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Abstract 

Immortalised mammalian cell lines such as Chinese Hamster Ovary (CHO) have great 

relevance to the industrial production of therapeutic proteins due to their posttranslational 

processing capacities, such as folding, assembly and glycosylation. Unfortunately, the 

indispensable process of immortalisation of such a cell line irreversibly and dramatically 

alters its patterns of energy metabolism. Glucose is mainly converted to lactic acid and is 

replaced by glutamine as the major nutritional factor. Thus, ammonia and lactate are released 

into the cell and the medium, starting to inhibit growth and induce apoptosis at a certain 

concentration, and finally interfere with the cell’s biggest virtue and the reason, they are 

employed for production in the first place – their posttranslational machinery. 

The present work exploits the heterogeneity of a cell population. Minor mutations or 

differences in several regulatory mechanisms lead to highly diverse metabolic patterns and 

efficiencies. By measuring the mitochondrial membrane potential of an antibody-producing 

CHO cell line with the fluorescent dye Rhodamine 123 and sorting out single cells with very 

low or very high signals using fluorescence activated cell sorting (FACS), it was possible to 

isolate subclones with improved or deteriorated metabolic characteristics in comparison to the 

parental cell line. 

Growth, metabolic rates, antibody production and stability of the improved metabolisms were 

assessed in several batch cultures in different culture vessels. To get an insight into the 

genomic funamentals of the different phenotypes of the subclones, they were analysed on the 

transcriptional level using microarray technology. 

It could be shown that the subclones maintained their metabolic properties over a period of at 

least 6 months and also performed equally in different culture vessels, with slight differences 

in specific productivity. Transcriptional analysis elucidated that the improved characteristics 

could not be attributed to major changes in expression of key pathways in energy metabolism. 

In fact, upregulation of a part of the lipid metabolism, supplying the cell with precursors for 

hormones, vitamines and membrane components, might partly be responsible for the better 

performance. 

This simple sorting procedure can be easily implemented in cell line development, leading to 

cell lines with less waste production and accelerated growth. 
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Zusammenfassung 

Immortalisierte Säugetierzelllinien wie Chinese Hamster Ovary (CHO) Zellen sind aufgrund 

ihrer Fähighkeit zu komplexen posttranslationellen Modifikationen von Proteinen von großer 

Bedeutung für die biopharmazeutische Industrie. Der Weg hin zur immortalisierten Zelllinie 

ist jedoch unwiderruflich mit dramatischen Änderungen im Energiestoffwechsel der Zelle 

verbunden. Glukose wird hauptsächlich zu Laktat umgewandelt und in der Zelle als primärer 

Energieträger von der Aminosäure Glutamin abgelöst. Als Resultat gelangen Laktat und 

Ammonium in die Zelle und das Medium, was ab einer gewissen Konzentration zur Inhibition 

des Wachstums und zur Apoptose führt, und schlußendlich Einfluß auf die posttranslationelle 

Maschinerie der Zelle nimmt. 

Die vorliegende Arbeit nützt gezielt gewisse Heterogenitäten innerhalb einer Zellpopulation 

aus. Unterschiede in intrazellulären regulatorischen Mechanismen führen zu einer Diversizität 

im metabolischen Verhalten einzelner Zellen. Die Stärke des mitochondriellen 

Membranpotentials (MMP) wurde mithilfe eines MMP-abhängigen fluoreszenten 

Mitochondrienfarbstoffes (Rhodamine 123) sichtbar gemacht und mit fluoreszenz-aktiviertem 

Zellsorten (FACS) gemessen. Subklone mit besonders niedrigen oder besonders hohen 

Fluoreszenzintensitäten wurden isoliert, welche im Vergleich zur Mutterzelllinie verbesserte 

beziehungsweise verschlechterte Stoffwechseleigenschaften aufwiesen. 

Wachstum, metabolische Raten, Antikörperproduktion und Stabilität der veränderten Klone 

wurden in mehreren Batch-Kulturen in verschiedenen Kultivierungssystemen analysiert. 

Auch eine Transkriptionsanalyse mittels Microarray-Technologie wurde durchgeführt. 

Es konnte gezeigt werden, daß die verbesserten Eigenschaften über mehr als 6 Monate stabil 

und auch von der Art der Kultivierungssysteme unbeeinflußt blieben. Die 

Transkriptionsanalyse zeigte, daß in den vorliegenden verbesserten und verschlechterten 

Subklonen keine großen Veränderungen in der Transkription von Schlüsselgenen im 

Energiestoffwechsel vorlagen. Eine positive Regulierung eines wichtigen Teiles des 

Fettstoffwechsel, welcher die Zelle mit Vorläufern für Hormone, Vitamine und 

Membranbauteile versorgt, könnte jedoch den entscheidenden Aussschlag gegeben haben. 

Es konnte eine simple, leicht anwendbare Technologie zur schnellen und frühen Anwendung 

in der Zelllinienentwicklung dargestellt werden. 
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Introduction 

Biopharmaceutical production of many therapeutic proteins depends on protein folding and 

glycosylation capabilities of continous mammalian cell lines. However, most immortalised 

mammalian cell lines show a severe disorder in their glucose metabolism. Unlike in their 

tissue of origin, the cells metabolise glucose to pyruvate and further to lactate, by which 

NADH, emerging from glycolysis, is regenerated to NAD+. Since the energy gain from the 

glycolytic pathway is very small, the cells mainly infiltrate glutamine into the tricarboxylic 

acid cycle for generation of ATP in the respiratory chain. Metabolism of one mole of 

glutamine, however, releases two moles of ammonia into the cytoplasma. Besides its toxic 

effect, high ammonia concentrations are known to interfere with the glycosylation machinery, 

especially terminal sialylation, which is the very essence of why mammalian cell lines are 

employed in the biopharmaceutical industry in the first place. 

 

Energy metabolism of mammalian cell lines in vivo (according 

to Berg JM et al., 2007) 

Glucose as the main energy source enters the mammalian cell via a family of facilitative 

glucose transporter proteins (GLUTs). Driving force of the transport process is the glucose 

concentration gradient between the medium and the cytoplasma. So far 13 different GLUTs 

have been identified and assorted into three classes regarding substrate specificity, kinetics 

and – partly – localisation of a functionally important glycosylation site. Glucose transport 

against a concentration gradient, as it is neccessary in kidney and small intestine tissue, is 

allowed by another family of transporter proteins, the sodium-dependent glucose transporter. 

They utilize a Na+ gradient provided by Na+-K+ ATPase pumps for the transport process 

(Wood and Trayhurn 2003). However, chinese hamster ovary cells (CHO), as subject to this 

thesis, utilize GLUTs for glucose transport.  

Glycolysis 

The glycolytic, or Embden-Meyerhof pathway, is a sequence of enzymatically catalysed 

reactions turning the C6-body glucose into two C3-bodies of pyruvate, which is common in 

basically most glucose consuming organisms. These  reactions sum up to an energy gain of 2 

Mol adenosine triphosphate (ATP) and 2 Mol NADH out of 1 Mol of glucose. The fate of 
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pyruvate is uncertain and dependent on organism and environment. Amongst others, it can be 

reduced to lactate as in lactic acid forming microbes or in strained sceletal muscle, or 

converted to ethanol and further to acetic acid. Aerobic organisms, including mammalian cell 

lines, decarboxylate pyruvate to Acetyl-Coenzyme A, which is then completely oxidised to 

CO2 and water via the tricarboxylic acid cycle and the oxidative phosphorylation inside the 

mitochondria, generating ATP. 

The glycolytic pathway generally comprises three stages. Stage 1, which is the conversion of 

glucose into fructose 1,6-bisphosphate, consists of three steps: a phosphorylation, an 

isomerization, and a second phosphorylation reaction. Stage 2 is the cleavage of the fructose 

1,6-bisphosphate into two three-carbon fragments and in stage 3, ATP is harvested when the 

three-carbon fragments are oxidized to pyruvate. 

Reactions of the glycolysis are located in the cytosol.  

 

Tricarboxylic acid cycle (TCC) 

The tricarboxylic acid cycle (Krebs or citric acid cycle) is the center point of a cell’s energy 

metabolism. Not only is the cell able to metabolise basically any substrate that can be turned 

into an acetyl group or dicarboxylic acid, but it can also extract precursor molecules for 

assembly of necessary building blocks like nucleotides, amino acids, cholesterol, etc. The 

TCC is located in the matrix of the mitochondria. 

Pyruvate, as the product of glycolysis, enters the mitochondrium via the pyruvate carrier 

which functions as an antiporter. Inside the mitochondrium, pyruvate is decarboxylated to an 

acetyl group and bound to coenzyme A. This reaction is irreversible and the link between 

glycolysis and TCC, thus making it an important regulatory point in the cell’s metabolism. 

Acetyl coenzyme A enters the TCC by condensation with oxalacetate, forming a C-6 body 

(citric acid). Citric acid is isomerised to isocitrate and then twice decarboxylated first to α–

ketoglutarate and then to succinate. Succinate is then regenerated to oxalacetate in a few 

steps. Two carbon atoms are oxidated to CO2, three hydride ions are transferred to 

nicotinamide adenine dinucleotide (NAD+) and one pair of hydrogen atoms is transferred to 

flavine adenine dinucleotide (FAD). Electrons from NADH and FADH2 are then transferred 

stepwise to O2 in the process of oxidative phosphorylation driving the production of ATP. 
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Oxidative phosphorylation 

Oxidative phosphorylation is the process in which ATP is formed as a result of the transfer of 

electrons from NADH or FADH2 to O2 by a series of electron carriers. The process takes place 

in the matrix of the mitochondria. 

Electrons from NADH from glycolysis, fatty acid oxidation and mainly the TCC are 

transferred to O2 by three transmembrane protein complexes, which are the NADH-Q 

oxidoreductase, the Q-cytochrome c oxidoreductase and the cytochrome c oxidase. Several 

oxidation/reduction centers inside these proteins, such as quinones, iron-sulfur groups, heme 

groups or copper ions allow the uptake of electrons. 

Upon reception of electrons, these protein complexes pump protons to the intermembrane 

space of the mitochondrium, thus creating a pH-gradient between the matrix and the 

intermembrane space. Backflow of protons through the F0 channel subunit of the ATP 

synthase is then used by the F1 subunit to generate ATP out of ADP and Pi. Backflow of at 

least 3 protons is necessary to allow generation of 1 molecule of ATP. 

