, 2004). Disadvantages of the mammalian production system are high costs 

and a low specific growth rate, which causes long cultivation times and the time-consuming 

construction and selection of a cell line (Omasa et al., 2010). 

Unlike mammalian expression systems, yeast has a high growth rate and is cultured on simple media 

(F. M. Wurm, 2004). As microorganism, a eukaryote yeast, e.g., Saccharomyces cerevisiae, combines 

the advantages of cost-efficiency, fast and technical feasibility similar to bacteria as well as high-density 

cell cultures reached in bioreactors. Furthermore, it possesses pathways for advanced heterologous 

protein folding. For this reason, the yeast system is industrially important for the expression of 

therapeutic proteins in industrial-scale fermentations. Although this host organism is related to N-

linked glycosylation patterns which differ from higher eukaryotes (Ferrer-Miralles, Domingo-Espín, 

Corchero, Vázquez, & Villaverde, 2009). Yeasts are not an optimal host for large-scale production due 

to their high requirements especially in technical equipment (Mattanovich et al., 2012). 

Using insect cells as an expression system has the benefit that most of the post-translational 

modifications, which are present in higher eukaryotes can be conducted. Over the last few years, insect 

cells are emphasized as an attractive alternative choice for the expression of recombinant molecules. 

The most popular expression system in insect cells is the baculovirus system, with the advantage that 

high amounts of functionally active proteins of interest can be produced. The genetic modification and 

the screening for cell lines is simple compared to mammalian cell lines. Moreover, it only infects 

invertebrates and therefore has a highly restricted host range (Verma et al., 1998). 

The bacterial expression system is most widely used for primary cloning, genetic modification and small-

scale production for research purposes and the production of recombinant proteins. Due to the long 

historical development of microbial physiology and molecular genetics, which is mainly based on this 

species, the first-choice bacterial microorganism is E. coli (Ferrer-Miralles et al., 2009). 

1.4 E. coli as an expression system 

E. coli has been established as the most frequently used bacterial host for producing recombinant 

proteins. With nearly 30% of all marketed recombinant therapeutics, a significant amount of 

commercial therapeutic proteins are produced by E. coli (Huang, Lin, & Yang, 2012). With well-

characterized genetics and the public available genome sequences, E. coli offers a wide range of cloning 

vectors and mutant strains. The organism quickly reaches high cell density cultivated in inexpensive 

media and a short cultivation time compared to a mammalian system is required (Verma et al., 1998). 

With the possibility of growing facultatively anaerobic and the easy adaptability to metabolic stress, an 

extensive variety of compounds have been produced (Theisen & Liao, 2016). 
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A number of practical problems need to be considered when working with E. coli as expression host, 

e.g., large and complex proteins forming disulfide bridges or post-translational modifications are not 

suitable as a potential product. Furthermore, overexpressed proteins often lead to the formation of 

inclusion bodies (IBs) which require an additional and complicated denaturation and refolding process 

to achieve functionality (Ni & Chen, 2009). As well as the accumulation of lipopolysaccharides (LPS), 

which are pyrogenic for humans, which provides a laborious but solvable challenge for the downstream 

process when using therapeutic proteins expressed in E. coli (Terpe, 2006). 

Nevertheless, the detailed and comprehensive understanding of that organism and its regulations make 

E. coli an appropriate model system for various mathematical prediction approaches, e.g., process 

modelling (Opalka et al., 2010). 

1.5 Process analytical technology (PAT) and Quality by Design (QbD) 

To reach higher health and economic benefits in pharmaceutical manufacturing, the U.S. federal 

development agency (FDA) first presented the PAT initiative for modern and advanced process control. 

Herein, a risk-based approach is suggested, providing a key element of the pharmaceutical current good 

manufacturing practise (cGMP) (FDA, 2006). With the objective to build a dynamic, adaptable QbD 

approach, intending to provide global manufacturing processes. As opposed to statically testing the 

quality of the final product, the QbD method aims to an approach where the overall process is 

considered, guaranteeing a more stable and robust product quality output (FDA, 2018). 

By identifying the critical quality attributes (CQA), a robust control strategy for the process itself can be 

designed. To ensure a consistent process performance during the whole time, continuous on-line 

monitoring and dynamic process control plays an important role. Here, PAT comes into play. One main 

goal of the PAT framework is to design well-understood processes by utilizing different tools to enable 

a comprehensive measurement base, i.e., in a well-understood process, all causes of variability can be 

identified and explained (FDA, 2004).  

In order to ensure a robust and uniform output of the process, the development of PAT led to a further 

improvement in the acquisition of process data and associated measurement tools. The FDA defined 

three categories of measurement approaches: 

§ Off-line: After a sample was taken from the bioprocess, the measurement is carried out 

independently from time and place, e.g., determination of the main carbon source glucose and 

by-products like acetate (Peuker et al., 2004). 
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§ At-line: A sample is taken from the process stream, isolated and analysed immediately, in close 

proximity to the bioprocess, e.g., determination of cell dry mass (CDM) and product 

concentration (Rao, Moreira, & Brorson, 2009; Sommeregger et al., 2017). 

§ On-line and In-line: Many parameters can be monitored online, such as pH and dissolved 

oxygen (DO), without diverting a sample from the manufacturing process. This measurement 

can be invasive (In-line) or non-invasive though connected to the process (On-line) (Abu-Absi 

et al., 2011). A continuous process control is therefore permitted. 

In order to achieve such a PAT and QbD implementation, process development, characterization and 

optimization as well as automation are carried out in different stages. The development of a new 

process starts with the design phase, in which the CQAs and the CPPs that affect the CQAs, e.g., product 

quality, are determined. Based on the chosen CPPs, a design space is created which is characterized to 

gain process knowledge and later on to find the process optimum (Finkler & Krummen, 2016; Rathore, 

Bhambure, & Ghare, 2010). 

The utilization of a design space to investigate the impact of materials used, process and ecological 

conditions and manufacturing on the CQAs enables accurate and reliable development of tools to 

guarantee product quality requirements. The final goal of utilizing this framework is that a certain 

product quality can be predicted and assured at the end of a production process (Garcia, Cook, & Nosal, 

2008). Figure 1 (p. 8) shows a schematic display of a bioprocess with a state-of-the-art quality by testing 

approach and a process where QbD tools are considered. 
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Figure 1: Difference between the product output of Quality by Testing and a QbD approach. In a static process where the 
quality is only tested in the final product a higher variability in product quality, which is shown as the red high-jagged line, 
occurs. By applying a QbD approach to a bioprocess, the whole process is considered and results in consistency in product 

quality (green less-jagged line).  

Figure 1 illustrates the high variability in product quality by only considering the final product. To 

overcome these fluctuations in quality, a QbD approach is used, e.g., continuous monitoring during the 

bioprocess, and consistency in product quality is obtained. 

The application of PAT in upstream operations such as microbial fermentation processes is gaining more 

and more attention. With the benefits of better process understanding using on-line and at-line 

measurements, improved yields and a decrease in energy consumption, the production cycle time can 

be reduced (Read et al., 2010). To avoid the rejection of batches due to the occurrence of major 

problems during the process or deviations of the batches from the quality specifications, the 

implementation of QbD and PAT already needs to take place at the process development level and 

further continue in the scale-up procedure. As consequence costs can be saved due to the prevention 

of reprocessing and the lowering of energy consumption and waste rates (Rathore et al., 2010). 

In batch and fed-batch processes, e.g., CDM production and product formation have already been 

monitored on-line (Nickel, Cruz-Bournazou, Wilms, Neubauer, & Knepper, 2017; Wechselberger, 

Sagmeister, & Herwig, 2013). Thereby, it is possible to rapidly react to occurring deviations and still 

provide high-quality products within the acceptance criteria. As a result, the time-consuming off-line 

sampling and the following analytical measurements will be eliminated (Bayer, von Stosch, Melcher, 

Duerkop, & Striedner, 2020). 
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1.6 Design of experiments (DoE) 

When it comes to structuring and determining the relationship between the CPPs of a pharmaceutical 

process, statistical DoE is the method of choice (Möller, Kuchemüller, Steinmetz, Koopmann, & Pörtner, 

2019). It is a concept where the mathematical relationship between the in- and output variables of a 

system are investigated. The process can be characterized and optimal conditions can be identified, 

determining the CPPs that influence the CQAs (Patel, Parmar, & Patel, 2013).  

Prior process knowledge and risk management are used to establish an DoE (Yu, 2008). In a fixed set of 

experiments, different levels and combinations of CPPs are examined. The set of experiments needs to 

be carried out in a random order to avoid systematic errors, which can occur when performing one 

experiment after another using similar process setups (Mandenius & Brundin, 2008). 

The evaluation of experimental data is commonly carried out with the mathematical model of multiple 

linear regression (MLR), describing the relationship of input (independent) variables and output 

(dependent) variables. To correlate the variation of linear or quadratic terms interaction terms can be 

added to the MLR (Iordache, 2013; Mandenius & Brundin, 2008). Usually response surface models 

(RSM) are applied, which estimate the process optimum by using quadratic functions and representing 

the data in a time-resolved manner. 

Moreover, in upstream bioprocess development, DoE is a widely used method for the effective 

understanding of a (bio)process. However, this is often challenging and complex since the CQAs of a 

microbial fermentation process are sensitive to many CPPs. This characterization is of high importance 

because the effective manipulation of a system can only be executed by understanding the impact of 

design and control parameters in a time resolved manner (Bayer, von Stosch, Striedner, & Duerkop, 

2020). DoE varies the controllable CPPs and systematically determines their impact. The uncontrollable 

factors can be distinguished by replication, randomization or blocking (von Stosch, Hamelink, & Oliveira, 

2016).  

It is important that the impact of all CPPs and factors regarding the process itself, the product and the 

production host, e.g., E. coli, are well understood. The more CPPs shall be tested, the number of 

experiments increases and becomes very time-consuming, laborious and thereby also affects the 

economical, cost-intense aspect. Therefore, a key demand of manufacturers is to reduce the duration 

and the costs of process development (Mercier, 2013). 

To overcome the large number of experimental runs of a classic DoE, investigating each combination 

of each CPP at every level, i.e., full factorial design, an efficient approach is a fractional factorial design. 

In a fractional factorial design, a subset of experiments are used, proceeding from selected corners in 
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the experimental space of the full factorial design. Thereby, less costs and effort compared to a full 

factorial design is required (Toms, Deardon, & Ungrin, 2017). A new promising design of DoE, aiming to 

reduce the number of experiments, is described by von Stosch and coworkers as iDoE (von Stosch & 

Willis, 2016).  

1.7 Intensified design of experiments (iDoE) 

A highly emphasized approach is to reduce the number of experiments, counteracting these long 

development times, but still gaining the same degree of process understanding by characterizing the 

same amount of CPP setpoints. This is where iDoE, a new concept in upstream bioprocess development, 

is applied. In an iDoE, the CPPs during each experiment are varied, for a fixed number of levels, in 

contrast to the classic DoE with static parameters. Therefore, the number of experiments can be 

reduced by changing the conditions during an experiment, instead of keeping them constant during the 

entire process. According to von Stosch 2017, the total number of experiments can be reduced by up 

to 40% using iDoE (von Stosch & Willis, 2016) and Bayer 2020 even demonstrated a reduction of 66% 

choosing the right setup (Bayer, Striedner, & Duerkop, 2020). The most important objective of all DoE 

in general is to gain insights into the process. iDoE additionally gathers information about the dynamic 

behaviour and the responses of the cells and the process. This understanding leads to the development 

of an appropriate dynamic process model (von Stosch & Willis, 2016). Herein, to describe this 

methodology, data of E. coli fermentations, performed in fed-batch operation mode, a widely applied 

operation mode for therapeutic protein production in the pharmaceutical industry (Lee et al., 1999), 

was used. This and other commonly applied operation modes are described below. 

1.8 Process modeling 

Commonly, process models are used as a representation and examination of the knowledge about a 

process. Thereby, they can be applied in terms of process monitoring, optimization and control. Real 

process data obtained under different operating conditions must be generated, to enable accurate 

predictions. A valid representation of the process is given when the model predictions match the 

analytically derived data. Under this condition, the validated model can be used for implementing and 

improving process control (Schubert, Simutis, Dors, Havlik, & Lübbert, 1994). 

Due to the laborious experimental data generation and preparation of fermentations and bioprocesses, 

modelling is difficult and time-consuming. However, accurate models and computer simulations are 

necessary to reduce the number of experiments, which are a cost-driving factor in the 

biopharmaceutical industry (Luli et al., 1999). 
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Typically, statistic software tools like RMS are used to analyse bioprocess data (Kalil, Maugeri, & 

Rodrigues, 2000). With this approach, the endpoint values of the investigated process variable, e.g., the 

product titer, and the impact of the CPPs are examined. However, by only taking the endpoint into 

account, many important influences during the process are neglected and the impact of parameter 

deviations or temporarily failures during the process are not considered (Lundstedt et al., 1998). 

