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Summary  
Climate change is expected to impact the future of biodiversity, especially in mountain areas 
where plant growth is strongly limited by low temperature. Indeed, long-term monitoring 
has documented changes in alpine species composition and diversity on mountain summits 
in Austria and elsewhere. Understanding how and why plants respond to environmental 
changes will help to predict future changes and potentially design measures to protect 
biodiversity.   
 
To test the potential to explain changes in species abundance,  we measured functional 
traits related to temperature, water, and nutrients for 29 species from Hochschwab, Styria. 
We explored which functional traits are related to Landolt environmental indicator values 
(EIVs), calculated community-weighted mean (CWM) for traits and EIVs per plot and tested 
if these changed. We used data from a long-term monitoring study of changes in community 
composition by GLORIA, obtained from the same location between 2001 and 2015, to test if 
changes in the abundance of species can be explained by either EIVs or functional traits. 
 
While 20 species increased, and 24 species decreased (out of a total of 140 species) in 
abundance by > 40%, we found that the overall plant community did not change. The CWM 
of the functional traits also did not change significantly. This is likely because the community 
is strongly dominated by one species, Carex firma, which did not change much in 
abundance. 
 
Testing the change in abundance of 29 species with trait data we found that the change in 
abundance was significantly correlated with plant height, leaf shape and also with the 
second principal component of a principal component analysis that included all traits. This 
study thereby shows the potential to use functional traits related to environmental 
adaptations to explain and understand the impact of climate change on community 
composition.  
  



 

 
 

 

Table of Contents 

1. Introduction ..............................................................................................................1 

1.1 Climate change in the Alps ........................................................................................... 1 

1.2 Functional traits in the alpine environment .................................................................. 2 
Frost tolerance................................................................................................................................................ 3 
Drought resistance ......................................................................................................................................... 3 
Soil chemistry and nutrient availability .......................................................................................................... 4 

1.3 Ecological indicator values ........................................................................................... 5 

1.4 Objectives.................................................................................................................... 6 

2. Methods and materials .............................................................................................7 

2.1 Study area and sampling .............................................................................................. 7 

2.2 Trait measurements ..................................................................................................... 8 
Weight loss curves ........................................................................................................................................10 
Osmotic concentration .................................................................................................................................11 
Stem specific density ....................................................................................................................................12 
Nutrient content ...........................................................................................................................................12 
Frost tolerance..............................................................................................................................................12 

2.3 Data analysis ............................................................................................................. 13 
Ecological indicator values ...........................................................................................................................14 
Community weighted means .......................................................................................................................14 
Transformations ...........................................................................................................................................15 
Trait correlations ..........................................................................................................................................15 
Ordination methods .....................................................................................................................................15 
Linear models ...............................................................................................................................................16 

3. Results .................................................................................................................... 17 

3.1 Variation in the EIVs Landolt values ............................................................................ 17 

3.2 Variation of the species-wise data .............................................................................. 18 

3.3 Trait correlations ....................................................................................................... 21 

3.4 Changes in species abundance .................................................................................... 22 

3.5 Changes in species attributes ..................................................................................... 23 

3.6 Modelling predictors for change in species abundance ................................................ 25 

4. Discussion ............................................................................................................... 28 
Functional traits ............................................................................................................................................28 
Ecological indicator values ...........................................................................................................................29 

4.2 Coordination and correlation of traits ......................................................................... 29 

4.3 Changes in species attributes ..................................................................................... 31 
Changes in species abundance .....................................................................................................................31 
Modelling of species attributes ....................................................................................................................31 

4.4 Reflections and outlook ............................................................................................. 33 

5 Acknowledgements ................................................................................................. 35 

Literature cited ................................................................................................................. I 



 

 
 

 

Appendix ....................................................................................................................... VII 
 
 



 

 
 

1 

1. Introduction  
1.1 Climate change in the Alps  

Climate change is predicted to have massive impacts on the future of biodiversity, especially 
in mountain areas (Bellard, et al., 2012; IPCC, 2019). Climate warming in high mountain 

areas has outpaced the global warming rate, with a likely range of 0.3  0.2 ℃ per decade, 

vs. the global rate of 0.2  0.1 ℃ (IPCC 2018). Local warming rates also differ between 
season, with the warming being more profound in summer and spring in the European Alps 
(Auer et al., 2007; Ceppi et al., 2012, as cited in IPCC, 2019).  
 
The alpine environments of Europe, which are considered to be the zone above the tree 
line- until the permanent snow line, are hotspots of biodiversity (Körner, 2021; Nagy, et al., 
2003). They contain 20% of all native European vascular plant species and 17% of those 
species appear in the Alps, of which 10% of those species and subspecies are endemic. 
 
Thuiller, et al., (2005) projected distributions for 1350 European plant species under 
different climate scenarios, and found that many European species could be threatend in 
the future. They used climate projections from the IPCC and a niche-based framework to 
project species extinction risk. The most severe climate scenario is called the A1 scenario, 
which describes rapid economical and population growth and a CO2 concentration of 800 
ppm in 2080. With this scenario, 22% of all the species used in their research become 
critically endangered. Specifically for the Alps, Dullinger et al., (2020) modeled plant 
diversity changes related to land-use and climate change, and found that alpine species are 
predicted to lose species based on climatic, and not land-use scenarios. However, models 
can only tell us so much, which is why it is important to monitor the actual changes in 
species abundance.  
 
To understand and assess the extent of climate-driven changes, the “Global Observation 
Research Initiative in Alpine environments” (GLORIA, https://gloria.ac.at) operates a world-
wide long-term monitoring network with permanent plots in various alpine environments. 
The aim is to provide standardized and quantitative data on the species richness, 
composition, and abundance, to quantify the changes in species and vegetation patterns in 
various permanent plots that are resurveyed every five to ten years. In 2001, a long-term 
study with permanent plots was set up by the GLORIA network on the Hochschwab 
mountain range in Styria, Austria. These plots were re-surveyed in 2008 and 2015, and this 
is also the area where our study takes place.  
 
According to the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 
the composition and abundance of species has changed in recent decades in high mountain 
ecosystems (IPCC 2019). Steinbauer, et al. (2018) found that species richness had increased 
(87% over 145 years) on mountain summits in Europe, which has accelerated in the most 
recent years in parallel with increasing temperature. Due to the increase in temperature at 
high elevations, there has been a general decline in snow and glaciers. This allows previously 
absent species to grow at higher elevations (H. Pauli, et al. 2012). As a consequence, there 
may be a high risk that many cold-adapted species, including endemics, will face local 

https://gloria.ac.at/
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extinctions, particularly if stress-tolerant, slow growing alpine species are outcompeted by 
plants that benefit from the higher temperatures.  
 
By having a model that can predict or explain the species abundance, we aim to better 
understand why certain species become more common, while others less so. There are tools 
for predicting and explaining the change in species abundance. One of the most 
indispensable tools to predict responses of plants to climate change is the use of functional 
traits (Lavorel and Garniers 2002). They are increasingly applied in plant ecology to 
investigate the relationships between traits and environment. Another tool is the use of 
Ecological indicator values (EIVs).  
 

1.2 Functional traits in the alpine environment  
Plants that occupy high alpine and nival zones are considered as living in an extreme 
environment (Lütz 2012). These plants have developed a range of adaptation strategies that 
allow them to survive the low temperatures, long snow cover and frequent frost risk. These 
adaption strategies are reflected by functional traits. As described in Violle, et al., (2007), a 
functional trait is defined as “any morphological, physiological or phenological feature 
measurable at the individual level, from the cell to the whole plant”. Various traits are 
important for determining whether or not a species will survive in a certain environment. As 
Hoover, et al. (2014) explains: “knowledge of the traits that influence dominant species 
responses to and recovery from climate extremes will be key for predicting ecosystem 
dynamics and function in a future with more extreme events’’.  
 
Functional traits can be used to demonstrate stress resistance mechanisms of plants and 
may thus explain effects of climate change. For instance, leaf area and vegetation height are 
traits that are related to the the timing of snowmelt, with taller plant species being more 
likely to establish in inside snowpatches (Venn, et al. 2011). Functional traits can be devided 
into ‘soft’ and ‘hard’ traits. Hard traits are linked to the functioning of a plant, like 
physiological traits, and capture a precise function of the plant. These traits are often hard 
to measure and expensive, which is why soft traits are often measured as proxies or 
surrogates (Violle, et al. 2007).   
 
Common soft traits are leaf area (LA), specific leaf area (SLA), leaf dry matter content 
(LDMC) and adult plant height. The SLA is a ratio between the leaf area and the dry mass, 
which reflects the relative growth rate of the plant (Mengzhou Liu, et al. 2017). Since the 
SLA reflects growth, plants with a high SLA are considered fast growing species, and plants 
with a low SLA are considered slow growing species. Species that live at high elevations are 
often associated with a low SLA, since SLA decreases as an adjustment to temperature at 
increasing altitude (Scheepens, Frei and Stöcklin 2010). The LDMC is the ratio between the 
dry mass and saturated mass of the leaf, which indicates plant resource usage (Díaz, et al. 
2016). The adult plant height is an important trait for mechanical strength, and to determine 
a species ability to compete for light (Moles, et al. 2009). Alpine plant species are shaped by 
extreme conditions and grow close to the ground. This is due to high winds, snowpack, and 
low temperatures (Körner 2021). The inflorescence height represents plant reproduction: 
plants with taller inflorescence stems can have improved pollination chances or an 
increased dispersal of seeds by the wind (Raven, Evert and Eichhorn 2005). And finally, the 
chlorophyll content is a measure of the plant’s photosynthetic capacity.  
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Besides these soft traits, we also looked at hard traits that are more directly related to frost 
tolerance, drought resistance and nutrient relations. 
 

Frost tolerance  
In high elevation environments, one of the main limiting factors is low temperatures. Plants 
exposed to extreme low temperatures during winter need to can protect themselves by 
frost hardening, but snow cover strongly limits temperature extremes (Hacker, et al. 2011). 
However, during the spring and summer months, when plants are no longer hardened, they 
can still be subjected to freezing temperatures. Due to the increase in temperatures, spring 
phenology in certain plants has advanced compared to previous years in the Swiss Alps, with 
the risk of frost exposure and potential damage at higher elevations (Vitasse, et al. 2018). 
Low temperatures affect all metabolic processes and decrease productivity and yield 
(Larcher 1981). When the temperature drops below the freezing point, frost damage can 
occur due to the formation of ice inside their cells (Snyder and Melo-Abreu 2005).  
 
