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Abstract

Snow avalanches have always been a big threat for people in mountainous
areas. Increased population and the exploitation of outlying valleys for win-
ter sport tourism has aggravated the situation in the 20th century and a lot
of money is spent to protect endangered areas.
At the same time scientific interest has risen and various models have been
proposed to describe the complex behaviour of snow avalanches with differ-
ent approaches having different advantages and disadvantages.
The topic of this dissertation is the interaction between granular flows and
obstructions of different shape.
Two very different approaches will be applied to model the granular material
numerically, on one side a continuum mechanical model, based on Savage-
Hutter theory (1989) and on the other side the Discrete Element Method
(DEM) by Cundall and Strack (1979).
The continuum mechanical model of Savage and Hutter has proven in the past
to be an appropriate model to simulate dense-flow avalanches. The depth-
integrated formulation is elegant, but presumes a shallow flow. This condition
is not fulfilled if obstructions with steep fronts, like walls or dams, are hit,
since material is accumulated there. The limits of the existing model are pre-
sented and different approaches to building obstructions into the model are
discussed. Further, the numerical solver, the NOC-scheme (Non-Oscillatory
Central Difference) with TVD-limiter (Total Variation Diminishing) is ex-
tended by the Adaptive-Mesh-Refinement method (AMR), which provides
local grid refinement. The suitability of the extended model is discussed for
different obstructions and compared to experiments by Chiou (2006).
As an alternative to the continuum mechanical model, DEM is discussed,
following the work of Teufelsbauer et al. (2009). The model is programmed
in the commercial software PFC3d. The advantage of this method is the
completely three-dimensional modelling of the mass. The granular mass is
simulated by small balls and the motion and the interaction among each
other is described by simple physical laws. The large number of elements
needed requires high computational effort, though. DEM is compared to the
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same experiments by Chiou.
Additionally, impact forces of the granular material on the obstruction are
computed for both models. In addition to the measurements of Chiou, mea-
surements by Morigutchi et al. (2009) are employed.
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Zusammenfassung

Schneelawinen sind seit jeher einen großes Risiko für Menschen in Gebirgsre-
gionen. Durch die dichter werdende Besiedlung und die Erschließung entlege-
ner Täler durch den Wintersporttourismus hat sich die Lage im 20. Jahrhun-
dert deutlich verschärft. Viel Geld wird in die Sicherung gefährdeter Gebiete
investiert.
Im gleichen Zeitraum ist auch das Interesse einer wissenschaftlichen Be-
schreibung gestiegen. Verschiedene Modelle wurden vorgeschlagen um den
komplexen Abgang einer Schneelawine zu beschreiben. Die unterschiedlichen
Ansätze haben alle ihre Vor- und Nachteile.
In dieser Dissertation wird die Interaktion von granulären Flüssen mit ver-
schiedenförmigen Hindernissen behandelt. Zwei sehr unterschiedliche Ansätze
werden zur numerischen Modellierung des granulären Materials herange-
zogen, zum einen ein kontinuumsmechanisches Modell, basierend auf der
Savage-Hutter-Theorie (1989), zum anderen die Diskrete-Elemete-Methode
(DEM) von Cundall und Strack (1979).
Das kontinuumsmechanische Modell von Savege und Hutter hat sich in der
Vergangenheit als geeignetes Modell für die Simulation von Fließlawinen
bewährt. Die tiefenintegrierte Formulierung ist elegant, setzt aber eine nied-
rige Fließhöhe voraus. Diese Bedingung wird beim Auftreffen auf Hindernisse
mit steiler Front, wie Wänden oder Dämmen, nicht mehr erfüllt, da sich das
Material dort anstaut. Die Grenzen des vorhandenen Modells werden aufge-
zeigt und unterschiedliche Ansätze Hindernisse in die Topographie einzubau-
en diskutiert. Weiters wird der numerische Lösungsalgorithmus NOC-Schema
(Non-Oscillatory Central Difference) mit TVD-Begrenzer (Total Variation
Diminishing) mit der Adaptive-Mesh-Refinement-Methode (AMR) erweitert,
die eine lokale Netzverfeinerung ermöglicht. Die Eignung des erweiterten Mo-
dells wird für verschiedene Hindernissen untersucht und mit experimentellen
Ergebnissen von Chiou (2006) verglichen.
Als Alternative zum kontinuumsmechanischen Modell wird die DEM disku-
tiert, folgend der Arbeit von Teufelsbauer u.a. (2009). Das Modell wird in
der kommerziellen Software PFC3d programmiert. Der Vorteil dieser Metho-
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de ist die vollständige dreidimensionale Modellierung der Masse. Die gra-
nuläre Masse wird durch kleine Bälle simuliert. Deren Bewegung und das
Aufeinandertreffen der Bälle miteinander werden durch einfache physikali-
sche Gesetzte beschrieben. Durch die erforderliche hohe Anzahl an Bllen ist
die Methode aber sehr rechenaufwendig. DEM wird für die Simulation der
gleichen Experimente von Chiou herangezogen und verglichen.
Des Weiteren werden für beide Modelle die Aufprallkräfte des granulären
Flusses berechnet, die auf das Hindernis wirken. Zusätzlich zu Messergebnis-
sen von Chiou werden auch Kraftmessungen von Morigutchi u.a. (2009) zu
Vergleichen herangezogen.
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Chapter 1

Introduction

People living in mountainous area had acquired considerable experience to
deal with snow avalanches and to avoid high risk areas long before scientists
started to work on this topic. Scientists, intellectuals or artists rarely visited
mountainous regions for long time, so most publications of that time were
based on imagination rather than observation. Early descriptions showed
avalanches as huge snowballs rolling down the slope. This image can be
found on various old paintings and even modern ones, like comic strips.
The scientific research of snow avalanches started in Switzerland with the first
documentations in the 18th century. In the 19th century also other countries
became interested. In that time, most effort was made to protect the newly
built infrastructure like railroad tracks or mining facilities. The first insti-
tutes, dealing with avalanches in organized ways, were not established before
the 1930s. Again it was Switzerland that did pioneering work and founded
the Eidgenössisches Institut für Schnee- und Lawinenfoschung (EISLF, Swiss
Federal Institute of Snow and Avalanche Research). After World War II also
other countries, all around the world, founded similar institutes and many of
them were strongly influenced by the Swiss group.
Modern avalanche protection has to be diverted into two very different fields,
which strongly interact. One field is the observation, simulation and estima-
tion of snow covers. This starts at meteorology and field observations to
estimate the amount of snow. Closely related is the observation of the struc-
ture of the snow cover. Snow can be very different and its consistency changes
permanently throughout winter. A snow cover can therefore be from stable
to instable state. These observation are used by local authorities to inform
and warn people, especially skiers, and, if necessary, to evacuate endangered
areas or close roads. To avoid dangerous situations, explosives are often used
to release small avalanches, so that no critical masses can build up. Moreover,
snow fences are built to avoid transportation of snow by wind into critical
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Chapter 1: Introduction

release zones. Snow bridges are built directly in the release zone, to a avoid
a release, but they fail if the snow cover is higher than the construction.
The second field is the simulation and estimation of moving avalanches.
There are two different kinds of snow avalanches namely powder snow avalanche
and dense flow avalanche. Different models are needed for both types. All
avalanches start as dense flow avalanches. They consist of dense granular ma-
terial like fluids. On steep terrain a powder snow layer can build up above
the dense flow forming a powder snow avalanche. Such powder snow layers
consist of relatively small ice particles suspended in the air and show gaseous
behaviour.
Avalanche models are used to estimate run out zones of possible avalanches
to protect people and infrastructure in the mountainous areas. As protection
measure, breaking dams are often built in the slope to divert the flow into
less powerful and smaller avalanches. Catching dams are built in the run out
area to reduce the run out zone and protect buildings behind the dam. Sim-
ilar tasks can be fulfilled by deflecting dams or galleries, which are usually
built to protect streets or railroads.
The interaction of avalanches with dams is not described satisfactory by ac-
tual models and will be the topic of this work.

1.1 Avalanche Models

Various models have been developed in the last century. These models have
their advantages and disadvantages. The use of certain models in practice is
often a question of regional practice and knowledge. Also current research
goes in many different directions. This section provides a short overview of
some classical avalanche models.

1.1.1 Statistical Models

Figure 1.1: Sketch of a statistical model with starting point A, deceleration
point B and stopping point C on an one-dimensional curved topography.
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Chapter 1: Introduction

Statistical models are usually based on documented avalanches of the past
or methods for computing boundaries of the avalanches. They are used to
work out hazard maps, by determining the avalanche spread. Among the
many proposed statistical models, a widely used model is briefly recapitu-
lated here. Along the slope, a continuous curve (e.g. a parabola) is laid
through three points to describe a one-dimensional path of the avalanche,
see Figure 1.1. The first, A, is the initiation point, the second, B, the one
in the transition zone and the third point, C, marks the position where the
avalanche stops. Now the average inclination angle β is defined as angle
between the horizontal and the straight line between A and B. The angle
α, between the horizontal and the straight line between A and C, is called
stopping angle. α can now be expressed as a function of β by using regres-
sion methods. The model can be explicitly written as α = λβ + γ, where λ
is the regression coefficient and γ a constant. These parameters have to be
determined by field studies. These parameters have to be varied to achieve
reliable results. This model was proposed by Lied and Bakkehøi [39] and
McClung and Lied [41].
The advantages of statistical models are relative simplicity and reliability for
a fixed topography and have therefore been used for many years in practice.
On the other hand, the return period is very long. For every single avalanche
track datasets of typically 100 years are needed. Further, the one-dimensional
model can not simulate areal spread, which is a very important feature in risk
zone mapping. The simplification also ignores other effects than geometrical
features, like rheological and mechanical properties of snow.

1.1.2 Mass Point Models

Mass point models are based on the pioneering work of Voellmy [63]. He
assumed uniform and steady conditions and utilized a center of mass ap-
proach. Voellmy’s model combines a shear traction at the base of the flow,
relative to the square of the velocity, with Coulomb friction. To obtain re-
sults that match field studies, a number of subjective parameters must be
predetermined. This allows a wide field of application. Depending on the
choice of the parameters, both dense flow and powder snow avalanches can
be simulated. The parameter identification can be difficult and is crucial to
receive realistic results. Until the late 1980s, mass point approach was the
most used avalanche model. Many attempts were made to improve Voellmy’s
model, but the main weakness of the mass point approach remained. They
cannot provide information about temporal or spatial properties, like veloc-
ity distributions and the evolution of height and spread of avalanches. These
are certainly not constant as Voellmy proposed.
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Chapter 1: Introduction

1.1.3 Hydraulic Models

Hydraulic models are based on Navier-Stokes equations, which may be solved
numerically. They simulate channel flows, as they are known from river hy-
drodynamics. The focus is on flow depth and flow velocity. Very popular
are models based on Saint Vernant equations with depth integration for shal-
low flow. Usually incompressibility is assumed. Some attempts were made
to obtain flow profiles that match observations by employing the constitu-
tive model of Ericksen-Fibley fluid combined with Coulomb friction model to
generalize it to an unsteady three-dimensional model. But non of them has
so far been applied to general flow conditions. Hydraulic models are mainly
used when geometric aspects shall be observed. It is obviously not feasible
to assume that this type of constitutive relation adequately describes the
complex behaviour of snow.

1.1.4 Kinetic Models

Kinetic models are applied for rapidly moving masses, where particles are
in high agitative motion and interact by frequently colliding with other par-
ticles. This can be described as dense granular gas. The balance laws for
mass, momentum and fluctuation energy for the field variables density, ve-
locity and temperature are needed to describe the kinetic theory. Even for
steady chute flows the solution becomes very complicated, as rather com-
plex boundary conditions for granular temperature, stresses and velocities
are required. Jenkins and Richardson [27] derived explicit forms of boundary
conditions for ideal situations of identical spheres and regular bumpy bound-
aries. A further step of Jenkins [26] was to apply a mixed theory, where
the upper part of avalanches is assumed to behave like a frictional plastic
mass, while at its base, in a thin shear layer, the grains interact strongly
through collisions. The upper part is assumed to deform by frictional shear,
described by Mohr-Coulomb criterion. The relations between shear stress,
normal stress and relative velocity of the boundaries in the shear layer can
be determined [26].

1.1.5 Discrete Element Method (DEM)

The idea of DEM is to simulate the motion of single particles following New-
ton’s second law of motion. The contact rules treat the interaction of particles
when colliding with one another or the boundary. Generally, DEM is a use-
ful tool to understand the behaviour of dry granular avalanches. Although
the theoretical background is relatively simple, the implementation is rather
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Chapter 1: Introduction

difficult. For problems in the practice the number of particles is usually
too large to be handled, even if considering small scale laboratory experi-
ments. The tracks of all these particles must be computed and checked for
collusions with all other particles at any time, resulting in a high demand
for memory. Several numerical methods for more effective simulations have
been suggested, but when compared to other models, the effort is still enor-
mous. Another difficulty is the behaviour of the particles. Usually spherical
particles are used, which simplifies the collusion computations. Introducing
features like elasticity, slipping or overlapping allows a realistic behaviour of
the particles, but some features of natural materials, like cohesion, which is
very typical for snow, is difficult to model.

1.1.6 Continuum Mechanical Models

In this work focus will be on continuum models. Particularly, the models
based on Savage-Hutter theory [51], [52], which was developed as a two di-
mensional model for gravity-driven, free-surface granular flows and has been
extended to three dimensions [13], [25], [49]. In the last two decades, it be-
came an attractive approach with adequate description of the behaviour of
dense flows. It consists of depth-integrated balance laws of mass and momen-
tum and has a similar mathematical structure as the shallow-water equations,
known from hydrodynamics. The material is considered incompressible and
obeys a dry Coulomb-type friction with constant internal friction angle. Non-
linear earth pressure coefficients are introduced to describe the ratio of over-
burden pressure and normal pressure in downflow- and cross-flow-direction.
Altogether, the internal friction angle and the bed friction angle, which mea-
sures the friction between the moving granular mass and the bed surface,
enter the model as only material parameters. The extended model is feasible
to model flows on arbitrarily curved surface with small local irregularities.

1.2 Goals of this Work

The goal of this work is to simulate the interaction between granular flow
and obstructions. The existing continuum mechanical model will be im-
proved and tested.
In Chapter 2, the continuum model based on Savage-Hutter theory, is intro-
duced. Starting with the simple one-dimensional model, the depth-averaged
two-dimensional model in a curvilinear coordinate system with all its simpli-
fications is presented.
Chapter 3 discusses the numerical solution. In the last two decades various
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schemes have been applied and tested on Savage-Hutter theory. The best
performance has been shown by the non-oscillatory central (NOC) scheme
with a Total Variation Diminishing (TVD) Minmod limiter. This scheme is
used here.
The interaction between granular flows and obstructions is discussed in Chap-
ter 4. The elevation function is used to model the obstructions. The model is
compared with experiments by Chiou [8]. Some weaknesses of this approach
will be discussed. As an alternative to continuum modelling, a PFC3d model,
based on Discrete Element Method (DEM), is compared with the same ex-
periments.
To improve the continuum model, the Adaptive Mesh Refinement (AMR) is
applied. AMR makes use of local grid refinement and improves the results of
the model significantly. However, the physical inadequacy of depth-averaged
models to simulate the complex behaviour of granular flows interacting with
steep walls remains. AMR is discussed in Chapter 5.
In Chapter 6, an alternative method to implement cuboid obstructions is
proposed. The obstruction is built directly into the basal surface by adding
planes to the slope plane. At the intersection of the planes, the mass is trans-
fered form one plane to the other. At these intersections singularities occur.
A simple method to handle this with a single parameter is suggested and a
parameter study performed.
In Chapter 7, the impact forces on the obstructions are calculated and com-
pared to experiments. Both, the continuum mechanical model and DEM are
considered. As alternative to the chute experiments, also a flume experiment
is simulated for both the continuum and discontinuum model. In the con-
tinuum mechanical model the wall is implemented as boundary condition in
this case, with realistic results, although the results cannot be compared to
the experiment, due to the overflow in the experiment.
The final Chapter 8 contains a summary of the results and some suggestions
for future work.
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Chapter 2

Extended Savage-Hutter Model

In 1989, Savage and Hutter [51] were the first who published a model for
finite granular mass evolving and sliding down an inclined slope, which is
based on continuum mechanics. The original model is two-dimensional, but
it has been extended to three dimensions by Hutter et al. [25], Greve et
al. [15], Gray et al. [13] and Pudasaini and Hutter [49]. Several adequate
simplifications were made leading to an elegant mathematical formulation.
Some of them have already been known from shallow water equations.

• The volume is assumed to be constant. Experimental observations have
shown that the moving mass preserves its volume. Only at the initiation
the volume expands and at the stand still the volume compacts. Since
the theory mainly describes the dynamic process, volume preserving is
reasonable.

• The moving dry granular mass is cohesionless. The constitutive equa-
tions for the internal stresses are based on the Mohr-Coulomb yield
criterion.

• The shear stresses orthogonal to the main flow direction can be ne-
glected.

• Thermal effects can be neglected.

• To simplify the formulation, moving masses are considered shallow, in
the sense that the typical depths are small compared to length and
width along the surface.

• The avalanching motion consists of shearing within the deforming mass
and sliding along the basal surface. The basal boundary layer, where
the shearing deformation takes place, is very thin and considered to be
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Chapter 2: Extended Savage-Hutter Model

of zero thickness. This is justified by observations. Sliding and shearing
are combined to a single sliding law. Hence, depth-averaged equations
may be used.

• Integration through the avalanche depth, with kinematic boundary con-
ditions at the free surface and base of the avalanche, reduces the spacial
dimension of the theory spatially.

• Scaling analysis identifies the physically significant terms in the gov-
erning equations and isolates negligible terms.

In this chapter the simple one-dimensional model will be presented in the
first section, to understand the basic ideas of the model. The second section
shows the more general two-dimensional model.

2.1 One-Dimensional Model

To understand the basic Savage-Hutter equations, it is useful to look at a
very simple one-dimensional flow down an inclined plane, with inclination
angle ζ. The downflow direction is represented by the x-coordinate, while
z-coordinate is orthogonal to it. Assume that the density ρ of the granular
material is constant and that the velocity is constant over depth, so that
u(x, z, t) = u(x, t). Looking at the change of mass in a column of length dx,
which is equivalent to the change of height, yields

∂

∂t
(ρh(x, t))dx = ρh(x, t)u(x, t)− ρh(x+ dx, t)u(x+ dx, t) (2.1)

= − ∂

∂x
(ρh(x, t)u(x, t))dx+O((dx)2),

where h is the flow height and in- and outflow of the infinitesimal element
x ∈ [x, x+ dx] are summed up, see Figure 2.1.
Since ρ is considered constant, (2.1) reduces to

∂h

∂t
+
∂(hu)

∂x
= 0. (2.2)

This equation is called mass balance.

