Universität für Bodenkultur Wien
Institut für Landtechnik
Thema
Der Kopfraumbedarf von Fleckvieh- und Holsteinrindern beim Aufstehvorgang, sowie dessen Auswirkungen auf die praktische Tierhaltung
Masterarbeit zur Erlangung des akademischen Grades:
Master für Nutztierwissenschaften an der Universität für Bodenkultur Wien
vorgelegt von:
Johann Bachschweller
am: 06. März 2009

<u>Inhaltsverzeichnis</u>

		Seite
	Tabellenverzeichnis	5
	Bilderverzeichnis	6
1.	Einführung	8
2.	Problemstellung	9
2.1	Das Liegeverhalten des Rindes	10
2.2	Das Bewegungsmuster beim ungehinderten Aufstehvorgang	12
2.2.1	Aufrichten auf die Karpalgelenke	12
2.2.2	Vorschwung	13
2.2.3	Hochschwingen der Nachhand	14
2.2.4	Anhalteposition	15
2.3	Belastung der Vorderextremitäten während des Aufstehens	17
2.4	Raumbedarf von Milchkühen	19
2.5	Energieverbrauch beim Aufstehen	23
3.	Zielsetzung	24
4.	Tiere, Material und Methoden	25
4.1	Betriebe	25
4.2	Körpermaße und Messmethoden	26
4.3	Aufnahmetechnik und Datenerfassung	28
4.4	Vermessungspunkte	30
4.5	Probleme bei der Versuchsdurchführung	34
5.	Ergebnisse und Diskussion	35
5.1	Ergebnisse der Fleckviehbetriebe	35
5.1.1	Ergebnisse Betrieb Baumann	36
5.1.2	Ergebnisse Betrieb Leithner	38
5.1.3	Ergebnisse Betrieb Schustereder	40
5.1.4	Auswertung Fleckviehkühe gesamt	41
5.2	Körperdaten der Holsteinkühe	37
5.3	Vergleich zwischen Fleckvieh und Holsteinherden	50

5.4	Analyse des ersten Vorwärtsschrittes	55
5.5	Der Kopfraumbedarf von Jungrindern	57
5.6	Entwicklungstrends seit 1984	63
5.6.1	Entwicklung des Raumbedarfes seit 1984	63
5.6.2	Der Zeitbedarf beim Aufstehvorgang 1984 und heute	66
5.7	Ergebnisse anderer Untersuchungen zum Kopfraumbedarf	67
5.8	Der Einfluss des Skelettes auf den Kopfschwung	68
6.	Schlussfolgerungen für die Praxis	70
6.1	Behinderungen des Kopfschwunges im Kurzstand	71
6.2	Behinderungen des Kopfschwunges im Mittelllangstand	73
6.3	Behinderungen des Kopfschwunges im Langstand	74
6.4	Einschränkung des Kopfweges in Laufställen mit Liegeboxen	75
6.5	Der Kopfraumbedarf und seine Umsetzung in der	
	österreichischen Tierhaltungsverordnung	78
7.	Weiterführende Arbeiten	78
7.1	Bewertung der Regressionsgeraden und Formeln	79
7.2	Praxisversuch über Energiefreisetzun beim Ausfallschritt	79
7.3	Analyse der Kopfraumbedarfsformel von Jungrindern	80
7.4	Der Kopfraumbedarf bei männlichen Rindern	80
7.5	Verletzungen im Kopfbereich durch Einschränkungen	
	in der Bewegungsmöglichkeit	81
7.6	Technische Verbesserungen des Kurzstandes	81
8.	Zusammenfassung	82
9.	Literaturverzeichnis	87
10.	Anhang	90
	Danksagung	101

<u>Tabellenverzeichnis:</u>

		Seite
2.1	Mindestmaße für Liegeboxen in Gruppenhaltungen (OFNER 2004,11)	20
4.1	Definition der Digitalisierungspunkte zu Abb. 4.2 (LUDWIG 1984,22)	31
4.2	Vermessungspunkte mit Definition	32
5.1	Körperdaten Kühe Baumann	36
5.2	Koordinaten Kopfschwung Kühe Baumann	36
5.3	Körperdaten Kühe Leitner	38
5.4	Koordinaten Kopfschwung Kühe Leitner	38
5.5	Körperdaten Kühe Schustereder	40
5.6	Koordinaten Kopfschwung Kühe Schustereder	40
5.7	Körpermaße aller Fleckviehkühe	42
5.8	Koordinaten Kopfschwungraum, Schrittlänge und Kopfweg	43
5.9	Korrelation zwischen Körpermaßen und Umhüllungspunkten	45
5.10	Körperdaten der Holsteinkühe	47
5.11	Koordinaten Kopschwung Holsteinkühe	48
5.12	Korrelation zwischen Körpermaßen und Umhüllungspunkten bei Holstein	49
5.13	Körpergewichte und Abmessungen der Holsteinjungrinder	58
5.14	Umhüllungspunkte und Zeitbedarf bei Holsteinjungrindern	58
5.15	Korrelationen zwischen Körpermaßen und Umhüllungspunkten	60
5.16	Zeitbedarf für die einzelnen Phasen des Aufstehens nach LUDWIG (1984)	66

Bilderverzeichnis

		Seite
2.1	Liegepositionen von Rindern nach SCHNITZER (1971, 20)	11
2.2	Schema des Aufstehens nach SCHNITZER (1971, 22)	12
2.3	Aufrichten auf die Karpalgelenke	13
2.4	Vorschwung	14
2.5	Aufschwingen der Nachhand	14
2.6	Schema des Schleuderbrettes nach SCHNITZER (1971, 20)	15
2.7	Anhalteposition	16
2.8	Aufstellen des ersten Vorderfußes	16
2.9	Kraftlinien während des Aufstehens	18
2.10	Messpunkte für Widerrist und schräge Rumpflänge	19
2.11	Pferdeartiges Aufstehen bei Holsteinkuh (Quelle BOXBERGER)	21
2.12	Pferdeartiges Aufstehen (SCHNITZER 1971)	21
2.13	683 kg schwere Kuh in Hochbox mit 250 cm Gesamtlänge	23
4.1	Messpunkte für die Körperdatenerfassung an der Milchkuh	28
4.2	Umhüllungslinie einer aufstehenden Kuh mit eingezeichneten	
	Digitalisierungspunkten (BOXBERGER 1983)	30
4.3	Vermessungspunkte auf der Umhüllungslinie	33
5.1	Umhüllungspunkte Kopfschwünge Betrieb Baumann	37
5.2	Umhüllungspunkte Kopfschwünge Betrieb Leitner	39
5.3	Umhüllungspunkte Kopfschwünge Betrieb Schustereder	41
5.4	Vermessungspunkte aller Fleckviehkühe	44
5.5	Punktewolke mit allen erfassten Werten und der Regression (Vpx : sRl)	45
5.6	Umhüllungspunkte der HF Kühe	49
5.7	Umhüllungspunkte Fleckvieh- und Holsteinkühe	51
5.8	Umhüllungspunkte als Balkendiagramm mit Standartabwichung	52
5.9	Aufstehvorgang mit Bodenkontakt des Unterkiefers	53
5.10	Unterschiedliche Maulspitzenbewegungen bei Holstein und Fleckvieh	54

0.11	rublangen und winkelmessung beim Aufsetzen des ersten vorderfübes	56
5.12	Durchschnittliche Umhüllungspunkte der einzelnen Kälbergruppen	59
5.13	Korrelation Gewicht zu Zeit mit Regressionslinie	61
5.14	Korrelation Wh und Vpx mit Regressionslinie	62
5.15	Verschiedene Kopfschwünge FV und SB (LUDWIG 1984)	64
5.16	Verschiedene Kopfschwünge bei modernen FV- und HF-Kühen 2007	64
5.17	Weg der Maulspitze beim Aufstehvorgang (LUDWIG 1984)	65
5.18	Weg der Maulspitze beim Aufstehvorgang 2007	65
5.19	Rinderskelett nach KÖNIG und LIEBICH (1999)	68
5.1	Kopfschwungraum und tatsächlicher Raumbedarf des Rindes	71
5.2	Kurzstandanbindehaltung und Kopfraumbedarf des Rindes	72
5.3	Mittellangstand und Kopfraumbedarf des Rindes	73
5.4	Langstand und Kopfraumbedarf des Rindes	74
4.5	Tiefbox mit Kopfschwunglinie und kritischen Punkt bei der Bugschwelle	77

1 Einführung

Die Spezialisierung in der tierischen Produktion hat in den letzten Jahren und Jahrzehnten weiter zugenommen. Durch Produktionsbeschränkungen wie etwa dem Milchkontingent, oder aber auch Bestandsobergrenzen sind dem Milch erzeugenden Landwirt Grenzen gesetzt, die ein Wachstum erschweren und die Flexibilität nehmen. Auch wenn die Milchpreise momentan so hoch liegen wie schon zwanzig Jahre nicht mehr, muss mit einem neuerlichen Preisrückgang gerechnet werden. Lohn- und Betriebsmittelkosten steigen jährlich an. Milcherzeuger sehen sich gezwungen, die Produktionskosten zu reduzieren, um auch in Zukunft wettbewerbsfähig zu bleiben und einen ausreichenden Gewinn zu erwirtschaften. Die Strategien reichen hierbei von frühem Erstkalbealter, über niedrige Gebäudekosten bis zu einer niedrigeren Remontierungsrate. Darüber hinaus gibt es weitere Einsparungsmöglichkeiten. So wird auf den Kuhkomfort immer noch zu wenig Wert gelegt.

Das österreichische Tierschutzgesetz mit seinen zehn Verordnungen versucht auch positiv auf haltungsbedingte Missstände einzugehen und so zumindest haltungsbedingte Tierquälerei zu verhindern. Dass hierbei allerdings nicht konsequent genug vorgegangen wird ist Tatsache. So plant die EU etwa im Rahmen eines Tierschutz Aktionsplanes, dass es auch in Zukunft kein Verbot der Anbindehaltung geben soll. Weiters soll sich die Anbindehaltung auch nicht im Rahmen der Cross Compliance auswirken (TOP AGRAR, 2006, R3). Obwohl in letzter Zeit Ställe gebaut werden, die etwas mehr Raum bieten, wie etwa bei den Laufgangbreiten, so arbeiten die Herstellerfirmen trotzdem nur mit Mindestnormen. Grundlage für solche Mindestnormen sind Bedarfsnormen, wie sie entweder in Tierhaltungsverordnungen oder in Beratungsunterlagen dargestellt werden. Diese Bedarfsnormen beruhen oftmals auf Untersuchungen, die bereits Jahrzehnte zurückliegen. Da sich im Zuge des Züchtungsfortschrittes die Größe der Milchkühe verändert hat, bedarf es neuer Untersuchungen, in welchem Umfang sich diese Veränderungen auf den Platzbedarf im Stall auswirken.

2 Problemstellung

Unsere heutigen hochgezüchteten Milchkühe stammen von Urformen wie etwa dem Auerochsen ab. Ausgewachsene weibliche Auerochsen erreichten eine Schulterhöhe von bis zu 170 cm und ein Gewicht von etwa 800 kg (WAIBLINGER, et. al., 2003,). Männchen waren sogar noch größer. Dieses Tier war ein Steppen- und Waldbewohner. Weiters lebten diese Tiere in Rudeln. Im Ausfallschritt grasend legten sie täglich ca. 5 km zurück. Auerochsen waren nicht ortsgebunden. Auch heutige Kühe zeigen noch diese Eigenschaft. Entkommen sie einer Weide, kehren sie meist nicht von selbst in den Stall zurück, sondern entfernen sich friedlich grasend immer weiter. Auch viele andere arttypischen Eigenschaften hat das Rind trotz Domestizierung beibehalten. Hierzu gehört etwa der Weideausfallschritt. Heutige Fressgitter müssen entweder einen Ausfallschritt ermöglichen, oder das Trogniveau muss angehoben sein, um ihnen die Futteraufnahme zu erleichtern und so eine Überlastung des Bewegungsapparates zu vermeiden.

Der Auerochse und auch unsere heutigen Kühe sind Graser. Der Untergrund auf Weiden ist bedingt durch Erdreich und Humus weich und verformbar und schont somit Klauen und Gelenke. Heute gängige Spalten- und Betonböden werden diesen Anforderungen nicht gerecht. Mit einer erhöhten Belastung der Gelenke ist zu rechnen, Das wiederum beeinträchtigt die Langlebigkeit der Tiere (KILIAN, 2007, 26). Gleiche Anforderungen wie an die Laufflächen stellen die Kühe auch an die Liegeflächen. Der Untergrund muss weich und verformbar sein, sprich sich den Körperformen anpassen. Durch diese weiche Unterlage werden die ruhenden unter den Körper geschlagenen Gelenke besser gegen Verletzungen geschützt. Auch ist für das Euter eine anpassungsfähigere Unterlage gegeben, die weniger Druck auf das Euter ausübt, wodurch vor allem bei sehr milchreichen Kühen die Milch nicht so leicht in den Liegebereich ausläuft (MALKOW-NERGE, 2006, R7). Neben dem Untergrund spielt aber auch die Größe der Liegefläche eine entscheidende Rolle. Bis heu-

te gibt es kein Liegeboxensystem das voll befriedigt. Treffen doch hierbei die Bedürfnisse der Kuh nach genügend Raum beim Aufstehen und Abliegen nicht auf die Wünsche des Landwirtes (TROXLER, 2004, 28). Der Landwirt möchte möglichst viele Tiere im Stallgebäude halten, um so die Kapazitäten besser zu nutzen. Weiters möchte der Landwirt möglichst wenig Arbeit für die Boxenreinigung aufbringen. Deshalb gestaltet er die Boxen möglichst kurz, um die Kuh dazu zu zwingen auf den Laufbereich zu koten. Gleichzeitig nimmt er der Kuh den nötigen Schwungraum für ein ungehindertes Aufstehen.

Jede Tierart zeigt ein ganz artspezifisches Abliege-, Aufsteh-, und Ruheverhalten. Dieses Verhalten wird auch unter eingeschränkten Bedingungen beibehalten. Dies gilt solange die jeweiligen Aufstallungsarten genügend Freiraum dafür bieten (TSCHANZ und KRÄMER, 1977, 23), (ZEEB, 1968, 26). Ist dies nicht mehr der Fall, tritt nicht arttypisches Aufstehen auf. Rinder zum Beispiel stehen dann pferdeartig auf. Dadurch müssen sie mehr Muskelkraft einsetzen. Klauen und Gelenkschäden sind die Folge. Auch Hüfte und Euter sind dadurch verletzungsanfälliger (KOCH, 1968, 8).

Fälle mit schweren Verletzungen und dem darauf folgenden Abgang der Tiere kommen vor. Meist aber zeigen sich die haltungsbedingten Schäden durch eine verkürzte Lebensdauer und zu einer durch Stress veranlassten, geringeren Milchleistung.

2.1 Das Liegeverhalten des Rindes

Grundbedingung für das Aufstehen des Rindes ist das vorherige Liegen. Das Ruhen ist weiters ein wesentliches Grundbedürfnis von Rindern. Der Faktor Kuhkomfort, zu dem auch das Liegeverhalten und der Liegeplatz dazu zählen, haben etwa. 25% Einfluss auf die Leistungsbildung. Dieser Einfluß ist in etwa so hoch, wie der der Fütterung (FISCHER-COLBRIE, 2005). Kühe ruhen etwa 30 bis 50 Prozent des Tages (HÖRNING, 2001, 158). Bei optimal gestaltetem Liege-

komfort liegen die Kühe bis zu 14 Stunden täglich (FISCHER-COLBRIE, 2005, 3). Die Liegeperioden teilen sich auf etwa 5 bis zehn Perioden, zu je ein bis eineinhalb Stunden auf (KÄMMER u. SCHNITZER, 1975). Kühe haben nur eine Tiefschlafphase von etwa 30 Minuten pro Tag. Diese kann allerdings auf mehrere Male aufgeteilt werden. Während der Tiefschlafphase nehmen Kühe eine sternförmige Ruhestellung mit eingeschlagenem und auf dem Bauch abgelegtem Kopf ein. Generell kann man vier wesentliche Liegepositionen unterscheiden (SCHNITZER, 1971):

- Vorderbeine nach vorne gestreckt
- > Vorderbeine eingeschlagen
- ➤ Volle Seitenlage
- > Sternförmige Ruhestellung

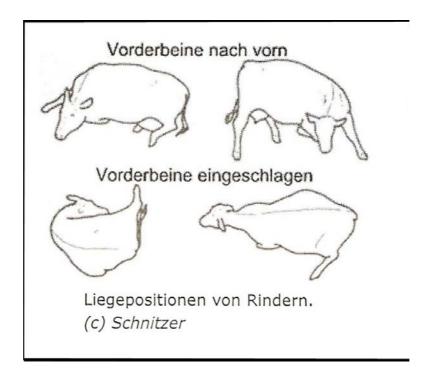


Abb. 2.1: Liegepositionen von Rindern, nach SCHNITZER

2.2 Das Bewegungsmuster beim ungehinderten Aufstehvorgang

Erste grundlegende Untersuchungen über das Aufstehen des Rindes führte SCHNITZER durch (SCHNITZER, 1971, 20) Er unterteilte dabei den Bewegungsablauf in sechs Positionen. Siehe hierzu Abb. 2.2.

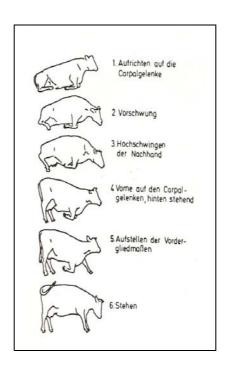


Abb. 2.2: Schema des Aufstehens nach SCHNITZER

2.2.1 Aufrichten auf die Karpalgelenke

Dem Aufstehen geht in der Regel eine Vorbereitungsstellung voraus, in der die Vordergliedmaßen unter den Körper geschlagen werden. Die Hintergliedmaßen werden ebenfalls eng an den Körper gezogen. Die Kuh befindet sich jetzt in der Brustlage. Das ist auch die Lage, die direkt nach vollzogenem Abliegen eingenommen wird. Das Aufstehen erfolgt nun in drei Abschnitten: Phase 1 ist dadurch gekennzeichnet, dass die Hinterhand den Körper nach vorne schiebt, bis das Gewicht der Vorhand auf dem Karpalgelenk ruht. Gleichzeitig wird der Kopf in die Höhe bewegt, um so nötigen Schwungraum für die Position 2 zu schaffen. Es sei hierbei noch erwähnt, dass nicht nur die Hinterhand den Körper über die Karpalgelenke schiebt, sondern dass auch gleichzeitig die Karpalgelenke selber um bis zu 25 cm unter den liegenden Körper gezo-

gen werden. Abb. 2.3 zeigt das beginnende Aufrichten auf die Karpalgelenke.

Abb. 2.3: Aufrichten auf Karpalgelenke

2.2.2 Vorschwung

Dem Unterziehen der Karpalgelenke folgt ein nach vorne Schieben des Körpers, sodass das Gewicht der Vorhand auf den Karpalgelenken lastet. Der Kopf wird nun nach unten vorne gestoßen. Hiermit wird auch Phase zwei eingeleitet, die als Schleuderbrettbewegung bezeichnet wird. Abb. 2.4 zeigt das nach vorne und unten führen des Kopfes. Gleichzeitig lässt sich erkennen, dass hierbei die Karpalgelenke als Dreh- und Angelpunkt für die Schleuderbrettbewegung dienen.

Abb. 2.4: Vorschwung

2.2.3 Hochschwingen der Nachhand

Mit dem Hochschwingen der Hinterhand wird auch Phase 2 der Schleuderbrettbewegung eingeleitet. Durch die Anwendung von Muskelkraft, sowie durch Kontraktion des Rumpfstreckers, wodurch dann der Kopf wieder nach oben schnellt, wird die Hinterhand in die Höhe bewegt. Abbildung 2.5 zeigt das Aufschwingen der Nachhand. Abbildung 2.6 zeigt schematisch wie die Schleuderbrettbewegung zu verstehen ist.

Abb. 2.5: Aufschwingen der Nachhand

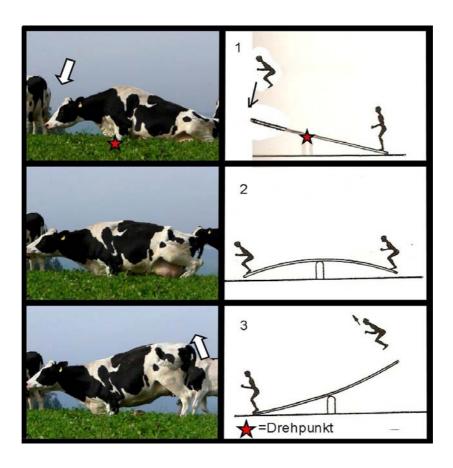


Abb. 2.6: Schema des Schleuderbrettes nach SCHNITZER (1971, 20)

2.2.4 Anhalteposition

Mit dieser Bewegung schließt die Schleuderbrettphase ab. Das Tier steht mit den Hinterfüßen bereits, während es mit den Vorderfüßen noch auf den Carpalgelenken kniet. Es herrscht hierbei ein stabiler Zustand in dem das Tier auch einige Zeit verharren kann. Deshalb auch der Name Anhalteposition. Abb. 2.7 zeigt eine typische Anhalteposition.

Abb. 2.7: Anhalteposition

2.2.5 Aufstellen der Vordergliedmaßen

Aus der Anhalteposition heraus setzt die Kuh einen Vorderfuß nach dem anderen unter. Dies wird auch als Phase 3 des Aufstehvorganges bezeichnet. Im Anschluss an das Aufstehen macht die Kuh gerne ein paar Schritte nach vorne und streckt sich dabei. Abbildung 2.8 zeigt das Untersetzen des ersten Vorderfußes.

Abb. 2.8: Aufstellen des ersten Vorderfußes

2.3 Belastung der Vorderextremitäten während des Aufstehens

METZNER (1976, 155) erforschte die Belastung der Vorderextremitäten während des Aufstehens. Hierbei wurde der Bewegungsablauf in mehrere Liegestellungen unterteilt. Position 1 die Liegestellung dient hierbei als Ausgangslage. Diese wechselt über in die Ausgangsstellung. Anhand der Wiegekurven kann man erkennen, dass hierbei schon ein Gewichtsmaximum auf die Karpalgelenke verlagert wird. Während der beginnenden Schleuderbrettphase wurde eine leichte Entlastung der horizontalen Kraft festgestellt, jedoch auch ein weiterer Anstieg der vertikalen Kräfte.

Ein zweites Maximum erreicht die Horizontalkraft beim Hochschleudern der Hinterhand. Dadurch, dass dieser Punkt auch einen Stopp der Vorwärtsbewegung kennzeichnet, erreicht auch die vertikale Kraft ihr Maximum in diesem Punkt. Durch ein Zurückverlagern des Gewichtes auf die Hinterhand, es werden hierbei etwa 58 Prozent des Gewichts auf die Hinterhand verlagert, erreicht die horizontale und die vertikale Kraft während des Aufstellens des ersten Vorderfußes ihr Minimum. Die Kraft wird in diesem Fall nicht auf alle drei verbleibenden Füße gleich übertragen, sondern das noch eingeschlagene Karpalgelenk hat die Hauptlast (42%) zu tragen. Die hohen vertikalen Kräfte die bei Punkt sieben erreicht werden, rühren laut Verfasser vom, dem Aufstehen folgenden sich Strecken her. Abbildung 2-8 zeigt die unterschiedlichen Kraftlinien mit den dazugehörigen Phasen des Aufstehens.