Another transmembrane complex, the succinate-Q reductase, transfers electrons from FADH2 

to quinone. The TCC enzyme succinate dehydrogenase is part of the complex, which by 

converting succinate into fumarate generates the FADH2. Since this complex does not 

function as a proton pump, less ATP is generated from FADH2 than from NADH. 

 

Metabolism of glutamine 

Free amino acids are the products of digestion of proteins. They are either used as building 

blocks for protein synthesis or transformed into a series of metabolic intermediates which are 

acteyl-CoA, acetoacetyl-CoA, succinyl-CoA, α-ketoglutarate, pyruvate, fumarate and 

oxalacetate. These intermediates are then either transformed into glucose via gluconeogenesis 

or infiltrated into the tricarboxylic acid cycle. 

Glutamine is hydrolysed to glutamate and NH4+ by the enzyme glutaminase and then 

oxidatively deaminated to α-ketoglutarate, which enters the TCC. In terrestric vertebrates, the 

accumulating ammonia is transformed into urea in the liver. Alanin and glutamine – by 

amination of pyruvate or glutamate – serve as acceptor molecules for ammonia. 
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Metabolism of mammalian cell lines in vitro and 

immortalized mammalian cell lines 

 

For keeping up metabolism in multicellular organism, an interaction of several differentiated 

tissues is needed. Not every cell type is capable to perform every metabolic pathway in an 

organism. Parts of the metabolic reactions are transferred to the liver and kidney, like 

gluconeogenesis and lactate metabolism, catabolism of fatty acids or production of urea. The 

isolated cell type grown in a culture dish is therefore limited to its own metabolic capabilities. 

Immortalised, continuous cell lines, like Chinese Hamster Ovary (CHO) or hybridoma cell 

lines show severe disorders in their energy metabolism. 15 to 20% of the glucose enters the 

pentose phosphate pathway, residual glucose enters the glycolytic pathway. 0 to 5% of the 

resulting pyruvate is converted to acetyl-CoA and enters the TCC, the rest of the pyruvate is 

reduced to lactate by the enzyme lactate dehydrogenase. 

Accumulation of lactate leads to acidification of the medium and can have an inhibitory effect 

on cell growth at a certain concentration that strongly varies between different cell lines. 

Additionally, this pathway leads to a very poor energy gain of only 2 mol ATP per mol 

glucose, compared to a theoretical 36 mol through complete oxidation in the mitochondria. 

Glutamine is therefore added to cell culture medium as main energy substrate for the cells, 

which nearly completely enters the TCC.  

However, metabolism of glutamine includes, as described in a previous section, two 

deamination steps in the mitochondria, releasing ammonia into the mitochondrial matrix. 

Besides alkalinisation of the mitochondria, ammonia can influence protein glycosylation 

patterns. 

 

Influence of ammonia on protein glycosylation 

Ammonia affects protein glycosylation simultaneously on several levels. Elevated levels of 

ammonia in the medium alkalinise the cytoplasma, leading to a higher antennarity of N-

glycans (Maiorella 1992, Valley et al. 1999).  

An increased amount of ammonia both influences production of carbamoyl phosphate (CP), 

which is a precursor for uridine triphosphate (UTP), and increases formation of UDP-

activated N-acetyl hexosamines (UDP-GNAc) by incorporation of ammonia at the step of 
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building glucosamine-6-phosphate (GlcN6P) from fructose-6-phosphate (Frc6P). UTP and 

GlcN6P are afterwards condensed to UDP-N-acetylglucsoamine (UDP-GlcNAc). At elevated 

concentrations, UDP-GlcNAc has a higher flux into the Golgi apparatus using the nucleotide 

sugar transport system I, thus suppressing transport system II, which is used for transfer of 

CMP-N-acetylneuraminic acid (CMP-NANA or CMP-sialic acid). By blocking its transfer, 

the concentration of CMP-NANA in the cytoplasma increases, thus blocking its own 

synthesis pathway viy feedback inhibition. Therefore, less CMP-NANA reaches the Golgi 

apparatus, leading to a reduced sialylation of N-glycans (Valley et al. 1999). 

 

Strategies for an improved efficieny of cellular metabolism 

Strategies for improving the efficiency of metabolism in continuous mammalian cell lines 

comprise different approaches through medium formulation, clone selection, process setup 

and genetic engineering. 

 

One approach was to substitute glucose with galactose, fructose or mannose (Altamirano et al. 

2000). Specific sugar uptake rates for galactose and fructose were reduced to about 25% of 

the corresponding values of glucose and mannose, which showed a similar performance. 

Specific lacate production rates for cell cultures grown in galactose- or fructose-containing 

medium drastically dropped to values around 22% of the corresponding rates for glucose 

uptake, indicating complete oxidation of a major part of the supplied hexose. Growth rates 

and final cell densities decreased to 50-70% when compared to cell cultures in glucose- or 

mannose-containing medium. Glutamine uptake rates were increased and in spite of the lower 

cell densities, the absolute ammonium concentration was also elevated compared to glucose 

and mannose cultures. Replacement of glutamine by glutamate was more successful, leading 

indeed to lower cell counts for both glucose and galactose as sugar supply, but at the same 

time severely reducing release of ammonia in the medium. 

 

Choice of the cultivation system and process parameters can also have an impact on the 

metabolism of continuous mammalian cell lines. (Europa et al. 2000)) reported a metabolic 

shift to severely reduced metabolic rates when starting a continuous culture out of a fed batch 

with a low glucose feed, when compared to the same continuous process started from a batch 

culture. 
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Variation of process parameters like dissolved oxygen tension, pH and temperature has also 

shown an impact on cell growth and metabolism and also specific productivity in recombinant 

cell lines (Bollati-Fogolín et al. 2005, Trummer et al. 2006). 

 

Genetic engineering approaches to specifically influence cellular metabolism generally aim at 

single target enzymes in metabolic pathways, such as the enzyme lactate dehydrogenase 

(LDH). LDH catalyses the reduction of pyruvate to lactate. A knock-out of one allele of the 

LDH gene has been done before and led to a reduction of lactate formation and an extended 

life span of the cell culture, thus elevating end cell concentration in the culture (Chen et al. 

2001). Targeting of anti-apoptotic genes such as Bcl-2, Bcl-xL, Aven and the adenoviral gene 

E1B-19K resulted in reduced lactic acid formation and extended life spans (Arden and 

Betenbaugh 2004). 

 

In development of cell lines, subcloning of cells and analysis of resulting subclones to find a 

suitable production or host clone is a common process. This process indirectly makes use of 

the fact that there exists a large heterogeneity among cells within a population, as far as their 

metabolism, reproductive machinery and protein expression capabilities are concerned. This 

can be due to mutations, change of epigenetic silencing or other regulatory mechanisms inside 

the cell. 

If these cells, that have changed and improved properties, can be made visible to a high- 

throughput technology like fluorescence activated cell sorting (FACS), and sorted from the 

rest of the population, an optimisation protocol would emerge, that can be applied for directed 

improvement at a very early stage in cell line development. 

 

Fluorescence activated cell sorting (FACS) 

Principles 

Fluorescence activated cell sorting (FACS) allows determination of various parameters of 

cells, cellular components or other particles of a certain size, that can be suspended in a fluid, 

at a very high number per unit of time. Particles can be measured individually by 

consecutively passing a laser in a fluid stream. Reflected or emitted fluorescent light is then 

converted to digital signals by photodiodes or photomultipliers, and analysed on a computer. 
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High throughput and a steadily growing range of fluorogenic substances with highly specific 

targeting capabilities and make FACS a powerful analytical technology. Today, FACS is 

applied in both clinical and research laboratories for cellcycle and apoptosis analysis, 

immunofluorescence, analysis of protein or DNA content, assaying secretion, determination 

of the viability of cells or for diagnosis of diseases like leukemia. 

Additionally, FACS allows to electrostatically sort single cells with predefined characteristics 

out of a cell population. 

 

Instrumentation 

Basic parts of a flow cytometer are a light source (laser) combined with an optics system to 

direct and focus the beam, a fluidics system to create a laminar particle stream, an electronic 

system for capturing light signals and converting them to digital signals, and a computer 

equipped with the appropriate software for analysis. 

Flow cytometers are equipped with one or more lasers, usually one or a combination of Argon 

ion, Helium/Neon or Kypton lasers. The emitted intense, single wavelength light with a 

narrow diameter allows both specific excitation of fluorochromes and centering the laser 

beam on the fluid stream. Focusing is done with a combination of lenses. 

The particle stream is injected into a hull or sheat stream, both passing a narrow aperture of 

about 50 - 400 µm, which accelerates the combined streams and focuses the particles (cells, 

etc) in the center of the stream (hydrodynamic focusing). 

Light signals emerging from the intersection point of laser beam and fluid stream are focused 

on and captured by photodetectors (photodiodes, photomultiplier tubes). A series of filters 

split the emerging light into different fractions according to their wavelength, with each of the 

fractions hitting their own detector. The photodetectors convert the light into digital signals, 

which are then sent to a computer for analysis. 

Several different parameters can be measured simultaneously for each cell separately. The 

forward scatter signal (FSC) gives information on the size of the cell in comparison to the rest 

of the population. The side scatter signal (SSC) is dependent on both the condition of the 

cell's surface, size and internal structure. Both signals are defined as light of the same colour 

as the original laser beam, with FSC only bent to a small angle and SSC bent to 90°. 

Additionally, several fluorescence channels (FL1,2,3,...) can be measured, dependent on type 

and number of excitation wavelenghts available. 
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Data can be rendered either as histograms, dot or contour plots, with regard to the desired 

information. 

 

Cell sorting 

With the according equipment, a flow cytometer is capable of separating cells, that meet 

predefined characteristics, from the rest of the cell population, which is referred to as cell 

sorting. Cells can be deposited in different culture vessels, either individually or in bulk. 

Therefore, the instruments injection head, where the particle and the sheat stream are merged, 

is brought to a constant and fast vertical oscillation by a piezo-electric element. This 

oscillation leads to a break-off of the fluid stream after the intersection with the laser beam. 