For the same element the balance of x-momentum, given by ρhu dx, can
be derived. Again the time rate of change and the flux through the column
walls,

∂

∂t
(ρh(x, t)u(x, t))dx+

∂

∂x
(ρh(x, t)u2(x, t))dx, (2.3)
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Chapter 2: Extended Savage-Hutter Model

Figure 2.1: One-dimensional flow of granular material down an inclined plane
with infinitesimal column where mass and momentum balances are formu-
lated.

are the considerable contributions. But the forces acting on the column have
also to be considered, as there are:

gravity ρgh sin ζ dx (2.4)

basal friction −sgn(u)τdx (2.5)

longitudinal pressure

∫ h(x,t)

0

pL(x, z, t)dz (2.6)

−
∫ h(x+dx,t)

0

pL(x+ dx, z, t)dz.

To the basal friction a Coulomb-type friction law is applied with bed friction
angel δ, in the form

τ = tan δ pb,

where pb denotes the isotropic pressure at the bed. Using a hydrostatic
pressure distribution

pb(x, t) = ρgh(x, t) cos ζ,

(2.5) becomes:

(2.5) = −sgn(u) tan δρgh(x, t) cos ζ dx. (2.7)
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pL is the longitudinal pressure that may be different from the overburden
pressure. The relation is described by a common ansatz from soil mechanics

pL(x, z, t) = Kact/pas p(x, z, t). (2.8)

Kact/pas is dimensionless and is called earth pressure coefficient. The litera-
ture in soil mechanics suggests to use two different values for Kact/pas, one
for an extending (Kact) and one for a compressing flow (Kpas)

Kact/pas =

{
Kact, if ∂u/∂x > 0,
Kpas, if ∂u/∂x < 0.

(2.9)

Applying this, (2.6) can be written as

(2.6) = −ρg1

2

∂

∂x
(Kact/pash

2(x, t)) cos ζ dx+O
(
(dx)2

)
. (2.10)

The collected terms can now be combined as (2.3)=(2.4)+(2.7)+(2.10). Re-
ducing this formula by the common factor ρ dx, the momentum balance equa-
tion becomes

∂

∂t
(hu) +

∂

∂x
(hu2) = (2.11)

g

{
(sin ζ − sgn(u) tan δ cos ζ)h− 1

2

∂

∂x
(Kact/pash

2) cos ζ

}
.

The equations (2.2) and (2.11) are the original Savage-Hutter equations for
finite granular mass flowing down an inclined plane with inclination angle ζ
1. The gravitation (2.4) is the driving force of the model. The basal friction
(2.7) decelerates the flow, while the longitudinal pressure variation (2.10) is
mainly responsible for changing the shape of the material. It may be directed
both up- and downwards the slope. The implementation of the longitudinal
pressure is, next to the assumption of the hydrostatic pressure, the most
essential element of the model from a physical point of view.
When p = pL, i.e. Kact/pas = 1, the model becomes a hydraulic model, also
known as Saint Venant or Boussinesq equations. The pressure distribution
is that of a still liquid.
The more complex case of Kact/pas 6= 1 is still remaining to be discussed in

the above derivation. To determinate the active and passive earth pressure
coefficients, Kact and Kpas, the stress space, respectively the Mohr circle for

1It should be remarked that this is not the way the equations were derived in the
original paper [51]. This introduction follows the way the equations were derived in [50].
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Figure 2.2: Stresses (p, τ) and (pL, τ) acting on a plane element at the basal
plane.

a material plane element at the base of the mass has to be observed. Figure
2.2 shows how p, pL and τ act on this element. Assuming that the mass
behaves as a cohesionless Coulomb material with internal friction angle φ
and basal friction angle δ, the state of stress (p, τ) has to lie on the straight
line through the origin and with inclination angle δ (see Figure 2.3). (p, τ)
also has to lie on the Mohr circles. The straight lines through the origin
and inclined by ±φ are tangents of the circles. Given this, two circles are
described, a smaller one, describing the active stress states, and a larger one
of the passive stress states. (pL, τ) lies on the opposite site of the respective
circle, on one line with (p, τ) and the center (= (p+pL)/2). These geometric
conditions can now be used to derive Kact/pas. (p, τ) lying on the straight
line yields

τ = p tan δ. (2.12)

When looking at the rectangular triangular given by the vertexes origin,
center of the circle and intersection of circle and tangent, the relation

sinφ =
r

1
2
(pL + p)

, (2.13)
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Figure 2.3: Mohr circles for active and passive stress states.

becomes obvious, where r, the radius of the Mohr circle, is given by

r =

√
τ 2 +

1

4
(pL − p)2 (2.14)

Substituting (2.12) in (2.14) and the result in (2.13), yields

sinφ =

√
p2 tan2 δ + 1

4
(pL − p)2

1
2
(pL + p)

. (2.15)

Since Kact/pas = pL/p, (2.15) can be transformed into a quadratic equation
for Kact/pas

K2
act/pas − 2(

2

cos2 φ
− 1)Kact/pas + 1 +

4 tan2 δ

cos2 φ
= 0, (2.16)

for which the solution is given by

Kact/pas =
2

cos2 φ

(
1∓

√
1− cos2 φ

cos2 δ

)
− 1. (2.17)

The minus sign is used for active pressure, the plus for passive pressure. In
this way Kact/pas is dependent only on the two material constants. This is
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especially important in practice, since φ and δ are relatively simple to be
determined.
So far, all presented equations are in dimensional form. To derive non-
dimensional forms, a length scale L, a depth scale H, a time scale

√
L/g and

a scale for velocity
√
gL have to be introduced. Then let

xdim = L xnon−dim,

zdim = H znon−dim,

hdim = H hnon−dim,

udim =
√
Lg unon−dim,

tdim =
√
L/g tnon−dim,

where the dimensional variables are listed on the left hand side, while the
dimensionless pendants are stated on the right side. When substituting this
dimensionless forms into the Savage-Hutter equations (2.2) and (2.11), the
non-dimensional form is

∂h

∂t
+
∂(hu)

∂x
= 0, (2.18)

∂(hu)

∂t
+
∂(hu2)

∂x
= (sin ζ − sgn(u) tan δ cos ζ)h− ∂

∂x

(ε
2
Kact/pash

2 cos ζ
)
,

where

ε =
H

L
� 1,

is the aspect ratio, which is usually very small.

2.2 Two-Dimensional Model

In this section the one-dimensional Savage-Hutter model will be extended to
two-dimensional. For this purpose, the general conservation laws in contin-
uum mechanics are used to start the derivation form.

2.2.1 Governing Equations

The governing equations are known from continuum mechanics. The material
is assumed to be incompressible, dry, cohesionless and of constant density ρ.
It follows that the mass and momentum balance equations reduce to

∇ · v = 0, (2.19)

ρ

{
∂v

∂t
+∇ · (v⊗ v)

}
= −∇ · p + ρg, (2.20)
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where v is the velocity, p is the pressure tensor, g is the gravitational ac-
celeration, ∂/∂t indicates the time derivative, ∇ the gradient operator and
⊗ the tensor product. The granular material is supposed to satisfy a Mohr-
Coulomb yield criterion. The relationship between internal shear stress S
and normal pressure N can be written as

|S| = N tanφ, (2.21)

where φ is the internal angle of friction, which is replaced by δ, the bed friction
angle, at the base. The conservation laws (2.19) and (2.20) are completed by
kinematic and dynamic boundary conditions at the free surface and at the
base of the avalanche. Assume that both surfaces are smooth and orientable,
so that they can be described by differentiable implicit functions

F s(x, t) = 0 and F b(x, t) = 0, (2.22)

where the superscripts s and b indicate free surface and base, respectively.
The normal vectors at these surfaces, outward pointing from the avalanche
body, are

ns =
∇F s

‖∇F s‖
and nb =

∇F b

‖∇F b‖
. (2.23)

When vs and vb indicate the displacement velocities of the free surface and
the base, the kinematic boundary equations can be written as

∂F s

∂t
+ vs · ∇F s = 0, (2.24)

∂F b

∂t
+ vb · ∇F b = 0, (2.25)

where it can be seen that only the normal components of the velocity are
physically relevant. The free surface of the avalanche is traction free, there-
fore the dynamical boundary conditions at the free surface is

psns = 0, (2.26)

where ps is the pressure tensor at the free surface. In most situations of
practical interest, the basal surface of the avalanche is considered as a fixed
topography, hence ∂F b/∂t = 0. This implies that ubnb = 0 and therefore the
basal velocity is tangential to the basal surface. The shear traction is pointing
in the opposite direction of ub and, since the relation of normal stress and
shear stress satisfy a Coulomb dry friction sliding law. The shear stress is
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equal to the normal basal pressure multiplied by a coefficient of friction tan δ,
where δ is the bed friction angle. Hence the dynamical boundary condition
at the base can be expressed as

pbnb − nb(nb · pbnb) =
ub

|ub|
(nb · pbnb) tan δ, (2.27)

where N = pbnb is the negative traction vector, nb · pbnb is the normal pres-
sure and S = pbnb−nb(nb·pbnb) is the negative shear traction. This definition
of the direction of the shear stress introduces a singularity at ub = 0, which
restricts the model theoretically. In practical modelling of snow avalanches,
rockfalls, debris flows or landslides, only the onset and the deposition, when
the motion is near the end, are problematic regarding to this restriction.

2.2.2 Curvilinear Coordinates

To model a complex basal topography a curvilinear coordinate system is de-
fined. The coordinate system follows a surface, called reference surface. Note
that the choice of the coordinate system is not unique and may be dependent
on the resulting surface. In many cases there may be different possibilities.
For instance, it could follow the cross-averaged downslope topography or be
fitted to a single downslope section of the topography. On this reference
surface a function is laid that accounts for the local differences of the real
basal topography and the reference surface,

zb = zb(x, y). (2.28)

This function will be referred to as elevation function. The elevation function
has to be shallow, which forces a well chosen reference surface and restricts
the model on the permissible geometry.
In the following the reference surface is assumed to follow the mean downs-
lope bed topography. An example for a channel-like topography based on
such a reference surface is illustrated in Figure 2.4. An orthogonal curvilinear
coordinate system oxyz is defined by setting the z-coordinate normal to the
reference surface, while x and y are tangential. The x-axis is assumed to fol-
low the thalweg, the y-axis is normal in cross-slope direction. The inclination
angle ζ is used to define the reference surface as function of the downslope
coordinate x. Note that ζ is independent of the cross-slope coordinate y. To
derive the equations, a Cartesian coordinate system OXY Z with unit basis
i, j,k is defined. The vector k is parallel, but in opposite sense to the gravity
acceleration vector. i lies in the vertical plane in which the reference surface
varies and j is perpendicular to both. A simple curvilinear coordinate system
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Figure 2.4: The dashed lines show the reference surface, defined by the curvi-
linear coordinate system oxyz. The z-axes is normal to the reference surface,
the x-axis follows the curved thalweg and the y-axis lies in the reference sur-
face in cross-slope direction. The downslope inclination angle of the reference
surface ζ is measured relative to a horizontal plane. The basal topography
(solid lines) is defined by the elevation function zb(x, y), by superposing the
reference surface. Note, that the thalweg is not twisted. Graphic by Chiou
[8].

is introduced following Greve et al. [15], which is similar to that of Savage
and Hutter [52]. The position vector of a point r is given by

r = rr(x, y) + znr, (2.29)

where rr is a position vector of the reference surface and nr is normal to the
reference surface. In the Cartesian coordinate system OXY Z the normal of
the reference surface is given by

nr = sin ζi + cos ζk, (2.30)

where ζ is the downslope inclination angle of the reference surface, which
is the same as the inclination angle of the normal relative to the Z-axis of
the Cartesian coordinates. For the convenience of notation the identification
(x, y, z) = (x1, x2, x3) is made. These are contravariant components in the
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curvilinear coordinate system (see, e.g. Bowen and Wang [6],[7] or Klingbeil
[30]), and the associated covariant basis vectors, gi, are given by

gi =
∂r

∂xi
. (2.31)

When evaluating the covariant basis vectors of (2.29), it can be seen that
the gradiants ∂rr/∂x1 and ∂rr/∂x2 are simply the tangent vectors to the
reference surface in x1- and x2-direction. Thus choosing the mutually or-
thogonal tangent vectors with the x-axis in the OXZ plane it follows that
∂rr/∂x1 = cos ζi− sin ζk and ∂rr/∂x2 = j, so that

g1 = (1− κx3) cos ζi− sin ζk,
g2 = j,
g3 = sin ζi + cos ζk,

(2.32)

where κ is the curvature of the reference surface, given by

κ = − ∂ζ

∂x1
. (2.33)

The covariant metric coefficients gij = gigj are therefore

(gij) =

 (1− κx3)
2

0 0
0 1 0
0 0 1

 . (2.34)

The off-diagonal elements of the metric tensor are zero, which implies that
these simple curvilinear coordinates are orthogonal. The metric is uniquely
defined as long as the z-coordinate is locally smaller than 1/κ. Physically
these points correspond to the positions at which the consecutive z-axes,
which vary locally, intersect with one another. Provided that the avalanche
does not pass through one of these points during motion, the curvilinear
coordinates represent a valid coordinate system. The covariant unit vectors
are defined as g∗i = gi/

√
(gii), where Einstein’s summation convention is

dropped for bracketed indices, i.e. g∗1 = cos ζi − sin ζk, g∗2 = j and g∗3 =
sin ζi + cos ζk. The contravariant basis vectors

g1 = (cos ζi− sin ζk)/(1− κx3),
g2 = j,
g3 = sin ζi + cos ζk,

(2.35)

are constructed by gi ∗ gj = δji , the Kronecker delta. The associated metric
is

(gij) =

 ψ2 0 0
0 1 0
0 0 1

 , (2.36)
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where ψ = 1/(1 − κz). The Christoffel symbol in orthogonal curvilinear
coordinates is defined by

Γklm =
1

2
g(kk)(gmk,l + gkl,m − glm,k). (2.37)

For the curvilinear coordinate system (2.34) the Christoffel symbol are given
by

Γ1 = −ψ

 κ′z 0 κ
0 0 0
κ 0 0

 , Γ2 = 0, Γ3 = (1− κz)

 κ 0 0
0 0 0
0 0 0

 , (2.38)

where κ′ = ∂κ/∂x.
In order to rewrite the conservation laws (2.19) - (2.20) and their associated
boundary conditions (2.24) - (2.27) in the curvilinear coordinate system, the
expressions of the gradient of a scalar field and the divergence of a vector
and a second order tensor in this coordinate system are required. This can
be done by using the ∇-vector, ∇ = gk ∂

∂xk . The gradient of a scalar field F ,
expressed in the covariant unit base, is then

∇F =
∂F

∂xk
g(kk)√g(kk)g

∗
k, (2.39)

which reduces to

∇F = ψ
∂F

∂x
g∗1 +

∂F

∂y
g∗2 +

∂F

∂z
g∗3. (2.40)

The divergence of a vector field v = uigi is

∇ · v =

(
gk

∂

∂xk

)
(uigi) = ui,k + uiΓkik. (2.41)

The contravariant components of v, ui are related to the vector’s physical
components ui∗, defined relative to the unit base vectors, by

ui =
ui∗
√
g(ii)

. (2.42)

Substituting this, together with the Christoffel symbols (2.38), in (2.41) gives

∇ · v =
∂(u1∗ψ)

∂x
+
∂u2∗

∂y
+
∂u3∗

∂z
− u1∗κ′z

(1− κz)2
− u3∗κ

1− κz
. (2.43)

Similarly, given a second order tensor p = pijgigj the divergence

∇ · p =

(
gk

∂

∂xk

)
(pijgigj) =

(
pij,k + pijΓkik + pkjΓijk

)√
g(ii)g

∗
i . (2.44)
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The relation of the physical components pij∗ are related to the contravariant
components by

pij =
pij∗

√
g(ii)
√
g(jj)

. (2.45)

Again this relation and the Christoffel symbols (2.38) are substituted in
(2.44), hence

∇ · p =
(
∂(p11∗ψ)

∂x
+ ∂p12∗

∂y
+ ∂p13∗

∂z
− p11∗κ′z

(1−κz)2 −
2p13∗κ
1−κz

)
g∗1

+
(
∂(p12∗ψ)

∂x
) + ∂p22∗

∂y
+ ∂p23∗

∂z
− p12∗κ′z

(1−κz)2 −
p23∗κ
1−κz

)
g∗2

+
(
∂(p13∗ψ)

∂x
+ ∂p23∗

∂y
+ ∂p33∗

∂z
− p13∗κ′z

(1−κz)2 −
(p33∗−p11∗)κ

1−κz

)
g∗3

(2.46)

2.2.3 Non-dimensional Equations

In order to make laboratory and other similar scaled experiments comparable
to natural large scale flows, it is necessary to non-dimensionalize the above
presented equations. To achieve this, three length scales, L for longitudinal
scaling, H for depth scaling and 1/R for the basal curvature, where R is
considered as the radius of curvature, are introduced. With gravity g as
driving force and relating it to the acceleration of the moving mass implies
that typical downslope velocity magnitudes are of order

√
gL and that time

scale is
√
L/g. Velocities normal to the slope are of order ε

√
gL, where

ε = H/L, the aspect ratio of the avalanche. Further, assuming a constant
density ρ0, typical normal pressures at the base of the avalanche are of order
ρ0gH, while typical shear stresses, following the Coulomb dry-friction law, are
of order ρ0gHµ, where µ = tan δ0 is a coefficient of friction for a typical basal
angle of friction δ0. The curvature of the reference surface is scaled by 1/R.
Next to ε and µ a third non-dimensional parameter λ = L/R, for the ratio of
typical length of the avalanche and the curvature of the slope is introduced.
The size of these parameters will be discussed further in the following, as
they play a major role in ordering arguments. With all above assumptions,
the physical variables are non-dimensionalized using the scalings

(x, y)dim = L (x, y)non−dim,
(z, F s, F b)dim = εL (z, F s, F b)non−dim,

(t)dim =
√
L/g (t)non−dim,

(u, v, w)dim =
√
Lg (u, v, εw)non−dim,

(pxx, pyy, pzz)dim = ρ0gεL (pxx, pyy, pzz)non−dim,
(pxy, pxz, pyz)dim = ρ0gεLµ (pxy, pyz, pyz)non−dim,