One commonly used data-driven model technique is an artificial neural network (ANN). Such 

approaches, where the structure is only determined from data, can be classified as non-parametric 

models. This unstructured model is also called black-box model. Non-parametric black-box models 

often do not have reliable extrapolation properties and many experiments to identify the herein used 

factors without any physical meaning are needed to cover the whole application domain. Therefore, a 

disadvantage of ANN models is the lack of transparency and poor performance on new data (Luli et al., 

1999; Van Can et al., 1998). 

Another model approach is the white-box strategy, which is a knowledge driven approach. Testing and 

improving an accurate model in comparison to experiments classifies the model as a parametric one. 

Those mechanistic models describe the interaction between process variables by fundamental 

principles, i.e., the factors used do have a physical meaning. Due to the complexity of living cells and 

the simplicity of the used equations, it is often challenging to set up reliable white-box models for 

bioprocesses (Wechselberger et al., 2013). 

However, there is a way to benefit from the positive aspects of black-box and white-box modelling 

approaches. In a so-called hybrid model (semi-parametric), the advantages of both modelling 

approaches are combined and make up for the respective drawbacks, i.e., utilizing process knowledge 

and process information from different sources in a combined model structure.  

1.9 Hybrid modeling 

So far, hybrid models of upstream processes have been described by numerous authors (A. Teixeira et 

al., 2005; A. P. Teixeira, Alves, Alves, Carrondo, & Oliveira, 2007). Knowledge and data related to the 

process were used to generate a model. The main focus lies in monitoring, controlling and optimization 

of a fermentation process (von Stosch, Oliveira, Peres, & Feyo de Azevedo, 2014). Recently hybrid 

models have gained more significance in downstream processing, e.g., in predicting the flux evolution 

and duration of cross-flow ultrafiltration processes (Krippl, Dürauer, & Duerkop, 2020).  

More specifically, hybrid models combine mechanistic equations with black-box approaches in order to 

achieve an effective use of available information. Herein, the black-box techniques are applied to 

estimate the unknown parts of the system. Because of that, the hybrid model is also referred to as grey-
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box (Zorzetto, Filho, & Wolf-Maciel, 2000). The application of a hybrid model enables the description 

of the entire process in a more accurate way. In contrast, the use of solely black-box models allows an 

improper prediction due to the above-mentioned and often not reliable extrapolation properties. 

White-box models are too general and do not consider process impacts that are not part of the applied 

equations. Therefore, by using a time-resolved hybrid model, deviations during the process can be 

explained and the change of parameters in a running process and the resulting behaviour of the process 

can be understood. In addition, time-consuming and expensive experiments, which are used for data 

input, can be reduced, which is a big benefit for manufacturers (Schubert et al., 1994; von Stosch et al., 

2016). 
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2 AIM OF THE WORK 
The aim of this thesis was to implement the innovative iDoE method for E. coli fed-batch fermentations 

to accelerate design space characterisation. 

Based on a previous full factorial static DoE study of 27 CPP combination setpoints, characterized by 

fed-batch fermentations with static CPPs, an iDoE of nine experiments with two CPP combination 

changes during each fermentation was developed. Three different levels of the induction strength, the 

cultivation temperature and the theoretic target growth rate (controlled by the glucose feed) set up 

the design space of the static DoE. All CPP combinations of the static DoE were carried out in 9 

intensified fermentations. The experiments were performed with an E. coli HMS174 strain, producing 

recombinant hSOD as the model protein. 

The CDM and product titer were determined over the entire course of the fermentation and compared 

between DoE and iDoE. 

To guarantee the applicability of the iDoE setup, the occurrence of a possible memory effect of the cells 

due to previous CPP setpoints was investigated. Therefore, it was assessed if the starting point and the 

temporal order of the parameter shifts have an impact on the state of the cell, the variables of interest 

and the growth kinetic. 

Consecutively, the data of the analytical results and the on-line measurements of the iDoE were 

imported into the Novasign software (Novasign GmbH, Vienna, Austria) and an iDoE hybrid model was 

created and evaluated (tested) with respect to its ability to predict the CDM of the static DoE (test set). 

To demonstrate the advantage of using intensified experiments for model building, the model 

performance of the in this thesis developed iDoE hybrid model was compared to the performance of a 

static hybrid model, developed using all the static experiments (derived from an earlier study). 
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3 MATERIALS AND METHODS  

3.1 Bacterial strain and plasmid 

For all experiments the host cell line HMS174(DE3) (F− recA1 hsdR(rK12
- mK12

+) RifR), transformed with a 

pET11a vector (pET System Manual, 11th edition) was used. As the selectable marker, the gene encoding 

for ampicillin resistance was chosen. The strain was purchased from Novagen (Novagen, Germany) and 

carries a λ prophage with a gnomically integrated T7 RNA polymerase gene, enabling the expression of 

the target protein from T7 promoters under the control of a lac UV5 promoter. As the target protein, 

human Cu/Zn superoxide dismutase (hSOD) (E.C. 1.15.1.1) was chosen, by inserting its coding gene into 

the plasmid. The highly soluble 32 kDa protein hSOD consists of two homologous monomer subunits 

with a length of 153-amino acids. It is expressed in the cytoplasm and is non-toxic to the host cell. The 

induction of the recombinant protein production was started by adding a single pulse of isopropyl-β-D-

thiogalactopyranoside (IPTG) (#1043, GERBU Biotechnik, Germany). Every fermentation was started 

with an inoculum of 1 mL from a deep-frozen working cell bank (WCB) to guarantee standardized 

starting parameters (Melcher et al., 2015; D. J. Wurm, Hausjell, Ulonska, Herwig, & Spadiut, 2017). 

3.2 Cultivation in the bioreactor 

3.2.1 Media preparation 

A semisynthetic media was calculated to produce 22.5 g CDM in a volume of 4 L in the batch phase. 

During the feed phase, the additional 337.5 g CDM should be produced in synthetic media by providing 

8 L feed media. In the following table (Table 1) the amounts of the ingredients are provided for 

generating 1 g CDM. The components were dissolved separately and added one by one. To avoid the 

Maillard reaction, the glucose solution was autoclaved separately and afterward added to the cooled 

media solution under sterile conditions. The batch media contained yeast extract to increase the initial 

growth of the cells. 

Table 1: Composition of the semisynthetic and synthetic media for batch and fed-batch phase. 

Component Semisynthetic media Synthetic media 

KH2PO4 3 g/L 3 g/L 

K2HPO4*3H2O 4.58 g/L 4.58 g/L 

Yeast extract 0.15 g/g CDM - 

Na3-Citrate*2H2O 0.25 g/g CDM 0.25 g/g CDM 
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MgSO4*7H2O 0.10 g/g CDM 0.10 g/g CDM 

CaCl2*2H2O 0.02 g/g CDM 0.02 g/g CDM 

trace element solution 50 µL/g CDM 50 µL/g CDM 

Antifoam solution (PPG2000) 0.5 mL/L 0.5 mL/L 

Glucose*H2O 3 g/g CDM 3 g/g CDM 

NH4Cl 2.50 g/L - 

(NH4)2SO4 2.10 g/L - 

 

These media compositions provided the required buffer capacity and served as sources of phosphate 

and potassium. According to the theoretical final amount of 360 g CDM, phosphate salts were 

calculated. To avoid and suppress foaming, Antifoam solution (Polypropylenglycole 2000, Sandoz) was 

added to the media to a final concentration of 0.05%. An 12.5% ammonia solution was used for the 

regulation of the pH value, the supply of nitrogen for growth and protein production. 

3.2.2 Cell cultivation conditions 

The fermentations were performed in a 20 L computer-controlled bioreactor (MBR, Wetzikon, CH). A 

total working volume of 12 L was calculated, 4 L batch volume and additionally 8 L in the feed phase. A 

local measuring and control system (Simatic S7-400), equipped with standard control units (Siemens 

PS7, Intellution iFIX) was used to measure and calculate the on-line available process parameters. To 

maintain the pH value at a neutral level of 7.0 ± 0.05, a 12.5% ammonium hydroxide solution (w/w) 

(MERCK) was added when required. The amount of ammonium was measured and calculated by a pH 

electrode (Mettler Toledo InPro 3250), calibrated by using commercially available buffer solutions at 

pH 4.0 and pH 7.0. Supervisory control and data acquisition system (SCADA/Siemens WinCC) was used 

on an X86 PC, running Windows XP. During the batch phase, the temperature was set to 37°C ± 0.5°C, 

measured with a Pt100 sensor.  

To measure the DO an optical oxygen sensor (Mettler Toledo InPro 6970i) was used. To calibrate the 

sensor, N2-gas (0% saturation of pO2) and inlet air (100% process air) were applied. A level of 30% 

saturation of DO was stabilized through the stirrer speed (800-1200 rpm) and the aeration rate control, 

to avoid oxygen limitation. To suppress foaming, 0.5 mL/L of antifoam (PPG 2000, Sigma Aldrich) were 

added to both, media and feed medium, before starting the cultivation. 
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Shortly before the inoculation, the working cell bank (stored at -80°C) with an optical density of OD600=1 

was thawed and 1 mL was aseptically transferred to 30 mL 0.9% physiological saline solution. This 

solution was used for the inoculation. 

3.2.3 Fed-batch phase 

The fed-batch phase was calculated to perform four doubling times (generations) of E. coli. The batch 

phase ended when the culture completely consumed the batch-glucose, entering the stationary phase, 

with the total CDM of 22.5 g. On the online control system, the end of the batch phase was visible when 

the DO level rises rapidly due to the glucose exhaustion of the media and thereby decreasing pO2 

consumption. An exponential substrate feed was started at this time point. The pump speed increased 

according to the exponential growth algorithm (Equation 1), with X as the CDM, µ as the set growth 

rate and t as time. 

𝑋" = 	𝑋% 	×	𝑒(∆*   (1) 

Thereby, the target growth rate was controlled. The substrate tank was stored on a balance containing 

a predefined concentration and has a feedback control of weight loss.  

The recombinant protein expression was induced after one generation, by a single pulse of different 

IPTG concentrations to provide the respective amount of IPTG for the already existing CDM, followed 

by an additional exponential inductor feed (Marisch, Bayer, Cserjan-Puschmann, Luchner, & Striedner, 

2013). 

3.2.4 Design space 

In all experiments, the batch phase was always carried out at 37 °C. The fed-batch phase conditions 

varied for each experiment, to cover all CPP combinations of the design space. The CPPs and the applied 

levels, namely the temperature, the target growth rate and the induction strength, used in the DoE and 

iDoE are listed in Table 2.  

Table 2: List of varied CPPs and levels in the DoE and iDoE. 

Temperature [°C] Target growth rate [h-1] 
Induction strength 

[µmol IPTG/g CDM] 

30 0.1 0.2 

34 0.15 0.5 

37 0.2 0.9 
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The fermentation setpoints of the traditional DoE are presented in Table 3, including the identification 

number of the respective experiment. Each experiment had static parameter conditions over the four 

doubling times of the feeding phase, i.e., one setpoint for the temperature, the target growth rate and 

the IPTG ratio was held constant for the entire fermentation. 

Table 3: Parameter setpoints of the full factorial DoE comprising 27 CPP combinations. 

Identification 
number of 

experiment 

Temperature [°C] 
Target growth rate  

[h-1] 

Induction strength 

[µmol IPTG/g CDM] 

SOD94 30 0.1 0.2 

SOD99 30 0.15 0.2 

SOD102 30 0.2 0.2 

SOD106 34 0.1 0.2 

SOD97 34 0.15 0.2 

SOD103 34 0.2 0.2 

SOD104 37 0.1 0.2 

SOD95 37 0.15 0.2 

SOD107 37 0.2 0.2 

SOD63/68 30 0.1 0.5 

SOD80 30 0.15 0.5 

SOD61/66 30 0.2 0.5 

SOD96 34 0.1 0.5 

SOD101 34 0.15 0.5 

SOD105 34 0.2 0.5 

SOD47 37 0.1 0.5 

SOD53 37 0.15 0.9 

SOD58 37 0.2 0.9 



 

 
18 

 

SOD79 30 0.1 0.9 

SOD60 30 0.15 0.9 

SOD59 30 0.2 0.9 

SOD98 34 0.1 0.9 

SOD93 34 0.15 0.9 

SOD100 34 0.2 0.9 

SOD42/44/91 37 0.1 0.9 

SOD49 37 0.15 0.9 

SOD56 37 0.2 0.9 

 

To reduce the characterization time of the presented full factorial design, from 27 fermentations with 

static process conditions down to 9 dynamic experiments, an iDoE was implemented. Therefore, two 

intra-experimental shifts were performed to characterize three CPP combinations during each 

fermentation. After one doubling time, the pulsed induction using IPTG was performed and the 

exponential inducer feed started. The first CPP combination endured for the second generation of the 

fed-batch phase. By the end of the second generation, the first out of two parameter shifts was carried 

out, starting the characterization of the second CPP combination. The second parameter shift, 

characterizing the third CPP combination, was executed after the third doubling time. Figure 2 gives a 

schematic overview of an iDoE process. 

 

Figure 2: Schematic representation of the process of one iDoE experiment. 
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When designing the iDoE, important points had to be considered. On the one hand, a limiting factor is 

that the induction strength cannot be changed easily within a fermentation due to IPTG is not 

consumed. It is possible to add a higher concentration, however, it is not possible to reduce the 

induction strength. Therefore, only one specific concentration of IPTG was applied for each process. 