Precise measurement of the distance between the intersection and break-off allows 

electrostatical charging of the drop that contains the desired cell. Then, oppositely charged 

metallic plates deflect the drop into the desired culture vessel. To eliminate uncertainties in 

timing, the drops immediately before and after the desired drop are usually sorted as well. 

 

Rhodamine 123 as a probe for analysis of mitochondrial membrane 

potential (MMP) 

Rhodamine 123 (Fig. 1), a cationic, lipophilic fluorochrome at physiological pH, is able to 

stain mitochondria directly and provides low-background, green-fluorescent images of  
mitochondria. Absorption and emission maxima are at wavelengths of 507 and 529 nm 

respectively. 

 
Fig. 1: chemical structure of Rhodamine 123 
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The use of this dye enables the selective staining of mitochondria in living cells and gives a 

good measure of mitochondrial activity when quantified by flow cytometry (Johnson et al. 

1981). Because of their negative membrane potential, mitochondria accumulate lipophilic 

cations (Chen 1989) like Rhodamine dyes. The positive charge allows the probe to pass 

through the cell membrane and accumulate in the negatively charged environment of the inner 

mitochondrial membrane. There the lipophilic part of the probe assures retention in the 

membrane lipid bilayer (Keij, Bell-Prince and Steinkamp 2000). Therefore the extent of 

uptake reflects the redox potential across the mitochondrial membrane (Johnson et al. 1981). 

The mitochondrial membrane potential (MMP) measured by Rhodamine 123 corresponds to 

the glucose uptake rate, which, for a given cell line, corresponds in turn to the glucose 

concentration in the medium (Borth, Kral and Katinger 1993).  
Unfortunately, Rhodamine 123 also shows photoinduced bleaching (Chen 1989) and non-

coherent behaviour (Salvioli et al. 1997). 

 

Tanscriptional analysis 

An in-depth analysis of intracellular procedures of cells with different behaviour is highly 

desirable, not only in disease research but - in the present work - also for CHO subclones that 

exhibit differences in their energy metabolism. Both the amount of mRNA of certain genes 

and the level of actually translated proteins present in a cell at a certain timepoint are of 

particular interest to a more profound understanding of cellular processes. 

Transcriptional profiling (genomics), that comprises only a limited number of well-known 

genes can be done with rather time-consuming methods such as Northern Blot and real-time 

PCR. To get information on the interaction of genes in a cell resulting in a different 

phenotype, transcriptional levels of the whole genome or at least a very wide variety of genes 

have to be analysed (functional genomics). Microarray technology allows a simultaneous 

quantitative transcriptional analysis of a large number of genes, which in recent years ranged 

up to whole genomes. 

 

The principle of mRNA analysis with microarrays is based on hybridisation of isolated RNA 

to homologous sequences immobilised on the array. The isolated RNA is in vitro reverse-

transcribed to cDNA and again transcribed to cRNA, with a parallel incorporation of 

fluorescently labelled nucleotides. The more mRNA of one gene has been present earlier in 
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the cell, the more RNA (or cDNA) will hybridise to the according spot on the array, thus 

increasing brightness of the spot when scanned with a laser and allowing quantification. 

Direct comparison of mRNA levels on one array (e. g. comparison to healthy tissue of the 

same type, a non-transformed cell line, cells from another tissue type, or, like in the present 

case, the parental cell line) employs a two-dye strategy. RNA from sample and reference 

tissue or cell culture are labelled with different dyes; incorporation of red and green 

fluorescent cyanine-labelled nucleotides at transcription from cDNA to cRNA is rather 

common. cRNA from both sample and reference will bind to the corresponding spot on the 

array slide according to their present amount. Thus, the colour of the fluorescent signal of one 

spot will shift towards red or green if there is a difference in transcription of this gene 

between sample and reference tissue. Since efficiency of dye incorporation is not the same for 

cyanine dyes, resulting variations have to be filtered out at the point, where the information is 

drawn from the slides (feature extraction). Two-dye experiments allow calculations of gene-

specific transcriptional fold changes between sample and reference. Due to the possibility of 

biological variations from one culture experiment to another, the reference (or standard) 

should be picked carefully. 

Dependent on the type of microarray, cDNA (∼1 kbp), PCR products (200 – 400 bp) or 

oligonucleotides (20 – 60 bp) are spotted on a surface made of glass, plastic or silicone, with 

each spot showing distinct homology to one specific gene. The smaller the size of the spots, 

which is dependent on the type of array and technology, the more spots can be dotted and the 

more genes can be analysed simultaneously. Currently, commercially available microarrays 

(from Affymetrix, Agilent, Clonetech,...) reach a spot diameter of only 5 µm and can 

represent more than one genome on a single glass slide. 

 

The microarray platform used for the present work was purchased from Agilent, USA. About 

22.000 different 60-mer oligonucleotides are spotted on one glass slide, representing about 

two thirds of the mouse (Mus musculus) genome. Since the genome of the Chinese Hamster 

(Cricetulus griseus) has not yet been thoroughly sequenced, mouse arrays are often used for 

transcriptional analysis of CHO cells. Reliability of cross-species hybridisation experiments 

has been evaluated (Ernst et al. 2006). 
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What to do with microarray data? 

Interpretation of the sheer amount of data, that has been drawn from transcriptional analysis 

endorsed by microarray technology, presents a big challenge to the experimenter. Extraction 

of fluorescent signal data from the array slide, compensation of variations in dye 

incorporation, determination of correctly and incorrectly stained spots and alignment of the 

signals to the underlying gene identity file is usually done by programs provided by the array 

supplier, in the present case the program was GeneSpring (Agilent, USA). The output usually 

consists of gene lists containing gene IDs, raw fluorescent signal data and – if a standard has 

been used – information on transcriptional fold change in comparison to the standard. The 

researcher is left to make sense of these gene lists. 

Several problems arise at this point. It is likely to get a list of genes with significant fold 

change but they might all lack a unifying biological theme, which leaves interpretation to the 

knowledge of the researcher. Also, change in transcription of one single gene, even if 

abundant, is seldom responsible for significant alterations in cellular behaviour or 

morphology. It is more likely, that a series of cooperating genes or genes of one specific 

cellular pathway contribute to phenotype changes. Fold changes of these genes might even lie 

beyond thresholds defined by the inherent background noise of microarray experiments, thus 

hiding them from the interpreter’s attention. Additionally, thinking of e. g. inhibitory kinases, 

both up- and downregulation of genes might result in a better flux, in an enhancement of one 

specific pathway or vice versa. 

Gene set enrichment analysis (GSEA) allows interpretation of microarray data based on gene 

sets (Subramanian et al. 2005). These gene sets can consist of genes encoding products in one 

metabolic pathway, genes that are located in the same cytogenetic band, or share the same 

arbitrarily determined category. They can be self-designed or retreived from published 

biochemical pathways like KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway. 

GSEA is a suitable tool to compare expression profiles of two samples (e. g. sample and 

reference). It sorts the gene list derived from a microarray experiment into a ranked gene list 

L along a user-defined metric, which in this present case was the transcriptional fold change 

(i. e. the difference between sample and reference in amount of mRNA of any gene 

transcribed in the cell at a certain timepoint). One or more predefined gene sets S, which were 

in this work derived from KEGG, are then compared to to the ranked gene list L one at a time. 

It is then determined whether the members of S range at the top or bottom of L or if they are 

equally distributed along L. These three cases would imply up-, down- or no regulation at all 
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of the gene set. GSEA calculates a so-called enrichment score, which gives an impression on 

the magnitude of transcriptional regulation of the gene set, and indicates up- or 

downregulation with either prefixes “-“ or “+”. The GSEA output is statistically backed up by 

multiple hypothesis testing and calculation of a false discovery rate (FDR). For more 

information on the mathematical part of this matter, the author would like to refer to the 

publication mentioned at the beginning of this paragraph. 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

KEGG is a database of biological systems, consisting of genetic building blocks of genes and 

proteins (KEGG GENES), chemical building blocks of both endogenous and exogenous 

substances (KEGG LIGAND), molecular wiring diagrams of interaction and reaction 

networks (KEGG PATHWAY), and hierarchies and relationships of various biological 

objects (KEGG BRITE). KEGG provides a reference knowledge base for linking genomes to 

biological systems and also to environments by the processes of PATHWAY mapping and 

BRITE mapping.a  Several more features have recently been added like KEGG GLYCAN or 

KEGG DRUG. For further general information, the website refers to the publications of 

Kanehisa and Goto 2000, Kanehisa et al. 2006 and Kanehisa et al. 2008. 

For analysis of microarrays in the present work, the pathway section of KEGG was used. 

KEGG PATHWAY divides data on biological interactions and cellular networks into the 

sections metabolism, genetic information processing, environmental information processing, 

cellular processes and human disease, each of them consisting of numerous subcategories. 

The section “human disease” was excluded for analysis. 

                                                
a From: http:\\www.genome.ad.jp/kegg 
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Objectives 

As mentioned before, immortalized mammalian cell lines show disorders in their energy 

metabolism compared to normal tissue. Glucose is mainly converted to lactate with low 

energy gain, making it necessary to supplement glutamine to the medium. Upon its utilisation, 

glutamine releases ammonia into the cell, thus influencing the glycoslyation machinery, the 

unique ability of mammalian cells. A renunciation from glutamine as main energy substrate to 

a more efficient metabolism of glucose would be desirable. In the present work, the 

possibility of implementing this improvement of cells into cell line development is discussed. 

 The ususal way of establishing a new production cell line is to subclone the cells and screen 

the resulting clones for productivity and growth characteristics. The number of subclones is 

then narrowed down to allow re-screening in cultivation systems similar to the production 

plant within a reasonable period of time (e. g. small-scale bioreactors). In the end, one 

production clone is selected and process developement begins. 

 

The present work aims at an early selection of subclones that already have an improved 

metabolism – i. e. lower specific glucose (qGlc) and glutamine uptake (qGln) and lower lactic 

acid formation rates (qLac) – compared to the rest of the cell population, using fluorescence 

activated cell sorting (FACS) as high-throughput technology. The mitochondria as key 

elements in cellular metabolism were selected as targets for fluorescent labelling. The green-

fluorescent, cationic, lipophilic dye Rhodamine 123 specifically stains the mitochondrial 

membrane and exhibits quenching of its fluorescent signal according to the force of the 

membrane potential (Chen 1989, Baracca et al. 2003).  