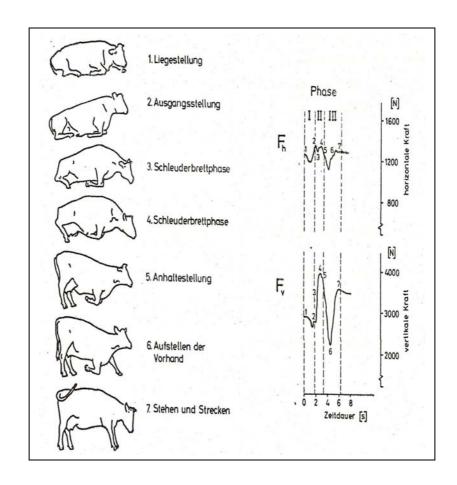


Abb. 2.8: Kraftlinien während des Aufstehens

Das Karpalgelenk des Rindes ist während des Aufstehvorganges und während des Abliegens hohen Belastungen ausgesetzt. Ca. 15mal am Tag rollt das Rind etwa 2/3 ihres Körpergewichtes über die Karpalgelenke ab.

2.4 Raumbedarf von Milchkühen

Die DLG (1996) gibt für den Raumbedarf zwei Formeln an.

L = 0.922x RS (cm) + 20 cm

B = 0.86x WH (cm)

L= Boxenlänge, RS= schräge Rumpflänge, B= Boxenbreite, WH= Widerrist. Abbildung 2.9 zeigt die genauen Messpunkte für die Körpermaßerhebung.

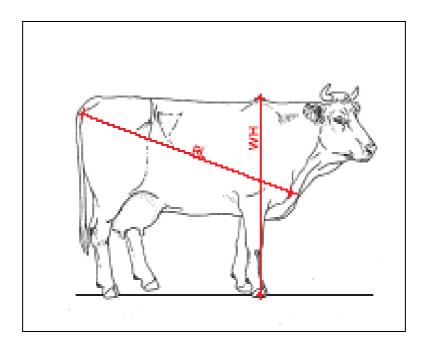


Abb. 2.9: Messpunkte für Widerrist und schräge Rumpflänge

Nach dieser Formel müssen für eine durchschnittliche Holsteinkuh bei 145 cm Widerrist und einer schrägen Rumpflänge von 169 cm, etwa 176 cm Liegeflächenlänge und ca. 125 cm Liegeflächenbreite angeboten werden. Bei dieser Berechnung ist der Kopfraum noch nicht eingeschlossen. COOK und NORD-LUND (2003, 92) geben einen Platzbedarf für den Kopfschwung von 130 bis 150 cm an. LUDWIG (1984, 67 ff) gibt für Deutsche Schwarzbunte durchschnittliche Werte von 108 cm und für Deutsches Fleckvieh 123,8 cm für den Kopfschwungraumbedarf an. Im KTBL- Arbeitsblatt 1102/1991 sind für den Kopfschwung vom Nackenriegel weg 70 cm angegeben. BOCKISCH (1991) gibt an, dass Kühe beim Aufstehen den Kopf 80 bis 160 nach vorne bewegen. OFNER, et al. (2006) geben den Platzbedarf nach Gewicht gestaffelt an. Tabelle 2.1 gibt diese Daten an.

Tab. 2.1: Mindestmaße für Liegeboxen in Gruppenhaltungen

Tiergewichte	Boxenlänge wandständig	Boxenlänge ge- genständig	Boxenbreite	
Bis 300 kg	190 cm	170 cm	85 cm	
Bis 400 kg	210 cm	190 cm 100 c		
Bis 550 kg	230 cm	210 cm	115 cm	
Bis 700 kg	240 cm	220 cm	120 cm	
Über 700 kg	260 cm	240 cm	125 cm	

BOXBERGER und WEBER (2002) fordern für einreihig- wandständige Boxen 180-190 cm Liegefläche (von Bugkante bis Boxenende) plus 100 cm für den Kopfraum. In Nordamerika wird für den lunge- oder bobroom (Kopfraum) eine Größe von 3 feet (ca. 91,5 cm) gerechnet. Für die Liegeflächenlänge werden 8 feet und 6 inches (ca. 259 cm)veranschlagt (COOK und NORDLUND, 2006, 92). Generell sind die Platzbedarfsangaben für die Liegeflächenlänge und Breite sehr genau angegeben und in Versuchen erfasst. Anders zeigt sich das Bild beim Kopfraum. Hier sind die Angaben von 70 bis 160 cm reichend. Dass ein Kopfraum notwendig ist, wird in allen gelesenen Studien bejaht. Wird den Kühen kein ausreichender Kopfschwungraum gewährt, kommt es zu pferdeartigem Aufstehen. Abbildung 2.10 zeigt uns solch pferdeartiges Aufstehen.

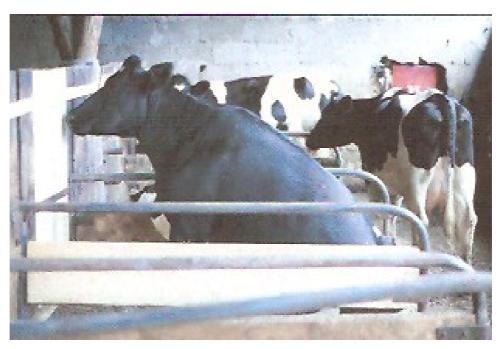


Abb. 2.10: Pferdeartiges Aufstehen bei Holsteinkuh

In Abbildung 2.12 ist pferdeartiges Aufstehen mit Rückwärtsbewegung vor dem Aufstellen der Vordergliedmaßen exemplarisch skizziert.

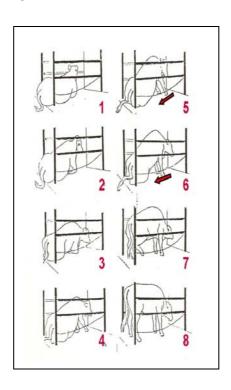


Abb. 2.12:Pferdeartiges Aufstehen (nach SCHNITZER, 1971)

Die Dauer des Aufstehens ist auch vom Aufstallungstyp abhängig. So konnten etwa in Tretmistställen durchschnittlich 6,1 Sekunden festgestellt werden. Im Boxenlaufstall hingegen durchschnittlich 8 Sekunden (BREITENBAUMER und BARTUSSEK, 1999). METZNER (1976, 153) fand bei Kühen im Kurzstand einen durchschnittlichen Zeitbedarf von etwa 7,05 Sekunden. Dieser Zeitbedarf konnte sich aber bei noch höherer Krippenwand bis auf 7,49 Sekunden ausdehnen. BOCKISCH(1991) stellte auf der Weide etwa 4 Sekunden fest. In Anbindeställen konnte er 7,69 Sekunden und in Boxenlaufställen etwa 6,89 Sekunden beobachten. In Nachrohranbindung wurden sogar durchschnittlich 9,02 Sekunden festgestellt (SAMBRAUS et al, 2000).

Generell ist bei zu klein gestalteten Boxen mit längeren Aufstehzeiten zu rechnen, die vor allem daher ruhen, dass die Kühe erstens den Kopfschwung nicht so schwungvoll ausführen können, wollten sie sich nicht verletzen und zweitens, dass sie in der Anhalteposition länger verharren (HÖRNING et al, 2000). In veralteten Liegeboxen konnte an 30-60% der Tiere pferdeartiges Aufstehen beobachtet werden (KÄMMER, 1980). Bei einer Nackenrohranbindung beobachtete SAMBRAUS et a., 2000) 41% pferdeartiges Aufstehen. Pferdeartiges Aufstehen gilt als Verhaltensstörung, weil es im Normalverhalten des Rindes nicht vorkommt. Folge davon sind Verletzungen und verkürzte Nutzungsdauer. Neben den Gelenk- und Bänderapparat sind auch die Verdauungsund Geschlechtsapparate dadurch beeinträchtigt.

Die heute angeführten Längen- und Breitenangaben für Mindestboxengrößen können dem Normalverhalten des Tieres nicht entsprechen. Abbildung 2.13 soll dies verdeutlichen. Die gezeigte Kuh hat eine Widerristhöhe von 147 cm und ein Gewicht von 683 kg. Sie liegt in einer wandständigen Liegebox mit 250 cm Gesamtlänge und 120 cm Breite.

Abb. 2.13: 683 kg schwere Kuh in einer wandständigen Hochbox mit 250 cm Gesamtlänge und 120cm Breite.

Diese Kuh benötigt bereits die gesamte Boxenlänge und auch Teile der Lauffläche um mit ausgestreckten Vordergliedmaßen liegen zu können. Nach der ThVO, Anlage 2, 4.2.2.1 dürfte dieses Tier aber auch noch in Boxen mit nur 240 cm Gesamtlänge gehalten werden (OFNER, et. al., 2006). Für den Kopfschwung fehlt jeglicher Raum. Ein Stirn- und ein Nasenriegel, sowie eine Aufstallungssäule schränken den Raum weiter ein. Diese Kuh muss um aufstehen zu können, den Kopf beim Aufstehschwung weit in die Nachbarbox strecken. Ob ein Vorwärtsschritt bei einer dermaßen hohen Bugschwelle möglich ist, ist ebenfalls in Frage zu stellen.

2.5 Energieverbrauch beim Aufstehen

LUDWIG (1984) errechnete, dass der theoretische Energieverbrauch pro Aufstehvorgang etwa 0,04% des Erhaltungsbedarfes beträgt. Bei einer 650 kg schweren Milchkuh sind dass etwa 0,0153 MJ/NEL. Dieser Bedarf kann mit etwa 2 Gramm Milchleistungsfutter mit 1 MJ/kg abgedeckt werden. Bei dieser Berechnung wurde angenommen, dass sich die Kuh nur mittels Körperkraft in die Höhe bewegt. Die unterstützenden Maßnahmen, wie etwa der Kopfschwung mit dem Schleuderbretteffekt, gingen in diese Berechnung nicht mit ein. Neuere Berechnungen und praktische Versuche konnten hierzu nicht gefunden werden. Aus eigenen Beobachtungen geht hervor, dass innerhalb der ersten drei Minuten nach dem Auftreiben, etwa 90% der Kühe zu grasen be-

gannen. Ein zusätzlicher Energieverbrauch wird dadurch wahrscheinlich ausgeglichen und sogar überkompensiert. Hinweise darauf gibt auch ein Artikel von TOP AGRAR (11/2003).

3 Zielsetzung

Die vorliegende Arbeit befasst sich mit dem Aufstehverhalten des Rindes. Dieser Arbeit liegt die Diplomarbeit von Karin LUDWIG, die sich 1984, also vor mehr als 24 Jahren sehr intensiv mit diesem Thema beschäftigt hat, zugrunde. Aufbauend auf Erkenntnissen dieser früheren Arbeit wird versucht nachzuvollziehen, ob die damals ermittelten Daten noch zutreffen, beziehungsweise ob sich durch Veränderung der heutigen Milchrassen durch Selektion und Weiterentwicklung Änderungen oder neue Probleme auftreten. Weiters soll die Hypothese, dass der Kopfraumbedarf von Körpermaßen oder Gewichten abhängig ist, überprüft werden.

Durch die sehr großen theoretisch möglichen Datenmengen, die sich erheben und auswerten ließen erscheint es nötig, um einen gewissen Überblick beizubehalten, dass in dieser Arbeit hauptsächlich der Kopfschwung mit all seinen Auswirkungen behandelt wird. Grundlage für diese Arbeit sind beobachtete Aufstehvorgänge auf dem freien Feld. Die Tiere können hierbei ihr artspezifisches Verhalten ausleben und liefern dadurch Ergebnisse und Anregungen wie ein modern angelegter Kopfbereich in Liegeboxen oder Anbindehaltung auszusehen hat. Für die Versuche wurden Tiere der Rasse Fleckvieh und der Rasse Holstein verwendet. Dies deshalb, um auch Vergleiche zwischen beiden Rassen zu ziehen und die Ergebnisse Rasse übergreifend brauchbar zu machen.

Die Arbeit wird ergänzt durch genauere Analysen des Aufstehvorganges sowie dessen zeitlichem Verlauf. Weiters wird versucht Schlüsse zu ziehen, ob Leistung, Gewicht oder Alter entscheidende Einflüsse auf den Raumbedarf haben. Die Arbeit beschäftigt sich auch intensiver mit dem Platzbedarf von Kälbern und Kalbinnen.

4 Tiere, Material und Methoden

Dieses Kapitel zeigt detailiert mit welcher Technik mit welchen Messmethoden und mit welchen Tieren die Grunddaten für diese vorliegende Arbeit erhoben wurden. Außerdem wird beschrieben, mit welchen mathematischen und statistischen Programmen gearbeitet wurde. Auch die Betriebe werden näher beleuchtet, weil das Tier immer als ein Produkt von Genetik x Umwelt betrachtet werden muss.

4.1 Betriebe

Die Versuche (zwei Vorversuche und zwei Hauptversuche) wurden auf fünf verschiedenen Betrieben durchgeführt. In den Fleckviehbetrieben BAUMANN, LEITNER und SCHUSTEREDER in Andorf. Es wurden 46 Fleckviehkühe auf der Weide mithilfe einer Digitalkamera auf ihr Aufstehverhalten und ihren Kopfschwung analysiert. Der gleiche Versuch wurde auf dem Betrieb GROSZPÖTZL in Sigharting an 31 Holsteinkühen durchgeführt. Beim Betrieb BACHSCHWELLER in Andorf wurden die Vorversuche 1 und 2, sowie ein Versuch über den Kopfschwung bei 19 Kälbern und Kalbinnen durchgeführt. Bei der Wahl der Betriebe wurde vor allem auf ihre geographische Nähe geachtet. Kurze Anfahrzeiten sollten dazu beitragen in kurzer Zeit viele Aufstehvorgänge zu dokumentieren. Da nur mehr sehr wenige Betriebe in dieser Gegend Weidehaltung praktizieren und davon wiederum noch weniger größere Kuhzahlen betreuen, fiel die Wahl der Fleckviehbetriebe auf die oben genannten Betriebe.

Die Betriebe unterschieden sich hierbei sowohl in ihrer Leistung als auch im Haltungssystem in dem sie im jeweiligen Stall untergebracht waren. Physisch waren keine gemessene, signifikante Unterschiede feststellbar. Die Fleckviehtiere entsprachen dem Zweinutzungstyp. Die Tiere waren zum Zeitpunkt der Versuche bei optisch guter Gesundheit und Kondition. Hochträchtige Kühe und Trockensteher wurden aus dem Versuch ausgeschlossen. Da die Kühe alle bereits seit mindestens drei Wochen geweidet wurden, konnte davon

ausgegangen werden, dass sie daran gewohnt waren und somit auch ihr arttypisches Aufstehverhalten ausführten.

Die Versuche mit den Holsteinkühen wurden ausschließlich auf dem Betrieb Großpötzl durchgeführt. Dies hat den Vorteil, dass alle Tiere unter den selben Umweltbedingungen aufgewachsen sind und auch leben. Meßbare Umwelteffekt sind deshalb weitgehend aus zu schließen. Die Holsteinkühe wurden ebenfalls einen Monat vor den Versuchen täglich geweidet. Die Holsteinkühe zeigten sich wie erwartet etwas größer im Rahmen und auch mit höheren Milchleistungen, aber geringerer Fleischauflage. In diesen Merkmalen zeigten sich die Holsteinversuchstiere sehr einheitlich.

Die Versuche mit den Kalbinnen wurden beim Betrieb Bachschweller durchgeführt. Die 19 Kalbinnen unterschieden sich erheblich im Alter und im Gewicht. Dies war aber gewollt, weil festgestellt werden sollte, welchen Einfluß Alter und Größe auf den Kopfraumbedarf haben. Wiederum waren alle Tiere während dieser Versuche optisch gesund und vital, so dass angenommen werden kann, dass die Ergebnisse dadurch nicht beeinflusst wurden.

4.2 Körpermaße und Messmethoden

Bereits LUDWIG (1984) schilderte Probleme bei der Messung, weil Kühe nur etwa achtmal am Tag aufstehen. Eine Kamera müsste also etwa 3 Stunden auf eine Kuh eingestellt sein, um einen einzigen Aufstehvorgang festhalten zu können. Statistisch zufrieden stellende Auswertungen könnten so nicht vorgenommen werden. LUDWIG fand keinen signifikanten Unterschied zwischen erzwungenen und freiwilligen Aufstehvorgängen. Aufgrund dieser Annahme wurden auch die Kühe bei dieser Arbeit großteils aufgetrieben.

Beim Vorversuch eins wurden verschiedene Körperdaten, wie die Widerristhöhe, die schräge Rumpflänge, der Brustumfang, die Kreuzbeinhöhe und die Beckenbreite erhoben. Ziel dieser Messungen war, bereits ansatzweise zu erkennen, ob ein Zusammenhang zwischen Körpermaßen und Raumbedarf be-

steht. Die Beckenbreite konnte sofort ausgeschlossen werden. Alle Tiere lagen bei der Beckenbreite innerhalb 3 cm beisammen (von 63 bis 65 cm Breite). Die Kreuzbeinhöhe wurde ebenfalls als Vermessungspunkt ausgeschlossen, weil sie bei den Versuchstieren sehr nahe an den Werten für die Widerristhöhe lag. Die Widerristhöhe wurde gegenüber der Kreuzbeinhöhe bevorzugt, da schon mehr Literatur und Versuche mit Größenangaben beruhend auf der Widerristhöhe vorlagen. Aufgrund des Vorversuches, der mit zehn Holsteinkühen und jeweils drei Aufstehvorgängen durchgeführt wurde, konnte kein Zusammenhang zwischen Körpermaßen und Raumbedarf hergestellt werden. Beeinträchtigt wurde das Ergebnis allerdings dadurch, dass die Tiere sehr uniform waren und dadurch Unterschiede schwer erkennen ließen.

Im Vorversuch zwei wurden drei Kühe mit stark unterschiedlichen Gewichten und Körpermaßen jeweils fünfmal aufgetrieben. Erstmals wurde untersucht, ob das Gewicht einen Einfluss auf den Raumbedarf und den Zeitbedarf hat. Für das Gewicht in Bezug auf Raumbedarf oder dem Zeitbedarf konnten keine befriedigenden Ergebnisse erzielt werden. Im Vorversuch zwei wurde weiters untersucht, ob eine Kuh immer etwa gleich viel Raum für den Kopfschwung benötigt. Diese Hypothese musste verworfen werden, da die Kühe von Aufstehvorgang zu Aufstehvorgang sehr starke Unterschiede an den Tag legten.

Die Vorversuche gaben klar Aufschluss darüber, dass die verwendete Technik funktioniert. Erste Schlüsse zwischen Körpermaßen und Kopfschwung waren allerdings aufgrund der geringen Datenmenge nicht zielführend. Für die Hauptversuche wurden deshalb folgende Körperdaten als geeignete Parameter festgelegt.

✓ Widerristhöhe
✓ Brustumfang

✓Schräge Rumpflänge
✓Gewicht

√ Kopflänge

Die Widerristhöhe wurde mit einem Messstecken mit integrierter Wasserwaage festgestellt. Der Brustumfang, die schräge Rumpflänge und die Kopflänge wurden mit einem Maßband vermessen. Das Gewicht wurde mit einer mobilen geeichten Waage erhoben. Der Messstecken und die Waage wurden vom Rinderzuchtverband Oberösterreich zur Verfügung gestellt. Die Abbildung 4.1 zeigt, wo die jeweiligen Körpermaße abgenommen wurden.

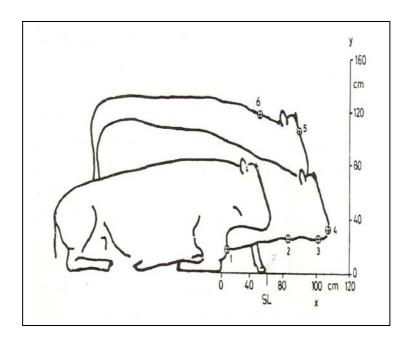
Abb. 4.1: Vermessungspunkte an Milchkuh

4.3 Aufnahmetechnik und Datenerfassung

Im Vorversuch eins wurde die Digitalkamera LUMIX DMC-FZ30 auf ihre Praxistauglichkeit geprüft. In einer seitlichen Entfernung von 5 bis 10 Metern zur liegenden Kuh wurde die Kamera positioniert und eingeschaltet. Danach wurde die betreffende Kuh aufgetrieben. Bei jeder Aufnahme wurde darauf geachtet, dass die Kuh parallel zum Kameraobjektiv lag. War die Kuh weiter entfernt, wurde dies mit dem optischen Zoom der Kamera (12 fache Vergrößerung) wieder ausgeglichen. Der Zoom wurde so eingestellt, dass

noch ein Platz von etwa 2m vor der Kuh zu sehen war. Dadurch wurde gewährleistet, dass die Kuh auch bei größter Reichweite immer bis zum vollständigen Aufrichten auf der Kamera festgehalten war. Die Kamera lieferte hierbei sehr hohe Bildqualität mit hoher Auflösung (9Mio. Pixel) und hoher Bilderfrequenz.

Der Film wurde auf einen Laptop gespielt. Mit Langsamvorlauf, der etwa 1/8 der ursprünglichen Geschwindigkeit entspricht wurde der Film betrachtet. Mit einem abwaschbarem Paintmarker wurden die von der Kuh beschriebenen Bewegungen mit den definierten Vermessungspunkte direkt auf den Monitor aufgetragen. Eine horizontale Ebene, die den Boden definierte, wurde ebenfalls immer eingezeichnet. Mit zwei Geodreiecken wurden die entstandenen Punkte herausgemessen und in ein Formular übertragen. Da bedingt durch die wechselnden Entfernungen zur liegenden Kuh die Abmessungen trotz des verwendeten Zooms immer etwas schwankten wurde die Kopflänge zur Bezugslänge. Die Kopflänge wurde bei jeder Kuh vor Versuchsbeginn gemessen.


Aufgrund der Kopflänge die aus den Videoaufnahme herausgemessen werden konnten, war es möglich für die anderen Körpermaße und auch Kopfschwungdistanzen, sehr genaue reale Maße zu errechnen. Für die Fleckvieh- und Holsteintiere konnten im Laufe des gesamten Hauptversuches genau 309 Wiederholungen aufgenommen werden. Aus dieser Menge an Wiederholungen konnten 2135 Messpunkte die den Kopfschwungbedarf festlegen, heraus gemessen und verwertet werden.

Insgesamt wurden 57 Wiederholungen für den "Kahlbinnenversuch" durchgeführt. 399 Messpunkte welche die Extrem- und Wendepunkte der Kopfschwünge darstellen, konnten aufgezeichnet, festgehalten und ausgewertet werden.

Filme, bei denen sich die Kühe, oder die Jungtiere während des Aufstehens von der Kamera weg, oder zur Kamera hin, also nicht exakt parallel bewegten, gingen nicht in die Auswertung ein.