Due to this limitation, one can split the design space of the iDoE into three two-dimensional so-called 

“induction planes”. Combined, three temperatures and three growth rates result in nine CPP setpoints 

per induction plane. Three set points are characterized within in one experiment, resulting in three 

intensified fermentations per induction plane. The CPP setpoints and shifts of parameters were 

arranged in a way that every combination is used in every state of the cell. In Table 4 the intensified 

fermentations, including the performed intra-experimental shifts, are listed.  

Table 4: Intensified experiments with different CPP combination setpoints during one fermentation. 

Identification 
number of 
experiment 

Temperature [°C] Target growth rate [h-1] 
Induction 

Strength [µmol 
IPTG/g CDM] 

 setpoint1 à setpoint2 à setpoint3  setpoint1 à setpoint2 à setpoint3   

SOD114 37 à 34 à 34 0.1 à 0.2 à 0.1 

0.2 SOD111 37 à 30 à 34 0.15 à 0.1 à 0.15 

SOD117 30 à 37 à 30 0.2 à 0.2 à 0.15 

SOD116 30 à 30 à 34 0.15 à 0.2 à 0.2 

0.5 SOD112 30 à 34 à 37 0.1 à 0.1 à 0.2 

SOD110 34 à 37 à 37 0.15 à 0.15 à 0.1 

SOD115 37 à 34 à 30 0.2 à 0.15 à 0.2 

0.9 
SOD108 34 à 37 à 37 0.1 à 0.1 à 0.15 

SOD113 34 à 30 à 30 0.2 à 0.15 à 0.1 

SOD109 37 à 37 à 34 0.15 à 0.1 à 0.1 

 

3.2.5 Calculation of the time point for a shift of parameters 

Based on the set target growth rate, the theoretical doubling time of the CDM was calculated. The initial 

CDM at the start of the fed-batch phase and the set target growth rate were used to calculate the 
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theoretical CDM trajectory at each time point of the fed-batch phase. Equation 1 (p. 16) shows the 

calculation. When the doubling of the initial CDM (X0) of the feeding phase is reached, the recombinant 

protein production is induced by IPTG. After the second doubling of the cells, the first parameter shift 

was carried out. The second shift was performed after the third doubling of the cells. Due to different 

target growth rates carried out in the iDoE, the duration of each experiment varied. 

3.3 Online measurements and control 

Besides the above-mentioned standard process parameters, some other parameters were measured 

during the process: 

1. Base consumption 

The base vessel was placed on a scale which continuously records values and represents 

information of how much base was transferred into the reactor and consumed by the cells. 

2. 2D-Fluorescence spectroscopy 

A multi-wavelength online fluorescence sensor measures the 2D emission-excitation fluorescence 

spectrum from 270 nm to 590 nm. The used system for detection is BioViewTM (G111297, Delta 

Light & Optics, Denmark). A xenon lamp (light source), two rotating filter wheels and a detector 

measured the intensity of the fluorescence every 3 minutes. 

3. Off-gas analysis 

The concentration of CO2 and O2 [%] were measured online and in real-time with the gas analyzer 

system BlueInOne Ferm (BlueSens gas sensor GmbH). 

3.4 At-line and offline measurements 

3.4.1 Sampling 

By taking a control sample during the first generation, thus before induction, it was possible to check 

whether the CDM fits or if any contamination could be detected. 

The sampling used for analytics started in each experiment at the time point of the IPTG induction. 

Hourly, 20 mL of cell broth were taken out of the bioreactor. The first 5 mL were discarded to purge 

the sampling valve. To increase the resolution and enable better insight into the behavior of the cell, 

the sampling frequency was increased after the parameter shift. Thereby, the effects of the shifts on 

the cell can be thoroughly examined. The sampling interval varied depending on the target growth rate 

after the shifts, as indicated in Table 5 (p. 21). 
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Table 5: Increased sampling interval after the parameter shifts related to the set target growth rate. 

Target growth rate [h-1] Sampling frequency increased to 30 minutes 

0.1 For 3h 

0.15 For 2h 

0.2 For 2h 

 

The following analyses were performed out of the taken sample: 

1. Optical density (OD600) 

The optical density was measured at a standard wavelength of λ = 600 nm (OD600). The used 

measurement device was a photospectrometer (Amersham Biosciences Ultrospec 500 pro) and 

the measurements were carried out with disposable cuvettes (VWR International GmbH) in the 

linear range of 0.1 to 0.6. Therefore, the sample was diluted in the ratio of 1:201 with 

phosphate-buffered saline (PBS). With the obtained values of the OD600 measurement, the 

volume needed to transfer 1 mg CDM to an Eppendorf tube (1.5 mL) could be calculated 

(3.5/OD600). The 1 mg CDM aliquots were centrifuged for 10 min at 21130 x g at 4°C, stored at 

-20°C and used for offline protein quantification.  

2. CDM 

To determine the change in the CDM over the process duration, 2x5 mL of the sample were 

transferred into two 50 mL Greiner centrifuge tube (GREINER GmbH) and centrifuged for 

10 min at 12697 x g (Eppendorf® Centrifuge 5804 R). The cell pellets were resuspended with 

5 mL ddH2O and subsequently centrifuged (washing step). This procedure was repeated twice. 

Afterward, the total sample was transferred to a pre-weighted beaker glass. It was stored at 

105°C in a drying oven (Binder drying oven ED23) for a minimum of 24 h. The difference 

between the full and the empty beaker glass multiplied with 100 was used to calculate the 

amount of CDM in g/L. The total CDM was determined by multiplying this concentration with 

the calculated volume of the reactor, which contained the batch volume, the feed, the base 

and the inductor volume. The sample volume was subtracted from the total volume of the 

reactor. 

 

3. Supernatant 

A volume of 1.8 mL of the supernatant from the centrifuged cell pellet were stored deep-frozen 

at -20°C in 2 mL Eppendorf reaction tubes and used for residual substrate analysis conducted 
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by high performance liquid chromatography (1100 HPLC, Agilent Technologies). The used 

column was an Aminex HPX-87H ion exclusion column (Biorad) and. as mobile phase 0.01 N 

sulfuric acid (20°C and 0.45 mL/minute) was consulted. A UV/VIS (Knauer) and a refractive 

index detector (Beckmann) were used for detection.  

3.4.2 Gel electrophoresis 

E. coli bacteria tend to form IBs, if cultivated at high temperatures and high induction strengths, 

therefore a sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to obtain 

the ratio between soluble and insoluble recombinant protein and to monitor if initially IBs were formed. 

For SDS-PAGE a 1 mg CDM aliquot was taken. All chemicals and solutions used are listed in the appendix. 

Therefore, the cells had to be disrupted first. The cell pellet was solved in 200 µL of disruption buffer 

and 50 µL of Lysozyme (2 mg/mL) and 50 µL of Benzonase (50 Units) were added and incubated at room 

temperature (RT) for 10 minutes (shaking at the TurboMix). 100 µL Triton X-100 were added and 

incubated for another 10 minutes (RT, shaking at the TurboMix). To separate the supernatant form the 

remaining cell pellet, the solution was centrifuged for 10 minutes at 19721 x g and 4°C (Eppendorf® 

Centrifuge 5424 R). The supernatant contained the soluble recombinant protein and was transferred 

to a new reaction tube and stored at 4°C until the gel was loaded. The remaining cell pellet was washed 

two times with 1 mL of washing buffer Tris/HCl 100 mM, pH 8.2 (resuspended and centrifuged at 

19721 x g at 4°C for 10 min). After discarding the washing buffer for the second time 400 µL of the IB 

dissolving buffer were added. The cell pellet was solved and incubated in the dissolving buffer for 0.5 

hours, softly shaking at the TurboMix (at RT). After centrifugation for 10 min at 19721 x g and 4°C, the 

supernatant contained the dissolved IBs and could be used to load the gel.  

To load the gel 13 µL of the sample (soluble and IBs), 5 µL of NuPAGE® LDS sample buffer (4X) and 2 µL 

NuPAGE Reducing agent (10x) were mixed. Prior to loading the gel, the prepared solutions were heat-

shocked (70°C; 10 min). A molecular weight marker, the ready to use MW-standard (Mark12TM, 

unstained), was loaded directly onto the NuPAGE® gel (4-12% BisTris gradient gels). MES (20x) (Life 

Technologies) was used as running buffer. The electrophoresis was carried out at 200 V (max. 400 mA) 

and 50 minutes for one run. 

By the end of the run, the gel was transferred to a fixing solution (40% ethanol; 50% RO-water; 10% 

acetic acid) for 30 minutes to prevent dispersion of the proteins. The solution denatures the protein 

and provides an acetic environment which enhances the interaction with the subsequent staining 

solution Coomassie brilliant blue R250 (45 minutes). 
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For de-staining, the gel was put in de-staining solution (25% acetic acid; 8% ethanol; 67% RO-water) for 

at least 2 h. The reaction process was terminated by relocating the gel into water. 

To optically quantify the soluble protein and the IBs, the gel was scanned with Corel Photo-Paint 12 and 

analysed with an ImageQuant TL software. The raw volume of the single bands, obtained with the 

software, were taken to calculate the ratio between the soluble protein and the IB of each sample. The 

first lane always showed the protein ladder (MW Standard 12). hSOD migrates around the 20 kDa 

marker lane under reducing conditions. Herein, no standards were used to quantify the amount of 

hSOD, i.e., only the ratio was determined. To determine the concentration of recombinant hSOD in the 

samples, enzyme-linked immunosorbent assay was consulted.  

3.4.3 Enzyme-linked immunosorbent assay 

To determine the amount of produced recombinant hSOD in the fed-batch fermentations, enzyme-

linked immunosorbent assay (ELISA) was used. The 1 mg CDM aliquots were taken for analysis and first 

had to be disrupted. All utilized chemicals and reagents used are listed in the appendix. The cell pellet 

was dissolved in 200 µL of disruption buffer and 50 µL of Lysozyme (10 mg/mL) were added, mixed well 

and incubated for 10 minutes at 37°C in a Thermo-shaker (350 rpm; Eppendorf® Thermomixer 

Compact). As the next step, 750 µL of Triton X-100 (0.5%) were added and the solution was incubated 

for another 10 minutes, softly shaken at 37°C (Thermomixer, 350 rpm). After the solution was 

centrifuged (10 min, 4°C, 19721 x g), the supernatant, containing the soluble protein, was transferred 

to a new reaction tube and stored at 4°C until the ELISA was performed.  

The primary capture hSOD antibody (mAb IAM-SOD M05) was diluted in coating buffer at a ratio of 

1:250 and 100 µL were transferred with a multichannel pipette (Thermo ScientificTM, FinnpipetteTM F2) 

in each well of a 96-well microtiter plate (Nunc® MaxiSorpTM). The plate was incubated for two hours 

at RT or stored at 4°C overnight. Three washing steps, using a washing buffer, were carried out in a 

HydroFlexTM microplate washer (Tecan, Ref.: 30022011). The excess solution was removed. 

In an uncoated 96-well microtiter plate (Nunc® MicroWellTM) 140 µL of dilution buffer were pipetted 

into the wells of row A to G. The standard, with a concentration of 1.14 µg/mL, was diluted in dilution 

buffer in the ratio 1:11.4, reaching a working concentration of 100 ng/mL. Row H contained 300 µL of 

the standard (well 2-3) and four pre-diluted samples (well 4-11). The samples and the standard were 

diluted in 1:2 steps, from row G to A. For the samples, the expected hSOD concentration resulted from 

the experience of previous fermentations. The lowest dilution contained 50 ng hSOD/mL. Each standard 

and each sample were carried out in duplicates, at least. 
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As the next step 50 µL of each well were transferred to the microtiter plate, coated with the primary 

antibody, and incubated at RT for one hour. Afterward, the plate was washed three times as mentioned 

before. The enzyme-labeled secondary antibody (mAb IAM SOD A11H4 x AP) was diluted in dilution 

buffer in the ratio 1:1800 and 50 µL were added to each well. After an incubation time of 1 h at RT, the 

plate was washed three times. To detect the immunoreaction, 100 µL of staining solution was added 

to each well and after 7.5 min the measurement was carried out at a photometer (TECAN, Infinite® 200 

Pro Series Multimode Reader) at a wavelength of 405 nm. The results were analysed using the software 

Magellan 6.  

3.5 Process modelling 

With the generated data in the iDoE fed-batch fermentations, a hybrid model was trained. 

Furthermore, its performance was compared to an already existing hybrid model based on the static 

DoE fermentations (Bayer, von Stosch, Striedner, Duerkop 2020).  

3.5.1 Hybrid model 

For the model building with the iDoE data set (iDoE9) the Novasign hybrid modelling toolbox (Novasign 

GmbH, Vienna, Austria) was used. For this first approach, the chosen process variable to be modelled 

was the CDM concentration. The hybrid model consisted of a black-box, in this case an ANN, and a 

white-box in a serial structure, i.e., the target growth rate µ is estimated in the ANN using the process 

inputs and then transferred to the white box (Equation 2). The inputs to the ANN (black-box) were the 

CDM (g), the cultivation temperature (°C), the cumulative inductor mass (kg), the cumulative base (L) 

and the cumulative feed (L). A Levenberg–Marquardt algorithm was used to find modeling error minima 

to describe best the concentration profiles of the output variable, i.e., the CDM. A single hidden layer 

of four nodes was applied. The transferfunction for the hidden layer was set to hyperbolic while the 

output transfer functions were linear. 

