Energiebilanzierung im Ackerbau – Fallbeispiele der biologischen und konventionellen Produktion im Vergleich

Diplomarbeit

Name: Daniel Maurer
Matrikel: 0240410
Email: danus@gmx.at
Adresse: Hauptstrasse 124, 2120 Obersdorf
Fon: +43 2245 22496

Betreuer: Univ. Prof. Dr. agr. biol. Bernhard Freyer

Wien, im Jänner 2010
gewidmet:

Lucy

&

meiner Großmutter
Vorwort und Danksagung

„Effektivität bestimmt das Handeln, ...“
(aus dem Lied „Major Tom“ – Peter Schilling, 1982)

„Pure Vernunft darf niemals siegen, wir brauchen dringend neue Lügen“
(aus dem Lied „Pure Vernunft darf niemals siegen“ – Tocotronic, 2005)

Mama und Papa ich danke Euch für alles. Ihr habt meine Achtung und meinen Respekt. Ich bin sehr gut ausgestattet und mach sicher was Gutes draus!

Vroni, meine Schwester - auch Dir vielen lieben Dank! Für alles und im Besonderen Deinen Computer, den ich unzählige Stunden lang besetzt halten durfte - mit Deinem Wohlwollen.

Mein größter Dank gilt meiner Liebsten – Marlene. Für unglaublich viel Verständnis und Toleranz, Zuversicht, warmes Essen und die Liebe.
Inhaltsverzeichnis

1 Einleitung ... 10
 1.1 Persönliche Motivation .. 10
 1.2 Problembeschreibung .. 11
 1.3 Zielsetzung .. 12
 1.3.1 Übergeordnete Zielsetzung .. 12
 1.3.2 Teilfragestellungen .. 12
 1.4 Zur Verwendung dieser Arbeit ... 12

2 Methode ... 14
 2.1 Vorgehensweise .. 14
 2.2 Auswahl und Zusammenstellung der Fallbeispiele .. 14
 2.2.1 Varianten verschiedener Energieintensität .. 14
 2.2.2 Varianten zunehmender Komplexität ... 15
 2.3 Kalkulationsgrundlagen .. 16
 2.3.1 Verwendete Daten .. 16
 2.3.2 Datenverarbeitung .. 17

3 Theoretische Grundlagen .. 18
 3.1 Energie .. 18
 3.1.1 Grundlagen .. 18
 3.1.2 Brennwert und Heizwert ... 18
 3.1.3 Physikalische Einheiten .. 19
 3.1.4 Faustzahlen & erläuternde Berechnungen ... 19
 3.2 Energiebilanzen ... 22
 3.3 Energie und Landwirtschaft .. 24
 3.4 Energiebilanzen in der Landwirtschaft .. 25

4 Rahmenannahmen für die Energiebilanzierung in dieser Arbeit 27
 4.1 Grundsätzliche Zielsetzung ... 27
 4.2 Auswahl der Betrachtungsgrenzen ... 27
 4.2.1 Funktionale Einheiten und Bezugsgrößen .. 27
 4.2.2 Räumliche Abgrenzung .. 27
 4.2.3 Zeitliche Abgrenzung .. 27
 4.2.4 Systemgrenzen der Lebenswege und Bilanzierungstiefe 28
 4.3 Stoffliche Bilanzgrundlage und energetische Bewertung 28
 4.3.1 Input ... 28
 4.3.2 Output ... 29
 4.4 Bilanzauswertung .. 31
 4.5 Ergebnisse – Stand des Wissens zu Energiebilanzen im Ackerbau .. 32
5 Ergebnisse und Diskussion ... 33
 5.1 Einzelne Kultur (Winterweizen) .. 33
 5.1.1 Unterschiedliche Datengrundlagen für die Kalkung 34
 5.1.2 Unterschiedliche Datengrundlagen für die biologische Düngung 35
 5.1.3 Synthese ... 36
 5.2 Sechsjährige Fruchtfolge ... 37
 5.2.1 Energieeinsparungen durch reduzierte Bodenbearbeitung 39
 5.2.2 Optimistische Einstellung zu einem System 40
 5.2.3 Synthese ... 40
 5.3 Modifizierte Energiequellen ... 43
 5.3.1 Energieaufwendungen aus Weizen-Bioethanol 43
 5.3.2 Zugkraft: Traktor oder Pferd .. 46
 5.3.3 Weiden- bzw. Pappel-Kurzumtriebsplantagen 48
 5.3.4 Synthese ... 49
 5.4 Synthese aller Fallbeispiele .. 50
 6 Schlussfolgerungen ... 52
 7 Ausblick ... 54
 8 Zusammenfassung .. 56
 9 Abstract ... 57
 10 Literatur ... 58
 11 Anhang ... 61
 Anhang 1 – Einzelne Kultur (Winter-Weizen) 61
 Anhang 2 – Sechsjährige Fruchtfolge ... 65
Tabellenverzeichnis

Tabelle 1: Fallbeispiele dieser Arbeit ... 15
Tabelle 2: Berücksichtigte landwirtschaftliche Daten für die Kalkulation 16
Tabelle 3: Berücksichtigte Betriebsmittel - Inputenergie (Literaturauswahl) 28
Tabelle 4: Primärenergieeinsatz für die Bereitstellung von Betriebsmitteln 29
Tabelle 5: Energie- und Trockenmassegehalte ausgewählter Ackerfrüchte 30
Tabelle 6: 1 ha Winter-Weizen – biologisch und konventionell (hohe Kalkung: 1000 kg): Betriebsmitteleinsatz, Energieaufwendungen und Bilanzkennzahlen für ein Jahr 33
Tabelle 7: 1 ha Winter-Weizen – biologisch und konventionell (geringe Kalkung: 300 kg): Bilanzkennzahlen, Betriebsmitteleinsatz und Energieaufwendungen für ein Jahr 34
Tabelle 8: 1 ha Winter-Weizen – biologisch und konventionell (unterschiedliche Datengrundlagen f. organische Düngung): Bilanzkennzahlen, Betriebsmitteleinsatz und Energieaufwendungen für ein Jahr ... 35
Tabelle 9: Bilanzkennzahlen der unterschiedlichen Fallbeispiele für die einzelne Kultur Winter-Weizen .. 36
Tabelle 10: Sechsjährige Marktfrucht-Fruchtfolge – Hauptkulturen und Zwischenfrüchte 37
Tabelle 11: Energiekennzahlen aus dem Fruchtfolgevergleich – konventionell, konventionell mit reduzierter Bodenbearbeitung und konv. m. red. BB und +50% Pflanzenschutzmittel .. 39
Tabelle 12: Energiekennzahlen aus dem Fruchtfolgevergleich – positive Einstellung zum biologischen System .. 40
Tabelle 13: Bilanzkennzahlen aller Fallbeispiele aus dem Fruchtfolgevergleich 42
Tabelle 14: Sechsjährige konventionelle Fruchtfolge: Düng- und Pflanzenschutzmitteleinsätze und deren energetische Bewertung 45
Tabelle 15: Kennzahlen der sechsjährigen Fruchtfolgen – Biologisch, Konventionell und Konventionell mit Endenergieträger Ethanol ... 45
Tabelle 16: 1 ha Kurzumtriebsplantage mit Pappel oder Weide - Bilanzkennzahlen, Betriebsmitteleinsatz und Energieaufwendungen für ein Jahr .. 49
<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbildung 1: Input und Output von 1 ha landwirtschaftlicher Nutzfläche.......................... 11</td>
</tr>
<tr>
<td>Abbildung 2: Energie-Faustzahlen für Weizen .. 20</td>
</tr>
<tr>
<td>Abbildung 3: Energie-Faustzahlen für Diesel ... 20</td>
</tr>
<tr>
<td>Abbildung 4: Energie und Arbeit von 1 kg Weizen .. 21</td>
</tr>
<tr>
<td>Abbildung 5: Weizenenergie für den Stromverbrauch eines Haushaltes 21</td>
</tr>
<tr>
<td>Abbildung 6: Schema des Energieflusses bei der Raumbeleuchtung mittels Glühbirne... 23</td>
</tr>
<tr>
<td>Abbildung 7: Netto-Energieerträge und Output/Input-Relationen für die einzelne Kultur Winter-Weizen .. 36</td>
</tr>
<tr>
<td>Abbildung 8: Netto-Energieerträge im Fruchtfolgevergleich ... 38</td>
</tr>
<tr>
<td>Abbildung 9: Output/Input-Relationen im Fruchtfolgevergleich 38</td>
</tr>
<tr>
<td>Abbildung 10: Netto-Energieerträge und Output/Inputrelationen der Fallbeispiele aus dem Fruchtfolgevergleich ... 42</td>
</tr>
<tr>
<td>Abbildung 11: Energie In- und Outputs aller Fallbeispiele ... 50</td>
</tr>
<tr>
<td>Abbildung 12: Netto-Energieerträge und Output/Input-Relationen aller Fallbeispiele 50</td>
</tr>
<tr>
<td>Abkürzung</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>AS</td>
</tr>
<tr>
<td>BG</td>
</tr>
<tr>
<td>DB</td>
</tr>
<tr>
<td>DS</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>FF</td>
</tr>
<tr>
<td>GD</td>
</tr>
<tr>
<td>GEMIS</td>
</tr>
<tr>
<td>GJ</td>
</tr>
<tr>
<td>ha</td>
</tr>
<tr>
<td>Ho</td>
</tr>
<tr>
<td>Hu</td>
</tr>
<tr>
<td>Kar</td>
</tr>
<tr>
<td>kcal</td>
</tr>
<tr>
<td>KTBL</td>
</tr>
<tr>
<td>KUP</td>
</tr>
<tr>
<td>LN</td>
</tr>
<tr>
<td>Luz</td>
</tr>
<tr>
<td>MJ</td>
</tr>
<tr>
<td>NEE</td>
</tr>
<tr>
<td>OIR</td>
</tr>
<tr>
<td>PS</td>
</tr>
<tr>
<td>PSM</td>
</tr>
<tr>
<td>UBA</td>
</tr>
<tr>
<td>WR</td>
</tr>
<tr>
<td>WW</td>
</tr>
<tr>
<td>ZF</td>
</tr>
</tbody>
</table>
Umrechnungstabellen für Energieeinheiten

Verwendete Basisgrößen und daraus abgeleitete Einheiten für Energie und Leistung nach dem SI-System

<table>
<thead>
<tr>
<th>Basisgrößen</th>
<th>Basiseinheit Name</th>
<th>Basiseinheit Zeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Zeit</td>
<td>Sekunde</td>
<td>s</td>
</tr>
<tr>
<td>Masse</td>
<td>Kilogramm</td>
<td>kg</td>
</tr>
<tr>
<td>Temperatur</td>
<td>Kelvin (Celsius)</td>
<td>K (°C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abgeleitete Größe</th>
<th>Einheitenname</th>
<th>Einheitenzeichen</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraft</td>
<td>Newton</td>
<td>N</td>
<td>1 N = 1 kg*m/s²</td>
</tr>
<tr>
<td>Arbeit, Energie, Wärme</td>
<td>Joule</td>
<td>J</td>
<td>1 J = 1 Nm = 1 Ws</td>
</tr>
<tr>
<td>Leistung</td>
<td>Watt</td>
<td>W</td>
<td>1 W = 1 J/s</td>
</tr>
</tbody>
</table>

Verwendete Vielfache

<table>
<thead>
<tr>
<th>Präfix</th>
<th>Symbol</th>
<th>Faktor</th>
<th>In Worten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilo</td>
<td>k</td>
<td>10³</td>
<td>Tausend</td>
</tr>
<tr>
<td>Mega</td>
<td>M</td>
<td>10⁶</td>
<td>Million</td>
</tr>
<tr>
<td>Giga</td>
<td>G</td>
<td>10⁹</td>
<td>Milliarde</td>
</tr>
<tr>
<td>Tera</td>
<td>T</td>
<td>10¹²</td>
<td>Billion</td>
</tr>
<tr>
<td>Peta</td>
<td>P</td>
<td>10¹⁵</td>
<td>Billiarde</td>
</tr>
</tbody>
</table>

Umrechnungsfaktoren²

<table>
<thead>
<tr>
<th>Einheit</th>
<th>kJ</th>
<th>kWh</th>
<th>kcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kJ (Kilojoule)³</td>
<td>1</td>
<td>2,78*10⁻⁴</td>
<td>0,2388</td>
</tr>
<tr>
<td>1 kWh (Kilowattstunde)</td>
<td>3,600</td>
<td>1</td>
<td>860</td>
</tr>
<tr>
<td>1 kcal (Kilokalorie)</td>
<td>4,1868</td>
<td>1,163*10⁻³</td>
<td>1</td>
</tr>
</tbody>
</table>

¹ Ein Joule entspricht ursprünglich der benötigten Arbeit, um eine Masse einen Meter gegen die Kraft von einem Newton zu transportieren; ein Newton wiederum entspricht der benötigten Kraft, um ein Kilogramm Masse einen Meter pro Sekundenquadrat zu beschleunigen.

² Die Angaben beziehen sich auf den unteren Heizwert Hu (im Vergleich zum Brennwert Ho auch einfach nur Heizwert genannt).

³ Die Einheit Joule wird mittlerweile nicht nur als Größe für Arbeit, sondern generell als Standardgröße für Energie verwendet. Die alte Einheit für die Wärmemessung, Kalorie (cal bzw. kcal), wird dazu ebenfalls in Joule umgerechnet, wobei eine Kalorie der benötigten Energie entspricht, um ein Gramm Wasser um ein Grad Celsius zu erwärmen.
1 Einleitung

Die Einleitung dieser Arbeit beginnt im folgenden Unterkapitel mit einer vielleicht etwas unkonventionellen, dafür aber sehr persönlichen Motivationsbeschreibung. In Kombination mit dem Vorwort lässt sich leicht erkennen, dass auch mein Zugang zum Landbau ein unkonventioneller (nicht konventioneller) – also biologischer ist. Ich schicke dies bewusst voraus, denn beim Studium der unterschiedlichen wissenschaftlichen Arbeiten, die sich mit Energiebilanzen in der Landwirtschaft beschäftigen, erlangte ich schnell den Eindruck, dass in vielen Fällen versucht wird, subjektive Einstellungen oder persönliche Präferenzen möglichst wissenschaftlich zu untermauern. Alle Ergebnisse unterschiedlich – aber alle „wissenschaftlich“!

Zum Beispiel gibt es ausreichend Arbeiten, die die Bio-Ethanol Produktion untermauern und genug andere, die eben dieses Verfahren für nicht zukunftsfähig erklären. Als eher mühsam erlebte ich es, jene Stellen der Arbeiten zu finden, an denen bewusst die Annahmen getroffen wurden, die zu einem bestimmten Ergebnis führten.

1.1 Persönliche Motivation

Abbildung 1: Input und Output von 1 ha landwirtschaftlicher Nutzfläche

Was ist mit einem Hektar Ackerland anzufangen? Wie viel Energie soll investiert werden und wie viel kann die Fläche anschließend liefern? Lebensmittel oder Energie – was soll der Output sein? Soll biologisch oder konventionell bewirtschaftet werden? Gibt es Alternativen zum Diesel als Treibstoff für die Maschinen? Was wird außer Diesel für die Bewirtschaftung von Ackerflächen sonst noch benötigt?

Das waren einige Fragen, die mich beschäftigten. Also begann ich mich auch mit einschlägiger Literatur auseinander zu setzen und stieß dort auf die Methode der Energiebilanz. In ihr hatte ich ein mögliches Werkzeug für die Bearbeitungen meiner Fragestellungen gefunden.

1.2 Problembeschreibung

Wir können heute unsere landwirtschaftlichen Nutzflächen, dank modernster Technik, und unter der Verwendung fossiler Energieträger (vor allem zur Düngер- und Pflanzenschutzmittelherstellung und als Treibstoff für landwirtschaftliche Maschinen in Form von Diesel), intensiver bewirtschaften als je zuvor. Die landwirtschaftlichen Erträge (in Form von Weizen, Mais, Grünschnitt, etc.) sind bei entsprechendem Energieeinsatz höher denn je.

Die Landwirtschaft als großer Energieproduzent, aber auch als großer Energieverbraucher ist Teil dieser Problematik und steht nun vor der Frage: Wie viel Energie soll pro Fläche eingesetzt werden? In weiterer Folge auch: Welche Energie? Und wie sollen die Flächen in Kombination mit dem Energieeinsatz bewirtschaftet werden?

In der Literatur finden sich bereits unzählige Arbeiten, die mit Hilfe der Energiebilanzmethode die landwirtschaftliche Produktion untersuchen. Die Ergebnisse der Arbeiten sind allerdings so unterschiedlich wie ihre Annahmen – teilweise sogar konträr. Es kann der Eindruck erweckt werden, dass beinahe zu jedem Bilanzergebnis zu kommen ist, wenn die Annahmen dementsprechend ausgelegt wurden. Die
Zusammenhänge zwischen Annahmen und Ergebnissen werden dabei in der Regel nicht erklärt. Es fehlen auch Arbeiten zu Energiebilanzen, die unterschiedliche Annahmen (bezüglich Betriebsmittelaufwand, energetischer Bewertung, Systemgrenzen, etc.) in Zusammenhang mit den daraus entstehenden Ergebnissen bringen. Besonders problematisch ist die Situation, wenn wissenschaftliche Arbeiten zu Energiebilanzen, deren Annahmen zu hinterfragen sind, persönliche aber vor allem politische Entscheidungen stützen (z.B. Pflanzenölbeimischungsziele), die in der Praxis umgesetzt werden.

1.3 Zielsetzung
Ganz trivial ausgedrückt ist das Ziel dieser Arbeit, Licht in die dunkle Welt der Energiebilanzen im Ackerbau zu bringen, um in weiterer Folge die Aussagekraft und die Vergleichbarkeit der Ergebnisse dieser Methode besser beurteilen zu können. Es ist ganz klar nicht Ziel dieser Arbeit, neue Ergebnisse über energieeffiziente Ackerbewirtschaftungsformen zu liefern. Eine genauere Beschreibung der Zielsetzung folgt in den weiteren Unterkapiteln.

1.3.1 Übergeordnete Zielsetzung
Mit Hilfe einer vergleichenden Untersuchung soll die Methode der „Energiebilanz“ und ihre Anwendungsmöglichkeiten im Bereich Ackerbau dargestellt und erklärt werden. Besonderes Augenmerk soll dabei auf die Aussagekraft und die Vergleichbarkeit der möglichen Ergebnisse einer Energiebilanz gelegt werden.

1.3.2 Teilfragestellungen
Auf die übergeordnete Zielsetzung wird eingegangen, indem sich diese Arbeit mit folgenden Teilfragestellungen auseinandersetzt:

Wie wirken sich unterschiedliche

- Datengrundlagen (für landwirtschaftliche Erträge, Düngergaben und energetische Bewertungen von Betriebsmitteln)
- Systembetrachtungen (eine einzelne Kultur oder eine ganze Fruchfolge; und in weiterer Folge auch ein Systemwechsel hin zu erneuerbaren Energien)
- Methoden der Bilanzauswertung (über den Netto-Energieertrag oder die Output/Input-Relation)

auf die Ergebnisse der Energiebilanz aus?