To survive, plants have developed different mechanisms for coping with low temperature 
extremes include avoiding freezing, resisting, or tolerating frost damage (Snyder and Melo-
Abreu 2005). Plants can also avoid being frozen using a process called supercooling. The 
process is common in woody plants, and it permits the leaf and stem tissues to cool without 
freezing (Cavender-Bares 2005). It allows the cooling of a liquid below freezing 
temperatures, depending on the solute concentration. Another mechanism is osmotic 
adjustment. Supercooling and osmotic adjustment are both of these mechanisms involve 
the manipulation of the water potential. Osmotic adjustment allows the plant to reduce the 
amount of ice that is formed inside the plant, through the increase of concentration of 
solutes in the water (Snyder and Melo-Abreu 2005). With an increased concentration of 
solutes, water within the plant becomes more viscous, especially at low temperatures. This 
allows water molecules to diffuse at a slower rate so that ice nuclei are less prone to 
develop (Wolfe, Bryant and Koster 2002).  
 

Drought resistance  
As a consequence of climate change, the intensity and frequency of droughts are expected 
to increase due to an increased temperature and changing precipitation patterns  (Gobiet, 
et al. 2014). Drought stress occurs when plants have a limited availability of water. 
Meteorological drought happens when there is a lack of precipitation over a longer period 
of time, along with an increased evapotranspiration due to high temperatures. However, 
drought not only depends on rainfall, but also on the water holding capacity of the soil and 
rhizosphere (Seleiman, et al. 2021). The study area (Hochschwab) is in the Northern 
Calcareous Alps of Austria and is composed mainly of Wetterstein limestone. Calcareous 
soils are generally drier, due to high porosity of the rock, while soils derived from siliceous 
substrates tend to be moister (Michalet, et al. 2002). Because calcareous rocks, which are 
mainly made up of dolomite, gypsum, and limestone, are highly soluble, these components 
are easily dissolved by rainwater, which means plants growing on this substrate are more 
prone to experiencing water deficits (Jiang, et al. 2020).  
Earlier studies in alpine grasslands have shown that heat waves have minor effects on plants 
as long as there is water available (Boeck and Verbeeck 2011, Hoover, Knapp and Smith 
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2014, Boeck, et al. 2016). However, the effect of heat waves in combination with drought 
showed clear signs of stress in alpine plants.  
Water deficit in plants has an effect on many of the processes and traits for plant growth 
and survival, and can impair different morphological, physiological, and biochemical 
processes and traits, like decreasing plant productivity, nutrient uptake, and can affect CO2 
fixation (Farooq, Hussain, et al. 2012).  In order to cope with drought, plants have developed 
different strategies and mechanisms in order to be resistant. Drought resistance, as defined 
by May and Milthorpe (1962), is “the ability of plants to grow satisfactorily when exposed to 
water deficits’’. Strategies include drought avoidance, tolerance, escape, and recovery.  
 
Drought avoidance, which is the avoidance of stress conditions at the tissue level, is 
accomplished by promoting the reduction of water loss, closure of the stomata and having a 
well-developed root system for efficient water uptake, and water storage (Munns & Sharp, 
1993 as cited in Meshram, et al., 2022; Farooq, et al., 2009). While all plants close their 
stomata to avoid water stress, there is a difference in how much water is lost after closing 
the stomata. This is called the minimum conductance and reflects the conductance to vapor 
diffusion across the epidermis once the stomata are closed, i.e., through the cuticle and any 
leaky stomata. This was shown to be an important component of drought tolerance, since a 
lower gmin means leaves will survive longer before experiencing critical water deficit 
(Duursma, et al. 2018). Some physiological and morphological features that allow the plant 
to be more drought avoidant are leaf size and thickness, and succulence. Generally, plants 
that have smaller and thicker leaves are more drought resistant (Esau 1960). Succulence is 
the ability of plants to store water in leaves, stems and roots and indicates the water 
storage capacity (Griffiths & Males 2017). A plant having thicker leaves can mean that they 
are able to store more water for extended periods of time.  
 
Drought tolerance refers to ‘’the ability of plants to sustain a certain level of physiological 
activities under severe drought stress’’. Osmotic adjustment (Farooq, Wahid, et al. 2009), 
allows the cell to decrease the osmotic potential, which helps maintain the cell water 
balance and the turgor pressure. Increasing the concentration of solutes lowers the turgor 
loss point (TLP), which is the leaf water potential at which the leaf starts to wilt (Bartlett, 
Scoffoni and Sack 2012). It thus enables a leaf to maintain cell turgor under water stress.  
 
The hydraulic conductivity and xylem cavitation are also traits which are important for 
drought tolerance (Vilagrosa, et al., 2012). When the sap tension of the xylem of vascular 
plants becomes high enough, an embolism, which is the formation of vapour-bubbles, is 
formed. Emboli reduce the xylem hydraulic conductivity and can result in shoot dieback and 
plant death (Brodribb and Cochard 2009).  
 
Finally, C4 and CAM photosynthesis are also adaptations to water deficit and are associated 
with higher water use efficiency (Ward, et al. 1999). This is due to the fact that photo 
respired CO2 is re-fixated (Ghannoum 2009).  
 

Soil chemistry and nutrient availability  
Plant growth at high elevations is not only limited by extreme temperatures and 
unpredicted precipitation, but also by the nutrient availability and soil chemistry (Körner 
2021). In many areas, the species richness and species composition are highly influenced by 
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the soil pH and other pH-related chemical properties (Romeo, et al. 2015). As previously 
explained in the drought resistance chapter, Hochschwab is comprised of calcareous soils 
dominated by calcium carbonate (CaCO3). The main soil type in Hochschwab is Cambisol, 
which has a high pH (>7) and affects  nutrient availability (Romeo, et al. 2015, Poggio, et al. 
2021).  
 
Soil acidification is expected to increase due to the deposition of anthropogenic nitrogen 
(WallisDeVries and Bobbink 2017). The amount of nitrogen deposition has increased over 
the years, which has negatively impacted the species composition and diversity in many 
areas, including the Alps. The increased nitrogen content favours certain species, who can 
easier take up the excess nitrogen (WallisDeVries and Bobbink 2017). It can cause 
differences in the availability of nitrogen in the form of NH4

+ or NO3
-.  

 

1.3 Ecological indicator values  
Ecological indicator values (EIVs) represent estimates for individual species about their 
ecological optimum for selected environmental factors, expressed as ordinal numbers. The 
first EIVs for vascular plants in Western and Central Europe were developed by Ellenberg 
and co-workers, who published a list of indicator values in 1974 (Ellenberg 1974). More 
recently, Landolt (2010) created a similar list of EIVs for plants in the Swiss Alps.  
 
One main advantages is that, at least in Central Europe, EIVs are available for most species 
in databases, without the need for time-consuming additional measurements in the field.  
They also represent semi-quantitative values of environmental variables, which could not be 
obtained by a single measurement. EIVs are commonly used as proxies for environmental 
variables, which may often be difficult or expensive to measure in the field. However, the 
use of EIVs has also been criticized as the values are derived from the field experience of 
plant ecologists and are thus subjective. They also do not represent the species in a specific 
habitat, and the same species may have a different response depending on their 
geographical location.  
 
Bartelheimer and Poschlod (2016) reviewed existing literature which contained comparisons 
between species from controlled experiments and combined them with EIVs to test if it is 
possible to identify properties of species composition, in relation to environmental factors. 
They found that different plant properties(like SLA, or the total N-uptake) are related to EIVs 
for soil reaction, soil moisture and nutrients, but less for temperature. They conclude that 
the use of EIVs are an indispensable tool for predicting plant properties and species 
distributions (Bartelheimer and Poschlod 2016).  
 
Earlier research has used EIVs to detect relationships between EIVs and plant functional 
traits (Steinbauer, et al. 2022, Paetzolt 2022). Paetzolt (2022) used linear models to predict 
the relation between Landolt R and a set of functional traits, and found that  gmin, tCWC, 
height and SLA best explained the variation in the Landolt R value. While Steinbauer, et al. 
(2022) used a different EIVs, a proxy for temperature called TI. They calculated community-
weighted means for this EIVs to show if the overall community shifted in a certain direction, 
and found that over time, the plant community composition shifted to one with a higher 
temperature preference. In this study, we use EIVs (Landolt, 2010) to show the spread of 
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habitat preferences and to check whether or not EIVs can be used for explaining changes in 
species abundance.  
 

1.4 Objectives  
Climate change is affecting the composition, abundance, and diversity of alpine plant 
species and is creating winners and losers. By understanding why species respond 
differently to the changing climate, we hope to be able to predict which species are in 
danger of becoming extinct and possibly design strategies to help vulnerable species. For 
the present thesis this was done by investigating the relationship of species functional traits 
and ecological indicator values and the environment.  
 
We measured different plant functional traits, some of which are specifically related to 
drought and frost resistance, and nutrient availability of 42 different species to explore the 
relationship between those traits and the change in species abundance between the years 
2001-2015 in Hochschwab, Styria.  
 
The objectives for this study were to:  

• Distinguish alpine plants by functional traits, specifically traits related to drought 
resistance, frost resistance and nutrient relations. 

• Identify relationships between functional traits and the environment. 

• Explore whether EIVs or functional traits can help explain observed changes in 
species abundance.  
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2. Methods and materials  
2.1 Study area and sampling  

The study was carried out at Hochschwab (N° 47.375, E° 15.832), a mountain range in the 
North-Eastern Alps in Styria, Austria, in August 2022. GLORIA has been monitoring species 
abundance in plots on four different summits in 2001, 2008 and 2015 (Table 1). The plots 
were also surveyed in 2022, but these data were not yet available. 
 
The GLORIA Field Manual (Pauli, et al. 2015)  explains in detail how the vegetation data was 
acquired. To summarize, at the summits in Hochschwab, four 1-m2 quadrates were 
established in 2001, each located at one side of the summit (N, E, S, W). First, the cover (%) 
of all vascular plant species within the plot is estimated. Then, a point intercept method is 
applied using a 1m x 1m frequency grid frame. This is done to detect changes in the cover of 
common species. At each intersection of the grid, a sampling pin is inserted into the grid 
perpendicular and the name of the species that is hit is written down. Finally, the cover of 
all species within the frequency grid frame is estimated, and a final cover is calculated using 
these methods.  
 
Table 1: Summary of the sampled plots. Plot_ID, elevation in meters, the name and abbreviation of the peak 
and the coordinates.  