Equation 2 was used in the white box to describe the changes in the CDM: 

+,
+*
= µ ∗ 𝑋 − 𝐷 ∗ 𝑋  (2) 

The concentration of the CDM (X) and the dilution rate of the fed-batch process due to feed addition 

(D) were provided by the white-box part, while the unknown rate expression of µ was modeled by the 

black-box, taking the impact of the process variables into account. 
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3.5.2 Model validation 

To examine the quality and accuracy of the developed model, three criteria were used: the root mean 

square error (RMSE), the percentage error (%) as well as the standard deviation (SD). The RMSE was 

calculated with Equation 3, with the total number of observations (N), the measured values (Y) and the 

estimated (modelled) counterpart (Ymodel) for each time point (t): 

𝑅𝑀𝑆𝐸 = 5"
6
∗ ∑(𝑌(*) − 𝑌;<+=>	(*))?  (3) 

To facilitate the comparison of the models, the error is determined in percent by Equation 4, dividing 

the RMSE by the mean of the measured values (𝑌@(*)): 

𝐸𝑟𝑟𝑜𝑟	[%] = "%%
6
∗ ∑

FG(H)IGJKLMN	(H)F
G@(H)

  (4) 

To validate the model, the iDoE9 data set was randomly split into a training a validation partition in a 

way that one experiment was used for validation, i.e., eight experiments for training and one 

experiment for validation. The model was built on the training partition and applied on the validation 

partition (internal validation). Once the error in the validation partition starts to increase, model-

building was stopped to avoid overfitting. By doing so, the model stayed valid when it is applied on new 

data. 

To provide a wide variety of models, this random partitioning procedure into so-called boots was 

repeated nine times, i.e., every possible combination of leaving an experiment out of the training 

partition was carried out. 

To access the differences in the models and to enhance the robustness of the model, a bootstrap-

aggregation (model averaging) of the performed boots was carried out, i.e., the best performing model 

of each boot was selected to identify the final model with the lowest error. 

For external validation, the final iDoE model was applied to the test set DoE31., With the averaged value 

achieved by the bootstrapped model (Ybootstrapped) and the predicted value from each individual model 

(Ymodel) for each time point (t) the SD was calculated in Equation 5: 

𝑆𝐷(*) = 5 "
OI"

∗ ∑(𝑌P<<*Q*RSTT=+(*) − 𝑌;<+=>(U)(*))?  (5) 

This equation contains the index i=1:5 and n, the number of observations. With the calculated SD, the 

prediction interval (PI) of the hybrid model at any time point (t) was calculated by the bootstrapped 

prediction of the model ± the SD at each time point, displaying the 68% prediction band (Equation 6). 
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𝑃𝐼(*) = 𝑌P<<*Q*RSTT=+(*) ± 𝑆𝐷(*)  (6) 

The performance of the iDoE hybrid model on the external validation was compared to the earlier 

developed hybrid model by Bayer et. al (2020), as a reference value. This static hybrid model was 

trained on 25 fed-batch fermentations of the DoE. For model testing, 6 fermentations of the DoE were 

used, chosen in a way that herein each induction plane was represented by two fermentations. More 

precisely, one experiment of each replicate run and three individual fermentations were selected. A 

detailed overview of the chosen fermentations is displayed in the Supporting Information of Bayer et 

al. (2020).	
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4 RESULTS AND DISCUSSION 

4.1 Three-dimensional design space 

4.1.1 iDoE setup 

As an illustration, the full factorial DoE, comprising 27 CPP combination setpoints, is represented as a 

cube. Each axis represents a CPP at the chosen levels and each red dot herein marks respectively one 

fermentation set-up with one static induction strength, target growth rate and temperature during the 

entire duration of the run. To transform the standard DoE into an intensified one, the cube is subdivided 

into three so-called “induction planes”. The comparative illustration of the DoE cube (Fig.3 A) and the 

iDoE cube (Fig.3 B) is shown in Figure 3. 

 

Figure 3: DoE full factorial design cube (A) and iDoE cube with induction planes (B). 

The notional induction planes (Fig.3 B) are due to the fact that the induction strength was not changed 

during the fermentation. Within one induction plane, three different CPP combination setpoints should 

be represented per executed fermentation. The order of the execution of the iDoE fermentations was 

chosen at random. However, it was noted that the induction strength was varied after one experiment. 

Thereby each fermentation was chosen out of one induction plane.h-1 

In Figure 4 (p. 28) the detailed illustration of the three induction planes is visible. The lines indicate the 

order of the applied CPP combination setpoints in the respective fermentation. The combination of the 

parameters and the intra-experimental shifts were well thought out to make it possible that each CPP 

combination was examined in each point as shown in Figure 2 (p. 18). The different experiments were 
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labeled with the identification numbers SOD108-117, indicating the CPP setpoint at the start of the 

fermentation in Figure 4. 

 

Figure 4: Induction planes of the iDoE. The orange lines in induction plane 0.2 µmol IPTG/g CDM (A) connect the CPP 
combination setpoints in each respective fermentation. In B green lines connect the CPP combinations of induction plane 

0.5 µmol IPTG/g CDM. In induction plane 0.9 µmol IPTG/g CDM (C) the blue lines connect the CPPs of the respective 
fermentations. In D all different combinations of CPP of all induction planes are overlaid. The identification number of the 

respective experiment (SOD108-117) marks the starting CPP setpoints. 

4.1.2 Investigation of a memory effect due to the shift direction 

The first consideration was that the direction of the shifts in the iDoE might have an influence on the 

cell growth behaviour in the different setpoints, and therefore was examined. The experiment used for 

this investigation was SOD108, due to the CPP setpoints, i.e., high temperatures, a strong influence on 

the evolution of CDM and product was assumed and therefore is a well-suited indicator for an occurring 

memory effect. The fed-batch phase started with 34°C, the target growth rate 0.1 h-1 and the induction 

was carried out with 0.9 µmol/g CDM. After the first shift, the temperature was shifted to 37°C and 

µ=0.1 h-1. The third setpoint of the CPPs was carried out at 37°C and µ=0.15h-1. Another experiment 

(SOD109) with the same CPP combination setpoints was executed. However, the order of the CPP 

setpoints was reversed. The results of the cell physiology of both experiments were compared, i.e., the 
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CDM and product titer, and evaluated at the end of the process In Figure 5 the course of the CDM is 

represented. 

 

Figure 5: Course of the CDM in g/L (blue line) and the total CDM [g] (red line) of experiment SOD108 (A) and SOD109 (B). The 
induction with 0.9 µmol IPTG/ g CDM is marked with the black line, the black-dotted lines represent the shift of parameter 

and consequently the start of a new generation. For each setpoint the temperature and target growth rate are shown. 

By increasing the target growth rate during the fermentation, the CDM showed a steep raise in the last 

setpoint of SOD108 (Fig.5 A). In contrast, SOD109 displayed a smoother course of CDM with no rapid 

leaps (Fig.5 B). Both experiments showed a similar course of the CDM in each respective setpoint of 

CPPs. At 34°C, µ=0.1 h-1 and 37°C, µ=0.15 h-1 the CDM increased in both experiments, while a 

temperature of 37°C and µ=0.1 h-1 led to a decrease of CDM. 

The impact of the parameter shifts is also visible in the course of the product titer. In Figure 6, the 

course of the soluble, insoluble and total recombinant hSOD of both fermentations are shown. 

 

Figure 6: Course of product titer of SOD108 (A) and SOD109 (B). Comparison of the specific product in mg/g (blue line) and 
the total product rate in g (red line). The ratio of soluble (light blue line) and insoluble hSOD (dark blue line) is displayed as 

sperate curves. The induction with 0.9 µmol IPTG/ g CDM is marked with the black line, the black-dotted lines represent the 
shift of parameter. For each setpoint the temperature and target growth rate are shown. 
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In both experiments, an adaption phase after shifting the parameters was visible, as presented in Figure 

6. The high temperature (37°C) led to the formation of insoluble hSOD.  

Despite the expected slight deviation in trends of CDM and product titer, the course of the curve in the 

respective setpoints behave similar. As a result, it was assumed that the chronology of the parameter 

shifts does not matter in this setup and the iDoE could be executed as planned. 

4.2 Comparison of the static and iDoE approach 

To compare the offline trend and the cell physiology of both approaches, each intensified experiment 

was compared to the associated static experiments. This comparison is subdivided into the three 

induction planes. Therefore, all experiments of one plane are discussed in one section. 

In addition, an overview of the endpoint values of iDoE and DoE fermentations are represented to 

investigate the response to the different CPP settings. 
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4.2.1 Comparison experiments of induction plane 0.2 µmol IPTG/g CDM 

4.2.1.1 SOD111 

The first setpoint had a set growth rate of µ=0.15 h-1 and the temperature was set to 37°C. The induction 

in SOD111 was conducted at a feed time of 4.5 h. The course of the CDM of SOD111 and its respective 

static fermentations SOD95, SOD94, SOD97 is shown in Figure 7 (A-D). 

 

Figure 7: Comparison of the course of the CDM of intensified experiment SOD111 (A) to the respective static fermentations: 
SOD95 (B), SOD94 (C), SOD97 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays the 

total CDM [g]. All experiments were induced with 0.2 µmol IPTG/g CDM after one generation, displayed as black line. The 
shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

At the first shift of parameters (9 h), to 30°C and µ=0.1 h-1 a concentration of 17.1 g/L CDM was 

reached, furthermore the value of the total CDM was 93 g. The associated static fermentation SOD95 

(Fig.7 B) reached a CDM concentration of 17.3 g/L, i.e., 96 g. In Figure 7 C the static experiment SOD94, 

respective to the second setpoint of intensified experiment SOD111, is displayed. The static experiment 

SOD97 (Fig.7 D) is associated to the last setpoint of SOD111. Both static experiments showed a similar 

behaviour in their respective phase of the intensified experiment.  

Figure 8 displays the course of the product titer of SOD111 and its respective experiments. 
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Figure 8: Comparison of the course of the product titer of the intensified experiment SOD111 (A) to the respective static 
fermentations: SOD95 (B), SOD94 (C), SOD97 (D). The specific product (in mg/g) is marked as a blue line and the total product 

rate (in g) is displayed as red line. All experiments were induced with 0.2 µmol IPTG/g CDM after one generation, which is 
displayed with the black line. The shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

No IBs were formed in the intensified as well as in the associated static experiments with an induction 

strength of 0.2 µmol IPTG/g CDM. At a feed time of 9 h (first shift) in SOD111 (Fig.8 A), 3.0 mg/g hSOD 

and 0.3 g of total hSOD were produced. In the respective static fermentation, SOD95 (Fig.8 B), 2.6 mg/g 

and 0.3 g of hSOD were generated. In the third generation of SOD94 (Fig.8 C), respective for the second 

setpoint, a similar linear increase as in SOD111 was obtained. In the third setpoint of SOD111 a strong 

increase of product was identified. In the experiment SOD97 (Fig.8 D) a comparable strong increase 

could be obtained in the last generation. 
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4.2.1.2 SOD114 

The CPPs for the first setpoint of SOD114 were 37°C and µ=0.1 h-1. The induction was set to 

0.2 µmol IPTG/g CDM at a feed time of 7 h. In Figure 9, the course of the CDM for each CPP setpoint of 

the intensified experiment SOD114 (Fig.9 A) is compared to the associated static fermentations 

SOD104, SOD103, SOD106 (Fig.8 B, C, D). 

 

Figure 9: Comparison of the course of the CDM of intensified experiment SOD114 (A) to the respective static fermentations: 
SOD104 (B), SOD103 (C), SOD106 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays 
the total CDM [g]. All experiments were induced with 0.2 µmol IPTG/g CDM after one generation, displayed as black line. The 

shifts in A and consequently the start of a new generation (B-D) are marked as dotted line. 

At the first shift of parameters (14 h), a concentration of 17.2 g/L and total CDM of 95 g was reached in 

the experiment SOD114 (Fig.9 A). In the respective static fermentation, SOD104 (Fig.9 B), values of 

17.5 g/L CDM and 97 g in total were archived at the end of the second generation (14 h). In the second 

setpoint of SOD114, the adaption to the high growth rate (µ=0.2 h-1) could be obtained in the course of 

the CDM. In SOD103 (Fig.9 C), which is respective for the second setpoint, the increase of CDM is clearly 

visible. In the last setpoint of SOD114 the curve of the CDM concentration is flattening, which is also 

observed in SOD106 (Fig.9 D), the respective static fermentation. 