1.4 Zur Verwendung dieser Arbeit
Wie in den vorangegangenen Kapiteln dargestellt, ist das Ziel dieser Arbeit auch ein pädagogisches: nicht neue Ergebnisse über energieeffiziente Bewirtschaftungsformen sollen geliefert werden, sondern eine Erklärung und Darstellung einer Methode soll aufgezeigt werden, was zu besserem Verständnis dieser (Energiebilanz-) Methode führen soll. In weiterer Folge sollen auch die Auseinandersetzung mit dem Thema vorangetrieben, und die kritische Hinterfragung von Bilanzergebnissen ermöglicht werden.
Darauf wurde auch im Aufbau dieser Arbeit Rücksicht genommen. Es wurde versucht den Ergebnisteil so zu gestalten, dass gleich dort begonnen werden kann zu lesen. Die Problemstellungen und Besonderheiten der Energiebilanzmethode für den Bereich Ackerbau werden dort an einzelnen Fallbeispielen sicht- und nachvollziehbar. Für die theoretischen Hintergründe, Datengrundlagen und Annahmen wird auf den theoretischen Teil der Arbeit (Kapitel 2 und 3) bzw. den Anhang verwiesen. So werden die theoretischen Hintergründe direkt in Kontakt mit den Fallbeispielen ge-
2 Methode

2.1 Vorgehensweise

2.2 Auswahl und Zusammenstellung der Fallbeispiele
Um zu erklären, wie es zur Auswahl der Fallbeispiele kam, empfiehlt es sich, die verwendeten Fallbeispiele dieser Arbeit hinsichtlich zweier Kriterien zu unterscheiden: Energieintensität und Komplexität. Beiden Kriterien ist jeweils ein Unterkapitel dieses Abschnittes gewidmet.

2.2.1 Varianten verschiedener Energieintensität
Energiebilanzen erlangen eine höhere Aussagekraft, wenn nicht nur ein Verfahren untersucht wird, sondern wenn zusätzlich dieses Verfahren mit einem anderen verglichen wird, das zum selben oder einem ähnlichen Ergebnis führt. Dies soll an folgendem Beispiel verdeutlicht werden:

Für den landwirtschaftlichen Bereich bieten sich die biologische und die konventionelle Wirtschaftsweise für einen Verfahrensvergleich an, denn die Verfahren arbeiten mit sehr unterschiedlichen Energieeinsatzniveaus (Inputseite der Bilanz), führen aber beide zum grundsätzlich gleichen Ergebnis Biomasseproduktion. Folglich sollen in dieser Arbeit diese beiden Wirtschaftsweisen verglichen werden.
2.2.2 Varianten zunehmender Komplexität

Die Komplexität einer Energiebilanz steigt in der Regel mit zunehmend weiter gesteckten Systemgrenzen. Dies soll wieder anhand eines Beispiels erklärt werden:

Beispiel 2.2.1-b: Erweitert man die Systemgrenzen des „Glühbirne-Energiesparlampen“-Beispiels vom zu erhellenden Raum z.B. bis zum Ort der Herstellung, so beeinflusst das die Bilanz. Es wird beispielsweise auf der Inputseite zusätzlich die Energie veranschlagt, die zur Herstellung der Lampen aufgewendet wird. Ist in diesem Fall die Herstellungsenergie für die Energiesparlampe höher, so wirkt sich dies zu Ungunsten des Bilanzergebnisses der Energiesparlampe aus. Zusätzlich könnten bei nochmaliger Erweiterung der Systemgrenzen noch die Energie für die Entsorgung der Lampen berechnet werden, deren Lebensdauer und vieles mehr. Offensichtlich würde die Komplexität zunehmen, und in weiterer Folge sich auch das Ergebnis verändern.

Da das Hauptziel dieser Arbeit darin besteht, die Methode der Energiebilanz (für den Bereich Ackerbau) darzustellen und zu erklären, wurde versucht die ersten Vergleiche eher simpel zu halten, um dann zunehmend zusätzliche Besonderheiten zu beachten, was auch zu zunehmender Komplexität führt. Die ausgewählten Fallbeispiele sind in Tabelle 1 zusammengestellt.

Tabelle 1: Fallbeispiele dieser Arbeit

<table>
<thead>
<tr>
<th>Einzelne Kultur: Winter-Weizen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPK; NPK; N ü. GD, PK; Zukauf v. Wi.-NPK; NPK;</td>
</tr>
<tr>
<td>Kk=1000kg Kk=300kg Kk=300kg Kk=300kg Kk=1000kg Kk=300kg</td>
</tr>
<tr>
<td>Sechsjährige FF: Luz./WW – WW – Kart. – FE – WR – BG</td>
</tr>
<tr>
<td>N ü. FF, PK; N ü. FF; N ü. FF;</td>
</tr>
<tr>
<td>+20% Ertrag; NPK; NPK; NPK;</td>
</tr>
<tr>
<td>Kk=300kg Kk=300kg Kk=300kg Kk=300kg</td>
</tr>
<tr>
<td>Alternative Energiequellen</td>
</tr>
<tr>
<td>Weiden- bzw. Pappel- Kurzumtriebs- plantage & Zugkraft: Traktor oder Pferd & Energieaufwendungen aus Weizen-Bioethanol</td>
</tr>
<tr>
<td>WW-Bio = Winter-Weizen Biologisch, WW-Konv = Winter-Weizen Konventionell</td>
</tr>
<tr>
<td>WW = Winter-Weizen</td>
</tr>
<tr>
<td>N = Energiewert des Stickstoff-Düngers gemessen am Energiewert des mineralischen Stickstoff-Düngers</td>
</tr>
<tr>
<td>P = Energiewert des Phosphor-Düngers gemessen am Energiewert des mineralischen Phosphor-Düngers</td>
</tr>
<tr>
<td>K = Energiewert des Kali-Düngers gemessen am Energiewert des mineralischen Kali-Düngers</td>
</tr>
<tr>
<td>N ü. GD = Stickstoff-Düngung über einjährige Gründüngung</td>
</tr>
<tr>
<td>Zukauf v. Wi.-Düng. = NPK-Düngung über zugekauften Wirtschaftsdünger</td>
</tr>
<tr>
<td>N ü. FF = Stickstoff-Düngung über Fruchtfolge</td>
</tr>
<tr>
<td>red. BB = reduzierte Bodenbearbeitung</td>
</tr>
<tr>
<td>red. BB+50%PS = reduzierte Bodenbearbeitung und 1,5-facher Pflanzenschutzmittelauflaufwand</td>
</tr>
<tr>
<td>Kk = Kalk</td>
</tr>
</tbody>
</table>

In den Fallbeispielen, die nur eine einzelne Kultur berücksichtigen, wurde mit Winter-Weizen stellvertretend für andere ackerbäuliche Cash-Crops bilanziert. Winter-Weizen zählt zu den vorherrschenden Marktfrüchten Österreichs. Weiters spielt Weizen in aller Regel sowohl in biologischen als auch in konventionellen Marktfruchtbetrieben Österreichs eine zentrale Rolle. Alle weiteren Fallbeispiele ergeben sich aus den offenen Frage- und Problemstellungen, die die erste Variante hervorbringt. Im zweiten Beispiel wird z.B. mit einer geringeren Kalkgabe gerechnet, um zum ersten Mal zu zeigen, was Modifikationen auslösen können.
2.3 Kalkulationsgrundlagen

2.3.1 Verwendete Daten

Die wichtigsten landwirtschaftlichen Daten, die zur Erstellung der Energiebilanzen dieser Arbeit verwendet wurden, sind in Tabelle 2 zusammengestellt. Den Betriebsmitteln auf der Inputseite stehen die Erträge auf der Outputseite gegenüber. Alle Angaben beziehen sich auf die Fläche von einem Hektar und die Zeit eines Betriebsjahres (siehe dazu auch Kapitel 4.3.1 Input und 4.3.2 Output).

Tabelle 2: Berücksichtigte landwirtschaftliche Daten für die Kalkulation

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einheit</th>
<th>Quelle</th>
<th>Einheit</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l</td>
<td>KTBL 2004/05</td>
<td>Ertrag</td>
<td>KTBL 2004/05 u. Freyer 2003</td>
</tr>
<tr>
<td>N-Dünger</td>
<td>kg</td>
<td>BMFLUW 2002c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Dünger</td>
<td>kg</td>
<td>BMFLUW 2002c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-Dünger</td>
<td>kg</td>
<td>BMFLUW 2002c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pflanzenschutzmittel</td>
<td>kg</td>
<td>BMFLUW 2002c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>KTBL 2004/05 u. BMFLUW 2002c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Es wurde versucht, die Mengen dieser Betriebsmittel, welche für die unterschiedlichen Kulturen aufgewendet werden müssen, und auch die Ertragsmengen für den österreichischen Raum zu erheben. Dabei wurde auf die Standard-Deckungsbeitrags-Kataloge des BMFLUW (BMFLUW 2002a, 2002b und 2002c) zurückgegriffen. Bei der Verwendung der Kataloge für die vergleichende Arbeit zwischen biologischer und konventioneller Produktion ergaben sich allerdings einige Schwierigkeiten. Beginnend bei den Dieselaufwendungen wird in den beiden Katalogen für konventionelle und biologische Wirtschaftsweise mit Traktoren verschiedener Leistungsklassen kalkuliert, was einen direkten Vergleich erschwert. Weiters sind die Arbeitsgänge nicht genau definiert, und daraus folgend auch die Dieselverbräuche schwierig abzuleiten.

Da sich die Erträge teilweise auf die Dieselaufwendungen auswirken (Mähdrusch, Korntransport, Düngerausbringung) entstammen die Werte für die Erträge grundsätzlich auch der KTBL-Datensammlung. Da hier die biologischen Erträge im Vergleich zu anderen Quellen (Freyer, 2003) jedoch auffallend niedrig waren, wurden diese angeglichen. Auch die damit einhergehenden Veränderungen beim Dieselverbrauch wurden anschließend berücksichtigt.

Die angegebenen Kalkaufwendungen in den österreichischen DB-Katalogen (300 kg/ha/a) unterscheiden sich von denen in der KTBL-Datensammlung (1000 kg/ha/a) erheblich. Hier wurde mit jeweils einer der beiden Angaben kalkuliert um erstmals aufzuzeigen, wie verschiedene Vorgehensweisen das Bilanzergebnis beeinflussen können.

In der KTBL-Datensammlung sind jeweils Varianten verschiedener Schlag-Größen und verschiedener Bodenart angeführt. Beides bewirkt unterschiedliche Dieselauf-

Abschließend muss noch gesagt werden, dass es in unterschiedlichen Fallbeispielen dieser Arbeit immer wieder zu Änderungen der Datengrundlagen und zusätzlichen Annahmen kommt. Diese sind an jeweiliger Stelle angegeben.

2.3.2 Datenverarbeitung
Da die KTBL-Datensätze direkt mit der EXCEL-Software bearbeitet werden können, wurden die Berechnungen und Bilanzen für diese Arbeit ebenfalls in diesem Programm erstellt.
3 Theoretische Grundlagen

3.1 Energie

3.1.1 Grundlagen

Der Begriff der Energie taucht in vielen unterschiedlichen Zusammenhängen auf, die voneinander so verschieden sein können, dass sie scheinbar nichts miteinander zu tun haben. Und Energie ist für Prozesse bedeutsam, in denen auch andere Größen wie Kraft, Leistung, Druck oder Impuls eine z.T. ähnliche Rolle spielen. Es dauerte daher ziemlich lange, bis dem Menschen klar wurde, was Energie bedeutet, und dass er für all seine Aktivitäten Energie benötigt. Insbesondere bedeutete auch die Einsicht, dass ein wesentlicher Zweck der Nahrungsaufnahme in Energiezufuhr für den Körper besteht, einen schwierigen und historisch bedeutsamen Schritt (vgl. Rebhan 2002, 1).

In der Physik hat Energie eine eher abstrakte Bedeutung, nämlich die Fähigkeit, Arbeit zu verrichten. Sie ist also nicht etwas, das man etwa angreifen oder sehen kann. Wir bemerken nur ihre verschiedenen Wirkungen, mit der sie in Erscheinung treten kann, beispielsweise in Form von Licht, Bewegung oder Wärme. Deshalb spricht man ganz allgemein von mechanischer, elektrischer, magnetischer, thermischer oder chemischer Energie. Zusammensfassend könnte man sagen: Energie ist „gespeicherte Arbeit“.

3.1.2 Brennwert und Heizwert

Der Brennwert (= oberer Heizwert, abgekürzt Ho) ist die bei vollständiger Verbrennung von 1 kg Brennstoff freierwerdende Wärmemenge. Der Brennwert lässt sich nur ausnutzen, wenn die Abgase bis auf die Ausgangstemperatur abgekühlt

Heizwert (abgekürzt Hu). Geht also die Verdampfungswärme verloren, muss dies durch einen Abzug berücksichtigt werden. Wir erhalten so den Heizwert (unterer Heizwert) Hu. Die Kondensationswärme für Wasserdampf beläuft sich auf etwa 2500 kJ/kg. Damit ergibt sich folgender Zusammenhang: \(Hu = Ho - 2500 \cdot m(H_2O) \). Der Heizwert ist also niedriger als der Brennwert (vgl. Steger 1999, 168f).

In dieser Arbeit wird ausschließlich mit den Heizwerten (Hu) der unterschiedlichen Betriebsmittel kalkuliert.

3.1.3 Physikalische Einheiten

\[1 \text{ J} = 1 \text{ N} \cdot \text{m} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2 \]

Weitere Energieeinheiten:

\[1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J} \]
\[1 \text{ kcal} = 4,148 \cdot 10^3 \text{ J} \]
\[1 \text{ J} = 1 \text{ Ws} \]
\[1 \text{ PS} = 735 \text{ W} \]

(Für weiter Umrechnungsfaktoren und Einheiten siehe auch „Umrechnungstabellen für Energieeinheiten“ im Anschluss an das Inhaltsverzeichnis dieser Arbeit).

3.1.4 Faustzahlen & erläuternde Berechnungen

Um die theoretischen Erklärungen rund um den Begriff „Energie“ mit einigen praktischen Beispielen abzurunden, sollen nun am Ende dieses Kapitels einige auf Faustzahlen beruhende Berechnungen stehen:
Nehmen wir für die Weizenkörner einen Feuchtegehalt von 14% bzw. einen Trockenmassegehalt von 86% an. Dann ergibt sich bei einem Heizwert des Weizens von 18,3 MJ/kg Trockensubstanz bzw. 15,4 MJ/kg Frischmasse ein Energiegehalt von 15,4 MJ = 3678 kcal = 4,3 kWh pro kg Weizen (1 KJ = 0,239 kcal, 1 MJ = 0,278 kWh).

Abbildung 2: Energie-Faustzahlen für Weizen

Beispiel 3.1.4-b: In einem Liter Diesel stecken 35,65 MJ chemisch gebundene Energie – also rund 2,3-mal mehr als in einem Liter Weizenkörnern. Die Energie, die in einem Liter bzw. einem Kilogramm Weizenkörnern enthalten ist, entspricht also umgekehrt dem Ausmaß an Energie, das in 0,43 Litern Diesel in chemischer Form gebunden ist.

Abbildung 3: Energie-Faustzahlen für Diesel

Bringt man nun die Energie des Weizens in Zusammenhang mit physikalischer Arbeit, so kann man zum Beispiel folgende Berechnung anstellen:

Beispiel 3.1.4-c: Ein Staubsauger, der mit einer Leistung von 1000 Watt arbeitet, verbraucht pro Stunde 1 kWh Strom. In 4,3 Stunden benötigt er demzufolge 4,3 kWh Strom. Das entspricht der Energie, die in 1 kg Weizen in chemischer Form gebunden ist. Dieser Energie entspricht auch der Energieverbrauch einer 43-Watt- Glühbirne, die 100 Stunden lang brennt. Das sind rund 4,2 Tage. Ein Mensch braucht ca. 100 Watt Nahrungsenergie, das sind 2,4 kWh oder 2064 kcal pro Tag. Bei einem Energiegehalt von 3678 kcal pro 1 kg Weizen, könnte sich ein Mensch rund 1,8 Tage davon ernähren.
Beispiel 3.1.4-d: Für die menschliche Ernährung muss beachtet werden, dass nicht die gesamte im Weizen gebundene Energie genutzt werden kann. Unter der Annahme dass von den 3678 kcal des Weizens nur rund 3000 kcal in Form von verdautlicher Energie vorliegen (der Rest entfällt auf Ballaststoffe und Wasser und wird energetisch nicht bewertet), kann sich ein Mensch nur noch rund 1,5 Tage davon ernähren.

Beispiel 3.1.4-e: Ein durchschnittlicher EU-Haushalt verbraucht ca. 4000 kWh elektrischen Strom pro Jahr. Der Stromverbrauch eines durchschnittlichen österreichischen Haushaltes liegt mit 4700 kWh etwas höher. Das Mittel soll mit 4300 kWh angenommen werden.
In zwei Tonnen Weizen sind 8600 kWh gebunden. Wandelt man diese Energie in einem kalorischem Kraftwerk mit 50% Wirkungsgrad in elektrische Energie um, so kann damit der Stromverbrauch von 4300 kWh gedeckt werden.
Beispiel 3.1.4-f: Für die Heizung eines Hauses dürfen nach der Wärmeschutzverordnung-1995 100 kWh/m², nach der Energiesparverordnung 61-80 kWh/m² und nach dem Passivhausstandard bis zu 15 kWh/m² und Jahr an Energie verbraucht werden. Für eine Wohnfläche von 100m² ergibt das pro Jahr maximal:

- 10.000 kWh für die Wärmeschutzverordnung 1995
- 8.000 kWh für die Energiesparverordnung und
- 1.500 kWh für den Passivhausstandard.

Eine Tonne Weizen stellt 4.300 kWh an Energie in chemisch gebundener Form zur Verfügung. Bei einem angenommenen Wirkungsgrad des Brennofens von 90% ergibt das 3870 kWh. Das Passivhaus könnte damit über 2 Jahre lang geheizt werden. Nach der Energiesparverordnung würde die Energie knapp ein halbes Jahr lang reichen. Hält man sich an die Wärmeschutzverordnung, so benötigt man schon über zweieinhalb Tonnen Weizen um das Haus ein Jahr lang zu heizen.

Die vorangegangenen Beispiele sollten landwirtschaftliche Produkte (z.B. Weizen) mit Energie in verschiedenen Formen in Zusammenhang bringen. Es sei darauf hingewiesen, dass der Weizen nur als Stellvertreter landwirtschaftlicher Biomasse fungierte. Die Rechnungen könnten auch mit Sonnenblumenöl, Kartoffeln, Klee, Bohnen, Stroh etc. erstellt werden.

3.2 Energiebilanzen

Weiters soll nicht unerwähnt bleiben, dass sich der Endenergieumsatz aus direkten und indirekten Komponenten zusammensetzt, wobei bei den zum Einsatz kommen den Energieträgern die Vorkettenenergie (Transport- und Umwandlungsverluste) berücksichtigt werden kann (vgl. Grehn 1999, 6).

Erneut soll ein Beispiel eben Dargelegtes erklären:
Beispiel 3.2: Der untersuchte Prozess sei erneut die Erhellung eines Raumes. Der Bilanzaum ein Zimmer, Zeitraum eine Stunde. Verwendet wird eine 50-Watt Glühbirne. Das ergibt einen Endenergieverbrauch von 50 Wh oder 0,05 kWh. Diese 50 Wh werden als direkte Energie in Form von elektrischem Strom aufgewendet. Indirekte Energie, die aufgewendet werden muss, wäre z.B. die Herstellungsenergie für die Glühbirne. Diese und auch alle weiteren indirekten Energieaufwendungen sollen aber der Einfachheit halber in diesem Beispiel nicht berücksichtigt werden. Die Vorkette der Stromerzeugung soll jedoch berücksichtigt werden - also beispielsweise ein kalorisches Kraftwerk mit 50% Wirkungsgrad. Der Wirkungsgrad der Glühbirne wird mit 5% angenommen (siehe dazu Abbildung 6).

Abbildung 6: Schema des Energieflusses bei der Raumbeleuchtung mittels Glühbirne
(verändert nach Hartmann und Strehler (1995) in Moerschner 2000, 9)

Erstellt man nun für dieses Beispiel eine Endenergiebilanz, so stehen auf der Inputseite 50 Wh und auf der Outputseite 2,5 Wh Nutzenergie (Licht). Bei der Primärenergiebilanz stehen 125 Wh auf der Inputseite 2,5 Wh auf der Outputseite gegenüber.