Plot ID Elevation Summit Summit  N E 

1 2214 G´hacktkogel GHK 47.6138916 15.13152027 

2 2065 Weihbrunnkogel WEK 47.6247406 15.16285038 

3 2255 Zagelkogel-NW-summit ZAK 47.6107597 15.12331963 

4 1910 Zinken-NW-summit ZIK 47.5982589 15.09152031 

 
Out of the 201 species recorded on these plots by GLORIA, 64 were on our list with potential 
target species. These species were chosen from the GLORIA summits Hochschwab list they 
make up 70% of all the population at Hochschwab, which we took to make sure that our 
samples represent the actual situation. Plants were sampled >20 m from GLORIA plots and 
for 42 species on the target list, five mature individuals were collected with >= 5 m distance 
between individuals. Due to time constraints, 42 out of the 64 target species were sampled. 
Appendix A shows which species were collected at which summit. The vegetative height 
(from the ground to the top of foliage leaves) and inflorescence height were measured in 
the field. Plants were collected including part of the subterranean organs and transported 
back in moist Ziplock bags to Schiestlhaus where a makeshift laboratory had been set up.  
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Figure 1: Map of summits Hochschwab, made using the RStudio package `leaflet` (Cheng, Karambelkar and Xie 
2023) 

2.2 Trait measurements 
We measured a total of 29 functional traits (Table 2). We measured commonly assessed 
traits that are important for the mechanical stability, reproduction, and photosynthetic 
capacity, as well as traits with a relation to drought resistance, frost tolerance and nutrient 
availability. 
 
Table 2: Summary of measured traits. It shows the trait measured, the abbreviation used for the analysis and 
the unit that the measurement is in. 

Trait Abbreviation used Unit 
 

Specific leaf area SLA mm2 mg-1 dry weight 

Leaf area LA cm2 

Leaf dry matter content LDMC g dry weight g-1 fresh weight 

Leaf thickness LT mm 

Succulence Suc g cm-2 

Aspect ratio AR leaf length/leaf width 

Solidity Sol area of particle divided by its convex 

hull 

Stem specific density SSD mg mm-3 

Adult plant height height cm 

Inflorescence height inflo cm 
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The same day as the samples were collected, one leaf per individual plant (five leaves per 
species) was used for all following analyses. First, those leaves (without the petiole) were 
scanned with a portable scanner (HP Scanjet G31110 Photo Scanner) with a resolution of 
300 dpi. With these scans, the leaf area, aspect ratio (leaf length divided by the leaf width) 
and leaf solidity (area of particle divided by its convex hull) were calculated with the ImageJ 
software (imagej.nih.gov). Afterwards, chlorophyll content was measured at three different 
positions on the leaf using a Chlorophyll Meter (SPAD-502Plus) and the average was taken 
per sample. Chlorophyll is measured in relative SPAD units, which represent “values that are 
proportional to the amount of chlorophyll present in the leaf” (Ling, Huang and Jarvis 2011). 
Leaf thickness was then measured using a Helios thickness gauge (0.01mm accuracy). The 
leaves were saturated overnight by wrapping in wet tissue paper and sealing in Ziplock bags. 
The next day, the leaves were first dark adapted for 20 min, blotted dry to remove surface 
water and then weighed to 0.1 mg.  The chlorophyll fluorescence was measured with a 
Mini-PAM Photosynthesis Yield Analyser (Walz GmbH Effeltrich, DE) and the Fv/Fm (quantum 
yield of photosynthesis) was written down. The Fv/Fm ratio is the variable fluorescence (Fv) 
divided by the maximum florescence (Fm). The lower the Fv/Fm ratio, the more stressed the 

Chlorophyll content Chl relative SPAD units 

Osmotic concentration Osm mmol kg-1 

Minimal conductance gmin g cm-2 h-1 

Critical water content CWC RWC 

Time at which critical water 

content is reached 

tCWC hrs. 

Temperature at which Fv/Fm 

declines by 50% 

LT50 C 

Nutrients 

Aluminium Al mg/g 

Barium B g/g 

Calcium Ca mg/g 

Copper Cu g/g 

Iron Fe mg/g 

Potassium K mg/g 

Magnesium Mg mg/g 

Manganese Mn g/g 

Molybdenum Mo g/g 

Sodium Na g/g 

Phosphorus P g/g 

Sulfur S g/g 

Zinc Zn g/g 
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plant is, with 0.83 being the PSII efficiency of a non-stressed leaf (Jägerbrand and Kudo 
2016).  
 

Weight loss curves  
The initial weight (mg) and chlorophyll fluorescence (Fv/Fm) were recorded before the leaves 
were placed onto a wire mesh in front of two small fans under low light conditions (< 2 µmol 
m-2 s-1). For easier identification, a colour coded clip with numbers one to five was weighed 
and clipped onto the leaf. Chlorophyll fluorescence and weight were measured over 2 - 3 
days, depending on the speed of the water loss per species. Initially, the intervals for 
measuring were short (c. 15 min) and increased as measurements proceeded.   
 
During these measurements, two data loggers recorded the temperature and relative 
humidity of the air around the wire mesh, which was used to calculate the vapor pressure 
deficit (vpd) as:  

𝑉𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 =  
(

1 − 𝑟𝐻
100

) ∗ 0.6107 ∗ 107.5∗𝑇

(237.3 + 𝑇)
 

 
Where rH is the relative humidity (%) and T is the temperature in ℃.   
 
Using the weight loss data, the relative water content (RWC) was then calculated as:   
 

𝑅𝑊𝐶 =  
𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 
 

 
The RWC was then used to fit the following function from Cape and Percy (1996) to the data 
from the leaf drying curves:  

𝑅𝑊𝐶𝑡 ~𝑅𝑒 + (𝑅0 − 𝑅𝑒) ∗ 𝑒𝑥𝑝−𝑘𝑡′
 

 
Where t is the time in hours, Re is the remaining RWC in equilibrium with the atmosphere, R0 

is the RWC after an initial fast loss, and k is a constant that expresses the exponential water 
loss after a first fast initial decline in weight. To assess the effect water deficit on leaf 
physiology, we fitted an empirical function to the relationship between RWC and Fv/Fm: 
 

𝐹𝑣

𝐹𝑚
= 𝑎 ∗  𝑒𝑥𝑝(−𝑏∗𝑒𝑥𝑝(−𝑐∗𝑅𝑊𝐶)) 

 
where a, b, and c are fitted coefficients. From this, the critical water deficit (CWC) at which 
Fv/Fm had declined to 0.6 was estimated as: 

 

𝐶𝑊𝐶 =  

log (− (
log (

0.6
𝑎 )

𝑏
))

𝑐
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The time it takes for a leaf losing water to reach CWC (tCWC), was calculated using the 
weight-loss data. We plotted the RWC against the time (hrs) to create weight loss curves 
(Appendix C). Using these, we fitted the following function to the curves to calculate tCWC:  
 

𝑡𝐶𝑊𝐶 =  
log (

𝐶𝑊𝐶 − 𝑅𝑒
𝑅0 −  𝑅𝑒

)

−𝑘
 

 
where tCWC is the time (hrs) it took a water-saturated leaf to reach a water content where 
photosynthesis (Photosystem II) was notably affected. In our case, we calculated the tCWC 
by using the CWC at Fv/Fm =0.6).  
 
After the weight-loss measurements, the leaves were dried in a drying oven at 80 °C for at 
least 72 hrs and then weighed to measure the dry weight. The saturated fresh weight was 
measured as the max. fresh weight. Using those measurements, the leaf dry matter content 
(LDMC) was calculated as:  
 

𝐿𝐷𝑀𝐶 =  
𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑠𝑎𝑡.  𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡
 

 
Using the LA and the dry weight, the SLA (ratio leaf area to leaf weight) and Suc (water per 
leaf area) were calculated:  

𝑆𝐿𝐴 =  
𝐿𝐴 

𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 

 

𝑆𝑢𝑐 =  
(𝑠𝑎𝑡 𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 )

𝐿𝐴 
 

 
The constant k was also used to calculate gmin, which is the minimal epidermal conductance. 
When stomata are closed, this is water loss through leaky stomata and the cuticle, the 
boundary layer being strongly reduced by the fan. It was calculated using Suc, with the 
following equation:  
 

𝑔𝑚𝑖𝑛 = 𝑆𝑢𝑐𝑐𝑢𝑙𝑒𝑛𝑐𝑒 ∗ 𝑘 

 

Osmotic concentration  
At the Schiestlhaus, leaves from 5 individuals of each species were cut into small pieces and 
put into an Eppendorf vial (0.8 ml) including a filter inlet (0.2 ml). Samples were initially 

frozen at the Schiestlhaus (at -20 C) until transported to Vienna. There, the samples were 

frozen again at -80 C in the laboratory in Vienna, thawed, and frozen again. These freeze-

thaw cycles serve to break the membranes. The vials were then centrifuged at 25 C at 
14,000 rpm (relative centrifugal force 20160 g) for 10 minutes. Liquid from the leaves was 
collected and the osmotic concentration was measured with a vapor pressure osmometer 
(VAPRO ®, model 5520). If the first measurement for the osmotic concentration was < 400 
mmol/kg, 3 measurements of the same sample were done, and the third value was the 
value written down. If the first measurement for the osmotic concentration was > 400 
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mmol/kg, 2 measurements of the same sample were done, and the second value was the 
value written down.  
 

Stem specific density  
Stem specific density was measured on stem sections 
several cm long of the main shoot or rhizome as shown 
in (Figure 2). A beaker was filled with water and put on 
top of a scale set to zero. The stem/rhizome was then 
submerged in the water without it touching the glass. 
This can be done by pricking the stem onto a long 
needle that is being held by a clamp stand. The weight 
measured in mg is the volume of the sample (or of 
water displaced) in mm3. After measurement, the 
stem/rhizome was added to a paper bag and labelled 

and put into the drying oven at 80 C for at least 48 h.  
 
Stem specific density (SSD) was calculated as  
 

𝑆𝑆𝐷 =  
𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔)

𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑚3)
 

 

Nutrient content  
The leftover dried leaves were used to measure nutrient content (aluminium, barium, 
calcium, copper, iron, potassium, phosphorus, magnesium, manganese, molybdenum, 
sodium, sulphur, and zinc). They were placed into a 2-ml vial with two small steel balls and 
ground to a fine powder using a ball mill (TissueLyser II). Powder from the five replicates per  
species was pooled to create one sample per species. The samples were then measured at 
the Institute of Forest Ecology (BOKU) with an inductively coupled plasma - optical emission 
spectrometer (ICP-OES, Perkin Elmer Optima 8300 ICP-OES) after digesting 150 – 200 mg 
finely ground leaves with 68% HNO3 in a microwave oven (CEM MARS6). 
 