(κ)dim = λ/L(κ)non−dim,

(2.47)
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Applying the scaling (2.47) and the curvilinear transformation rule (2.43) to
the mass balance equation (2.19), yields

∂(uψ)

∂x
+
∂v

∂y
+
∂w

∂z
− ελκ′zuψ2 − ελκwψ = 0, (2.48)

where ψ = 1/(1− ελκz), for the non-dimensionalized mass balance equation
in curvilinear coordinates. For the momentum balance equations (2.20), the
transformation rule for tensors (2.46) has to be applied for the tensors p and
u ⊗ u. Together with scaling (2.47), the non-dimensionalized momentum
balance equations in curvilinear coordinates are

∂u
∂t

+ ∂(u2ψ)
∂x

+ ∂(uv)
∂y

+ ∂(uw)
∂z
− ελκ′zu2ψ2 − 2ελκuwψ

= sin ζ − ε∂(pxxψ)
∂x

− εµ∂pxy

∂y
− µ∂pxz

∂z
+ ε2λκ′zpxxψ

2 + 2ελκµpxzψ,
(2.49)

∂v
∂t

+ ∂(uvψ)
∂x

+ ∂(v2)
∂y

+ ∂(vw)
∂z
− ελκ′zuvψ2 − ελκvwψ

= ε∂pyy

∂y
− εµ∂(pxyψ)

∂x
− µ∂pyz

∂z
+ ε2λκ′µzpxyψ

2 + ελκµpyzψ,
(2.50)

ε
(
∂w
∂t

+ ∂(uwψ)
∂x

+ ∂(vw)
∂y

+ ∂w2

∂z

)
− ε2λκ′zuwψ2 − λκ(ε2w2 − u2)ψ

= − cos ζ − ∂pzz

∂z
− εµ∂(pxzψ)

∂x
− εµ∂pyz

∂y
+ ε2λκ′µzpxzψ

2 + ελκ(pzz − pxx)ψ.
(2.51)

The free and basal surface are defined by their heights over the reference
surface

F s(x, t) = z − zs(x, y, t) = 0 (2.52)

F b(x, t) = zb(x, y, t)− z = 0. (2.53)

Applying the scaling (2.47) and the curvilinear transformation rule (2.40),
the kinetic boundary conditions (2.22), (2.24) and (2.25) become

∂zs

∂t
+ usψs

∂zs

∂x
+ vs

∂zs

∂y
− ws = 0, (2.54)

∂zb

∂t
+ ubψb

∂zb

∂x
+ vb

∂zb

∂y
− wb = 0, (2.55)

where ψs = 1/(1−ελκzs) and ψb = 1/(1−ελκzb). The traction free dynamic
boundary conditions for the free surface (2.26) can be transformed in a similar
way. Split into downslope, cross-slope and normal components, this yields

−εpsxxψs ∂z
s

∂x
− εµpsxy ∂z

s

∂y
+ µpsxz = 0,

−εµpsyxψs ∂z
s

∂x
− εpsyy ∂z

s

∂y
+ µpsyz = 0,

−εµpszxψs ∂z
s

∂x
− εµpszy ∂z

s

∂y
+ pszz = 0.

(2.56)
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For the Coulomb dry-friction sliding law (2.27), the downslope, cross-slope
and normal components are

εpbxxψ
b ∂zb

∂x
+ εµpbxy

∂zb

∂y
− µpbxz =

(
nb · pbnb

) (
∆b

ub

|vb| tan δ + εψb ∂z
b

∂x

)
,

εµpbyxψ
b ∂zb

∂x
+ εpbyy

∂zb

∂y
− µpbyz =

(
nb · pbnb

) (
∆b

vb

|vb| tan δ + ε∂z
b

∂y

)
,

εµpbzxψ
b ∂zb

∂x
+ εµpbzy

∂zb

∂y
− pbzz =

(
nb · pbnb

) (
∆b

wb

|vb| tan δ − 1
)
,

(2.57)
respectively, where |v| =

√
u2 + v2 + εw2. The basal normal is given by

nb =

(
εψb

∂zb

∂x
g∗1 + ε

∂zb

∂y
g∗2 − g∗3

)
/∆b, (2.58)

and the associated normalization factor is

∆b =

√
1 + ε2(ψb)2

(
∂zb

∂x

)2

+ ε2

(
∂zb

∂y

)2

. (2.59)

The normal pressure experienced on the basal topography, nb·pbnb, occurring
in (2.57) takes the non-dimensional curvilinear form

∆2
b

(
nb · pbnb

)
= pbzz − 2εµ

(
pbxzψ

b∂z
b

∂x
+ pbyz

∂zb

∂y

)
(2.60)

+ ε2

{
pbxx(ψ

b)2

(
∂zb

∂x

)2

+ 2µpbxyψ
b∂z

b

∂x

∂zb

∂y
+ pbyy

(
∂zb

∂y

)2
}
,

which completes the transformation from the coordinate independent form
to curvilinear coordinates, using the non-dimensional variables defined in
(2.47).

2.2.4 Depth Integration

To simplify the problems from three-dimensional to two-dimensional, a cru-
cial step is the depth integration of the motion equations for the shallow
granular material. By defining the depth of the avalanche,

h(x, y, t) = zs − zb, (2.61)

as the height of the material between basal surface zb and free surface zs

and integrating the mass and momentum balance equations in the direction
normal to the reference surface, the equations are reduced by one dimension.
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In order to perform the integration procedure, the depth-averaged value of
an arbitrary function f = f(x, y, z, t), can be defined by

f =
1

h

∫ zs

zb

fdz, (2.62)

where the overbar is used as notation for a depth-integrated mean value, and
will be further used as such. To integrate the mass balance (2.48) through
the depth, the Leibnitz rule to interchange the order of integration and dif-
ferentiation is applied, thus∫ zs

zb

(
∂(uψ)

∂x
+
∂v

∂y
+
∂w

∂z

)
dz =

∂(huψ)

∂x
+
∂(hv)

∂y
−
[
uψ

∂z

∂x
+ v

∂z

∂y
− w

]zs

zb

.(2.63)

Substituting the kinematic boundary equations (2.54) and (2.55) to simplify
the right term in (2.63), yields[

uψ
∂z

∂x
+ v

∂z

∂y
− w

]zs

zb

= −∂h
∂t
. (2.64)

It follows that the depth-integrated form of the mass balance (2.48) is

∂h

∂t
+
∂(huψ)

∂x
+
∂(hv)

∂y
− ελκ′hzuψ2 − ελκhwψ = 0. (2.65)

The depth-integration of the downslope component of the momentum balance
(2.49) is done in several steps. Starting with the integration of the first four
terms and applying the Leibnitz rule, yields∫ zs

zb

(
∂u

∂t
+
∂(u2ψ)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
dz (2.66)

=
∂(hu)

∂t
+
∂(hu2ψ)

∂x
+
∂(huv)

∂y
−
[
u

(
∂z

∂t
+ uψ

∂z

∂x
+ v

∂z

∂y
− w

)]zs

zb

=
∂(hu)

∂t
+
∂(hu2ψ)

∂x
+
∂(huv)

∂y
,

since the square-bracketed term is identical zero, due to the kinematic bound-
ary conditions (2.54) and (2.55). The integration of the pressure divergence
of (2.49) is done in a similar way, thus∫ zs

zb

(
ε
∂(pxxψ)

∂x
+ εµ

∂pxy
∂y

+ µ
∂pxz
∂z

)
dz (2.67)

= ε
∂(hpxxψ)

∂x
+ εµ

∂(hpxy)

∂y
−
[
εpxxψ

∂z

∂x
+ εµpxy

∂z

∂y
− µpxz

]zs

zb

= ε
∂(hpxxψ)

∂x
+ εµ

∂(hpxy)

∂y
+
(
nb · pbnb

)(
∆b

ub

|vb|
tan δ + εψb

∂zb

∂x

)
,
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where the square-bracketed term is substituted by the dynamic boundary
conditions (2.56) and (2.57). The cross-slope and normal components are
depth-integrated in exactly the same way as the downslope component. Hence,
the downslope, cross-slope and normal components of the momentum bal-
ances (2.49) - (2.51) are rewritten as

∂(hu)
∂t

+ ∂(hu2ψ)
∂x

+ ∂(huv)
∂y
− ελκ′hzu2ψ2 − 2ελκhuwψ

= h sin ζ −
(
nb · pbnb

) (
∆b

ub

|vb| tan δ + εψb ∂z
b

∂x

)
−ε∂(hpxxψ)

∂x
− εµ∂(hpxy)

∂y
+ ε2λκ′hzpxxψ2 + 2ελκµhpxzψ,

(2.68)

∂(hv)
∂t

+ ∂(huvψ)
∂x

+ ∂(hv2)
∂y
− ελκ′hzuvψ2 − ελκhvwψ

= −
(
nb · pbnb

) (
∆b

vb

|vb| tan δ + ε∂z
b

∂y

)
−εµ∂(hpxyψ)

∂x
− ε∂(hpyy)

∂y
+ ε2λκ′µhzpxyψ2 + ελκµhpyzψ,

(2.69)

ε
(
∂(hw)
∂t

+ ∂(huwψ)
∂x

+ ∂(hvw)
∂y

)
− ε2λκ′hzuwψ2 − λκh(ε2w2 − u2)ψ

= h cos ζ −
(
nb · pbnb

) (
∆b

εwb

|vb| tan δ − 1
)

−εµ∂(hpxzψ)
∂x

− εµ∂(hpyz)

∂y
+ ε2λκ′µhzpxzψ2 + ελκh(pzz − pxx)ψ,

(2.70)

respectively. This completes the depth-integration step. (2.65), (2.68) and
(2.69) form the basis of shallow granular flow equations.

2.2.5 Ordering

In natural granular flow events, like snow avalanches, landslides and rock falls,
downslope and cross-slope lengths are typically much larger than their normal
thickness. Based on this observation the so-called shallowness-assumption

ε =
H

L
� 1 (2.71)

is used to reduce the equations (2.65), (2.68) and (2.69) in a rational and
consistent way.
For λ, the characteristic ratio between avalanche length L and the radius of
curvature of the reference surface R = 1/κ, it can be assumed that

λ = O(εα), (2.72)

where 0 < α < 1. Obviously, the reference surface can vary rapidly in some
small regions, resulting in a large local curvature. But for the characteristic
basal curvature, an average variation over the whole basal topography has to
be considered. Typically, the inclination angle ζ of the starting area of the
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avalanche can be assumed in a range of 30◦ to 45◦, while the run out zone
has an inclination of less than 20◦. Therefore, the assumption 0 < λ < 1
holds for most plausible cases, which justifies (2.72).
The typical basal friction angle δ lies in a range of 20◦ to 30◦, so 0 < µ =
tan δ < 1. Hence,

µ = O(εβ), (2.73)

where 0 < β < 1.
Applying these results to Taylor series expansions of ψ and ∆b, yields

ψ = 1 +O(ε1+α), ∆b = 1 +O(ε2). (2.74)

To continue the ordering process, by virtue of the normal component of the
momentum balance (2.70), the factor nb · pbnb reduces to

nb · pbnb = h cos ζ + λκhu2 +O(ε), (2.75)

or ordered by εα

nb · pbnb = h cos ζ +O(εα), (2.76)

With these gathered ordering arguments for the non-dimensional parameters,
the mass balance equation (2.65) can be approximated to first order in the
small parameter ε:

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0 +O(ε1+α), (2.77)

which takes exactly the same form as in Cartesian coordinates. The mo-
mentum balances in downslope (2.68) and cross-slope (2.69) direction reduce
to

∂(hu)

∂t
+
∂(hu2)

∂x
+
∂(huv)

∂y
(2.78)

= h sin ζ − ub

|v|b
h tan δ(cos ζ + λκu2)− ε∂(hpxx)

∂x
− ε cos ζh

∂zb

∂x
+O(ε1+γ),

∂(hv)

∂t
+
∂(huv)

∂x
+
∂(hv2)

∂y
(2.79)

= − vb

|v|b
h tan δ(cos ζ + λκu2)− ε∂(hpyy)

∂y
− ε cos ζh

∂zb

∂y
+O(ε1+γ),

where γ = min(α, β).
The normal component (2.70) reduces to

∂pzz
∂z

= − cos ζ +O(εα). (2.80)
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2.2.6 Closure

Further reduction of (2.78) and (2.79) requires constitutive information about
the pressure tensor p and the velocity vector v. The Savage-Hutter theory
assumes a very simple state of stress within the avalanche.
With aid of the Mohr circle, the pressures pxx and pyy can be expressed in
terms of the overburden pressure pzz, by defining earth pressure coefficients

Kb
x =

pbxx
pbzz

, Kb
y =

pbyy
pbzz

. (2.81)

Given the three principal stresses, p1, p2 and p3, one of these, w.l.o.g. p1, is
assumed to lie in cross-slope direction, hence p1 = pyy. The notion that the
dominant shearing takes place in downslope direction justifies this assump-
tion.
Further, it is assumed that one of the other principal stresses, p2 or p3, equals
p1. This assumption is not justified by any physical argument, but reduces
the three-dimensional Mohr circle to a single two-dimensional Mohr circle of
stress, as described in Section 2.1. The principle stresses, p2 and p3 in the
xz-plane are given by

p2,3 =
1

2
(pxx + pzz)±

1

2

√
(pxx + pzz)2 + 4µ2p2

xz. (2.82)

Following the original Savage-Hutter theory, the basal normal pressure equals
pbzz and the shear stress equals −pbxz.
Two Mohr stress circles can be constructed that satisfy both the basal slid-
ing law and the internal yield criterion simultaneously. Therefore, two values
are possible for the basal downslope pressure pbxx, one on the larger circle,
where pbxx > pbzz, and one on the smaller circle, where pbxx ≤ pbzz, which are
associated with active and passive stress, respectively. Hence, there are four
possible values for the principle stresses pb2 and pb3 and consequently also for
the basal cross-slope pressure pbyy.
Following the geometrical arguments of Section 2.1, Kb

x and Kb
y can be con-

structed as function of the internal and basal angles of frictions by

Kb
xact/pass

= 2
(

1∓
√

1− cos2 φ/ cos2 δ
)

sec2φ− 1, (2.83)

(K
xact/pass
yact/pass )b =

1

2

(
Kb
xact/pass

+ 1∓
√

(Kb
xact/pass

− 1)2 + 4 tan2 δ
)
,(2.84)

which is real if and only if δ ≤ φ.
There is no physical criterion to uniquely determine which value corresponds
to which particular deformation. Savage and Hutter [51] made ad hoc defini-
tions that the downslope earth pressure Kb

x was active during a dilatational
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motion and passive during a compressional motion and similarly for the cross-
slope earth pressure (Kx

y )b, thus

Kb
x =

{
Kxact for ∂u

∂x
≥ 0,

Kxpass for ∂u
∂x
< 0,

(2.85)

Kb
y =


Kxact
yact

for ∂u
∂x
≥ 0 and ∂v

∂y
≥ 0,

Kxact
ypass

for ∂u
∂x
≥ 0 and ∂v

∂y
< 0,

K
xpass
yact for ∂u

∂x
< 0 and ∂v

∂y
≥ 0,

K
xpass
ypass for ∂u

∂x
< 0 and ∂v

∂y
< 0,

(2.86)

2.2.7 Model Equations

After the closure step of Section 2.2.6 and the reduction of the balance equa-
tions (2.77) - (2.79) by all terms of order ε1+γ and higher, the depth-averaged
two-dimensional model equations can be written in vector form as

∂w

∂t
+
∂f(w)

∂x
+
∂g(w)

∂y
= s(w), (2.87)

where w denotes the vector of conservative variables, f and g represent the
transport fluxes in x-, respectively y-direction and s denotes the source term.
They are

w =

 h
hu
hv

 , f =

 hu
hu2 + βxh

2/2
huv

 ,

g =

 hv
huv

hv2 + βyh
2/2

 , s =

 0
hsx
hsy

 ,

(2.88)

where

βx = ε cos ζKb
x (2.89)

βy = ε cos ζKb
y (2.90)

sx = sin ζ − u

|u|
tan δ(cos ζ + λκu2)− ε cos ζ

∂zb
∂x

(2.91)

sy = − v

|u|
tan δ(cos ζ + λκu2)− ε cos ζ

∂zb
∂y

. (2.92)
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Numerical Methods

Solving the model equations of Chapter 2 analytically is difficult and would
require further, unphysical simplification. More appropriate is to solve the
equations numerically, by translating the physical problem into a discrete
form. This approach ensures to attack the original problem without further
assumption. Since the rapid development of computational power in the

second half of the 20th century, numerical simulations became popular and
many different methods were developed. Most popular are traditional grid
based methods. There are two fundamental frames to describe the physical
governing equations: the Lagrangian description and the Eulerian descrip-
tion.
The Lagrangian description is a material description. The grid is attached to
the material in the entire computation process and moves with the material.
The advantages of the Lagrangian description are:

• a relative simple formulation of the equation,

• a flexible mesh, in terms of covering irregularities,

• a relatively small grid size, which only covers the area covered by the
material,

• hence, a relatively short computation time,

• it is easily possible to track single points of the material by tracking
it’s attached grid point.

Since, each node follows it’s material point, huge deformations of the material
can lead to distorted meshes. The accuracy of the formulation and hence the
solution can be heavily deteriorated. Also the time step, which is controlled
by the smallest element size, can be become very small, resulting in a slow,
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inefficient time progress. In extreme cases it can also lead to a breakdown of
the algorithm.
The Eulerian description is a spatial description. The grid is fixed in space
and time. The material moves in the grid, without altering it. The features
of the Eulerian description are quite opposite to the Lagrangian description:

• the formulation of the equations is more difficult,

• mapping of irregularities in the geometry is generally difficult,

• the mesh has to cover the whole area, where material moves at any
time in the computation, at all time steps,

• hence, a relatively large computation time,

• it is difficult to track single points of the material.