4.4 Vermessungspunkte

LUDWIG beschäftigte sich im Rahmen ihrer Diplomarbeit eingehend mit dem Kopfschwung bei Milchkühen der Rasse Deutsche Schwarzbunte und Deutsches Fleckvieh. Im Rahmen ihrer Arbeit definierte sie Digitalisierungspunkte, die besondere Punkte, wie zum Beispiel Wendepunkte und somit auch maximale Reichweiten repräsentieren. In Anlehnung an eine Arbeit von BOXBER-GER (1983, 2) erschienen ihr die Punkte aus Abb. 4.2 als wichtig.

Abb. 4.2: Umhüllungslinien einer aufstehenden Kuh mit eingezeichneten Digitalisierungspunkten (BOXBERGER, 1983)

Tabelle 4.1 zeigt die Definition der Digitalisierungspunkte

Tab. 4.1: Definition der Digitalisierungspunkte zu Abb. 4.2

Punkt	Abkürzung	Definition					
1	x10	y-Koordinate im Abstand von 10 cm zum Car- palgelenk der liegenden Kuh					
2	HUP x u.	x- und y-Koordinaten des höchsten Punktes an der unteren Umhüllungslinie					
3	NUP x u. NUP y	- und y-Koordinaten des niedrigsten Punk- es an der unteren Umhüllungslinie					
4	VOP x u. VOP y	x- und y-Koordinaten des vordersten Punk- tes der Umhüllungslinie					
5	HP x u. HP y	x- und y-Koordinaten der Stirn am höch- sten Punkt					
6	WR	y-Koordinate des Widerrists der Kuh nach dem Aufstellen der ersten Vordergliedmaße					
7	SL	<pre>x-Koordinate der Klauenvorderseite der zu- erst aufgestellten Vordergliedmaße (= Schnittlänge)</pre>					

In Anlehnung an die so definierten Digitalisierungspunkte wurden in der vorliegenden Arbeit ähnliche Punkte bestimmt. Der von Ludwig benutzte Punkt1 (x10) wurde gänzlich weggelassen, weil er wenig wichtig erscheint. Der Punkt 2 (HUP x/y) wurde ebenfalls verändert. Er zeigt in dieser Arbeit den höchsten Punkt an, den der Hals während der Aufstehbewegung einnimmt und soll damit mehr Aufschluss über den Bewegungsumfang geben. Die anderen von BOXBERGER definierten Punkte wurden übernommen. Erweitert wurden die Punkte noch um den Kopfweg. Dieser zeigt den Kopfweg vom ruhenden Kopf bis zum VP x/y an. Dieser Kopfweg soll aufzeigen, dass jede Aufstehbewegung gleichzeitig eine Vorwärtsbewegung benötigt. Die in dieser Arbeit definierten Punkte lauten wie in Tab. 4.2 abgebildet.

Tab. 4.2 Vermessungspunkte mit Definitionen

Abkürzung	Beschreibung
1.HUP	Höchster Punkt der unteren Umhüllungslinie. Punkt an dem der Hals den höchsten Abstand von Boden hat. Ausgangsstellung für Schleuderbrett- phase
2.NUP	Niedrigster unterer Punkt. Punkt, an dem das Flotzmaul den niedrigsten Abstand zum Boden hat. Einleitung der Nackenmuskulaturkontraktion.
3.VP	Vorderster Punkt. Höchste mögliche Längenausdehnung des Kopfschwunges (Nasenspitze).
4.HKP	Höchster Kopfpunkt während des Kopfschwunges
5.WhF1	Widerristhöhe beim untersetzen des ersten Vorderfußes.
6.SI	Schrittlänge beim aufstellen des ersten Vorderfuß. Ausgehend vom vordersten Punkt des vorher noch ruhenden Karpalgelenks.
7.Kw	Maximale Kopfvorwärtsbewegung von ruhender Kopflage zum VP.

Zwischen den Vermessungspunkten dieser Arbeit und den Digitalisierungspunkten von LUDWIG ist weiters der Unterschied in der Datengewinnung zu nennen. LUDWIG übertrug die Punkte von drei Serienfotos, die den Aufstehvorgang dokumentierten auf Folien und dann auf ein Digitalisierungsgerät, während in dieser Arbeit direkt von der Monitoroberfläche von einem Film mit einer Bildfrequenz von etwa 100 Bildern in der Sekunde die Ergebnisse abgelesen werden konnten.

Die für diese Diplomarbeit eingesetzte Technik entspricht nicht dem besten möglichen Verfahren der Datengewinnung, da es Computerprogramme gibt, die die Distanzen der einzelnen Punkte selber ausmessen. Das ausgewählte Verfahren, bei dem die einzelnen Punkte manuell heraus gemessen werden, war allerdings die kostengünstigere Variante und hat wegen dem direkten

ablesen der einzelnen Längen vom Monitor nur eine sehr geringe Fehleranfälligkeit.

Abbildung 4.3 zeigt die in dieser Arbeit definierten Vermessungspunkte.

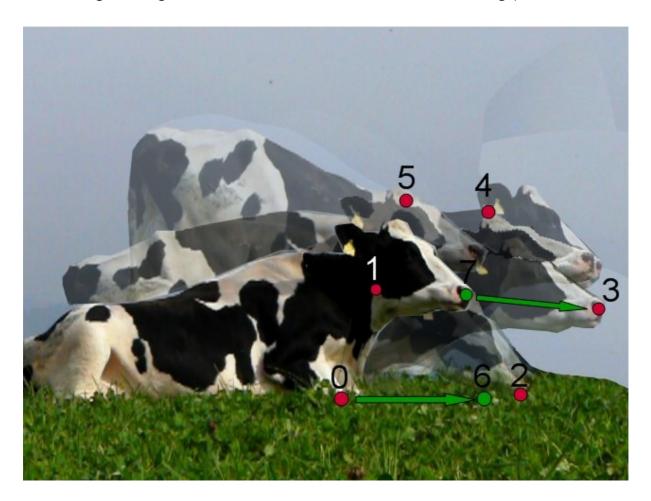


Abb. 4.3: Vermessungspunkte auf der Umhüllungslinie

Die wichtigsten Punkte der Umhüllungslinie sind in Abbildung 4.3 dargestellt.-Ausgangspunkt für alle Messungen war das als Nullpunkt definierte abgelegte Karpalgelenk.

Die definierten Punkte sind als kritische Punkte zu betrachten, weil sie in einzelnen Haltungssystemen durch Aufstallungselemente beeinträchtigt werden können. So nehmen zum Beispiel im Kurzstand die Krippenhöhe und der Futtertisch Einfluss auf die Punkte eins und zwei. Die Punkte drei, vier und fünf können bei unzureichender Liegeboxenlänge, bzw. durch falsch montierte Nasenriegel und Nackenriegel in ihrer natürlichen Ausprägung beeinträchtigt werden.

4.5 Probleme bei der Versuchsdurchführung

In manchen Fällen war auf der Weide das Gras sehr hoch, sodass es vorkommen konnte, dass der NUP oder das Karpalgelenk nicht genau zu erkennen waren. In diesen Fällen wurde versucht mittels Schätzung oder Rückmessung aus anderen Körperabmessungen möglichst genaue Daten zu erhalten. War das schätzen oder messen von Ersatzpunkten nicht oder nur eingeschränkt möglich, ging die jeweilige Ausführung nicht in die Arbeit ein. Da die Wiesen aber sehr kurz gehalten waren, war dies nur sehr selten der Fall.

Filmmaterial, bei der die Kühe den Kopfschwung nicht genau seitlich zur Kamera ausführten, wurde verworfen. Geringe Abweichungen zur normalen Ausführung, bei der die Kuh den Kop sehr gerade nach vorne wirft, dürften mit der verwendeten Technik allerdings nicht immer sicher erkannt worden sein.

Die Filme wurden alle von einer Person ausgewertet. Weiters wurde immer dieselbe Technik bei der Aufnahme und beim auswerten verwendet. Durch die bisher erwähnten Mängel an der Versuchsdurchführung entstand zwar ein quantitativ nicht näher spezifizierbarer Gesamtfehler, die Genauigkeit innerhalb der Messungen blieb jedoch gleich.

5 Ergebnisse und Diskussion

In diesem Kapitel werden die Ergebnisse, die aus den Versuchsauswertungen ermittelt wurden dargestellt. Die Resultate dieser Versuche werden weiters auf ihren praktischen Einfluss bewertet und diskutiert.

5.1 Ergebnisse der Fleckviehbetriebe

Dieses Unterkapitel beschäftigt sich speziell mit den Resultaten der Fleckviehherden. Die Differenzierung der beiden Rassen ist insofern wichtig, als dadurch auch eventuelle Unterschiede beziehungsweise Ähnlichkeiten zwischen den Rassen besser dargestellt und aufgezeigt werden können. Da sich die Körpergrößen zwischen den Rassen sehr stark unterscheiden kann auch Angenommen werden, dass sich der Kopfraumbedarf zwischen den Rassen auch erheblich Unterscheiden müsste. Reine Holstein- oder Fleckviehbetriebe werden sich mit ihren Aufstallungen oder den Abmessungen der Liegeflächen auf ihre Rasse einstellen können. Dieses Unterfangen könnte sich aber erheblich schwieriger gestalten, wenn zwei verschiedene Rassen gemeinsam in der selben Umwelt sprich Stallgebäude gehalten werden.

5.1.1Ergebnisse Betrieb Baumann

Die Tabelle 5.1 zeigt die Daten für die ausgewählten Körpermaßen der Kühe des Betriebes Baumann.

Tabelle 5.1 Körperdaten Kühe Baumann

	Gewicht (kg)	Widerrist (cm)	Brustumfang (cm)	S RI
Mittelwert	653,375	141,25	200,75	165,37 5
Standartaw.	46,583	3,455	7,093	4,151
Varianz	2169,984	11,937	50,312	17,234
Varianzkoef.	0,071	0,024	0,035	0,025

Tabelle 5.2 zeigt die Daten zu den Kopfschwüngen dieser Kuhgruppe. Abbildung 5.1 zeigt die dazugehörenden grafischen Punkte.

Tabelle 5.2 Koordinaten Kopfschwung Kühe Baumann

	HUPx (cm)	HUPy (cm)	NUPx (cm)	NUPy (cm)	Vpx (cm)	Vpy (cm)	HKPx (cm)	HKPy (cm)	WhF1x (cm)	WhFly (cm)	Sekunden
Mittelw	29,875	40,887	88,534	13,977	110,027	37,696	71,416	85,468	4,520	98,138	2,937
Staw	8,903	6,872	11,552	9,116	13,822	10,573	9,449	10,425	8,885	7,179	0,690
Min	12,754	31,200	68,070	1,486	84,333	18,595	47,635	68,900	-11,81	86,667	1,850
Max	40,511	54,364	108,741	28,552	133,837	56,217	85,071	111,990	19,273	110,350	4,767
Varian	z 79,269	47,227	133,439	83,103	191,060	111,79	89,275	108,673	78,951	51,535	0,477
Var.k.	0,298	0,168	0,130	0,652	0,125	0,280	0,132	0,121	1,965	0,073	0,235

Eine mittlere Schrittlänge von 57,96 cm und ein mittlerer Kopfweg von 66,23 cm konnten ebenfalls festgestellt werden. Die Schrittlänge und der Kopfweg sind auch in Abbildung 5.1 dargestellt. Gesamt lag bei den Tieren dieser Herde eine sehr geringe Schwankung der einzelnen Messpunkte vor. Auffällig ist hierbei das die Werte für NUPy stärker streuen, was in einem Varianzkoeffizienten von über 0,33 hervorgeht.

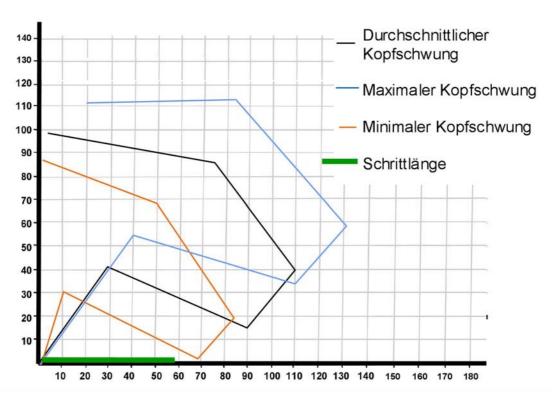


Abb. 5.1: Grafische Daten der Kopfschwünge Betrieb Baumann

5.1.2 Ergebnisse Betrieb Leitner

Die Tabelle 5.3 zeigt die Daten der Kühe des Betriebes Leitner

Tabelle 5.3 Körperdaten Kühe Leitner

	Gewicht(kg)	Widerrist (cm)	Brustumfang (cm)	sRI
Mittelwert				
	715,375	138,813	212,250	160,063
Standartaw.				
	47,744	3,450	9,595	5,584
Min				
	648,000	134,000	197,000	151,000
Max				
	805,000	147,000	229,000	172,000
Varianz				
	2.279,484	11,902	92,063	31,184
Varianzkoeff.				
	0,067	0,025	0,045	0,035

Tabelle 5.4 zeigt die Daten zu den Kopfschwüngen dieser Kuhgruppe. Abbildung 5.2 zeigt die dazugehörenden grafischen Punkte.

Tabelle 5.4 Koordinaten Kopfschwung Kühe Leitner

	HUPx (cm)	HUPy (cm)	NUPx (cm)	NUPy (cm)	Vpx (cm)	Vpy (cm)	HKP (cm)	HKPy (cm)	WhF1x (cm)	WhF1y (cm)	Sek.
Mittel	25,439	34,823	78,891	14,209	99,820	39,718	57,293	85,609	9,289	100,268	3,313
Staw.	13,210	6,971	16,387	7,398	21,154	10,129	16,851	9,826	17,636	7,872	1,370
Min	3,059	24,158	43,788	4,588	56,470	21,474	17,225	73,286	-17,414	90,643	1,200
Max	52,000	48,167	100,583	29,750	131,750	59,034	84,209	113,39	45,333	119,000	7,000
Varianz	174,50	48,593	268,545	54,726	447,472	102,60	283,96	96,557	311,02	61,976	1,878
Var. Koef.	0,519	0,200	0,208	0,521	0,212	0,255	0,294	0,115	1,899	0,079	0,414

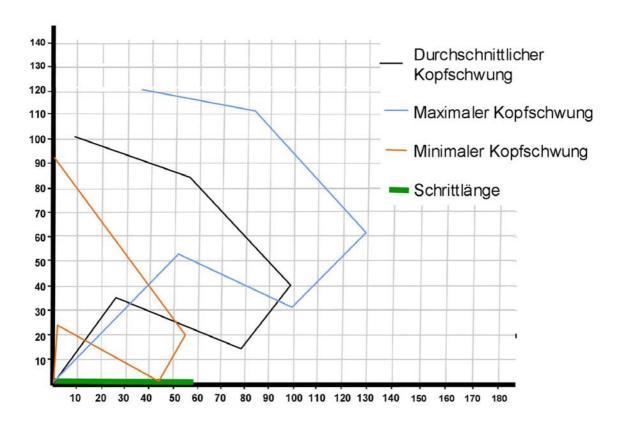


Abb. 5.2: Umhüllungspunkte Kopfschwung Kühe Betrieb Leitner

Die mittlere Schrittlänge betrug bei Betrieb Leitner 58,99 cm und der durchschnittliche Kopfweg 54,22 cm. Der Punkt 3 (VP), hatte im Durchschnitt eine etwa 10,20 cm niedrigere Weitenausdehnung, als es bei den Kühen des Betriebes Baumann der Fall war.

5.1.3 Ergebnisse Betrieb Schustereder

Die Körpermaße und Gewichtsdaten der Kühe, des Betriebes Schustereder sind in Tabelle 5.5 angegeben.

Tab. 5.5 Körperdaten Betrieb Schustereder

	Gewicht (kg)	Widerrist (cm)	Brustumfang (cm)	s RI (cm)
	(1.9)	(011)		(,
Mittelw.	765,857	143,857	215,071	170,357
Standartaw	69,238	3,961	8,215	6,089
min	646	136	205	160
max	865	152	228	185
Varianz	4793,979	15,693	67,494	37,086
Varianzkoeff	0,090	0,027	0,038	0,035

Die Daten für den Kopfraumbedarf sind in Tabelle 5.6 und in Abbildung 5.3 dargestellt.

Tab. 5.6: Raumbedarf Kühe Betrieb SCHUSTEREDER

	HUPx	HUPy	NUPx	NUPy	Vpx	Vру	HKP	НКРу	WhFlx	Whf1y	
	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	Sek
Mittelwert	29,71										
	7	34,812	94,898	8,416	115,580	34,761	74,493	79,993	5,934	94,755	3,292
Standartaw											
	8,737	8,293	13,175	7,170	17,468	7,367	17,316	9,185	13,479	9,089	0,518
Min											
	16,17	22,218	69,805	0,000	88,678	21,531	47,647	66,250	-14,294	79,823	2,700
Max											
	43,06	50,160	118,148	24,513	148,704	48,840	110,000	99,375	41,264	110,000	4,725
Varianz											
	76,33	68,775	173,592	51,408	305,137	54,270	299,856	84,365	181,671	82,617	0,268
Var.koeff											
	0,294	0,238	0,139	0,852	0,151	0,212	0,232	0,115	2,271	0,096	0,157

Die mittlere Schrittlänge betrug bei den Kühen des Betriebes Schustereder 52,34 cm und der durchschnittliche Kopfweg 74 cm. Der Punkt 3 (VP) lag im Vergleich zum Betrieb Baumann um 5,6 cm weiter vorne.

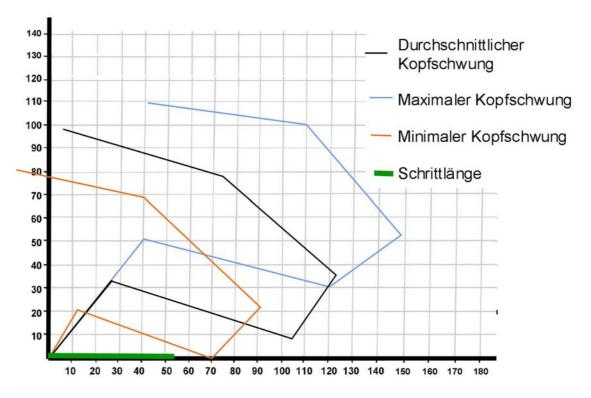


Abb. 5.3 Grafische Darstellung Betrieb Schustereder

5.1.4 Auswertung Fleckviehkühe gesamt

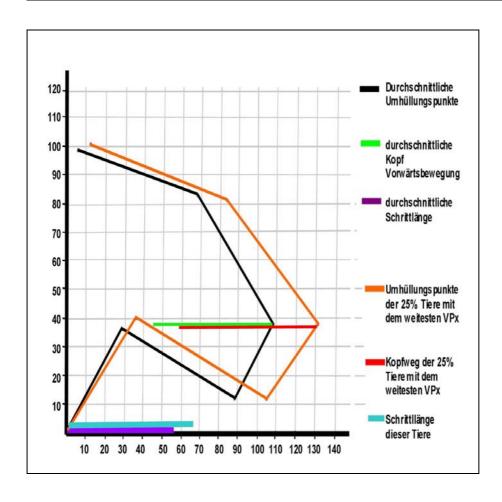
Die Hypothese, dass Leistung oder die Art der Haltung wie etwa Anbindehaltung im Kurzstand, Anbindehaltung im Mittellangstand oder Laufstallhaltung einen signifikanten Einfluss auf den Kopfschwung haben, konnten mit dem TU-KEY-KRAMER-TEST bei einem Signifikanzniveau von a 0,05 nicht bestätigt werden. Der Einfachheit wegen werden im Verlauf dieser Arbeit alle Fleckviehtiere als eine Herde behandelt.

Alle Fleckviehtiere, die nun als eine Herde geführt werden, haben im Durchschnitt folgende Körpermaße. Sie sind in Tabelle 5.7 aufgelistet.

Tab. 5.7 Körpermaße der Fleckviehherde neu

	Gewicht (kg)	Widerrist (cm)	Brustumfang (cm)	s RI (cm)
Mittelwert	709,174	141,196	209,109	165,043
Standartaw	71,280	4,147	10,422	6,737
Varianz	5.080,883	17,201	108,619	45,389
Varianzkoeff	0,101	0,029	0,050	0,041
min	582,000	134,000	188,000	151,000
max	865,000	152,000	229,000	185,000

Diese neu gebildete Herde sprich die Daten aller bewerteten und gemessenen Fleckviehkühe unterscheidet sich in ihren Standartabwichungen deutlich von ihren Ausgangsherden. Beim Gewicht lagen die geringsten Standartabweichungen bei etwa 41 kg. In der neu gebildeten Herde liegt die Standartabweichung sogar bei 71,28 kg. Damit liegt die Standartabweichung weit höher als ein eventueller Mittelwert aller Standartabweichungen der Ausgangsherden. Ähnliche Effekte können bei Widerristhöhe Brustumfang und schräger Rumpflänge ebenfalls beobachtet werden. Die neu zusammengewürfelte künstliche Fleckviehherde variiert und differiert deutlich mehr als es die Herden aus denen sie gebildet worden war.


In Tabelle 5.8 sind die Kopfschwungraumkoordinaten, sowie die Schrittlänge und der Kopfweg der neuen Gesamtfleckviehherde angegeben. Die einzelene Varianzen und Varianzkoeffizienten zeigen sehr deutlich, dass oftmals eine große Streuung in den einzelnen Punkten vorliegt. Das wiederum bedeutet dass die Tiere größere Unterschiede vor allem bei einzelnen Punkten an den Tag legen.

Tab. 5.8 Koordinaten Kopfschwungraum, Schrittlänge, Kopfweg

	HUPx cm	HUPy cm	NUPx cm	NUPy cm	VPx cm	VPy cm
Mittelwert	28,284	36,929	87,117	12,365	108,167	37,506
St.aw	10,762	7,913	15,340	8,392	18,898	9,752
Varianz						
V.oeff	115,823	62,616	235,311	70,420	357,132	95,098
min	0,381	0,214	0,176	0,679	0,175	0,260
Max	3,059 52,000	22,218 54,364	43,788 118,148	0,000	56,470 148,704	18,595 59,034
	32,000	34,364	110,140	29,750	140,704	37,034
	LIKD	LIKD	\A/I_ F1	NA//- E 1		Calcul Visa sura sura
Mittelwert	HKPx cm	HKPy cm	WhF1x cm	97,849	K.weg cm	Schr.länge cm
St.aw	67,440	83,851	6,609		64,512	56,570
Varianz	16,659	10,177	13,967	8,343	14,185	15,918
V.koeff	277,531 0,247	0,121	195,089 2,113	69,602 0,085	201,217 0,220	253,378 0,281
Min	17,225	66,250	-17,414	79,823	31,989	26,897
Max	110,000	113,398	45,333	119,000	107,963	100,814

In der Abbildung 5.4 werden, neben den durchschnittlichen Werten auch noch die Werte von den Tieren dargestellt, welche den Vpx am weitesten vorne angesetzt hatten. Diese zusätzliche Linie beinhaltet die 25% größten Kopfschwünge.

Dies erscheint insofern praktisch, weil man beim Planen einer neuen Stalleinrichtung ebenfalls immer von den 25 % der größten Tieren einer Herde ausgehen soll (OFNER et. al.; 2006)

Abb. 5.4 Vermessungspunkte aller Fleckviehtiere

In Tabelle 5.9 sind die Korrelationen zwischen Körperdaten und den einzelnen Umhüllungspunkten sowie dem Kopfweg und der Schrittlänge dargestellt. Diese Werte geben Auskunft ob die einzelnen Merkmale korreliert sind, beziehungsweise in welchem Maße sie korreliert sind.