The trend of the product titer of SOD114 and its associated fermentations is shown in Figure 10 A-D. 
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Figure 10: Comparison of the course of the product titer of the intensified experiment SOD114 (A) to the respective static 
fermentations: SOD104 (B), SOD103 (C), SOD106 (D). The specific product (in mg/g) is marked as a blue line and the total 
product rate (in g) is displayed as red line. All experiments were induced with 0.2 µmol IPTG/g CDM after one generation, 
which is displayed with the black line. The shifts in A and consequently the start of a new generation (B-D) are marked as 

dotted lines. 

At the first shift, at a feed time of 14 h, in SOD114 (Fig.10 A), 5.5 mg/g hSOD and 0.5 g of total hSOD 

were produced. In SOD104 (Fig.8 B), the respective static fermentation, 3.4 mg/g and 0.3 g of hSOD 

were generated. In the second setpoint, a slight increase of the CDM could be obtained in SOD114 and 

the respective static experiment SOD103 (Fig.10 C). The product titer curve showed a drastic increase 

in the third setpoint of SOD114, due to favourable CPP setpoints for product formation, which is also 

visible in the comparable static experiment SOD106 (Fig.10 D). 
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4.2.1.3 SOD117 

In SOD117, the starting CPPs were 30°C and µ=0.2 h-1. The induction was performed at feed time 3.5 h, 

with the set ratio of 0.2 µmol IPTG/g CDM. The course of the CDM of the intensified experiment as well 

as its respective static fermentations are displayed in Figure 11. 

 

Figure 11: Comparison of the course of the CDM of intensified experiment SOD117 (A) to the respective static fermentations: 
SOD102 (B), SOD107 (C), SOD99 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays 
the total CDM [g]. All experiments were induced with 0.2 µmol IPTG/g CDM after one generation, displayed as black line. The 

shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

A concentration of 19.5 g/L CDM, i.e., 109 g total CDM were reached at the first shift of parameters 

(7 h), to 30°C and µ=0.2 h-1 in SOD117 (Fig.11 A). The associated static fermentation SOD102 (Fig.11 B) 

reached a CDM concentration of 19.8 g/L, i.e., 112 g. The static experiment SOD107 (Fig.11 C), 

respective to the second setpoint of intensified experiment SOD111, and SOD99 (Fig.11 D), the 

respective experiment to the third setpoint, displayed a similar behaviour in their to the intensified 

experiment associated phase. Assimilable to experiment SOD111 (p. 31, Fig.7 A), the CDM 

concentration had a linear increase, while the total CDM showed an exponential growth. 
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The course of the product titer of SOD117 and its respective static fermentations is shown in Figure 12. 

 

Figure 12: Comparison of the course of the product titer of the intensified experiment SOD117 (A) to the respective static 
fermentations: SOD102 (B), SOD107 (C), SOD99 (D). The specific product (in mg/g) is marked as a blue line and the total 

product rate (in g) is displayed as red line. All experiments were induced with 0.2 µmol IPTG/g CDM after one generation, 
which is displayed with the black line. The shifts in A and consequently the start of a new generation (B-D) are marked as 

dotted lines. 

In SOD117, as well as in the comparable static fermentations, no IBs were formed. In SOD117 (Fig.12 

A) 3.4 mg/g hSOD and 0.4 g of total hSOD were produced at a feed time of 7 h (first shift of parameters). 

In the respective static fermentation SOD102 (Fig.11 B) the exact same amount of hSOD was generated. 

Comparable to both other experiments at an induction strength of 0.2 µmol IPTG/g CDM, the CDM in 

SOD117 increased slightly in the second setpoint. A similar increase could be obtained in the course of 

the curve of SOD107 (Fig.12 C), the respective fermentation to the second setpoint. A drastic increase 

in the total CDM was obtained in the third setpoint of SOD117, similar to the associated static 

fermentation SOD99 (Fig.12 D). 
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4.2.2 Comparison experiments of induction plane 0.5 µmol IPTG/g CDM 

4.2.2.1 SOD110 

The first experiment carried out of the induction plane 0.5 µmol IPTG/g CDM was SOD110. The CPPs at 

the start were 34°C and µ=0.15 h-1 and the induction was carried out at feed time 3.5 h and. The course 

of the CDM is shown in Figure 13. 

 

Figure 13: Comparison of the course of the CDM of intensified experiment SOD110 (A) to the respective static fermentations: 
SOD101 (B), SOD53 (C), SOD47 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays 

the total CDM [g]. All experiments were induced with 0.5 µmol IPTG/g CDM after one generation, displayed as black line. The 
shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

A concentration of 18.4 g/L and total CDM of 101 g was reached at the first shift of parameters (9 h) in 

SOD110 (Fig.13 A). At the respective static fermentation of the first set point, SOD101 (Fig.13 B), values 

of 18.3 g/L and 101 g in total were achieved. The small deviation of less than 0.1 g/L between the 

intensified and the static experiment indicates high reproducibility and small process deviations. In the 

static experiment SOD53 (Fig.13 C), respective for the second setpoint of SOD110, a similar course of 

CDM was obtained. In Figure 13 D the course of SOD47 is displayed. Its last generation is respective to 

the third setpoint of SOD110. In both, the intensified and the comparable static, the flattening of the 

CDM concentration curve was observed, still indicating the same process behaviour. 



 

 
38 

 

In Figure 14, the course of the product titer of SOD110 and the respective static fermentations is shown.  

 

Figure 14: Comparison of the course of the product titer of the intensified experiment SOD110 (A) to the respective static 
fermentations: SOD101 (B), SOD53 (C), SOD47 (D). The specific product in mg/g is marked as a blue line and the total product 
rate in g is displayed as red line. The ratio of soluble (light blue line) and insoluble hSOD (dark blue line) is displayed as sperate 
curves. All experiments were inducted with 0.5 µmol IPTG/g CDM after one generation, which is displayed with the black line. 

The shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

Values of 41.4 mg/g and a total hSOD of 4 g were reached at a feed time of 9 h (first shift) in SOD110 

(Fig.14 A). In the respective static fermentation SOD101 (Fig.14 B) the product titer was 40.2 mg/g, i.e., 

4 g in total. The high temperature of 37°C in setpoint 2 and 3, as well as in the respective static 

fermentations SOD53 and SOD47 (Fig.14 C, D) led to the formation of IBs. In the third setpoint of 

SOD110, the adaption to the new parameters set is visible. The last generation of the static 

fermentation SOD47 (Fig.14 D), which represents the last setpoint of SOD110, displays the same 

increase of the product titer as visible in SOD110 (Fig.14 A). 
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4.2.2.2 SOD112 

In SOD112, the CPPs at the start were 30°C and µ=0.1 h-1. The induction with 0.5 µmol IPTG/g CDM was 

performed at feed time 7 h The course of the CDM of the intensified experiment and its respective 

static fermentations are displayed in Figure 15. 

 

Figure 15: Comparison of the course of the CDM of intensified experiment SOD112 (A) to the respective static fermentations: 
SOD63 (B), SOD96 (C), SOD58 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays the 

total CDM [g]. All experiments were induced with 0.5 µmol IPTG/g CDM after one generation, displayed as black line. The 
shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

In SOD112 a concentration of 18.9 g/L CDM, i.e., 105 g total CDM was reached at the first shift of 

parameters (14 h), to 34°C and µ=0.1 h-1 (Fig.15 A). In the respective static fermentation SOD63 (Fig.15 

B) a concentration of 18.7 g/L, i.e., 106 g was obtained. The static experiment SOD96 (Fig.15 C), 

respective to the second setpoint of intensified experiment SOD112, showed a similar curve behaviour. 

SOD58 (Fig.15 D), the associated experiment to the third setpoint, a slight difference to SOD112 in the 

course of the CDM concentration is visible. After the second shift in SOD112, the CDM concentration 

started to decrease, due to the unfavourable set CPPs, while in the static experiment SOD58 (Fig.15 D) 

a slower flattening of the curve was obtained. 
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In Figure 16 the course of the product titer of SOD112 and the associated static fermentations is shown. 

 

Figure 16: Comparison of the course of the product titer of the intensified experiment SOD112 (A) to the respective static 
fermentations: SOD63 (B), SOD96 (C), SOD58 (D). The specific product in mg/g is marked as a blue line and the total product 

rate in g is displayed as red line. The ratio of soluble (light blue line) and insoluble hSOD (dark blue line) is displayed as sperate 
curves. All experiments were inducted with 0.5 µmol IPTG/g CDM after one generation, which is displayed with the black line. 

The shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

In Figure 16 A the lag phase of the product titer to adapt after the shifts in the intensified fermentation 

is clearly visible. Regarding the particular setpoints, values of 64.3 mg/g and a total hSOD of 7 g were 

reached at a feed time of 14 h (first shift) in SOD112 (Fig.16 A). In the respective static fermentation 

SOD63 (Fig.16 B) the product titer was 27.6 mg/g, i.e., 3 g in total. Half of the amount of product titer 

produced in SOD112 was reached in the static experiment SOD63, however the slight increase of the 

curve was obtained in both. Due to the temperature change from 30°C to 34°C in the second setpoint 

of SOD112, the product titer increased after a short adaptation phase. The steep curve was also 

observed in the associated experiment SOD96 (Fig.16 C). In SOD112, the formation of hSOD in IBs was, 

as expected, only detected in the third setpoint (Fig.16 A) due to the high temperature and the high 

growth rate. The formation of insoluble protein was also observed in the for the third setpoint 

respective static fermentation SOD58 (Fig.16 D).  
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4.2.2.3 SOD116 

The CPP setpoint in SOD116 at the start were 30°C and a growth rate of µ=0.15 h-1. It was induced with 

0.5 µmol IPTG/g CDM at a feed time of 4.5 h. In Figure 17, the intensified experiment SOD116 and the 

respective static fermentations, SOD80, SOD66, SOD105, are displayed. 

 

Figure 17: Comparison of the course of the CDM of intensified experiment SOD116 (A) to the respective static fermentations: 
SOD80 (B), SOD66 (C), SOD105 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays 

the total CDM [g]. All experiments were induced with 0.5 µmol IPTG/g CDM after one generation, displayed as black line. The 
shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

The values at the first shift of parameters (9 h) were 18.2 g/L and 101 g total CDM (Fig.17 A). In SOD80 

(Fig.17 B), the comparable static fermentation to the first setpoint, the values of CDM were 18.4 g/L 

and 102 g total CDM, i.e., fewer than a difference of 0.2 g/L was observed. In the second setpoint of 

SOD116, the course of the curve increased, due to the change of the growth rate from µ=0.15 h-1 to 

µ=0.2 h-1. The similar course of the curve was obtained in SOD66 (Fig.17 C). Due to the shift to 34°C in 

the last setpoint of SOD116, the total CDM increased while the concentration started to flatten, which 

was also observed in SOD105 (Fig17 D). 

In Figure 18 the course of the product titer in fermentation SOD116 and the associated static 
experiments is shown. 
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Figure 18: Comparison of the course of the product titer of the intensified experiment SOD116 (A) to the respective static 
fermentations: SOD80 (B), SOD66 (C), SOD105 (D). The specific product in mg/g is marked as a blue line and the total product 
rate in g is displayed as red line. The ratio of soluble (light blue line) and insoluble hSOD (dark blue line) is displayed as sperate 
curves. All experiments were inducted with 0.5 µmol IPTG/g CDM after one generation, which is displayed with the black line. 

The shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

Similar to the CDM, the course of the product titer of the intensified and the respective static 

experiments showed a similar behaviour (Figure 18). No IBs were formed during all shown 

fermentations. At the first shift of parameters (9 h), the values were 31.6 mg/g and 3 g of total hSOD, 

while in the respective static fermentation, SOD80 (Fig.18 B), values of 33.2 mg/g and 4 g of total hSOD 

were obtained. In SOD66 (Fig.18 C), respective to setpoint two of SOD116, the same slight increase of 

the curve was obtained. In the last setpoint of SOD116, the total product titer had a considerable 

increase while the hSOD concentration showed a flat curve with a steam increase at the last values. A 

similar behaviour was obtained in SOD105 (Fig.18 D), the respective static experiment to the last 

setpoint of SOD116.  
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4.2.3 Comparison experiments of induction plane 0.9 µmol IPTG/g CDM 

4.2.3.1 SOD108 

SOD108 started with a temperature of 34°C and µ=0.1 h-1 and was induced at a feed time of 7 h with 

0.9 µmol IPTG/g CDM. In Figure 19, the course of the CDM of the intensified experiment SOD108 and 

the three respective static experiments are shown. 

 

Figure 19: Comparison of the course of the CDM of intensified experiment SOD108 (A) to the respective static fermentations: 
SOD98 (B), SOD92 (C), SOD49 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays the 

total CDM [g]. All experiments were induced with 0.9 µmol IPTG/g CDM after one generation, displayed as black line. The 
shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

In SOD108 a concentration of 17.4 g/L CDM, i.e., 97 g total CDM was reached at the first shift of 

parameters (14 h), to 37°C and µ=0.1 h-1 (Fig.19 A). SOD98 (Fig.19 B) represents the first setpoint of the 

intensified experiment and therefore showed similar values, with 18.1 g/L CDM, i.e., 100 g total CDM, 

and a similar trend for this phase. After a short lag phase due to the first CPP shift to 37°C in SOD108, 

the CDM concentration decreased due to the higher temperature (Fig.19 A). The second setpoint is 

represented by the static experiment SOD92 (Fig.19 C). The growth behaviour of the third generation 

is similar to the intensified experiment at the second setpoint. In the third setpoint of SOD108, both, 

concentration and total CDM, showed a steep increase till the process endpoint. The third setpoint is 
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represented by the static experiment SOD49 (Fig.19 D). The high temperature (37°C) and target growth 

rate (µ=0.15 h-1) led to a strong increase of CDM during the entire experiment, which is also visible in 

setpoint three of the intensified experiment.  