Das obige Beispiel veranschaulicht, dass die Entscheidung über die Wahl der Bilanzierungsart und auch die Bilanzierungstiefe von den Zielen und Motiven abhängig ist, die bei der Erstellung der Bilanz verfolgt werden. Nach Saykowski (1995) lassen sich zwei Motive zur Berechnung von Energiebilanzen ableiten:
- Bei der Inanspruchnahme der zur Auswahl stehenden Energiequellen ökologische Aspekte wie die mit der Energienutzung verbundenen Emissionen, die Flächeninanspruchnahme und die Knappheit insbesondere fossiler Energieressourcen zu berücksichtigen (Saykowski 1995 in Moerschner 2000, 1).

In Bezug auf das vorangegangene Beispiel wäre für den ersten Punkt eine Endenergiebilanz heranzuziehen – mit der Systemgrenze des zu erhellenden Raumes. Wird der zweite Punkt verfolgt, empfiehlt sich eine Primärenergiebilanz.

3.3 Energie und Landwirtschaft

Seit jeher dient der Anbau von landwirtschaftlichen Nutzpflanzen dazu, Nahrungsmittel für den Menschen, Futter für die Nutztiere und Rohstoffe für industrielle Produkte (Holz, Hanf, Lein, Schilf etc.) zu erzeugen (vgl. Baeumer 1992, 11). Bis auf die „industriellen“ Rohstoffe ging es also stets um die Produktion und die Nutzung von Energie in Form von:

- Nahrungsmitteln (Energie für den Menschen)
- Futtermitteln (Energie für die (Zug-) Tiere), d.h. in weiterer Folge für Mobilität, Arbeitsenergie oder Fleisch und
- Brennstoffen (Wärmeenergie).

3.4 Energiebilanzen in der Landwirtschaft

- der zu Grunde gelegten Zielsetzungen
- der jeweiligen Systemgrenzen und getroffenen Annahmen
- der Art der verwendeten Energiekennzahlen und Berechnungsgrundlagen
- der Differenzierung und dem Inhalt der verwendeten produktions-technischen Datengrundlagen
- dem Vorgehen bei der Bilanzauswertung.
Eine häufig verwendete Methode ist allerdings die Prozessanalyse (Jones 1989), bei der alle Inputs fossiler Energie in ein landwirtschaftliches System analysiert werden. Die Sonnenenergie bleibt ebenso wie die menschliche Arbeitskraft unberücksichtigt.
4 Rahmenannahmen für die Energiebilanzierung in dieser Arbeit

4.1 Grundsätzliche Zielsetzung

Untersuchungsziel ist der energetische Vergleich der beiden Anbausysteme „biologisch“ und „konventionell“ auf den drei Betrachtungsebenen:
- einzelne Kultur,
- sechsjährige Fruchtfolge und
- Verwendung alternativer bzw. erneuerbarer Energiequellen.

4.2 Auswahl der Betrachtungsgrenzen

Für die Nachvollziehbarkeit der später dargestellten Ergebnisse ist eine klare Beschreibung der getroffenen Betrachtungsgrenzen notwendig, zu welchen auch die Beschreibung des angenommenen Bezugsystems und die definierten Systemgrenzen zu rechnen sind. Die Auswahl der Betrachtungsgrenzen erfolgte in Hinblick auf die drei zuvor angeführten Betrachtungsebenen (einzelnes Anbauverfahren, Systemvergleich und Verwendung modifizierter Energiequellen). Sie sind in den folgenden Kapiteln dargestellt.

4.2.1 Funktionale Einheiten und Bezugsgrößen

4.2.2 Räumliche Abgrenzung

4.2.3 Zeitliche Abgrenzung

Der Untersuchungszeitrahmen ist im Verfahrensvergleich jeweils ein Bewirtschaftungsjahr, wobei dieses (am Beispiel Winterweizen) nach dem zweiten Stoppelgrubbern im September beginnt und mit Abschluss eben dieses Arbeitsganges im darauf folgenden Jahr endet. Im Systemvergleich der sechsjährigen Fruchtfolge ist der Untersuchungszeitraum ein sechsjähriger, erneut beginnend mit dem Abschluss der zweiten Stoppelgrubbe rung der vorangegangenen Hauptfrucht und endend nach 6 Wirtschaftsjahren.
4.2.4 Systemgrenzen der Lebenswege und Bilanzierungstiefe

In dieser Arbeit wird der Ansatz der Primärenergie verfolgt (vgl. Kapitel 3.2). Mit dieser Methode wird der Gesamtenergiebedarf bestimmt, der zur Bereitstellung der Endenergieträger (Diesel) und der restlichen Betriebsmittel (Düngemittel, etc.), welche einen indirekten Energieeinsatz in das landwirtschaftliche System darstellen, aufgewendet werden muss. Es wird also der Prozessaufwand für Herstellung und Transport ausgewiesen - die Vorketten werden berücksichtigt. Nicht berücksichtigt ist der für die Bereitstellung der Betriebsmittel notwendige Infrastruktur-Aufwand (Transportmittel, Transportwege, Stromnetz, Fertigungsstätten und Fabriken). Genauere Angaben zu den energetischen Bewertungen der einzelnen Betriebsmittel folgen im nächsten Kapitel.

4.3 Stoffliche Bilanzgrundlage und energetische Bewertung

4.3.1 Input

Tabelle 3: Berücksichtigte Betriebsmittel - Inputenergie (Literaturoauswahl)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Menschl. Arbeitskraft</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Tierische Arbeitskraft</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Maschinen</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Benzin</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Phosphor</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Kalium</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Kalk</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Saatgut</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Bewässerung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Herbizide</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Insektizide</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Elektr. Strom</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Schmierstoffe</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Gebäude</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

+ gering, ++ mittel, +++ hoch
In dieser Arbeit werden die Betriebsmittel *Diesel, Stickstoff, Phosphor, Kalium, Kalk* und *Pflanzenschutzmittel* auf der Inputseite berücksichtigt. Alle weiteren Energie-Input-Faktoren aus Tabelle 3 werden nicht berücksichtigt.

Tabelle 4: Primärenergieeinsatz für die Bereitstellung von Betriebsmitteln

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Energie-Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>39,65 MJ/l</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>49,1 MJ/kg N</td>
</tr>
<tr>
<td>Phosphor</td>
<td>17,70 MJ/kg P2O5</td>
</tr>
<tr>
<td>Kalium</td>
<td>10,50 MJ/kg K2O</td>
</tr>
<tr>
<td>Kalk</td>
<td>2,39 MJ/kg CaO</td>
</tr>
<tr>
<td>Pflanzenschutzmittel</td>
<td>263,00 MJ/kg AS</td>
</tr>
</tbody>
</table>

(Quelle: Kaliski 2004, 103 – 112)

Der Energieinput für Diesel setzt sich aus dem Endenergiegehalt von 35,65 MJ/l und der Vorkettenenergie (Umwandlungs- und Transportenergie) von 4,0 MJ/l zusammen.

Für die Bilanz der Düngemittelbereitstellung verknüpfen Patyk und Reinhardt (1997) die Daten zum Primärenergieeinsatz der drei Lebenswegabschnitte Energiebereitstellung, Produktion und Transport. Zu berücksichtigen ist hierbei, dass die angegebenen Ergebnisse der Zusammenführung für die durchschnittlichen abgesetzten Düngemittel entspringen, d.h. im gewichteten Mittel der unterschiedlichen N-, P- und K-Düngemittel, sowie im Mittel der Herkunftsländer.

4.3.2 Output

<table>
<thead>
<tr>
<th>Ackerfrucht</th>
<th>MJ/kg Trockenmasse<sup>d</sup></th>
<th>% Trockenmasse</th>
<th>MJ/kg Frischmasse<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonnenblume</td>
<td>27,4<sup>a</sup></td>
<td>91<sup>a</sup></td>
<td>24,9</td>
</tr>
<tr>
<td>Mais</td>
<td>18,5<sup>b</sup></td>
<td>86<sup>a</sup></td>
<td>15,9</td>
</tr>
<tr>
<td>Weizen</td>
<td>18,3<sup>b</sup></td>
<td>84<sup>a</sup></td>
<td>15,4</td>
</tr>
<tr>
<td>Gerste</td>
<td>18,2<sup>b</sup></td>
<td>84<sup>a</sup></td>
<td>15,3</td>
</tr>
<tr>
<td>Körnererbsen</td>
<td>19,7<sup>a</sup></td>
<td>86<sup>a</sup></td>
<td>16,9</td>
</tr>
<tr>
<td>Kartoffel</td>
<td>16,8<sup>b</sup></td>
<td>23<sup>a</sup></td>
<td>3,9</td>
</tr>
<tr>
<td>Zuckerrübe</td>
<td>16,0<sup>b</sup></td>
<td>23<sup>a</sup></td>
<td>3,7</td>
</tr>
<tr>
<td>Roggen</td>
<td>17,9<sup>c</sup></td>
<td>84<sup>c</sup></td>
<td>15,0</td>
</tr>
</tbody>
</table>

^a Knoflacher et al. (1991) in Ramharter (1999, 27)
^b Darge (2002)
^c Stein-Bachinger et al. (2004, 35)
^d Brennwert beziehen sich auch den Unteren Heizwert
Tabelle 5 gibt einen Überblick über die Brennwertefür ausgewählter Kulturarten. In den Berechnungen dieser Arbeit wird mit den Angaben zu MJ/kg Frischmasse gearbeitet, welche über die Feuchtegehalte aus den Energieangaben pro Kilogramm Trockenmasse errechnet wurden.

4.4 Bilanzauswertung

In dieser Arbeit werden neben den beiden Kennzahlen Energie-Input und Energie-Output für die weitere Bilanzauswertung auch noch die Kennzahlen Netto-Energie-Ertrag (NEE) und Output/Input-Relation (OIR) verwendet.

- Der **Energie-Input** entspricht dem Energieeinsatz. In ihm sind alle berücksichtigten Energieaufwendungen summiert.

- Der **Energie-Output** entspricht dem energetisch bewerteten landwirtschaftlichen Ertrag und kann auch als Brutto-Energie-Ertrag bezeichnet werden. Er wird ebenfalls flächen- und zeitbezogen ermittelt (MJ/ha/a od. für die gesamte sechsjährige Fruchtfolge teilweise auch MJ/6ha/a).

- Der **Netto-Energie-Ertrag (NEE)** errechnet sich aus dem Energie-Ertrag abzüglich des Energieinputs. Er beschreibt also die Produktivität eines Verfahrens und bezieht sich auf eine Fläche und einen Zeitraum (MJ/ha/a od. für die gesamte sechsjährige Fruchtfolge MJ/6ha/a).

Die von Moerschner angeführte Kennzahl der Energieintensität drückt den Energieeinsatz je Ertragseinheit aus, also z.B. MJ/kg Weizen. Sie wird in dieser Arbeit allerdings nicht verwendet, weil dieser Wert keine zusätzlichen relevanten Informationen für diese Arbeit liefert.

4.5 Ergebnisse – Stand des Wissens zu Energiebilanzen im Ackerbau

In der landwirtschaftlichen Praxis werden ganz unterschiedliche Systeme gefahren mit dementsprechend unterschiedlichen Energieintensitätsniveaus. Bleibt die Frage offen: Warum eigentlich?

5 Ergebnisse und Diskussion

5.1 Einzelne Kultur (Winterweizen)

In diesem Kapitel werden jeweils für einen Hektar konventionell bewirtschaftete Ackerfläche und einen Hektar biologisch bewirtschafteter Ackerfläche Energiebilanzen erstellt und diese miteinander verglichen. Stellvertretend für die unterschiedlichen Ackerbaskulturarten wird mit Winter-Weizen bilanziert (Tabelle 6).

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einh.</th>
<th>MJ/Einh.</th>
<th>WW-Bio NPK; Kk=1000kg</th>
<th>WW-Konv NPK; Kk=1000kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Menge</td>
<td>GJ</td>
<td>Menge</td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>83,1<sup>c</sup></td>
<td>3,3</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>126,0<sup>d</sup></td>
<td>6,2</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>54,0<sup>d</sup></td>
<td>1,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>61,0<sup>d</sup></td>
<td>0,6</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,0<sup>d</sup></td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>1000,0<sup>e</sup></td>
<td>2,4</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td></td>
<td>13,5</td>
<td></td>
</tr>
<tr>
<td>Output kg</td>
<td>15,4</td>
<td>6000,0<sup>f</sup></td>
<td>92,4</td>
<td>8000,0<sup>f</sup></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>78,9</td>
<td>105,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,9</td>
<td>7,0</td>
<td></td>
</tr>
</tbody>
</table>

^a System biologisch, Energiewert des organischer Dünger wird am Energiewert des mineralischen NPK- Düngers bemessen, welcher durch den organischen Dünger substituiert wird, 1000 kg Kalk/ha/a.
^b System konventionell, Energiewert des mineralischen NPK-Düngers, 1000 kg Kalk/ha/a.
^c KTBL-Datensammlung (2004/05) – siehe Anhang 1
^d Standard-DB-Katalog (BMFLUW 2002c) – siehe Anhang 1
^e KTBL-Datensammlung (2004/05)
^f Freyer (2003, 17)

Wesentlich für das Verständnis dieser ersten Gegenüberstellung ist, wie es zu den einzelnen Werten der Energieaufwendungen (Spalte GJ) kommt. Hierfür werden die Aufwandsmengen der einzelnen Betriebsmittel mit den Energiewerten (Spalte MJ/Einheit) multipliziert. Die Aufwandsmengen für Diesel ergeben sich aus den einzelnen Arbeitsschritten von der Herbstgräserung im September bis zum zweiten Stoppelgrubbern im Folgejahr laut KTBL-Datensammlung 2004/05 (siehe Anhang 1). Da der Dieselverbrauch für die Erntearbeitsschritte ertragsabhängig (auch Anhang 1) ist, ergibt sich auf konventioneller Seite insgesamt ein etwas höherer Diesel- verbrauch.

5.1.1 Unterschiedliche Datengrundlagen für die Kalkung

Die KTBL-Daten für die Kalkung pro Hektar und Jahr liegen mit 1000 kg vergleichsweise hoch. In den österreichischen Deckungsbeitragskatalogen wird mit dem geringeren Kalkaufwand von 300 kg pro Hektar und Jahr kalkuliert (vgl. BMLFUW 2002c). Demnach wurde im folgenden Fallbeispiel mit 300 kg Kalk bilanziert, um die Auswirkungen einer geringeren Kalkung (unterschiedlicher Datengrundlagen) auf die Energiebilanz darzustellen (Tabelle 7).

tabelle 7: 1 ha Winter-Weizen – biologisch und konventionell (geringe Kalkung: 300 kg): Bilanzkennzahlen, Betriebsmitteleinsatz und Energieaufwendungen für ein Jahr

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einh.</th>
<th>MJ/Einh.</th>
<th>Menge GJ</th>
<th>Menge GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>83,1 a</td>
<td>3,3</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>126,0 b</td>
<td>6,2</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>54,0 b</td>
<td>1,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>61,0 b</td>
<td>0,6</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,0 b</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0 b</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td></td>
<td>11,8</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>15,4</td>
<td>6000,0 c</td>
<td>92,4</td>
</tr>
<tr>
<td>Netto Energieertrag</td>
<td></td>
<td></td>
<td>80,6</td>
<td></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td></td>
<td></td>
<td>7,8</td>
<td></td>
</tr>
</tbody>
</table>

a KTBL-Datensammlung (2004/05) - siehe Anhang 1
b Standard-DB-Katalog (BMLFUW 2002c) – siehe Anhang 1
c Freyer (2003, 17)

Die Energieeinsparungen wirken sich auf beiden Seiten positiv auf die Bilanzkennzahlen aus. Das konventionelle Verfahren bleibt jedoch nach wie vor beim Netto-Energie-Ertrag klar voran.
5.1.2 Unterschiedliche Datengrundlagen für die biologische Düngung

Im ersten Ansatz wird im biologischen System von einer 6-jährigen (Markt-) Fruchtfolge ausgegangen. Eine einjährige Gründüngung (Luzerne) im ersten Jahr deckt die Stickstoff-Versorgung für fünf Hauptfrüchte in den Folgejahren. Der durch die Gründüngung entstehende zusätzliche Dieselaufwand wird diesen fünf Hauptkulturen zugerechnet - also gefünftelt. Das führt zu zusätzlichen Dieselaufwendungen von 13,61 Litern pro Kultur (Tabelle 8 und Anhang 1). Dafür wird der N-Dünger selbst energetisch mit dem Faktor Null bewertet.

Tabelle 8: 1 ha Winter-Weizen - biologisch und konventionell (untersch. Datengrundlagen f. organische Düngung): Bilanzkennzahlen, Betriebsmittel einsatz und Energieaufwendungen für ein Jahr

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einh. MJ/Einh.</th>
<th>WW-Bio N ü. GD, PK; Kk=300kg</th>
<th>WW-Bio Zukauf v. Wi.-Düng.; Kk=300kg</th>
<th>WW-Konv NPK; Kk=300kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Menge</td>
<td>GJ</td>
<td>Menge</td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>96,7 a</td>
<td>3,8</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>54,0 d</td>
<td>1,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>61,0 d</td>
<td>0,6</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,0 d</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0 d</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td>6,1</td>
<td>4,5</td>
<td>15,9</td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>15,4</td>
<td>6000,0 e</td>
<td>92,4</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td></td>
<td>86,3</td>
<td>87,9</td>
<td>107,3</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td></td>
<td>15,0</td>
<td>20,3</td>
<td>7,8</td>
</tr>
</tbody>
</table>

a = 83,11 + 13,61 (Gründüngung/5) siehe Anhang 1
b = 80,72 + 15,80 (Wirtschaftsdüngerausbringung) siehe Anhang 1
c KTBL-Datensammlung (2004/05) – siehe Anhang 1
d Standard-DB-Katalog (BMLFUW 2002c) – siehe Anhang 1

e Freyer (2003, 17)

5.1.3 Synthese

Tabelle 9 und Abbildung 7 stellen nochmals die Bilanzkennzahlen der ersten Fallbeispiele zusammen. Deutlich wird, dass die konventionellen Systeme bei Energieoutput und Netto-Energieertrag bei allen Fallbeispielen um rund 20% voran liegen.

Tabelle 9: Bilanzkennzahlen der unterschiedlichen Fallbeispiele für die einzelne Kultur Winter-Weizen

<table>
<thead>
<tr>
<th></th>
<th>WW-Bio NPK; Kk=1000kg</th>
<th>WW-Bio NPK; Kk=300kg</th>
<th>WW-Bio N ü. GD, PK; Kk=300kg</th>
<th>WW-Bio Zukauf v. Wi.-Düng.; Kk=300kg</th>
<th>WW-Konv NPK; Kk=1000kg</th>
<th>WW-Konv NPK; Kk=300kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input GJ/ha/a</td>
<td>13,5</td>
<td>11,8</td>
<td>6,1</td>
<td>4,5</td>
<td>17,5</td>
<td>15,9</td>
</tr>
<tr>
<td>Output GJ/ha/a</td>
<td>92,4</td>
<td>92,4</td>
<td>92,4</td>
<td>92,4</td>
<td>123,2</td>
<td>123,2</td>
</tr>
<tr>
<td>Netto-Energieertrag GJ/ha/a</td>
<td>78,9</td>
<td>80,6</td>
<td>86,3</td>
<td>87,9</td>
<td>105,7</td>
<td>107,3</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>6,9</td>
<td>7,8</td>
<td>15,0</td>
<td>20,3</td>
<td>7,0</td>
<td>7,8</td>
</tr>
</tbody>
</table>

WW-Bio = Winter-Weizen Biologisch, **WW-Konv** = Winter-Weizen Konventionell

NPK = Energiwerte der NPK-Dünger gemessen am Energiwerten der mineralischen NPK-Dünger

N ü. GD = Stickstoff-Düngung über einjährige Gründüngung

Zukauf v. Wi.-Düng. = NPK-Düngung über zugekauften Wirtschaftsdünger

Abbildung 7: Netto-Energieerträge und Output/Input-Relationen für die einzelne Kultur Winter-Weizen

Änderungen wurden bei den unterschiedlichen Fallbeispielen ja nur auf der Inputseite vorgenommen (geringere Kalkung, unterschiedliche Vorgangsweisen bei der organischen Düngerbewertung). Da der Energieinput im Vergleich zum Output bei allen Varianten recht gering ist, bringen die Änderungen auf der Inputseite eher geringe Änderungen der Netto-Energieerträge.
Anders bei den Output/Input-Relationen: Während die Auswirkungen der geringeren Kalkung noch eher verhalten sind, wirken sich die unterschiedlichen Zugangsweisen bei der Düngerbewertung eklatant aus, und die biologischen Systeme liegen mit 15,0 und 20,3 ganz klar voran.