Tab. 5.9 Korrelation zwischen Körpermaßen und Umhüllungspunkten

	HUPx	HUPy	NUPx	NUPy	VPx	VPy	
Gewicht	0,199	-0,008	0,173	-0,230	0,136	-0,065	
Wh	-0,007	0,271	0,242	-0,081	0,232	-0,001	
Brust	0,053	-0,060	-0,042	-0,084	-0,050	-0,070	
Srl	0,236	0,176	0,398	-0,030	0,326	-0,033	
	HKPx	НКРу	WhF1x	WhFly	Sekunden	Kopfweg	Sch.länge
Gewicht	-0,005	0,043	0,140	-0,099	0,207	0,064	0,019
Wh	0,280	-0,152	-0,105	0,009	0,017	<u>0,430</u>	0,053
Brust	-0,134	0,110	0,174	0,163	0,037	0,011	-0,087
Srl	<u>0,367</u>	0,059	0,126	-0,108	-0,169	<u>0,440</u>	-0,096

Es stellte sich heraus, dass vor allem die schräge Rumpflänge signifikant zum NUPx, VPx, HKPx und zum Kopfweg korreliert ist. Die daraus folgende Regressionsgerade ist in Abbildung 5.5 dargestellt.

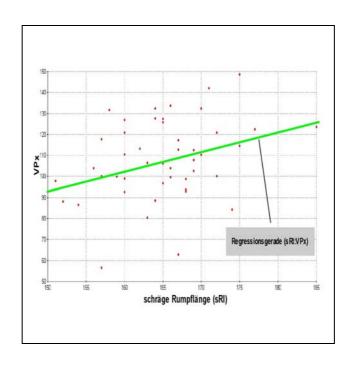


Abb. 5.5 Punktewolke mit allen erfassten Werten und der Regressionsgerade (VPx zu sRI)

Die Formel für die Regressionsgerade lautet:

$$\hat{Y}_{(Erwartungswert für sRIx)} = a+b*(sRIx)$$

z.B.

$$\hat{y}_{(180)} = -39,68609 + 0,895841*180$$

 $\hat{y}_{(180)} = 121,565 \text{ cm}$

Bei 180 cm schräger Rumpflänge werden nach dieser Formel 121,565 cm Schwungraum nach vorne benötigt. Dass der jeweilige Erwartungswert immer nur ein sehr ungefährer Wert sein kann, ist an der großen Streuung der Messpunkte in Abb. 5.5 zu erkennen. Die ausgewählten Tiere lagen mit durchschnittlich 141,2 cm Widerristhöhe (Wh) geringfügig über dem österreichischen Mittel von 139,8 cm. Da der Widerrist mit der schrägen Rumpflänge mit 0,512 positiv korreliert ist, kann man auch annehmen, dass die durchschnittlichen schrägen Rumpflängen bei österreichischem Fleckvieh nur geringfügig kürzer sind, als die auf den Testbetrieben ermittelten Werte.

5.2 Körperdaten der Holsteinkühen

Da die Daten der Holsteinkühe alle vom Betrieb Großpötzl stammen, kann damit gerechnet werden, dass die nicht erfassten Umwelteinflüsse geringer sind, beziehungsweise dadurch dass sie auf alle Tiere etwa gleich wirken, keinen großen Einfluss auf die Gesamtergebnisse haben. Die Körpermaße und Gewichte der Holsteinherde sind in Tabelle 5.10 angegeben.

Tab. 5.10: Körperdaten der Holsteinkühe

	Gewicht (kg)	Widerrist (cm)	Brust (cm)	Srl (cm)
Mittelwert				
	688,290	151,839	213,484	173,226
Standartaw.				
	59,478	3,895	6,705	6,173
Min				
	594,000	143,000	197,000	154,000
Max				
	812,000	158,000	226,000	186,000
Varianz				
	3.537,690	15,168	44,959	38,110
Varianzkoeff				
	0,086	0,026	0,031	0,036

Der niedrige Varianzkoeffizient zeigt eine im Exterieur sehr ausgeglichene Herde an. Die Holsteinkühe haben gegenüber den Fleckviehtieren die größeren Körpermaße. Beim Gewicht liegen sie allerdings hinter den Fleckviehtieren zurück. Grund hierfür ist der ansatzbetonte Typ der Fleckviehkühe, die mehr Fleisch auf den Rippen haben. Die Holsteinkühe haben einen höheren Brustumfang als die Fleckviehkühe. Die ovalere Ausformung des Brustkorbes bei Holsteinkühen gegenüber der sehr runden (walzenförmigen) Ausformung bei Fleckviehkühe gibt uns die Erklärung für dieses Phänomen.

Die Versuchstiere der Rasse Holstein waren mit durchschnittlich 151,839 cm auch deutlich größer als dies für die österreichische Holsteinpopulation mit etwa 145,2 cm der Fall ist. Sie liegen deutlich über den durchschnittlichen Maßen der österreichischen Holsteinpopulation (ZAR, 2006). Da beim Körperbau immer alle einzelnen Körpermaße den gesamten Körper beeinflussen, lässt

das den Schluss zu, dass auch die anderen gemessenen Körpermaße über dem österreichischen Rassendurchschnitt liegen.

Tabelle 5.11 zeigt die Reichweiten der Holsteinkühe beim Kopfschwung, sowie den Kopfweg und die Schrittlänge an.

Tab. 5.11: Koordinaten des Kopfsc hwunges bei Holsteinkühen

	HUPx	HUPy	NUPx	NUPy	Vpx	Vру	
	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	
Mittelwert	29,852	47,443	98,557	9,086	127,982	37,777	
S	8,441	8,818	20,725	16,207	11,776	9,915	
	2,	0,0.10		,	,	.,,,,,	
Min	13,846	31,231	80,653	0,000	105,231	20,647	
771111	10,010	01,201	00,000	0,000	100,201	20,017	
Max	48,692	68,449	137,043	90,000	161,298	57,740	
MICA	40,072	00,447	137,043	70,000	101,270	37,740	
S ²	71,253	77,761	429,524	262,681	138,675	98,304	
5-	/1,233	//,/01	427,324	202,001	130,073	70,304	
2 10 off	0.000	0.107	0.010	1 704	0.000	0.070	
s² -koeff	0,283	0,186	0,210	1,784	0,092	0,262	
		HKPy	WhF1x	WhF1y		Schritt	Kopf (cm)
	HKPx (cm)	(cm)	(cm)	(cm)	Zeit sek.	(cm)	
Mittelwert	84,784	82,681	5,503	105,613	3,658	62,119	75,049
S	9,607	14,438	14,752	8,292	1,395	17,015	12,738
Min	62,308	60,116	-25,581	79,233	1,800	14,070	47,786
	,-30	22,170		,	.,	, 0	
Max	109,149	109,761	53,283	118,750	8,900	100,07	109,149
	137,117	10,,, 01	30,200	110,700	3,, 30	100,07	, ,
S ²	92,303	208,465	217,620	68,763	1,946	289,51	162,260
3	72,000	200,400	217,020	00,700	1,/40	207,01	102,200
	0,113	0,175	2,681	0,079	0,381	0,274	0,170

In Tabelle 5.11 ist zu erkennen, dass die Datensätze von NUPy und WhF1x die größten Varianzkoeffizienten und somit auch die größte Streuung aufweisen. Bei denselben Punkten zeigen auch die Fleckviehkühe die höchste Streuung.

Abbildung 5.6 stellt die Daten von Tabelle 5.11 grafisch dar. Neben den mittleren Umhüllungspunkten der Holsteinkühe, sind auch die mittleren Umhüllungspunkte der 25% Tiere angegeben, die den VPx am weitesten vorne angesetzt hatten.

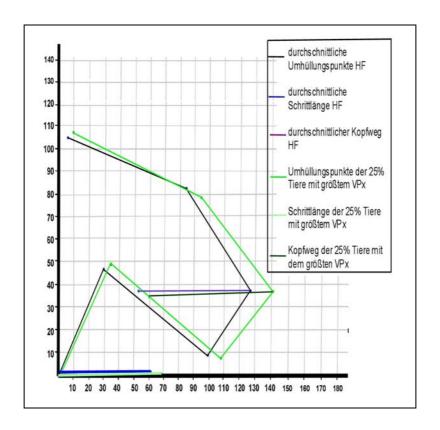


Abb. 5.6 Umhüllungslinien der HF-Kühe

Tabelle 5.12 zeigt wie die Körperdaten der Holsteinkühe zu den Raumdaten korrelieren.

Tab. 5.12 Korrelationen zwischen Körpermaßen und Umhüllungspunkten

	HUPx (cm)	HUPy (cm)	NUPx (cm)	NUPy (cm)	Vpx (cm)	Vpy (cm)	
Gewicht	0,166	-0,007	0,177	-0,221	0,136	-0,165	
Wh	0,141	0,222	0,274	-0,085	0,230	-0,101	
Brust	0,055	-0,066	-0,045	-0,083	-0,054	-0,170	
Srl	0,239	0,178	<u>0,156</u>	-0,021	<u>0,113</u>	-0,043	
	HKPx (cm)	HKPy (cm)	WhF1x (cm)	WhF1y (cm)	Sekunden	Kopfweg (cm)	Sch.länge (cm)
Gewicht	-0,005	0,043	0,140	-0,199	0,207	0,042	0,014
Wh	0,280	-0,152	-0,105	0,009	0,017	<u>0,212</u>	0,032
Brust	-0,124	0,110	0,171	0,151	0,037	0,011	-0,021
Srl	<u>0,087</u>	0,059	0,026	-0,138	-0,169	<u>0,121</u>	-0,032

Mit dem TUKEY Test sollte die Hypothese getestet werden, dass die einzelnen Körpermerkmale keinen signifikanten Einfluß (α 10%) auf den Raumbedarf des Kopfschwunges haben. Aufgrund der niedrigen Korrelationen zwischen den einzelnen Körperdaten und den Raumdaten sowie den p-Werten, die innerhalb der Grenzen lagen, musste diese Hypothese akzeptiert werden.

Die Widerristhöhe, oder die schräge Rumpflänge haben demnach bei Holsteinkühen keinen signifikanten Einfluss auf den Kopfschwung. Weder Größe noch Alter haben einen signifikanten Einfluss auf den Raumbedarf und den Zeitbedarf.

5.3 Vergleich zwischen den Fleckvieh- und Holsteinherden

Abbildung 5.7 zeigt die durchschnittlichen Kopfraumpunkte der Holstein- und der Fleckviehkühe. Die Abbildung zeigt das die Holsteinkühe mit dem Kopf beziehungsweise mit der Nasenspitze einen längeren Weg beschreiben. Verglichen mit den untersuchten Fleckviehtieren führen die Holsteinkühe den Kopfschwung mit einer stärkeren Ausprägung (bezogen auf die Extrem- und Wendepunkte) aus.

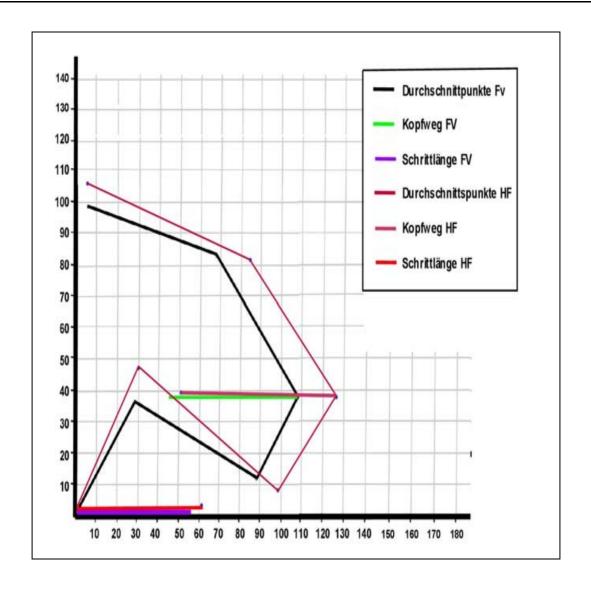


Abb. 5.7: Umhüllungspunkte Fleckvieh- und Holsteinkühe

In Abbildung 5.8 werden die Mittelwerte und die Standartabweichungen der Fleckvieh- und Holsteintiere als Balkendiagramm dargestellt. Ebenfalls eingezeichnet sind die einzelnen Standartabweichungen. Abbildung 5.7 zeigt zwischen den Rassen große Ausdehnungsunterschiede beim Kopfschwung. Im Zeitbedarf unterscheidet sich Fleckvieh (3,17 sek) ebenfalls signifikant von Holstein 3,65 sek.

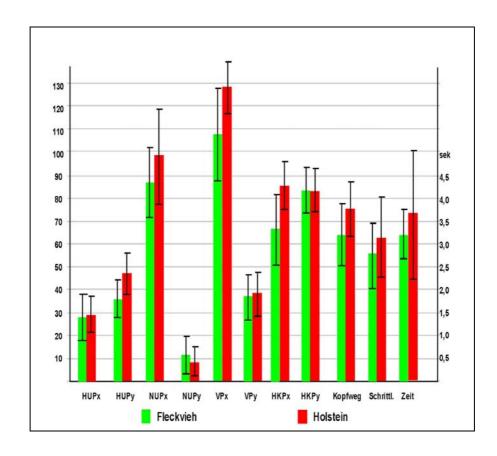


Abb. 5.7: Umhüllungspunkte mit Standartabweichungen

Bei Fleckvieh ist die Standartabweichung für den VPx mit 18,898 cm sehr viel größer als bei Holstein mit 11,776cm. Ein umgekehrtes Bild zeigt sich beim Zeitbedarf für das Aufstehen. Hier zeigen Holsteinkühe höhere Werte für den Zeitbedarf und auch eine größere Standartabweichung mit 1,395 Sekunden gegenüber Fleckvieh mit 0,966 Sekunden.

Abbildung 5.6 und 5.7 deuten daraufhin, dass Holsteinkühe den Kopfschwung bereits höher ansetzen und dann vertikal stärker nach unten stoßen, sowie dann weiter nach vorne ausholen können. Der zurückgelegte Kopfweg bestätigt dies. Bei den Feldbeobachtung ist zudem aufgefallen, dass Holsteinkühe in Anschluss an die Schleuderbrettphase, wenn die Hinterhand vollständig hoch geschwungen war, oftmals mit der Kopfunterseite und dem Kiefer auf den Boden prallten. Diese Kopfbewegung gleicht einem Nicken mit dem Kopf. Bei diesen Beobachtungen entstand der Eindruck, als ob noch Schwung übrig wäre und dieser den Kopf noch einmal nach vorne und unten drücke. Von Einzeltieren kann hierbei nicht gesprochen werden. So wurden bei Holsteinkühen 19 Aufstehvorgänge gezählt, bei denen der Unterkiefer

nach der Schleuderbrettphase den Boden berührte. Etwa zwei Drittel aller Holsteinkühe näherten ihren Kopf bei diesem Nicken, nach der Schleuderbrettphase wieder dem Boden soweit, dass der dadurch neu entstandene Tiefpunkt unter dem vorherigen Punkt NUPy lag. Abbildung 5.9 zeigt einen solchen Aufstehvorgang.

Abb. 5.9: Aufstehvorgang mit Bodenkontakt des Unterkiefers nach Schleuderbrettphase

Bei Fleckviehkühen konnte dieses Phänomen nur bei einem einzigen Aufstehvorgang festgestellt werden. Die Kopfbewegungen von Holstein und Fleckvieh unterscheiden sich in dieser Beziehung sehr stark voneinander. Um die Unterschiede zwischen den Rassen besser zu veranschaulichen, werden in Abbildung 5.10 die unterschiedlichen Maulspitzenbewegungen der beiden Rassen anhand zweier Vergleichskühe exemplarisch dargestellt.

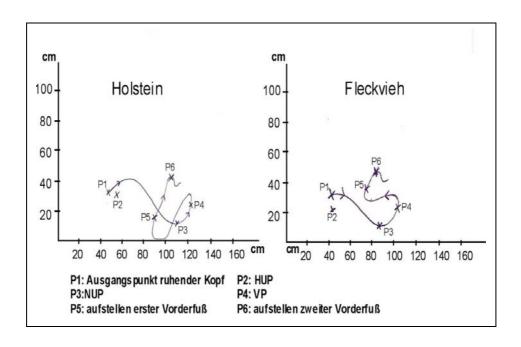


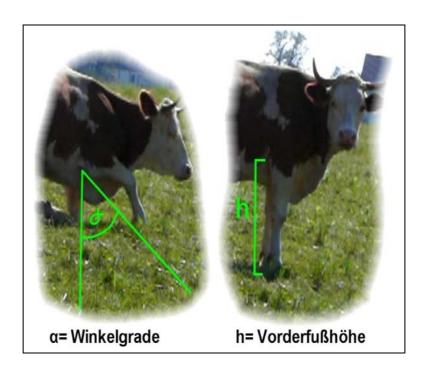
Abb. 5.9 Unterschiedliche Maulspitzenbewegung bei zwei Holstein- und Fleckviehkühen

Holstein und Fleckviehkühe zeigen einen Kopfschwung, der unterschiedlich ausgeprägt ist. Eine Vorwärtsbewegung des gesamten Körpers ist bei beiden Rassen immer der Fall. Der Kopfweg und der Aufstellschritt verdeutlichen dies. Bei allen Wiederholungen stellte nur ein einziges Kalb ein einziges Mal ihren ersten Vorderfuss nicht vor das zuvor ruhende Karpalgelenk. Bei den Kühen war dieser Vorwärtsschritt immer feststellbar. Nach dem Aufstehen führten die Kühe in der Regel Dehn- und Streckbewegungen mit ihrem Rumpf und den Gliedmaßen aus. Dieser Vorgang differierte in seiner zeitlichen Ausprägung und auch in seiner Intensität sehr deutlich von Kuh zu Kuh, aber auch von Aufstehvorgang zu Aufstehvorgang. METZNER (1976, 157) konnte dieses Verhalten bei seinen Versuchen ebenfalls feststellen und auch Kräftetests durchführen.

War der Dehnungsvorgang abgeschlossen, gingen die meisten Kühe nach vorne weg. Nur zwei Kühe bewegten sich nach dem Aufstehen deutlich seitlich. Eine Erklärung hierfür wäre die Neugier am Aufnahmeequipment, der die Kühe veranlasste sich direkt nach dem Aufstehen darauf zu zu bewegen. Nach hinten bewegten sich die Kühe nach dem Aufstehen auf der Weide nie weg.

Bei zwei Fleckviehkühen wurde pferdeartiges Aufstehen auf der Weide beobachtet. Eine Holsteinkuh zeigte bei einer Widerholung leichte Ansätze von pferdeartigem Aufstehen. Diese Wiederholungen gingen nicht in die Wertung ein, weil sie nicht arttypisch sind.

5.4 Analyse des ersten Vorwärtsschrittes während des Aufstehens


Da das Aufstellen des ersten Vorderfußes nach der Anhaltephase immer auftritt, wird es in diesem Abschnitt näher behandelt. Verwendet wurden hierbei Daten von drei Fleckvieh und drei Holsteinkühen.

5.4.1Die räumliche Ausprägung des ersten Vorwärtschrittes

Zuerst wurde der Öffnungswinkel der Vorderbeine beim Aufsetzen der ersten Vordergliedmaßen erhoben. Wie dabei vorgegangen wurde, kann in Abbildung 5.10 ersehen werden. Er lag bei den 6 Tieren zwischen 44° und 59°Winkelgraden. Ein Unterschied zwischen Fleckvieh- und Holsteinkühen konnte hierbei nicht ermittelt werden. Allerdings unterscheiden sich die Tiere beider Rassen in der Länge ihrer Vordergliedmaßen. So hatten die gestreckten Vordergliedmaßen von Fleckvieh Längen von 72 cm, 73,3 cm und 79 cm. Die drei Holsteinkühe hatten Vorderfußlängen von 85 cm, 89 cm und 93 cm. Diese Vorderfußmaße wurden vom Ellbogengelenksfortsatz dem Olecranon bis zum Boden gemessen. Da dieser Punkt an den Kühen relativ leicht erhoben werden kann, weil er von außen unabhängig von der Körperkondition des Tieres immer gut sichtbar ist, wurden daran die Vorderfußmaße genommen. Die sechs Tiere wurden wegen ihrer deutlich unterschiedlichen Wiederristhöhen ausgewählt und an ihren Vorderfüßen vermessen. Diese 6 Kühe repräsentieren somit nicht den Durchschnitt der Population und auch die Anzahl der Tiere ist viel zu gering um gefestigte Angaben über die Vorderfußlänge und die davon abhängige Schrittlänge zu tätigen. Allerdings lassen sie den Schluss zu, dass die Holsteinkühe vor al-

lem durch ihre größeren Vorderbeine einen weiter nach vorne ausgreifenden ersten Ausfallschritt ausführen.

Abbildung 5.11 zeigt wo die Länge des Vorderfußes und der Winkel beim aufsetzen des ersten Fußes gemessen wurden.

Abb. 5.10: Darstellung der Fußlängenmessung und der Winkelmessung beim Aufsetzen des ersten Vorderfußes

5.4.2 Der Zeitbedarf für den ersten Vorwärtsschritt

Das Karpalgelenk befindet sich auf etwa 50 cm Höhe über dem Boden. Liegt die Kuh und sind die Handwurzelknochen untergeschlagen, so befindet sich die Klaue etwa 50 cm hinter dem vordersten Punkt des ruhenden Karpalgelenks. Ein Ausfallschritt von 60 cm über den vordersten Punkt des vorher ruhenden Karpalgelenks entspricht durchaus der Norm. Ein Klauenpaar eines Vorderfußes legt deshalb beim Ausfallschritt etwa eine Strecke von einem Meter und auch mehr zurück. Der Ausfallschritt wird häufig sehr schnell ausgeführt und dauert dann nur etwa 0,15 Sekunden.

Rechnerisch ergibt sich daraus eine mittlere Geschwindigkeit von 6,6 ms⁻¹ (24 kmh⁻¹)an der Klauenspitze.

Die Formel

$$F= m^* \frac{d\overline{v}}{dt}$$

gibt die Kraft an, welche ein Kuhfuß entwickeln kann.

Bei einem Kuhfuß mit einer Maße von 5 kg und einer negativen Beschleunigung von 6,6 ms⁻¹ auf 0 ms⁻¹ nach 0,1 Sekunden, z.B. verursacht durch ein falsch positioniertes Bugbrett, an das der Fuß stößt bedeutet, dass die Kuh eine Kraft von 330 N auf dieses Bugbrett ausübt. Die 330 N entsprechen der gleichen Kraft, wie sie bei einem Fallversuch mit einem fünf kg Gewicht bei einem freien Fall aus einer Höhe von 1,32 Metern auftreten würden. In keiner gelesenen Literaturstelle gibt es genauere Hinweise auf Art und Einfluss des ersten Ausfallschrittes. Kühe führen den Ausfallschritt auch aus, wenn sie in den Liegeboxen aufstehen. Wie sich, oder ob sich hier Behinderungen des ersten Ausfallschrittes auf den gesamten Aufstehvorgang, oder auf die Gesundheit des Tieres (des Vorderfußes) auswirken, konnte bei diesen Beobachtungen allerdings nicht geklärt werden.