The course of the product titer of SOD108 and the respective static fermentations are shown in Figure 

20. 

 

Figure 20: Comparison of the course of the product titer of the intensified experiment SOD108 (A) to the respective static 
fermentations: SOD98 (B), SOD92 (C), SOD49 (D). The specific product in mg/g is marked as a blue line and the total product 

rate in g is displayed as red line. The ratio of soluble (light blue line) and insoluble hSOD (dark blue line) is displayed as sperate 
curves. All experiments were inducted with 0.9 µmol IPTG/g CDM after one generation, which is displayed with the black line. 

The shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

In the first setpoint of SOD108 (Fig.20 A), the product titer increased continuously and values of 

131.5 mg/g and 13 g of total hSOD were obtained at the first shift of parameters (14 h). In the 

respective static fermentation, SOD98 (Fig.20 B), values of 120.7 mg/g and 12 g of total hSOD were 

reached. In setpoint two of SOD108 (Fig.20 A), after a lag phase due to the shift, the total hSOD 

increased, while the specific hSOD decreased. In the associated static fermentation SOD92 (Fig.20 C) 

showed a similar behaviour in both curves. In static fermentation SOD49 (Fig.20 D), respective for the 

third setpoint, the trend of the product titer (except the total hSOD) decreased in the last generation, 
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which was also observed in SOD108. IBs were formed in setpoint two and three of SOD108, which was 

also obtained in the respective static fermentations, SOD92 and SOD49 (Fig.20 C+D). 

4.2.3.2 SOD113 

The second experiment carried out at the induction strength 0.9 µmol IPTG/g CDM was SOD113. It 

started with a temperature of 34°C and µ=0.2 h-1 and was induced at a feed time of 4.5 h. The course 

of the growth behaviour of CDM of SOD113 and its respective fermentations is shown in Figure 21. 

 

Figure 21: Comparison of the course of the CDM of intensified experiment SOD113 (A) to the respective static fermentations: 
SOD100 (B), SOD60 (C), SOD79 (D). The blue line shows the course of the CDM concentration [g/L] and the red line displays 

the total CDM [g]. All experiments were induced with 0.9 µmol IPTG/g CDM after one generation, displayed as black line. The 
shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

At the first shift of parameters (7 h) of SOD113 (Fig.21 A) a concentration of 19.2 g/L and total CDM of 

108 g was reached. Similar values were achieved at 7 h feed time in the respective static fermentation 

for the first set point, SOD100 (Fig.21 B), values of 18.8 g/L and 107 g. The curve in the second setpoint 

of SOD113 showed a comparable behaviour like the one in the respective generation in the static 

fermentation SOD60 (Fig.21 C). Due to the lower growth rate in setpoint three of the intensified 

experiment, the curve of the CDM concentration reached a plateau while the total CDM still increased, 

which was also likewise observed in the last generation of the static experiment SOD79 (Fig.21 D). 
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The course of the product titer of SOD113 and the respective static experiments is shown in Figure 22. 

 

Figure 22: Comparison of the course of the product titer of the intensified experiment SOD113 (A) to the respective static 
fermentations: SOD100 (B), SOD60 (C), SOD79 (D). The specific product in mg/g is marked as a blue line and the total product 
rate in g is displayed as red line. The ratio of soluble (light blue line) and insoluble hSOD (dark blue line) is displayed as sperate 
curves. All experiments were inducted with 0.9 µmol IPTG/g CDM after one generation, which is displayed with the black line. 

The shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

In this intensified experiment, as well as in the respective static fermentations no IBs were formed. In 

setpoint one and two of SOD113 (Fig.22 A), the product titer increased continuously until the second 

shift of parameters. A value of 54.6 mg/g, i.e., 5.9 g of hSOD was produced at feed time 7 h (first shift), 

while in the associated static experiment SOD100 (Fig.22 B) 50.8 mg/g and 5 g hSOD were obtained at 

7h. The respective generations of the associated static fermentations to the first and second setpoint, 

SOD100 (Fig.22 B) and SOD60 (Fig.22 C), showed a similar increase of the product titer as in the 

intensified experiment. In setpoint three of SOD113, after a lag phase, the product titer increased while 

fluctuations were visible (Fig.22 A). In static fermentation SOD49 (Fig20 D), respective for the third 

setpoint, the course of the total product titer increased while the specific hSOD reached a plateau. 
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4.2.3.2 SOD115 

The CPPs at the beginning of the intensified experiment SOD115 were 37°C and a set growth rate of 

µ=0.2 h-1. It was performed with an induction of 0.9 µmol IPTG/g CDM at a feed time of 3.5 h. The 

course of the CDM curve of SOD115 and its respective static fermentations is shown in Figure 23.  

 

Figure 23: Comparison of the course of the CDM of intensified experiment SOD115 (A) to the respective static fermentations: 
SOD56 (B), SOD93 (C), SOD59 (D). The blue line shows the course of the CDM concentration[g/L] and the red line displays the 

total CDM [g]. All experiments were induced with 0.9 µmol IPTG/g CDM after one generation, displayed as black line. The 
shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

A concentration of 17.2 g/L CDM, i.e., 96 g total CDM was reached at the first shift of parameters (7 h) 

in SOD115 (Fig.23 A). The associated static fermentation SOD56 (Fig.23 B) reached the same CDM 

concentration and in total. The static experiment SOD93 (Fig.23 C), respective to the second setpoint 

of intensified experiment SOD115, showed similar behaviour in its to the intensified experiment 

associated phase. In the last setpoint of SOD115, the CDM concentration slightly decreased, while in 

the static experiment SOD59 (Fig.23 D), which represents the third setpoint, the concentration still 

increased. 

The course of the product titer of SOD115 and its respective static experiments is displayed in Figure 

24. 
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Figure 24: Comparison of the course of the product titer of the intensified experiment SOD115 (A) to the respective static 
fermentations: SOD56 (B), SOD93 (C), SOD59 (D). The specific product in mg/g is marked as a blue line and the total product 

rate in g is displayed as red line. The ratio of soluble (light blue line) and insoluble hSOD (dark blue line) is displayed as sperate 
curves. All experiments were inducted with 0.9 µmol IPTG/g CDM after one generation, which is displayed with the black line. 

The shifts in A and consequently the start of a new generation (B-D) are marked as dotted lines. 

In the first setpoint of SOD115 (Figure 24 A), at 7 h feed time, first shift of parameters, 50.4 mg/g, i.e., 

5 g hSOD were produced. In the respective static fermentation, SOD56 (Fig.24 B), 48.8 mg/g, i.e., 5 g 

hSOD were obtained. In the second setpoint of SOD115, the product titer increased nearly linearly. In 

SOD93 (Fig.24 C), respective to setpoint two, the curve of hSOD increased, except the value at feed 

time 13.5 h (a possible outliers). In the last setpoint of SOD115, the total product titer had a 

considerable increase while the curve of the hSOD concentration reached a plateau. A similar behaviour 

was obtained in SOD59 (Fig.24 D), the respective static experiment to the last setpoint of SOD115. The 

formation of IBs was obtained in setpoint one of SOD115 and was observable during the further 

setpoints. In the respective static experiment SOD56 the formation of IBs was detected as well.  
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4.2.4 Response to CPP settings 

Table 6 gives an overview of the analytically obtained endpoint values in the iDoE. The experiments 

were separated into the induction planes of 0.2, 0.5 and 0.9 µmol IPTG/g CDM. The values of the CDM 

(concentration and in total) and product titer (specific, in total and formed as IB) are displayed. 

Table 6: Overview of the endpoint values of the iDoE, split up in the three different induction planes: 0.2, 0.5, 
0.9 µmol IPTG/g CDM. The different setpoints (temperature, target growth rate) for each experiment and the results at the 
endpoint observed for CDM (concentration and in total) and product titer (specific, in total and IB) are displayed. 

 

With respect to the CDM (Table 6), the experimental values, obtained at each endpoint of the individual 

iDoE fermentations, decreased towards higher induction strength. In contrast, the higher the induction 

strength, the more the product titer (specific and in total) increased. The formation of IBs was observed 

in those experiments performed with induction strength of 0.5 and 0.9 µmol IPTG/g CDM and the 

temperature of 37°C. 

Table 7 (p. 50) contains the analytically obtained endpoint values for the CDM (concentration and in 

total) and product titer (specific, in total and IB) in the DoE fermentations. As well as in Table 6, the 

experiments were separated into the induction planes 0.2, 0.5, 0.9 µmol IPTG/ g CDM. 
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Table 7: Overview of the endpoint values of the DoE, split up in the three different induction planes: 0.2, 0.5, 
0.9 µmol IPTG/g CDM. The different setpoints (temperature, target growth rate) for each experiment and the results at the 
endpoint observed for CDM (concentration and in total) and product titer (specific, in total and IB) are displayed. 

 

In the static experiments of the full factorial DoE, the endpoint values of the CDM concentration and in 

total decreased towards higher induction strengths (Table 7). The product titer (specific and in total) 

showed increasing endpoint values when the experiment was performed with a higher induction 

strength. Concluding, higher values were obtained in the fermentation with an induction strength of 

0.9 µmol IPTG/g CDM than in those performed with 0.2 µmol IPTG/g CDM. The formation of IBs was 

only observed in the fermentations with an induction strength of 0.5 and 0.9 µmol IPTG/g CDM, and 

only with the set temperature of 37°C. 

These endpoint values of the iDoE and DoE fermentations in Table 6 and Table 7 could not be compared 

directly, due to the shift of parameters in the iDoE and consequently varying process conditions during 

each experiment. However, in both, iDoE and DoE, the induction strength had a similar direct influence 

on the amount of CDM and product titer at the endpoints (Table 6 and 7), i.e., the CDM decreased and 

the product titer increased with a higher concentration of the inducer. Therefore, the iDoE experiments 

with the induction strength of 0.9 µmol IPTG/g CDM displayed the lowest values of the CDM and the 

highest product titer at the endpoints, compared to the experiments in the induction plane 0.2 and 

0.5 µmol IPTG/g CDM. For the iDoE, the formation of IBs also was only observed with an induction 

strength of 0.5 and 0.9 µmol IPTG/g CDM and at 37°C. 
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4.2.5 Overview of the trends for the iDoE and DoE experiments 

As a summary overview of all trends of the iDoE and the DoE, the values of the CDM concentration and 

in total are displayed in Figure 25 (p. 52). The experiments were separated in the three different growth 

rates, 0.1 h-1, 0.15 h-1 and 0.2 h-1. The course of the CDM concentration and in total, of all intensified 

experiments are shown in panel A and B. Panel C-H show the respective static experiments of the full 

factorial DoE, separated in the three growth rates. 
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Figure 25: Overview of the trends of CDM concentration and in total of the iDoE (A-B) and the DoE (C-H), subdivided in the 
three growth rates, 0.1 h-1, 0.15 h-1, 0.2 h-1. The induction in C-H is marked as black line. Each fermentation represented is 

displayed in a different colour. 
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In Figure 26 (p. 54) the course of the specific product titer and the total product, of all intensified 

experiments of the iDoE are shown in panel A and B. Panel C-H show the respective static experiments 

of the full factorial DoE, separated into the different growth rates. 
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Figure 26: Overview of the trends of specific product titer and in total (soluble and insoluble fraction) of the iDoE (A-B) and 
the DoE (C-H), subdivided in the three growth rates, 0.1 h-1, 0.15 h-1, 0.2 h-1. The induction in C-H is marked as black line. Each 

fermentation represented is displayed in a different colour. 
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By comparing the trends of the CDM and the product for the nine intensified fermentations to the static 

experiments in detail, no significant difference in response to the CPP setting was obtained (Section 

4.2.). All the intensified fermentations display a similar trend for the CDM as well as the recombinant 

product, compared to the respective phase in the static fermentations. After a lag phase, i.e., a short 

adaptation phase after the shift of parameters, the trend of the current CPP setpoint adapted to the 

trend observed in the associated static fermentation. This lag phase is clearly visible, for the product 

titer. Regarding the response to the CPP settings of the CDM and the product, both, iDoE and DoE 

fermentations, had the same pattern in increasing and decreasing endpoint values due to the three 

different induction concentrations (0.2, 0.5, 0.9 µmol IPTG/g CDM). The endpoint values could not be 

compared directly due to the changing setpoints in the iDoE. Nevertheless, the trend of the CDM and 

product in the intensified experiments was highly similar to the respective phase in the static 

fermentation. 

Due to the similar behaviour of the cells ins each respective setpoint, a memory effect of the cells due 

to the intra-experimental CPP shifts and therefore a limitation of the applicability of this iDoE approach 

was excluded.  