 

Previous work on the matter has indicated a close relation between glucose concentration in 

the medium, specific glucose uptake rate in the cells and Rhodamine 123 fluorescence 

intensity (Borth et al. 1993). A CHO cell line, producing a monoclonal anti-HIV1 antibody 

was single-cell sorted for both low and high rh123 fluorescence intensity. Obtained subclones 

with low rh123 fluorescence signal showed a clear tendency towards reduced glucose 

consumption and lactate production rates, whereas subclones sorted on high fluorescence 

exhibited opposite characteristics. Subclones that differed the most from the parental cell line 

in their metabolic rates (entitled HR1 for high Rhodamine and LR2 for low Rhodamine 

fluorescence), were picked for characterisation in repeated batch runs in different cultivation 
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systems. Messenger RNA from both subclones and from the parental cell line was harvested 

in comparable growth conditions and growth phases for analysis of the transcriptome using a 

cross-species hybridisation approach on mouse oligo microarrays, which had been 

successfully established in the lab before (Ernst et al. 2006). 
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Materials and Methods 

Cell culture 

The cell line used, named CHO-2G12, was a recombinant Chinese Hamster Ovary (CHO) 

DHFR- cell line, producing the IAM2G12 human monoclonal anti-HIV1 antibody. Cells were 

cultured in serum-free DMEM/Ham’s F12 (1:1) supplemented with 4 mM L-glutamine, 0.25 

% soy peptone, protein free additive, 0.1 % Pluronic F68 and 1µM methotrexate (MTX). 

Cultivation experiments were carried out at 37°C in 125 ml spinner flasks (Tecne, USA) and 

2000 ml roller bottles (Nunc, USA) pre-gassed with 60 and 120 ml of sterile-filtered CO2 

respectively to resemble a 7 % CO2 atmosphere. To facilitate adaptation to the spinner flasks, 

an anti-clumping agent (Gibco, USA) was added at a concentration of 1:500.  

 

Batch experiments 

Characterisation of the sorted subclones was done in cultivation experiments in batch mode in 

125 ml spinner flasks (Tecne, USA) with a maximum volume of 100 ml as well as in 2000 ml 

roller bottles at a maximum culture volume of 200 ml. Batch mode cultivations were started at 

a concentration of 2 x 105 viable cells/ml. Cells were centrifuged at 170 g for 10 minutes, 

taken up in fresh prewarmed medium as described above and transferred to the spinner flask.  

Cell count, viability and concentrations of glucose, lactate and glutamine were determined 

daily, Rhodamine fluorescence and hIgG titer every second day. Additionally, samples for 

isolation of mRNA were drawn on days 2 and 3 of the batch phase. Concentrations of 

glucose, lactate and glutamine were determined using a YSI 7100 MBS multiparameter 

bioanalytical system (YSI Life Sciences, USA), content of human IgG was determined by 

quantitative ELISA. 

A first characterisation of subclones that emerged from sorting experiments was done in T25 

flasks under the same conditions as mentioned above. Samples were drawn on batch start and 

on the second day to determine cell count and glucose, lactate and glutamine concentrations. 

Promising subclones were evaluated further as described above. 
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Viability and cell count 

Viability was determined with the trypan blue exclusion method using a hemocytometer 

(Bürker Türk, Germany), cell count by counting the cell nuclei in a Multisizer III (Beckman 

Coulter, USA) after treatment of the cell pellet with an aqueous buffer of 2 % (w/v) Triton X-

100 and 100 mM citrate for at least 2 hours. 

 

Monitoring of Rhodamine 123 fluorescence 

Rhodamine 123 fluorescence intensity of the cells was monitored. Therefore, approximately 

106 cells were transferred from the culture flasks into 10 ml vials and incubated with a stock 

solution of Rhodamine 123 [1 mg/ml] at a dilution of 1:100 for 15 min at 37°C. After 

incubation, cells were centrifuged at 170 g for 10 min, washed with PBS, spinned down again 

and resuspended in 1 ml PBS. Cell suspensions were then transferred to FACS vials and 

analysed on a FACSCalibur (Beckton Dickinson, USA). 

 

Mathematical equations 

Haemocytometer  

The density of living and dead cells and the total cell density were determined according to 

 

 [cells/ml] 

 

The viability was calculated by 

 

 

 

X ...cell density 

V ...viability 

Xv ...number of viable cells 

Xd ...number of dead cells 
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Xt ...total cell number 

i ...index variable: v-viable; d-dead; t-total 

ns ...number of squares 

d ...factor for dilution sample 

1.2 ...dilution factor for addition of trypan blue 

104 ...number of squares [0.1 µl] per ml 

 

Coulter counter  

The cell density was calculated according to 

 

 [cells/ml suspension] 

 

X ...cell density 

i ...index variable 

n ...number of counts 

a ...volume of cell suspension centrifuged [ml] 

b ...volume of lysis buffer 

c ...volume of incubated sample taken for measurement [ml] 

e ...volume of electrolyte 

S ...volume of sample counted 

 

Specific growth rate  

The specific growth rate μ  for batch conditions is defined as the time dependent increase in 

cell number based on cell density.  

 

 

 

X2 ...cell number at t2 

X1 ...cell number at t1 
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(t2-t1) ...time interval between sampling timepoints 

 

Cumulative cell days (CD) 

Cumulative cell days is a mathematical tool for calculating the specific consumption rate and 

the specific production rate. It represents the area under the growth curve of a culture. 

 

 

 

Specific metabolic rates (qi) 

The specific productivity and consumption rate were calculated as a function of cumulative 

cell days CD. 

 

 [ng/CD] 

 

c ...concentration of nutrient/product at sampling timepoint 

 

Specific glucose consumption rate and specific lactate production rate, as well as the specific 

antibody production rate were calculated according to this equation.  

 

Cell sorting 

Preparation of the cells 

Cells were single-cell sorted into 96-well plates. The 96-well plates were filled with 150 µl of 

a 1:1 mixture of the above described medium and sterile filtered culture supernatant of the 

same cell culture, and spiked with 1:100 of a penicilline/streptavidine antibiotic mix. The 

plates and medium were warmed and preconditioned in an incubator in humidified 

atmosphere with 7 % CO2 at 37 °C. 
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The Rhodamine 123 staining procedure was the same as for monitoring of the Rh123 signal 

during batch cultures, as described above. Shortly before the sorting process, 1:100 DAPI was 

added. 

 

Sorting 

Cell sorting was done on a FACSVantage (Beckton Dickinson, USA) equipped with Pulse 

Processing, Sort Enhancement Module and Automatic Cell Deposition Unit. A 5 W Argon 

Laser (Coherent), tuned to 488 nm, and a 6 W Argon Laser (Spectra Physics), tuned to Multi-

line-UV, were used. The two lasers are spatially resolved, so that no overlap between the 

respectively excited fluorescence signals will occur. Laser Output power was 100 mW for 

both lines. Filters used were a 530/30 BP filter for the Rh123 signal and a 424/44 BP filter for 

the DAPI signal. For sterile sorting the tubing of the cell sorter was decontaminated of 

remnants of previous samples and sterilised by running in succession as sheat fluid for 1 h 

each of the following solutions: 0.1N NaOH; 0.1% Triton X-100; 70% ethanol. Subsequently, 

a sterile sheath tank with PBS was connected to the cell sorter and the remaining ethanol 

rinsed out by running for 30 min. 

Dead cells and cell debris were excluded based on absence of a DAPI fluorescence signal and 

on the forward scatter/side scatter signal (FSC-H/SSC-H). Sort gates on the viable cell 

population were set in a dot plot using FL1-H as y- and FSC-W as x-axis (Fig. 2). Cells with 

both top and bottom 3 % of fluorescence intensity were single cell sorted into the 96 well 

plates with the automatic cell deposition unit. The plates were prefilled with 100 µl per well 

of a 1:1 mixture of cell culture medium as mentioned above and sterile-filtered culture 

supernatant to improve sinlge cell cloning efficiency. 
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Fig. 2: Sort gates for cells with both low (R2) and high (R3) Rhodamine fluorescence. 

 

After one week in the incubator, another 100 µl per well of cell culture medium/culture 

supernatant mix was added to the sorted cells to boost growth of the cells. Another one to two 

weeks later the first subclones could be picked from the plates. The subclones were then 

carefully expanded to 24-well-, 12-well plates and small T-flasks (25 cm2) consecutively. 

 

Quantitative hIgG ELISA 

The product concentration was determined by ELISA (enyme linked immunosorbent assay). 

A 96 well plate (NUNC maxisorp) was precoated with Anti-Human IgG (Sigma), able to 

catch the 2G12 antibody. The standard and the prediluted sample were added and the plate 

was washed after incubation. The bound antibody was then tagged with a polyclonal goat-

anti-human IgG conjugated to horseradish peroxidase (HRP). After incubation and  
subsequent washing, the complex bearing the peroxidase was incubated with hydrogen 

peroxide and orthophenyldiamine (OPD), triggering a colour reaction, when two molecules of 

OPD condense. This reaction was stopped by addition of concentrated sulfuric acid after a 

well-defined period of time and evaluation was performed using an ELISA-reader. The  
concentrations were calculated according to standard curves. 
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Transcriptome analysis of sorted subclones 

Isolation of total RNA 

Total RNA of cell cultures was extracted on days 2 and 3 in the batch phase. Extraction was 

done using the Trizol reagent (Gibco, USA). 107 cells were harvested, spinned down for 10 

minutes at 170 g, washed once with PBS and centrifuged again. Two ml of Trizol reagent 

were added to the cell pellet, mixed by pipetting up and down and put on the vortex for 10 

seconds. Afterwards, the mixture was left to incubate at room temperature for 5 min, then it 

was stored at -80°C until purification of the RNA. 