5.5 Der Kopfraumbedarf von Jungrindern

Ziel dieses Versuches war es, aufzuzeigen ob es bei wachsenden Tieren messbare Korrelationen zwischen einzelnen Körpermaßen und oder Gewichten mit dem Kopfschwung gibt. Hierzu wurden Kalbinnen des Betriebes Bachschweller ausgewählt. Die Jungtiere wurden in 4 Gruppen geteilt. Die Gruppen wurden nach dem Alter Tiere gebildet. Da die Tiere der einzelnen Gruppen etwa gleichalt waren unterschieden sie sich auch in den einzelnen anderen Körpermaßen nur geringfügig voneinander.

Die vier verschiedenen durchschnittlichen Gewichte und Körperabmessungen der Kälbergruppen sind in Tabelle 5.13 angegeben.

Tab. 5.13: Körpergewichte und Abmessungen der Kälbergruppen

Gruppe	Gewicht kg	Widerrist cm	Brustumfang cm	Schräge R.I. cm
1(50-75kg)	62,6	100	109,2	89,2
2 (150-250kg)	197	122,6	147	150,6
3 (370-450kg)	441	144	183,5	158,75
4 (620-740kg)	701	150	204	173,5

Wie bei den Kühen, so wurden auch bei den Kalbinnen die einzelnen Messpunkte erhoben.

Tabelle 5.14 zeigt die durchschnittlichen Messpunkte der einzelnen Gruppen, sowie den durchschnittlichen Zeitbedarf an.

Tab. 5.14: Umhüllungspunkte und Zeitbedarf bei Kalbinnen

	HUPx	HUPy	NUPx	NUPy	VPx	VPy
Gruppe1	18,11	26,63	50,47	21,48	56,68	29,43
Gruppe2	24,71	26,56	62,72	11,89	73,61	27,57
Gruppe3	22,05	34,52	63,95	19,87	75,49	38,93
Gruppe4	24,80	32,63	73,63	16,41	85,79	34,89
	НКР	HKP	WhF1	WhF1	Sekunden	SI
Gruppe1	37,50	59,03	-1,55	64,64	1,86	19,96
Gruppe2	44,91	63,48	11,28	64,71	1,90	46,23
Gruppe3	46,97	73,52	0,58	82,56	2,09	31,57
Gruppe4	56,57	74,32	1,61	81,60	2,16	40,52

In Abbildung 5.12 sind die unterschiedlichen Kopfschwünge der einzelnen Kälbergruppen mit ihrem Raumbedarf graphisch dargestellt.



Abb. 5.12: Durchschnittliche Umhüllungspunkte der einzelnen Kälbergruppen

Der VP und der NUP liegen bei den Tieren der Gruppe 1 noch sehr nahe beisammen. Auch wird der Kopf mehr waagrecht nach vorne gestoßen und ein Kopfschwung nach unten bleibt weitgehend aus. Dennoch ist bereits bei diesen Tieren, das jüngstes Tier war bei Versuchsbeginn 10 Tage alt, das Grundmuster des arttypischen Kopfschwunges zu erkennen. Mit zunehmendem Alter und zunehmender Größe wachsen auch die Abmessungen der Vermessungspunkte. Auch die typische schleifenförmige Bewegung des Kopfschwunges, wie sie schon bei den Kühen festgestellt wurde, wird mehr und mehr ausgeprägt.

Um Ergebnisse zu erhalten, welches Körpermaß die größte Korrelation zu den Umhüllungspunkten aufweißt, wurden die Korrelationen ermittelt und in Tabelle 5.15 eingetragen.

Tab. 5.15: Korrelationen zwischen Körpermaßen und Umhüllungspunkten

	HUPx	HUPy	NUPx	NUPy	VPx	VPy
Gewicht	0,688	0,210	0,110	-0,061	-0,342	0,880
Wh	0,174	0,187	0,181	0,054	0,183	0,176
Brust	0,112	0,180	-0,111	0,339	0,211	-0,024
s RI	-0,231	-0,377	-0,221	-0,922	-0,149	-0,437
	HKP	НКР	WhF1	WhF1	Sekunden	SI
Gewicht	0,197	-0,106	0,124	0,330	0,985	0,739
Wh	0,164	0,226	0,027	0,183	0,173	0,124
Brust	-0,109	-0,068	0,290	0,169	0,171	0,124
s RI	-0,181	-0,534	0,175	-0,380	-0,516	0,136

Die größte Korrelation fand sich zwischen Gewicht und Zeitbedarf für das Aufstehen mit einer Korrelation von 0,985. Durch die geringe Anzahl getesteter Tiere ist anzunehmen, dass nicht alle Korrelationen richtig festgestellt wurden.

Abbildung 5-13 stellt die Korrelation zwischen Gewicht und Zeitbedarf mittels einer Regressionsgeraden grafisch dar.

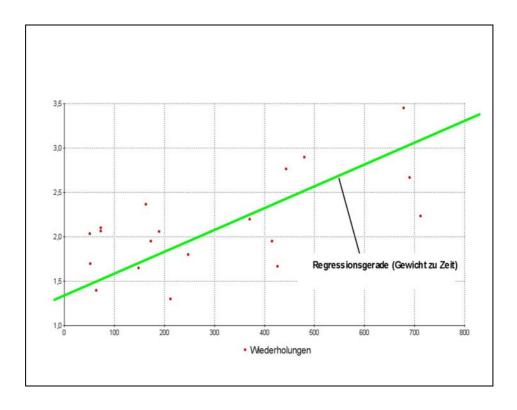
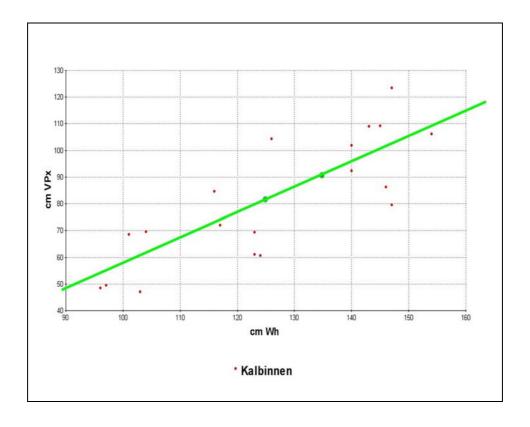



Abb. 5.13: Korrelation Gewicht zu Zeit mit Regressionslinie

Eine Korrelationsanalyse von Wh und VPx ergab eine Korrelation von 0,183, welche durch den t-Test bei einem Signifikanzniveau von a 0,05 als nicht signifikant erkannt wurde. Durch die wenigen Wiederholungen und die geringe Tierzahl ist davon aus zu gehen, dass keine Normalverteilung und keine repräsentativ große Testanzahl vorliegt. Die Punktewolke in den Abbildungen 5.12 sowie 5.13 lässt erkennen, dass keine Normalverteilung vorliegt.

Um trotz des geringen Testumfangs Ergebnisse zu erhalten, wurde für den Widerrist und den VP eine Regressionsgerade errechnet. In Abbildung 5.14 ist das resultierende Ergebnis grafisch dargestellt.

Abb. 5.14: Korrelation Wh und Vpx mit Regressionsgeraden

Die grüne Linie ist die Steigungslinie, welche die Korrelation zwischen VPx und Wh darstellt. Die Punkte, welche die Kalbinnen darstellen, liegen nahe dieser Linie und obwohl laut Korrelationsanalyse keine signifikante Korrelation vorliegt, kann man anhand dieser Linie ablesen, dass der Widerrist einen gewissen Einfluss auf den VP haben kann. Rechnerisch ergibt sich folgende Formel für die Steigung.

VP= Wh-44,076*0,9957

Diese Formel könnte in Folge auch leicht vom Landwirt, von Kontrollorganen oder für Stallneubauten verwendet werden, um tiergerechte Abmessungen der Aufstallung etc. verwirklichen zu können.

5.6 Entwicklungstrends seit 1984

In diesem Kapitel werden Vergleiche zu der Arbeit von LUDWIG (1984) hergestellt. Anhand dieser soll aufgezeigt werden, wie stark sich die Ergebnisse während der Jahre verändern. Dieses Kapitel streicht auch hervor, dass eine festgelegte Norm nicht über Jahrzehnte Berechtigung hat, sondern von Zeit zu Zeit überprüft und angepasst werden muss.

5.6.1 Entwicklung des Raumbedarfs seit 1984

Die deutlichen Unterschiede zwischen den Ergebnissen dieser Arbeit und den Ergebnissen von LUDWIG lassen sich nur unvollständig erklären. Es können einerseits durch unterschiedliche Techniken der Feldversuche und der Auswertung leichte Unterschiede bei den Ergebnissen auftreten. Der Schwankungsbereich für diese Messfehler, verursacht durch unterschiedliche Techniken würde wahrscheinlich im Bereich von etwa 2 bis 5 Zentimeter liegen.

Viel eher anzunehmen ist allerdings die Tatsache, dass die Kuhpopulationen von vor 23 Jahren nicht mehr mit den heutigen vergleichbar sind. So ermittelte LUDWIG (1984) für ihre Fleckviehversuchsgruppe einen Widerrist von etwa 131 cm und für ihre Schwarzbuntgruppe einen Widerrist von ca. 133 cm. Moderne Milchkühe erreichen heute Widerristhöhen, die um zehn bis zwanzig Zentimeter höher liegen.

Weiters ist davon aus zu gehen, dass die Deutsche Fleckviehpopulation nicht in allen Merkmalen der Österreichischen entspricht. Noch deutlicher dürfte dieser Trend bei den Holsteinkühen ausfallen. So spricht LUDWIG (1984) noch von Schwarzbunten.

Wahrscheinlich hatten diese Tiere auch noch einen hohen Genanteil der ursprünglichen deutschen Schwarzbuntpopulation, während heutige Holsteintiere zu 100% dem amerikanischen- und kanadischen Zuchttyp entsprechen. Daraus geht hervor, dass die Rassen von heute nicht mehr direkt mit den Rassen von 1984 vergleichbar sind.

Anhand der Abbildungen 5.15 und 5.16 ist der Unterschied im Kopfschwungraum während der letzten 24 Jahre und auch innerhalb der Rassen sehr gut dargestellt.

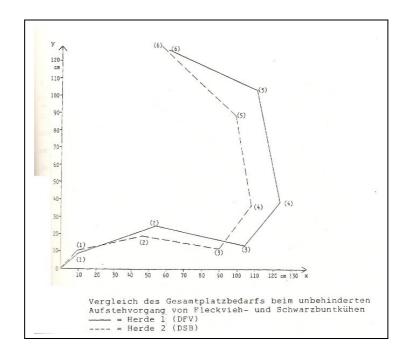


Abb. 5.15: Verschiedene Kopfschwünge FV und SB (LUDWIG, 1984)

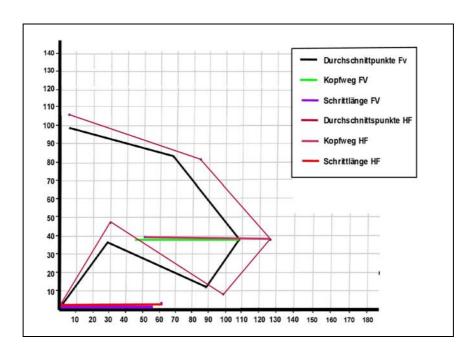


Abb. 5.16: Verschiedene Kopfschwünge bei FV- und HF- Kühen (2007)

Neben den unterschiedlichen räumlichen Ausdehnungen des Kopfschwunges zwischen DFV und DSB erkannte LUDWIG (1984, 35) auch, dass die Fleckviehtiere einen flacheren, mehr nach vorne gerichteten Kopfschwung aufwie-

sen, während die Schwarzbunten einen Kopfschwung ausführten, der mehr vertikal ausgeführt war und dafür nicht so sehr nach vorne gerichtet war. Abbildung 5.16 soll diese Aussage grafisch darstellen.

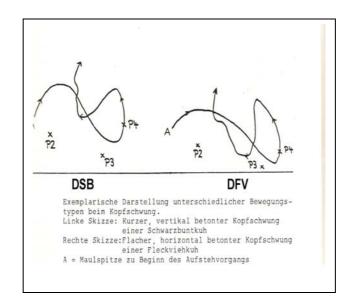


Abb. 5.16: Weg der Maulspitze beim Aufstehvorgang (LUDWIG, 1984, 62)

Abbildung 5.17 zeigt hier große Unterschiede zur Arbeit von LUDWIG (1984, 62).

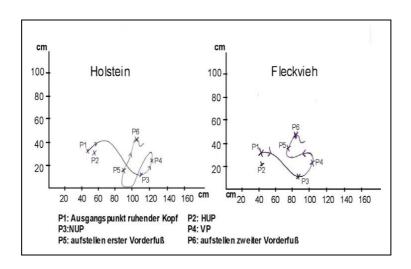


Abb. 5.17: Weg der Maulspitze beim Aufstehvorgang (LUDWIG, 1984)

5.6.2 Der Zeitbedarf beim Aufstehvorgang 1984 und heute.

Die beiden Herden, die LUDWIG (1984) untersuchte, zeigten sich beim Zeitbedarf für das Aufstehen signifikant verschieden. Die Fleckviehkühe benötigten 3,98 Sekunden. Die Schwarzbunten benötigten 3,54 Sekunden. Die Autorin

weißt allerdings auf, dass die Schwarzbunten nervöser waren und dadurch wahrscheinlich schneller aufstanden. Nach LUDWIG lässt sich der Zeitbedarf für einen Aufstehvorgang auch auf die einzelnen Phasen des Aufstehvorganges aufteilen. Das Ergebnis wird in Tabelle 5.17 dargestellt.

Tab. 5.16 Zeitbedarf für die einzelnen Phasen des Aufstehens nach LUDWIG (1984)

Phase	Bezeichnung	absolut (Sekunden)	relativ (%) Summe	
1	Liegestellung	0,2	5	5
	Ausgangsstellung	0,2	5	10
2	Kopfschwung	1,4	35	45
	Anhaltestellung	0,8	20	65
3	Aufstellen erster Vorderfuß	0,6	15	80
	Aufstellen zweiter Vorderfuß	0,8	20	100

Für die drei Hauptphasen des Aufstehens ergibt sich danach ein zeitliches Verhältnis von 1:5,5:3,5 (LUDWIG, 1984).

In der vorliegenden Arbeit zeigt sich ebenfalls ein signifikanter Unterschied im Zeitbedarf für den Aufstehvorgang. Die Holsteinkühe benötigten mit 3,65 Sekunden deutlich länger als die Fleckviehkühe mit 3,17 Sekunden. Diese Daten unterscheiden sich sehr deutlich von den Daten die LUDWIG (1984) ermittelte.

5.7 Ergebnisse anderer Untersuchungen zum Kopfraumbedarf

Bei den Kühen die bei diesem Versuch verwendet wurden, konnten keine befriedigenden Ergebnisse zwischen Körpermaßen und Raumbedarf, oder VP gefunden werden. COOK (2004) hingegen, fand bei seinen Arbeiten zum

Kopfraum- und Liegeraumbedarf sehr wohl Ergebnisse . Dabei wird von einer Abhängigkeit des Platzbedarfs zum Körpergewicht ausgegangen.

Die Formel lautet:

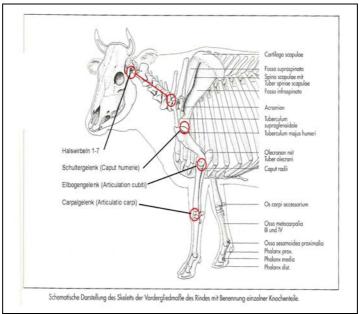
Total lyingspace (inches)= 0,0405* bodyweight (lbs)+ 40,992 inch

Für eine Kuh mit 1543 pounds (700kg) sind das 103,5 inches (266cm).

Ins metrische System umgerechnet würde die Formel

Gesamte Boxenlänge (cm)= 0,223*(kg Lebendmasse)+105cm lauten.

Die Ergebnisse von COOK und NORDLUND decken sich nicht mit den Ergebnissen der vorliegenden Arbeit. Grund hierfür dürfte die Tatsache sein, dass vor allem kein signifikanter Zusammenhang zwischen Gewicht und Schwungraum hergestellt werden konnte.


Nach den Erkenntnissen dieser Arbeit dürfte das Gewicht für den Kopfschwung nicht ausschlaggebend sein. Das Gewicht ist allerdings korreliert zu den Körpermassen innerhalb einer Rasse und hat so, wenn die Körpermaße Einfluss hätten (was in diesem Versuch nicht nachgewiesen werden konnte), indirekt ebenfalls wieder Einfluss auf den Kopfschwungraum. Es muss allerdings ein Zusammenhang zwischen Körpermaßen und Kopfschwungraum bestehen. Zumindest auf jeden Fall für die obere Begrenzung des Kopfschwunges. Da der Kopf an der Wirbelsäule befestigt ist und an dieser wiederum der ganze Körper, kann eine Kuh nur soviel Schwungraum nutzen, wie es ihr Kopf und Hals erlauben. METZNER (1976) hat bei seinen Versuchen zu den Reichweiten deutscher Fleckviehkühe bereits die Kopf-Halslänge einzelner Tiere gemessen. Kopf und Halslängenmessungen wurden für Fütterungssysteme, wie das Weelinksystem eingesetzt (GEORG und OBERDELLMANN, 1999).

Eine nachträgliche Messung der Kopf-Halslängen konnte nicht durchgeführt werden, weil einige Tiere bereits abgegangen oder auch verkauft worden waren. Des weiteren beinhaltet die Messung der Kopf-Halslänge durch die beweglichen Halswirbel und der Nervosität der Tiere während der Messung wieder ein großes Fehlerpotential.

5.8 Der Einfluss des Skelettes auf den Kopfschwung

Wie vorhin erwähnt, dürfte auch die Länge der Halswirbelsäule Einfluss auf den Raumbedarf haben. Bisherige Grundlage für die Berechnungen und Versuche war das Schleuderbrettmodell von SCHNITZER (1971, 20). Der Einfachheit wegen, war nur ein einzelner Dreh und Angelpunkt angenommen wurde. In Wahrheit ist allerdings eine Vielzahl von Gelenken beim Aufstehvorgang im Einsatz. Wahrscheinlich dürfte jedes einzelne Gelenk und jeder einzelne Knochen des Tieres eine mehr oder weniger Große Rolle beim Aufstehvorgang spielen.

Abbildung 5.19 zeigt Teile eines Rinderskelettes und darauf farblich markiert, die Gelenke des Vorderfusses, die beim Aufstehvorgang beteiligt sind.

Abb. 5.19: Rinderskelett nach KÖNIG und LIEBICH (1999), mit markierten und beschrifteten Gelenken

Aus Abbildung 5.19 geht hervor, dass mindestens drei bewegliche Gelenke, nämlich das Schultergelenk (Caput humerie), welches das Schulterblatt mit dem Oberarmknochen verbindet, das Ellbogengelenk (Articulatio cubiti), welches den Oberarmknochen mit Radius und Ulna (Rade und Speiche) verbindet und dem Karpalgelenk (Articulatio carpi), welches den Unterarmknochen mit den Handwurzelknochen verbindet, an einem Aufstehvorgang beteiligt sein können. Diese drei Gelenke befinden sich auf beiden Körperhälften. Weiters ist auch das Schulterblatt selber zu Lageänderungen imstande, da es ja nur durch Muskulatur befestigt ist. Nimmt man die sieben Halswirbeln dazu, die ebenfalls einen gewissen Bewegungsgrad erlauben, ergeben sich alleine in der Vorhand des Rindes 15 bewegliche Gelenke, oder gelenkartige Verbindungen.

Diese Knochenverbindungen ermöglichen einerseits einen flüssigen Aufstehvorgang, bilden aber andererseits auch Ansatzpunkte für Verletzungen. Ein schmerzendes Gelenk kann wiederum den gesamten Bewegungsablauf des Aufstehens beeinflussen. Um eine Korrelation zwischen Körpermaßen und Kopfschwung zu erhalten müssten daher alle diese Knochen vermessen werden und dann wären die Ergebnisse noch immer nicht aussagekräftig, weil das Rind nicht bei jedem Aufstehvorgang die maximal mögliche Reichweite ausschöpft. So zeigten auch die Tiere bei diesem Versuch ansatzweise gleiche Tendenzen, aber im Endeffekt wichen die einzelnen Wiederholungen innerhalb eines Tieres doch deutlich voneinander ab. Die Formel VP= Wh-44,076*0,9957 wie sie für den Versuch mit den Holsteinjungtieren gefunden werden konnte, ist aufgrund dieser Tatsachen auch mit Skepsis zu betrachten.

Durch die Vielzahl von Gelenken und Muskeln die den reibungslosen Aufstehvorgang und auch den weiteren Bewegungsablauf ermöglichen, ist das Tier auch sehr anfällig für Verletzungen. Gerade deshalb sollten von den Landwirten alle möglichen Vorkehrungen getroffen werden um haltungsbedingte Gelenksschäden zu vermeiden. Diese Verletzungen oder Schäden können sich über einen relativ langen Zeitraum Ertrags mindernd auswirken. Immerhin

stehen die Kühe in Österreich momentan etwa 3,2 Laktationen, oder 5,8 Jahre im Stall (ZAR, 2006, 5).

6 Schlussfolgerungen für die Praxis

Der mittlere Kopfschwung aller Kühe hat einen mittleren VPx von 116,442 cm. Beim Kopfschwung nähert sich der Kopf dem Boden bis auf etwa 9,8 cm. Bei einem zweiten "Nachschwung", wie er vor allem bei Holsteinkühen häufig festgestellt wurde und auch bei Fleckviehkühen manchmal ansatzweise beobachtet, nähert sich der Kopf dem Boden noch mehr. In einigen Fällen schlug er sogar auf diesem auf. Beim Aufstellen der ersten Vordergliedmaße macht die Kuh des weiteren einen Ausfallschritt von durchschnittlich 58 cm. Hierbei bewegt sie den Fuß sehr rasch, in etwa 2 bis 5 cm über dem Boden.

Das bedeutet, auch wenn der Platzbedarf gemessen am Kopfschwung am Boden noch Erhebungen wie etwa die Bugschwelle, oder im Kurzstand die Krippenwand zuließe, so wird dieser beim Kopfschwung noch ungenutzte Raum beim späteren Vorwärtsschritt und dem zweiten Absenken des Kopfes vor der Anhalteposition doch voll ausgenützt. Zu diesen Zeitpunkten sind jegliche Elemente, die am Boden montiert sind und als Steuer- oder Stabilisierungseinrichtung dienen sollen, ausgehend vom eingeknickten Karpalgelenk, bis etwa 120 cm davor Hindernisse, die den Tieren zu schaffen machen können.

Abbildung 6.1 zeigt den Kopfschwungraum sowie den Raumbedarf für den ersten Aufstellschritt, den Raumbedarf für das zweite Kopfabsenken sowie einen zusätzlichen Raum nach oben.