5.2 Sechsjährige Fruchtfolge

In den vorangegangenen Fallbeispielen wurde deutlich, dass die Vorgehensweise bei der energetischen Bewertung des organischen Düngers den größten Einfluss auf die Bilanzkennzahlen hat.

Tabelle 10: Sechsjährige Marktwirtschaft-Fruchtfolge – Hauptkulturen und Zwischenfrüchte

<table>
<thead>
<tr>
<th></th>
<th>Biologisch</th>
<th>Konventionell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jahr</td>
<td>Gründüngung-Luzerne</td>
<td>Winter-Weizen</td>
</tr>
<tr>
<td>2. Jahr</td>
<td>Winter-Weizen</td>
<td>Winter-Weizen</td>
</tr>
<tr>
<td>Zwischenfrucht</td>
<td>Sommerwicke</td>
<td>Senf</td>
</tr>
<tr>
<td>3. Jahr</td>
<td>Kartoffel (mittel)</td>
<td>Kartoffel (mittel)</td>
</tr>
<tr>
<td>Zwischenfrucht</td>
<td>Buchweizen</td>
<td>Buchweizen</td>
</tr>
<tr>
<td>4. Jahr</td>
<td>Futtererbse</td>
<td>Futtererbse</td>
</tr>
<tr>
<td>5. Jahr</td>
<td>Winter-Roggen</td>
<td>Winter-Roggen</td>
</tr>
<tr>
<td>Zwischenfrucht</td>
<td>Buchweizen + Phacelia</td>
<td>Senf</td>
</tr>
<tr>
<td>6. Jahr</td>
<td>Sommer-Gerste (Braugerste)</td>
<td>Sommer-Gerste (Braugerste)</td>
</tr>
</tbody>
</table>

Für die weiteren Berechnungen gelten die Annahmen, dass die Nebenernteprodukte (Stroh und Kartoffelkraut) am Feld verbleiben und wieder eingearbeitet werden. Die Haupternteprodukte (Erträge) verlassen als Bruttoenergieertrag den Betrieb, was zu einer erheblichen Nährstoffausfuhr führt. Dieser Nährstoffverlust wird auf konventioneller Seite über mineralische Düngemittel wieder ausgeglichen. Im biologischen System schließt der Leguminosenanbau den Stickstoffkreislauf. Phosphor und Kali sollen weiterhin über im ökologischen Landbau zugelassene PK-Dünger zugeführt werden, um der Nährstoffverarmung vorzubeugen. Nur die Diesellaufwendungen zur PK-Dünger-Ausbringung sollen nun auf biologischer Seite vernachlässigt werden, da diese mit 2,39 Litern pro Hektar und Jahr verhältnismäßig gering sind. Für die Kalkung werden weiterhin sowohl auf biologischer als auch auf konventioneller Seite 300kg/ha/a veranschlagt.

Die genauen Betriebsmitteleinsätze, Energieaufwendungen und Kennzahlen der gesamten Fruchtfolgen und daran anschließend die Diesellaufwendungen, aufgeschlüsselt nach den einzelnen Kulturen, sind in Anhang 2 zu finden. Abbildung 8
stellte die Netto-Energie-Erträge des biologischen und des konventionellen Systems zusammen.

Abbildung 8: Netto-Energieerträge im Fruchtfolgevergleich
Es sind hier zuerst die Netto-Energieerträge für alle Kulturen einzeln dargestellt. Die konventionelle Wirtschaftsweise liegt bei allen voran. Auch bei der gesamten Fruchtfolge setzt sich das konventionelle System gegenüber der biologischen Variante klar ab.

Abbildung 9: Output/Input-Relationen im Fruchtfolgevergleich

1 (= NEE von 6 ha: 358,26 / 6) siehe auch Anhang 2
2 (= 86,87+107,61+41,32+67,04+60,05 / 5)
Bezüglich der Output/Input-Relationen (Abbildung 9) liegt das biologische Anbauterverfahren sowohl bei den einzelnen Kulturen als auch beim Durchschnitt für die ganze Fruchtfolge (Energieoutput der Cashcrops dividiert durch den Energieinput für Luzerne, Zwischenfrüchten und Cashcrops, siehe auch Anhang 2) voran. Eine Ausnahme bildet die Kultur Futtererbse, wo die konventionelle Variante knapp besser aussteigt. Dies ist darauf zurückzuführen, dass hier auf konventioneller Seite ebenfalls keine N-Düngung verabreicht wird, die Erträge auf konventioneller Seite jedoch trotzdem höher angenommen sind.

5.2.1 Energieeinsparungen durch reduzierte Bodenbearbeitung

In Anhang 2 ist zu sehen, dass der Pflug sowohl in der konventionellen als auch in der biologischen Fruchtfolge jedes Jahr zum Einsatz kommt. Obwohl in der KTBL-Datensammlung so angegeben, entspricht das in vielen Fällen nicht der landwirtschaftlichen Praxis. Hier besteht generell Dieseleinsparungspotential. Der Pflug kann durch andere bodenbearbeitende Maschinen ersetzt werden, welche weniger Zugkraft benötigen, oder der Arbeitsgang entfällt ganz.

| Tabelle 11: Energiekennzahlen aus dem Fruchtfolgevergleich – konventionell, konventionell mit reduzierter Bodenbearbeitung und konv. m. red. BB und +50% Pflanzenschutzmittel |
|---------------------------------|---------------------------------|---------------------------------|
| | Sys. Konv NPK; | Sys. Konv NPK; | Sys. Konv NPK; |
| | Kk=300kg | red. BB Kk=300kg | red. BB +50%PS Kk=300kg |
| Input GJ/ha/a | 14,4 | 13,9 | 14,3 |
| Output GJ/ha/a | 111,7 | 111,7 | 111,7 |
| Netto-Energie-Ertrag GJ/ha/a | 97,3 | 97,8 | 97,5 |
| Output/Input-Relation | 7,7 | 8,0 | 7,8 |

Obwohl der Dieselverbrauch für die gesamte Fruchtfolge in der Direktsaat-Variante im Vergleich zur konventionellen um rund 20% gesenkt werden konnte, erhöht sich das Output/Input-Verhältnis nur um rund 3 % von 7,7 auf 8,0. Wird mit 50 % höherem Pflanzenschutzmitteleinsatz bilanziert, bleibt die OIR mit 7,8 fast unverändert. Auf den Netto-Energie-Ertrag wirken sich die Dieseleinsparungen vernachlässigbar gering aus.

39
Auch für die biologische Wirtschaftsweise könnten die Arbeitsgänge aus der KTBL-Datensammlung noch angepasst werden, um auch hier zusätzlich Diesel einzusparen. Hier würden sich die Dieseleinsparungen direkter auf das Output/Input-Verhältnis auswirken, da im biologischen System der Dieselverbrauch klar den größten Energieinputposten darstellt. In der KTBL-Datensammlung liegen allerdings keine Treibstoff sparenden biologischen Varianten vor. Deshalb wurde auf eine Energiebilanz für eine biologische Variante mit weniger Treibstoffverbrauch verzichtet.

5.2.2 Optimistische Einstellung zu einem System

Die genauen Aufstellungen zu den Betriebsmittelauwendungen und den Energiekennzahlen befinden sich im Anhang 2. Eine Zusammenfassung der Energiekennzahlen stellt Tabelle 12 dar.

Tabelle 12: Energiekennzahlen aus dem Fruchtfolgevergleich – positive Einstellung zum biologischen System

<table>
<thead>
<tr>
<th>Sys. Bio N ü. FF; PK; Kk=300kg</th>
<th>Sys. Bio N ü. FF; +20% Ertrag; Kk=300kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input GJ/ha/a</td>
<td>5,8</td>
</tr>
<tr>
<td>Output GJ/ha/a</td>
<td>65,4</td>
</tr>
<tr>
<td>Netto-Energie-Ertrag GJ/ha/a</td>
<td>59,6</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>11,3</td>
</tr>
</tbody>
</table>

Der Energieaufwand kann durch den Wegfall der Phosphor- und Kalidüngung um rund 24 % gesenkt werden. Der Energie-Output erhöht sich genau um 20 %, da ja die Erträge um ein Fünftel höher veranschlagt wurden. Somit kommt der Netto-Energie-Ertrag um rund 24% höher zu liegen und die Output/Input-Relation steigt um 58 % von 11,3 auf 17,9. Die neuen Annahmen bezüglich Erträgen und Düngung haben demnach starke Auswirkungen auf das Bilanzergebnis.

5.2.3 Synthese

Obwohl die Annahmen der unterschiedlichen Fallbeispiele im Fruchtfolgevergleich sehr differenziert sind, präsentieren
Tabelle 13 und Abbildung 10 ein grundsätzlich einheitliches Bild: die biologischen Systeme liegen bei den Output/Input-Relationen voran und die konventionellen Systeme bei den Netto-Energieerträgen. Je nach dem, ob die Bilanzen über die OIR oder die NEE ausgewertet werden, wäre entweder das biologische oder das konventionelle System zu präferieren.
Tabelle 13: Bilanzkennzahlen aller Fallbeispiele aus dem Fruchtfolgevergleich

<table>
<thead>
<tr>
<th></th>
<th>Sys. Bio N ü. FF, PK; Kk=300kg</th>
<th>Sys. Bio N ü. FF; +20% Ertrag; Kk=300kg</th>
<th>Sys. Konv NPK; Kk=300kg</th>
<th>Sys. Konv NPK; red. BB Kk=300kg</th>
<th>Sys. Konv NPK; red. BB +50%PS Kk=300kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input GJ/ha/a</td>
<td>5,8</td>
<td>4,4</td>
<td>14,4</td>
<td>13,9</td>
<td>14,3</td>
</tr>
<tr>
<td>Output GJ/ha/a</td>
<td>65,4</td>
<td>78,4</td>
<td>111,7</td>
<td>111,7</td>
<td>111,7</td>
</tr>
<tr>
<td>Netto-Energie-Ertrag GJ/ha/a</td>
<td>59,6</td>
<td>74,0</td>
<td>97,3</td>
<td>97,8</td>
<td>97,5</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>11,3</td>
<td>17,9</td>
<td>7,7</td>
<td>8,0</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Abbildung 10: Netto-Energieerträge und Output/Inputrelationen der Fallbeispiele aus dem Fruchtfolgevergleich

1: Sys. Bio; N ü. FF, PK; Kk=300kg
2: Sys. Bio; N ü. FF; +20% Ertrag; Kk=300kg
3: Sys. Konv; NPK; Kk=300kg
4: Sys. Konv; NPK; red. BB; Kk=300kg
5: Sys. Konv; NPK; red. BB +50%PS; Kk=300kg

Ein Beispiel soll dies noch einmal verdeutlichen:

Beispiel 5-a: Es seien zwei Banken: Bank A und Bank B, die beide unterschiedliche Konditionen anbieten.

Bank A: Man investiert 5 Schilling und bekommt 75 Schilling nach einem Jahr heraus (maximale Investition pro Jahr: 5 Schilling).

Input: 5 Schilling
Ertrag: 75 Schilling
Netto-Ertrag: 70 Schilling
Output/Input-Relation: 15

Bank B: Man investiert 15 Schilling und bekommt 120 Schilling nach einem Jahr heraus. (maximale Investition pro Jahr 15 Schilling).

Ein anderer Ansatz wäre jener, das Geld möglichst effizient einzusetzen. Dann müsste die Investorin zu Bank A gehen. Die Effizienz gemessen an der OIR ist hier deutlich höher.

Umgelegt auf die Landwirtschaft wird diese Gegebenheit häufig in der Diskussion um die „richtige“ Bewirtschaftungsform genutzt. Anhänger der biologischen Landwirtschaft argumentieren mit der höheren Effizienz: Pro Kilogramm Ertrag (Weizenkorn, Kartoffel, etc.) muss weniger Energie investiert werden. Verfechter der konventionellen Landwirtschaft verweisen auf die höhere Produktivität ihrer Bewirtschaftungsform: Am Ende bleibt mehr Energie pro Fläche übrig.

Grundsätzlich muss aber ergänzt werden, dass die landwirtschaftliche Nutzfläche sowohl global als auch in Österreich begrenzt ist, und dass nicht wie im Bankenbeispiel eine einheitliche Währung (Geld) im Spiel ist, sondern Energie in unterschiedlichen Formen: erneuerbar, nicht erneuerbar, Biomasse und Lebensmittel. Darauf geht das folgende Kapitel ein.

5.3 Modifizierte Energiequellen

5.3.1 Energieaufwendungen aus Weizen-Bioethanol

Vergleicht man die konventionelle Produktion mit der biologischen und betrachtet dabei speziell die Inputseite, so unterscheidet beide Systeme nach den Annahmen dieser Arbeit der zusätzliche Betriebsmittelaufwand von NPK-Düngemitteln und Pflanzenschutzmitteln auf konventioneller Seite (wenn auf biologischer Seite die PK-Dünger nicht energetisch bewertet werden).
Tabelle 14: Sechsjährige konventionelle Fruchtfolge: Düng- und Pflanzenschutzmitteleinsätze und deren energetische Bewertung

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>System Konventionell; NPK; Kk=300kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Durchschnittliche Aufwandsmenge kg/ha/a</td>
<td>121,8</td>
</tr>
<tr>
<td>Primärenergieeinsatz pro kg Betriebsmittel MJ/kg</td>
<td>49,1</td>
</tr>
<tr>
<td>Endenergieeinsatz pro kg Betriebsmittel MJ/kg</td>
<td>43,5</td>
</tr>
<tr>
<td>Flächenbezogener Primärenergieeinsatz GJ/ha/a</td>
<td>6,0</td>
</tr>
<tr>
<td>Flächenbezogener Endenergieeinsatz GJ/ha/a</td>
<td>5,3</td>
</tr>
</tbody>
</table>

Dieser Mehraufwand auf der Inputseite des konventionellen Systems ist über zusätzliche Energieerträge auf der Outputseite zu rechtfertigen. Tabelle 15 zeigt, dass der zusätzliche Primärenergieaufwand von 9,8 GJ/ha/a im konventionellen System über den Mehrertrag von 36,3 GJ/ha/a (111,7 minus 65,4) mehr als gedeckt wird.

Tabelle 15: Kennzahlen der sechsjährigen Fruchtfolgen – Biologisch, Konventionell und Konventionell mit Endenergieträger Ethanol

<table>
<thead>
<tr>
<th></th>
<th>Sys. Bio; N über FF; Kk=300kg</th>
<th>Sys. Konv; NPK; Kk=300kg</th>
<th>Sys. Konv-Ethanol; NPK; KK=300kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Diesel + Kalk GJ/ha/a</td>
<td>4,4</td>
<td>4,6</td>
<td>4,6</td>
</tr>
<tr>
<td>Input: NPK und PSM GJ/ha/a</td>
<td>0</td>
<td>9,8</td>
<td>19,0</td>
</tr>
<tr>
<td>Summe Input GJ/ha/a</td>
<td>4,4</td>
<td>14,4</td>
<td>23,6</td>
</tr>
<tr>
<td>Output</td>
<td>65,4</td>
<td>111,7</td>
<td>111,7</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>61,0</td>
<td>97,3</td>
<td>88,1</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>14,9</td>
<td>7,7</td>
<td>4,7</td>
</tr>
</tbody>
</table>

Die zuvor beschriebenen aufgewendeten Endenergieträger zur Bereitstellung der Düng- und Pflanzenschutzmittel auf konventioneller Seite gehen auf fossile Quellen zurück (bis auf die erneuerbaren Anteile des elektrischen Stroms). Es ist davon auszugehen, dass deren Verfügbarkeit in Zukunft verstärkt eingeschränkt sein wird. Um hier aus einem Abhängigkeitsverhältnis zu entkommen, müsste besonders der konventionelle Landbau dafür Sorge tragen, dass er die nötige Energie zur Bereitstellung seiner Betriebsmittel selbst erzeugt.

Bei gleich bleibenden Endenergieeinsatz von 8,0 GJ/ha/a auf konventioneller Seite (vgl.)

Diese Überlegungen könnten auch noch für den Diesel- und Kalkverbrauch weitergeführt werden, welche sowohl auf biologischer als auch auf konventioneller Seite zum Einsatz kommen. Dem soll aber der Vergleich Traktor-Pferd als zusätzliche Herangehensweise vorgezogen werden.

5.3.2 Zugkraft: Traktor oder Pferd

Um auch für die Arbeitskraft (Zugkraft) aus der Abhängigkeit von fossilen, nicht erneuerbaren Energieträgern (Diesel) zu entkommen, könnte entweder der Traktor beispielsweise mit Bio-Ethanol betrieben werden, oder selbiger überhaupt durch das Pferd ersetzt werden.

In der biologischen sechsjährigen Fruchtfolge (Sys. Bio; N ü. FF, PK; Kk=300kg; vgl. Anhang 2) liegt der Dieselverbrauch für ein Jahr und sechs Hektar bzw. 6 Jahre und ein Hektar bei 572 Litern.

Unter der Annahme, dass der Traktor mit Ethanol aus der eigenen Weizenproduktion betrieben werden kann, und Ethanol mit dem Heizwert des Diesels von 35,65 MJ/l (Patyk und Reinhardt 1997 in Kaliski 2004, 104) bemessen werden darf, ergeben sich folgende Berechnungen:

\[
35,65 \, \text{MJ/l} \times 572 \, \text{l} = 20.392 \, \text{MJ} \, \text{(für 6 ha)}
\]

Wenn für die Weizen-Ethanol Produktion erneut ein Wirkungsgrad von 42 % angenommen wird (vgl. Wissenschaftlicher Beirat Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz 2007, 136), ergeben sich daraus:

\[
20.392 \times 100 / 42 = 48.552 \, \text{MJ} \, \text{Input an Weizen.}
\]

Bei einem Heizwert des Weizens von 15,4 MJ/kg Körnertrag (Frischmasse) folgen daraus:

\[
48.552 \, \text{MJ} / 15,4 \, \text{MJ/kg} = 3153 \, \text{kg Weizen}.
\]

Bei einem Körnertrag von 6000 kg Weizen pro Hektar für die biologische Produktion ergibt das einen Flächenverbrauch von:

\[
3092 / 4000 = 0.53 \, \text{ha},
\]

was ungefähr einem Zwölftel der Bewirtschaftungsfläche von 6 ha entspricht.

Es soll für die weiteren Berechnungen die Annahme gelten, dass bei heutigem Ertragsniveau ein Pferd für die Bewirtschaftung von 6 ha (der biologischen sechsjährigen Fruchtfolge) benötigt wird.
Es ergeben sich für ein 1 Pferd pro Jahr:

<table>
<thead>
<tr>
<th>Ernteeinheit</th>
<th>Menge pro Jahr</th>
<th>Gewicht pro Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heu</td>
<td>7 kg</td>
<td>7 kg x 365 Tage = 2.555 kg Heu</td>
</tr>
<tr>
<td>Hafer</td>
<td>6 kg</td>
<td>6 kg x 365 Tage = 2.190 kg Hafer</td>
</tr>
<tr>
<td>Stroh</td>
<td>4 kg</td>
<td>4 kg x 365 Tage = 1.460 kg Stroh</td>
</tr>
</tbody>
</table>

Bei einem durchschnittlichen Luzerneheu-Ertrag von 7.000 kg pro Hektar und Jahr (vgl. BMLFUW 2002a, 64f) ergibt sich daraus ein Flächenverbrauch von

\[
\frac{2555}{7000} = 0,37 \text{ ha für Heu},
\]

und bei einem Ertrag von 4.000 kg Hafer pro Hektar und Jahr (Freyer 2003)

\[
\frac{2190}{4000} = 0,55 \text{ ha für Hafer},
\]

und in Summe: \(0,37 + 0,55 = 0,92 \text{ Hektar.}\)

Für Stroh soll kein Flächenverbrauch veranschlagt werden, da es als Nebenernte-Produkt anfällt.