To each of the thawed Trizol samples (1 ml), 200 µl of chloroform were added. Mixtures 

were thoroughly vortexed, left to incubate at RT for 3 min and centrifuged at 14.000 g for 15 

min. The lower, chloroform phase was then carefully removed, samples spun down again for 

3 min and the upper aqueous phase transferred to a new tube. Then, 500 µl of isopropanol 

were added (1:2), carefully mixed by inverting the tube and incubated at RT for 10 min. The 

precipitate was spun down at 12.000 g for 10 min. The supernatant was removed and the 

pellet was washed once with ethanol (70 % [v/v]). After centrifugation of the pellet at 7.500 g 

for 5 min, the ethanol was removed and the pellet left to air-dry. It was then taken up in 50 µl 

of nuclease-free water and dissolved at 60°C for 10 min. All centrifugation steps were 

performed at 4°C. RNA content was determined by a spectrophotometer, concentrations lay 

between 1.000 and 2.500 µg/ml. RNA purity was determined by both measuring A260/280 and 

on a bioanalyzer chip (Agilent, USA). Purified RNA samples were stored at -80°C. 

 

Processing of isolated RNA 

Isolated and purified total RNA from CHO cell cultures were processed  according to the 

manufacturers manual for use on an Agilent oligonucleotide mouse 22K microarray (Agilent 

Technologies, USA). In short, cDNA was synthesised from isolated RNA, then transcribed 

into cRNA and purified. In this step, flurescently labelled nucleotides were incorporated into 

the resulting DNA. Afterwards, DNA was synthesised from cRNA for hybridisation. 

For cDNA synthesis, 500 ng of total purified RNA were mixed with a T7 promotor primer, 5x 

First Strand Buffer, 0.1 M dithiothreitol (DTT), 10 mM dNTP mix, MMLV-reverse 

transcriptase and a RNAse inhibitor (RNAseOUT) and incubated in a circulating waterbath at 
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40°C for 120 min. Subsequently, the mixtures were incubated at 65°C for 15 min for 

inactivation of the MMLV-RT and then put on ice for another 5 min. 

cDNA was then transcribed to cRNA to incorporate cyanine dye-labelled nucleotides in a 

mixture with 4x Transcription Buffer, 0.1 M DTT, NTP and CTP mix, polyethylene glycol 

(PEG), RNAseOUT, inorganic pyrophosphatase and T7 RNA polymerase by incubation at 

40°C for 120 min. cRNA was then purified on a column to remove unincorporated dye. 

Purity, concentration and success of incorporation of cyanine dyes was determined on a ND-

1000 UV/VIS spectrophotometer (Nanodrop Technologies, USA). Each of the cDNA samples 

were transcribed using Cye3- and Cye5-labelled nucleotides separately to allow dye-swap 

experiments in the hybrisidations for control reasons. 

Using a similar protocol as for cDNA synthesis out of total RNA, fluorescent cDNA was then 

synthesised from cRNA and purified again. 

 

Hybridisation, scanning and analysis of the cDNA microarrays 

mRNA from both C2G12-LR2 and -HR1 were compared to the mRNA of the parental C2G12 

cell line (C2G12-SFWCB) using five microarrays each. Four arrays were used for 

comparison, hybridising Cye5-labelled cDNA from either LR2 or HR1 together with Cye3-

labelled cDNA from SFWCB (normal) on two arrays and swapping dyes on the other two. 

One array was hybridised with Cye3- and Cye5-labelled cDNA from either LR2 or HR1 (self-

self experiment) for control reasons. 

For the hybridisations, 750 ng of both cDNA to be compared were mixed, enzymatically 

fragmented and transferred to the arrays. Hybridisation took place on a rotating frame in an 

oven set to 60°C for 17 hours. Then, the arrays were washed, quickly dried with nitrogen and 

scanned on a DNA microarray scanner (Agilent, USA). 

Data analysis was performed using GeneSpring software (Agilent, USA) and gene set 

enrichment analysis (GSEA) (Subramanian et al. 2005). 
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Results 

Cell sorting 

Figure 3 shows specific lactate production rates (qLac) of subclones retrieved from sorting 

experiments conducted earlier in this workgroup (Brugger 2005). Clones of the CHO cell line 

C2G12, that exhibited highest and lowest 3 % Rhodamine 123 fluorescent signal, were sorted 

into 96-well plates at one cell per well. From this sorting experiment, the subclone C2G12-

LR2, being the one with the lowest value for qLac, was picked for further evaluation, as 

subject to the present work. 

 

Fig. 3: Specific lactate production rates of C2G12 subclones sorted on low (red bars) and high (blue 

bars) Rhodamine 123 fluorescence in percent. The dark blue bar represents the corresponding value 

of the parental cell line as 100%. 

 

Sorting experiments have been redone for the present work under the same conditions as for 

the experiment shown above. This time, specific lactate production rates for subclones sorted 

on both high and low Rhodamine 123 fluorescence showed a similar range and no 

improvement in comparison to the parental cell line could be observed (Fig. 4). The subclone 

C2G12-HR1, being the clone with the highest value for qLac among clones sorted on high 

Rhodamine 123 fluorescence, was picked from an earlier sorting experiment isolating only 
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subclones with high Rh123 signal, yielding only a small number of subclones (data not 

shown). 

 

 
 
Fig. 4: Specific lactate uptake rates of sorted C2G12 subclones in percentage of the corresponding 

value of the parental cell line (dark blue bar). Blue bars indicate subclones with high and red bars 

subclones with low Rhodamine 123 fluorescence.  

 

Batch cultures 

The isolated subclone C2G12-LR2 was then further characterised in comparison to its 

parental cell line C2G12-SFWCB in a series of batch cultures in both roller bottles and 

spinner flasks. The subclone C2G12-HR1 was only characterised in batch cultures in spinner 

flasks. 

 

Batch cultures in roller bottles 

As mentioned before, batch cultures were started at an initial cell density of 2 x 105 viable 

cells per ml and at a culture volume of 200 ml. 

 



RESULTS 

 

 31  

Growth performance 

The following graphs show viable cell concentrations for the parental C2G12-SFWCB and for 

the subclone LR2 (Fig. 5). 

 

 
 

Fig. 5: Viable cell concentrations of C2G12-SFWCB (red graphs) and C2G12-LR2 (blue graphs) in 

cells/ml. 

 

The final cell concentrations that were reached in both batches are low compared to other host 

and production CHO cell lines, which is due to the tetraploid character of the C2G12 cell line. 

In batch 1, the growth curve of the LR2 subclone significantly exceeds the one of the parental 

clone, which confirms earlier findings on this subclone. In batch 2, both subclones exhibit a 

similar growth performance. Subclone LR2 might have reached a higher end cell 

concentration in batch 1, since no sample has been drawn on day 5, like in batch 2. It should 

be emphasised that the growth performance of the parental clone is substantially elevated in 

comparison to normal cultivation behaviour. 

 

Glucose uptake rates 

Below, specific glucose uptake rates of C2G12-SFWCB and -LR2 of two individual batch 

cultures in roller bottles are shown (Fig. 6) 
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Fig. 6: Specific glucose consumption rates of C2G12-SFWCB (red graphs) and C2G12-LR2 (blue 

graphs) in pg/cd. 

 

Figure 6 indicates a slightly elevated glucose consumption of the cell line C2G12-SFWCB 

when compared to -LR2. High variations of qGlc values are due to recurrent technical 

problems and day-to-day fluctuations when measuring glucose, lactate and glutamine with the 

YSI Multiparameter system. Glucose consumption rates were also calculated over the first 4 

days of the batch culture, resulting in 700 and 810 pg/cd for C2G12-LR2 for batches 1 and 2 

respectively, compared to 1030 and 890 pg/cd for C2G12-SFWCB. 

 

Lactate production rates 

 
 

Fig. 7: Specific lactate production rates of C2G12-SFWCB (red graphs) and C2G12-LR2 (blue graphs) 

in pg/cd. 

 

The lactate production rate of the LR2 subclone was significantly reduced in comparison to 

the parental clone in batch 1. The differences in metabolism appeared more clearly than in the 
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cell's glucose consumption. However, no differences in qLac values between the cell lines 

could be found in the second batch (Fig. 7). Again, as could be seen in the growth curves and 

qGlc values, SFWCB and LR2 exhibited similar performances in batch 2. 

In batch 1, qLac:qGlc ratios, which indicate how much of the glucose has been converted to 

lactate, remain above 1 on the first 4 days of the batch. In batch 2, the ratio remains below 1 

for the first 3 days in culture. 

 

Glutamine uptake rates 

 
 

Fig. 8: Specific glutamine uptake rates of C2G12-SFWCB (red graphs) and C2G12-LR2 (blue graphs) 

in pg/cd. 

 

 

Values for glutamine consumption fluctuated as well, exhibiting a tendency of slightly 

elevated qGln rates of the parental cell line, when compared to LR2 (Fig. 8). 
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Specific mAb productivity 

 
 

Fig. 9: Specific mAb productivity of C2G12-SFWCB (red graphs) and C2G12-LR2 (blue graphs) in 

pg/cd. 

 

 

In both batch cultures, the subclone LR2 shows significantly higher specific antibody 

productivity than the parental cell line SFWCB (Fig. 9). The final product titer remains about 

the same for C2G12-SFWCB at 14.6 and 19 µg/ml for the first and second batch respectively. 

C2G12-LR2 yields 49 and 60 µg/ml in the two batches. 

 

Summary 

Important benchmark data of the two batches in the roller bottles are summarised in tables 1 

and 2. 

 

 
viable 
cumulative 
celldays 

∅ qGlc ∅ qLac ∅ qGln ∅ qP 
final product 
titer (µg/ml) 

LR2 6.12 e06 697 600 165 8.0 49.0 

SFWCB 3.57 e06 1029 1001 156 5.4 19.1 

 
Table 1: Performance summary of C2G12-SFWCB and -LR2 in the first batch cultivated in roller 

bottles. 
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viable 
cumulative 
celldays 

∅ qGlc ∅ qLac ∅ qGln ∅ qP 
final product 
titer (µg/ml) 

LR2 6.60 e06 1030 808 176 9.2 60.4 

SFWCB 6.24 e06 1100 890 178 2.3 14.6 

 
Table 2: Performance summary of C2G12-SFWCB and -LR2 in the second batch cultivated in roller 

bottles. 

 

The C2G12-LR2 showed comparable growth in both roller batches. However, values for qGlc 

and qLac increased by 40 and 30% in the second batch, respectively. The specific 

productivity exceeded the one of SFWCB, especially in the second batch, which led to 2.5- 

and 4-fold increase in final antibody titer when compared to the parental cell line. 