But it is able to handle large deformation, since the grid is fixed.
The Savage-Hutter equations for rapidly moving boundary problems of gran-
ular flows are hyperbolic equations. An appropriate numerical scheme must
handle shock waves, occurring if the velocity of the flow changes from super-
critical to subcritical. This can be observed in experiment when the material
reaches the run-out zone or obstructions are hit in the slope. The mass de-
celerates abrupt and a shock wave propagates against flow direction, up the
slope. Such shock waves represent discontinuities of the physical quantities.
In the past decades various numerical techniques were applied. Early compu-
tations were based on Lagrangian moving mesh finite-difference schemes [13],
[14], [24], [31], [52], [66]. These schemes can model the location of avalanches
acceptable, but when shocks develop, numerical instabilities arise. An arti-
ficial numerical diffusion must be applied to avoid those instabilities, which
results in uncontrolled spreading and therefore loss of quality of the solution.
Also in Eulerian integration techniques, if the central difference scheme is em-
ployed, numerical instabilities were observed and numerical diffusion must be
included. First-order finite-difference schemes, like the first-order upstream
scheme, are stable with respect to numerical integration, but the solution is
often inaccurate since it becomes smeared (Wang et al. [65]).
Wang and Hutter [64] analyzed other traditional numerical integration tech-
niques. They observed oscillations in areas of high gradients, that are not
physically feasible, and also numerical instabilities occurred.
Since neither Lagrangian nor traditional Eulerian finite difference schemes are
able to resolve the steep gradients and reproduce the observed front shape
of the avalanche, it is necessary to apply other conservative high-resolution
numerical techniques.
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The development of high-resolution schemes has a long history, see e.g. [36],
[57], [62], [68]. Nessyahu and Tadmor [46] introduced a one-dimensional high-
resolution approach for flows without source term, named non-oscillatory
central (NOC) scheme, which was extended to two dimensions by Jiang and
Tadmor [47] and modified by Lie and Noelle [38]. Tai [57] and Tai et al. [60]
applied it to the numerical simulation of granular avalanche flows.
Since only cell averages are available, high-resolution schemes can generate
unphysical numerical oscillation near discontinuities or areas with steep gra-
dients. An algorithms for cell reconstruction is needed to avoid spurious
oscillation. For cell reconstruction, a Total Variation Diminishing (TVD)
limiter [20], [56] or Essentially Non-Oscillatory (ENO) [36] scheme is ap-
plied, where the Minmod TVD limiter has shown best performance of the
reconstruction schemes (Wang et al. [65]).

3.1 NOC Scheme

The two-dimensional NOC scheme uses staggered grids. It is a predictor-
corrector method, which consists of two steps. First, the grid point values
are predicted by using non-oscillatory reconstruction from the given cell av-
erages. At the second corrector step, the staggered averages are introduced,
together with the predicted mid-values. The key feature of this scheme is
that the staggered averages at (xp±1/2, yp±1/2, t

n+1) are computed by the cell
averages at (xp, yp, t

n) (see Figure 3.1).

Let Ci,j be the cell

Ci,j =

{
(x, y)

∣∣∣∣|x− xi| ≤ ∆x

2
and |y − yj| ≤

∆y

2

}
, (3.1)

covering (xi, yj). A piecewise linear reconstruction of the vector w from
(2.87) for (x, y) ∈ Ci,j is defined by

w(x, y, tn) = wn
i,j + (x− xi)(

∂w

∂x
)ni,j + (y − yj)(

∂w

∂y
)ni,j (3.2)

= wn
i,j + (x− xi)σxi,j + (y − yj)σyi,j,

where wn
i,j is the cell average of w over Ci,j at time tn. σxi,j and σyi,j are the

slopes of w in x-, respectively y-direction, which will be derived by TVD-
limiters, see below.
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Figure 3.1: Sketch of a staggered grid used in two-dimensional NOC scheme.
The staggered averages (xi+1/2, yi+1/2, t

n+1), marked by �, are computed by
averaging (xi, yi, t), displayed by •

To determine the staggered averages over cell Ci+1/2,j+1/2, integrating (2.87)
yields

wn+1
i+1/2,j+1/2 = 1

∆x∆y

∫ yi+1

yi

∫ xi+1

xi
w(x, y, tn+1) dx dy

= 1
∆x∆y

∫ yi+1

yi

∫ xi+1

xi
w(x, y, tn) dx dy

− 1
∆x∆y

∫ tn+1

tn

∫ yi+1

yi
(f(xi+1, y, t)− f(xi, y, t)) dy dt

− 1
∆x∆y

∫ tn+1

tn

∫ xi+1

xi
(g(x, yi+1, t)− g(x, yi, t)) dx dt

+ 1
∆x∆y

∫ tn+1

tn

∫ yi+1

yi

∫ xi+1

xi
s(x, y, t) dx dy dt

(3.3)

To integrate the first term in (3.3) the integration domain is divided into four
intersecting cells, so

1
∆x∆y

∫ xi+1

xi

∫ yi+1

yi
w(x, y, tn)dx dy

= 1
∆x∆y

{
∫ yi+1/2

yi

∫ xi+1/2

xi
w(x, y, tn)dx dy

+
∫ yi+1

yi+1/2

∫ xi+1/2

xi
w(x, y, tn)dx dy

+
∫ yi+1/2

yi

∫ xi+1

xi+1/2
w(x, y, tn)dx dy

+
∫ yi+1

yi+1/2

∫ xi+1

xi+1/2
w(x, y, tn)dx dy }

= 1
4

{
wn
i+1/4,j+1/4 + wn

i+1/4,j+3/4 + wn
i+3/4,j+1/4 + wn

i+3/4,j+3/4

}
,

(3.4)
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where
wn
i+1/4,j+1/4 = wn

i,j + ∆x
4
σxi,j + ∆y

4
σyi,j,

wn
i+1/4,j+3/4 = wn

i,j+1 + ∆x
4
σxi,j+1 −

∆y
4
σyi,j+1,

wn
i+3/4,j+1/4 = wn

i+1,j − ∆x
4
σxi+1,j + ∆y

4
σyi+1,j,

wn
i+3/4,j+3/4 = wn

i+1,j+1 − ∆x
4
σxi+1,j+1 −

∆y
4
σyi+1,j+1,

(3.5)

The fluxes, second and third term in (3.3) are approximated by second-order
rectangular rule for the spacial integral and by midpoint quadrature rule for
second-order accuracy of the temporal integral. Therefore,

1
∆x∆y

∫ tn+1

tn

∫ yi+1

yi
(f(xi+1, y, t)− f(xi, y, t)) dy dt

= ∆t
2∆x
{ f(xi+1, yj, t

n+1/2)− f(xi, yj, t
n+1/2)

+ f(xi+1, yj+1, t
n+1/2)− f(xi, yj+1, t

n+1/2) }
= ∆t

2∆x

{
f(w

n+1/2
i+1,j )− f(w

n+1/2
i,j ) + f(w

n+1/2
i+1,j+1)− f(w

n+1/2
i,j+1 )

}
,

(3.6)

1
∆x∆y

∫ tn+1

tn

∫ xi+1

xi
(g(x, yj+1, t)− g(x, yj, t)) dx dt

= ∆t
2∆y
{ g(xi, yj+1, t

n+1/2)− g(xi, yj, t
n+1/2)

+ g(xi+1, yj+1, t
n+1/2)− g(xi+1, yj, t

n+1/2) }
= ∆t

2∆y

{
g(w

n+1/2
i,j+1 )− g(w

n+1/2
i,j ) + g(w

n+1/2
i+1,j+1)− g(w

n+1/2
i+1,j )

}
.

(3.7)

First-order Taylor series expansion in time is used to approximate the values
of w

n+1/2
i,j . From (2.87) the predictor step of the NOC-scheme is derived,

w
n+1/2
i,j = wn

i,j + ∆t
2

(
∂w
∂t

)n
i,j

= wn
i,j − ∆t

2

(
∂f(w)
∂t

)n
i,j
− ∆t

2

(
∂g(w)
∂t

)n
i,j

+ ∆t
2

s(wn
i,j)

= wn
i,j − ∆t

2
σfi,j − ∆t

2
σgi,j + ∆t

2
s(wn

i,j),

(3.8)

where σfi,j and σgi,j are the slopes for f and g, which can also be written by
using the corresponding Jacobian.

σfi,j =

(
∂f(w)

∂w

)n
i,j

σxi,j, σgi,j =

(
∂g(w)

∂w

)n
i,j

σyi,j (3.9)

The integral of the forth term in (3.3) is also approximated by splitting the
domain into the four intersecting cells and using the midpoint quadrature
rule for second-order accuracy of the temporal integral. This yields

1
∆x∆y

∫ tn+1

tn

∫ yi+1

yi

∫ xi+1

xi
s(x, y, t)dx dy dt

= ∆t
4
{ s(xi+1/4, yi+1/4, t

n+1/2) + s(xi+1/4, yi+3/4, t
n+1/2)

+ s(xi+3/4, yi+1/4, t
n+1/2) + s(xi+3/4, yi+3/4, t

n+1/2) }
= ∆t

4
{ s(w

n+1/2
i+1/4,j+1/4) + s(w

n+1/2
i+1/4,j+3/4)

+ s(w
n+1/2
i+3/4,j+1/4) + s(w

n+1/2
i+3/4,j+3/4) }.

(3.10)
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The values w
n+1/2
i+1/4,j+1/4, w

n+1/2
i+1/4,j+3/4, w

n+1/2
i+3/4,j+1/4 and w

n+1/2
i+3/4,j+3/4 are again

determined by virtue of first-order Taylor series expansion in time and space,

w
n+1/2
i+1/4,j+1/4 = w

n+1/2
i,j + ∆x

4
σxi,j + ∆y

4
σyi,j,

w
n+1/2
i+1/4,j+3/4 = w

n+1/2
i,j+1 + ∆x

4
σxi,j+1 −

∆y
4
σyi,j+1,

w
n+1/2
i+3/4,j+1/4 = w

n+1/2
i+1,j − ∆x

4
σxi+1,j + ∆y

4
σyi+1,j,

w
n+1/2
i+3/4,j+3/4 = w

n+1/2
i+1,j+1 − ∆x

4
σxi+1,j+1 −

∆y
4
σyi+1,j+1.

(3.11)

In summary, the two-dimensional NOC-scheme consists of the predictor step
(3.8) and the staggered corrector step (3.3), by substituting (3.4), (3.6), (3.7)
and (3.10). The cell average value at (xi+1/2, yj+1/2, t

n+1) is given by

wn+1
i+1/2,j+1/2

= 1
4

{
wn
i+1/4,j+1/4 + wn

i+1/4,j+3/4 + wn
i+3/4,j+1/4 + wn

i+3/4,j+3/4

}
− ∆t

2∆x

{
f(w

n+1/2
i+1,j )− f(w

n+1/2
i,j ) + f(w

n+1/2
i+1,j+1)− f(w

n+1/2
i,j+1 )

}
− ∆t

2∆y

{
g(w

n+1/2
i,j+1 )− g(w

n+1/2
i,j ) + g(w

n+1/2
i+1,j+1)− g(w

n+1/2
i+1,j )

}
+∆t

4
{s(w

n+1/2
i+1/4,j+1/4) + s(w

n+1/2
i+1/4,j+3/4) + s(w

n+1/2
i+3/4,j+1/4) + s(w

n+1/2
i+3/4,j+3/4)}.

(3.12)
The slopes σx, σy, σf and σg are a question of cell reconstruction. The
solution must meet two main criteria. It must be of second-order accuracy
to avoid diffusion and, to avoid oscillation, it must fulfill the Total Variation
Diminishing (TVD) condition

TV(Un+1) ≤ TV(Un), (3.13)

where TV(Un) =
∑
|Un

i+1 − Un+1
i+1 | is a measure for the total variation of a

one-dimensional variable U at time step n. Methods fulfilling the the TVD
condition are called TVD methods. Harten [20] has proven that a tow-sided
numerical scheme of the form

Un+1
i = Un

i − Ci−1/2(Un
i − Un

i−1) +Di+1/2(Un
i+1 − Un

i ), (3.14)

where Ci−1/2 and Di+1/2 are data-dependent expressions fulfilling the condi-
tions

0 ≤ Ci−1/2, 0 ≤ Di+1/2 and 0 ≤ (Ci−1/2 +Di+1/2) ≤ 1 ∀i (3.15)

is a TVD method. For example, the low-order upwind scheme fulfilling a
Courant-Friedrichs-Levy condition is a first-order TVD method. To achieve

39



Chapter 3: Numerical Methods

second-order accuracy for smooth solutions, combined with well-resolved dis-
continuities a high-order scheme FH , i.e. the Lax-Wendroff method, is de-
scribed as a modification of a low-order scheme FL, i.e. the upwind scheme
by

FH = FL + (FH − FL). (3.16)

The first term of (3.16), FL, is very diffusive, the second term, FH − FL,
is called anti-diffusive (Selby [56]), it captures discontinuities. Introducing
a flux-limiter φi allows to define a method with second-order accuracy for
smooth regions and fulfilling the TVD condition near to discontinuities

FH = FL + φi(F
H − FL). (3.17)

φi is chosen near unity if the data is smooth and near zero if near to discon-
tinuities. The description can be done in various ways. One possibility is to
introduce the ratio of consecutive gradients as a measure of smoothness,

θi =
Un
i − Un

i−1

Un
i+1 − Un

i

(3.18)

and to describe φi as a function of this ratio

φi = φ(θi) (3.19)

The most applicable limiter for the Savage-Hutter model is the so-called
Minmod limiter

φMinmod(θ) = max(0,min(1, θ)), (3.20)

as shown by Wang et al. [65].
The one-dimensional slope limiter is then introduced by

σi =

(
Un
i+1 − Un

i

∆x

)
(3.21)

To ensure a smooth piecewise polynomial reconstruction of the cell averages,
the Courant-Friedrichs-Levy (CFL) condition must be fulfilled, thus

∆tmax

(
|cmaxx |
∆x

,
|cmaxy |

∆y

)
<

1

2
, (3.22)

where cmaxx and cmaxy are the maximum wave speeds in x- and y-direction.
They are

cmaxx = max
∀i,j

(
|ui,j|+

√
(βx)i,j hi,j

)
,

cmaxy = max
∀i,j

(
|vi,j|+

√
(βy)i,j hi,j

)
,

(3.23)

for all hi,j 6= 0.
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Interaction between Granular
Flow and Obstruction

For engineers building avalanche protection systems, the interaction of snow
avalanches and the built defensive structures is one of the most important
issues in avalanche dynamics. Such defense structures are of different shape
and are built for different purpose. Smaller breaking dams are placed in the
slope to absorb energy. Catchment and deflection dams are usually built in
the runout zone to protect facilities. Of special interest are forces acting on
the building, volume of the retained mass and the impact on the size of the
run out area.
The interaction of moving avalanches and dams can not entirely modeled
numerically and theoretically nowadays. Scientists are currently working on
this topic, but no model is able to cover the interaction satisfactorily, yet.
First approaches to adjust the Savage-Hutter model to implement dams were
done by Tai et al. [58] and Gray et al. [12]. Chiou et al. [9] continued their
work and tested different kind of obstacles. In her dissertation [8], Chiou
documented various experimental and numerical simulations. Several simu-
lations within this work will refer to these experiments. These models use
the elevation function (2.28) to add obstacles to the slope.
Continuum mechanic approaches like the Savage-Hutter theory are only use-
ful to simulate shallow, dense flows. Material overflowing the dam becomes
airborne and does not fulfill these restrictions anymore. Jets were observed
in experiments and described by simple models, e.g. by Hákonardóttir et al.
[16], [19].
A totally different approach is the use of Discrete Element Methods (DEM),
see e.g. Teufelsbauer et al. [61]. The material consists of balls which interact
with one another while moving down the slope. The advantage is the fully
three-dimensional calculation, which allows deep insight into the event and
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the implementation of dams. Also airborne is covered by such models.
In this chapter, the experiments performed and documented by Chiou [8] are
introduced in the first section.
In the second section, the continuum mechanical model, introduced in Chap-
ter 2, is used to simulate these experiments as done by Chiou [8]. Also
weaknesses of this method are discussed.
The third section focuses on Discrete Element Methods as an alternative to
the continuum mechanical approach. The same experiments were simulated
by Teufelsbauer et al. [61] by using the commercial software PFC3d.
The last section contains a summery of the achieved results.

4.1 Experimental Set-up

To validate the Savage-Hutter theory, experiments, done by Chiou in the lab-
oratory of the TU Darmstadt are simulated numerically. The experiments
were described and documented in her dissertation [8].

Figure 4.1: Set-up of the experiment in the laboratory in Darmstadt, by
Chiou [8]

The chute (see photograph by Chiou [8] in Figure 4.1) was in total 1915
mm long. It had an inclined upper part. The inclination angle of the upper
part could be set to 30◦, 40◦, 45◦ or 50◦. Depending on the angle the inclined
slope was between 930 mm and 939 mm long. The lower part was a 835
mm long plane runout zone. Both parts were connected by a constantly
curved transition zone. The granular material was firstly stored in a cap,
which could be quickly opened by pulling a rope to release the mass. Chiou
used two kinds of caps. The first one, a hemisphere of radius 100 mm was
called High-Cap. The second one, called Shallow-Cap, was the top part of
a hemisphere of radius 238, where the bottom-radius was 158 mm and the
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height was 60 mm. Alternatively, a vertically oriented silo, with a gate 180
mm from the top edge of the chute, was used. The opening height of the gate
could be varied from 3, 6, 9, 12, 15 to 18 mm. The material was released
by quickly lifting the confining plate. This silo was designed to produce
a nearly uniform flow with mass evenly distributed over the whole width.
Three different dry, granular materials: Quartz, Yellow-Sand and Vestolen,
were used, respectively. The material properties are listed in Table 4.1.

Table 4.1: Material properties of the three different granular materials: d
is the mean grain diameter, ρ the mass density, M1 the mass of granular
material for High-Cap, M2 the mass of granular material for Shallow-Cap, φ
the internal friction angle and δ the basal friction angle

d (mm) ρ (kg/m3) M1 (kg) M2 (kg) φ δ
Quartz 5 1639 2.95 3.69 40◦ 28◦

Yellow-Sand fine 1661 2.99 3.75 33◦ 27◦

Vestolen 4 639 1.15 1.41 37◦ 24◦

Obstacle could be fixated at three different positions of the chute, P1 =
650 mm, the distance between the first possible position of the obstacle and
the upper edge of the inclined plane, P2 = 730 mm and P3 = 810 mm, the
distances for the second and third position. Chiou documented two classes
of obstacles. Small rectangular Plexiglas plates of different sizes were placed
perpendicular to the slope to model walls. The second kind of used obstacles
were tetrahedral wedges, with an equilateral triangle as base, lying in the
slope with one vertex in the center line pointing up the slope.
For recording of the experiments a CCD camera and two flashes were used.
A digital video camera was used as synchronizer and for recording the entire
flow motion. A clock was placed on the chute to identify the time in each
frame.