Subsequently, to investigate the possibility of using iDoE to generate process models to predict static 

experiments, a hybrid model was developed by utilizing the generated iDoE data. This iDoE hybrid 

model should be able to predict the CDM concentration of all static fed-batch fermentations, which 

would reduce the number of required experiments for model building by two thirds (>66 %). Such a 

high reduction of experiments and therefore raw materials, time and money would be highly beneficial 

from an economical point of view. As a reference for the performance of this iDoE hybrid model, a 

previously developed hybrid model, based on the full factorial static DoE was used. 
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4.3 iDoE hybrid model 

For the development of the iDoE hybrid model, two data sets were assessed. The data set used for 

training the iDoE hybrid model consisted of the nine iDoE experiments (iDoE9). The historical static data 

set contained 31 static fed-batch fermentations, received from the full factorial DoE (DoE31). It included 

31 experiments which covered all 27 CPPs, the remaining four were two duplicates and one triplicate 

experiment. This data set was used for external validation (test set). Both data sets consisted of the 

following process variables for modelling: the analytical CDM concentration (g/L) and the online 

available process variables, e.g., accumulated feed and base (g), accumulated inducer (mg) stirrer speed 

(rpm), inlet air (L/min) and temperature (°C). 

The hybrid model was developed to accurately predict the CDM concentration during the entire process 

for all static DoE fermentations of the historical data set. The earlier derived time-resolved hybrid 

model, trained on the static DoE experiments, was developed to overcome the limitation of only 

endpoint predictions, ignoring the majority of the process including process deviations, as it is the state 

of the art in upstream process characterization. 

The within this work developed iDoE hybrid model incorporated the process dynamics due to the intra-

experimental CPP shifts and thereby also required fewer experiments to characterize the same space 

was compared to the full factorial hybrid model trained on 3 times the experiments performed in a 

classical statical way. Figure 27 displays an overview of the bootstrap-aggregated iDoE hybrid model, 

predicting the CDM, i.e., the nine intensified experiments (training data, Fig.27 A+B), as well as all 31 

static experiments (test data, Fig.27 C+D), are displayed. In the scatter plots, the analytically obtained 

(measured) values versus the predicted values are shown and the SD of each prediction is indicated. 

For the time-resolved plots, the analytical values versus the respective prediction from the iDoE hybrid 

model and the PI for each fermentation are illustrated. Each fermentation is displayed in a different 

colour. 
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Figure 27: Overview of the results of the hybrid model for the CDM evolution. Each fermentation is displayed in a different 
color. Panel A and B show the results for the training data set illustrated as scatter and a time-resolved plot. In panel C and D 

the modelling results for the test dataset (static experiments) is given as scatter and time-resolved plot. In the scatter plots 
the respective SD is shown and the PI for each experiment is given in the time-resolved plots. 

The bootstrap-aggregated iDoE hybrid model showed an outstanding performance for predicting the 

CDM. Tight distribution of the PI, due to small SDs, indicates a small risk of a model misprediction, as 

displayed for the training data (Fig.27 A) as well as in the test data (Fig.27 C). With respect to the training 

data, the model struggled with the prediction of SOD108, clearly illustrated in Figure 27 B and indicated 

by the broad PI.  

4.3.1 Model performance on the training data 

A more detailed illustration of the training/validation data set of the iDoE hybrid model is given in Figure 

28. Figure 28 A-I shows the measured values at each time point of the intensified fermentations and 
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the respective prediction of the model. For each prediction, the PI and the calculated RMSE value for 

each individual fed-batch fermentation are displayed. 

 

Figure 28: Training data for the hybrid model of all intensified fermentations: SOD108 (A) – SOD117 (I). The time-resolved 
development of the measured values and the modelled CDM concentration are displayed. The RMSE value and the PI for each 
model are shown in the respective panel. The induction is marked as a continuous black line, while the shift of parameters is 

labeled as dashed lines. 

By evaluating the performance of the model on the training data, i.e., for each individual intensified 

fed-batch fermentation, SOD111 (Fig.28 C) displayed the best result: an RMSE value of 0.44 g/L, and a 

small PI. Considering that the intensified experiment SOD111 had a nearly linear trend of the analytically 

measured values, it was not astonishing that it was rather easy for the hybrid model to predict the 

respective values. However, in respect to the other experiments, the adaption of the analytical values 

of the CDM to the parameter shifts and the hereby increased process dynamic are clearly observable, 

e.g., in SOD108 (Fig.28 A) and SOD114 (Fig.28 F). In Figure 28 A-I the model predicted the CDM trends 

highly accurate and with small PIs. Except for SOD108 (Fig.28A), which showed a broad PI. However, 

the RMSE of 0.81 g/L is on average similar to the others. 
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Summarising, the training data set is accurately predicted by the model, displaying only slight deviations 

from the measured values. The calculated f R2, RMSE and the error are displayed in Table 8 (p. 63/64). 

The generated iDoE hybrid model was applied to the test set DoE31 to evaluate the performance on 

predicting unknown data. 

4.3.2 Model performance on the test data 

The results of the iDoE hybrid model applied to new data are displayed in the following Figures (Fig.29-

31). The different static fermentations were separated into the three growth rates 0.1 h-1 (Fig.29), 

0.15 h-1 (Fig.30) and 0.2 h-1 (Fig.31). For each experiment, the measured analytical values, the prediction 

of the iDoE hybrid model as well as the PI and the RMSE are presented in a time-resolved plot. 
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Figure 29: Results of the hybrid model applied to the test set DoE31. All experiments of the test set with a growth rate of 0.1 h-

1 are displayed: SOD94 (A), SOD106 (B), SOD104 (C), SOD63 (D), SOD68 (replication of SOD63) (E), SOD96 (F), SOD47 (G), 
SOD79 (H), SOD98 (I), SOD42 (J), SOD91 (replication of SOD42) (K), SOD44 (replication of SOD42) (L). The time-resolved 

development of the measured values and the modelled CDM concentration are displayed. The RMSE value, the temperature 
(°C), the induction strength (in µmol/g) and the PI for each model are shown in the respective plot. The induction is marked as 

a continuous black line, while the dashed lines label the start of a new generation.  

Regarding the performance of the iDoE hybrid model for each individual fed-batch fermentation of the 

test set with a growth rate 0.1 h-1, SOD94 (Fig.29 A), SOD104 (Fig.29 C) and SOD106 (Fig.29 B) showed 

the best results, displaying an RMSE value of 0.61 g/L, 0.56 g/L and 0.46 g/L and a small PI. For 

fermentation SOD47 (Fig.29 G) and SOD91 (Fig.29 K) the model predictions displayed a slight deviation 

from the analytical values during the end of the process, which is reflected in the RMSE values of 
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1.78 g/L and 2.08 g/L. A broad PI was obtained in SOD79 (Fig.29  H) and SOD98 (Fig.29 I) in the 

respectively last generation. 

 

Figure 30: Results of the hybrid model applied to the test set DoE31. All experiments of the test set with a growth rate of 
0.15 h-1.are displayed: SOD99 (A), SOD97 (B), SOD95 (C), SOD80 (D), SOD101 (E), SOD53 (F), SOD60 (G), SOD93 (H), SOD49 (I). 
The time-resolved development of the measured values and the modelled CDM concentration are displayed. The RMSE value, 

the temperature (°C), the induction strength (in µmol/g) and the PI for each model are shown in the respective plot. The 
induction is marked as a continuous black line, while the dashed lines label the start of a new generation.  

Predicting the static experiments with the growth rate 0.15 h-1 the model performed the best in SOD95 

(Fig.30 C) and SOD97 (Fig.30 B). RMSE values of 0.80 g/L and 0.83 g/L are displayed as well as small PIs. 

For fermentation SOD60 (Fig.30 G), the model struggled with the prediction of the values, resulting in 

a high RMSE value of 2.07 g/L. 
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Figure 31: Results of the hybrid model applied to the test set DoE31. All experiments of the test set with a growth rate of 0.2 h-

1.are displayed: SOD102 (A), SOD103 (B), SOD107 (C), SOD61 (D), SOD66 (replication of SOD61) (E), SOD105 (F), SOD58 (G), 
SOD59 (H), SOD100 (I), SOD56 (J). The time-resolved development of the measured values and the modelled CDM 

concentration are displayed. The RMSE value, the temperature (°C), the induction strength (in µmol/g) and the PI for each 
model are shown in the respective plot. The induction is marked as a continuous black line, while the dashed lines label the 

start of a new generation. 

Regarding the performance of the iDoE hybrid model for the experiments of the test set with growth 

rate 0.2 h-1, the best results were obtained in SOD61 (Fig.31 D) and SOD66 (Fig.31 E). RMSE values of 

0.46 g/L and 0.60 g/L are displayed. The model struggled in the prediction of fermentation SOD56 and 

SOD100 (Fig.31 J+I) in the last generation. A high RMSE value of 3.20 g/L was obtained in SOD100. 

The calculated results for the RMSE, R2 and the error of each fed-batch fermentation of the entire test 

set are displayed in Table 8 (p. 63/64). 
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Table 8 summarizes the calculated values of the performance criteria, which indicate the quality and 

accuracy of the developed bootstrap-aggregated iDoE hybrid model. A 10% error limit was set as a 

threshold value for good model performance. Herein, the fermentations marked green were predicted 

with an error below 10%. The fed-batch fermentations marked red displayed a calculated error which 

exceeded the threshold. 

Table 8: Calculated results of the hybrid model for the training and test partition. For each fermentation, the respective 
RMSE, R2 and the error of the model are indicated. The green boxes indicate the fed-batch fermentations with a good model 

performance. The red boxes mark the fed-batch fermentations were the predicted values exceed the threshold. 

Train/Val data 
RMSE/Error total 0.74 g/L 3.44%   

Fermentation number RMSE [g/L] Error [%] R2 
SOD108 0.81 4.68 0.96 
SOD110 0.55 2.43 0.99 
SOD111 0.44 1.26 0.99 
SOD112 0.55 2.5 0.99 
SOD113 0.66 3.05 0.99 
SOD114 0.73 3.56 0.99 
SOD115 0.67 3.3 0.98 
SOD116 1.04 4.78 0.98 
SOD117 1.22 5.39 0.99 

Test data 
RMSE/Error total 1.27 g/L 5.31%   
Experiments with µ=0.1 RMSE [g/L] Error [%] R2 

SOD42 1.18 4.13 0.91 
SOD44 1.57 6.43 0.91 
SOD47 1.78 9.65 0.97 
SOD63 0.81 3.98 0.99 
SOD68 1.14 5.77 0.99 
SOD79 1.08 5.85 0.99 
SOD91 2.08 10.93 0.86 
SOD94 0.61 2.77 0.99 
SOD96 1.10 3.88 0.99 
SOD98 0.69 3.27 0.98 
SOD104 0.56 2.99 0.99 
SOD106 0.46 2.31 0.99 
Experiments with µ=0.15 RMSE [g/L] Error [%] R2 
SOD49 1.40 7.78 0.95 
SOD53 1.26 7.94 0.99 
SOD60 2.07 11.16 0.98 
SOD80 1.23 4.62 0.99 
SOD93 1.46 4.89 0.98 
SOD95 0.80 2.66 0.99 
SOD97 0.83 3.06 0.99 
SOD99 0.89 3.55 0.99 
SOD101 1.27 3.98 0.99 
Experiments with µ=0.2 RMSE [g/L] Error [%] R2 

SOD56 1.97 6.74 0.96 
SOD58 1.25 4.34 0.99 
SOD59 1.70 6.32 0.97 
SOD61 0.46 1.62 0.99 
SOD66 0.60 3.27 0.99 
SOD100 3.20 7.58 0.92 
SOD102 1.86 7.38 0.99 
SOD103 1.17 4.77 0.99 
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SOD105 1.73 5.33 0.99 
SOD107 1.24 5.81 0.99 

 

Except for two fed-batch fermentations, all model predictions displayed results below the threshold 

SOD60 and SOD91 slightly exceed the threshold value of 10%, with errors of 11.16% and 10.93%. 

To sum up, Figure 29-31 show that the model can accurately predict the trends of the measured 

analytical values of the static test set. However, the range of the PI widened with an increasing feed 

time. Nevertheless, the calculated performance criteria (RMSE, percentage error and R2) indicate good 

quality and accuracy. 

4.3.3 Performance comparison of the iDoE and DoE hybrid model 

In Table 9, the results obtained with the iDoE hybrid model trained with the iDoE data set (iDoE9) are 

compared to the results of the hybrid model trained with the full factorial static DoE data set, developed 

by Bayer et al. (2020). The performance criteria, namely, the RMSE value, the Error and R2 are shown. 

Table 9: Comparison of the results of the hybrid model trained with the iDoE, e.g., the data of nine experiments, and the 
hybrid model characterized with 31 static fermentations of the DoE. The values for the RMSE, the Error and R2 are displayed. 