The C2G12-SFWCB on the other hand exhibited constant metabolic rates in both batches. In 

batch 2, the viable cumulative cell integral increased by a factor of 1.75 in comparison to 

batch 1. It remains unclear, wether the strong growth performance happened at the expense of 

specific mAb productivity, which decreased more than two-fold, or if then again declined 

mAb production facilitated better growth. 

 

Batch cultures in spinner flasks 

Metabolic and growth performances of C2G12-SFWCB, -LR2 and -HR1 were analysed and 

compared in 125 ml spinner flasks. Additionally, stability of metabolic characteristics of 

subclone LR2 was analysed in batch 1. Therefore, in this batch this subclone was run at 7th 

and 42nd passage, respectively. The C2G12-LR2 subclone in 7th passage was kept in 

cultivation and used for the second batch. 

Transfer of the cells from T-flasks and roller bottles to a stirred cultivation system like 

spinner flasks, implied an increase in shear stress and a very long adaptation phase was 

necessary. 

As described for the batch cultures in roller bottles, batches in spinner flasks were started at 

an initial viable cell count of 2 x 105 cells /ml and a starting volume of 100 ml. 
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Growth performance 

 
 

Fig. 10: Viable cell counts of C2G12-LR2 in 7. passage (light blue line), LR2 in 42. passage (dark blue 

line), SFWCB (red line) and HR1 (green line). 

 

 

Cell concentrations for the subclone LR2 appeared constantly higher than the other clones 

over the whole batch phase in both cultivation experiments. The parental cell line showed a 

severe lag phase in batch 1, which allowed subclone HR1 to outperform the SFWCB until day 

5. In the first batch, all three cell lines were still struggeling to adapt to the spinner flasks, 

exhibiting viabilities between 80 and 89%. Batch 2 clearly showed the differences of the two 

subclones in comparison to the parental cell line as far as their growth capabilities are 

concerned (Fig. 10). 

 

Specific glucose uptake 

 
 

Fig. 11: Specific glucose uptake rates of C2G12-LR2 in 7. passage (light blue line), LR2 in 42. 

passage (dark blue line), SFWCB (red line) and HR1 (green line). 

 



RESULTS 

 

 37  

Again, the LR2 subclone showed the lowest qGlc values throughout both batch experiments, 

apart from the value for day one for the LR2 in 42nd passage, which was probably due to 

measurement errors of the YSI Multiparameter system. Glucose uptake rates of the subclone 

HR1 and the parental clone SFWCB exhibited no distinct differences in the first batch. The 

reason for that was plausibly the extended lag phase of the SFWCB as can be seen in the 

growth curve. In the second batch, all three cell lines conserved constant differences in their 

qGlc values over the batch phase (Fig. 11). 

 

Specific lactate production 

 
 

Fig. 12: Specific lactic acid formation rates of C2G12-LR2 in 7. passage (light blue line), LR2 in 42. 

passage (dark blue line), SFWCB (red line) and HR1 (green line). 

 

 

LR2 exhibited the lowest qLac rates in both batches. The parental cell line again showed 

unusual high lactic acid formation beginning from day 3. Specific lactate production rates in 

the second batch confirmed the results for glucose uptake. All three cell lines showed values 

that constantly differed from each other over the whole batch phase (Fig. 12). The close 

relation between glucose uptake and lactate production can be seen in the comparison of both 

figures. 

 

Specific glutamine uptake 

Figure 13 shows specific glutamine consumption rates for all three subclones. No distinct 

differences between the subclones in glutamine metabolism  could be observed. 
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Fig. 13: Specific glutamine uptake rates of C2G12-LR2 in 7. passage (light blue line), LR2 in 42. 

passage (dark blue line), SFWCB (red line) and HR1 (green line). 

 

 

Specific mAb productivity 

 
 

Fig. 14: Specific antibody productivity of C2G12-LR2 in 7. passage (light blue line), LR2 in 42. 

passage (dark blue line), SFWCB (red line) and HR1 (green line). 

 

 

In spinner flasks, C2G12-LR2 had the lowest specific prodctivity of all three subclones, 

which remained the same irrespective of the age of the subclone. Interestingly, the parental 

cell line SFWCB reached higher productivity in the first batch, where the cell line obviously 

had problems with growth. Productivity of the SFWCB reached top level on day 4, together 

with its highest growth rate in the batch phase. MAb productivity of the subclone HR1 was 

consistent with LR2 in the first batch, but exceeded both other subclones in the second batch 

(Fig. 14). 
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Rhodamine 123 fluorescence 

 
 

Fig. 15: Relative Rhodamine 123 fluorescence values of C2G12-LR2 in 7. passage (light blue line), 

LR2 in 42. passage (dark blue line), SFWCB (red line) and HR1 (green line). 

 

 

In both batches, no distinct differences in Rhodamine 123 fluorescence values for all three 

subclones could be observed. In batch 2, fluorescence values differed slightly but not 

significantly in the first three days of the batch experiment. Increase of fluorescences in the 

first two days of the batches could be observed (Fig. 15). However fluorescence values for 

Rhodamine 123 remain more or less constant over the whole batch phase, which is not 

consistent with decreasing nutrient uptake and lactate production rates. 

 

Summary 

In tables 3 and 4, results from batch experiments with C2G12-LR2 in 7th and 42nd passage, -

SFWCB and -HR1, are summarised. Values are calculated over the whole batch period. 
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viable 

cumulative 

celldays 

∅ qGlc 

(pg/cd) 

∅ qLac 

(pg/cd) 

∅ qGln 

(pg/cd) 

∅ qP 

(pg/cd) 

final titer 

(µg/ml) 

LR2 7.P 5.85 e06 845 507 205 8.3 48.6 

LR2 42.P 5.78 e06 777 463 199 6.4 37.0 

SFWCB 3.17 e06 1356 1055 227 11.4 36.1 

HR1 3.56 e06 1326 1032 209 7.9 28.2 

 
Table 3: Summary of spinner batch 1. 

 

 

 

viable 

cumulative 

celldays 

∅ qGlc 

(pg/cd) 

∅ qLac 

(pg/cd) 

∅ qGln 

(pg/cd) 

∅ qP 

(pg/cd) 

final titer 

(µg/ml) 

LR2 5.76 e06 656 418 164 4.9 28.0 

SFWCB 3.97 e06 896 695 183 9.0 35.6 

HR1 2.69 e06 1168 1075 243 7.2 19.3 

 
Table 4: Summary of spinner batch 2. 

 

 

The C2G12-LR2 showed a consistent performance. The values for viable cumulative celldays 

and all rates related to the energy metabolism remained constant in both batches and 

regardless of the age of the culture. Specific productivity, however, appeared to decrease with 

age of the culture, leading to a lower final antibody titer than for the parental cell line in the 

second batch. 
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C2G12-SFWCB showed a severe distortion in growth and metabolism in the first batch. A 

very long lag phase led to a decrease in viable cumulative celldays and increased metabolic 

rates. Its specific productivity was higher than the ones of the two subclones. Regardless of 

the bad performance in the first experiment, final product titers were constant for both batch 

cultures. 

The C2G12-HR1 exhibited a comparable metabolic performance in batch 1 and 2. Faster 

growth in the beginning of the first batch led to a higher viable cell integral, but metabolic 

rates and production rates are similar in both batches. The C2G12-HR1 yields less final 

antibody titer compared to the other cell lines due to its weak growth performance. 

 

Transcriptional analysis 

Analysis of self-self experiments for both subclones should help setting a threshold for fold 

change in gene expression. The fold change thresholds were set to values that were exceeded 

or underscored by only 0.5% of the genes in the self-self experiments. Genes with fold 

changes above 1.3 and beyond 0.7 were identified as regulated and included in the analysis. 

For the subclone LR2, 405 genes were found up- and 64 genes downregulated, for HR1, 307 

genes were up- and 125 genes were downregulated, with p-values below 0.01. 

 

For further analysis, a GSEA-add-on to Microsoft Excel was used. The gene sets that were 

used resembled those defined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) as 

mentioned in the introduction. Therefore, the analysis part is split into four sections, dealing 

with the KEGG categories metabolism, genetic information processing, environmental 

information processing and cellular processes. 

Since both C2G12 subclones LR2 and HR1 exhibited opposite growth and metabolic 

characteristics compared to the SFWCB, gene sets that are upregulated in the one subclone 

and downregulated in the other would be particularly interesting. Unfortunately, very few 

gene sets were regulated that way. Most regulations were found to be unilateral, showing 

difference to the reference SFWCB only for one subclone. All given transcriptional 

regulations in the next sections, if not stated otherwise, are of course allways in comparison to 

SFWCB as reference. 
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Metabolism 

The section Metabolism contains the most regulated gene sets by far. 12 gene sets were found 

to be regulated, three of them differentially for HR1 and LR2, the rest were regulated for one 

subclone only. 

 

Glycerophospholipid metabolism: 

This subset of genes describes the anabolic and katabolic metabolism of glycerophospholipids 

around the key elements 1,2-diacyl-sn-glycerol-3-phosphate, phosphatidylethanolamine and 

phosphatidylcholine (lecithin) (part of the pathway in Fig. 16). Conversion of phosphatidyl-L-

serine to phosphatidylethanolamine is catalysed by the enzyme phosphatidylserine 

decarboxylase (pisd), the reverse reaction by phosphatidylserine synthase (ptdss). The first 

one appears to be strongly upregulated in LR2 with no change in HR1, the latter is reduced in 

LR2 and slightly elevated in HR1. Additionally, HR1 shows a severe decrease of mRNA for 

the enzyme ethanolamine-phosphate cytidylyltransferase, which activates 

phosphoethanolamine by addition of a cytidyl residue (CDP), which is then converted to 

phosphatidylethanolamine. Subclone LR2 shows highly elevated transcription in a pre-stage 

of building 1,2-diacyl-sn-glycerol-3-phosphate. Reactions catalysed by upregulated enzymes 

are marked with bold arrows in all pathway figures below. 
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Fig. 16: Partial pathway glycerophospholipid metabolism from KEGG. 

 

Oxidative Phosphorylation: 

The pathway oxidative phosphorylation, which comprises all genes of the mitochondrial 

respiratory chain, appears to be downregulated in LR2 and upregulated in HR1. Decreased 

mRNA contents of certain subunits of the enzyme cytochrome c oxidase in LR2 (and vice 

versa elevated in HR1) can be held responsible for that. Also, all but one (Ndufa13) subunits 

of the gene for NADH dehydrogenase reach significantly higher transcription levels in HR1. 