4.2 Numerical Simulation by means of Savage-

Hutter Model

The continuum mechanical approach is based on the Savage-Hutter equations
presented in Chapter 2. There are two material parameters to be determined.
Computational results indicate that the geometry of the flow is not very sen-
sitive to the alteration of the internal friction angle φ, see Wang et al. [65].
For laboratory experiments, it can be measured from a conical pile of gran-
ular material built on horizontal plane.
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The determination of the dynamic bed friction angle δ follows the common
suggestion to measure the static bed friction angle and reduce it by 4◦ [22],
[23]. In all following calculations both parameters are assumed to be con-
stant values according to Table 4.1.
The two non-dimensional parameters ε and λ of (2.87) are chosen to be unity.
This does not conflict the assumption that these two non-dimensional param-
eters should be small. It indicates only the same length scale is employed in
the downflow and cross-slope direction and for the radius of the curvature.
The elevation function zb(x, y) is used to implement obstructions like dams.
Physically, this implementation will cause large errors, especially for high
obstructions. The obstructions are only implemented as local height differ-
ences in the basal topography. Other physical variables are not considered at
all. From (2.91) and (2.92) it becomes obvious that only spatial derivatives
of the elevation function, ∂zb/∂x and ∂zb/∂y enter the model equations. In
the most extreme case of steep walls, these terms may be non-zero only in
very few grid points. The less steep the gradient, the more grid points are
affected and the better the quality of the results. Originally the elevation
function was implemented to model channels, with relatively smooth gradi-
ents, mainly in cross slope direction.

4.2.1 Granular Flows past Tetrahedral Obstructions

Figure 4.2: Sketch of a ground view of a tetrahedra.

The used tetrahedra has an equilateral basis with edge length L and body
height H. Let Xf = (xf , yf ) be the front vertex of the tetrahedra, lying in
the basal triangle, pointing up the slope, see Figure 4.2. Xb = (xb, yb) is
the center of the back edge and Xc = (xc, yc) is the center of the basal
triangle above which the top vertex (not shown in the figure) lies. Since the
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tetrahedra is placed symmetrically regarding the x-coordinate,

yf = yb = yc. (4.1)

By means of geometric properties of equilateral triangles,

xb = xf +

√
3L

2
, (4.2)

xc = xf +
L√
3
. (4.3)

The tetrahedra enters the model by the derivatives of the elevation function,
∂zb/∂x and ∂zb/∂y, which are prescribed as follows,

∂zb(x, y)

∂x
=



0 for {(x, y)|x+
√

3y < xf +
√

3yf} ∪
{(x, y)|x−

√
3y < xf −

√
3yf} ∪

{(x, y)|x > xb},√
3H
L

for {(x, y)|x+
√

3y > xf +
√

3yf} ∩
{(x, y)|

√
3x+ y <

√
3xf + yf + L} ∩

{(x, y)|y < yf},√
3H
L

for {(x, y)|x−
√

3y > xf −
√

3yf} ∩
{(x, y)|

√
3x− y <

√
3xf − yf + L} ∩

{(x, y)|y ≥ yf},
−2
√

3H
L

for {(x, y)|
√

3x+ y >
√

3xf + yf + L} ∩
{(x, y)|

√
3x− y >

√
3xf − yf + L} ∩

{(x, y)|x < xb},√
3H
L

for {(x, y)|y = yf} ∩
{(x, y)|x ∈ [xf , xc]}√

3H
2L

for {(x, y)|x+
√

3y = xf +
√

3yf} ∩
{(x, y)|x ∈ ]xf , xb]},√

3H
2L

for {(x, y)|x−
√

3y = xf −
√

3yf} ∩
{(x, y)|x ∈ ]xf , xb]},

−
√

3H
2L

for {(x, y)|
√

3x+ y =
√

3xf + yf + L} ∩
{(x, y)|x ∈ ]xc, xb]},

−
√

3H
2L

for {(x, y)|
√

3x+ y =
√

3xf + yf + L} ∩
{(x, y)|x ∈ ]xc, xb]},

−
√

3H
L

for {(x, y)|x = xf +
√

3L/2} ∩
{(x, y)|y ∈ ]yf − L/2, yf + L/2[},

(4.4)
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∂zb(x, y)

∂y
=



0 for {(x, y)|x+
√

3y < xf + sqrt3yf} ∪
{(x, y)|x−

√
3y < xf −

√
3yf} ∪

{(x, y)|x > xb},
3H
L

for {(x, y)|x+
√

3y > xf +
√

3yf} ∩
{(x, y)|

√
3x+ y <

√
3xf + yf + L} ∩

{(x, y)|y < yf},
−3H

L
for {(x, y)|x−

√
3y > xf −

√
3yf} ∩

{(x, y)|
√

3x− y <
√

3xf − yf + L} ∩
{(x, y)|y > yf},

0 for {(x, y)|
√

3x+ y >
√

3xf + yf + L} ∩
{(x, y)|

√
3x− y >

√
3xf − yf + L} ∩

{(x, y)|x < xb},
0 for {(x, y)|y = yf} ∩

{(x, y)|x ∈ [xf , xc]}
3H
2L

for {(x, y)|x+
√

3y = xf +
√

3yf} ∩
{(x, y)|x ∈ ]xf , xb]},

−3H
2L

for {(x, y)|x−
√

3y = xf −
√

3yf} ∩
{(x, y)|x ∈ ]xf , xb]},

3H
2L

for {(x, y)|
√

3x+ y =
√

3xf + yf + L} ∩
{(x, y)|x ∈ ]xc, xb]},

−3H
2L

for {(x, y)|
√

3x+ y =
√

3xf + yf + L} ∩
{(x, y)|x ∈ ]xc, xb]},

0 for {(x, y)|x = xf +
√

3L/2} ∩
{(x, y)|y ∈ ]yf − L/2, yf + L/2[},

(4.5)

Note that the derivatives of zb are not defined for the edges. They are
defined by averaging the derivatives of the intersecting planes.

Figure 4.3 shows a comparison of experiment (left side) and theoretical
prediction (right side) for a tetrahedra using the silo for a uniform flow per-
formed by Chiou [8]. At the given time step the flow already formed its
steady state. As long as a uniform flow is provided the shown shape is not
changed. The flowing mass is split into two parts by the tetrahedra. Since
the obstruction is symmetric regarding to the cross-slope center line, also
separation is done in a symmetric way. If the obstruction is not high enough
to avoid overflowing, the mass is not fully divided but partly overflowing
the obstruction. Even if the obstruction is high enough to pretend complete
overflow, the mass climbs up at the front of it to some extend before it is
deflected to the side. The minimal height necessary to avoid total overflow
is called critical height of the obstruction. In Figure 4.3, it can be seen that
the numerical results are not satisfactory in many important criteria. The
mass overflowing the tetrahedra in the computation goes much higher to the
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Figure 4.3: Comparison between experiment (left panel) and numerical re-
sult (right panel) for a uniform inflow of yellow-sand released from the silo
at x = 180 mm with opening height 9 mm moving down a chute with in-
clination angle 45◦. A forward-facing tetrahedral wedge with height 80 mm
and bottom-side length 160 mm lies in the middle of the inclined plane at P1

(the downslope coordinate x = 650 mm), by Chiou [8].

top of the tetrahedra than does the mass in the experiment. As a result, the
area in the back of the obstacle that is free of mass, called granular vacuum,
is much narrower than observed. Also estimations of the critical height are
not accurate.

4.2.2 Granular Flows past Cuboid Obstructions

Cuboid obstructions, which represent a small wall in the slope, are more
difficult to handle than tetrahedral wedges, due to their steep front surface
the mass partly depositions in the front of the cuboid. The front side of the
tetrahedra has a sharp edge that deflects the impacting mass to the side.
The front of the cuboid is a plane, usually orthogonal to the slope plane.

To implement the cuboid obstruction the elevation function is used. Sim-
ilar to the tetrahedral wedge, the derivatives of the elevation function must
be defined. The cuboid obstruction is modeled by a polyhedron, as shown
in Figure 4.4. It has a rectangular base with length Lb and width Wb and a
rectangular top with length Lt and width Wt, which is parallel to the base
rectangular. The center of the top rectangular covers the center of the base
plane. The body height of the obstruction is H. The side surface consists of
four symmetric trapezoids. Let

∆L =
Lb − Lt

2
and ∆W =

Wb −Wt

2
, (4.6)
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Figure 4.4: Sketch of a ground view of a cuboid obstruction.

then the slope angles α and β of the side planes are given by

tanα =
H

∆W

and tan β =
H

∆L

. (4.7)

The center of the base, Xc = (xc, yc) lies in the center of the chute and the
front line f is orthogonal to the x-axis. Thus, the derivatives of the elevation
function, ∂zb/∂x and ∂zb/∂y, are

∂zb(x, y)

∂x
=



0 for {(x, y)|Wb/2 < |x− xc|} ∪
{(x, y)|Lb/2 < |y − yc|},

0 for {(x, y)|Wb/2 = |x− xc|} ∩
{(x, y)|Lb/2 = |y − yc|},

0 for {(x, y)|Wt/2 > |x− xc|} ∩
{(x, y)|Lt/2 > |y − yc|},

H
∆W

for {(x, y)|x ∈ ]xc −Wb/2, xc −Wt/2[} ∩
{(x, y)|∆Lx+ ∆Wy <

∆L(xc −Wb/2) + ∆W (yc + Lb/2)} ∩
{(x, y)|∆Lx−∆Wy <

∆L(xc −Wb/2)−∆W (yc − Lb/2)},
− H

∆W
for {(x, y)|x ∈ ]xc +Wt/2, xc +Wb/2[} ∩

{(x, y)|∆Lx+ ∆Wy >
∆L(xc +Wb/2) + ∆W (yc − Lb/2)} ∩
{(x, y)|∆Lx−∆Wy >

∆L(xc +Wb/2)−∆W (yc + Lb/2)},
...

(4.8)
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∂zb(x, y)

∂x
=



...
0 for {(x, y)|y ∈ [yc − Lb/2, yc − Lt/2]} ∩

{(x, y)|∆Lx+ ∆Wy <
∆L(xc −Wb/2) + ∆W (yc − Lb/2)} ∩
{(x, y)|∆Lx−∆Wy >

∆L(xc +Wb/2)−∆W (yc − Lb/2)},
0 for {(x, y)|y ∈ [yc + Lt/2, yc + Lb/2]} ∩

{(x, y)|∆Lx+ ∆Wy >
∆L(xc −Wb/2) + ∆W (yc + Lb/2)} ∩
{(x, y)|∆Lx−∆Wy <

∆L(xc +Wb/2)−∆W (yc + Lb/2)},
H

2∆W
for {(x, y)|x ∈ ]xc −Wb/2, xc −Wt/2]} ∩

{(x, y)|∆Lx+ ∆Wy =
∆L(xc −Wb/2) + ∆W (yc + Lb/2)},

H
2∆W

for {(x, y)|x ∈ ]xc −Wb/2, xc −Wt/2]} ∩
{(x, y)|∆Lx−∆Wy =

∆L(xc −Wb/2)−∆W (yc − Lb/2)},
− H

2∆W
for {(x, y)|x ∈ [xc +Wt/2, xc +Wb/2[} ∩

{(x, y)|∆Lx+ ∆Wy =
∆L(xc +Wb/2) + ∆W (yc − Lb/2)},

− H
2∆W

for {(x, y)|x ∈ [xc +Wt/2, xc +Wb/2[} ∩
{(x, y)|∆Lx−∆Wy =

∆L(xc +Wb/2)−∆W (yc + Lb/2)},
H

2∆W
for {(x, y)|x = xc −Wb/2]} ∩

{(x, y)|y ∈ ]yc − Lb/2, yc + Lb/2[},
H

2∆W
for {(x, y)|x = xc −Wt/2]} ∩

{(x, y)|y ∈ ]yc − Lt/2, yc + Lt/2[},
− H

2∆W
for {(x, y)|x = xc +Wb/2]} ∩

{(x, y)|y ∈ ]yc − Lb/2, yc + Lb/2[},
− H

2∆W
for {(x, y)|x = xc +Wt/2]} ∩

{(x, y)|y ∈ ]yc − Lt/2, yc + Lt/2[},
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∂zb(x, y)

∂y
=



0 for {(x, y)|Wb/2 < |x− xc|} ∪
{(x, y)|Lb/2 < |y − yc|},

0 for {(x, y)|Wb/2 = |x− xc|} ∩
{(x, y)|Lb/2 = |y − yc|},

0 for {(x, y)|Wt/2 > |x− xc|} ∩
{(x, y)|Lt/2 > |y − yc|},

0 for {(x, y)|x ∈ [xc −Wb/2, xc −Wt/2]} ∩
{(x, y)|∆Lx+ ∆Wy <

∆L(xc −Wb/2) + ∆W (yc + Lb/2)} ∩
{(x, y)|∆Lx−∆Wy <

∆L(xc −Wb/2)−∆W (yc − Lb/2)},
0 for {(x, y)|x ∈ [xc +Wt/2, xc +Wb/2]} ∩

{(x, y)|∆Lx+ ∆Wy >
∆L(xc +Wb/2) + ∆W (yc − Lb/2)} ∩
{(x, y)|∆Lx−∆Wy >

∆L(xc +Wb/2)−∆W (yc + Lb/2)},
H

∆L
for {(x, y)|y ∈ ]yc − Lb/2, yc − Lt/2[} ∩

{(x, y)|∆Lx+ ∆Wy <
∆L(xc −Wb/2) + ∆W (yc − Lb/2)} ∩
{(x, y)|∆Lx−∆Wy >

∆L(xc +Wb/2)−∆W (yc − Lb/2)},
− H

∆L
for {(x, y)|y ∈ ]yc + Lt/2, yc + Lb/2[} ∩

{(x, y)|∆Lx+ ∆Wy >
∆L(xc −Wb/2) + ∆W (yc + Lb/2)} ∩
{(x, y)|∆Lx−∆Wy <

∆L(xc +Wb/2)−∆W (yc + Lb/2)},
− H

2∆L
for {(x, y)|x ∈ ]xc −Wb/2, xc −Wt/2]} ∩

{(x, y)|∆Lx+ ∆Wy =
∆L(xc −Wb/2) + ∆W (yc + Lb/2)},

H
2∆L

for {(x, y)|x ∈ ]xc −Wb/2, xc −Wt/2]} ∩
{(x, y)|∆Lx−∆Wy =

∆L(xc −Wb/2)−∆W (yc − Lb/2)},
H

2∆L
for {(x, y)|x ∈ [xc +Wt/2, xc +Wb/2[} ∩

{(x, y)|∆Lx+ ∆Wy =
∆L(xc +Wb/2) + ∆W (yc − Lb/2)},

− H
2∆L

for {(x, y)|x ∈ [xc +Wt/2, xc +Wb/2[} ∩
{(x, y)|∆Lx−∆Wy =

∆L(xc +Wb/2)−∆W (yc + Lb/2)},
...

(4.9)
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∂zb(x, y)

∂y
=



...
H

2∆W
for {(x, y)|y = yc − Lb/2]} ∩

{(x, y)|x ∈ ]xc −Wb/2, xc +Wb/2[},
H

2∆W
for {(x, y)|y = yc − Lt/2]} ∩

{(x, y)|x ∈ ]xc −Wt/2, xc +Wt/2[},
− H

2∆W
for {(x, y)|y = yc + Lb/2]} ∩

{(x, y)|x ∈ ]xc −Wb/2, xc +Wb/2[},
− H

2∆W
for {(x, y)|y = yc + Lt/2]} ∩

{(x, y)|x ∈ ]xc −Wt/2, xc +Wt/2[},

where the derivatives for the edges are defined by averaging the intersecting
planes, similar to the tetrahedra.

Figure 4.5: Sketch of stored mass between the inclines slope plane of the chute
and the orthogonal front plane of the wall. The mass forms a shape close to
a tetrahedra (shown in red), where one edge is lying in the intersection of
the slope plane and the front plane, the adjacent triangles lie in the slope,
respectively front plane. The sixth edge, connecting the two top vertexes of
the triangles, is lying horizontal.

The first thing happening, when mass reaches the obstruction, is mass
accumulating in the space between the front plane of the cuboid and the
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slope. The successive mass is moving along the surface of the stored mass.
The stored mass forms a stable shape that is close to a tetrahedra, where
one edge is lying in the intersection of the slope plane and the front plane
of the obstruction, the adjacent triangles lie in the slope, respectively front
plane. The sixth edge connects the two top vertexes of the triangles. It faces
the moving mass and can be compared with the front edge of the tetrahedral
wedge, as it divides the mass into two parts, by deflecting it to the left or
right side. A sketch of the thought tetrahedra is shown in Figure 4.5. In
the computations this stable shape of stored mass can not be achieved. For
a suitable model, it would be necessary to allow the mass to deposit in the
area and successive mass to move along its surface. The present continuum
model is only suitable to simulating dynamic processes. No deposition model
is implemented. A one-dimensional deposition model was introduced by Tai
and Kuo [59], but no two-dimensional deposition model is known so far.
In the used model, the mass is decelerated and the slowly flowing mass in the
front of the obstruction is replaced by the following mass. If no successive
mass is left, the accumulation is disintegrating slowly. No stable shape is
formed, but a quasi steady state can be observed for a long time, which can
be considered as a final deposition.
A comparison between experiment and numerical simulation is shown in
Figure 4.6.

The computations for cuboid wall elements showed similar weaknesses as
for the tetrahedral wedges. Again, the impact of the obstruction is underes-
timated in computations.
In cases, where the cuboid is sized in the way that the mass is not overflowing
it in the experiments, but is almost reaching its top, the error is seen most ev-
idently. The material overflows the obstruction in computations whilst not
in experiment. Therefore, also other significant observable features of the
flow reveal evident differences between experiments and calculations. The
granular vacuum in the back of the obstruction is, if it exists at all, smaller
and the shape of the deposit in the runout zone looks different. The model
fails if the critical height of the obstruction, the minimal height to avoid
overflowing, shall be calculated, which is one of the most important criteria
in avalanche protection. For such tasks other more suitable models may be
necessary.