Frost tolerance  
For the frost resistance measurements more leaves were required, so we collected an 
additional 40 leaves from several individuals per target species. The leaves were mixed and, 
depending on the size of the leaf (if the leaves were < c 5 mm, we put several leaves within 
one circle), one or more were placed onto a transparent plastic sheet with circles numbered 
1 to 10. This was done for 8 different temperatures: +4, -4, -6, -9.5, -11.5, -14, -16.5 and -
17 °C. The leaves were attached to the plastic sheet using TransporeTM and were wrapped in 

moist tissue paper. Ice nucleation agent (a drop of Snomax suspension) was added onto 
the tissue paper to avoid supercooling and the sheets were placed into water-tight small 
plastic bags. The plastic bags containing the plastic sheets was placed onto a metal rack that 
kept the plastic bags in place and was submerged in a 50:50 water/ ethylene glycol. The 
temperature of the liquid was first cooled to 4 °C, then cooled to a target temperature with  

Figure 2: Set-up stem density measurement 
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a rate of 4 °C/h, kept at target T for 2 hrs and again 
warmed with a rate of 4 °C/h to 4 °C. There were 
different experiment times per target temperature 
(Figure 3). Samples kept at +4 °C were used as 
control. After the measurements, the samples were 
placed under low light conditions for 12 hrs. To 
measure potential damage, chlorophyll fluorescence 
(Fv/Fm) of the leaves were measured with a GFS-3000 
(Walz, Effeltrich). Before being measured, the 
samples were dark adapted for 20 minutes.   
 
The temperature at which the chlorophyll florescence 
declined by 50% (LT50) was then calculated by fitting a 
sigmoidal function to the frost resistance curves 
(Appendix C).   
 

2.3 Data analysis  
For the data analysis, we first cleaned the data were by looking for outliers. Outliers can be 
either mistakes or can show extreme values and is a value that is relatively large or small 
compared to the rest of the observations. A boxplot was used to visualize the spread of the 
data and to observe potential outliers. If an outlier was identified, we double-checked the 
raw data to see if the data point was an extreme or a potential mistake.  
 
A species-wise (SW) dataset was created by taking the mean value of the five individuals per 
species for each trait. This resulted in a matrix with the plant species as rows and the 
functional traits as columns. Because some of the target species lacked many data, 29 
species with mostly complete data were selected for further analyses and missing data in 
those species were imputed. 
 
For imputation the R function phylopars (library RPhylopars) was used and imputation 

was based on the correlation between traits, but not the phylogenetic relationship among 
species. Including phylogeny in some cases produced impossible (negative) values.  
This resulted in a dataset with 28 functional traits for 29 species. We did this to ensure all 
analyses that required a complete dataset can also be performed.  
 
Besides the dataset containing all of the functional traits, species abundance data from 
Hochschwab from the years 2001, 2008 and 2015 was obtained from GLORIA. This contains 
the name of the summit, the plot ID, coordinates, the full species name, and the cover of 
the species in percentage.   
 
Then, the relative change in species abundance between 2001 and 2015 (change01_15) was 
calculated using the sum of the cover (%) over all plots per year per species as:  
 

𝑐ℎ𝑎𝑛𝑔𝑒01_15 =  
(𝑠𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 % 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 2015 − 𝑠𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 % 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 2001) 

(𝑠𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 % 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 2015 + 𝑠𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 % 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 2001) 
∗ 100 

 

start T 4℃ 

cooling rate 4℃/h 

time at target T 2h   

target T (℃) time needed 
(h) 

4 2 

-4 6 

-6.5 7.25 

-9 8.5 

-11.5 9.75 

-14 11 

-16.5 12.25 

-17 12.5  
Table 3: Cooling rates and target times 

frost tolerance experiment 
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Where we used the sum of the cover (%) per species in 2001 and 2015. The average cover 
per species was calculated as:  
 

𝑐𝑜𝑣𝑎𝑣𝑔 =
(𝑆𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 % 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 2001 + 𝑠𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 % 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 2015) 

2
 

 
This calculation was done for all species recorded (n=135) including the 29 target species.  
 

Ecological indicator values  
Landolt (2010) ecological Indicator Values (EIVs) were used to describe the habitat and 
environmental preferences of the species (Table 4).   
 
Table 4: Landolt ecological indicator values. This table contains an explanation of the different Landolt values that were 
used for this research. Table is used from (Paetzolt 2022) with information from  (Landolt 2010).  

Indicator 

value 

Abbr. 

used 

Unit Explanation 

Temperature T Number between 1 (alpine 
& nival) & 5 (warm-colline) 

in steps of 0.5 
 

Characterizes the average air 
temperature during the growth 

season. 

Moisture F Number between 1 (very 
dry) & 5 (under water) in 

steps of 0.5 
 

Signifies the average soil moisture 
during the growing season. 

Soil reaction R Number between 1 
(strongly acid) & 5 

(alkaline) in steps of 1 
 

Characterizes the content of free 
H-ions in the soil. 

Nutrients Nu Number between 1 (very 
nutrient poor) & 5 (very 

nutrient rich) in steps of 1 

Indicates content of available 
nutrients. Primarily nitrogen, but 

also phosphorus. 
 

 

Community weighted means  
Community-weighted means were used as they are an approach that is widely used in 
functional ecology, for it allows testing the effects of environmental variables on changes in 
species communities. This can demonstrate the effect of environmental filtering on 
community assemblies (Díaz, Cabido and Casanoves 1998). CWM have the assumption that 
they reflect the ‘optimal’ local trait strategy, with “species trait values nearest to the CWM 
values in a particular location, are predicted to have relatively high fitness, because they 
presumably occur at relatively high abundance, and this contributes most strongly to the 
CWM” (Muscarella & Uriarte, 2016).To calculate community weighted means for the 
functional traits, species abundance (cover %) from the GLORIA ecological survey was used. 
For the EIVs CWM were calculated using the Landolt (2010) values using the following 
equation:  
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𝐶𝑊𝑀 =  
∑(𝐹𝑖 ∗ 𝑥𝑖)

∑ 𝑥𝑖
 

 
where Fi is the mean value of a species functional trait/ EIVs and xi is the sum of all plot 
cover values of species i. CWM of EIVs (T, F, Nu, and R) were calculated from all species 
present in plots, not just the target species. In total, there were 126 GLORIA plots at 
Hochschwab of which the community-weighted means were calculated.  
 

Transformations  
Shapiro-Wilko tests and Q-Q plots were used to determine the normality of the functional 
traits data. This test was used because it is good for small sample sizes (< 50). Consequently, 
height, tCWC, CWC, LA, AR, LT, Sol, Suc, Al, Ca, Cu, Fe, Mn, Mo, Na, Zn and LT50 were log-
transformed to improve normality, other data were not transformed.  
 
For the CWM data, Q-Q plots were used to determine normality. None of the data was 
normally distributed, thus all CWM traits except LT50 were log-transformed. Because LT50 
contains negative values, a power transformation (LT50

2) was used.  
 

Trait correlations  
To visualize the spread of the data, the un-transformed raw data was used to create a 
correlation plot and tested using the Spearman’s rank correlation coefficient, which does 
not require a linear correlation and is a nonparametric measure of rank: it ranks the data 
based on its position in the dataset (Gauthier 2001). The correlation plot was visualised 
using the corrplot function from the corrplot package (Wei and Simko 2021).  
 
The relationships among traits was analysed by hierarchal clustering using Euclidian distance 
in the function dist. The ward D method was used for the clustering using the hclust 
function, also from the base R package, and the distance was log transformed to improve 
scaling.  
 

Ordination methods  
Ordination is a  multivariate statistical tool that allows complex multivariate data to be 
visualised with a reduced number of dimensions. This facilitate interpretation of patterns in 
a community matrix, with typically 2-3 dimensions (Dexter, Rollwagen-Bollens and Bollens 
2018). In ecology, ordination allows to summarize community data and shows species that 
are similar placed close together and species that are very different placed further apart.  
 
Ordination methods can be used in different ways, but in this study, they are used to 
describe relationships between patterns in species composition and environmental 
gradients. For this research, we are using unconstrained techniques: principal component 
analysis (PCA) and non-metric multidimensional scaling (NMDS). We used an unconstrained 
PCA to identify pattens and relationships between our plant species and functional traits.  
 
A PCA was performed on species-wise & CWM data, log-transformed when needed, using 
the function prcomp from the factoextra package (Kassambara and Mundt, 2020) in R to 
show the distribution of the functional traits among the species, and how the different 
species resemble each other. For visualization, the function fviz_pca_biplot and 
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fviz_pca_ind from FactoMineR (Lê et al., 2008) were used. To check for significant 
differences between the three sample years in the CWM PCA data, a MANOVA was 
performed using the adonis function from the vegan package (Oksanen, et al. 2022) 
 
For the NMDS, the GLORIA survey data was turned into a community matrix (plot_ID & year 
x species) with the function matrify from the R package labdsv (Roberts., 2019). The 
NMDS was performed using the metaMDS function from the vegan package (Oksanen, et al. 
2022). The NMDS scores where then extracted and plotted using the ggplot function from 
the ggplot2 package (Wickham 2016).  After performing the NMDS, the stress and R2 are 
calculated to show how well the NMDS fits the data, using the function stressplot from 
the vegan package. Plots located closer to each other on the NMDS plot are more similar 
than the plots that are further apart from each other.  To test if there was also a change in 
the functional trait community, a PCA of the CWM of the functional traits were calculated, 
with different colored polygons for the three sampling years. To check for significant 
changes between the years of the community matrix, and ANOSIM test was performed 
using the anosim function from the vegan package. Dissimilarity matrix was created using 
the Bray-Curtis method.   
 

Linear models  
The lm function was used to predict which traits have a significant effect, weighing by and 
the covavg

0.5 to give more importance to species that are dominant in the plots. A linear 
model was run with a reduced number of functional traits to reduce over-parameterization. 
These are traits that tend to be important (correlating with others) in the corrplot and PCA. 
stepAIC from the R package MASS (Venables and Ripley 2002) was used to determine the 
best linear model for predicting the change in species abundance (change01_15).  
 
The multicollinearity of the model was checked using the variance inflation factor, which 
quantifies correlation between the predictors in a model. The higher the VIF, the more 
difficult it is to assess the contribution of the predictors in the model. A VIF < 3 is considered 
to indicate that multicollinearity is not a problem for the model. We used the function vif 
from the car package (Fox, et al. 2023).  
 