 

Synthesis and degradation of ketone bodies & Steroid biosynthesis: 

The KEGG pathway synthesis and degradation of ketone bodies is structured around 

acetoacetyl-CoA as key factor and both its condensation with acetyl-CoA from glycolysis and 

lysis of the resulting product, setting free acetyl-CoA again. Steroid biosynthesis comprises 

the mevalonate (starting with 3-hydroxy-3-methylglutaryl-CoA) and the non-mevalonate 

pathway (starting from glyceraldehyde-3-phosphate) pathway, both resulting in isopentenyl-
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pyrophosphate as the center point. After conversion to farnesyl-PP, the pathway is split into 

biosynthesis of vitamin E, cholesterol and precursors of phytosterols. 

A close relation between these two pathways came up during microarray analysis. Whereas 

HR1 was left unaffected, LR2 exhibited an upregulation of the gene 3-hydroxy-3-

methylglutaryl-Coenzyme A synthase with simultaneous decrease of 3-hydroxy-3-

methylglutaryl-Coenzyme A lyase. Acetoacetyl-CoA is converted into the intermediate (S)-3-

hydroxy-3-methylglutaryl-CoA, an entering point to steroid biosynthesis, which seems to be 

accumulated, since reaction to acetoacetate catalysed by the lyase mentioned above is 

decreased (Fig. 17). 

 
 

Fig. 17: Gene set synthesis and degradation of ketone bodies from KEGG. 

 

 

(S)-3-hydroxy-3-methylglutaryl-CoA is the starting point for the mevalonate pathway (Fig. 

18) of KEGG category steroid biosynthesis, which as a whole is also indicated as upregulated 

by gene set enrichment analysis. Especially genes that are responsible for the turnover of (S)-

3-hydroxy-3-methylglutaryl-CoA into mevalonate and isopentenyl-PP into farnesyl-PP 



RESULTS 

 

 45  

(directly or via dimethylallyl-PP and geranyl-PP), reach distinctly higher mRNA copy 

numbers in LR2 than in SFWCB .  

 
 

Fig. 18: Mevalonate pathway of KEGG subset steroid biosynthesis.  

 

 

Farnesyl-PP is substrate to synthesis of e. g. carotenoids, cholesterol and phytosterols. LR2 

shows elevated mRNA levels for some more genes along sterol biosynthesis and a specific 

and significant downregulation of the gene squalene epoxidase that produces (S)-squalene-

2,3-epoxide. From this point on, sterol biosynthesis is split into three pathways, which are 

synthesis of either cholesterol, stigmasterol or vitamin E. 

 

Sphingolipid metabolism: 

Sphingolipids are important parts of lipid bilayer membranes in the cell. This KEGG pathway 

deals with synthesis and degradation of sphingolipids around the two main elements 

sphingosine and ceramide (Fig. 19).  

 

 
 

Fig. 19: Ceramide. The part highlighted orange is sphingosine. 
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The whole gene set seems to be elevated in LR2, which two distinct, highly upregulated genes 

can be held accountable for. The first one, acidic glucosidase beta, is responsible for turnover 

of glucosyl-ceramide, that results from degradation of glycosphingolipids, into ceramide. The 

second one, N-acylsphingosine amidohydrolase, splits the fatty acid off of ceramide, leaving 

sphingosine. 

 

Genetic information processing 

Both LR2 and HR1 seem to have a slight deficit in ribosomal activity compared to the 

reference clone SFWCB. The KEGG pathway ribosome, which mainly consists of genes of 

ribosomal subunits, is significantly downregulated in both subclones. 

 

Environmental Information Processing 

Gene sets in this KEGG pathway are involved in cell-cell or cell-ECM communication and 

interaction in fields like Notch, phosphatidylinositol and Wnt signalling pathways, as well as 

ECM-receptor interaction and ion-coupled transmembrane transport. Some of these 

pathways appear to be differentially regulated in the C2G12 subclones in comparison to the 

parental cell line. Wnt- and phosphatidylinositol signal pathways are slightly elevated in HR1 

and decreased in LR2, Notch signalling and ECM-receptor interaction are elevated in LR2 

and decreased in HR1. Due to difficulties in understanding the mode of action of these 

pathways in an immortalised single cell suspension culture, obtained expression data is left 

out of the present work. 

 

Cellular Processes 

All other pathways and processes inside the cell are allocated to the KEGG category Cellular 

Processes. It contains a wide variety of subsets, that partly can again not be interpreted since 

the cells remained no longer in their original tissue environment. The gene set cell cycle 

exhibits a negative score for both the HR1 and the LR2 subclone, which is surprising bearing 

in mind the LR2’s improved growth characteristics. However, there are differences in 

expression the genes are scanned one by one. 
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Discussion 
Immortalised mammalian cell lines lack the ability to efficiently metabolise glucose to CO2 

and water. Most of the glucose enters the glycolytic pathway, but instead of being transferred 

into the mitochondria and into the citric acid cycle, the resulting pyruvate is converted to 

lactate. This conversion discharges only a fraction of the energy, that could be achieved in the 

citric acid cycle. Therefore, glutamine has to be substituted, which can nearly completely 

enter the citric acid cycle and ensures energy supply for the cells. Metabolism of glutamine in 

the cell causes release of ammonia into the cytoplasma and the mitochondrial matrix, which 

interferes with the glycosylation machinery in general and terminal sialylation in particular 

(Grammatikos et al. 1998, Valley et al. 1999). Reduction and/or change in sialylation patterns 

would have a drastic impact on the effect and retention of these products in the human body. 

 

The ideal immortalised mammalian cell would act as if it was still part of its original tissue 

and completely oxidise and derive most of the energy it needs from glucose, which would 

make supplementation of glutamine dispensable. Growth inhibititory or toxic effects of the 

formation of lactate and ammonia would be largely reduced, allowing longer cultivation 

periods, higher cell counts and therefore higher product yields. Due to the complexity and 

integration of the mammalian energy metabolism, the feasability of engineering an ideal cell 

is unlikely. However, many attempts have been made to achieve some improvement in this 

field, using diverse approaches. 

 

The present work makes use of a certain heterogeneity in metabolic characteristics within a 

cell population. Due to mechanisms such as transcriptional and translational regulation, 

epigenetic gene silencing, or minor mutations, the energy metabolism and therefore values of 

nutrient uptake and waste product secretion can differ largely from cell to cell. This fact can 

be exploited for developement of cell lines with an improved metabolism, i. e. a more 

efficient utilisation of glucose.  

 

(Borth et al. 1993) have shown a correlation between the intensity of the mitochondrial 

membrane potential (MMP) and the cell’s actual glucose uptake rate, which is again largely 

dependent on the glucose concentration in the medium. The lipophilic cationic dye 

Rhodamine 123 has repeatedly been used to measure the MMP of different cell lines, making 

use of quenching of the Rh123 fluorescence in proximity of electrostatically charged 
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environments (Chen 1989, Baracca et al. 2003, Salvioli et al. 1997, Johnson et al. 1981). 

Fluorescence activated cell sorting (FACS) allows to isolate single cells with the desired 

metabolic characteristics. Additionally, transcriptional and/or translational analysis (genomics 

and proteomics) of isolated, improved subclones, could help elucidate responsible changes in 

the mechanisms of metabolism. 

 

Antibody-producing CHO cell lines have been stained with Rhodamine 123 and sorted for 

both low and high Rh123 fluorescence and expanded. Glucose metabolism of retreived 

subclones was analysed in short batch cultures, showing a strong tendency towards low qLac 

values for subclones sorted for low Rh123 signal and vice versa for subclones sorted for high 

Rh123 signal. The most promising candidate subclone (C2G12-LR2) was analysed further. A 

subclone sorted for high Rh123 fluorescence was analysed as well (C2G12-HR1). However, a 

second sorting experiment for both low and high Rh123 fluorescence did not succeed, with 

collected values for qLac being equally distributed for both low Rh123- and high Rh123-

subclones. An explanation could be a certain non-coherence of the Rhodamine 123 signal to 

the cell’s metablic status, since the mitochondrial membrane potential reacts to other events in 

the cell as well. For instance, an early sign of apoptosis is the elevation of the MMP, which 

might corrupt the Rh123 fluorescent signal. Repeated bulk sorting of cells with a low Rh123 

signal could help in getting rid of cells with unspecific Rh123 fluorescence and enrich cells 

with constant signals. Furthermore, an artificial increase of the cells’ glucose uptake rate, e. g. 

by elevating the glucose concentration in the medium before the sorting experiment or by 

sorting at an early timepoint in culture, could lead to a better resolution of differences in 

metabolism between cells. 

 

The metabolic characteristics of the subclones C2G12-LR2 and -HR1 were analysed by a 

series of batch cultures in comparison to the parental cell line C2G12-SFWCB (serum-free 

working cell bank). The cultivation experiments were carried out in two different types of 

culture vessels, roller bottles and spinner flasks. Heavy formation of cell aggregates in the 

roller bottles, especially at the end of the batch cultures, was the reason to switch to stirred 

culture vessels to redo the experiments. Due to their sensitivity to shear stress, adaptation of 

the C2G12 subclones to spinner flasks required lots of time and patience. Problems were 

finally resolved with addition of an anti-clumping agent (Gibco, USA), which decreased cell 

aggregation. 
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Batch experiments in the roller bottles showed highly different performances for the parental 

cell line. In contrast to the first batch, where a significant distinction not only in growth speed 

and final cell concentration, but also in specific metabolic rates is clearly visible, the SFWCB 

exhibited a performance, that was virtually identical to the one of LR2 in the second batch. 

The viable end cell concentration in batch 2 was high for both clones compared to earlier 

findings. In case of the SFWCB, the growth speed appeared to happen at the expense of 

specific productivity, which decreased from batch 1 to batch 2. The LR2 had a higher 

productivity and kept it stable in both batches, which led to a substantially higher antibody 

yield than for the SFWCB. The reason for this significantly altered growth of the SFWCB is 

likely just a natural variation in performance of mammalian cell lines, which is partly due to 

cell age, pre-cultivation of the cells, transfer of the cells while they are still in an exponential 

growth phase, starting conditions and more. Both cultures were started sequentially out of the 

same culture with a time-lag of six weeks, which equals about 12 passages. However, it could 

be shown in the spinner experiments, that these characteristics were stable for over 40 

passages, enduring even intermittent drops of viabilities to around 60% in the process of 

adaptation to the spinner flasks. 