In Figure 4.7, the granular flow height on the central symmetric xz-plane
is displayed for a given time point after the mass is released at the top of a
chute. The model is based on the set-up described in Section 4.1. The chute
consists of an inclined plane from x = 0 to x = 251 and a horizontal part
for x > 295 with a smooth connection from x = 251 to x = 295. A cuboid
obstruction is considered in the model equations via elevation function (4.8)
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Figure 4.6: Comparison between experiment (left panels) and numerical re-
sult (right panels) for a mass of Vestolen released from the Shallow-Cap down
a chute with inclination angle 40◦. A cuboid dam with height 80 mm and
width 160 mm lies in the middle of the inclined plane at position P1 (x = 650
mm). The cylindrical transition zone of the chute starts from 933.5 mm and
ends at 1080 mm. The time in each panel from up to down are: 0.397, 0.93,
and 1.464 seconds. Experiment and numerical simulation by Chiou [8]
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Figure 4.7: Side view on the curve within the xz-plane: x-axis count shows
numeration of the grid points, z-axis shows the depth of the material in the
corresponding grid point.

and (4.9).
The center of the obstruction is at xc = 165, the height is H = 2.4. Until
the position x = 160 the elevation function is constantly equal to zero. At
x = 161 it jumps to H. When the obstruction ends at x = 170, it jumps
back and keeps being zero from x = 171 onwards. So the only points where
the derivative ∂zb/∂x is not zero are at x ∈ [160, 161] and x ∈ [170, 171].
The black lines in Figure 4.7 shows the numerical solution. It can be seen
that mass is still running down the slope and some mass has accumulated
in the front of the obstruction. Some mass already passed the obstructions
and accumulates in the run-out zone. The dashed line shows the flow height,
when the elevation function is not added to the result. In the area outside
of the cuboid, it overlaps the solid black line, which is the height with added
elevation function. It could be expected that the mass height jumps to zero
at the point it reaches the cuboid if no mass overflows the obstruction. In
the numerical result it can be clearly seen that the solution is slowly becom-
ing zero. A significant amount of mass is flowing through (dashed line) or
over (solid line) the obstruction. Obviously it is not physically feasible that
the mass is running through a solid obstruction. Overflowing may be more
feasible, but considering that the mass accumulating in the front is by far
not as high as the cuboid, overflowing should not be observed in this case.
Also in the corresponding laboratory experiment, hardly any overflowing was
observed for this case [8].

54



Chapter 4: Interaction between Granular Flow and Obstruction

In summary, the presented numerical model has two major weaknesses. One
is the numerical scheme which tends to smear the solution. The other is the
implementation of the obstruction.
A simple way to improve the results is to increase the resolution of the grid,
particularly in the vicinity of the obstruction. If more grid points are lying
in the front plane of the obstruction, the influence of the obstruction can
be better captured. The unphysical smearing of the solution through the
obstruction can also be reduced.
The drawback of the increased grid resolution is increased computation time.
Since only the area close to the obstruction needs finer grids, while the basic
grid is sufficient elsewhere, it seems plausible to increase the resolution only
locally. The Adaptive Mesh Refinement Method (AMR), see Chapter 5 may
be a reasonable method for this purpose.
Also alternative ways to implement the cuboid are of interest. The slope sur-
face of the obstruction may be implemented by additional planes with own
grids for numerical computations. This includes transferring of solutions at
the intersection lines. However, singularities at the intersection need to be
handled. This method is presented in Chapter 6.

4.3 Discrete Element Model

As alternative to the continuum mechanical approach, a DEM (Discrete El-
ement Method) [11] can be used to simulate the interaction of granular flows
and obstructions, as well as to calculate interaction forces (see Section 7.2).
In such discontinuum approaches the mass is modeled by discrete particles.
Motion and interaction among the particles obey the basic laws of motion.
The presented numerical calculations are carried out with the commercial
software PFC3d (Version 3.0, Itasca Consulting Group), as performed by
Teufelsbauer et al. [61]. PFC3d supports two kind of elements. Arbitrarily
sized balls, which are used to simulate the granular material, and wall ele-
ments, enabling the creation of topography with static boundary conditions.
All elements are characterized by material properties like stiffness and fric-
tion. The ball elements have also predefined diameters and densities. Studies
on the impact of the diverse parameters can be found in [11], [10], [54], [53],
[55], [67], [69].
The interactions between particles and between particles and walls are deter-
mined by simple mechanical models, such as springs and dashpots ([10], [32],
[42]) and overlapping. Contact forces are decomposed into a normal and a
shear component, goverend by the Kelvin-Voigt model. This model consists
of an elastic spring and a viscous damper, controlling energy dissipation dur-
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ing collisions.
Normal and shear forces are subjected by some restrictions. Tensile nor-
mal forces are not allowed and the tangential forces are assumed to obey a
Coulomb friction law, which can be expressed by a linear relationship be-
tween the normal force F n and the maximal allowable shear force F s

max,

F s
max = µ|F n|, (4.10)

where µ is the friction coefficient. Slip between two adjacent particles oc-
curs, if the shear force is equal to the maximal allowable shear force. In
the presented granular flow model internal and basal friction angles deter-
mined in laboratory are assigned to calculate the internal and bed friction
coefficients. In general, these DEM parameters differ from laboratory mea-
surements. However, in the case of rapid granular flows Coulomb sliding
friction is dominated by rotational friction which allows a rough estimation
of internal and basal friction.
An additional rotation control is added to the DEM model which allows to
describe the rotation behavior of arbitrarily shaped granules with a rough
surface by spherical balls ([61], [29], [70]). Without any rolling friction, the
friction µ would be not strong enough to prevent the particles from rolling
down an incline. As a result, the model would strongly underestimate bed
and internal friction angles measured in laboratory. By means of the rotation
control it is possible to simulate gravity driven flows of granular material re-
alistically by DEM. The mechanism of rotation control is described in detail
by Teufelsbauer et al. [61]. Two parameters, the retarding time λ and the
particle contact influence χ have to be identified to describe the rotation be-
haviour of the particles. The retarding time λ defines the time span which
is needed to reduce the angular velocity ω by the retarding coefficient

kλ =
1

1 + cχ
∈ [0; 1], (4.11)

where c is the number of contacts of a particle to its neighbor particles
and χ indicates the sensitivity of the retarding coefficient to the number of
contacts. Let ∆t be a discrete time step of the DEM calculation, then the
particle rotation ωti , in direction i ∈ {1, 2, 3}, is reduced to the new rotation

ωt+1
i = k

∆t/λ
λ ωti (4.12)

for the following time step. Observations showed that the influence of the
shape of angular particles decreases with increased shear velocity. Hence, the
rotation model is enhanced by a linear model for the retarding coefficient

λ = kvvs + λc, (4.13)
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dependent on a shear velocity vs, a shear retarding coefficient kv and an
independent retarding time λc. This relation allows a more accurate descrip-
tion of the static deposition and dynamic flow of granular material with one
mathematical model.
Furthermore, a threshold velocity vsr is defined at which particle rotation is
initiated. If the relative particle velocity is below the threshold velocity, the
particle rotation is set to zero. This effect can often be observed in labora-
tory experiments, when an angular particle slides along a smooth inclined.
When the particle begins to move it is mostly sliding without rotation. If
it has reached a certain (mostly stochastically varying) velocity it begins to
rotate. A similar effect can be observed in the deposition process. In general
the threshold velocity vrs, the threshold for an angular particle from rolling
to pure sliding, is much lower than the threshold vsr from sliding to rolling,
due to the kinetic energy of particle spin.
The numerical simulations have proven to be most sensitive to viscous damp-
ing and ball rotation (see Figure 4.9). Other material parameters, provided
by PFC3d, were significantly less influential. Only if ball rotation is low,
shear parameters become important.

In Figure 4.8, it can be seen that the experiment can be reproduced well
with PFC3d. The displayed experiment, was executed by Chiou [8] on the
chute described in Section 4.1. The photographs in the right panels show
experimental results with quartz particles moving down the Plexiglas chute
with inclination angle ζ = 40◦, interacting with a 80 mm high and 160 mm
long Plexiglas wall, positioned at P1 (650 mm from the upper edge of the
chute). The left panels show the results of the simulations performed with
PFC3d. A qualitative good agreement can be seen.
It is usually difficult to determine a suitable set of model parameters. Some
parameters, such as friction angles, ball diameter or density, can be estimated
by using values measured in the laboratory or back analysis [61], [71], others
not.
The DEM model has demonstrated to be very sensitive to the viscous damp-
ing parameter and the rotation of the particles. Figure 4.9 shows a compari-
son of the same channel flows, but with free and highly constrained rotation,
respectively. The inclination angle of the channel is ζ = 45◦. The model is
completely three-dimensional. The only difference between the right and the
left panels is the ball rotation, which is free in the simulation shown in the
right panels, but highly constraint in the simulation shown in the left pan-
els. The significant difference can be seen in the simulated maximal velocity,
noted for each shown time step underneath the pictures in Figure 4.9, as well
as on the force acting on the back wall of the channel, marked in yellow in
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Figure 4.8: Comparison between DEM simulation (left panels) and labora-
tory experiments (right panels) on a 40◦ inclination angle of the chute and a
80 mm high and 160 mm long wall at positioned at P1 (x = 650 mm). Time
steps: (a) t = 0.28 s, (b) t = 0.56 s, (c) t = 0.84 s, (d) t = 1.8 s, (e) t = 8.2
s. Laboratory experiments and photographs by Chiou [8], DEM simulations
published in H. Teufelsbauer et al. [61]
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Figure 4.9: Comparison between two DEM simulation for different ball ro-
tation set-ups. For the simulation shown in the left panels, the ball-ball
rotation is highly constraint, while it is free in the simulation shown in the
right panels. The ball-wall rotation is free for both simulations. The upper
three panels show side views on a three-dimensional channel flow at time
steps t = 0.4 s, t = 0.84 s and t = 1 s. The bottommost panels show
the calculated force acting on the yellow marked back wall over the time of
simulation.
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the upper six panels of Figure 4.9. The impact force recorded over time is
shown in the bottommost panels over the time of simulation.
It is not possible to determine the two parameters, viscous damping and
rotation, in laboratory experiments or by some physical relationship. A sig-
nificant number of test runs is needed to find a good set of parameters.
Especially the spread in the run-out area is hard to simulate, due to the
shape of the particles, which is spherical in the DEM, while real particles,
e.g. quartz, are usually more angular.
Further, it has been seen that a specific set of parameters may not be suit-
able for another experimental set-up using the same material, but in other
chute geometries. A new set of parameters must be identified for each single
set-up. Hence, the quality of forecast data obtained by numerical simulations
by DEM is not reliable.
Another draw back of the DEM is the large demand on computer memory.
Simulations with a realistic number of particles, i.e. when compared to the
number of sand particles in the material used in the experiment, need the
power of modern super computers. The simulation of natural large scale
events is difficult with nowadays computers.

4.4 Conclusions

Continuum mechanical models, such as the presented one based on Savage-
Hutter theory, have proven to simulate shallow granular flows appropriately
in the past. But they are limited to smooth topographies. If topographies
with large gradients are present, as they occur when obstructions like dams
are implemented, the quality of the simulation results becomes rather poor.
Shallowness assumptions are not valid anymore in front of steep walls, where
mass is accumulated and stored and hence the depth becomes comparable
with horizontal extension of the flow. For such cases, the flow cannot be
considered two-dimensional anymore.
For tetrahedral wedges, which are also used in practice as breaking dams,
the shallowness assumption may be still acceptable, since no mass is stored
at its front. Still the numerical simulations showed errors, when compared
to laboratory experiments.
A disadvantage that all shown continuum mechanical simulations share is
the uniform grid. Around the obstructions finer grids are needed, which can
be conducted by using Adaptive Mesh Refinement methods. In Chapter 5,
this methods is discussed in detail and it will be seen how far the model can
be pushed.
As alternative to continuum mechanical models, Discrete Element Methods
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(DEM) have been presented. DEM allows a full three-dimensional simula-
tion of the interaction between granular flow and obstruction. It can be used
to visualize and understand the complex action at impact. The parameter
identification is difficult and critical to achieve good results. Forecast sim-
ulations are hardly reliable due to the high sensitivity to the choice of the
parameters. Also the demand on computational memory is large, making it
difficult to handle large scale simulations.
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Mesh Refinement

5.1 Introduction

For the used finite difference methods the meshes are rectangular grids. In
general it can be expected that the finer the grid is, the smaller the numerical
error. But finer grids cause higher computation time and demand on memory.
Adaptive Mesh Refinement (AMR) is a useful tool to combine high accuracy
and low computational cost when finer spatial resolution is necessary only
in partial regions. It has been designed by Berger and Oliger [2] and Berger
and Colella [1] to solve partial differential equations using finite difference
methods. The idea is to refine a basic grid locally, where refinement is needed.
For the mayor part of the calculation area the coarse basic grid is used, but
the critical areas, where high errors can be expected, are refined.
An AMR mesh can contain various arrays with different refinement levels.
Basically, every single grid cell can be arbitrarily refined. But it is useful to
cluster them into rectangular grids. Such clusters of cells with the same level
of refinement are called patches.
An AMR algorithm consists of two steps. The first step is called prolongation.
The grids are adjusted to the current situation. New grids are created if cells
need to be refined, grids are deleted if their coarser parent grid is fine enough,
others stay as they are.
The second step is called restriction. The equations are solved for each grid.
The first grid integrated is the basic grid. Then the others follow level by
level. Afterwards the solutions of the finer grids are copied to their parent.

5.1.1 Prolongation

The intention of the prolongation step is to build a tree of grids. It’s root
is the basic grid, that is laid on the whole computational area. In case
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Figure 5.1: An example for a grid tree build in the prolongation step. Starting
with the basic grid G0, a first level of refinement is formed by two new grids
G1,1 and G1,2. G1,2 is refined further by the grids G2,1 and G2,2, which
represent a second level of refinement.

of necessity, several areas of this basic grid may be chosen for refinement.
Typically the critical cells are tagged and then clustered. Also adjacent
untagged cells are joint to the clusters so that rectangular clusters are built.
These rectangular clusters of cells are called patches. For each new patch
a new grid is generated, with a finer resolution than the basic grid. All
these new grids, that originate from the basic grid, build the first level of
refinement. Within these patches cells can be tagged, clustered and gathered
to patches again, in the same way as for the basic grid. Again new grids
are created for the new patches, building a new level of refinement. This
procedure is repeated till the necessary fineness is achieved or a maximum
of allowed refinement levels is reached. An example for such a resulting grid
tree is shown in Figure 5.1.

The refinement ratio of two adjacent levels is always a constant given
integer r. So, if the grid spacing at level l is called hl,

r =
hl
hl+1

.

The decision which cells are refined is made by a previously defined condition.
Typically, such conditions are based on error estimations for the numerical
solution on each grid point. If the expected error is too large, the adjacent
cells are tagged for refinement. The constructed grid trees are saved. Later
prolongation steps start with the old trees. But they can be completely
reconstructed. New grids can be added and old grids can be deleted, if their
parent grid is fine enough.
Whenever a new grid is generated the solutions of its parent grid has to be
transfered. For grid points covering grid points of the parent the solution
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can be copied. Grid points lying in between, have to be interpolated. The
boundary conditions have to be defined as well, either by given external
conditions, by adjacent sibling patches, or by interpolation from the parent
grid.
Theoretically, the refinement procedure could be run after each coarse time
step. In practice this is not very effective, since running the refinement after
every time step costs a lot of calculation time. Therefore it is common to run
the procedure only every N time steps. The described procedure can be run
fully automatically, once the refinement condition is defined. Alternatively
the areas of refinements can be declared manually. In many applications, the
critical areas, where refinement is needed, are well known and the difficult
definition of a condition for an automatic procedure can be avoided.

5.1.2 Restriction

In the restriction step, all grids are integrated. The root grid is integrated
first. The finer grids follow in order of level of refinement. After the integra-
tion, the more accurate results of the finer patches is copied to their parent.
This can be done in several ways. Two common variants are either copying
the values of corresponding nodes of the finer grid, or averaging surround-
ing finer grid values. Note that these methods are generally not conservative.
More complex numerical schemes are needed if flux conservation of the model
variables at the interfaces, between those coarse cells that are overlapped by
fine cells and those that are not is demanded, see e.g. Kurihara et al. [33],
Laugier et al. [35] or Perkins et al. [48]. These methods were developed for
nested grid calculations, but can be applied for AMR as well. For explicit
methods, the time step size is determined by the finest grid. Hence, Berger
and Colella [1] used a local time step method to improve the efficiency. For
the refinement ratio of the time resolution, they used the same ratio r as for
the spatial resolution. While the root level 0 proceeds one time step t0, the
l-th refinement level proceeds rl time steps

tl =
t0
rl
.

With such a convention, once h0 and t0 are chosen on the root grid, the
corresponding CFL criterion is automatically verified for all grids.

5.2 Avalanche Model with AMR

The AMR technique is applied to the two-dimensional continuum mechan-
ical model, based on Savage-Hutter theory and described in Chapter 2, to
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solve the granular flow with obstructions. As Chiou did in her work [8] (see
Chapter 4), an obstacle is introduced by using an elevation function (2.28),
which accounts for the difference between the basal topography and its ref-
erence surface. As explained in Chapter 4, this model has its weaknesses, as
the preventability of the obstruction in the computations is not as strong as
observed in laboratory experiments. In this chapter, the influence of the grid
size will be discussed further. The grid size can be changed in various ways.
For all following computations the refinement factors were always multiples
of 2 and both dimensions, x- and y-axes, were refined by the same factor.
The simplest way of refinement is to refine the whole grid. The disadvantage
is obviously huge computational cost.
Refining x and y by a factor n means, n2 times basic grid points for calcula-
tion. Together with space, also time steps have to be shortened by factor n,
which sums up to a total theoretical factor of n3 for computational cost.
A more efficient way to improve calculations is to apply AMR-methods, as
described above. Since the critical area is known very well in the present
problem, complicated and time consuming algorithms for automatic refine-
ment procedures can be saved.
As observations have shown, the critical area is clearly located at the front
side of the obstruction, where the granular flow impinges. Therefore, the
rectangular zone to be refined is fixated manually a priori. It covers the
the whole front of the obstruction, spreads upwards the slope for a chosen
distance, as well as to the left, right and downwards for a much shorter dis-
tance. The granular flow moves and reaches the defined zone. A significant
part of the mass stays in the defined zone and is stored in the front of the
obstruction. Therefore it is reasonable to avoid uneconomic procedures for
temporal changes of the refinement zone. Instead the refinement starts right
at the beginning with the release of the mass. The refinement zone stays
static for the whole computation.
In the restriction step, the solutions of the finer grids are simply copied to
their parent grids. The mass is conserved sufficiently in all performed simu-
lations.