Diesen sehr vereinfachten Berechnungen folgend liegt der Flächenverbrauch für die Bereitstellung von Treibstoff für landwirtschaftliche Maschinen (Traktor und selbstfahrende Erntemaschinen in Form von Ethanol bei 0,77 Hektar (für die biologische Bewirtschaftung von sechs Hektar). Kommt das Pferd zum Einsatz, sind es 0,92 Hektar. Nicht berücksichtigt sind hier die Energieaufwendungen für die Herstellung und Entsorgung der landwirtschaftlichen Maschinen und Vorketten und Transportwege der Ethanolproduktion, was sich zu Ungunsten des Pferdeeinsatzes auswirkt. Auf der anderen Seite ist zu hinterfragen, ob das angenommene Ertragsniveau bei unter Pferdeinsatz verwendbarer Mechanisierung gehalten werden könnte.

5.3.3 Weiden- bzw. Pappel-Kurzumtriebsplantagen

Auf Inputseite wurden nun für alle Betriebsmittel (bis auf Kalk) eine alternative Möglichkeit der Energiebereitstellung angedacht, und die Auswirkungen auf das Bilanzergebnis aufgezeigt. Nun liegt es noch nahe, die landwirtschaftlichen Erträge, also die Outputseite der Bilanz, näher zu betrachten.

Das NEE-Niveau liegt unter den in dieser Arbeit verwendeten Annahmen für eine sechsjährige Marktfruchtfolge, in der konventionellen Produktion (Sys. Konv; NPK; Kk=300kg) bei durchschnittlich 97,3 GJ/ha/a und für die biologische Produktion (Sys. Bio; N ü. FF, PK; Kk=300kg) bei durchschnittlich 59,6 GJ/ha/a. Dies gilt für die sechsjährige Marktfruchtfolge in der grundsätzlich Nahrungs- und/oder Futtermittel hergestellt werden. Auch wenn davon auszugehen ist, dass das Ertragsniveau bei ausgewählten Sorten (z.B. Energiweizen) etwas höher ist, bleibt zu hinterfragen, ob beispielsweise die thermische Nutzung von Weizen (www.heizenmitweizen.at) aus energetischer Sicht sinnvoll ist, oder ob andere Kulturen sinnvoller einzusetzen wären.

Der Wissenschaftliche Beirat Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2007, 81f) erstellt in seinem Bericht unter anderem eine Energiebilanz für die Hackschnitzelproduktion aus Kurzumtriebsplantagen mit Pappeln oder Weiden. Das Prinzip der KUP besteht darin, dass schnellwachsende Baumarten angepflanzt werden, die in regelmäßigen Abständen je nach Erntetechnik und Nutzung des Aufwuchses alle drei bis sechs Jahre geerntet werden. Da die entsprechenden Baumarten nach der Ernte wieder austreiben, erfolgt eine Mehrfachnutzung der einmal gesetzten Stecklinge. Aus rechtlicher Sicht kann die Plantage bis zu 20 Jahre genutzt werden, um als Dauerkultur angesehen zu werden und somit eine Einordnung als Wald zu vermeiden. Bei Niederschlagsmengen während der Vegetationsperiode von mindestens 300 mm und Böden, die über
gute Wasserhaltekapazitäten verfügen ist mit Trockenmasseerträgen von mindes-
tens 10 Tonnen/ha/a zu rechnen. In Tabelle 16 sind die weiteren verwendeten Da-
ten für die Energiebilanz zusammengestellt. Der Dieselverbrauch setzt sich aus ei-
er Pflugfurche und zusätzlicher Nachbearbeitung für ein abgesetztes Saatbett für
die Pflanzung der Stecklinge, den Pflanzungsarbeitsgängen selbst, einem Mulchgang
pro Rotation zur Bestandespflege und den Erntearbeiten zusammen. Weiters wer-
den 37 kg Stickstoff (N) und 29 kg Phosphor (P2O5) pro Hektar und Jahr ausge-
bracht. Zusätzlich werden noch pro Jahr 2,17 GJ für die Herstellung des Hackers
(für die Hackschnitzelherstellung) veranschlagt.

**Tabelle 16: 1 ha Kurzumtriebsplantage mit Pappel oder Weide - Bilanz-
kennzahlen, Betriebsmitteleinsatz und Energieaufwendungen für ein Jahr**

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einh.</th>
<th>GJ/Einh.</th>
<th>Menge</th>
<th>GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,65 b</td>
<td>65 a</td>
<td>2,58</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,10 b</td>
<td>37 a</td>
<td>1,85</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,70 b</td>
<td>29 a</td>
<td>0,51</td>
</tr>
<tr>
<td>Herstellung Hacker</td>
<td></td>
<td></td>
<td></td>
<td>2,17 a</td>
</tr>
<tr>
<td>Summe - Input</td>
<td></td>
<td></td>
<td></td>
<td>7,11</td>
</tr>
<tr>
<td>Ertrag</td>
<td>kg</td>
<td>17,24</td>
<td>10.000 a</td>
<td>170,24</td>
</tr>
<tr>
<td>Netto-Energie-Ertrag</td>
<td></td>
<td></td>
<td></td>
<td>163,13</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td></td>
<td></td>
<td></td>
<td>23,94</td>
</tr>
</tbody>
</table>

a Wissenschaftlicher Beirat Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und
Verbraucherschutz (2007, 81f)

Mit einem Netto-Energie-Ertrag von 163,13 GJ/ha/a und einer Output/Input-
Relation von 23,94 stellt dieses Verfahren in dieser Arbeit bis jetzt das produktivste
und gleichzeitig auch energieeffizienteste dar.

5.3.4 Synthese

Bei der Bilanzierung unter der Berücksichtigung modifizierter Energiequellen konnte
folgendes gezeigt werden:
- Soll die für die Betriebsmittelbereitstellung erforderliche Endenergie in Form von
 Energie aus landwirtschaftlicher Produktion zur Verfügung gestellt werden, so
 wirkt sich der Wirkungsgrad des jeweiligen Verfahrens (z.B. Weizen Bio-Ethanol
 Herstellung) auf das Bilanzergebnis aus. Je niedriger der Wirkungsgrad, desto
 ungünstiger fallen die Bilanzkennzahlen aus.
- Der Ersatz des Traktors (stellvertretend für alle Treibstoff verbrauchenden
 landwirtschaftlichen Maschinen) durch das Pferd, welches bestimmte Haupert-
 teprodukte (Heu, Hafer, Kartoffel) direkt energetisch verwerten kann, wirkt sich
 unter den angenommenen Bedingungen nicht positiv auf das Ergebnis der Ener-
 giebilanz aus.
- Die Energiebilanz einer Kurzumtriebsplantage mit Pappeln oder Weiden weist
 besser Energiebilanzergebnisse auf als alle anderen in dieser Arbeit durchge-
 rechneten Fallbeispiele.
5.4 Synthese aller Fallbeispiele

In Abbildung 11 und Abbildung 12 sind abschließend noch einmal die Kennzahlen aller Fallbeispiele zusammengestellt.

Abbildung 11: Energie In- und Outputs aller Fallbeispiele

Abbildung 12: Netto-Energieerträge und Output/Input-Relationen aller Fallbeispiele

1: WW-Bio; NPK; Kk=1000kg
2: WW-Bio; NPK; Kk=300kg
3: WW-Bio; N ü. GD, PK; Kk=300kg
4: WW-Bio; Zukauf v. Wi.Düng.; Kk=300kg
5: WW-Konv; NPK; Kk=1000kg
6: WW-Konv; NPK; Kk=300kg
7: Sys. Bio; N ü. FF, PK; Kk=300kg
8: Sys. Bio; N ü. FF; +20% Ertrag; Kk=300kg
9: Sys. Konv; NPK; Kk=300kg
10: Sys. Konv; NPK; red. BB; Kk=300kg
11: Sys. Konv; NPK; red. BB +50%PS; Kk=300kg
12: Sys. Konv-Ethanol; NPK; Kk=300kg
13: Weiden- od. Pappel-Kurzumtriebsplantage
6 Schlussfolgerungen

Die Schlussfolgerungen setzen sich mit den zu Beginn dieser Arbeit definierten Fragestellungen (Kapitel 1.3.2) chronologisch auseinander. Die 3 Teilfragestellungen waren: Wie wirken sich unterschiedliche

1. Datengrundlagen (für landwirtschaftliche Erträge, Düngergaben und energetische Bewertungen von Betriebsmitteln)
2. Systembetrachtungen (eine einzelne Kultur oder eine ganze Fruchtfolge; und in weiterer Folge auch ein Systemwechsel hin zu erneuerbaren Energien)
3. Methoden der Bilanzauswertung (über den Netto-Energieertrag oder die Output/Input-Relation)

auf die Ergebnisse der Energiebilanz aus?

1. Die unterschiedlichen verwendeten Datengrundlagen führten zu deutlichen Unterschieden bei den Bilanzergebnissen. Im Vergleich eines einzelnen Anbauverfahrens (Winter-Weizen) zeigten die unterschiedlichen Zugänge bei der energetischen Bewertung der N-Düngung im biologischen Verfahren die größten Auswirkungen.
 Im Systemvergleich (sechs-jährige Fruchtfolgen) hatte die positive Einstellung zu einem System, bei der mit 20% höheren Erträgen gerechnet wurde, die deutlichsten Auswirkungen.

Zusammenfassend kann gesagt werden, dass die Ergebnisse einer Energiebilanz im Bereich Ackerbau immer nur sinnvoll in Zusammenschau mit den verwendeten Datengrundlagen und Systembetrachtungen interpretiert werden können. Im landwirtschaftlichen Kontext ist zusätzlich eine strikte Unterscheidung zwischen Nahrungsmittel produzierenden Verfahren und Verfahren der reinen Biomasseproduktion unabdingbar.
Im Ausblick soll noch darauf eingegangen werden, dass in der Nahrungsmittelproduktion (nach den Berechnungen dieser Arbeit) das biologische System bezüglich
der Output/Input-Relation (Energieeffizienz) und das konventionelle bezüglich der Netto-Energieerträge (Produktivität) zu bevorzugen wäre.
7 Ausblick

Das biologische System arbeitet nach den Berechnungen dieser Arbeit energieeffizienter (höhere OIR). Es verbraucht weniger Energie und holt daraus den bestmöglichen Ertrag heraus. Wenn davon ausgegangen wird, dass zur Verfügung stehende Energie der begrenzende Faktor ist, müsste dieses System gewählt werden.

Das konventionelle System arbeitet nach den Berechnungen dieser Arbeit produktiver. Es verbraucht mehr Energie, am Ende bleibt dafür aber auch mehr Energie übrig. Wenn davon ausgegangen wird, dass landwirtschaftlich nutzbare Fläche der begrenzende Faktor ist, müsste dieses System gewählt werden.

Scheffer berechnet in seiner Studie, dass bei flächendeckendem ökologischem Landbau in Deutschland und bei dem derzeitigem Konsumverhalten der Bevölkerung die landwirtschaftliche Nutzfläche nicht einmal für die Produktion der Nahrungsmittel ausreichen würde. Weiters errechnet er den Nahrungsmittelverbrauch bei 60 % verringertem Fleischkonsum, und kommt dabei zu dem Schluss, dass unter diesen Bedingungen bei ökologischer Bewirtschaftung sogar 20 % der landwirtschaftlichen Nutzfläche für die Energieproduktion bereit stünden (Scheffer et al. in Freyer 2003b, 65f).

Wenn hypothetisch davon ausgegangen wird, dass Österreich genau das Ernahrungsverhalten erreichen würde, um sich von der eigenen rein biologisch bewirtschafteten landwirtschaftlichen Nutzfläche zu ernähren, dann bliebe immer noch die Möglichkeit, die österreichische landwirtschaftliche Nutzfläche komplett konventionell zu bewirtschaften. Aufgrund der Mehrerträge würde ein bestimmter Anteil der Fläche frei für die Energieproduktion. Ein gewisser Teil dieser Fläche müsste die Energie für die zusätzliche Dünger- und Pflanzenschutzmittelherstellung aufbringen. Nach den Berechnungen dieser Arbeit wäre dies allerdings möglich, und es würden noch Flächen zur Energieproduktion zur Verfügung stehen. Die möglichen Nachteile der intensiven konventionellen Bewirtschaftung (Grundwasserverunreinigungen, Rückstände in Lebensmitteln, Humusabbau, Bodenverarmung, etc.) müssten dem gegenübergestellt werden.

Hierzu noch eine auf Faustzahlen beruhende Berechnung:

Der Wissenschaftliche Beirat Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz der Bundesrepublik Deutschland (2007, ii) gibt in seinem „Bericht für die Nutzung von Biomasse zur Energiegewinnung“ – Empfehlungen an die Politik ab. Er kommt dabei zu folgenden Schlüssen:

Im Vergleich zur Solarenergie sind die Potenziale der Bioenergie auf Dauer relativ gering. Das hat im Wesentlichen drei Gründe:
Bei der Solarenergie können Flächen genutzt werden, die nicht in Konkurrenz zur Erzeugung von Biomasse für den Nahrungsbereich stehen, und auf diesen Flächen können wesentlich höhere Energieerträge je Flächeneinheit erzielt werden als bei der Bioenergie.

Die weltweite Knappheit der Ackerflächen führt dazu, dass bei steigenden Erdölpreisen auch die Preise für Bioenergie steigen und infolge dessen auch das gesamte Agrarpreisniveau mit nach oben gezogen wird. Somit steigen auch die Rohstoffkosten für die Bioenergie-Anlagen, während höhere Energiepreise bei der Solarenergie voll rentabilitätswirksam werden.

Bei knappen Ackerflächen führt eine großflächige Ausdehnung der Bioenergie zwangsläufig dazu, dass bisher nicht ackerbaulich genutzte Flächen in Kultur genommen werden (Grünlandumbruch, Waldrodung) bzw. die Bewirtschaftung der Flächen intensiviert wird. Das verursacht erhöhte CO₂- und N₂O-Emissionen mit der Folge, dass die Ausdehnung der Bioenergie-Erzeugung auf Ackerflächen im Endeffekt sogar kontraproduktiv für den Klimaschutz sein kann. Diese Risiken sind mit den von der Politik geplanten Zertifizierungssystemen nicht in den Griff zu bekommen.

Abschließend kann darauf Stellung nehmend gesagt werden, dass die Landwirtschaft - egal ob konventionell oder biologisch - die eklatant steigenden Energieverbräuche der Gesellschaft nicht mittragen kann. Einsparungen und neue Technologien wie z.B. Photovoltaik müssen hier zum Einsatz kommen. Die Landwirtschaft muss sich primär auf die ökosystemschützende Produktion von Lebensmitteln konzentrieren, um nachhaltig wirtschaften zu können.
8 Zusammenfassung

1. **Datengrundlagen** (für landwirtschaftliche Erträge, Düngergaben und energetische Bewertungen von Betriebsmitteln)
2. **Systembetrachtungen** (eine einzelne Kultur oder eine ganze Fruchtfolge; und in weiterer Folge auch ein Systemwechsel hin zu erneuerbaren Energien) und
3. **Methoden der Bilanzauswertung** (über den Netto-Energieertrag oder die Output/Input-Relation)

auf die Ergebnisse der Energiebilanz aus?

Dafür wurde die konventionelle Wirtschaftsweise mit der biologischen in unterschiedlichen Fallbeispielen verglichen.

Es konnte gezeigt werden, dass sich die unterschiedlichen Datengrundlagen deutlich auf die verwendeten Bilanzkennzahlen Energie-Input, Ertrag, Netto-Energie-Ertrag (NEE) und Output/Input-Relation (OIR) auswirken. Auch veränderte Systembetrachtungen wirken sich deutlich auf das Bilanzergebnis aus.

Da sich alle veränderten Annahmen und Betrachtungsweisen innerhalb eines argumentierbaren Rahmens bewegten, konnte deutlich gemacht werden, dass ein weiter Spielraum für die Manipulation möglicher gewünschter Ergebnisse gegeben ist.

Den größten Einfluss auf die Ergebnisse hat die Methode der Bilanzauswertung. Im Mittel über alle Fallbeispiele überzeugte die biologische Wirtschaftsweise durch höhere Energieeffizienz gemessen an der Output/Input-Relation und die konventionelle durch höhere Produktivität gemessen an den Netto-Energie-Erträgen.

9 Abstract

Nowadays Austria’s Farmers are in the position to use their farmland more intensely than ever. Using a high amount of energy on the input side (for machines, fuel, fertilizers, pesticides etc.) the crop yields are higher than ever. On the other hand increasing energy consumption is contributing global warming and the depleting finite of fossil energy resources. At the same time worldwide hunger problem is still not resolved.

During the energy crisis in the 1970’s the method of energy balancing (identification, calculation and evaluation of direct and indirect energy amount) was also used in agricultural background. In today’s discussions about using biomass for energy production this method is a well known tool for answering questions about energy efficiency. But the results of the numerous studies are as different as their assumptions. That is why this thesis tries to explain the method of energy balancing in the domain of crop production, especially with having regard to the connections between the chosen assumptions and the results of the energy-balance-calculations. Therefore three questions were posed:

How do

1. Databases (for yields, applied amounts of fertilizers and the energetic valuation of fuel, fertilizers, pesticides etc.)
2. Points of view (just a single crop system, a whole crop rotation system or even a system using sustainable resources)
3. Methods of evaluating the energy-balance-calculations (via the net-energy-yield or the output/input-ratio)

influence the results of the energy-balance-calculations?

In different case studies conventional crop-farming-systems were compared with organic-crop-farming systems. Findings in terms of energy outputs compared with the energy inputs were:

- Different databases clearly influenced the results of the energy-balance-calculations (represented by energy-input, energy-output, net-energy-yield and output/input-ratio).
- Different points of view influenced the results as well.
- The method of evaluating the calculations had the highest impact on the results. The organic farm-systems had higher output/input-ratios than the conventional farm-systems. And conventional systems reached higher net-energy-yields than the organic systems.
- One system using fast growing wood (poplar or willow) was the exception. This system had higher net-energy-yields and higher output/input-ratios than all the other analysed systems growing crops for food or feed.
- In general it got obvious that results could be determined or manipulated by chosen data settings, points of view and methods of evaluation.
10 Literatur

BMFLUW. 2009. Internet:
www.lebensministerium.at/filemanager/download/9608
Entnommen am 3.5.2009

Boxberger, J.; Moitzi, G.; Schlichtner, H.; & Wagentristl, H. 2009. Internet:
entnommen am 20.4.2009

Energyagency. 2009. Internet:
http://www.energyagency.at/(de)/enz/res-dat.htm#h3
Entnommen am 3.5.2009

Oheimb, R. v. 1987. *Energie und Agrarwirtschaft direkter und indirekter Energieeinsatz im agrarischen Erzeugerbereich in der Bun-

Outlaw, J. L. 2005. *Agriculture as a producer and consumer of energy*. Wallingford [u.a.]: CABI Publ.

UBA-Umweltbundesamt, 2008. mündliche Mitteilung: *Gespräch mit Dr. Werner Pölz, Luftqualität und Energie*. Mittwoch, 19.11.08, 15.00 bis 15.40 Uhr.