 

In both batch cultures in spinner flasks, the subclone C2G12-HR1, sorted for high Rh123 

fluorescence, and in the first batch, two cultures of different age of the LR2 (7th and 42nd 

passage) were included in the experiments. The subclone LR2 showed consistently improved 

growth characteristics and metabolic rates. The viable cell integral increased about 50%, 

overall glucose uptake decreased by at least 30%, and lactate production rates by at least 40% 

in comparison to the parental cell line. Consumption of glutamine showed no significant 

change. The age of the culture appeared to have an impact on specific productivity of the LR2 

subclone, as batch experiments started out of cultures in the 42nd passage exhibited a slight 

decrease in specific antibody production. The younger culture was continued for another 12 

passages and used for the second spinner batch experiment, showing strong decrease in 

productivity. The parental cell line had troubles growing in the first batch. It was exceeded in 

growth and equalled in its metabolic rates by the subclone HR1, which had shown inferior 

performance in the whole preceding cultivation and spinner adaptation process. Values for 

qGlc and qLac are increased compared to the ones of the second batch and also to the batches 

in the roller bottles. However, specific productivity of the parental cell line heavily increased 
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in comparison to cultivation in roller bottles, leading to a final mAb titer higher than in the 

LR2 cultures. Together with the fact that viabilities were below 90% for the whole batch 

culture, this probably indicates an incomplete adaptation to the higher requirements on 

robustness in spinner flasks. Regarding growth and metabolism, the subclone HR1 exhibited 

opposite characteristics compared to LR2, apart from specific mAb productivity, which could 

be stably maintained in both batch experiments.  

 

Rhodamine 123 fluorescence was also monitored daily in the spinner batch experiments. 

However, no differences in fluorescent signals could be found, that would resemble the 

differences of the clones regarding their metabolism. Signal intensities generally increased 

between days 1 and 2, which may have its reasons in the lag phase of cells at the beginning of 

a batch, where the cells adapt themselves to the new environment (fresh medium, lack of 

growth factors, changed pH and pO2). After adaption, they start to grow exponentially, take 

up more nutrients, thus elevating their MMP and therefore Rhodamine 123 fluorescence. Lack 

of a fluorescence decrease over the batch phase, resembling declining nutrient uptake rates, 

either implies a constant MMP during batch culture, or raises the question, to which degree 

Rh123 staining of CHO cells in culture is indeed sensitive for mitochondrial activity. 

However, it should be stated, that the obtained results are contradictory to earlier outcomes of 

similar experiments (Brugger 2005). 

 

The switch from roller bottles to spinner flasks appeared to have an impact on both LR2 and 

SFWCB. First, both clones yielded a slightly smaller viable cell integral in the spinner flasks, 

which is likely a result of the this cell line’s sensitivity to shear stress. More importantly, 

specific antibody productivity significantly increased for the parental cell line SFWCB. At 

first, LR2 exhibited no changes in productivity in the first spinner batch compared to 

cultivation in the roller bottles, but had troubles maintaining it with increasing age of the 

culture. However, it could be shown in both cultivation systems, that sorting for low 

Rhodamine 123 fluorescence yielded a subclone, that exhibited reduced consumption of 

glucose and formation of lactate combined with significantly accelerated growth. These 

properties remained stable for at least 24 weeks. Sorting for high Rh123 fluorescence on the 

other hand yielded a subclone (HR1) with the exact opposite metabolic behaviour as the low 

Rh123 subclone (LR2), given the parental cell line as reference. Glutamine consumption rates 

and the qLac:qGlc ratios of both the LR2 and HR1 subclone and the parental cell line 
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remained the same. Therefore, reduction of glutamine uptake and therefore a decreased 

release of ammonia into the cell could not be achieved. Unaltered qLac:qGlc ratios suggest a 

similar efficiency in glucose metabolism in both subclones and the SFWCB. However, the 

reduced glucose uptake and lactate production of the subclone LR2 apparently results in 

highly improved growth characteristics. 

 

 

As explained in a previous section, the collected data from microarray analysis was 

interpreted on the basis of biological pathways according to the Kyoto Encyclopedia of Genes 

and Genomes (KEGG). Negative or positive scores were allocated according to the magnitude 

of up- and down-regulation of the individual genes of these pathways. 

 

Korke et al. (2004) analysed transcriptional profiles of cells with a shifted metabolism, which 

revealed clear changes in expression of key glycolytic and other metabolism-realted genes. In 

this case, however, transcriptional analysis of the two subclones in comparison to their 

parental cell line, did not give any “easy” or obvious explanations for their phenotypical 

metabolic characteristics. Also, it should be emphasised, that the present microarray 

experiments rely on only one batch experiment, thus probably explaining the existence of 

both “reasonable” and “unreasonable” results. More batch experiments and microarray 

analysis of more RNA samples from different time points during the batches should help 

exclude coincidental effects and reveal consistent changes in gene expression. The true 

biological repeat of this experiment would be of course the retrieval and transcriptional 

analysis of more improved subclones from different parental cell lines. 

 

Unsurprisingly, most of the regulated pathways in both LR2 and HR1 were part of the KEGG 

category metabolism. However, key elements of the energy metabolism were generally left 

unaffected, with the exemption of oxidative phosphorylation. OxPhos appears to be 

downregulated in a subclone that takes up less glucose and produces less lactate (LR2) than 

its parental cell line. This somewhat contradicts the original assumption, that LR2 is capable 

of shuffling more glucose, or pyruvate, into the tricarboxylic acid cycle (TCC). This fact is 

even more interesting, as the subclone HR1 exhibits a slight upregulation of the OxPhos 

pathway. Microarray experiments show that differential expression of only cytochrome c 

oxidase and NADH dehydrogenase are responsible for regulation of the OxPhos pathway. 
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This leaves the question, how the LR2 subclone meets its energy requirements with unaltered 

glutamine consumption, reduced glucose uptake and obviously decreased respiratory activity. 

It seems as if this subclone is just more “frugal” than its parental cell line.  

Strictly speaking, transcriptional analysis did not come up with any more information that can 

be directly related to explaining the oppostitional metabolic phenotypes of the C2G12 

subclones. 

  

However, LR2 exhibited an increase of activity in parts of its lipid metabolism. It appears that 

more pyruvate from different sources is pumped into the mevalonate (or 3-hydroxy-3-methyl-

glutaryl-CoA reductase) pathway than in the parental cell line. Several genes that are 

responsible for conversion of acetoacetyl-coenzyme A to 3-hydroxy-3-methylglutaryl-

Coenzyme A (HMGCoA) and further to farensyl-pyrophosphate and geranylgeranyl-PP 

(mevalonate pathway) are strongly upregulated. The mevalonate pathway is an important 

cellular metabolic pathway present in all higher eukaryotes and many bacteria. It is important 

for the production of dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate 

(IPP), which serve as the basis for the biosynthesis of molecules used in processes such as cell 

membrane maintenance, hormones and N-glycosylation (Swanson and Hohl 2006). It is also a 

part of steroid biosynthesis. Farnesyl-PP and Geranylgeranyl-PP are substrates for synthesis 

of – among others – carotenoids, cholesterol and phytosterols and are needed for prenylation 

of membrane-anchored proteins, which is the attachment of lipid chains to proteins to 

facilitate their interaction with the cell membrane. For LR2, upregulation of the mevalonate 

pathway first and foremost means availability of substrates as building blocks of membranes, 

which is needed due to the higher growth rate of the subclone. Intermediates of the 

mevalonate pathway are substrates for vitamines and hormones, that are crucial for the cell. 

Also, growth factor signalling largely depends on membrane anchored, prenylated G-proteins, 

which might add to the subclone’s improved growth characteristics. 

Elevated transcription levels of several genes in one pathway leading to more product or 

outcome may not essentially cover the whole subject. Increase of enzyme expression may be 

due to abundance or deficiency of a specific substrate. Entry points of two pathways of the 

lipid metabolism that require acetyl-CoA as substrate are upregulated (glycerophospholipid 

metabolism and the mevalonate pathway) in LR2. However, deducing this fact to the origin of 

actetyl-CoA, the linkage between glycolysis and TCC, would be too speculative, given the 

small amount of transcriptional analysis data available. 
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Several pathways have been investigated in the other three KEGG categories (genetic 

information processing, environmental information processing and cellular processes), that 

were employed for the present transcriptional study. Although slight differential regulations 

of some of these pathways could be found in the C2G12 subclones in comparison to the 

parental clone, it is difficult, if not yet impossible to interprete information, which has been 

derived from an immortalised, single cell suspension culture, about pathways originally active 

in multicellular organisms. 
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Conclusion 

Immortalised mammalian cell lines, though crucial for today’s biotechnological industry, 

have a defect energy metabolism, that might undercut their essential virtues, such as proper 

glycosylation. In the present work, it could be shown, that these cell lines bear the possibility 

of an improvement of their metabolism, which likely has a positive effect on their growth 

characteristics as well. With a simple staining procedure and the help of fluorescence 

activated cell sorting (FACS), a subclone, that exhibited a significantly reduced nutrient 

uptake and waste production in combination with accelerated growth, could be isolated out of 

an established, stably antibody-producing cell line. These new properties were shown to be 

stable over a period of about 6 months. An attempt to elucidate the background of this effect 

on the transcriptional level employing microarray techonology unfortunately left most of the 

questions open. It can be stated that the metabolic phenotype of the isolated subclone cannot 

be deduced from alterations in key pathways of the energy metabolism. However, a 

significant upregulation of a certain part of lipid metabolism (the mevalonate pathway), that 

among others provides substrates and building blocks for membranes, hormones, vitamines 

and protein lipidation, might contribute to the improved performance of the subclone. More 

analysis on this subclone and on others in the future might clear up the underlying 

transcriptional, translational and regulatory status of this improvement. 

Due to its simplicity and noninvasive nature, this staining and sorting technique can be 

proposed as an improvement tool for for mammalian cell lines, not only in the process of 

development, but also for already existing host and production cell lines. 
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