 

Considering the iDoE hybrid model trained with nine intensified fermentations, nearly identical results 

to those received with the static DoE hybrid model, trained with 31 experiments, were obtained. The 

RMSE value differs in 0.17 g/L and for the error, a difference of 1.07% was obtained. With values of 

0.97 and 0.98 of R2, both models showed high quality of matching the analytical results. This comparison 

shows that the iDoE hybrid model performs as reliable and accurate as the hybrid model trained with 

the full-factorial static DoE, i.e., the CDM can be predicted with a total error of 5.31% (RMSE 1.27 g/L). 

This indicates that the highly beneficial iDoE concept for an accelerated process characterization in 

upstream processing, to reduce this time-consuming task, is possible by developing a hybrid model, 

based on fewer intensified experiments. 
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5 CONCLUSION 
Since design space characterization is time-consuming and expensive, an innovative approach to 

accelerate this process task was established. The overall aim of this study was to set up an iDoE for 

E. coli fed-batch fermentations (HMS174), expressing recombinant hSOD and investigate the process 

dynamic and behaviour compared to the static experiments and potential limitations. 

A design space with three CPPs, each at three levels, i.e., 27 CPP combination setpoints, was 

characterized by utilizing static fed-batch fermentations in an earlier study and a hybrid model 

predicting the CDM concentration of these processes was developed. Based on this design space, an 

iDoE, consisting of nine experiments with two CPP shifts during one fermentation was developed and 

the usability of this approach for accelerated process characterization investigated. 

The first consideration was the importance of the direction and the order of the intra-experimental CPP 

shifts. Therefore, the order of the CPP combination setpoints of the first iDoE experiment was contrary 

performed in a new experiment. Based on the growth behaviour of the CDM and the product titer, it 

has been shown that the cells rapidly adapt to the changing parameters. Despite the expected slightly 

different trends of the CDM and the product, due to the different order of the performed CPP setpoints, 

the course of the curve of each respective setpoint were highly comparable. As a result, it was assumed 

that the order of the shift of parameters does not affect the outcome and the iDoE can be executed as 

planned. 

At the end of each executed intensified experiment, the off-line trend and the cell physiology were 

compared with the associated static experiment of each CPP setpoint. Especially for the product titer 

trend, the shift of parameters is clearly visible, by means of a short adaption phase due to the new 

setpoint. Overall, both, the CDM as well as the product, showed comparable results in the trend to each 

respective static fermentation. Therefore, these investigations show that, using this particular setup, a 

memory effect of the cells can be excluded, due to the adaptability of the iDoE experiments to the 

different CPP setpoints.  

The iDoE hybrid model with the Novasign hybrid modelling toolbox was developed to predict the CDM 

concentration of the test set. It enabled precise modeling of the CDM concentration for the static fed-

batch fermentations in a time-resolved manner. This iDoE hybrid model performed with an overall error 

of 5.31% (RMSE 1.27 g/L) for predicting the CDM concentration of the test set. This demonstrates that 

a hybrid model, based on iDoE, is able to reliably and accurately predict the outcome of static fed-batch 

fermentations.  
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In comparison, an earlier derived hybrid model, based on the full factorial static DoE, performed with 

an overall error of 4.24% (RMSE 1.10 g/L) for predicting the CDM concentration. Even though the error 

in the iDoE hybrid model slightly increased, comparable model performance was maintained and only 

nine experiments were required to completely characterize the same design space as for the static 

hybrid model. This demonstrates the potential timesaving by utilizing iDoE and highlights this highly 

beneficial concept for improved and accelerated upstream process characterization. 

In the ongoing investigations, not only the accurate prediction of CDM concentration but also the 

additional prediction of the product titer by this iDoE hybrid model should be implemented. Thereby, 

both values could be modeled with this time- and cost-saving iDoE hybrid model in the future. 

To potentially gain superior results in possible future iDoE studies, other inputs to train the model or a 

different model structure should be considered, e.g., one opportunity would be to exclude the base as 

an input, which would lead to three CPPs as remaining inputs. Using only these three easily controllable 

CPPs, namely, induction strength, glucose feeding rate and temperature, as inputs to the hybrid model, 

the possibility to set up a controllable model is enabled. This allows not only accurate predictions but 

also to interfere with the process to generate a stable quality output with repetitive accuracy, e.g., 

model predictive control (MPC), in future applications. 
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6 ABBREVATIONS 
ddH2O  double-distilled water 

CDM  Cell Dry Mass 

cGMP  Current Good Manufacturing Practice 

CHO  Chinese Hamster Ovary 

CPPs  Critical Process Parameters 

CQAs  Critical Quality Attributes 

DoE  Design of Experiment 

DO  Dissolved Oxygen 

FDA  U.S. Food and Drug Administration 

hSOD  recombinant human superoxide dismutase 

IB  Inclusion bodies 

iDoE  intensified Design of Experiments 

IPTG  Isopropyl-β-D-thiogalactopyranoside 

LPS  Lipopolysaccharides 

MLR  Multiple linear regression 

MPC  Model predictive control 

OD600  Optical density measured at a wavelength of 600 nm 

PBS  Phosphate-buffered saline 

PI  Prediction interval 

POI  Protein of Interest 

QbD  Quality by Design  

RMSE  Root mean square error 

RSM  Response surface model 

RT  Room temperature 
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SCADA  Supervisory control and data acquisition 

SD  Standard deviation 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Tris  Tris(hydroxymethyl)aminomethane 

WCB  Working cell bank 
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10 APPENDIX 

10.1 Solutions for fed-batch fermentations 

10.1.1 Trace element solution  

The trace element solution was prepared in 5 N HCl. 

Table 10: Composition of Trace element solution 

Component Amount 

FeSO4*7H2O 40 g/L 

MnSO4*H2O 10 g/L 

AlCl3*6H2O 10 g/L 

CoCl2 4 g/L 

ZnSO4*7H2O 2 g/L 

Na2MoO4*2H2O 2 g/L 

CuCl2*2H2O 1 g/L 

H3BO3 0.5 g/L 

10.1.2 IPTG solution 

For the IPTG solutions, the different amounts of IPTG (20 mg, 50 mg, 90 mg) were dissolved in 300 g 

double-distilled water (ddH2O) and sterile filtered afterward.  

10.1.3 Sodium chloride solution 0.9% 

An amount of 9 g NaCl were dissolved in 1 L ddH2O. After autoclaving, the solution was stored at RT. 

10.1.4 PBS buffer 

The following components were solved in ddH2O and filled up to 1 L.  

Table 11: Components for PBS buffer. 

Component Amount 

NaCl 8 g 
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KCl 0.2 g 

Na2HPO4 1.42 g 

KH2PO4 0.27 g 

 
10.2 Solutions for SDS Page 

10.2.1 Solutions for cell disruption for SDS Page 

Table 12:  Solutions and their composition for cell disruption 

Component Composition 

Tris/HCl 100mM, pH 8.2 1.2114 g/100 mL Tris was solved in ddH2O and 

adjusted with 2 M HCl to pH 8.2 and filled up with 

ddH2O to 100 mL 

Tris/HCl 30 mM, pH 8.2 To 30 mL of 100 mM Tris/HCl 70 mL ddH2O were 

added. 

EDTA 0.5 M, pH 8.2 7.44 g EDTA were solved in ddH2O. The pH of 8.2 

is adjusted with 5 M KOH and was filled up to 

100 mL. 

Lysozyme 2 mg/mL With ddH2O the stock solution was diluted to a 

concentration of 2 mg/mL. Aliquots were stored 

at -20°C. 

Benzonase 50 Units/mL solved in Benzonase buffer. 

Triton X-100 6% Triton X-100 stock solution was diluted to a 6% 

solution with Tris/HCl 20 mM, pH 8.2. 

NuPAGETM Sample Reducing Agent (0.5 M DTT) Ready to use, stored at 4°C. 

 
10.2.1 Cell disruption buffer 

Table 13: Components for cell disruption buffer for a total volume of 3 mL. 

Component Amount 
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Tris/HCl 30 mM 2.7 mL 

EDTA 150 µL 

MgCl2x6H2O 150 µL 

Reducing Agent 6 µL 

 
10.2.2 IB dissolving buffer 

Table 14: Components for IB dissolving buffer. 

Component Composition 

Urea solution 8 M 48.05 g Urea and 63.98 g Tris/HCl 100 mM mixed 

together and stored in 5 mL aliquots at -20°C. 

Reducing Agent 28 µL per mL Urea solution 

 

10.2.3 Components for SDS gel electrophoresis 

Table 15: Stock solutions and reagents for SDS gel electrophoresis. 

Component Composition 

NuPAGETM Sample Reducing Agent (10X) Ready to use, stored at 4°C. 

NuPAGETM LDS Sample Buffer (4X) Ready to use, stored at 4°C. 

InvitrogenTM Mark12TM Unstained Standard Ready to use, stored at 4°C. 

NuPAGETM 4-12% BisTris Protein Gels Ready to use, stored at 4°C. 

NuPAGETM MES SDS Running Buffer (20X) For one chamber 800 mL buffer were used. The 

running buffer can be reused in the lower 

chamber. For the upper chamber 10 mL MES 

(20X) running buffer and 190 mL ddH2O were 

combined (dilution in a ration 1:20).  

Fixing solution 500 mL ethanol, 100 mL acetic acid were filled up 

to 1000 mL ddH2O. 
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Staining solution 1.16 g Coomassie Brilliant Blue R250, 250 mL 

ethanol and 80 mL acetic acid were filled up to 

1000 mL with ddH2O. 

Destaining solution 250 mL ethanol, 80 mL acetic acid were filled up 

to 1000 mL ddH2O. 

 

10.3.1 Protein ladder for SDS Page 

To determine the protein weight on a gel, the protein ladder Mark12TM unstained standard was used. 

7 µL were loaded onto the gel.  

 

Figure 32: Mark12TM unstained standard to determine the amount of protein weight on SDS Page. (Illustration taken from 
https://www.thermofisher.com/order/catalog/product/LC5677#/LC5677; 07.11.2019) 

10.4 Reagents for ELISA 

Table 16: Reagents used for cell disruption for ELISA. 

Component Composition 

Tris/HCl 20 mM, pH 8.2 1.2114 g Tris were filled up to 500 mL ddH2O and 

a pH of 8.2 is adjusted with 2 M HCl. 

EDTA 0.5 M, pH 8.2 7.44 g EDTA were solved in ddH2O. The pH of 8.2 

is adjusted with 5 M KOH and is filled up to 

100 mL. 

NuPAGETM Sample Reducing Agent (0.5 M DTT) Ready to use, stored at 4°C. 
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Lysozyme 10 mg/mL With ddH2O the stock solution was diluted to a 

concentration of 10 mg/mL. Aliquots are stored 

at -20°C. 

Triton X-100 0.5% Triton X-100 stock solution was diluted to a 0.5% 

solution with Tris/HCl 20 mM, pH 8.2. 

Cu/Zn solution 0.2 M CuCl2 (1.7048 g) and 0.02 M ZnSO4 

(0.2875 g) were filled up with ddH2O to 50 mL. 

 
10.4.1 Cell disruption buffer for ELISA 

Table 17: Amount of components used for ELISA cell disruption buffer. Calculation for 23 samples. 

Component Amount 

Tris/HCl 20 mM, pH 8.2 4.5 mL 

EDTA  250 µL 

Cu/Zn solution 125 µL 

Reducing Agent 50 µL 

 
10.4.2 Coating buffer for ELISA 

0.1 N NaHCO3 buffer, pH 9.6-9.8. The components were solved in ddH2O. 

Table 18: Amount of components used for 200 mL ELISA coating buffer. Stable for one week stored at 20°C. 

Component Amount 

NaHCO3 8.4 g/L à 1.68 g/200 mL 

Na2CO3 4.2 g/L à 0.84 g/200 mL 

 
10.4.3 Washing buffer for ELISA 

PBS buffer, pH 7.2-7.4. The components were solved in ddH2O. 

Table 19: Amount of components used for 5 L ELISA washing buffer. Stable for one week stored at 20°C. 

Na2HPO4*2H2O 1.15 g/L; 5.75 g/5 L 
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(or Na2HPO4) (4.6 g/5 L) 

KH2PO4 0.2 g/L; 1 g/5 L 

KCl 0.2 g/L; 1 g/5 L 

NaCl 8 g/L; 40 g/5 L 

Tween 20 1 mL/L; 5 mL/5 L 

 
10.4.4 Dilution buffer for ELISA 

1% of Bovine Serum Albumin was filled up with washing buffer. For 4 ELISA plates, 500 mL of dilution 

buffer were prepared. Stable for one day at 20°C. 

10.4.5 Staining solution for ELISA 

P-Nitrophenyl phosphate (PNPP) solution with a concentration of 100 mg/mL were stored in aliquots 

at -20°C. For one ELISA plate 150 µL were added to 11 mL coating buffer.  

10.4.6 Antibodies used for ELISA 

Table 20: Antibodies and standard used for ELISA. 

Primary caption antibody 

SOD PA225/C2H2; Lot.: 280105 

Dilution 1:250 in coating buffer 

Enzyme-labeled antibody 

SOD A11H4 x AP; Lot.: 180511 

Dilution 1:1800 in dilution buffer 

IAM SOD standard 1.14 µg/mL Dilution 1:11.4 in dilution buffer 

 

 

 

 