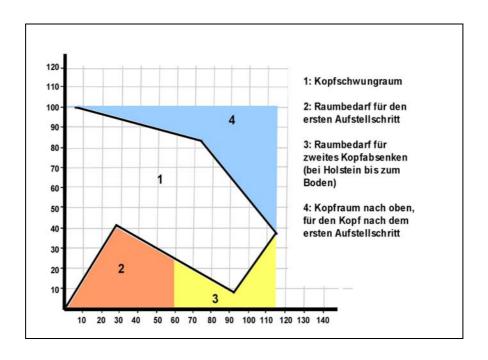


Abb. 6.1: Kopfschwungraum und tatsächlicher Raumbedarf des Rindes

Der zusätzliche Raum nach oben ist in Abbildung 6.1 deshalb eingefügt, weil die Kuh nach ihrem ersten Aufstellschritt den Nacken deutlich höher hat. Im Durchschnitt befinden sich der Nacken und der Widerrist auf etwa 100cm Höhe. Die Kuh hebt aber zu diesem Zeitpunkt den Kopf meist an, wodurch er sich über dem HKP beim Kopfschwung befindet. Ein nach oben offener Kopfraum würde hierbei Verletzungen und Beeinträchtigungen vorbeugen.

6.1 Behinderungen des Kopfschwunges im Kurzstand

Die Kopfbewegung einer Kuh nach vorne beträgt im Durchschnitt etwa 68 cm. Damit einher geht eine Vorwärtsbewegung des Halses und der Buggelenke von ebenfalls etwa dieser Länge. Kurzstände mit Grabnerkette kommen diesen Erfordernissen in etwa nach. Laut Tierhaltungsverordnung (ANLAGE 2, 22) müssen dem Tier in Längsrichtung mindestens 60 cm Bewegungsfreiheit geboten werden.

Allerdings können Kurzstände den Bedingungen, wie etwa keine Hindernisse im Bodenbereich zu haben nicht nachkommen. Da die Kühe in Anbindehaltung keinen Ausfallschritt ausführen können um an das Futter zu gelangen,

müssen die Futtertische um mindestens 15 cm höher liegen, als das Liegeflächenniveau (BORELL, 2002). Ein zusätzlicher Krippensockel, der den Futterbereich vom Liegebereich abgrenzt, darf maximal 32 cm hoch und 12 cm breit sein (OFNER, et. al., 2006). Dadurch wird ein Kurzstand dem natürlichen Aufstehverhalten des Rindes nicht gerecht. Abbildung 6.2 zeigt eine Kurzstandanbindung und den dazu gezeichneten Platzbedarf des Rindes.

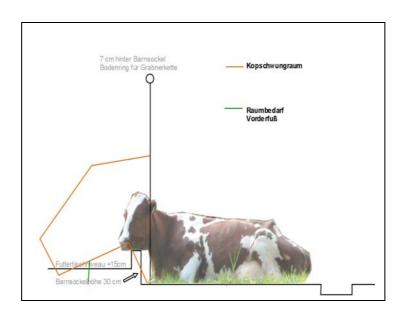


Abb. 6.2: Kurzstandanbindehaltung und Kopfraumbedarf des Rindes

Der Kurzstand ist die am meisten verbreitete Anbindeform in Österreich. In Verbindung mit einem Kuhtrainer und einem Schwanzhalter werden die Kühe gezwungen den Kot und Harn in den Mistgang abzusetzen. Dadurch ergeben sich arbeitswirtschaftliche Vorteile, wie etwa geringerer Strohverbrauch, geringerer Reinigungsaufwand und sauberere Tiere. Dass diese Vorteile zugunsten der Landwirte Nachteile für das Tier darstellen, ist allerdings einleuchtend. Einrichtungen wie eine elastische Krippenwand geben beim Kopfschwung des Rindes nach und erleichtern dadurch dem Rind das Aufstehen und verhindern Verletzungen der Halspartie. Einen uneingeschränkten Ausfallschritt gewährleisten allerdings auch diese Einrichtungen nicht. Da die Anbindehaltung im Kurzstand nach bisherigen Erkenntnissen die tiergerechteste Art der Anbindehaltung ist und die Anbindehaltung auch in Zukunft nicht abgeschafft werden soll, muss der Kurzstand wie wir ihn heute kennen noch weiter verbessert werden.

6.2 Behinderungen des Kopfweges im Mittellangstand

Als ebenfalls ungeeignet erweist sich der Mittellangstand, bei dem die Tiere zurückgesperrt werden und dadurch keinen ausreichenden Schwungraum für den Aufstehvorgang holen können. Ein Grund für das Zurücksperren der Tiere ist, die Tiere sauber zu halten, und zu gewährleisten, dass sie in den Mistgraben koten. Als Vorteil dieser Aufstallung wird außerdem angegeben, dass man den Tieren durch die Absperrvorrichtung den Zugang zum Futter verwehren kann. Würde das Fressgitter immer in offener Position stehen und könnten die Tiere so jederzeit Futter aufnehmen, könnten sie trotzdem den Futtertischraum für ihren Kopfschwung nicht nutzen, weil die Fressgitteröffnungen zu schmal und zu hoch oben sind und somit für einen Kopfschwung unmöglich genutzt werden können. Abbildung 6.3 verdeutlicht die auftretenden Missstände bei der Mittellangstandhaltung mit Fressgitter zum Zurücksperren.

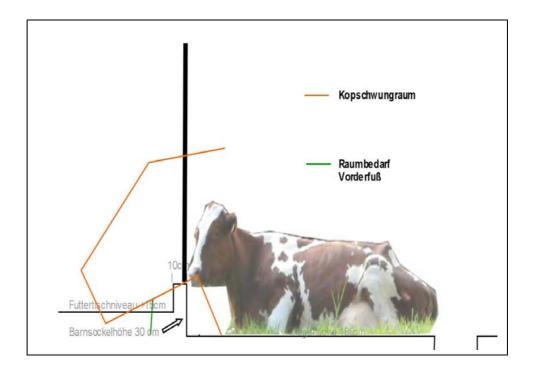


Abb. 6.3: Mittellangstand und Kopfraumbedarf des Rindes

6.3 Behinderung des Kopfweges bei Nackenrohranbindung und Langstand

Bei Nackenrohranbindung, bei der die Kühe über Riemen und Ketten an einem Nackenrohr fixiert werden, kann der Aufstehschwung einerseits durch das Nackenrohr beeinträchtigt werden andererseits befindet sich bei solchen Anbindehaltungen der Futtertrog in einer Höhe von 50 und mehr cm. Dadurch wird der Kopfschwung ebenfalls eingeschränkt. Die Nackenrohranbindung oder auch Langstandanbindung ist heute nur mehr selten zu finden, weil die Tiere nicht zu einer Harn und Kotabsetzung zum Mistgang zurück gedrängt werden und sich somit selber mehr beschmutzen. Abbildung 6.4 zeigt eine solche Nackenrohranbindung.

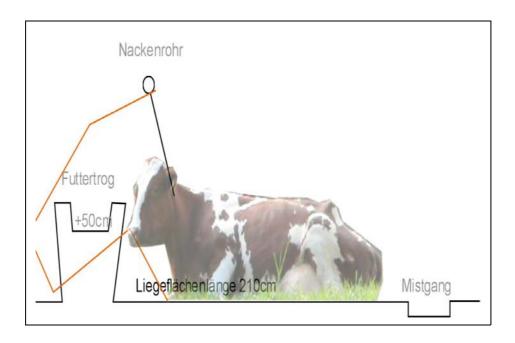


Abb. 6.4: Langstand und Kopfraumbedarf des Rindes

Die Anbindehaltung entspricht in vielerlei Hinsicht nicht dem Verhalten des Tieres. Sei es wegen der Bewegungseinschränkung, dem fehlenden Sozialverhalten oder dem nur eingeschränkt ausführbaren Kopfschwung. In der Tierhaltungsempfehlung vom Freilandverband steht deshalb, dass Anbindehaltung keine artgemäße Haltungsform ist. Für KT- Freilandbetriebe ist diese Haltungsform deshalb verboten (KT- Freiland 2007)

6.4 Einschränkungen des Kopfweges bei Laufställen mit Liegeboxen

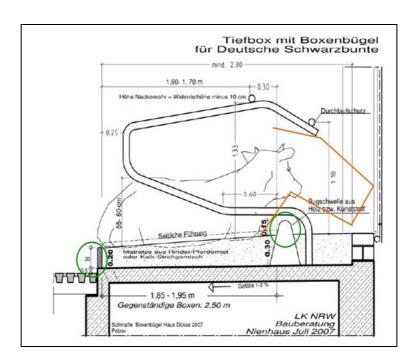
Heute werden für Milchvieh fast nur mehr Freilaufställe gebaut. Hierbei haben sich zwei Arten von Liegeboxen durchgesetzt. Die Hochliegebox und die Tiefliegebox. Die Fressliegebox, wie sie zeitweise propagiert wurde, hat sich nicht durchgesetzt. Der Unterschied zwischen Hoch und Tiefbox besteht im Einstreubedarf. Hochboxen werden hauptsächlich dann verwendet, wenn Einstreuzugekauft werden müsste oder der Tierhalter Vorteile in der Arbeitswirtschaft sieht. Die Kühe liegen dann meist auf elastischen Matten. Beton als einziger Untergrund der Liegefläche ist für das Tier nicht akzeptabel (BRUNSCH, et. al., 1996, 84).

Im Tieflaufstall sollten die Kühe auf einer Stroh-Mistmatratze liegen. Diese Matratze ist weich und verformbar und der Strohbedarf ist mit 0,3 kg pro Tier und Tag relativ gering (KARRER und NITSCHE, 2001). Damit diese Form der Aufstallung artgerecht wird, ist auf eine ausreichend lange und breite Liegefläche zu achten, die an das Tier möglichst gut angepasst ist. Für die Liegefläche eignet sich die Formel Länge= 0,922x sRl+ 20cm und Breite= 0,85x Wh (KTBL, 1002/1991) Die Liegefläche reicht hierbei von der Streuschwelle bis zum Bugbrett. Die Liegefläche sollte möglichst eben sein. Scharfe Knicke in der Liegfläche oder auch Gruben, wie sie entstehen, wenn nicht genug nachgestreut wird führen dazu, dass sie von den Kühen gemieden werden (BLOWEY, 1998, 74). Eine leichte Mulde im Liegebereich kann nach mündlichen Mitteilungen einiger Landwirte aber auch die Akzeptanz und die Liegedauer der Tiere positiv beeinflussen (Muldenlieger).

Die Liegefläche wird nach vorne üblicherweise durch das Bugbrett begrenzt. Das Bugbrett dient als Bugschwelle. Das heißt, es soll die Kühe daran hindern während des Liegens nach vorne zu rutschen und sich so selber den nötigen Kopfschwungraum zu verkürzen. Gerne werden diese Robbremsen bis zu 15 cm und höher gebaut, weil sie dann dahinter Platz für Einstreumaterial bieten. Neuere Untersuchungen ergeben, dass Bugschwellen aus Kunststoff oder Holz , welches nicht splittert, gefertigt sein sollen. Sie sollen keine Kanten haben, nicht senkrecht sondern schräg nach vorne stehen und mindestens 10 cm, je-

doch maximal 15 cm über das Liegeflächenniveau hinausragen (PELZER, et. al., 2007). Dadurch soll gewährleistet werden, dass die liegende Kuh ihre Vordergliedmaßen ausstrecken kann, ohne dass Verletzungen oder Schäden zu befürchten sind (KTBL 1002/1992). Die möglichen Auswirkungen des ersten Ausfallschrittes, bei dem der Vorderfuß gleichsam schwungvoll nach vorne gestreift wird, wurden in dieser Arbeit nicht detailliert genug bearbeitet, um genaue Aussagen über mögliche Verletzungen durch Kollisionen mit dem Bugbrett machen zu können. Ein möglichst niedriges und sehr schräg gehaltenes Bugbrett erscheint aber als sehr wichtig. Als niedriges Bugbrett wird eine Höhe unter 5 cm verstanden.

Das Nackenrohr gehört neben der Bugschwelle und den seitlichen Liegeflächenabgrenzungen mit zu den wichtigsten Steuerungselementen bei Liegeboxen. Das Nackenrohr soll so montiert werden, dass die Kuh noch bequem mit allen vier Füßen in der Box stehen kann, allerdings den Kot auf den Laufgang absetzen muss (PELZER, et. al., 2007). Die Empfehlungen für die Höheneinstellung der Nackenriegel weichen voneinander ab. So wird heute eine Montage bei 110 bis 115 cm (BARTUSSEK, 1999) ebenso empfohlen wie 125 bis 133 cm (PELZER, et. al., 2007).


Die Größe der Tiere ist hier sicher maßgeblich für die Einstellung des Nackenriegels. Laut Empfehlungen sollen sich Betriebsführer bei der Positionierung des Nackenrohres an den kleinsten Tieren der Herde orientieren und der Nackenriegel soll sich in 90% Höhe des Widerristes der kleinsten Kuh befinden (KTBL, 1002/1992). Der Kopfschwung selber wird durch ein Nackenrohr in 110 cm Höhe nicht beeinträchtigt. Ob allerdings nach dem Kopfschwung eine längere Anhaltephase folgt, weil die Tiere Angst davor haben sich an dem niedrigen Nackenrohr zu verletzen, konnte hier nicht geklärt werden.

Es ist allerdings auf jeden Fall empfehlenswert das Nackenrohr durch eine elastische Kette, welche noch mit einem Kunststoffschlauch überzogen ist auszutauschen. Solche flexible Führungseinrichtungen sind sicherlich tiergerechter als starre Rohre. Nimmt man die kleinste Kuh dieser Versuchsauswertung (135 cm Wh) und gibt weitere 10 cm weg, so kann man davon ausge-

hen, dass diese Kuh mit einem Nackenrohr in einer Höhe von 125 cm trotzdem noch richtig positioniert werden kann.

Die Körpergröße des Tieres hat einen großen Einfluss auf ihren Liegeplatzbedarf. Kleine Tiere koten dann in die Boxen ab, während große Kühe kaum darin Platz finden. Dies verursacht mehr Reinigungsarbeit auf der einen Seite und mehr Verletzungen auf der anderen Seite. Die Landwirte sollten deshalb im Eigeninteresse möglichst gleich große Tiere halten. In Amerika wird empfohlen, spezielle Gruppen für Erstlingskühe und für alte Kühe zu bilden. Dies soll altersbedingte Größenunterschiede ausgleichen (COOK und NORDLUND, 2004).

Abbildung 6.5 zeigt eine Tiefbox mit eingezeichnetem Kopfschwung. Für den Kopfschwung ist ausreichend Platz vorhanden (orange Linie). Die Bugschwelle und der höhere Niveauunterschied bei der Streuschwelle von etwa 20 cm könnten hierbei trotzdem ein Problem darstellen.

Abb. 6.5: Tiefbox mit Kopfschwunglinie (orange) und kritischen Punkten bei Bugschwelle und Streuschwelle (grüne Kreise) (Quelle: Pelzer, et al. 2007)

Wie in Abbildung 4-7 ersichtlich, ist neben dem Nackenrohr noch ein Durchlaufschutz in 110 cm Höhe montiert. In dieser Höhe stört es beim Kopfschwung nicht. Die Fläche vor der Bugschwelle weist ansonsten keine Hindernisse auf und ermöglicht dadurch einen ungehinderten Kopfschwung und auch ein problemloses zweites Absenken des Kopfes. Stirnriegel sollten nicht mehr montiert werden. Ein Stirnriegel, sofern er nicht mehr als 120 cm vor der Bugschwelle montiert ist, beeinflusst das Aufstehverhalten von Kühen immer negativ.

6.5 Der Kopfraumbedarf und seine Umsetzung in der österreichischen-Tierhaltungsverordnung

In der Tierhaltungsverordnung wird dem Kopfschwung nach wie vor zu wenig Bedeutung beigemessen. Damit Kühe artgemäß aufstehen können, benötigen sie im Schnitt etwa 120 cm Schwungraum nach vorne. Auch nach oben wird ähnlich viel Raum in Anspruch genommen. Etwa 25 Prozent der beobachteten Tiere haben über 135 cm Schwungraum nach vorne. Sie nehmen somit deutlich mehr Raum in Anspruch. Da man aber annehmen kann, dass Kühe nicht immer den maximalen Kopfraum nutzen müssen, braucht man diese hohen Werte von 135 cm nicht unbedingt umsetzen. Es erscheint aber sinnvoll, etwa 120 cm bis 125 cm Kopfschwungraum für diesen Kopfschwung zur Verfügung zu stellen. Auch eine Bewertung der einzelnen Aufstallungssysteme im Bezug auf den verfügbaren Kopfschwungraum, etwa durch den Tiergerechtheitsindex (TGI), wäre vorstellbar.

7 Weiterführende Arbeiten

Während der Arbeit eröffneten sich neben den bereits gegebenen Aufgabenstellungen neue Probleme. Aufgrund der Vorgaben dieser Arbeit, wie etwa eine gewisse Übersehbarkeit der Themen zu wahren und nur ein Thema

vertieft zu behandeln, aber auch wegen fehlender technischer Möglichkeiten, konnten viele Verhaltensweisen nicht oder nur unzureichend behandelt werden. In diesem Kapitel werden einige Schwachpunkte und einige Erkenntnisse, die in dieser Arbeit nicht erarbeitet werden konnten aufgezählt. Diese Punkte sollen Studierenden, Lehrenden und auch Praktikern als Anregung und zum Nachdenken dienen.

7.1 Bewertung der Regressionsgeraden und Formeln

Die in dieser Arbeit gewonnenen Formeln, wie etwa die Formel über den Zusammenhang zwischen dem vorderen Punkt (VPx) und der schrägen Rumpflänge, sind nicht reif für die Praxis. Ein Versuch mit höheren Tierzahlen ist hierbei sicher sinnvoll, um mehr Informationen zu gewinnen. Dies ist auch deshalb wichtig, weil vor allem für die Rasse Holstein keine statistisch abgesicherte Korrelation gefunden werden konnten. Durch Versuche mit größeren Gruppen sind statistisch signifikante Korrelationen viel besser feststellbar.

7.2 Praxisversuch über Energiefreisetzung beim Ausfallschritt.

Die Formel $F=m^*\frac{d\overline{V}}{dt}$, welche die freiwerdende Energie verdeutlichen soll, die auftritt, wenn ein Kuhvorderfuß gegen ein Bugbrett stößt, muss praktisch überprüft werden. Eine Kraftentwicklung von 330N kann für einen Kuhfuß durchaus ein Trauma darstellen. Traumen wiederum führen in sehr vielen Fällen zu einer verkürzten Lebensdauer. Dem Bugbrett muss deshalb auch in Zukunft große Aufmerksamkeit geschenkt werden. Ein praktischer Versuch lässt sich etwa dadurch darstellen, dass man einer Kuh ein Bugbrett als Hindernis vorsetzt und dieses Bugbrett mit einem Wiegesensor versieh. Mithilfe dieser Sensortechnik müssten sich die Kräfte messen lassen, die auf ein Bugbrett oder einen Fuß einwirken.

7.3 Analyse der Kopfraumbedarfsformel von Jungrindern

Die Jungviehaufzucht wird in vielen Betrieben vernachlässigt. Wenn viele Betriebe Kälberverluste von bis zu zehn Prozent und mehr haben, oder wenn Kühe das erste mal erst mit drei Jahren oder älter, beziehungsweise mit unter zwanzig Monaten abkalben, dann bestätigt dass die Achtlosigkeit mit der das Jungvieh auf vielen Betrieben gehalten wird.

Es gibt auch sehr wenig Literatur, die auf den Platzbedarf während der Entwicklung eingeht. Diese Arbeit soll dazu beigetragen, gewisse Grundgrößen für den Raumbedarf, bei diesen Tiergruppen, zu erkennen und in der Praxis umzusetzen.

Andererseits konnten nicht genug Tiere bewertet werden, um eine statistisch abgesicherte Auswertung zu gewährleisten. Des Weiteren wurden nur Holsteinkalbinnen in den Versuch einbezogen und ausgewertet. Es ist aus diesem Grund auf jeden Fall wünschenswert, hier mit größeren Tiergruppen zu arbeiten und die Formel

VPx= (Wh- 44,076)*0,9957

zu bestättigen zu verbessern oder zu widerlegen. Der Landwirt und auch Kontrollorgane brauchen in Zukunft zuverlässige Werkzeuge, um sicherzustellen, dass das wachsende Rind eine optimale Entwicklung durchlebt und nicht etwa durch schlechte Haltung dauerhafte Schäden erleidet.

7.4 Der Kopfraumbedarf bei männlichen Rindern

In dieser Arbeit wurde nicht auf männliche Rinder eingegangen. Während Kühe nicht auf Vollspaltenböden gehalten werden und für die Liegeboxen gewisse Mindestmaße vorgeschrieben sind, sieht dieses Bild bei Stieren anders aus. Die gängige Haltung ist jene auf Vollspalten. Durchaus gängige Breiten

und Längen solcher Stierboxen können etwa 3x3 m sein. In solchen Boxen weden etwa drei bis vier Stiere gehalten. Hierbei stellt sich die Frage, ob die Stiere in diesen Boxen genügend Schwungraum vorfinden um artgerecht aufzustehen. Aber das soll bei dieser Haltungsform soll das nicht die wichtigste Frage sein. Vielmehr gilt es zu bewerten, ob man es ethisch vertreten kann Stiere so nicht ihrer Art gerecht zu halten. Stieren, als Lebewesen, müssen auch gewisse Rechte und Freiheiten, wie etwa auf Bewegungsfreiheit zugesprochen werden. Bei allen Landwirten, die sich aus welchen Gründen auch immer auf eine halbautomatisierte Stiermast eingelassen haben, muss ein Umdenken und eine Rückbesinnung auf ethische Werte eingeleitet werden.

7.5 Verletzungen im Kopfbereich durch Einschränkungen in der Bewegungsmöglichkeit

In dieser Versuchsreihe konnte vor allem beobachtet werden, dass rangniedrige Tiere oft mit Plätzen vorlieb nehmen mussten, die unbequemer waren, weil sie zum Beispiel den Kopfschwung beim Aufstehen beträchtlich erschwerten. Bei den Holsteintieren konnte auch der zweite Nachschwung bis auf den Boden, beim aufrichten der Hinterhand, sehr oft festgestellt werden. Eine genauere Untersuchung der Kuhköpfe auf Verletzungen, kahle Stellen, oder blutende Blessuren wär sicher interessant. Durch die Wucht des Aufpralles könnte es durchwegs zu Verletzungen des Nasen und Kieferbereiches kommen, welche wiederum die Futteraufnahme aufgrund von Schmerzen empfindlich verringern könnte.

7.6 Technische Verbesserungen des Kurzstandes

Die Anbindehaltung wird auch zukünftig in vielen österreichischen Betrieben eine Rolle spielen. Hauptgrund hierfür ist unter anderem, dass die Anbindehaltung bis zum heutigen Tag nicht generell verboten wurde und wahrscheinlich auch in Zukunft nicht verboten werden. Die Ergebnisse dieser vorliegenden Arbeit, die dem Kurzstand auch negative Punkte attestieren, müssen Anlass

sein um neue Versuche zum Aufstehvorgang in Kurzstand durch zu führen. Vor allem darf der Fokus bei der Bewertung des Kurzstandes nicht allein auf dem Aufstehvorgang liegen. Auch wenn der Aufstehvorgang durch nichts beeinflusst würde und die Tiere eine Liegefläche wie auf der Wiese hätten, bleibt die Frage ob sie sich selber am Euter, am Becken, oder an vielen anderen Stellen ihres Körpers kratzen bzw. belecken können mit nein zu beantworten. Ist es eine erhebliche Einschränkung des Wohlbefindens, wenn einem Tier dieses arttypische Verhalten nicht gestattet wird? Ein einfacher Selbstversuch gäbe Aufschluss darüber.

8. Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Kopfschwung, beim aufstehenden Rind. Diesen Bereich genauer zu Untersuchen erschien angebracht, weil die letzten Untersuchungen, die sich mit dem Kopfraumbedarf beim Aufstehvorgang beschäftigten, bereits längere Zeit zurück liegen. Es ist erwiesen, dass sich die Tiere seit dieser Zeit anatomisch weiterentwickelt haben und deshalb heute nicht mehr dieselben Ansprüche an den Kopfraum haben wie vor 24 Jahren.

Um ein unverfälschtes Bild des Kopfschwunges zu erhalten, wurden in drei Versuchen österreichische Fleckviehkühe, Holsteinkühe und Holsteinkalbinnen auf der Weide bei ihren Aufstehvorgängen gefilmt und anschließend hinsichtlich ihrer räumlichen und zeitlichen Ausdehnung ausgewertet. Die Ergebnisse dieser Versuche sind im Folgenden kurz angeführt. Der zum ungehinderten Aufstehen notwendige Platzbedarf wurde durch Messungen markanter, für den Bewegungsablauf typischer Punkte gemessen.

Hierbei wurden Unterschiede zwischen den beiden Rassen Holstein und Fleckvieh aufgedeckt. Beide Rassen führen den Kopfschwung schleifenförmig aus, allerdings hat der Kopfschwung der Holsteinkühe eine größere räumliche Ausprägung in Tiefe und Reichweite nach vorne. Holsteinkühe nähern ihren Kopf dem Boden, während der Schleuderbrettphase bis auf etwa 9 cm. Fleckviehkühe nähern sich dem Boden bis auf 12 cm. Holsteinkühe haben eine durch-

schnittliche Kopfreichweite von etwa 127 cm ausgehend vom abgelegten Karpalgelenk. Sie bewegen dabei den Kopf etwa 75 cm nach vorne. Fleckviehkühe weisen eine durchschnittliche Kopfreichweite von ca. 108 cm auf. Dabei bewegen sie den Kopf ca. 64 cm nach vorne. Ein Bezug zu Körperma-Ben innerhalb der Rassen konnte nicht hergestellt werden. Der Grund dafür könnte sein, dass nicht alle notwendigen Körpermaße vermessen wurden und somit existierende Korrelationen zwischen Körpermaßen und Kopfschwungbedarf nicht entdeckt werden konnten. Es ist auch anzunehmen dass Kühe nicht jedes mal mit gleicher Intensität versuchen aufzustehen und somit auch nicht jedes mal gleich viel Raum für den Kopfschwung in Anspruch nehmen. Da der ganze Körper in den Aufstehvorgang eingebunden ist und nicht nur ein starres Schleuderbrett mit einem einzigen Dreh- und Angelpunkt bildet, wie es von SCHNITZER vereinfacht dargestellt wurde, ist auch der Folgeschluss, dass jeder einzelne Knochen, jedes einzelne Gelenk und jede einzelne Sehne den jeweiligen Aufstehvorgang immer wieder etwas anders beeinflussen, sicher richtig. Diese großen Kräfte, Gegenkräfte und Hebel sind es, die jeden Aufstehvorgang einzigartig machen und gleichzeitig vereitelten, dass in dieser Arbeit eine einfache beschreibende Formel, welche die Körpermaße und den Raumbedarf richtig in Korrelation setzen, gefunden werden konnte.

Nach dem Kopfschwung folgt die Anhaltephase, bei der vor allem bei Holsteinkühen ein zweites Absenken des Kopfes bis zum Boden beobachtet werden konnte. Je nach Untergrund und Aufstallung kann die Anhaltephase verschieden lange dauern. In einzelnen Fällen verharren Tiere mehrere Sekunden in dieser Position, bevor sie den ersten Aufstellschritt einleiten. Dem ersten Aufstellschritt folgt unmittelbar das Aufstellen des zweiten Vorderfußes. Grund hierfür dürfte sein, dass das Rind eine zu lange Belastung nur eines Karpalgelenks vermeiden möchte. Steht das Tier auf allen vier Füßen, streckt es sich und bewegt sich dann nach vorne weg. Auf der Weide konnte nicht beobachtet werden dass sich Kühe nach dem Aufstehen rückwärts bewegen, wie es ihnen allerdings in den heutigen Laufställen aufgezwungen wird.

Der Zeitbedarf für das Aufstehen schwankt zwischen den beiden Rassen. Fleckviehkühe benötigten im Durchschnitt 3,09 Sekunden und Holsteinkühe, im Durchschnitt 3,56 Sekunden. Bei den Holsteinkühen war hierbei eine höhere Varianz zu verzeichnen. Der Zeitbedarf für den Aufstehvorgang dürfte bei Kalbinnen vom Gewicht abhängig sein. 10 Tage alte Kälber benötigten etwa 1,8 Sekunden, während großträchtige Kalbinnen über 3 Sekunden dafür benötigten. Ältere Kühe hatten wider Erwarten keinen signifikant höheren Zeitbedarf für das Aufstehen als Erst oder Zweitkalbskühe. Auch die Milchleistung oder die Körpergröße beeinflussten in diesen Versuchen den Zeitbedarf für das Aufstehen nicht.

Bei den Holsteinkalbinnen konnte eine Formel gefunden werden, mit welcherder Raumbedarf nach vorne anhand der gemessenen Widerristhöhe errechnen werden kann. Die Formel lautet: **VP= (Wh-44,076)*0,9957**. Da allerdings nur sehr wenige Kalbinnen in diesen Versuch eingebunden waren, sollte diese Formel in späteren Untersuchungen noch näher überprüft werden.

Holsteinkühe setzen beim ersten Ausfallschritt ihren Vorderfuß mit 62,12 cm deutlich weiter nach vorne, als die Fleckviehkühe mit durchschnittlich "nur" 56,57 cm. Grund für diesen signifikanten Unterschied dürfte die unterschiedliche Größe zwischen den Rassen sein. Bei den Holsteinkühen ist auch der Handwurzelknochen länger als bei Fleckviehkühen. Beide Rassen öffnen beim ersten Ausfallschritt einen Winkel von 44 bis 59 Grad zwischen abgeknicktem Vorderfuß und gestrecktem, aufgestellten Vorderfuß. Die Unterschiede in der Schrittlänge erklären sich deshalb aus dem deutlich längeren Vorderfüßen bei den Holsteinkühen.

Die Ergebnisse der Diplomarbeit von LUDWIG vom Jahre 1984 und die Ergebnisse der hier vorliegenden Arbeit unterscheiden sich in manchen Punkten sehr deutlich. Die meisten Ergebnisse von LUDWIG konnten nicht wiederholt werden. Grund dafür ist in einer Weiterentwicklung der Rassen durch Zucht, welche innerhalb der letzten 24 Jahre stattgefunden hat, zu sehen. Heutige Rassen entsprechen nicht mehr den Rassen von vor 24 Jahren. LUDWIG (1984, 34) fand in ihren Versuchen einen Durchschnittswert von etwa 115,8 cm, für

den Raumbedarf nach vorne. In heutigen Neubauten und bei Haltung von Holsteinkühen sollte etwa 125 cm Kopfraum ausgehend vom Karpalgelenk bei der liegenden Kuh gegeben werden. Je nach Einstellung des Nackenrohres befindet sich dieser Punkt verschieden weit vom Bugbrett entfernt. Eine Distanz von etwa 7 cm zwischen ruhendem Karpalgelenk und Bugschwelle dürfte hierbei optimal sein. Die Länge des aufliegende Körper, welche hauptsächlich von der schrägen Rumpflänge des Tieres abhängig ist, plus der 125 cm Kopfraum ergeben die optimale Boxenlänge. Für die richtige Bemessung der Liegeboxenlänge sollten hierfür immer die 25% größten Tiere der jeweiligen Herde herangezogen werden. Empfehlungen wonach für den Kopfschwungraum etwa 80 bis 90 cm nach vorne zur Verfügung gestellt werden sollten, sind sicher zu niedrig angesetzt.

Anbindehaltungen wie der Langstand oder der Mittellangstand entsprechen dem Bedürfnis des Tieres nach genügend Kopfschwungraum nicht. Auch der Kurzstand wie er derzeit gebaut wird beeinträchtigt den natürlichen Kopfschwungraum.

Vor allem in Österreich erfreut sich aber der Kurzstand nach wie vor großer Popularität. Auch in Zukunft wird die Anbindehaltung nicht komplett abgeschafft werden. Diese zwei genannten Punkte halten dazu an den Kurzstand als derzeit tiergerechteste Art der Anbindehaltung nicht ab zu urteilen, sondern ihn in speziellen Untersuchungen neu zu bewerten, gegebenenfalls zu verbessern und falls dass nicht möglich erscheint ein generelles Verbot der Anbindehaltung zu erwirken.

Bei Liegeboxen muss auf genügend Kopfraum geachtet werden. Nackenriegel sind in einer Höhe von mindestens 125 cm zu montieren und eventuelle Durchschlupfbremsen in einer Höhe von mindestens 110 cm. Dadurch dürften sie Kühe bei ihren Aufstehvorgängen nicht beeinträchtigen. Auf Stirnriegel und Nasenriegel muss ganz verzichtet werden, weil sie als Steuereinrichtung keine relevante Funktion haben und nur den Bewegungsablauf der Kuh be-

einträchtigen. Im Sinne der Kuh sollte auf ein Bugbrett ebenfalls verzichtet werden. Ob es möglich ist die Kühe ohne Bugbrett zu halten wird allerdings noch immer höchst unterschiedlich beantwortet.

Eine Hauptaussage der vorliegenden Arbeit ist unter anderem, dass dem Kopfschwung mit seinem dafür nötigen Raumbedarf in großen Teilen der Rinderhaltung bisher keine Beachtung geschenkt wird. Weder aus der Kälberoder Kalbinnenhaltung, noch aus der Stiermast waren darüber Daten vorhanden. Auch für die Kuhhaltung waren bisher nur spärlich Daten verfügbar.

Bei sehr vielen Haltungsformen kann gehäuftes pferdeartiges Aufstehen beobachtet werden. Hauptgrund für pferdeartiges Aufstehen ist fehlender Kopfraum. Folgen von pferdeartigen Aufstehvorgängen können überstrapazierte
Gelenke mit oft schleichenden Langzeitfolgen wie etwa Lahmheit und frühzeitiger Abgang, oder aber auch verletzte Zitzen- und Euterpartien mit akuten
Folgen wie Euterentzündungen, oder Komplettausfall eines Euterviertels sein.

Die Landwirte sehen diese Folgen eines Haltungsproblems, sie wissen aber nicht wo die Ursachen liegen. Um diesen Missständen in heutigen Haltungssystemen entgegen zu wirken muss weiter geforscht werden. Das daraus generierte Wissen muss an die Verantwortlichen, sprich die Bauern vermittelt und bewusst gemacht werden und es müssen viele Mindestanforderungen für den Platzbedarf bei Rindern überdacht bzw. neu definiert werden.

9 Literaturverzeichnis

ALBERS, K.; BRADE, E.; DIEKMANN, H.; HEIER, E.; KOCH, C.; u.v.m. (2007): Tierschutzleitlinien für die Milchviehhaltung; Niedersächsisches Ministerium für den ländlichen Raum, Ernährung, Landwirtschaft und Verbraucherschutz Mai

ANONYMUS (2006): Verhalten artgerechter Haltungssysteme und Stalleinrichtungen für Rind, Schwein und Huhn; Verein Beratung artgerechte Tierhhaltung e.V. Witzenhausen

BARTUSSEK, B.; KRIMBERGER, K.; STEINWIDDER, A.; ZAINER, J. u. ZEILER, E. (1999): Auswirkung unterschiedlicher Nackenriegellage auf Verhalten und Verschmutzung von Milchkühen; 14.IGN-Tagung-6.Freiland-Tagung Freiland Verband Wien

BOCKISCH, F.J.(1991): Quantifizierung von Interaktionen zwischen Milchkühen und deren Haltungsumwelt als Grundlage zur Verbesserung von Stallsystemen und ihrer ökonomischen Bewertung; Verlag der Ferberschen Universitätsbuchhandlung, Gießen

BORELL, E. (2002): Haltungsansprüche von Rindern und Pferden; Arch. Tierz., Dummerstorf 45; Martin Luther Universität, Halle Wittenberg, Sonderheft

BOXBERGER, J. (1983): Wichtige Verhaltensparameter von Kühen als Grundlage zur Verbesserung der Stalleinrichtung; Habilitation Weihenstephan

BLOWEY, R. (1998): Cattle lameness and hoofcare / Klauenpflege bei Rindern und Behandlung von Lahmheiten; Ulmerverlag, Stuttgart

BRUNSCH, R.; KAUFMANN, O. u. LÜPFERT, T. (1996): Rinderhaltung in Laufställen Verlag Eugen Ulmer Stuttgart

COOK, N. B.; NORDLUND, K. (2007): Avoiding disaster with freestall design; University of Wisconsin Madison, School of Veterinary medicine

COOK, N. (2004): Troubleshooting and evaluating cow comfort and freestall design on dairy operations; University of Wisconsin Madison, School of Veterinary medicine

COOK, N.B. u. NORDLUND, K. (2003): A flowchart for evaluating dairycow freestalls; published in Bovine Practioner 37

FISCHER-COLBRIE, **A.** (2005): Optimierungsmöglichkeiten in Anbindestallungen; 32 Viehwirtschaftliche Fachtagung Höhere Bundeslehr- und Forschungsanstalt Raumberg Gumpenstein

GEORG, H. u. OBERDELLMAN, P. (1999): Online-Motografie zur Bewegungsanalyse von Fressvorgängen bei Milchkühen; Institut für Betriebstechnik und Bauforschung (IBB) der FAL, Braunschweig, publiziert in Landtechnik 6/99;

HÖRNING, B. (2003): Optimale Gestaltung von Liegeboxen; BAL Bundesanstalt für alpenländliche Landwirtschaft Gumpenstein, Gumpensteiner Bautagung

HÖRNING, **B.** (2001): Nutzen und Kosten tiergerechter Milchviehhaltung- Versuch der Bewertung verschiedener Laufstallsysteme anhand des Tierverhaltens und der Jahreskosten, von Leitbildern zu Leitlinien; 6 Wissenschaftstagung zum ökologischen Landbau, Verlag Köster, Berlin,

HÖRNING, **B.**; **ZEITLMANN**, **C. u. TOST**, **J.** (2001): Unterschiede im Verhalten von Milchkühen im Liegebereich verschiedener Laufstallsysteme; KTBL Schrift 403 Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL) Darmstadt

KÄMMER, P. u. **SCHNITZER**, U. (1975): Die Stallbeurteilung am Beispiel des Ausruhverhaltens von Milchkühen. KTBL Darmstadt

KILIAN, M. (2007): Bestimmng und Messung physikalischer und technischer Parameter zur Beschreibung von Laufflächen in Milchviehställen; Freissing-Weihenstephan

KÖNIG, H. E.; LIEBICH, H G. (1999): Anatomie der Haussäugetiere-Lehrbuch und Farbatlas für Studium und Praxis; Schattauer, Stuttgart, New York

KOEGLER, H.: (2005) Einfluss der Liegeboxengestaltung auf die Gelenks- und Eutergesundheit von Milchkühen; Bundesanstalt für alpenländische Landwirtschaft Gumpenstein, Gumpensteiner Bautagung 2005

KTBL. (1991): Liegeboxen für Kühe und Jungvieh; KTBL-Arbeitsblatt 1002/1991 KTBL Schrift 403 Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL) Darmstadt

KT-FREILAND (2007): *Tierhaltungsempfehlung Rind*; Freiland Verband- Theresianumgasse 11 1040 Wien

LUDWIG, K. (1984): Analysen der unbehinderten Aufstehvorgänge von Fleckvieh und Schwarzbuntkühen; Technische Universität München

MAHLKOW-NERGE, K. (2006): Fütterungsfehler erhöhen das Mastitisrisiko; TOP AGRAR 3/2006

METZNER, R. (1976): Kennwerte für tiergemäße Versorgungseinrichtungen des Kurzstandes für Fleckviehkühe. Dissertation Weihenstephan

OFNER, E. u. SCHRÖCK, E.: (2006) Handbuch Rinder - Selbstevaluierung Tierschutz; Bundesministerium für Gesundheit und Frauen im Einvernehmen mit Bundesministerium für Land- und Forstwirtschaft, Umwelt und Waserwirtschaft; Wien

PELZER, A. (2007): Planungshinweise zur Liegeboxengestaltung für Milchkühe; DLG Merkblatt 341; 2007

STEINWIDDER, A. (2001): Aspekte zur Weidehaltung von Milchkühen, In: 28. Viehwirtschaftliche Fachtagung; 2-3 Mai 2001 Bundesanstalt für alpenländische Landwirtschaft Gumpenstein

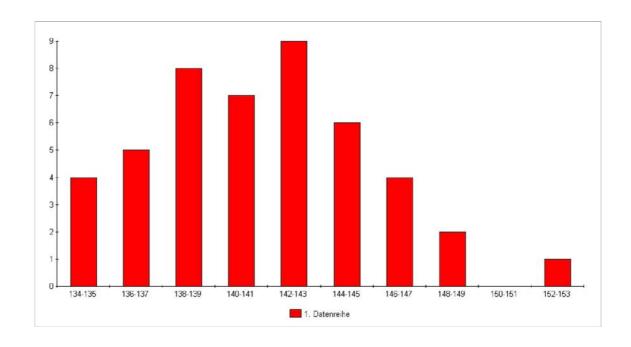
SCHNITZER, U. (1971): Bewegungsstudien an Milchkühen für die Bauplanung von Liegeboxen. In: Verhaltensforschung beim Rind KTBL Frankfurt

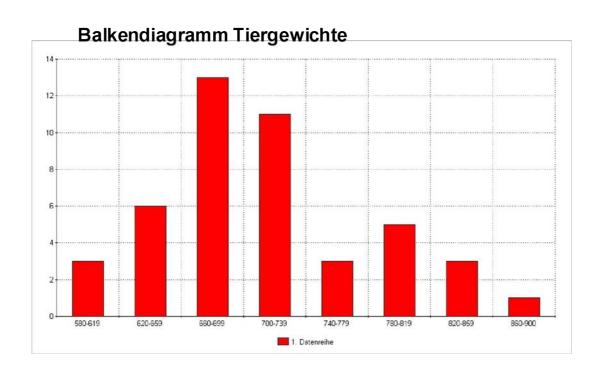
TSCHANZ, B. und KÄMMER, P. (1977): Verhaltensbiologische Ansätze zur Beurteilung von Liegeboxen; Der Tierzüchter 29 (1977) H. 4, S. 151-153

TROXLER, J. (2004): Verhalten und Haltung von Rindern; Studienunterlagen Institut für Tierhaltung und Tierschutz; veterinärmedizinische Universität; Wien

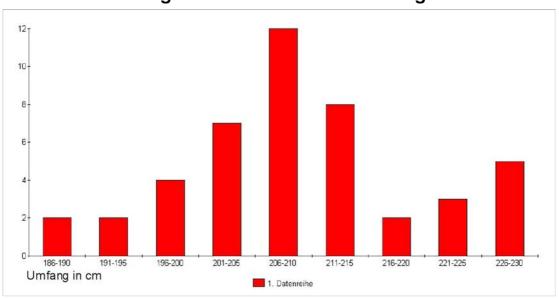
TOP AGRAR(2006): Tipps und Trends; TOP AGRAR 3/2006

ZEEDIES, J. (1972): Die optimal wirtschaftliche Nutzungsdauer einer Milchkuh; Der Tierzüchter 24, H16, S. 458-461