All analysis were done using RStudio, R version 4.2.2 (2022-10-31) (R Core Team 2022).  
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3. Results  
3.1 Variation in the EIVs Landolt values  

Using all species recorded in the GLORIA plots, T values range from 1 (alpine & nival) to 4.5 
(collin), F from 1 (very dry) to 4 (very moist), Nu from 1 (very nutrient poor) to 5 (very 
nutrient rich, which refers mostly to nitrogen and phosphorus) and R from 1 (extremely 
acid) to 5 (alkaline, high pH) (Figure 3).  
 

 
Figure 3: Histogram of the frequency of the Landolt values for all species (n=135) found in the plots. 

We calculated the community-weighted means for the Landolt values for temperature (T), 
soil moisture (F), nutrients (Nu) and soil reaction (R) for the 29 target species and all species 
recorded in plots (Table 6). This shows that the target species are a good representation for 
the total species pool present, with the mean CWM values for the EIVs being very similar to 
the CWM for the EIVs of all of the species recorded. The target species have a Landolt T 
value of 1.64, and all species have a value of 1.50, which is characterized as the alpine zone 
of grassland vegetation above the treeline) and supra subalpine (zone of arolla-larch forests) 
zones. Moisture indicators (F) has a mean value of 2.26 for the target species, and 2.17 for 
all species, which signifies a mesic soil. Nutrient indicators (Nu) has a mean value of 1.48 for 
the target species, and 1.29 for all species, which are both defined as nutrient-poor soils. 
Finally, the soil reaction indicator (R) has a mean value of 4.41 for the target species, and 
4.81 for all species, which indicates a soil rich in bases (high pH).  
  
Table 5: Mean values of the Landolt values of the CWM of the target species ( n=29) and CWM of all of the 
species (n=135) 

Landolt value Abbr. Target All  

Temperature T 1.64 1.50 

Moisture F 2.26 2.17 

Nutrients Nu 1.48 1.29 

Soil reaction R 4.41 4.81 
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3.2 Variation of the species-wise data  
Variation within and between species can show how organisms interact with each other and 
their surrounding environment. Functional traits between the species, e.g., plant height and 
leaf area, can explain adaptations to their environment. We calculated the mean, standard 
deviation, range, and coefficient of variation for all of the measured functional traits of the 
29 different species (Table 5). The CV for Mn and AR are the highest (>100%), which 
indicates a lot of variation between species. The Osm, Chl, LDMC, Sol, B, Mo, and S are the 
lowest (<30%), which indicates that there is not a lot of variation between species.  
 
Table 6: Summary of the statistical parameters of the functional traits of the target species means. It shows 
the trait, the mean, standard deviation (SD), min and max and the coefficient of variation (CV = SD/mean*100, 
%) of the target species (n=29).  

Abbr. Unit Mean SD Max Min CV [%] 

height cm 5.57 5.04 22.20 0.58 90 

SSD mg mm-3 0.45 0.15 0.83 0.17 33 

gmin g cm-2 h-1 4.66e-03  3.59e-03 0.02 7.4e-04 77 

CWC RWC 0.26 0.12 0.62 0.10 44 

tCWC hrs. 13.17 9.28 32.99 1.56 70 

Osm mmol kg-1 538.85 160.99 840.80 262.20 30 

LT mm 0.51 0.19 1.14 0.25 38 

Chl relative SPAD numbers  38.86 10.32 69.88 19.70 27 

SLA mm2 mg-1 dry weight 14.03 5.13 25.49 5.98 37 

LA cm2 2.94 2.89 14.44 0.08 98 

LDMC g dry weight g-1 fresh 
weight 

0.32 0.09 0.47 0.18 28 

AR 𝑙𝑒𝑎𝑓 𝑙𝑒𝑛𝑔𝑡ℎ

𝑙𝑒𝑎𝑓 𝑤𝑖𝑑𝑡ℎ 
 

6.60 7.79 24.92 1.13 
118 

Sol area of particle 
divided by its convex 

hull 

0.82 0.20 0.98 0.05 
24 

Suc g cm-1 0.021 0.013 0.061 8.3e-03 61 

LT_50 C -8.38 3.16 -4.90 -13.44 38 

Al mg/g 0.12 0.09 0.53 0.04 74 

B g/g 43.67 11.96 68.62 23.18 27 

Ca mg/g 27.17 25.47 120.97 5.58 94 

Cu g/g  13.00 8.66 47.47 4.26 67 

Fe mg/g 0.14 0.09 0.57 0.08 67 

K mg/g 9.97 3.71 18.06 3.69 37 

Mg mg/g 4.11 1.88 9.55 1.42 46 
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Mn g/g 91.48 124.80 625.55 6.28 136 

Mo g/g 11.50 2.80 20.54 8.43 24 

Na g/g 413.91 166.87 876.03 173.73 40 

P g/g 1113.45 361.44 2270.32 486.29 32 

S g/g 2122.11 623.23 3319.13 1091.22 29 

Zn g/g 125.41 98.44 476.38 52.00 79 

 
In the PCA (Table 7) the first axis was best explained by B, LDMC, S, Ca, P and Mg, and 
explained 19.1% of the total variation. The second PCA axis was best explained by the LT, Al, 
chlorophyll, Fe, and SSD and explained 14.8% of the total variation. The PCA shows the 
distribution of the traits among the different species, and how species are similar to each 
other (Figure 4).  The majority of the variance in explained on the first three axis, with the 
other axis providing <10% of the total variation (Figure 5).  
 

Figure 4: PCA ordination of 29 plant species from Hochschwab, Austria, on the basis of 29 functional traits. 
Labels display plant species  with the highest eigenvector scores on PC1 and PC2. Arrows display the functional 
traits.  

 
To assess the species’ adaptations to their alpine 
environment, we specifically measured frost tolerance 
(LT50) and traits related to water relations (Osm, tCWC, 
CWC, gmin and succulence). Species that appear less frost 
tolerant  (high LT50 values) are S. acaulis, D. glaciale, H. 
oelandicum, and S. albicans. S. acaulis has the lowest 

frost resistance (LT50) of -4.9 C, which means that when 
the air temperature reaches that value, 50% of the 
chlorophyll fluorescence (Fv/Fm) has declined . C. atrata 
has the highest frost resistance and can withstand 

temperatures of -13.4 C. Species that are less frost 
tolerant are also associated with a low osmotic 
concentration. The opposite can be said for the 
graminoids. They are located close Osm, which means they generally have a high osmotic 
concentration. Osm and LT50 have a negative relationship, since the arrows are situated 

Figure 5: Proportion of the variance that 
is explained on the first five PC axes in the 
PCA of the species mean data 
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opposite of each other, and this means that these plants have a low LT50 and are more frost 
resistant.  
 
F. versicolor seems to be the most different from the other species, being located on the far 
left of the PC1, not close to any other species. L. glabrata, S. albicans and C. sempervirens  
are located on the bottom right of the PCA, close to height, AR, and osmotic Osm. All three 
of these species are graminoids. All of the graminoids are located to the left and bottom  (B. 
alpina, C. atrata, L. glabrata, S. albicans, C. sempervirens and F. versicolor), with C. atrata 
being located further away from the others. We can also see that they are also associated 
with a high osmotic concentration and LDMC.  
 
Table 7: PCA scores of the functional traits on the first two axes of the PCA.  

Trait PC1 PC2 

SSD -0.013 0.012 

Osm 0.520 -0.414 

Chl 0.002 0.279 

SLA -0.261 -0.812 

LDMC 0.807 -0.137 

LT_50 -0.585 0.410 

B -0.813 0.106 

Fe 0.003 0.132 

K -0.319 -0.323 

Mg -0.641 -0.347 

P -0.681 -0.475 

S -0.799 -0.269 

height 0.497 -0.581 

gmin -0.417 -0.256 

CWC 0.139 -0.242 

tCWC 0.295 0.659 

LA 0.250 -0.281 

AR 0.531 -0.498 

LT -0.029 0.569 

Sol -0.530 -0.016 

Suc -0.390 0.747 

Al -0.054 0.515 

Ca -0.680 0.329 

Cu -0.088 0.274 

Mn -0.090 -0.263 

Mo -0.262 -0.150 

Na -0.548 -0.149 

Zn -0.348 -0.402 

T -0.277 -0.081 

F -0.208 -0.295 

R 0.206 0.317 
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Nu 0.290 -0.247 

 

3.3 Trait correlations 
Pairwise correlations between the functional traits show a few different correlations (Figure 
6). For the EIVs, the majority of them are only correlated with some nutrients, but F & Nu 
are positively correlated (r=0.59), which was also readable from the PCA (Figure 4). F is also 
positively correlated with LA (r=0.49). The species-wise PCA also showed a likely negative 
correlation between the LDMC and LT50, which is also reflected in the pairwise correlations 
(r=-0.77).  

 
Figure 6: Pairwise correlation plot between the log-transformed species-wise data (n=29). Correlation matrix 
was made using Spearman’s Rank-Order correlation, the clustering method for the corrplot was ward.D and 
the order of the traits uses `hclust` ordering. Plot shows all correlations, but only correlations with a star are 
significant. Ellipse shows the correlation: red means a negative correlation and blue means a positive 
correlation.  

A cluster analysis with the functional traits and the EIVs showed four different clusters of 
strongly correlated traits (Figure 7). Various measures of size of morphology (height, LA, 
LDMC, LT, succulence, SSD, AR, solidity) cluster together with CWC, gmin, LT50 ,Fe and Al. The 
second largest cluster contained the majority of the nutrients (Zn, Mn, Na, Mg, Mo, Ca), 
tCWC and all EIVs. The other two clusters are smaller, with only a few traits. SLA, K, Chl and 
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B are grouped together in one smaller cluster, and te S, Osm and P are grouped together 
and are the furthest distance away from the other traits.  
In the nutrient cluster, the majority of the nutrients and the EIVs are grouped together. Both 
the EIV soil reaction (R) and nutrient availability (Nu) are related to the substrate and 
nutrient availability of the soil, which vary greatly per species (Figure 4 – Histogram of the 
distribution of EIVs). However, due to the fact that all of the target species were sampled in 
the same area, there should not be much difference in the habitat preferences of the plant 
species.  
 