5.3 Results

5.3.1 Cuboid Wall

To compare the effect of different grid sizes, a set-up, based on a laboratory
experiment executed and described by Chiou [8], was selected. The used
chute was in total 1915 mm long and 1100 mm wide. The granular material,
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Vestolen (φ = 37◦, δ = 24◦) in this case, was released from a shallow cap, the
top part of a hemisphere of radius 238 mm, where the bottom-radius was 158
mm and the height was 60 mm. The inclination angle ζ of the 933.5 mm long
slope was 40◦ and a 80 mm high and 160 mm wide cuboid obstruction was
positioned 650 mm below the upper edge of the slope. In the experiment,
the mass just reached the top of the cuboid but only a few single particles
flew over it.
To evaluate the effects of the different grids, the maximum heights of the
mass on the obstruction (maximum of the solid black curve in Figure 4.7),
are compared at a specified time step. The time step is chosen at a moment
when a large amount of mass is passing the obstruction, which is short af-
ter the front of the granular flow hits the obstruction. This value correlates
with the total amount of mass overflowing the obstruction. Since the ex-
periment showed nearly no overflow and the first numerical results showed a
significant amount of overflow, one can consider the solution improved if less
mass is overflowing, i.e. the calculated maximum on the obstruction becomes
smaller.
Another important aspect of the model performance is the calculation time,
which is measured on a common 3.2 GHz Pentium 4 processor. The cal-
culation time rises with increased grid resolution that is counteracting the
measured maximums when evaluating a grid. As last evaluation factor, vi-
sual impressions of the result could be compared. But this is obviously a
rather subjective aspect and will not be discussed in detail in this work.
First, the 1915 mm long and 1100 mm wide chute of the experiment is trans-
fered into a 43 units long and 24 units wide computer model chute. All
other components of the above described set-up are transfered in the same
scale. This chute is covered by a grid, consisting of 431 × 241 points, with
dx = dy = 0.1. This grid will be referred to as single resolution grid in
the following and can be compared to the grid employed by Chiou [8]. The
derivatives of the elevation function (4.8) and (4.9) define the obstruction in
the model, with H = 0.8, Lb = 4.8, Lt = 4.6, Wb = 1 and Wt = 0.8. The
cuboid obstruction is placed so that its vertexes locate just at grid points.
Since ∆L = ∆W = 0.1 = dx = dy, no grid points are lying in the side walls
of the obstruction for this single resolution basic grid.
If the whole grid is refined by a factor two, a 861×481 grid is received, called
double resolution grid. Factor four makes a 1321×961 grid, called quadruple
resolution grid, and so on. Due to the refinement, grid points lie in the side-
walls of the obstruction. For double resolution grid, with dx = dy = 0.05, 1
grid point is added within the side walls along each grid line. For the quadru-
ple resolution grid, with dx = dy = 0.025, 3 grid points are added, and so on.
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Table 5.1: Comparison of global grid refinement for a granular granular flow
hitting a cuboid obstruction. Measured values are: maximum depth of mass
on the cuboid at a dimensionless time 9 and calculation time for dimensionless
time t = 24.

on cuboid calculation time
single resolution 1.1144 16 min
double resolution 1.0750 2 h 57 min

quadruple resolution 0.7501 19 h 17 min

Table 5.1 shows a comparison for different global refinements. It can be
seen that the amount of mass overflowing the cuboid is decreasing with in-
creased refinement. With the increase of the global refinement, the exploding
calculation time makes the need for introducing local refinement obvious.
When refining locally, an area for refinement has to be chosen first. The
area of the highest level of refinement has to cover the zone in front of the
obstruction and must extend to all sides for some extend. The sizing of
the refinement area is a relatively complex question, which will be discussed
later. For the first comparison for the effect of local refinement, the area to
be refined is chosen relatively arbitrarily. Since for the present case the crit-
ical area is known very well, the introduction of an complicated refinement
condition for an automatic procedure is avoidable and the refinement zone is
defined by hand and kept the same throughout the calculations.
As starting area the front plane of the cuboid shall be chosen. The refinement
area is extended by 4 units up the slope, 0.5 to the right and left and 0.2
down the slope, all measured from the bottom of the obstruction. All given
size informations concerning refinement in this work refer to the finest used
grids. The coarser parent grids have to be slightly larger. In the following
cases the parent grids are 0.5 units larger in all directions than their child
grid.
One level of refinement makes the fineness of the refined area equivalent to
the fineness of the double resolution grid of the global refinement. Two levels
of refinements are equivalent to a quadruple resolution and so on.

Table 5.2 makes the effect of AMR visible. There is a clear tendency for
decreased overflow with increased refinement. Compared to Table 5.1, the
maximum depth on the cuboid is approximately of the same size for equiv-
alent level of refinement, but the calculation time is much shorter, e.g. 56
min for level 2 AMR versus 19 h 17 min for quadruple resolution.
As mentioned earlier the choice of the size of the refinement area was rela-
tively arbitrarily. Another choice does effect the result.
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Table 5.2: Comparison of local refinement levels for a granular flow hitting
a cuboid obstruction. The given level describes the finest level of refinement
used. The grid with finest level of refinement covers a fixed area extending 4
units up the slope, 0.5 units to the right and to the left and 0.2 down the slope,
starting from the front plane of the cuboid. Measured values are: maximum
depth of mass on the cuboid at a dimensionless time 9 and calculation time
for dimensionless time t = 24.

level on cuboid calculation time
1 0.9410 22 min
2 0.7991 56 min
3 0.5104 8 h 51 min
4 0.4280 56 h 07 min

Table 5.3: Comparison of local refinement areas for a granular flow hitting
a cuboid obstruction. The level of refinement is one. The refinement are
extends up the slope/to the left/to the right/down the slope, starting at the
front plane of the cuboid. Measured values are: maximum depth of mass on
the cuboid at a dimensionless time 9 and calculation time for dimensionless
time t = 24.

refinement area on cuboid calculation time
5/1/1/1 0.9445 26 min

5.5/1.5/1.5/1.5 0.9222 26 min
6/2/2/2 0.9078 28 min

6.5/2.5/2.5/2.5 0.8773 33 min

With increased area of refinement, the maximum depth at the top of the
cuboid decreases, as Table 5.3 shows. The solutions are improving, while
the calculation time is increasing relatively moderately. So optimizing the
area of refinement seems to be efficient. But it should be remarked, that the
need for higher calculation power increases more rapidly for higher levels of
refinement.
In all above computations, the grid was chosen in a way that the corners
of the vertexes correspond with grid points. If not, there is, assuming the
same grid size, one more point in the front plane of the cuboid, bot none
at the edge. For such grid a new basic grid with 421 × 261 points on a 43
units long and 28 units wide chute. Except for the width of the chute, all
used parameters are the same as for the model used before. This grid will
be referred to as disarranged grid. The disarranged grid showed improved
results when compared to previous computations, on comparable sized grids,
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as can be seen in Table 5.4.

Table 5.4: Comparison of local refinement levels for a granular flow hitting a
cuboid obstruction, on a disarranged 421×261 grid. The given level describes
the finest level of refinement used. The grid with finest level of refinement
covers a fixed area extending 4 units up the slope, 2 units to the right, to the
left and down the slope, starting from the front plane of the cuboid. Measured
values are: maximum depth of mass on the cuboid at a dimensionless time
9 and calculation time for dimensionless time t = 24.

level on cuboid calculation time
1 0.5784 22 min
2 0.4506 2 h 03 min
3 0.3878 11 h 16 min

The used refinement area, starting from the front edge of the cuboid, is
extending 4 units up the slope, 2 units to the right, to the left and down the
slope, which seems to be an appropriate compromise between computational
accuracy and cost. When comparing the results of the disarranged grid to
those of the covering grid of the same level of refinement, the results are
clearly better, although the resolution is slightly coarser.

In Figure 5.2 a three-dimensional graphic of the result of the numerical
simulation can be seen. The grid used is the disarranged grid with three
levels of refinement. The measured values are listed in Table 5.4 and are the
best of all presented computations. The basic behaviour of accumulation in
front of the obstruction and splitting the flow into two flows, which pass the
obstruction to the left and to the right, is well captured. Also a shock waves,
as observed in experiments, can be seen in front of the obstruction and in
the run-out zone.
The amount of mass overflowing the cuboid can be seen better in a two-
dimensional ground view, shown in Figure 5.3, where contour lines for the
depth of the mass are shown for the same simulation. It can be seen that only
around time 6, when the first impact takes place with a high velocity, a layer
higher than 0.1, corresponding to the third blue contour line, is overflowing
the cuboid. In the experiment with a granular material consisting of Vestolen,
with a mean diameter of 4 mm, which is in scale of the numerical model 0.12,
it was observed that some single particles jumped over the obstruction. Single
particles can not be simulated in a continuum mechanical model, so a small
overflow seems to be reasonable.
In later time steps the mass in the front of the obstruction is very slow and
the overflow in the model is negligible as shown in experiments.
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Figure 5.2: Interaction between granular flow and cuboid obstruction. Nu-
merical simulation with three levels of refinement on a disarranged grid. The
colour scheme indicates the depth of the mass, blue means almost no mass,
red high depth.

5.3.2 Tetrahedra

For simulations of tetrahedral wedges better results can be expected than
for steep walls, since no accumulation in the front of the obstruction can
be expected if one of the edges is pointing up the slope, facing the granu-
lar flow. Still, the numerical results show similar weaknesses as for cuboid
obstructions. The impact of the obstruction, when compared to laboratory
experiment is underestimated in the numerical model. The results of the
extended model for tetrahedra, using AMR, which will be shown in the fol-
lowing, do not refer to an laboratory experiment as for the cuboid, since the
documentation in literature was not sufficient. Instead the focus will be on
the purely numerical computations of the critical height.
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Figure 5.3: Ground view of the interaction between granular flow and cuboid
obstruction. Numerical simulation with three levels of refinement on a disar-
ranged grid. The contour lines indicate the depth of the mass, the first blue
line contours a depth of 0.02.

These are based on an arbitrarily chosen model chute, which is 30 dimen-
sionless units long and 20 dimensionless units wide. The longitudinal units
are divided in a 20 units long slope, followed by a 4 units long transition
zone and a 6 units long horizontal run-out zone. The inclination angle of the
chute is 40◦. Similar to the cuboid, the tetrahedra is defined by the deriva-
tives of the elevation function (4.4) and (4.5) and is placed in the center of
the slope, in respect to the cross-slope direction y. The distance between
the lower edge of the tetrahedra and the upper edge of the slope is 17. The
edges of the basal equilateral triangle have length L = 4. The height of the
tetrahedra is varied to find the minimum to avoid overflow, so-called critical
height. The granular mass with the internal friction angle φ = 35◦ and the
basal friction angle δ = 30◦ is stored in a 4 units long, 2 units wide and 1
unit high semi-elliptical shape. The whole chute is covered by a rectangular
grid with 301× 101 grid points.

In order to compute the critical height an obstruction is defined to be
overflown if the mass on the peak of the obstruction is higher than 0.02
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dimensionless units at time step 9. The accuracy of calculations is one dec-
imal, which is sufficient for qualitative observations. This definition follows
the definition of Chiou [8]. It seems to be relatively arbitrary, but in order to
be able to compare the results, the same criterion is used within this work.
Since the laboratory experiments showed that the impact of the obstruction
is underestimated, hence the critical height in the computations is too high,
a result will be considered the better the lower the critical height is, although
the real critical height is unknown, since the calculations are not based on
experiments.

Table 5.5: Comparison of global refinement for a granular granular flow
hitting a tetrahedral obstruction. Measured values are: critical height of the
tetrahedra to avoid overflow at a dimensionless time 9 and calculation time
for dimensionless time t = 24.

grid size critical height calculation time
301× 101 4.4 5 min
301× 201 2.6 9 min
301× 401 1.8 26 min
601× 101 5.0 22 min
601× 201 3.1 33 min

The first observation compares, as for the cuboid obstruction, different
global refinements. Chiou used 301 × 101 grids, which correspond to a grid
size dx = 0.1 and dy = 0.2. This seems to be a reasonable choice for cuboid
obstructions, where the main interaction takes place in x-direction, but for
tetrahedral wedges the lateral deflection is mainly caused by the cross-slope
gradient at the side walls. This effect can be seen in Table 5.5, which shows
the critical height for globally refined grids without any AMR. The sensitivity
of the critical height to the cross-slope refinement is much higher than to pure
downslope refinement. The results get even worse if only the x-coordinate is
refined. An explanation for this behaviour has not be found yet.

As for the cuboid obstruction, AMR can be used to improve the result.
The area to be refined is rectangular, covering the whole tetrahedral obstruc-
tion. It is chosen relatively arbitrarily with a minimal distance of 1 unit to
the basal triangle. When compared to other calculations with other areas
this choice is proved to be good. Choosing larger refined areas was demon-
strated no further improvement on the calculated critical heights, while the
calculation time increased. As for the cuboid, the finest grid of each calcu-
lation covers the same area. Each parent covers the area of its child and is
extended by 5 grid points in each direction.
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Table 5.6: Comparison of local refinement levels for a granular flow hitting
a tetrahedral obstruction, based on a grid with 301× 101 points. The given
level describes the finest level of refinement used. The grid with finest level of
refinement covers a fixed rectangular area, which extends the basal triangle
in the slope by at least 1 unit in all directions. Measured values are: critical
height at a dimensionless time 9 and calculation time for dimensionless time
t = 24.

level critical height calculation time
1 3.1 8 min
2 2.1 22 min
3 1.6 2 h 30 min
4 1.4 7 h 17 min

Table 5.7: Comparison of local refinement levels for a granular flow hitting
a tetrahedral obstruction, based on a grid with 301× 201 points. The given
level describes the finest level of refinement used. The grid with finest level of
refinement covers a fixed rectangular area, which extends the basal triangle
in the slope by at least 1 unit in all directions. Measured values are: critical
height at a dimensionless time 9 and calculation time for dimensionless time
t = 24.

level critical height calculation time
1 1.8 16 min
2 1.3 42 min
3 1.2 6 h 51 min
4 1.2 62 h 23 min

Table 5.6 shows the results for the basic 301× 101 grid. There is a clear
tendency for lower critical heights for increased numbers of refinement levels.
When starting with a 301×201 grid the results get even better, see Table 5.7.
A further increase in the refinement level will not cause obvious improvement,
while computation time increases. The importance of the choice of the basic
grid can be seen, when comparing the two tables.

Figure 5.4 shows a two-dimensional ground view for the above described
set-up. The basic grid was 301 × 201 with four levels of refinement. The
height of the obstruction is set to 1.2, the critical height for this grid. The
result shows the expected behaviour. The mass is split by the obstruction
and builds two accumulations in the run-out zone. As expected, there is no
accumulation in the front of the obstruction. Shock waves can be seen in the
run-out zone, where contour lines lie tight at the side pointing to the slope.
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Figure 5.4: Ground view of the interaction between granular flow and tetra-
hedral obstruction. Numerical simulation with four levels of refinement. The
contour lines indicate the depth of the mass, the first blue line contours a
depth of 0.02.

5.4 Conclusions

It can be clearly seen that the continuum mechanical simulations become bet-
ter with increased grid resolution. The Adaptive Mesh Refinement (AMR)
method has proven to be suitable to be applied for local grid refinement.
This way much finer grids can be used locally than with global refinement
at comparable level of computation time and demand on memory.
Still, systematical weaknesses of a depth-averaged model in cases of steep
walls, cannot be neglected.
In case of tetrahedral wedges the results look promising, but no useful ex-
perimental data was found in literature to validate the results.
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Additional Planes

In the last chapters the obstructions were implemented by overlaying an el-
evation function. By using this function, only height differences in the basal
surface enter the model equations. The basal surface, where the grid for the
numerical calculations is attached to, is unaffected. Errors can be expected,
which raise proportional to the height differences in the elevation function.
The most extreme case is a steep wall, attached perpendicular to the slope
plane, as it is often used in laboratory experiments, see e.g. Chiou [8]. To
avoid this unphysical modelling, obstruction can be implemented directly
into the basal surface, without using an elevation function or, if so, only for
minor alterations.
The Finite Differences Method used for the numerical calculation, see Chap-
ter 3, is strictly limited to uniform, rectangular grids. Hence, obstructions
cannot be simply added to the grid. Even more flexible methods, like the
popular Finite Element Methods, are restricted in the choice of the surface.
Singularities, as they can appear at the edges, e.g. where the slope plane
intersects the perpendicular side planes of the obstruction, are problematic.
To implement an obstruction to the above presented model, additional planes
are created for the model. Each of these new planes represents one surface
plane of the obstruction and interacts with the other planes, including the
slope plane, at its interaction lines. The Singularities appearing at these
interaction lines need to be treated. A physical treatment would be very dif-
ficult, even impossible for a simple depth-integrated model, as the presented
one. Within this work, the complex behaviour at the singularities are covered
by a parameter, corresponding to the force compensated at these points. A
discussion of this parameter will be conducted in Section 6.2.
After each time step, the interaction of the different planes has to be carried
out. Therefore, an overlapping area is needed, where the planes interact.
This overlapping area is attached to all planes at all sides. In this area, re-
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sults of one plane are transfered to the neighbor plane and vice versa. This
transfer of data is comparable to the transfer between parent and child grid
in the AMR method, see Chapter 5.

6.1 Modelling Cuboid Dams by Using Addi-

tional Planes

Figure 6.1: Sketch of cuboid, built by additional planes. The downward
moving mass is transfered from the basic plane of the slope into the front
plane of the cuboid. At the intersection of the two planes (marked by circle)
a singularity occurs.

In case of cuboid dams five new planes are created, representing the front,
back, left, right and top plane of the cuboid. The created planes have to be
a bit larger than the corresponding planes of the cuboid. At each side points
have to be added. These grid points lie in other planes and will be called
overlapping area below. This area is needed for the numerical computations,
see Chapter 3. After each time step the values for the overlapping area are
copied from the adjacent plane. Also the basic plane needs such an overlap-
ping area where interaction with other planes occurs.
The main flow direction is downwards and the cuboid dam is placed orthog-
onal to the thalweg. Overflow of the dam has to be avoided, since Savage-
Hutter theory can not describe such action. Therefore the main interaction
takes place between basic plane and front plane. Figure 6.1 shows a side view
of the main movement of the mass. At the intersection of the basic plane of
the slope and the front plane of the cuboid (marked with a circle) the mass
is transfered from one plane to the other. In this point a singularity occurs
that needs further treatment.
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When the granular flow hits the front plane, a lot of kinetic energy is com-
pensated by the dam. Mass is stored in front of the dam. The path of the
remaining mass is also changed significantly, as it flows along the upper sur-
face of the stored mass. Such behaviour can not be simulated in detail by
the used model. The model described in Chapter 2 is depth integrated. So it
is impossible to let part of the mass rest without extending it to a far more
complicated three-dimensional model, or a model able to handle deposition
of mass. Further, Savage-Hutter theory describes only moving mass and can
not be applied for stored mass.

Figure 6.2: Side view of the simulation, zoomed at the accumulated mass in
the front of the dam. The colour scheme indicates the depth of the mass,
blue means almost no mass, red high depth.