UBA-Umweltbundesamt. 2009. Internet:

11 Anhang

Anhang 1 – Einzelne Kultur (Winter-Weizen)

Arbeitsgänge/Dieselverbräuche: Winter-Weizen – konventionell (KTBL-Datensammlung, Betriebsplanung Landwirtschaft 2004/05)

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>AKh/ha l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,18 1,48</td>
</tr>
<tr>
<td>67 kW</td>
<td>Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>1,88 23,43</td>
</tr>
<tr>
<td>Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,54 6,13</td>
</tr>
<tr>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,32 0,92</td>
</tr>
<tr>
<td>45 kW</td>
<td>Düngerfördererschnecke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,32 0,92</td>
</tr>
<tr>
<td>45 kW</td>
<td>Düngerfördererschnecke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>APR1</td>
<td>1,00</td>
<td>0,21 0,75</td>
</tr>
<tr>
<td>45 kW</td>
<td>Düngerfördererschnecke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>JUN1</td>
<td>1,00</td>
<td>0,21 0,75</td>
</tr>
<tr>
<td>45 kW</td>
<td>Düngerfördererschnecke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mähdrusch</td>
<td>90 kW</td>
<td>3 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>1,90 24,74</td>
</tr>
<tr>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korntransport</td>
<td>67 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG2</td>
<td>0,33</td>
<td>0,13 1,05</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG2</td>
<td>1,00</td>
<td>0,73 7,91</td>
</tr>
<tr>
<td>2. Stoppelgrubbern tief, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,94 11,04</td>
</tr>
<tr>
<td>Summe:</td>
<td></td>
<td></td>
<td></td>
<td>9,40</td>
<td>86,68</td>
</tr>
</tbody>
</table>

WINTER-WEIZEN: Konventionell, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 8.000 kg Ertrag;
Arbeitsgänge/Dieselverbräuche: Winter-Weizen – biologisch (KTBL-Datensammlung, Betriebsplanung Landwirtschaft 2004/05)

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>AKh/ha</th>
<th>Diesel l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRÜNDÜNGUNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>1,88</td>
<td>23,43</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 2,0m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,90</td>
<td>8,41</td>
</tr>
<tr>
<td>* Säen von Grassame</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,83</td>
<td>3,95</td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>JUN1</td>
<td>1,00</td>
<td>1,42</td>
<td>10,76</td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,42</td>
<td>10,76</td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>1,42</td>
<td>10,76</td>
</tr>
<tr>
<td>Summe Gründüngung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,86</td>
<td>68,07</td>
</tr>
<tr>
<td>1/5 Gründüngung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,61</td>
<td></td>
</tr>
<tr>
<td>HAUPTKULTUR: WEIZEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>1,88</td>
<td>23,43</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
</tr>
<tr>
<td>* Säen</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,84</td>
<td>4,02</td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,49</td>
<td>3,20</td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>APR1</td>
<td>1,00</td>
<td>0,49</td>
<td>3,20</td>
</tr>
<tr>
<td>Insektizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>MAI2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Mährrusch von Weizen</td>
<td>90 kW</td>
<td>3 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>1,38</td>
<td>19,21</td>
</tr>
<tr>
<td>Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkipperanhänger</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,14</td>
<td>0,61</td>
</tr>
<tr>
<td>Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldünger, 4,0 m³, Anhängeschleuderstreuer</td>
<td>AUG2</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>* 1. Stoppelgrubbm flach, schräg (30°)</td>
<td>67 kW 2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
<td></td>
</tr>
<tr>
<td>* 2. Stoppelgrubbm tief, schräg (30°)</td>
<td>67 kW 2,5 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,94</td>
<td>11,04</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80,72</td>
<td></td>
</tr>
<tr>
<td>AUSBRINGUNG BIOL. ZUGEL. PK-DÜNGER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Düngerförderstrecker</td>
<td>1,00</td>
<td>0,70</td>
<td>2,39</td>
<td></td>
</tr>
<tr>
<td>* 0,8 m³, Anburschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,39</td>
<td></td>
</tr>
<tr>
<td>Summe Weizen + PK-Dünger-Ausbringung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83,11</td>
<td></td>
</tr>
<tr>
<td>Summe: Weizen + PK-Dünger-Ausbringung + 1/5 Gründüngung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96,73</td>
<td></td>
</tr>
<tr>
<td>FESTMIST- UND JAUCHEAUSBRINGUNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Festmist ausbringen ab Hof - 20 t</td>
<td>45 kW</td>
<td>6 (4,3) t, Streuer</td>
<td>1,00</td>
<td>2,56</td>
<td>9,00</td>
<td></td>
</tr>
<tr>
<td>* 45 kW</td>
<td>Frontlader mit Dungzange</td>
<td></td>
<td>0,35</td>
<td>1,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Jauche ausbringen ab Hof - 20 m³</td>
<td>45 kW</td>
<td>Schleudertankwagen, 3m³</td>
<td>1,00</td>
<td>2,55</td>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>* 8 kW</td>
<td>Tauchmotorpumpe, Elektromotor</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe Festmist- und Jaucheausbringung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,80</td>
<td></td>
</tr>
<tr>
<td>Summe: Weizen + Festmist- und Jaucheausbringung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96,52</td>
<td></td>
</tr>
</tbody>
</table>
Ernte-Dieselaufwendungen: Weizen (KTBL-Datensammlung, Betriebsplanung Landwirtschaft 2004/05)

<table>
<thead>
<tr>
<th>Korn ertrag - kg</th>
<th>Diesel - l</th>
<th>Zeit - h</th>
<th>Korn ertrag - kg</th>
<th>Diesel - l</th>
<th>Zeit - h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.000 kg</td>
<td>16,33</td>
<td>1,38</td>
<td>6.000 kg</td>
<td>19,21</td>
<td>1,50</td>
</tr>
<tr>
<td>8.000 kg</td>
<td>24,74</td>
<td>1,90</td>
<td>10.000 kg</td>
<td>30,40</td>
<td>2,32</td>
</tr>
</tbody>
</table>

Kalkulatorischer Gesamtdüngeraufwand in Beziehung zum Ertrag (BMFLUW 2002c, 93-94)

<table>
<thead>
<tr>
<th>Winter-Weizen</th>
<th>Ertrag dt/ha</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>52,5</th>
<th>55</th>
<th>57,5</th>
<th>60</th>
<th>62,5</th>
<th>65</th>
<th>67,5</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>N kg</td>
<td>84</td>
<td>95</td>
<td>105</td>
<td>111</td>
<td>116</td>
<td>121</td>
<td>126</td>
<td>132</td>
<td>137</td>
<td>142</td>
<td>148</td>
<td>158</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>36</td>
<td>41</td>
<td>45</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>54</td>
<td>56</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>66</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>K2O kg</td>
<td>41</td>
<td>46</td>
<td>51</td>
<td>53</td>
<td>56</td>
<td>58</td>
<td>61</td>
<td>63</td>
<td>66</td>
<td>68</td>
<td>71</td>
<td>76</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>CaO kg</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Den Berechnungen liegen folgende Annahmen zugrunde:

- Unterstellt sind Böden der Versorgungsstufe C (ausreichend versorgt), Bedarf daher grundsätzlich gleich Entzug.

- Zur Berücksichtigung der durchschnittlichen Nährstoffverluste (Auswaschung, Festlegung) werden die Entzugswerte bei den Hauptnährstoffen mit Bedarfsfaktoren erhöht. Die Bedarfsfaktoren betragen für
 - Stickstoff 1,1 (Ost-Ausgabe des Kataloges 1,0)
 - Phosphor 1,1
 - Kali 1,3

- Beim Abfahren von Haupt- und Nebenprodukt (Körner und Stroh, Rübe und Blatt etc.) ist das Produktionsverfahren in zwei Aktivitäten zerlegt (Körnerfrucht und Strohbergung bzw. Rübe und Blattbergung). Der Nährstoffbedarf des Hauptproduktionsverfahrens ist so angesetzt, als ob das Nebenprodukt auf dem Feld verbliebe. Als Nährstoffbedarf für das Nebenproduktionsverfahren (z.B. Strohbergung) ist die jeweilige Nährstoffmenge anzusetzen, die beim Hauptproduktionsverfahren rückgeführt werden würde.

- Bei den Leguminosen (Ackerbohne, Körnererbse) wird der Stickstoffbedarf durch symbiotisch verbundenen Stickstoff aus der Luft abgedeckt und der Stickstoff in der nicht-erntebaren Stoppel und Wurzelmasse (für Folgefrucht verwertbar) pauschal mit 40 kg/ha Reinnährstoff im Rohertrag gutgeschrieben.

- Für die Kalkung wird pauschal 300 kg/ha angesetzt.
Berechnungsbeispiel für Winterweizen bei 50 dt Korntrug und Stroheinarbeitung (Feuchtgebiet):

Stickstoff:
\[
18 \text{ (Kornentzug)} + 4 \text{ (Strohentzug)} \times 1,1 \text{ (Verhältnis Korn : Stroh)} = 22,4 \text{ (Entzug/10 dt Körner + Stroh)} \text{ Gesamtentzug inkl. Verluste, anrechenbare Nährstoffe aus Ernterückständen: (22,4 x 1,1) (Bedarfsfaktor) - 4 (Strohentzug) x 1,1 (Verh. Korn : Stroh) x (Anrechnungsfaktor) x 5 (Ertragsniveau, 50 dt) = 116,6 kg Reinnährstoff}
\]

Phosphor:
\[
8 + 2 \times 1,1 = 10,2 \text{ (Entzug/10 dt Körner + Stroh)} \text{ Gesamtentzug inkl. Verluste anrechenbare Nährstoffe aus Ernterückständen: 10,2 x 1,1 (Bedarfsfaktor) - 2 x 1,1 x 1,0 (Anrechnungsfaktor) x 5 (Ertragsniveau, 50 dt) = 45,1 kg Reinnährstoff}
\]

Kali:
\[
5 + 11 \times 1,1 = 17,1 \text{ (Entzug/10 dt Körner + Stroh)} (17,1 x 1,3 (Bedarfsfaktor) - 11 x 1,1 x 1,0 (Anrechnungsfaktor) x 5 (Ertragsniveau, 50 dt) = 50,65 kg Reinnährstoff}
\]

Kalk: 300 kg pauschal/ha

Quellen: Nährstoffentzugs- und Bedarfswerte für betriebswirtschaftliche Kalkulationen, Bayerische Landesanstalt für Betriebswirtschaft und Agrarstruktur, München
Anhang 2 – Sechsjährige Fruchtfolge

Fruchtfolge – biologisch und konventionell: Betriebsmitteleinsatz, Energieaufwendungen und Bilanzkennzahlen

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einh.</th>
<th>GJ/Einh.</th>
<th>Menge</th>
<th>GJ</th>
<th>Menge</th>
<th>GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jahr:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>68,1</td>
<td>2,7</td>
<td>86,7</td>
<td>3,4</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>0,0</td>
<td>0</td>
<td>168,0</td>
<td>8,2</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>0,0</td>
<td>0</td>
<td>72,0</td>
<td>1,3</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>0,0</td>
<td>0</td>
<td>82,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,0</td>
<td>0</td>
<td>5,0</td>
<td>1,3</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>0,0</td>
<td>0</td>
<td>300,0</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>15,4</td>
<td>0,0</td>
<td>8000,0</td>
<td>123,2</td>
<td></td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>kg</td>
<td>15,4</td>
<td>0,0</td>
<td>8000,0</td>
<td>123,2</td>
<td></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td></td>
<td>7,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Jahr:						
Bio: W-Weizen						
Konv: W-Weizen						
Diesel	l	39,7	81,1	3,2	86,7	3,4
N	kg	49,1	0,0	0	168,0	8,2
P2O5	kg	17,7	54,0	1	72,0	1,3
K2O	kg	10,5	61,0	0,6	82,0	0,9
Pflanzenschutz	kg	263,0	0,0	0	5,0	1,3
Kalk	kg	2,4	300,0	0,7	300,0	0,7
Summe Input						
Output	kg	15,4	6000,0	92,4	8000,0	123,2
Netto-Energieertrag	kg	15,4	0,0	8000,0	123,2	
Output/Input-Relation		7,8				

Zwischenfrucht:						
Bio: Sommerwicke						
Konv: Senf						
Diesel	l	39,7	19,3	0,8	19,3	0,8
Summe Input						
Output	kg	0,0	0,0	0	0,0	0
Netto-Energieertrag		-0,8		-0,8		
Output/Input-Relation		0,0				

3. Jahr:						
Bio: Kartoffel						
Konv: Kartoffel						
Diesel	l	39,7	134,5	5,3	128,3	5,1
N	kg	49,1	0,0	0	164,0	8,1
P2O5	kg	17,7	44,0	0,8	65,0	1,2
K2O	kg	10,5	244,0	2,6	366,0	3,8
Pflanzenschutz	kg	263,0	0,0	0	15,0	3,9
Kalk	kg	2,4	300,0	0,7	300,0	0,7
Summe Input						
Output	kg	3,9	30000,0	117,0	45000,0	175,5
Netto-Energieertrag		107,6		152,7		
Output/Input-Relation		7,7				

2 NPK-Düngergaben, Pflanzenschutzmittelgaben und Kalkgaben (Standardr-DB-Katalog, BMFLUW 2002c)
Zwischenfrucht: Bio: Buchweizen Konv: Buchweizen

<table>
<thead>
<tr>
<th>Diesel</th>
<th>l</th>
<th>39,7</th>
<th>19,3</th>
<th>0,8</th>
<th>19,3</th>
<th>0,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe-Input</td>
<td>kg</td>
<td>0,8</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Netto-Energie-Ertrag</td>
<td>-0,8</td>
<td>-0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diesel</th>
<th>l</th>
<th>39,7</th>
<th>83,4</th>
<th>3,3</th>
<th>81,9</th>
<th>3,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>28,0</td>
<td>0,5</td>
<td>36,0</td>
<td>0,6</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>60,0</td>
<td>0,6</td>
<td>76,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,0</td>
<td>0,0</td>
<td>4,1</td>
<td>1,1</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
<td>0,7</td>
<td>300,0</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td>kg</td>
<td>16,9</td>
<td>2750,0</td>
<td>46,5</td>
<td>3500,0</td>
<td>59,2</td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>41,3</td>
<td>52,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netto-Energieeertrag</td>
<td>9,0</td>
<td>9,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>5,2</td>
<td>6,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diesel</th>
<th>l</th>
<th>39,7</th>
<th>70,4</th>
<th>2,8</th>
<th>80,1</th>
<th>3,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>0,0</td>
<td>0,0</td>
<td>122,0</td>
<td>6,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>38,0</td>
<td>0,7</td>
<td>52,0</td>
<td>0,9</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>59,0</td>
<td>0,6</td>
<td>76,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
<td>0,7</td>
<td>300,0</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td>kg</td>
<td>15,0</td>
<td>4750,0</td>
<td>71,3</td>
<td>6500,0</td>
<td>97,5</td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>66,5</td>
<td>85,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netto-Energieeertrag</td>
<td>14,8</td>
<td>8,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>4,8</td>
<td>11,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zwischenfrucht: Bio: Buchweizen & Phacelia Konv: Senf

<table>
<thead>
<tr>
<th>Diesel</th>
<th>l</th>
<th>39,7</th>
<th>19,3</th>
<th>0,8</th>
<th>19,3</th>
<th>0,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe-Input</td>
<td>kg</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Netto-Energieeertrag</td>
<td>-0,8</td>
<td>-0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diesel</th>
<th>l</th>
<th>39,7</th>
<th>76,9</th>
<th>3,0</th>
<th>77,4</th>
<th>3,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>0,0</td>
<td>0,0</td>
<td>109,0</td>
<td>5,4</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>38,0</td>
<td>0,7</td>
<td>54,0</td>
<td>1,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>51,0</td>
<td>0,5</td>
<td>71,0</td>
<td>0,7</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,2</td>
<td>0,9</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
<td>0,7</td>
<td>300,0</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td>kg</td>
<td>15,3</td>
<td>4250,0</td>
<td>65,0</td>
<td>6000,0</td>
<td>91,8</td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>60,1</td>
<td>80,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netto-Energieeertrag</td>
<td>13,1</td>
<td>7,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>5,0</td>
<td>11,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bio</th>
<th>Konv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe Input (6 ha)</td>
<td>34,8</td>
</tr>
<tr>
<td>Summe Output (6 ha)</td>
<td>392,2</td>
</tr>
<tr>
<td>Netto-Energie-Ertrag (6 ha)</td>
<td>357,3</td>
</tr>
<tr>
<td>Output/Input-Relation (6 ha)</td>
<td>11,3</td>
</tr>
<tr>
<td></td>
<td>Bio</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Summe Input (1 ha)</td>
<td>5,8</td>
</tr>
<tr>
<td>Summe Ertrag (1 ha)</td>
<td>65,4</td>
</tr>
<tr>
<td>Netto-Energieertrag (1 ha)</td>
<td>59,6</td>
</tr>
<tr>
<td>Output/Input-Relation (1 ha)</td>
<td>11,3</td>
</tr>
</tbody>
</table>
Arbeitsgänge/Dieselverbräuche: Fruchtfolge – konventionell (KTBL-Datensammlung, Betriebsplanung Landwirtschaft 2004/05)

WINTER-WEIZEN: Konventionell, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 8.000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigkeit</th>
<th>AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldünnerschaufel, Traktor</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,18</td>
<td>1,48</td>
</tr>
<tr>
<td></td>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td>SEP2</td>
<td>1,00</td>
<td>1,88</td>
<td>23,43</td>
</tr>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Säen</td>
<td>45 kW</td>
<td>Saamaschine, 3,0 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,84</td>
<td>4,02</td>
</tr>
<tr>
<td>* Herbizidmaßnahme – Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Düngeförderschnecke</td>
<td>FEB2</td>
<td>1,00</td>
<td>0,28</td>
<td>0,89</td>
</tr>
<tr>
<td>* Pflügen</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Düngeförderschnecke</td>
<td>APR1</td>
<td>1,00</td>
<td>0,21</td>
<td>0,75</td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>0,8 m³, Anbauschleuderstreuer</td>
<td>FEB2</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>* Fungizidmaßnahme – Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>APR2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Düngeförderschnecke</td>
<td>JUN1</td>
<td>1,00</td>
<td>0,21</td>
<td>0,75</td>
</tr>
<tr>
<td>* Mähdrusch</td>
<td>90 kW</td>
<td>3 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>1,90</td>
<td>24,74</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,27</td>
<td>0,81</td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldünnerschaufel, Traktor</td>
<td>AUG2</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td></td>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>* 1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG2</td>
<td>1,00</td>
<td>0,94</td>
<td>11,04</td>
</tr>
<tr>
<td>* 2. Stoppelgrubbern tief, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,94</td>
<td>11,04</td>
</tr>
</tbody>
</table>

Summe: 9,40 86,68

ZWISCHENFRUCHT: Konventionell, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag,

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigkeit</th>
<th>AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
</tr>
<tr>
<td>* Säen von Grassamen</td>
<td>45 kW</td>
<td>Saamaschine, 3,0 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,83</td>
<td>3,95</td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>3,5 m</td>
<td>FEB1</td>
<td>1,00</td>
<td>0,96</td>
<td>9,26</td>
</tr>
</tbody>
</table>