 
Figure 7: Cluster dendrogram showing hieratical relationships of the log-transformed functional traits of the 
species wise data (n=29). The method used for the clustering was 'ward.D. ' 

Pairwise correlations between the functional traits and the EIVs confirm the findings of the 
PCA and the cluster dendrogram (Figure 7). While the majority of the nutrients were 
grouped together in the same cluster, they are not all correlated to each other. While T and 
Nu are clustered closely together, they are not significantly correlated.  
 

3.4 Changes in species abundance  
The results of the GLORIA ecological survey show that the majority of the plant species at 
Hochschwab changed in species abundance between 2001 and 2015, with 14 species 
increasing in abundance by more than 50%, and 19 species decreasing in abundance by 
more than 50% between the years 2001 and 2015 (Figure 8). Among the target species S. 
albicans and L. hispidus have increased by >50% in cover while H. discolor has decreased 
by45%. C. firma, one of species with the highest average cover, has not changed much 
between 2001 and 2015. The only species with a relatively high average cover that has 
changed >25% is F. versicolor, which has decreased in abundance. The species with the 
highest average cover in all three years were C. firma (covavg of 2019 %), D. octopetala 
(covavg of 457%) and P. mugo (covavg of 333%), while Campanula cochleariifolia was the least 
commonly found species (covavg of 0.00050%).  The average cover of P. mugo decreased 
between 2001 and 2015 (66% to 56%), while the sum of the cover increased (331% to 
335%). The average cover of C. firma increased (34% to 36%), and the sum of the cover also 
(1983% to 2055%). This indicates that C. firma was present at many plots but had a lower 
coverage in all of them (in 2001, it appeared in 54 out of 64 plots) , while P. mugo was more 
dominant in the plots that it appeared but appeared in less plots overall. P. mugo was third 
most common species with average cover, but it was interesting to see that this species was 
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only found at one summit: Zinken, which is the lowest summit at Hochschwab (1910 m). It 
stayed very constant and only increased by 0.6% between 2001 and 2015.  
 

 
Figure 8: Relative change in species abundance (%) for all the species (only species with covavg > 0.5 are 
shown) between the years 2001 and 2015. Species colored blue are the target species for this study and bubble 
size represents the average cover of the species.  

3.5 Changes in species attributes  
Changes in species community are visualized by NMDS that shows patterns in the 
community composition for 2001, 2008 and 2015 (Figure 9). The NMDS shows that some 
plots have a directional shift in the same direction, with the community data in the year 
2015 having shifted to the top or the right. However, this shift is not significant; an ANOSIM 
test showed no significant difference between the three years (R = -0.009, p-value = 0.9).   
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Figure 9: NMDS of the community data of all GLORIA plots with the changes between 2001, 2008 and 2015 for all species 
(n=126). Circles represent individual plots and circles connected broken lines are show the same plot in the different years.  

The PC1 is explained by LDMC, SSD, CWC, and the nutrients Mg, Zn, Mn, S, Na and B, and 
explains 44.9% of the total variation in the data. The PC2 is explained by height, Cu, Fe, AR, 
Al, LT, and tCWC and explains 20.6% of the total variation. The functional traits that explain 
the PC1 and PC2 of the community-weighted means (Figure 10) are different then the traits 
that explain the PC1 and PC2 of the  species-wise data (Figure 4). The variation on the first 
axis is also higher in the CWM PCA than the species-means PCA: 44.9% against 19.1% 
respectively. We checked for significant differences between the years in the PCA data, but 
a MANOVA showed there were none (p-value =0.92).   
 

 
Figure 10: PCA of CWM 
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We then checked if the CWM of the functional traits had changed. The CWM between the 
years shows if there has been a change in species with a certain trait, if the CWM of a trait 
increased, then it means that there was an increase or decrease in species with those traits. 
However, the trait composition of the communities stayed very similar: an ANOVA test 
showed that none of the CWM traits differed significantly between 2001, 2008 and 2015 
(Figure 11).  
 

 

3.6 Modelling predictors for change in species abundance  
While there have been changes in species abundance, we found no evidence of changes in 
the overall communities or in CWM trait values. These results, however, do not address the 
question if traits or other information can inform on which species increased or decreased 

Figure 11: Boxplots of the transformed CWM (n=192) with an ANOVA testing for difference between the 3 
years for the functional traits without nutrients.  



 

 
 

26 

in abundance. In order to predict which functional traits and EIVs can explain those changes, 
we explored different linear models to see which model best explains the change.  
 
First, we checked if any of the EIVs can explain the changes in species abundance. There 
appears to be a weak trend when comparing the changes in species abundance with the 
species-wise EIVs (Figures 12 & 13). When looking at trends for only the target species, 
there is a weak trend, but it is significant (R2 = 0.19, p-value = 0.019) with species with a 
higher Landolt T increasing in abundance. However, this is only true for our target species. 
When looking at the overall change in species abundance (Figure 13), the trend disappears 
(R2 <0.01, p-value = 0.47). Something interesting can be seen for the Landolt R values. Our 
target species show in increase in species with a higher R value, while all the species show a 
decrease in species with a higher R value.  
 

 
Figure 12: Relative change in species abundance (%) plotted against the Landolt values T, F and Nu for the 
target species (n=29).  

 
Figure 13:  Relative change in species abundance (%) plotted against the Landolt values T, F and Nu for all 
species (n=135) 

Alternatively, we tested if a combination of functional traits might explain change in (Table 
9). In total the model accounted for 44.6% of the total variation. The variation inflation 
factor (VIF) of the three variables is < 3, thus multicollinearity is not a problem for the 
model.  
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Table 8: Linear model explaining the change in species abundance from a reduced model containing the LT50, solidity and 
height. The adjusted R2 is 0.446 and the p-value for the model is 4.536E-04.  

Coefficients: Std. Error t-value Pr(>|t|) VIF  

LT50 1.393 1.492 0.148 1.68 

Height  5.874 3.851 7.26E-04*** 2.73 

Solidity  6.618 4.863 5.32E-05*** 2.07 

 
We then tested the PC1 and PC2 axis of the species-wise data to test . While PC1 was not 
related to cover change (p = 0.9), PC2 was significantly (p = 0.045, R2 = 0.10 ) related to 
cover change of the target species (Table 10). The traits that best explained the PC2 were 
SLA, Suc, tCWC, height & LT, and explained 10.4% of the total variation.  
 
Table 9: Linear model explaining the PC1 and PC2 with the changes in species abundance.  

Coefficients: Std. Error t-value Pr(>|t|) Adj. R2 

PC1 0.021 0.162 0.873   -0.03475 

PC2  0.013 2.098 0.045* 0.1049 
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4. Discussion  
Functional traits are important for determining species fitness and vital rates and can exhibit 
different attributes under contrasting environmental conditions. But even in the same 
environment, those attributes can vary greatly. We first look at variation of the functional 
traits and ecological indicator values (EIVs) of the plant species that were measured at 
Hochschwab, Austria. Afterwards, we investigate patterns and correlations between the 
functional traits and the changes in species abundance, and finally, we explore the relation 
between changes in alpine vegetation and functional traits.  
 

Functional traits  
Our results show that the functional traits of the plant species that were measured differed  
strongly among plant species.  This is expressed as the coefficient of variation (CV), for 
which the highest CV are for AR (117%), LA (98%) and height (90%). This indicates that there 
is strong variation between the plant species concerning these traits, which are all physical 
traits on the global spectrum of plant form and function (Díaz, et al. 2016). This is because 
certain environments have certain leaf shapes and sizes and in mountainous areas, plants 
have generally small leaves, as the conditions are very harsh. We expected less variation in 
the LA, but alpine plant leaves are still highly diverse and adapted to many environmental 
challenges (Körner 2021). The variation in our data most likely comes from the different 
growth forms that we sampled: mean species height varied from 0.58 cm (S. acaulis, 
cushion plant) to 22.20 cm (F. versicolor, grass). This is similar to another study on 
Schrankogel (Austria) where plant height varied between 1.00 cm and 23.40 cm (n=59) 
along a much larger elevational gradient (2140 – 3150 m) (Paetzolt 2022). Plant height 
depends on the growth form of the species: dwarf shrubs are close to the ground, with 
heights recorded between 10-30 cm just above the tree line, and 1-5 cm at higher alpine 
elevations. Graminoids are taller, even at higher elevation, and can range from >0.5m to a 
few cm (Körner 2021).  
 
Due to climate change, plants are expected to experience more frequent drought in the 
future. Therefore, we looked at traits related to drought tolerance: gmin, succulence, tCWC, 
CWC and the osmotic potential. From these traits, gmin shows a high variation among species 
(77%), which shows that there are big differences in the drought resistance of plant species 
in the same environment. It is influenced by succulence (61%), which reflects the amount of 
water that can be stored per leaf area. Duursma, et al. (2018) reviewed literature to try and 
explain variation in gmin between different plant species. The data they compiled (n=221) for 

gmin measurements had a mean value of 4.5 mmol m-2 s-1, which is 0.029 g cm-2 h-1; the unit 
used for our data. This is much higher than for our data: our maximum value is 0.0157 g cm-

2 h-1. This is likely due to the environment that our species live in: alpine plants are 
considered to live in extreme conditions. A low gmin is an adaptation many plants in arid 
environments have, with plants having xerophytic adaptations like small leaves, thick 
cuticles, and a high succulence, which are all traits that are geared towards reducing water 
loss (Smith, Monson and Anderson 2012). They also found that besides grasses having a 
higher gmin, it is very difficult to explain variation. The species with the highest gmin in our 
data were R. montanus (0.015 g cm-2 h-1), a deciduous perennial and K. simpliciuscula (0.012 
g cm-2 h-1), a grass.  (Landolt 2010). Effects of the environment on gmin have also been 
researched, and studies have found that water limitation and a lower relative humidity 
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decrease gmin, while a higher temperature increases gmin (Duursma, et al. 2018, Fanourakis, 
Heuvelink and SM. 2013, Drake, et al. 2018).  
 