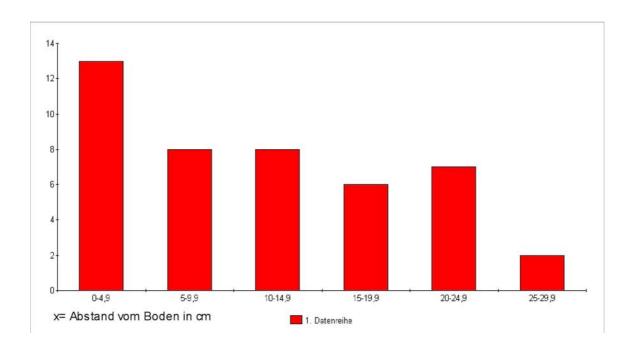

10 Anhang:

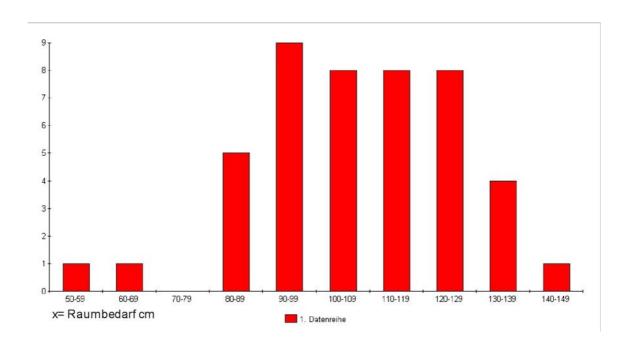

gemittelte Körperdaten und Raumbedarfszahlen der Fleckviehkühe

		Dinstraine	_	1	HURY			-	vr y						Sau day	Commission
285	143	197	164	30,11384	33,72727273	96,38384	14,45455	132,5	44,56818		(2)	3,613636			62,63636	87,45455
585	138	188	_	40,16129	38,12903228	83,12903	21,45161	104	39,93548	67,3871	87,74194	-	94,54839	3,2 7	73,90323	51,16129
585	143	208	-	22,98552	52,13793103	75,5488	28,551772	98,78325	58,21875	73,24138	111,9901	3,280788	110,3498	1,85 6	67,38916	41,09852
610	134	190	187	34,66667	31,2	96,333333	1,733333	112,8887	20,8	79,73333	72,8	12,13333	88,66687	2,8 8	60,86667	
625	138	136	160	17,12885	43,10339508	92,97901	4,598805	110,4985	28,03785	67,98395	84,50558	-3,89321	108,0184	2,788887 8	69,27623	47,98173
632	142	208	100	15,75758	47,27272727	81,93939	23,63636	104	47,27273	75,63636	85,09091	7,878788	97,89897	2,7 7	72,48485	72,48485
642	139	198	160	36,32801	38,04804805	102,7947	7,017843	127,0281	33,63926	81,91254	71,34009	13,59985	93,51633	2,375 7	70,23838	85,80612
848	143	195	169	33,92381	43,82857143	87,90476	27,73333	102,5143	40,3819	67,10476	91,37143	3,714286	98,05714	4,15 6	68,09524	58,4381
646	148	210	165	28,71795	33,02564103	91,89744	20,10258	108,2584	34,46154	64,61538	78,10256	2,871795	104,8205	2,7 6	61,74359	63,17949
848	141	218	154	13,25	28,51904762	85,49288	7,319048	788,58887	38,09048	50,47819	87,32381	15,52143	110,7952	2,35 8	88,37819	31,29524
684	140	208		20,58333	34,79411785	75,03878	4,779412	92,78431	29,31373	47,6348	87,78188	3,538785	103,8725	2,033333	52,60539	43,84314
999	137	202	1	3,058824	38,23529412	74,94118	4,588235	97,88235	53,52941	50,47059	79,52941	4,588235	108,5882	7 4	48,94118	81,17847
670	145	198	1	40,51149	46,28500639	108,7414	24,57088	125,8885	49,85249	77,77395	88,73946	10,01788	99,19732	2.8 8	64,43934	62,0364
872	141	195	188	33,72727	32,1212121	15,09091	17,88887	99,57578	43,38384	67,45455	99,57578	19,27273	86,72727	2,8 7	70,66667	70,66667
673	134	214	158	36,83333	48,16866667	100,5833	29,75	131,75	42,5	83,58333	88	45,33333	119	4	59,5	85
683	141	213	-	21,93787	39,87353215	82,99317	14,032	99,80146	41,85028	85,2744	17,89671	7,62069	102,4959	2,533333	66,17801	54,28487
685	143	202	160	23,72093	41,51162791	98,44186	16,60465	120,9787	49,81395	84,2093	84,2093	24,90698	92,51163	2,9 5	54,55814	100,814
687	146	211	168	35,58235	46,56428571	107,983	12,41808	133,8387	48,47081	85,07108	91,17498	16,25053	102,3638	4,788867 8	83,88862	73,85414
888	135	197	162	32,33729	30,23058853	84,14888	7,856128	113,1291	38,77339	70,25823	83,03557	12,17787	92,83267	3,05 6	62,63636	52,58522
888	139	203		40,48402	33,03089937	89,59938	21,62588	100,1029	48,12487	54,16291		2,631837	92,08588	3,9 4	49,38797	80,84848
888	142	210		16,17825	35,14251012	79,50121	15,2998	98,70958	43,38192	58,28721	82,42375	8,523077	91,95142	3,08 6	65,50175	33,05344
689	138	208	152	24,32258	31,87096774	71,29032	12,58065	88,08452	38,08452	52	74,64518	10,08452	98,45161	2,4 4	42,77419	58,19355
892	143	210		21,47388	24,15789474	59,05283	10,73884	80,52832	21,47368	53,68421	75,15789	8,052832	93,94737	1,2 8	69,78947	34,89474
701	147	208		38,85538	38,32678571	90,14107	1,485714	117,325	18,59484	82,29464	689	13	99,54286	2,65 7	79,85714	58,5
701	144	215		43,0625	29,8125	107,6563	4,96875	132,5	21,53125	97,71875		24,84375	81,15625	60	87,78125	69,5625
707	142	201		12,75439	40,52831579	88,07018	17,49123	84,33333	43,91228	59,40351	85,14035	5,581404	101,9849	2.7 3	36,52832	49,70175
708	137	203		23,14288	30,85714288	18	5,785714	117,8429	34,71429	54	73,28571	13,5	90,84288	4.1 6	81,71429	75,21429
712	143	210	170	28,18964	33,7797819	82,51488	12,5	110,3571	35,98214	70,29762	76,74107	7,35119	88,72819	60	66,66667	53,33333
715	144	208	175	16,2963	38,66666667	118,1481	0	148,7037	24,44444	110	69,25926	16,2983	110	3.7	107,983	61,11111
716	141	205	169	27,57578	22,21818182	90,60606	1,181818	107,7818	37,10909	68,86061	80,04848	1,024242	86,98182	2,75 8	67,44242	33,1697
728	139	211	164	20,8122	28,21280488	69,80488	1,292683	88,67805	28,33841	59,91585	76,04207	4,039634	79,82317	2,8 6	85,15122	37,81098
734	138	205	163	39	54,38383838	91	3,545455	108,3838	24,81818	62,63636	16060'58	11,81818	94,54545	3,2 8	60,27273	59,09091
734	140	220	160	29,9889	25,97920424	79,82196	4.82992	92,78032	27,8209	58,87066	75,08944	2,164456	88,0505	3,533333	58,79882	31,15871
737	134	213		24,64639	31,42082479	84,80221	7,990051	99,080,66	27,88354	71,38805	81,29728	8,044391	98,63587	2,988887 8	80,05318	74,98058
747	138	227	-	25,10345	28,68965517	55,58621	28,89855	62,75862	46,62069	32,27586	100,4138	25,10345	107,5882	1,3	53,7931	26,89655
757	147	225	157	4,605952	38,40595238	43,7881	7,255952	58,47024	25,38429	17,225	87,5131	17,41429	93,00238	4,3 3	31,98929	48,33095
778	140	211	168	13,94737	46,85252417	73,15252	17,33459	93,8174	59,03437	58,68434	89,60473	4,588475	99,98583	4,2	50,1538	38,08391
780	138	211	172	31,78471	27	87,35294	12,70588	100,0588	38,52941	47,84708	92,11785	14,29412	92,11785	3,5 8	88,70588	38,11785
790	144	207	169	22,77219	39,74662324	89,22458	10,93117	112,431	48,83994	66,04388	87,60885	3,473897	97,22148	3,1 6	67,01737	53,3292
798	145	209	177	45,4	47.7	104,675	24,5125	122,5825	40,4125	82,15	99,375	6,625	100,0375	3,3	64,925	62,275
803	138	223	164	52	28	98,90909	18,54545	127,6364	30,72727	47,27273	89,81818	7,090909	101,6364	4,4 4	40,18182	85,09091
805	138	622	172	48,15417	41,7375	100,4792	20,84792	120,9083	47,14792	71,77083	113,3979	42,28958	104,1229	2,4 4	48,15417	80,17708
845	148	228	171	42,99829	39,26487384	111,1513	5,448911	142,151	33,5527	94,90551	77,99138	8,541508	101,028	4,725 8	88,91534	86,84199
852	146	225	175	26,08892	27,84953704	91,88802	3,193001	114,4732	34,25488	78,78587	73,85489	41,28385	92,22899	3,1 7	78,87383	73,69237
884	145	227		35,65179	44,58928571	102,3393	9,035714	127,3839	41,05357	88,39286		8,053571		3,8 7		61,875
885	152	227	185	31,74727	50,16	104.5	4 318182	123,6727	36,92909	70,74909	72,2	3,178182	94,82727	3 9	90.47455	45,80727

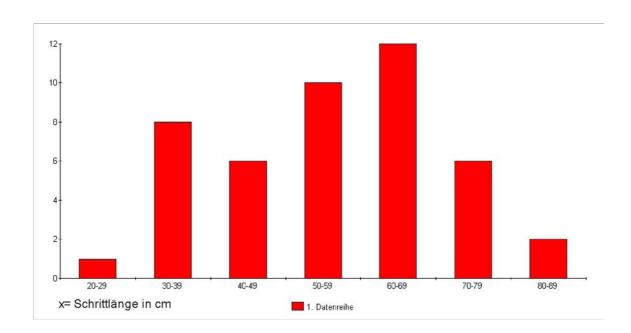

Fleckvieh:

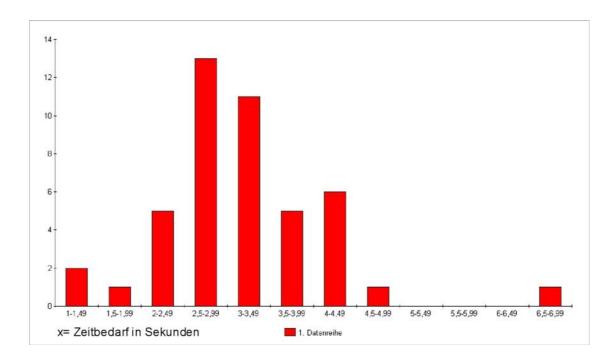
Tiere sortiert nach Größe

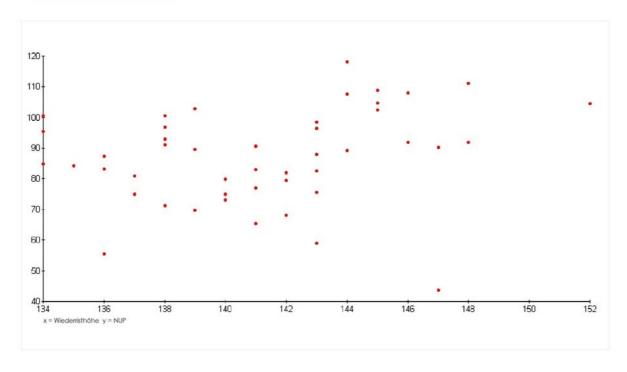



Verteilung der Tiere nach Brustumfang


Verteilung nach NUPy

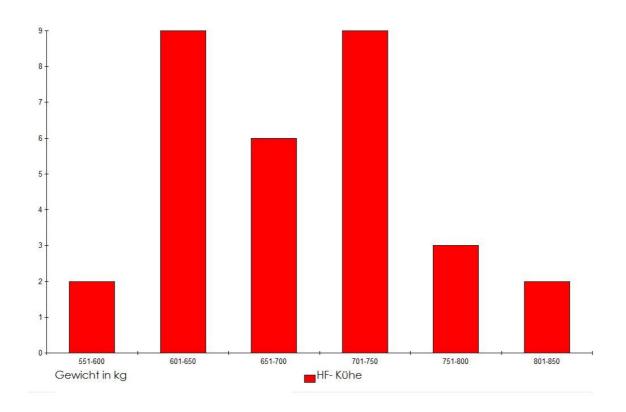

Verteilung der Tiere nach Raumbedarf VPx


Verteilung nach zurückgelegten Kopfweg

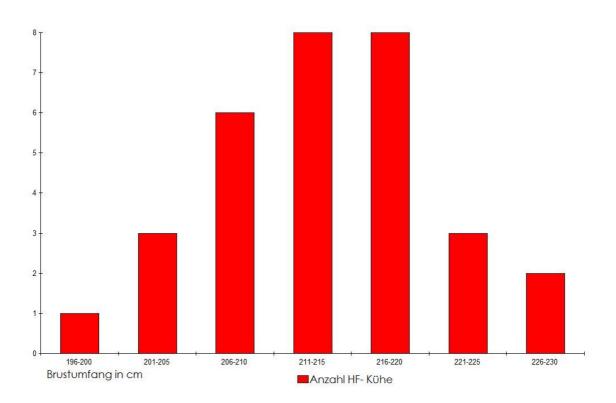

Verteilung nach Ausfallschrittlänge

Verteilung nach Aufstehdauer

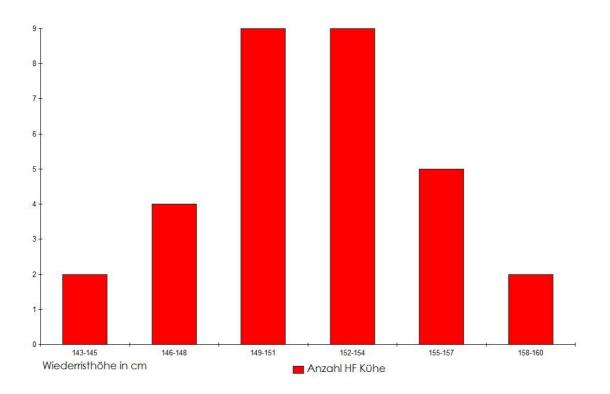
Korrelation Wiederisthöhe zu NUP y bei FV Kühen

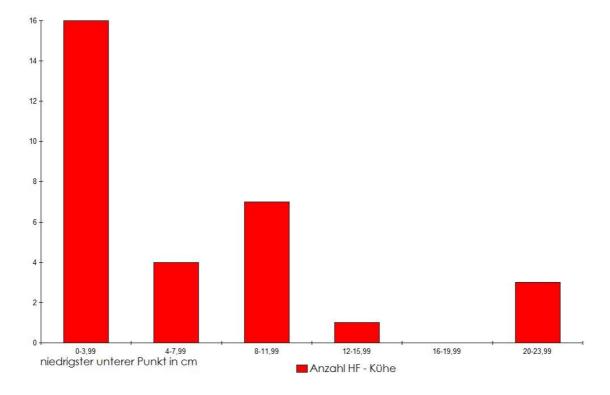


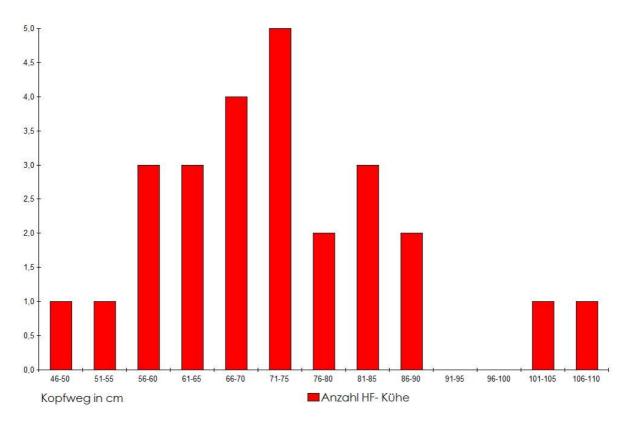
Gemittelte Daten der einzelnen HF-Versuchstiere

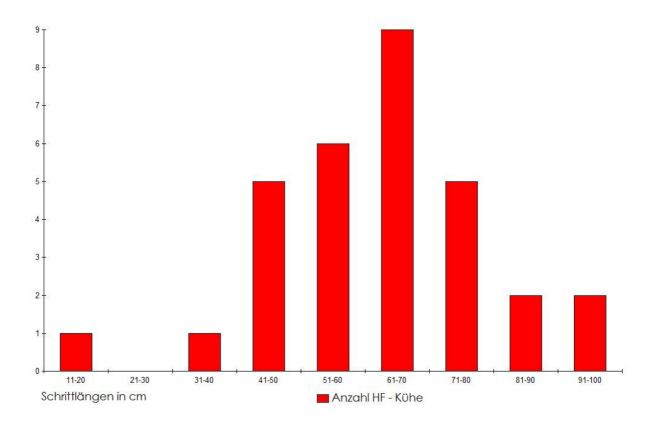

Laktation	Gewicht	Widerrist	Widemist Brustumfang	SRI	HUPx	HUPy	NUPX	NUPy	VPx	VPy	HKPx	HKPy	Whf1	Whf1	Sekunden	Schritt	Kopf
2	708		207	173	16,9897	35,63636	93,33333	8,484848	132,3838	22,08061	84,84848	62,78788	0	95,0303	3,9	28	101,82
+	638	154	204	172	13,84615	48,48154	0	90	105,2308	34,61538	62,30769	65,07692	4,1538462	94,15385	3,3	80,92308	83,077
60	869	147	210	175	40,74074	34,62963	101,8519	4,074074	126,2983	32,59259	85,55558	89,62963	4,0740741	112,037	1,8	61,11111	83,519
-	679	151	215	174	28,80801	43,52303	100,5889	1,457685	125,2244	38,57956	80,04378	76,89788	2,1891892	97,20891	3,3	47,89588	69,999
5	598	147	204	154	27,85469	42,90721	95,21362	5,493707	108,3958	32,44258	76,60572	92,38121	8,0195852	107,0819	1,85	53,67632	47,786
9	812	153	228	178	29,57983	51,16387	111,6176	10,46849	138,3214	31,17437	87,72269	67,94118	2,4284708	117,187	5,35	62,27941	62,279
60	811	154	223	178	100	47,23497	93,68371	23,94487	124,0898	52,0826	83,2921	89,05448	11,805597	101,5199	5,44	61,04399	80,648
00	878	153	208	175	32,44488	40,5855	106,6853	4,98372	135,3133	41,33937	94,69756	81,30749	-18,91646	114,1807	6.8	41,47878	78,364
-	734	158	218	172	21,25572	41,31173	86,35911	3,780294	108,6645	49,39508	71,41983	109,7814	16,933974	111,0582	1,8	73,63683	778,08
۲	612	149	203	173	41,53846	41,53848	105,2308	0	138,4615	20,76923	96,92308	80,92308	15,230769	101,0789	3,2	58,15385	81,692
2	712	154	213	172	24,45073	38,56813	118,6667	8,744235	141,1929	42,92243	91,41509	79,85954	7,8888889	110,4423	5,833333	54,19916	85,551
60	637	147	212	174	30,875	42,75	98,5625	8,3125	115,1875	35,625	83,125	90,25	-2,375	118,75	4,2	49,875	71,25
	614	154	208	184	35,03333	40,18333	101,2167	1,888887	131,5833	48,08887	88,01667	78887,88	53,283333	79,23333	2,3	72,23333	72,133
2	847	154	212	173	33,33333	49,33333	106,6667	1,333333	137,3333	38	93,33333	94,66667	8,6666667	102,6687	3,4	73,33333	70,667
69	687	150	218	173	26,86047	48,60465	99,78744	11,51183	125,3488	28,13953	78,74419	80,11628	-25,5814	101,0485	3,4	14,06977	70,69
2	784	152	228	180	31,78948	85,57468	105,3838	10,5487	130,4399	57,74028	72,5763	101,724	-6,569805	104,7159	3,95	51,41721	74,581
m	738	152	221	170	28,184	49,7145	108,2182	13,08937	138,7587	50,22851	93,16731	94,93559	11,158487	111,5084	3,2	83,81764	87,442
2	732	158	218	188	27,28318	48,77193	90,88887	1,473884	111,1228	37,68421	85,40351	83,7193	0,4912281	115,4035	3,95	49,47368	55,789
-	594	143	218	170	27,32779	58,58448	105,2448	0,925511	122,7281	39,01533	75,022	85,51632	4,779581	110,587	2,966667	48,94187	74,927
9	701	151	216	175	48,69231	48,80577	80,65385	23,59815	140,7892	48,69231	99,86538	99,86538	1,3269231	108,4038	3,95	88,17308	65,019
8	733	152	217	183	40,48512	47,2093	109,2558	10,7907	132,186	26,97674	90,37209	86,32558	-2,697674	110,6047	2,4	87,44186	83,628
*	808	146	210	178	21,83333	34,33333	85,08333	3,333333	113,6867	28,33333	88,75	74,41687	20,166687	108,3333	2,05	71,75	60,917
2	637	149	208	184	18,48837	54,23258	99,83721	1,232558	118,3256	44,37209	73,95349	86,27907	8,627907	104,7874	3,5	54,23258	61,628
0	712	157	221	180	15,75238	68,44939	94,8664	2,230769	128,2301	50,64238	76,08097	98,41228	27,004049	114,4345	3,3	100,001	81,58
e	768	157	219	177	21,77083	48,125	97,68229	0	131,1979	28,07292	92,71701	63,68924	7,3524308	104,6528	3,55	78,87153	83,073
7	684	157	213	174	35,69231	31,23077	105,5897	4,481538	133,8462	31,23077	87,74359	71,38462	7,4358974	101,1282	3,5	63,94872	77,333
4	708	154	213	180	43,85957	57	137,0428	1,212788	161,2979	36,38298	109,1489	60,6383	60,6383 25,468085	103,0851	5,1	93,38298	109,15
-	843	151	213	175	35,35714	45,83333	111,3095	2,619048	133,5714	47,14286	82,5	107,381	107,381 9,1888887	100,8333	3,2	87,7381	82,5
-	841	154	215	189	28,58824	47,84708	98,47059	0	115,9412	20,84708	71,47059	68,29412	-22,23529	92,11785	3	34,94118	69,882
4	768	155	218	188	23,07143	61,07143	101,7857	21,71429	128,9286	48,85714	88,21429	95	-8,142857	114	4,8	87,85714	73,286
3	683	144	197	185	33,86047	59,90698	108,7907	0	135,4419	31,25581	87,25581	70,32558	13,023256	108,7907	3,2	67,72093	87,258
Mittelwerte	ăi					100000000000000000000000000000000000000											
2,774194	2,774194 888,290323	151,839	213,483871	173,2258	29,85184	47,44285	98,55745	9,085943	127,9819	37,7787	84,78381	82,68087	5,5030929	105,8128	3,857742	62,11903	75,049
Standartabw.	W.																
2,027388	2,027388 59,4784827	3,89455	6,70517839	6,173354	8,441128	8,8182	20,72497	16,20745	11,77805	9,914832	9,607455	14,43831	14,751948	8,29237	1,395137	17,01509	12,738
Min																	
	594	143	197	154	13,84615	31,23077	0	0	105,2308	20,84708	62,30769	80,11628	-25,5814	79,23333	1,8	14,08977	47,788
Max																	
00	812	158	228	188	48,69231	68,44939	137,0428	90	161,2979	57,74028	109,1489	109,7614	53,283333	118,75	8,9	100,001	109,15
Varianz				2007 2007 2007 2007							CONTRACTOR OF THE PERSON						Water Constitution
4,110302	3537,68991	15,1875	44,9594173	38,1103	71,25265	77,78085	429,5242	262,6813	138,6752	98,30389	92,30318	208,4847	217,81992	68,7634	1,948407	289,5133	162,28

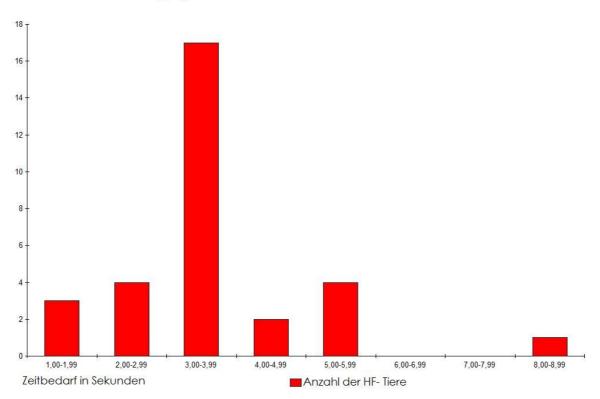
HF- Kühe


Gewichtsverteilung der HF- Kühe


Brustumfang der HF Kühe


Verteilung der Wiederristhöhe bei den HF- Kühen


Verteilung des NUP's bei den HF - Kühen



Die unterschiedlichen Schrittlängen der HF - Kühe

Zeitbedarf für Aufstehvorgang

Danksagung:

Mein Dank gilt an dieser Stelle jenen Personen, die bei der Entstehung dieser Arbeit mitgewirkt haben. Den Betrieben Bachschweller, Baumann, Großpötzl, Leitner und Schustereder danke ich dafür, dass sie ihre Kühe für die Versuche zur Verfügung gestellt haben und auch aktiv bei der Datenerfassung mitarbeiteten.

Der Rinderzuchtverband Oberösterreich in Person von DI Franz Kaltenbrunner stellte die nötigen Messinstrumente, wie etwa den Rindermessstab und die geeichte Großviehwaage zur Verfügung, wofür ich mich herzlich bedanke. Frau Brigitte Baumann gilt ein großer Dank für ihre Mithilfe während der Vermessungsarbeiten an den einzelnen Tieren, sowie auch für die mithilfe bei der Erfassung der Aufstehvorgänge im freien Feld.

Bedanken möchte ich mich auch bei Frau Petra Hölzl – Reisinger, welche die Arbeit Korrektur gelesen hat.

Ein spezieller Dank geht an meinem Betreuer Herrn Prof. DrDr habil Josef Boxberger, der diese Arbeit sehr gewissenhaft betreute. In vielen Besprechungen gab er immer wieder neue Denkanstöße um die bestehende Problematik aus anderen Perspektiven zu sehen und besser auf zu arbeiten. Ohne seine Erfahrung und Hilfe hätte diese Arbeit in seiner jetztigen Form nicht verwirklicht werden können.