Summe: Zwischenfrucht 2,34 19,34
SPEISEKARTOFFEL: Konventionell, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 45.000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,18</td>
<td>1,32</td>
</tr>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>MAE2</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
</tr>
<tr>
<td>* Pflanzkartoffeltransport, Sackware</td>
<td>45 kW</td>
<td>Gabelstapler 3,0 m, 2 t</td>
<td>APR1</td>
<td>1,00</td>
<td>0,27</td>
<td>0,74</td>
</tr>
<tr>
<td>* Legen von Kartoffeln, Pflanzgut lose</td>
<td>67 kW</td>
<td>4 Reihen, 1 AK, 1,2 t, Bunker</td>
<td>APR2</td>
<td>1,00</td>
<td>1,20</td>
<td>12,55</td>
</tr>
<tr>
<td>* Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>0,8 m³, Anbauschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Häufeln von Kartoffeln, Vorauflauf</td>
<td>4-reihig, 45 kW</td>
<td>4-reihig, 45 kW</td>
<td>APR2</td>
<td>1,00</td>
<td>0,71</td>
<td>3,67</td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzen- schutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritzer, 18 m, 1500 l</td>
<td>MAI1</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzen- schutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritzer, 18 m, 1500 l</td>
<td>JUN2</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzen- schutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritzer, 18 m, 1500 l</td>
<td>JUL1</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzen- schutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritzer, 18 m, 1500 l</td>
<td>JUL1</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzen- schutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritzer, 18 m, 1500 l</td>
<td>JUL1</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzen- schutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritzer, 18 m, 1500 l</td>
<td>AUG2</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>* Kartoffel roden</td>
<td>67 kW</td>
<td>Sammelroder, einreihig, 4,0 t, 2 AK</td>
<td>SEP2</td>
<td>1,00</td>
<td>19,87</td>
<td>58,32</td>
</tr>
<tr>
<td>* Kartoffeltransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>SEP2</td>
<td>1,00</td>
<td>3,27</td>
<td>6,12</td>
</tr>
<tr>
<td>Hallenfüller 30 t/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>1.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
</tbody>
</table>

Summe:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30,58</td>
<td>128,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FUTTERERBSE: Konventionell, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 3,500 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeiten</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,18</td>
<td>1,48</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>1,88</td>
<td>23,43</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
</tr>
<tr>
<td>* Säen</td>
<td>45 kW</td>
<td>Saamaschine, 3,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,84</td>
<td>4,02</td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>MAE2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Mähdrusch von Erbsen</td>
<td>125 kW</td>
<td>4,5 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,53</td>
<td>25,47</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,23</td>
<td>0,42</td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG1</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>* 2. Stoppelgrubbern tief, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,94</td>
<td>11,04</td>
</tr>
<tr>
<td>Summe:</td>
<td>7,34</td>
<td>81,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GERSTE: Konventionell, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 6,000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeiten</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,17</td>
<td>1,40</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>1,88</td>
<td>23,43</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
</tr>
<tr>
<td>* Säen</td>
<td>45 kW</td>
<td>Saamaschine, 3,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,84</td>
<td>4,00</td>
</tr>
<tr>
<td>* Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Dünungsmischung</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,28</td>
<td>0,89</td>
</tr>
<tr>
<td>45 kW</td>
<td>0,8 m³, Anbauschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>MAE2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>JUN1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Mähdrusch</td>
<td>90 kW</td>
<td>3 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,52</td>
<td>19,03</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,33</td>
<td>0,71</td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG1</td>
<td>0,33</td>
<td>0,14</td>
<td>1,05</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>* 2. Stoppelgrubbern tief, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,94</td>
<td>11,04</td>
</tr>
<tr>
<td>Summe:</td>
<td>8,01</td>
<td>77,43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Arbeitsgänge/Dieselverbrüche: Fruchtfolge – biologisch (KTBL-Datensammlung, Betriebsplanung Landwirtschaft 2004/05)

GRÜNDÜNGUNG: Ökologisch, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk. AKh/ha</th>
<th>l/ha</th>
<th>Zeit</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>1,88</td>
<td>23,43</td>
<td></td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 2,0m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,90</td>
<td>8,41</td>
<td></td>
</tr>
<tr>
<td>* Säen von Grassame</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,83</td>
<td>3,95</td>
<td></td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>JUN1</td>
<td>1,00</td>
<td>1,42</td>
<td>10,76</td>
<td></td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,42</td>
<td>10,76</td>
<td></td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>1,42</td>
<td>10,76</td>
<td></td>
</tr>
<tr>
<td>Summe Gründüngung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,86</td>
<td>68,07</td>
<td></td>
</tr>
</tbody>
</table>

WINTER-WEIZEN: Ökologisch, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 6.000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk. AKh/ha</th>
<th>l/ha</th>
<th>Zeit</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>1,88</td>
<td>23,43</td>
<td></td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
<td></td>
</tr>
<tr>
<td>* Säen</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,84</td>
<td>4,02</td>
<td></td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,49</td>
<td>3,20</td>
<td></td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>APR1</td>
<td>1,00</td>
<td>0,49</td>
<td>3,20</td>
<td></td>
</tr>
<tr>
<td>* Insektizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzpfonte, 16 m, 1000 l</td>
<td>MAI2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>* Mähdresch von Weizen</td>
<td>90 kW</td>
<td>3 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>1,38</td>
<td>19,61</td>
<td></td>
</tr>
<tr>
<td>* Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,14</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG2</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
<td></td>
</tr>
<tr>
<td>* 2.Stoppelgrubbern tief, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,94</td>
<td>11,04</td>
<td></td>
</tr>
<tr>
<td>Summe: Weizen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,89</td>
<td>81,12</td>
<td></td>
</tr>
</tbody>
</table>

ZWISCHENFRUCHT: Ökologisch, wendend, gezogene Saatbettbereitung, viehlos mit Grünbrache, Bodenart: mittel, 2-ha-Schlag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk. AKh/ha</th>
<th>l/ha</th>
<th>Zeit</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
<td></td>
</tr>
<tr>
<td>* Säen von Grassamen</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,83</td>
<td>3,95</td>
<td></td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>3,5 m</td>
<td>FEB1</td>
<td>1,00</td>
<td>0,96</td>
<td>9,26</td>
<td></td>
</tr>
<tr>
<td>Summe: Zwischenfrucht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,34</td>
<td>19,34</td>
<td></td>
</tr>
</tbody>
</table>
SPEISEKARTOFFEL: Ökologisch, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 30.000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk. AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>1,88</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>MAE2</td>
<td>1,00</td>
<td>0,54</td>
</tr>
<tr>
<td>* Pflanzkartoffeltransport, Sackware</td>
<td>67 kW</td>
<td>Gabelstapler 3,0 m, 2 t</td>
<td>APR1</td>
<td>1,00</td>
<td>0,27</td>
</tr>
<tr>
<td>* Hacken und Striegeln, Vorauflauf</td>
<td>45 kW</td>
<td>4-reihig</td>
<td>APR1</td>
<td>1,00</td>
<td>0,71</td>
</tr>
<tr>
<td>* Hacken und Striegeln, Vorauflauf</td>
<td>45 kW</td>
<td>4-reihig</td>
<td>APR2</td>
<td>1,00</td>
<td>0,71</td>
</tr>
<tr>
<td>* Hacken und Striegeln, Nachlauf</td>
<td>45 kW</td>
<td>4-reihig</td>
<td>MAI1</td>
<td>1,00</td>
<td>0,96</td>
</tr>
<tr>
<td>* Hacken und Striegeln, Nachlauf</td>
<td>45 kW</td>
<td>4-reihig</td>
<td>MAI2</td>
<td>1,00</td>
<td>0,96</td>
</tr>
<tr>
<td>* Häufeln von Kartoffeln, Nachlauf</td>
<td>67 kW</td>
<td>4-reihig</td>
<td>JUN1</td>
<td>1,00</td>
<td>0,96</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1500 l</td>
<td>JUN1</td>
<td>1,00</td>
<td>0,26</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1500 l</td>
<td>JUL1</td>
<td>1,00</td>
<td>0,26</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1500 l</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,26</td>
</tr>
<tr>
<td>* Kartoffel roden</td>
<td>67 kW</td>
<td>6,0 (4,6) t, Dreiseitenkippanhänger</td>
<td>SEP2</td>
<td>1,00</td>
<td>15,78</td>
</tr>
<tr>
<td>* Kartoffeltransport</td>
<td>45 kW</td>
<td>2,5 m</td>
<td>OKT1</td>
<td>0,33</td>
<td>0,13</td>
</tr>
<tr>
<td>* Kalke ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
</tr>
<tr>
<td>* 1.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>4,5 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,51</td>
</tr>
</tbody>
</table>

Summe: Speisekartoffel

72,77 134,53

FUTTERERBSE: Ökologisch, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 2.750 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk. AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>OKT2</td>
<td>1,00</td>
<td>1,88</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,54</td>
</tr>
<tr>
<td>* Säen</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,84</td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,49</td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>MAI1</td>
<td>1,00</td>
<td>0,49</td>
</tr>
<tr>
<td>* Mähdrusch</td>
<td>125 kW</td>
<td>4,5 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,51</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,09</td>
</tr>
<tr>
<td>* Kalke ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG1</td>
<td>0,33</td>
<td>0,13</td>
</tr>
<tr>
<td>* 1.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>* 2.Stoppelgrubbern tief, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>0,94</td>
<td>11,04</td>
</tr>
</tbody>
</table>

Summe: Futtererbse

7,65 83,42
ROGGEN: Ökologisch, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 4.750 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Machinen</th>
<th>Zeitraum</th>
<th>Häufigk. AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>1,88 23,43</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,54 6,13</td>
</tr>
<tr>
<td>* Säen</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,83 3,99</td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>MAE2</td>
<td>1,00</td>
<td>0,49 3,20</td>
</tr>
<tr>
<td>* Mähdrusch</td>
<td>90 kW</td>
<td>3 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>1,38 16,33</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,14 0,40</td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG1</td>
<td>0,33</td>
<td>0,13 1,05</td>
</tr>
<tr>
<td>1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73 7,91</td>
</tr>
<tr>
<td>2. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,73 7,91</td>
</tr>
<tr>
<td>Summe: Roggen</td>
<td></td>
<td></td>
<td></td>
<td>6,86</td>
<td>70,35</td>
</tr>
</tbody>
</table>

SOMMERGERSTE: Ökologisch, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag, 4.250 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Machinen</th>
<th>Zeitraum</th>
<th>Häufigk. AKh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>1,88 23,43</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,54 6,13</td>
</tr>
<tr>
<td>* Säen von Grassamen</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,83 3,95</td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>3,5 m</td>
<td>FEB1</td>
<td>1,00</td>
<td>0,96 9,26</td>
</tr>
<tr>
<td>Summe: Gründung</td>
<td></td>
<td></td>
<td></td>
<td>4,22</td>
<td>42,77</td>
</tr>
<tr>
<td>* Pflügen</td>
<td>67 kW</td>
<td>Anbaudrehpflug, 4 Schare, 1,40 m</td>
<td>FEB2</td>
<td>1,00</td>
<td>1,88 23,43</td>
</tr>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,54 6,13</td>
</tr>
<tr>
<td>* Säen von Sommergerste</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,84 4,00</td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,49 3,20</td>
</tr>
<tr>
<td>* Striegeln</td>
<td>45 kW</td>
<td>6 m</td>
<td>APR1</td>
<td>1,00</td>
<td>0,49 3,20</td>
</tr>
<tr>
<td>* Mähdrusch von Sommergerste</td>
<td>90 kW</td>
<td>3 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,43 16,54</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,14 0,40</td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG1</td>
<td>0,33</td>
<td>0,13 1,05</td>
</tr>
<tr>
<td>1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73 7,91</td>
</tr>
<tr>
<td>2. Stoppelgrubbern tief, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,94 11,04</td>
</tr>
<tr>
<td>Summe: Sommergerste</td>
<td></td>
<td></td>
<td></td>
<td>7,62</td>
<td>76,90</td>
</tr>
</tbody>
</table>
Fruchtfolge: konventionell, konventionell mit reduzierter Bodenbearbeitung und konventionell mit reduzierter Bodenbearbeitung & 50 % mehr Pflanzenschutzmittel:
Betriebsmitteleinsatz 1 2 3, Energieaufwendungen und Bilanzkennzahlen

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einh.</th>
<th>GJ/Einh.</th>
<th>Menge</th>
<th>GJ</th>
<th>Menge</th>
<th>GJ</th>
<th>Menge</th>
<th>GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jahr:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>86,7</td>
<td>3,4</td>
<td>58,2</td>
<td>2,3</td>
<td>58,2</td>
<td>2,3</td>
</tr>
<tr>
<td>Saatgut</td>
<td>kg</td>
<td>15,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>168,0</td>
<td>8,2</td>
<td>168,0</td>
<td>8,2</td>
<td>168,0</td>
<td>8,2</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>72,0</td>
<td>1,3</td>
<td>72,0</td>
<td>1,3</td>
<td>72,0</td>
<td>1,3</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>82,0</td>
<td>0,9</td>
<td>82,0</td>
<td>0,9</td>
<td>82,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>5,0</td>
<td>1,3</td>
<td>5,0</td>
<td>1,3</td>
<td>7,5</td>
<td>2,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
<td>0,7</td>
<td>300,0</td>
<td>0,7</td>
<td>300,0</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>15,4</td>
<td>8000,0</td>
<td>123,2</td>
<td>8000,0</td>
<td>123,2</td>
<td>8000,0</td>
<td>123,2</td>
</tr>
<tr>
<td>Netto-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieertrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Jahr:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>86,7</td>
<td>3,4</td>
<td>58,2</td>
<td>2,3</td>
<td>58,2</td>
<td>2,3</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>168,0</td>
<td>8,2</td>
<td>168,0</td>
<td>8,2</td>
<td>168,0</td>
<td>8,2</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>72,0</td>
<td>1,3</td>
<td>72,0</td>
<td>1,3</td>
<td>72,0</td>
<td>1,3</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>82,0</td>
<td>0,9</td>
<td>82,0</td>
<td>0,9</td>
<td>82,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>5,0</td>
<td>1,3</td>
<td>5,0</td>
<td>1,3</td>
<td>7,5</td>
<td>2,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
<td>0,7</td>
<td>300,0</td>
<td>0,7</td>
<td>300,0</td>
<td>0,7</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>15,4</td>
<td>8000,0</td>
<td>123,2</td>
<td>8000,0</td>
<td>123,2</td>
<td>8000,0</td>
<td>123,2</td>
</tr>
<tr>
<td>Netto-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieertrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwischenfrucht:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>19,3</td>
<td>0,8</td>
<td>19,3</td>
<td>0,8</td>
<td>19,3</td>
<td>0,8</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Netto-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieertrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Input-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 NPK-Düngergaben, Pflanzenschutzmittelgaben und Kalkgaben (Standard-DB-Katalog, BMFLUW 2002c)
3 Pflanzenschutzmittelgaben in „red. BB +50% PS“: 50 % Zuschlag zu Standard-DB-Katalog Angaben
<table>
<thead>
<tr>
<th>Jahr</th>
<th>Konv.: Buchweizen</th>
<th>red. BB: Buchweizen</th>
<th>red. BB+50% PS: Buchweizen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Jahr</td>
<td>Futtererbse</td>
<td>Futtererbse</td>
<td>Futtererbse</td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>19,3</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>36,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>76,0</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>4,1</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td>6,5</td>
<td>5,3</td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>16,9</td>
<td>3500,0</td>
</tr>
<tr>
<td>Netto- Energieertrag</td>
<td></td>
<td>52,7</td>
<td>53,8</td>
</tr>
<tr>
<td>Output/Input- Relation</td>
<td></td>
<td>9,1</td>
<td>11,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Konv.: Roggen</th>
<th>red. BB: Roggen</th>
<th>red. BB+50% PS: Roggen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Jahr</td>
<td>Roggen</td>
<td>Roggen</td>
<td>Roggen</td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>80,1</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>122,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>52,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>76,0</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>0,1</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td>11,6</td>
<td>13,1</td>
</tr>
<tr>
<td>Ertrag</td>
<td>kg</td>
<td>15,0</td>
<td>6500,0</td>
</tr>
<tr>
<td>Netto- Energieertrag</td>
<td></td>
<td>85,9</td>
<td>84,4</td>
</tr>
<tr>
<td>Output/Input- Relation</td>
<td></td>
<td>8,4</td>
<td>7,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Konv.: Senf</th>
<th>red. BB: Senf</th>
<th>red. BB+50% PS: Senf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischenfrucht:</td>
<td>Senf</td>
<td>Senf</td>
<td>Senf</td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>19,3</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Netto- Energieertrag</td>
<td></td>
<td>-0,8</td>
<td>-0,8</td>
</tr>
<tr>
<td>Output/Input- Relation</td>
<td></td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>Konv: Braugerste</td>
<td>red. BB: Braugerste</td>
<td>red. BB+50% PS: Braugerste</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Diesel</td>
<td>l</td>
<td>39,7</td>
<td>48,1</td>
</tr>
<tr>
<td>N</td>
<td>kg</td>
<td>49,1</td>
<td>109,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg</td>
<td>17,7</td>
<td>54,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg</td>
<td>10,5</td>
<td>71,0</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg</td>
<td>263,0</td>
<td>3,2</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg</td>
<td>2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td></td>
<td>11,7</td>
<td>10,5</td>
</tr>
<tr>
<td>Output</td>
<td>kg</td>
<td>15,3</td>
<td>6000,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td></td>
<td>80,1</td>
<td>81,3</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td></td>
<td>7,9</td>
<td>8,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Konv</th>
<th>red. BB</th>
<th>red. BB+50% PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe Input</td>
<td>86,6</td>
<td>83,3</td>
<td>85,6</td>
</tr>
<tr>
<td>Summe Output</td>
<td>670,4</td>
<td>670,4</td>
<td>670,4</td>
</tr>
<tr>
<td>Netto-Energieertrag (6 ha)</td>
<td>583,8</td>
<td>587,0</td>
<td>584,7</td>
</tr>
<tr>
<td>Output/Input-Relation (6 ha)</td>
<td>7,7</td>
<td>8,0</td>
<td>7,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Konv</th>
<th>red. BB</th>
<th>red. BB+50% PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe Input</td>
<td>14,4</td>
<td>13,9</td>
<td>14,3</td>
</tr>
<tr>
<td>Summe Output</td>
<td>111,7</td>
<td>111,7</td>
<td>111,7</td>
</tr>
<tr>
<td>Netto-Energieertrag (1 ha)</td>
<td>97,3</td>
<td>97,8</td>
<td>97,5</td>
</tr>
<tr>
<td>Output/Input-Relation (1 ha)</td>
<td>7,7</td>
<td>8,0</td>
<td>7,8</td>
</tr>
</tbody>
</table>
Arbeitsgänge/Dieselverbräuche: Fruchtfolge – konventionell, reduzierte Bodenbearbeitung (KTBL-Datensammlung, Betriebsplanung Landwirtschaft 2004/05) ¹ ²

WINTER-WEIZEN: Konventionell, Direktsaat, viehlos, Bodenart: mittel, 2-ha-Schlag, 8.000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>Akh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldün genschaufel, Traktor</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,18</td>
<td>1,48</td>
</tr>
<tr>
<td>67 kW</td>
<td></td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Direktmaschine, 3 m, 1800 l</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,74</td>
<td>7,31</td>
</tr>
<tr>
<td>* Direktsaat von Weizen</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Kalkammonselpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>FEB2</td>
<td>1,00</td>
<td>0,28</td>
<td>0,89</td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Direktsaat von Weizen</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Kalkammonselpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>APR1</td>
<td>1,00</td>
<td>0,21</td>
<td>0,75</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>APR2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Kalkammonselpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>JUN1</td>
<td>1,00</td>
<td>0,21</td>
<td>0,75</td>
</tr>
<tr>
<td>* Mähdrusch von Weizen, Roggen, Triticale</td>
<td>90 kW</td>
<td>3 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>1,90</td>
<td>24,74</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,27</td>
<td>0,81</td>
</tr>
<tr>
<td>* Kaalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineral- dünngerschaufel, Traktor</td>
<td>AUG2</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>67 kW</td>
<td></td>
<td>Anhängeschleuderstreuer</td>
<td>AUG2</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>* 1.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>* 2.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>Summe:</td>
<td></td>
<td></td>
<td></td>
<td>6,99</td>
<td>58,20</td>
<td></td>
</tr>
</tbody>
</table>