Another trait that may influence how well plants will be able to cope with climate change is 
tolerance to frost. During the winter, plants are hardened and can survive extreme low 

temperatures and in  Austria, the temperature can drop to extreme values (-37.4 C, 
measured at Mt. Sonnblick, 3105m) in alpine areas (Neuner 2014). And even with global 
temperatures increasing, in the spring and summer, the temperature can still drop below 

zero. In the nival zone of the Tyrolian Alps, the air temperature can drop to -6C at the 

treeline, and -15.6 C in the nival zone (Neuner 2014). In the summer, the frost resistance of 
leaves is the lowest. Therefore, LT50 and osmotic potential are crucial for determining if 
plants can survive summer frost. The lowest frost resistance was measured in S. acaulis (-4.8 

C) and the highest in C. atrata (-13.4 C). The PCA showed that graminoids, like C. atrata, 
are likely to be more frost resistant then other species, which is a pattern shown more often 
(Taschler and Neuner 2004, Pescador, et al. 2016) Resistance to summer frost in alpine 

plants has been studied, and ranges from -4.5 (Vaccinium myrtillus) to -14.6 C (Poa alpina) 
on Mt. Patscherkofel (1950m), near the University of Innsbruck, and in the foreland of the 
Hintertuxer Glacier (2660m) (Taschler and Neuner 2004). These values for LT50 are very 
similar, as well as the elevation at which the plants were sampled. An interesting difference 

between our studies is that for Vaccinium vitis-idea, LT50 that we measured was -11.3 C. We 
sampled this species at the Zinken summit, which has an elevation of 1950m. Taschler and 
Neuner (2004) sampled this species at an elevation of 2700 and measured an LT50 of only -

5.5 C. Resistance to summer frost is related to elevation, with frost resistance increasing 
with elevation, but that was not the case for this specific species. Intraspecific variation of 
species is therefore also something interesting to focus on in further research.  

 

Ecological indicator values  
Besides functional traits, we also looked at the ecological indicator values (EIVs), which are 
ordinal values that are derived from previous observations and expert judgment that reflect 
species habitat preferences (Diekmann 2003 ). Community-weighted mean EIVs of the 
target species (n=29) indicate a fresh soil moisture (F = 2.26), with a neutral to alkaline (R = 
4.41) and nutrient infertile soil (Nu = 1.48), with an air temperature characteristic to lower 
alpine and subalpine zones (T = 1.64). Overall, the set of target species represent the 
community well when it comes to EIVs. The high Landolt R value is likely linked to the 
calcareous parent’s rock and the Wetterstein limestone soils which predominate in the 
study area (Hochschwab). It contains lime materials like calcium carbonate (CaCO3) and 
causes the soil to have a more alkaline pH, which represents a stressful habitat for plants 
and has an effect on the nutrient availability (Romeo, et al. 2015). This is also reflected in 
the Landolt Nu value, which is very low and is thus nutrient infertile. The pH of the soil and 
the nutrient availability have a strong effect on the species community composition and 
distribution (Romeo, et al. 2015).  
 

4.2 Coordination and correlation of traits  
The pairwise correlations and the cluster dendrogram show correlations between the 
functional traits and EIVs: the cluster dendrogram and pairwise correlation showed which 
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traits were most correlated to each other. Our results showed that, due to the amount of 
nutrients in our dataset, there were many correlation between functional traits and 
nutrients. The dendrogram showed that the traits are grouped together in four different 
clusters. The majority of the functional traits and some of the nutrients are together in one 
large cluster, the rest of the nutrients and the Landolt values in another, and two small 
clusters containing only a few traits.  
 
The AR, height, and LA are in one sub-cluster. These are all traits that are on the global 
spectrum of plant form and function and explain the plants size and shape  (Díaz, et al. 
2016). The aspect ratio reflects leaf shape and is related to leaf area, which is important for 
light capture, height is important for competition for light. Height is also correlated to LT50 

(r=-0.49) and osmotic potential (r=0.43). The negative correlation between height and LT50 
indicates that taller plants are more frost resistant, which is also what a study in Venezuela 
found (Squeo, et al. 1991). In winter, small alpine plants are protected by snow, while taller 
plants may not be fully covered and thus have to be more tolerant to lower temperatures 
(Körner 2021). The positive correlation with osmotic concentration could mean the same, as 
taller plants have lower osmotic potential. As more negative osmotic potential reduces the 
freezing point and thus delays ice inside the cells, this also means they are more frost 
tolerant (Snyder and Melo-Abreu 2005).  
 
It is therefore rather surprising that the osmotic potential clusters in the dendrogram with 
the nutrients S and P only and this cluster has the greatest distance to the other clusters. 
However, in pairwise correlations, Osm is among other things negatively correlated to LT50 
(r=-0.48) and succulence (r=-0.4). The correlation between the osmotic concentration and 
LT50 indicates that plants with a high osmotic concentration have a low LT50  and can thus 
recover from lower temperatures. This is also explained by Snyder & Melo-Abreu (2005), 
who found that an increased concentration of solutes in the protoplasm can help reduce the 
formation of ice crystals.  
 
Another sub-cluster included LT50, gmin and succulence. LT50 and Suc are positively correlated 
in both the species-wise (r=0.38) and CWM (r=0.60) correlations. Since the values for LT50 

are negative, this indicates that species with a higher succulence a have a higher LT50 and 
are less frost tolerant.  This is confirmed by Griffiths & Males (2017), who explain that, while 
succulence increases tolerance against drought, most succulents are susceptible to frost 
damage at lower temperatures. That succulence is gmin are clustered together is likely 
because the succulence is used to calculate  gmin. There was little variation between the 
plant species when it came to gmin, which is also confirmed by literature (Duursma, et al. 
2018). tCWC is positively correlated to the LT (r=0.37), gmin (r=-0.62),  and Suc (r=0.49). The 
tCWC is calculated from the gmin and the succulence and are likely correlated to each other 
due to this. However, plants  with a higher tCWC, will have more water available since 
succulent species can store water in their leaves. This allows them to can survive longer 
without water (Farooq, Wahid, et al. 2009). 
 
The second largest cluster contains the majority of the nutrients and all EIVs, as well as 
tCWC. The correlation between nutrients and Nu and R was expected, since the Landolt Nu 
value explains the nutrient availability (mainly N, P and K) and the R is the soil reaction, 
which is strongly related to the availability of nutrients. However, the soil moisture (F) and 
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temperature (T) are also grouped in this cluster, but there seems to be no previous research 
into this relationship. Landolt F and Nu are correlated with each other (r=0.59), which 
means that when the nutrient availability increases, the soil humidity also increases. As 
these are the correlations between the species-means, this indicates that species with a 
high humidity requirement are likely to prefer nutrient rich soils.  
 
The two final small clusters are quite interesting. One contains SLA, Chl, B and K. SLA is a 
ratio between the leaf area and the dry mass, which reflects the relative growth rate of the 
plant (Mengzhou Liu, et al. 2017). It is a morphological trait, that can influence the 
resistance to drought. A previous study has found a negative correlation between SLA and  
CWC, in 14 plant species that were sampled from different habitats (Reich, Walters and 
Ellsworth 1992). In our data, the SLA was negatively correlated with the tCWC (r=-0.42). This 
indicates that species with a high SLA then to have a lower CWC. Since a high SLA reflects a 
high relative growth rate, this suggests that plants with a high SLA invest more resources 
into growth, and thus require more water (Reich, Walters and Ellsworth 1992). Alpine plant 
species are generally characterized as having a low SLA and are therefore likely to be more 
drought resistant than species at lower elevations (Körner 2021).  
 

4.3 Changes in species attributes   

Changes in species abundance  
Our results showed that there were changes in species abundance between 2001 and 2015. 
We assumed that with the change in species abundance, there would also be a change in 
the trait composition of alpine communities. We tested if the composition of the species 
community changed using an anosim test, and it showed that the composition of the 
species community did not change between 2001, 2008 and 2015 (p-value = 0.9).  
 
We also looked at if the functional trait community changed. We performed a MANOVA on 
all of the CWM trait data between the three years, which found no significant difference (p-
value=0.92), and an ANOVA per functional trait, which also did not show significant 
difference. This is likely due to the fact that the most dominant species, C. firma, has not 
changed much in abundance between 2001 and 2015 (increased by 1.8%). Because C. firma 
was the species with the highest average cover, it is likely to have biased the CWM output 
since it is present on almost all of the plots and changed very little between 2001 and 2015. 
A study by Zelený (2017) explains that, in certain cases, the use of CWM results in highly 
biased results in terms of the significance of the relationship between the CWM and the 
sample attributes, in our case the EIVs and functional traits, and the effect size.  
 

Modelling of species attributes  
Because there was no change in the community-weighted means of the functional traits, we 
also wanted to look at if the traits could explain the changes in individual species’ 
abundance. Therefore, in addition to the visualization of the trait clusters and correlations, 
we also checked if any functional traits or EIVs were significant in explaining the change in 
species abundance in a regression model.  
 
For the EIVs, we wanted to check  if any of the Landolt values were significant in explaining 
changes in species abundance. Out of all the Landolt values, only T was significantly related 
to change in species abundance. The linear model showed that, for the target species, the 
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abundance of species with a higher temperature preference were increasing (R2=0.19, p-
value = 0.019). This has also been determined by previous studies (Lamprecht, et al., 2018; 
Steinbauer, et al., 2018).  
 
As an alternative to looking at EIVs, we also looked if functional traits could explain changes 
in species abundance and composition. An ANOVA that tested for difference between the 
CWM of the three years showed that the functional trait composition did not change. As 
explained, this is likely due to the fact that the most dominant species, C. firma, stayed very 
constant over the years. We therefore also looked at if the functional traits of the species 
means could explain the change in species abundance. We started with a reduced model, 
containing SLA, LT50, height, LA, LT, and Sol, to avoid over-parameterization, and found 
some traits that are significant. A stepwise reduction by AIC resulted in the best model that 
includes LT50, height and Sol leaf solidity and height having a highly significant effect. This 
model was only significant when weighing by average cover (cov0.5 ), but not in an 
unweighted model. By weighing our model, species with low occurrences do not count 
equally to species with a high occurrence. Therefore, the change in species abundance can 
be explained by the increase in both plant height and solidity. This could mean that leaves 
with more leaflets or deep lobes (low solidity) become less common. Plant height is 
important for species growing in harsh conditions, as increased snow cover, low 
temperatures, and hard winds. Typical growth forms of Alpine plants include rosette, 
creeping and cushion plants (Körner 2021). But, with increasing temperatures, previous 
research has found that there will be a pronounced shift to taller plant communities with 
more resource investment (high SLA) as a result of long-term warming (Bjorkman, et al. 
2018). Bjorkman, et al. (2018) found that over 27 years of monitoring, the plant height was 
the only CWM trait that changed significantly at nearly every site they sampled as a result of 
temperature increase. This is likely due to the migration of taller species from lower, 
warmer microclimates that move upwards, rather than the loss of short species (H. Pauli, et 
al. 2012, Bjorkman, et al. 2018, Parolo and Rossi 2008).   
 
Soudzilovskaia, et al., (2013) also did research into explaining changes in species abundance 
using functional traits and found that alpine plant species with high resource input traits, 
like a low SLA and thick leaves, increase in abundance with an increase in temperature. The 
functional traits SLA and LT were thus significant in explaining the change in species 
abundance. Their study took place in the Caucasus mountains in Russia, where they 
measured the functional traits of 50 different plant species. The study differs from ours in 
the way that they measured the species abundance: GLORIA measures species by cover (%), 
while Soudzilovskaia, et al., (2013) measured by the annual abundance (number of shoots 
per m2). This could also have an influence in calculation of which, if any, functional traits can 
explain changes in abundance.  
 
As an alternative to a model with individual functional traits, we also regressed the change 
in species abundance with the two main components of a PCA and found that the PC2 
reflects the change in abundance the best. Our data-set contains many functional traits, 
with almost half of them being nutrients. This affects the outcome, with many nutrients 
scaling along the PC1. Therefore, the more important functional traits generally scale on the 
PC2. The traits with the highest & lowest scores on the PC2 are SLA, Suc, tCWC, height & LT.  
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4.4 Reflections and outlook 
We set out to explain if changes in alpine vegetation are reflected in their functional traits. 
Our results showed that, while there were changes in abundance for the individual species, 
the overall community did not change significantly. This likely affected the community-
weighted means, which were dominated by the species C. firma. Due to that bias, the CWM 
of the functional traits did not show changes. We were however able to show that the 
changes in abundance for our target species are reflected by the trait’s height and solidity. 
The EIV Landolt T also reflected the change in abundance. It was surprising that none of the 
traits related to drought resistance (succulence, gmin, tCWC, CWC) were among the 
predictors of changes in species abundance in the regression model. Since the Landolt 
values are species related, there could be a difference in habitat preference between the 
same species growing at lower vs. higher altitudes. The Landolt T value as a predictor for the 
change in species abundance may therefore be weak since the values are ordinal and 
subjective and may not reflect the actual preferences of the sampled species. The Landolt 
values are also not likely to change, as they are static, and using them to explain dynamic 
changes (change in species abundance) is also something that must be taken into 
consideration. 
 
Another important part of this study were the data transformations and working with the 
linear models.  By changing the transformations of data (log vs. power transformation), the 
results of the linear models changed. By adding the average cover of the species as weight 
to the model, some predictors turned out to be significant, when without the weight they 
were not. This makes sense, since the model is weighted by the species that were more 
abundant and had more influence in the community. The same happened for the 
transformations. The model with the Landolt T value was significant with a power0.5 
transformation, but not with a log+1 transformation. We chose standard transformations 
for the present analysis but given that these details of the analyses are to some extent 
subject to individual choices, obtaining the same outcome with alternative tests would 
provide more confidence.   
 
A limitation in this study was the small dataset. Many traits were measured for a few 
species, which increases the chances of false positive effects (type I errors). Therefore, we 
started with a reduced trait set in the linear models to reduce the over-parameterization of 
the model. With a larger list of species, the chances for these effects decreases, and true 
underlying patterns may be observed more easily.  
 
This study was an initial attempt for the location Hochschwab, but the approach taken in 
study can also be used more widely. Other studying are trying to explain if changes 
vegetation can be related to functional traits. Another ecological survey was performed on 
Hochschwab in 2022, which will provide more robust data on directional changes in 
abundance. The past 8 years were the warmest years on record, with 2016, 2019 and 2020 
being in the top three (World Meteorological Organization 2023). It is therefore important 
to include the latest changes in alpine vegetation and relate these changes to functional 
traits. In the Italian Alps, ecological surveys found that the species composition has changed 
over the past 20 years, with the proportion of thermophilic species increasing (Porro, et al. 
2022). In Sweden however, surveys done in 2001, 2008 and 2019 found only minor changes 
in the community composition, with vascular plants having a remarkable steady assemblage 



 

 
 

34 

(Hagenberg, et al. 2022). This shows that plant species and communities react differently to 
climate induced changes everywhere, which is why it is important to keep monitoring in the 
future as well.   
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A. Table with target species  
S1: List with target species. The species name, the summits that the species can be found at, and the summit that the species were collected.  

Species GHK WEK ZAK ZIK 
number of summits 

Hochschwab 
Collected at: 

Androsace chamaejasme Wulfen 1 1 1 1 4 ZAK 

Armeria maritima (Mill.) Willd. subsp. alpina (Willd.) 
P.Silva 

1 1 1 1 4 GHK 

Aster bellidiastrum (L.) Scop. 1 1 1 1 4 GHK 

Bartsia alpina L. 1 1 1 1 4 GHK 

Carex atrata L. subsp. atrata 1 1 1 1 4 GHK 

Carex firma Host 1 1 1 1 4 WEK 

Carex sempervirens Vill. 1 1 1 1 4 WEK 

Doronicum glaciale (Wulfen) Nyman 1  1  2 GHK 

Dryas octopetala L. 1 1 1 1 4 WEK 

Festuca versicolor Tausch subsp. brachystachys (Hack.) 
Markgr.-Dann. (zu F. varia agg) 

1 1 1 1 4 WEK 

Gentiana clusii E.P.Perrier & Songeon 1 1 1 1 4 WEK 

Geum montanum L. 1 
 

1 1 3 GHK 

Helianthemum oelandicum (L.) DC. subsp. alpestre 
(Jacq.) Breistr. syn H.alpestre 

1 1 1 1 4 WEK 

Homogyne discolor (Jacq.) Cass. 1 1 1 1 4 GHK 

Kobresia simpliciuscula (Wahlenb.) Mack.  1 
  

1 WEK 

Leontodon hispidus L. 1 
  

1 2 WEK 

Luzula glabrata (Hoppe) Desv. 
 

1 1 1 3 GHK 

Polygonum viviparum L. 1 1 1 1 4 GHK 

Potentilla clusiana Jacq. 
  

1 1 2 ZAK 

Ranunculus alpestris L. subsp. alpestris 1 1 1 1 4 GHK 



 

 
 

IX 

Ranunculus montanus Willd. 1 1 1 1 4 GHK 

Salix reticulata L. 1 1 1 1 4 GHK 

Salix retusa L. 1 1 1 1 4 GHK 

Saxifraga paniculata Mill. 
 

1 1 1 3 WEK 

Sesleria albicans Kit. ex Schult. 1 1 1 1 4 WEK 

Silene acaulis (L.) Jacq. subsp. acaulis 1 1 1 1 4 GHK 

Thymus praecox Opiz subsp. polytrichus (A.Kern. ex 
Borb s) Jalas 

1 1 1 1 4 GHK 

Vaccinium vitis-idaea L. subsp. vitis-idaea 1 1 
 

1 3 WEK 
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B. Table with additional information on target species  
S2: Ecological indicator values (Landolt 2010) and abbreviations used in Fig. 8 for  the target species. 

Species name sp_code Family T F R Nu 

Androsace chamaejasme andr_cham Primulaceae 1.5 2 2 5 

Armeria maritima arme_mari Plumbaginaceae 1 2 2 2 

Aster bellidiastrum aste_bell Asteraceae 2 3.5 4 2 

Bartsia alpina bart_alpi Orobanchaceae 2 4 3 3 

Campanula scheuchzeri camp_sche Campanulaceae 1.5 2.5 3 3 

Carduus defloratus card_defl Asteraceae 2.5 2 4 3 

Carex atrata care_atra Cyperaceae 1.5 3.5 3 2 

Carex firma care_firm Cyperaceae 1.5 2 5 1 

Carex sempervirens care_semp Cyperaceae 1.5 2 3 2 

Crepis aurea crep_aure Asteraceae 2 3 3 4 

Doronicum glaciale doro_glac Asteraceae 1.5 3.5 3 3 

Dryas octopetala drya_octo Rosaceae 1.5 2.5 5 2 

Empetrum nigrum empe_nigr Ericaceae 3 3.5 2 1 

Festuca versicolor fest_vers Poaceae 1.5 2 2 2 

Gentiana clusii gent_clus Gentianaceae 1.5 2.5 5 2 

Geum montanum geum_mont Rosaceae 1.5 3 2 2 

Hedysarum hedysaroides hedy_hedy Fabaceae 1.5 3 4 3 

Helianthemum oelandicum heli_oela Cistaceae 1.5 2 5 1 

Homogyne discolor homo_disc Asteraceae 1.5 3.5 4 2 

Kobresia simpliciuscula kobr_simp Cyperaceae 1.5 4 4 1 

Leontodon hispidus leon_hisp Asteraceae 3 2.5 4 3 

Ligusticum mutellina ligu_mute Apiaceae 1.5 3.5 2 3 

Luzula glabrata luzu_glab Juncaceae 1.5 3.5 4 3 

Petrocallis pyrenaica petr_pyre Brassicaceae 1.5 2 5 1 
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Phyteuma orbiculare phyt_orbi Campanulaceae 2.5 3 4 2 

Polygonum viviparum ploy_vivi Polygonaceae 1.5 3 3 2 

Potentilla clusiana pote_clus Rosaceae 1.5 1.5 5 1 

Primula auricula prim_auri Primulaceae 1.5 3.5 5 2 

Primula clusiana prim_clus Primulaceae 1.5 2.5 5 2 

Ranunculus alpestris ranu_alpe Ranunculaceae 1.5 3.5 4 2 

Ranunculus montanus ranu_mont Ranunculaceae 2 3.5 4 4 

Salix reticulata sali_reti Salicaceae 1.5 3 5 2 

Salix retusa sali_retu Salicaceae 1.5 3 4 2 

Saxifraga paniculata Mill. saxi_pani Saxifragaceae 2 2 4 2 

Sesleria albicans sesl_albi Poaceae 2 2 4 2 

Silene acaulis sile_acau Charyophyllaceae 1 3 4 1 

Thymus praecox thym_prae Lamiaceaae 4.5 1 4 2 

Vaccinium myrtillus vacc_myrt Ericaceae 2.5 3 1 2 

Vaccinium uliginosum vacc_ulig Ericaceae 3 4 1 2 

Vaccinium vitis-idaea vacc_viti Ericaceae 2.5 2.5 1 2 

Valeriana celtica vale_celt Valerianaceae 1 2 2 2 

Viola biflora viol_bifl Violaceae 2 4 3 4 
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C. Leaf drying curves  

 
S3: Relative water content (RWC) over time (in hrs) from the weight-loss curves.  

 
S4: Shows the chlorophyll fluorescence (Fv/Fm) against the relative water content (RWC) from the weight-loss curves.  
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S5: Effect of temperature on chlorophyll fluorescence Fv/Fm (Yield) used to assess frost tolerance.  
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