ZWISCHENFRUCHT: Konventionell, wendend, gezogene Saatbettbereitung, viehlos, Bodenart: mittel, 2-ha-Schlag,

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>Akh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Eggen</td>
<td>67 kW</td>
<td>Saatbettkombination, angebaut, 4,0 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,54</td>
<td>6,13</td>
</tr>
<tr>
<td>* Säen von Grassamen</td>
<td>45 kW</td>
<td>Sämaschine, 3,0 m</td>
<td>SEP2</td>
<td>1,00</td>
<td>0,83</td>
<td>3,95</td>
</tr>
<tr>
<td>* Mulchen</td>
<td>67 kW</td>
<td>3,5 m</td>
<td>FEB2</td>
<td>1,00</td>
<td>0,96</td>
<td>9,26</td>
</tr>
<tr>
<td>Summe: Zwischenfrucht</td>
<td></td>
<td></td>
<td></td>
<td>2,34</td>
<td>19,34</td>
<td></td>
</tr>
</tbody>
</table>

¹ Bei den Zwischenfrüchten bleiben die Arbeitsgänge unverändert
² Bei der Kartoffel kommen Tiefengrubber und Kreiselegge zum Einsatz
SPEISEKARTOFFEL: Konventionell, nicht wenden, kreiselegen, viehlos, Bodenart: mittel, 2-ha-Schlag, 45,000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>Akh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontländer mit Mineraldüngerschaufel, Traktor</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,18</td>
<td>1,32</td>
</tr>
<tr>
<td>Tiefgrubbern</td>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderschnecke</td>
<td>MAE1</td>
<td>1,00</td>
<td>1,10</td>
<td>15,80</td>
</tr>
<tr>
<td>Eggen mit Kreiselege</td>
<td>45 kW</td>
<td>2,5 m</td>
<td>MAE2</td>
<td>1,00</td>
<td>1,13</td>
<td>9,45</td>
</tr>
<tr>
<td>Pflanzkartoffeltransport, Sackware</td>
<td>45 kW</td>
<td>Gabelstapler, 3,0 m, 2 t</td>
<td>APR1</td>
<td>1,00</td>
<td>0,27</td>
<td>0,74</td>
</tr>
<tr>
<td>Legen von Kartoffeln, Pflanzgut lose</td>
<td>67 kW</td>
<td>4 Reihen, 1 AK, 1,2 t, Bunkermaschine</td>
<td>APR1</td>
<td>1,00</td>
<td>1,20</td>
<td>12,55</td>
</tr>
<tr>
<td>Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>8 (5,7) t, Dreiseitenkippanhänger</td>
<td>APR1</td>
<td>1,00</td>
<td>0,29</td>
<td>0,84</td>
</tr>
<tr>
<td>Häufen von Kartoffeln, Vorauflauf</td>
<td>45 kW</td>
<td>4-Reihig, 45 kW</td>
<td>APR2</td>
<td>1,00</td>
<td>0,21</td>
<td>3,67</td>
</tr>
<tr>
<td>Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1800 l</td>
<td>MAI1</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1500 l</td>
<td>JUN2</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1500 l</td>
<td>JUL1</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1500 l</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 18 m, 1500 l</td>
<td>AUG2</td>
<td>1,00</td>
<td>0,26</td>
<td>1,03</td>
</tr>
<tr>
<td>Kartoffel roden</td>
<td>67 kW</td>
<td>Sammelroder, einreihig, 4,0 t, 2 AK</td>
<td>SEP2</td>
<td>1,00</td>
<td>19,87</td>
<td>58,32</td>
</tr>
<tr>
<td>Kartoffeltransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>SEP2</td>
<td>1,00</td>
<td>3,27</td>
<td>6,12</td>
</tr>
<tr>
<td>Kalk ab Feld streuen</td>
<td>67 kW</td>
<td>Hallenfüller 30 t/h</td>
<td>OKT1</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Direktasphaltmaschine, 3 m, 1800 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,74</td>
<td>7,31</td>
</tr>
<tr>
<td>Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>MAE2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>Mähdrusch von Erbsen, Lupinen</td>
<td>125 kW</td>
<td>4,5 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,53</td>
<td>25,47</td>
</tr>
<tr>
<td>Korntransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,23</td>
<td>0,42</td>
</tr>
<tr>
<td>Kartoffel roden</td>
<td>45 kW</td>
<td>Frontländer mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>Kartoffeltransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>SEP2</td>
<td>1,00</td>
<td>3,27</td>
<td>6,12</td>
</tr>
<tr>
<td>1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
</tbody>
</table>

Summe: 30,39 123,95

FUTTERERBSE: Konventionell, Direktsaat, viehlos, Bodenart: mittel, 2-ha-Schlag, 3,500 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>Akh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontländer mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,18</td>
<td>1,48</td>
</tr>
<tr>
<td>Direktsaat von Futtererbse</td>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderschnecke</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,74</td>
<td>7,31</td>
</tr>
<tr>
<td>Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>67 kW</td>
<td>Anbaupflanzenschutzspritze, 15 m, 1000 l</td>
<td>MAE2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>Mähdrusch von Erbsen, Lupinen</td>
<td>125 kW</td>
<td>4,5 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,53</td>
<td>25,47</td>
</tr>
<tr>
<td>Korntransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,23</td>
<td>0,42</td>
</tr>
<tr>
<td>Kartoffel roden</td>
<td>45 kW</td>
<td>Frontländer mit Mineraldüngerschaufel, Traktor</td>
<td>AUG1</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>1. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>2. Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
</tbody>
</table>

Summe: 4,61 52,47
GERSTE: Konventionell, Direktsaat, viehlos, Bodenart: mittel, 2-ha-Schlag, 6.000 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>Aeh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,17</td>
<td>1,40</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Direktsaat von Gerste</td>
<td>67 kW</td>
<td>Direktmaschine, 3 m, 1800 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,74</td>
<td>7,31</td>
</tr>
<tr>
<td>* Kalkammonsalpeter (27% N) ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Düngerförderschnecke</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,28</td>
<td>0,89</td>
</tr>
<tr>
<td>45 kW</td>
<td>0,8 m³, Anbauschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Fungizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>JUN1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Mähdrusch von Sommergerste</td>
<td>90 kW</td>
<td>3 m</td>
<td>JUL2</td>
<td>1,00</td>
<td>1,52</td>
<td>19,03</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>45 kW</td>
<td>6 (4,6) t, Dreiseitenkippanhänger</td>
<td>JUL2</td>
<td>1,00</td>
<td>0,40</td>
<td>0,71</td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG1</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>* 2.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>Summe:</td>
<td>5,33</td>
<td>48,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROGGEN: Konventionell, Direktsaat, viehlos, Bodenart: mittel, 2-ha-Schlag, 6.500 kg Ertrag:

<table>
<thead>
<tr>
<th>Arbeitsgänge / Teilarbeitsgänge</th>
<th>Leistung</th>
<th>Maschinen</th>
<th>Zeitraum</th>
<th>Häufigk.</th>
<th>Aeh/ha</th>
<th>l/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>* PK-Dünger ab Hof streuen, loser Dünger</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,18</td>
<td>1,48</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>OKT1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>67 kW</td>
<td>Direktmaschine, 3 m, 1800 l</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,74</td>
<td>7,31</td>
<td></td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>OKT2</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Herbizidmaßnahme - Pflanzenschutz ab Hof</td>
<td>45 kW</td>
<td>Anbaupflanzenschutzspritz, 15 m, 1000 l</td>
<td>MAE1</td>
<td>1,00</td>
<td>0,32</td>
<td>0,92</td>
</tr>
<tr>
<td>* Mähdrusch von Weizen, Roggen, Triticale</td>
<td>90 kW</td>
<td>3 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>1,50</td>
<td>19,21</td>
</tr>
<tr>
<td>* Korntransport</td>
<td>67 kW</td>
<td>14 (10,5) t, Dreiseitenkippanhänger</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,21</td>
<td>0,61</td>
</tr>
<tr>
<td>* Kalk ab Feld streuen</td>
<td>45 kW</td>
<td>Frontlader mit Mineraldüngerschaufel, Traktor</td>
<td>AUG2</td>
<td>0,33</td>
<td>0,13</td>
<td>1,05</td>
</tr>
<tr>
<td>67 kW</td>
<td>4,0 m³, Anhängeschleuderstreuer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>AUG1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>* 2.Stoppelgrubbern flach, schräg (30°)</td>
<td>67 kW</td>
<td>2,5 m</td>
<td>SEP1</td>
<td>1,00</td>
<td>0,73</td>
<td>7,91</td>
</tr>
<tr>
<td>Summe:</td>
<td>5,72</td>
<td>49,91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fruchtfolge: biologisch und ProBio: Betriebsmitteleinsatz 1 2 3 4, Energieaufwendungen und Bilanzkennzahlen

<table>
<thead>
<tr>
<th>Betriebsmittel</th>
<th>Einh.</th>
<th>GJ/Einh. Menge</th>
<th>GJ</th>
<th>Menge</th>
<th>GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Jahr:

<table>
<thead>
<tr>
<th></th>
<th>Bio: Luzerne</th>
<th>ProBio: Luzerne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel l</td>
<td>39,7</td>
<td>68,1</td>
</tr>
<tr>
<td>N kg</td>
<td>49,1</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>17,7</td>
<td>0,0</td>
</tr>
<tr>
<td>K2O kg</td>
<td>10,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Pflanzenschutz kg</td>
<td>263,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk kg</td>
<td>2,4</td>
<td>0,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td>2,7</td>
<td>2,7</td>
</tr>
<tr>
<td>Output kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>-2,7</td>
<td>-2,7</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

2. Jahr:

<table>
<thead>
<tr>
<th></th>
<th>Bio: W-Weizen</th>
<th>ProBio.: W-Weizen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel l</td>
<td>39,7</td>
<td>81,1</td>
</tr>
<tr>
<td>N kg</td>
<td>49,1</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>17,7</td>
<td>54,0</td>
</tr>
<tr>
<td>K2O kg</td>
<td>10,5</td>
<td>61,0</td>
</tr>
<tr>
<td>Pflanzenschutz kg</td>
<td>263,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk kg</td>
<td>2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td>5,5</td>
<td>3,9</td>
</tr>
<tr>
<td>Output kg</td>
<td></td>
<td>92,4</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>86,9</td>
<td>106,9</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>16,7</td>
<td>28,2</td>
</tr>
</tbody>
</table>

Zwischenfrucht:

<table>
<thead>
<tr>
<th></th>
<th>Bio: Sommerwicke</th>
<th>ProBio: Sommerwicke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel l</td>
<td>39,7</td>
<td>19,3</td>
</tr>
<tr>
<td>Summe Input</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Output kg</td>
<td></td>
<td>0,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>-0,8</td>
<td>-0,8</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

3. Jahr:

<table>
<thead>
<tr>
<th></th>
<th>Bio: Kartoffel</th>
<th>ProBio.: Kartoffel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel l</td>
<td>39,7</td>
<td>134,5</td>
</tr>
<tr>
<td>N kg</td>
<td>49,1</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>17,7</td>
<td>44,0</td>
</tr>
<tr>
<td>K2O kg</td>
<td>10,5</td>
<td>244,0</td>
</tr>
<tr>
<td>Pflanzenschutz kg</td>
<td>263,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk kg</td>
<td>2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td>9,4</td>
<td>6,1</td>
</tr>
<tr>
<td>Output kg</td>
<td></td>
<td>30000,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>107,6</td>
<td>134,3</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>12,5</td>
<td>23,2</td>
</tr>
</tbody>
</table>

1 Dieselverbräuche: siehe „Arbeitsgänge und Dieselverbräuche: Fruchtfolge – biologisch“
2 Kalkgaben (Standard-DB-Katalog, BMFLUW 2002c)
3 P- und K-Gaben in Bio-Variante: Standard-DB-Katalog, BMFLUW 2002c
<table>
<thead>
<tr>
<th>Zwischenfrucht:</th>
<th>Bio: Buchweizen</th>
<th>ProBio: Buchweizen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l 39,7</td>
<td>0,8</td>
</tr>
<tr>
<td>Summe Input</td>
<td>kg 0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Output</td>
<td>kg 0,8</td>
<td>0,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>-0,8</td>
<td>-0,8</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l 39,7</td>
<td>39,4</td>
</tr>
<tr>
<td>N</td>
<td>kg 49,1</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg 17,7</td>
<td>28,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg 10,5</td>
<td>60,0</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg 263,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg 2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td>5,2</td>
<td>4,0</td>
</tr>
<tr>
<td>Output</td>
<td>kg 16,9</td>
<td>2750,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>41,3</td>
<td>51,7</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>9,0</td>
<td>13,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l 39,7</td>
<td>70,4</td>
</tr>
<tr>
<td>N</td>
<td>kg 49,1</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg 17,7</td>
<td>38,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg 10,5</td>
<td>59,0</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg 263,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg 2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td>4,8</td>
<td>3,5</td>
</tr>
<tr>
<td>Output</td>
<td>kg 15,0</td>
<td>4750,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>66,5</td>
<td>82,0</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>14,8</td>
<td>24,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zwischenfrucht:</th>
<th>Bio: Buchweizen & Phacelia</th>
<th>ProBio: Buchweizen & Phacelia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l 39,7</td>
<td>0,8</td>
</tr>
<tr>
<td>Summe Input</td>
<td>kg 0,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Output</td>
<td>kg 0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>-0,8</td>
<td>-0,8</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>l 39,7</td>
<td>76,9</td>
</tr>
<tr>
<td>N</td>
<td>kg 49,1</td>
<td>0,0</td>
</tr>
<tr>
<td>P2O5</td>
<td>kg 17,7</td>
<td>38,0</td>
</tr>
<tr>
<td>K2O</td>
<td>kg 10,5</td>
<td>51,0</td>
</tr>
<tr>
<td>Pflanzenschutz</td>
<td>kg 263,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalk</td>
<td>kg 2,4</td>
<td>300,0</td>
</tr>
<tr>
<td>Summe Input</td>
<td>5,0</td>
<td>3,8</td>
</tr>
<tr>
<td>Output</td>
<td>kg 15,3</td>
<td>4250,0</td>
</tr>
<tr>
<td>Netto-Energieertrag</td>
<td>60,1</td>
<td>74,3</td>
</tr>
<tr>
<td>Output/Input-Relation</td>
<td>13,1</td>
<td>20,7</td>
</tr>
<tr>
<td>Summe Input (6 ha)</td>
<td>Biologisch</td>
<td>ProBio</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>34,8</td>
<td>26,3</td>
</tr>
<tr>
<td>Summe Output (6 ha)</td>
<td>392,2</td>
<td>470,6</td>
</tr>
<tr>
<td>Netto-Energieertrag (6 ha)</td>
<td>357,3</td>
<td>444,3</td>
</tr>
<tr>
<td>Output/Input-Relation (6 ha)</td>
<td>11,3</td>
<td>17,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summe Input (1 ha)</th>
<th>Biologisch</th>
<th>ProBio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,8</td>
<td>4,4</td>
</tr>
<tr>
<td>Summe Output (1 ha)</td>
<td>65,4</td>
<td>78,4</td>
</tr>
<tr>
<td>Netto-Energieertrag (1 ha)</td>
<td>59,6</td>
<td>74,0</td>
</tr>
<tr>
<td>Output/Input-Relation (1 ha)</td>
<td>11,3</td>
<td>17,9</td>
</tr>
</tbody>
</table>
Kalkulatorischer Gesamtdüngeraufwand in Beziehung zum Ertrag (Standard-DB-Katalog, BMFLUW 2002c)

Winter-Weizen

<table>
<thead>
<tr>
<th>Ertrag dt/ha</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>52,5</th>
<th>55</th>
<th>57,5</th>
<th>60</th>
<th>62,5</th>
<th>65</th>
<th>67,5</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>N kg</td>
<td>84</td>
<td>95</td>
<td>105</td>
<td>111</td>
<td>116</td>
<td>121</td>
<td>126</td>
<td>132</td>
<td>137</td>
<td>142</td>
<td>148</td>
<td>158</td>
<td>168</td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>36</td>
<td>41</td>
<td>45</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>54</td>
<td>56</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>68</td>
<td>72</td>
</tr>
<tr>
<td>K2O kg</td>
<td>41</td>
<td>46</td>
<td>51</td>
<td>53</td>
<td>56</td>
<td>58</td>
<td>61</td>
<td>63</td>
<td>66</td>
<td>68</td>
<td>71</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>CaO kg</td>
<td>300</td>
</tr>
</tbody>
</table>

Kartoffel

<table>
<thead>
<tr>
<th>Ertrag dt/ha</th>
<th>150</th>
<th>175</th>
<th>200</th>
<th>225</th>
<th>250</th>
<th>275</th>
<th>300</th>
<th>325</th>
<th>350</th>
<th>375</th>
<th>400</th>
<th>425</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>N kg</td>
<td>55</td>
<td>64</td>
<td>73</td>
<td>82</td>
<td>91</td>
<td>101</td>
<td>110</td>
<td>119</td>
<td>128</td>
<td>137</td>
<td>146</td>
<td>155</td>
<td>164</td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>33</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>58</td>
<td>62</td>
<td>65</td>
</tr>
<tr>
<td>K2O kg</td>
<td>42</td>
<td>142</td>
<td>163</td>
<td>183</td>
<td>203</td>
<td>224</td>
<td>244</td>
<td>264</td>
<td>285</td>
<td>305</td>
<td>325</td>
<td>346</td>
<td>366</td>
</tr>
<tr>
<td>CaO kg</td>
<td>300</td>
</tr>
</tbody>
</table>

Futtererbse

<table>
<thead>
<tr>
<th>Ertrag dt/ha</th>
<th>25</th>
<th>27,5</th>
<th>30</th>
<th>32,5</th>
<th>35</th>
<th>37,5</th>
<th>40</th>
<th>42,5</th>
<th>45</th>
<th>47,5</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>N kg</td>
<td>0</td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>25</td>
<td>28</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>44</td>
<td>47</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>K2O kg</td>
<td>54</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>76</td>
<td>81</td>
<td>86</td>
<td>92</td>
<td>97</td>
<td>103</td>
<td>108</td>
</tr>
<tr>
<td>CaO kg</td>
<td>300</td>
</tr>
</tbody>
</table>

Roggen

<table>
<thead>
<tr>
<th>Ertrag dt/ha</th>
<th>25</th>
<th>30</th>
<th>32,5</th>
<th>35</th>
<th>37,5</th>
<th>40</th>
<th>42,5</th>
<th>45</th>
<th>47,5</th>
<th>50</th>
<th>52,5</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>N kg</td>
<td>47</td>
<td>57</td>
<td>61</td>
<td>66</td>
<td>71</td>
<td>76</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>99</td>
<td>104</td>
<td>113</td>
<td>122</td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>20</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>K2O kg</td>
<td>31</td>
<td>37</td>
<td>40</td>
<td>43</td>
<td>47</td>
<td>50</td>
<td>53</td>
<td>56</td>
<td>59</td>
<td>62</td>
<td>65</td>
<td>68</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>CaO kg</td>
<td>300</td>
</tr>
</tbody>
</table>

Sommergerste

<table>
<thead>
<tr>
<th>Ertrag dt/ha</th>
<th>25</th>
<th>27,5</th>
<th>30</th>
<th>32,5</th>
<th>35</th>
<th>37,5</th>
<th>40</th>
<th>42,5</th>
<th>45</th>
<th>47,5</th>
<th>50</th>
<th>52,5</th>
<th>55</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>N kg</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>59</td>
<td>64</td>
<td>68</td>
<td>73</td>
<td>77</td>
<td>82</td>
<td>86</td>
<td>91</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P2O5 kg</td>
<td>22</td>
<td>24</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>41</td>
<td>43</td>
<td>45</td>
<td>47</td>
<td>50</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>K2O kg</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>45</td>
<td>48</td>
<td>51</td>
<td>54</td>
<td>57</td>
<td>60</td>
<td>62</td>
<td>65</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>CaO kg</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>