To describe a comparable behaviour, the loss of kinetic energy has to be
simulated. This will not allow mass to be stored in the front, but the mass
will slow down and create an accumulation quite similar to stored mass. A
snap shot of this almost static behaviour is shown in Figure 6.2. The figure
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shows a side view zoomed on the cuboid obstruction. The colour scheme
indicates the depth of the mass, measured from the slope plane. Blue surface
means almost no material, as can be seen at the top of the cuboid, which
is not overflown. Red colour indicates high depth, like at the front side of
the dam. The mass in the front is not really deposited, but is flowing very
slowly and replaced by the successive mass. This way the surface in the front
keeps an almost stable shape. Only the tail of the granular flow is changing
significantly as no mass is replacing it.
To consider the loss of kinetic energy a parameter η is introduced. (1 − η)
represents the rate of the loss of kinetic energy due to the change of the
flow from the slope surface to the front of the obstruction. A geometrical or
physical estimation of η is difficult, due to the complex behaviour described
above. Hence, a paramter study is conducted to identify η.

6.2 Parameter Study

Figure 6.3 shows a parameter study for η for values in [0; 1] at a fixed time
step. At the chosen time step, the granular flow has already hit the obstacle
and the material has already reached it’s maximal depth at the front. Though
only a small amount has passed the obstruction and the stable shape is not
fully developed yet.
The interesting area for the parameter study is the area in front of the dam.
To evaluate the parameter the height reached by the material is observed.
In the model, this is equal to the distance the mass can climb up the steep
front plane of the cuboid. Therefore, Figure 6.3 shows zoomed side views of
the obstruction for a model based on experiments done and documented by
Chiou (see Chapter 4). The released material were Vestolen with an internal
friction angle φ = 37◦ and basal friction angle δ = 24◦. The slope angle ζ
of the 933.5 mm long chute was chosen 40◦, followed by a constantly curved
transition zone and a flat runout zone. A 80 mm high and 160 mm wide wall
was positioned at P1, with a distance of 650 mm to the upper edge of the
chute. In the computer program the cute is represented by a dimensionless
43× 24 sized model. The slope angle for the model is

ζ(x) =


ζ0, for x ≤ 25,
(29.4− x)/(29.4− 25)ζ0, for 25 < x < 29.4,
0◦, for x ≥ 29.4,

where ζ0 = 40◦. The wall is represented by a cuboid. The center is placed
at x = 16.5 and central in respect of the y-coordinate. The front plane is
placed orthogonal to the thalweg of the slope and is 2.4 units high and 4.8
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units long. The width of the cuboid can be chosen relatively arbitrarily. If
the mass is not overflowing the mass, the area behind the front wall is free of
mass, called granular vacuum. Therefore, the choice of the width of the wall
will not effect the simulation significantly. It is set to 1 for this computation.
For the calculation a rectangular grid consisting of 431 × 241 points is laid
over the model domain, yielding ∆x = ∆y = 0.1 for the grid size. The
effect of the grid size is discussed more detailed in Chapter 5. The planes
that create the cuboid must also be covered by a grid. The grid size can
be arbitrary, it can be chosen independently of the basic grid size. But the
simplest choice is to set it equal to the basic grid size, since the solutions on
the grid points can be transfered without interpolation. Thus, front and back
planes are covered by 25×49 points, left and right side plane by 11×25 points
and the top plane by 11× 49 points. All these specifications do not include
the overlapping area, for which 3 to 5 additional points must be added on
each side.
The starting mass was released from the Shallow-Cap (see Section 4.1). In the
computer model this is simulated by a semi-ellipsoid with axis a = b = 4.74,
both axis lying in the slope plane, and c = 1.8, orthogonal to the slope. This
is not perfectly simulating the shape of the Shallow-Cap of the experiments,
but the difference is negligibly small (see e.g. [8]). The shallow cap is placed
at the top of the chute, in the center in respect of the y-coordinate.

The corresponding laboratory experiment showed that the mass reached
the top of the obstruction. A few single particles even overflew it.
Unfortunately no pictures were taken from the side in Chiou’s experiments.
Nevertheless, side views of the model are used to make some qualitative
statements about parameter η. As Figure 6.3 shows, the parameter η affects
the flow as expected. For low values of η the mass does not move up the
front plane of the obstruction very far. The higher the value, the higher the
mass is climbing up the front plane, till it reaches the top of the cuboid. At
0.9 it can be seen that a significant amount of mass is overflowing.
The best choice seems to be a value between 0.7 and 0.9, as the mass is
almost reaching, but not overflowing the wall at 0.7 and already overflowing
at 0.9. To make more detailed statements, better experimental datasets, with
detailed information about the depth of the mass in the front, are necessary.

6.3 Results

Figure 6.4 shows the numerical results of the computations in a general view.
It is done for the same set-up as the parameter study, described above. But
this time, the parameter is fixed at η = 0.8, which is in the middle of the
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Figure 6.3: Study of parameter η. Side view of the simulations for η =
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, zoomed at the accumulated mass in
the front of the dam.

interval, that was observed to contain the reasonable values, and the develop-
ment of the granular flow over time is observed. The granular flow is recorded
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Figure 6.4: Numerical result for chute with cuboid obstruction, where the
obstruction is built with different additional planes and the parameter η =
0.8. The colour scheme indicates the depth of the mass, blue means almost
no mass, red high depth.

at different dimensionless times t = 3, 6, 9, 12, 15, 18, 21 and 24. These calcu-
lations were stopped at t = 24, since after that time the dynamic movement
ends. At the corresponding time step of the experiment, the whole mass
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already stopped. In the computations the mass cannot come to rest. This
is due to the nature of the Savage-Hutter equations, which are only capable
to describe the dynamics but not the still state. To describe this behaviour,
some deposition model has to be used.
The colour scheme indicates the depth of the material. Again, blue areas
contain almost no mass, while red indicates high depth, measured from the
slope surface. At time t = 3 the free moving granular flow is still building
up its shape. At time t = 6 the obstruction is hit and it can be seen that
the mass is divided into 2 parts, passing the obstruction symmetrically on
the right and left side. In the front of the obstruction, the mass is decel-
erated and is forming the accumulation described above. The maximum of
deposition in the front can be observed at time t = 9. From time t = 12 on,
no mass from the top of the chute is following. Therefore, the accumulation
in the front is decreasing, but keeps a basic shape, close to that observed in
experiments. In the same time, the deposition in the run out zone is raising,
consisting of two symmetric heaps, one formed by the mass that passed the
obstruction on the left side, one by the mass that passed on the right side.
It can be seen clearly that no mass is overflowing the obstruction. In the
back of the obstruction, a granular vacuum can be observed. Only in the
later time steps, when the deposition is spreading to the sides, the central
area, but only in the run out zone, is filled again. When compared to the
corresponding experimental observation (see Figure 4.6) the final deposition
looks different. The numerical simulation no central deposit is formed in
the run out area, unlike the corresponding experiment where a small central
accumulation can be observed. This is due to the small overflow observed in
the experiment. It should be mentioned once more, that overflowing can not
be modeled within this model, as presented here. Overflowing would force
the material to slide upside down along the back plane. Without introducing
a free fall criterion, no realistic result can be expected. Obviously, only for
experiments without overflowing satisfactory results can be expected. But
then identification of the parameter η becomes difficult, since no observation
concerning the depth reached by the mass in the front were documented.

6.4 Conclusions

The presented method is an alternative approach to simulate the interaction
of granular flows with cuboid obstructions, which cannot be properly handled
by the elevation function added to the continuum mechanical model, as in
the previous chapters. The singularity at the intersection of the different
planes, which exists in the real world, also occurs in this model, in contrast
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to the elevation function model. This alternative approach uses a parameter
η ∈ [0; 1] to simulate the loss of kinetic energy by the granular flow when
hitting the obstruction and compensating the complex physical procedures
at the intersection lines. Although it has similar unphysical features as the
previous model when mass is stored in the front of the obstruction, the model
is able to simulate a realistic behaviour at the front side of the obstruction.
But it fails if overflow should be simulated.
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Impact Force Computation

Measuring active forces in gravity driven granular flows in field or laboratory
experiments is difficult. Only a limited number of sensors can be placed and
they distort the flow by interacting with the moving material.
Numerical simulations are an interesting alternative to compute forces. Ap-
plicable models are based on the principles of continuum mechanics for shal-
low flows. They are depth integrated, assuming negligible small differences
in the velocity distribution through the depth.
When observing the interaction of rapid flows and obstructions, the forces
acting on the obstructions are of special interest, for computations of the
static of the building as well as for estimation of the absorbed energy.
In this chapter, the forces acting on the obstruction for employing the con-
tinuum mechanical model, presented in Chapter 2, where the obstruction is
added by using the elevation function, are computed and compared to ex-
perimental observations.
An interesting alternative is the use of Distinct Element Methods (DEM),
which enables a fully three-dimensional computation.

7.1 Continuum Mechanical Model

The obstruction enters the model, (2.87) - (2.92), only via the terms

ε cos ζ
∂zb
∂x

h, (7.1)

ε cos ζ
∂zb
∂y

h, (7.2)

as external forces. (7.1) and (7.2) are gravitational forces, caused by the
height differences in the topography, which are described by the elevation
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(a) ζ = 40◦ (b) ζ = 35◦ (c) ζ = 30◦

Figure 7.1: Comparison of forces acting on cuboid obstructions for different
slope angels ζ = 30◦, 35◦ and 40◦. Internal friction angle φ = 40◦ and basal
friction angle δ = 28◦.

Table 7.1: Comparison of maximal and mean forces acting on cuboid ob-
structions for different slope angels ζ = 30◦, 35◦ and 40◦. Internal friction
angle φ = 40◦ and basal friction angle δ = 28◦.

ζ maximal force mean force
30◦ 2403 1583
35◦ 4170 2635
40◦ 5298 2609

function zb.
Summing up these terms for all grid points, can be considered the force act-
ing on the obstruction in x- and y-direction, respectively.

7.1.1 Cuboid

To observe the force acting on a cuboid obstruction, calculated by the con-
tinuum mechanical model (2.87) - (2.92), a set-up comparable to the exper-
iments, described in Section 4.1, is chosen. The chute is in total 15 units
long and 16 units wide, where the slope plane is 9.3 units long, the horizon-
tal run-out plane is 4.35 units long and a constantly curved transition zone
inbetween.
Before release, the material used for these computations is stored in a semi
ellipsoid with a circular base of radius 0.85 and height 0.475. The internal
friction angle is φ = 40◦ and the density ρ = 1379 kg/m3. The cuboid ob-
struction is 1.5 units high, 2.4 units long and 0.9 units wide. It is placed
perpendicular to the thalweg in the centerline of the chute, in respect to the
y-coordinate, 7.3 units below the upper edge of the chute.
The inclination angle was varied between ζ = 30◦, 35◦ and 40◦. The effects
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(a) δ = 23◦ (b) δ = 28◦ (c) δ = 33◦

Figure 7.2: Comparison of forces acting on cuboid obstructions for different
angels of basal friction δ = 23◦, 28◦ and 33◦. Slope angle ζ = 35◦ and internal
friction angle φ = 40◦.

Table 7.2: Comparison of maximal and mean forces acting on cuboid ob-
structions for different angels of basal friction δ = 23◦, 28◦ and 33◦. Slope
angle ζ = 35◦ and internal friction angle φ = 40◦.

δ maximal force mean force
23◦ 5164 2478
28◦ 4170 2635
33◦ 2622 1747

of the varied slope angle can be seen in Figure 7.1. The exact values for the
maximal calculated force and the mean force for the whole computational
time t ∈ [0, 7.6584], are listed in Table 7.1. After a strong impact, the force
is decreasing as the mass is passing th obstruction. It can be seen that the
force is very sensitive to the slope angle, since the velocity rises with in-
creased slope angle. For ζ = 40◦ (Figure 7.1a), the impact force is higher
and is decreasing faster afterwards, due to the higher velocity. For ζ = 30◦

(Figure 7.1c), hardly any impact force can be observed. Due to the low slope
angle, ζ = 30◦, which is only slightly higher than the basal friction angle
δ = 28◦ of the used material, the velocity is very low and the calculated
forces are mainly caused by the weight of the material, not by the velocity.
The behaviour for ζ = 35◦ (Figure 7.1b) is between those for ζ = 30◦ and
ζ = 40◦.

Alteration of the the basal friction angle δ = 23◦, 28◦ and 33◦, with fixed
slope angle ζ = 35◦ and all other values as described above, has similar effects
as the alteration of ζ, as can be seen in Figure 7.2. The computed values for
maximal and mean force are listed in Table 7.2. For δ = 33◦ (Figure 7.2c),
the slope angle, ζ = 35◦, is only slightly larger than the basal fiction angle,
implying a slow movement in which hardly any impact force can be observed,
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(a) φ = 45◦ (b) φ = 40◦ (c) φ = 35◦

Figure 7.3: Comparison of forces acting on cuboid obstructions for different
angels of internal friction φ = 35◦, 40◦ and 45◦. Slope angle ζ = 35◦ and
basal friction angle δ = 40◦.

Table 7.3: Comparison of maximal and mean forces acting on cuboid ob-
structions for different angels of internal friction φ = 35◦, 40◦ and 45◦. Slope
angle ζ = 35◦ and basal friction angle δ = 40◦.

φ maximal force mean force
35◦ 4143 2626
40◦ 4170 2635
45◦ 3955 2543

similar to Figure 7.1c. For decreased angel of basal friction δ = 23◦ (Figure
7.2a), the velocity is higher resulting in a higher impact force and fast passing
after the impact. Again, the results are similar to those of increased slope
angle ζ = 40◦, shown in Figure 7.1a.

The effects of altering the angle of internal friction, φ = 35◦, 40◦ and 45◦,
are far less obvious. The computed maximal and mean forces, see Table 7.3,
show no clear influence of the internal friction angle on the impact measured
maximal or mean impact force. The values for φ = 35◦ lie between those for
φ = 40◦ and φ = 45◦. More information on the effect can be taken from the
graphical displays of the forces in Figure 7.3. For φ = 45◦ (Figure 7.3a), the
force of the first impact is slightly larger, but its maximum is soon reached.
With decreased angle of internal friction, the first impact becomes weaker,
but the force builds up more slowly and reaches a higher absolute maximum.

Moving the obstruction one unit up or down the slope, P = 6.3, 7.3 and
8.3, effects the results mainly in a highly expected way. The time of the
first impact is about 0.2 time units earlier, respectively later (see Figure
7.4). Looking at the computed maximal and mean forces for the different
positions, listed in Table 7.4, it can be seen that the maximal force becomes
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(a) P = 6.3 (b) P = 7.3 (c) P = 8.3

Figure 7.4: Comparison of forces acting on cuboid obstructions for different
positions, P = 6.3, 7.3 and 8.3, of the obstruction. Slope angle ζ = 35◦,
internal friction angle φ = 40◦ and basal friction angle δ = 40◦.

Table 7.4: Comparison of maximal and mean forces acting on cuboid ob-
structions for different positions, P = 6.3, 7.3 and 8.3, of the obstruction.
Slope angle ζ = 35◦, internal friction angle φ = 40◦ and basal friction angle
δ = 40◦.

P maximal force mean force
6.3 4234 2739
7.3 4170 2635
8.3 4133 2488
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lower for obstructions places further down the slope, although it can be ex-
pected that the impact velocity is higher in this case. The clear reduction of
the mean force, can be explained by the later impact.

Unfortunately, there were no experiments that could be used to validate
these computed solutions. Chiou [8] documented some pressure measure-
ments, but the used circular sensor, which was places in the front plane of
the obstruction, could only measure the pressure acting on the sensor, not on
the whole obstruction. The results (see Figure 7.5) are therefore not compa-
rable to those of depth averaged continuum mechanical models. Also other
force measurements of rapid flows, found in literature, were not comparable.
The basic behaviour is captured well. But considering the weaknesses de-
scribed in Chapter 4 and the missing experimental evaluation, it cannot be
expected that the results are completely reliable. Solutions of better qual-
ity can be expected for dams with flatter slopes or tetrahedral wedges, see
Section 7.1.2.

7.1.2 Tetrahedra

The simulation for tetrahedral wedges with a continuum mechanical model
should yield better results than those for cuboid obstructions with steep front
slopes.
The force acting on the tetrahedra over time is shown in Figure 7.6. The
result looks realistically, although no experimental results could be found in
literature to validate the results. The impact force is rising rapidly when the
flowing mass hits the obstruction and decreasing as the mass is passing.

7.1.3 Flume

As alternative to the chute experiment, a second laboratory experiment is
used for validation. Sets of flume experiments were performed and docu-
mented by Moriguchi et al. [43].
The flume is 1.8 m long, 0.3 m wide and diaphanous acryl boards are used
as side walls. The slope angle of the flume is adjusted at 45, 50, 55, 60 or 65
degrees. On top of of the flume a box with 50 kg of dry Toyoura fine sand,
with a density of 1.379 kg/m3, is fixated. Opening the front gate of the box
releases the material.
At the bottom of the flume is a stress gauge, measuring the impact force
and stopping the flow. This gauge covers the whole width of the flume, but
it is only 0.3 m high, too low to stop the whole mass. A small amount of
sand overflows the gauge and is stopped by the back wall of the flume. This
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Figure 7.5: Normal and shear stresses of quartz (upper panel), yellow-sand
(middle panel) and Vestolen (lower panel) when the bi-directional stress
gauge is placed on the cuboid wall, by Chiou [8].

overflowing cannot be modeled properly with a continuum mechanical model.
In the continuum mechanical model the back plane of the flume enters the
model as border condition and the force acting on the back plane is calcu-
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Figure 7.6: Graph of forces acting on tetrahedral obstructions.

lated.
The boundary conditions for the back plane, at x = xend, are chosen to sim-
ulate a solid wall with no flow in x-direction, hence u(xend, y, t) = 0. For
the numerical scheme also the values x = xend + i for i = 1, 2, 3 need to be
defined. They are

h(xend + i, y, t) = h(xend − i, y, t), (7.3)

u(xend + i, y, t) = −u(xend − i, y, t), (7.4)

v(xend + i, y, t) = v(xend − i, y, t). (7.5)

For the side walls and the upper border of the chute, similar conditions are
made.
Toyoura sand is also adhered to the ground surface of the flume, hence basal
friction angle δ is roughly the same as the internal friction angle φ. The acryl
side walls are smooth and are considered to be frictionless. To determine the
internal friction angle φ, Moriguchi et al. [43] made a parameter study and
compared the result to measurements of the experiment. Setting φ = 35◦

was demonstrated to be the best choice. Figure 7.7 shows a time history of
side views of the simulation results with inclination angle ζ = 65◦. The blue
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Figure 7.7: Granular flow in a flume with inclination angle ζ = 65◦ for non-
dimensional times t = 0, 1, 1.5, 2, 2.5, 3, 4, 5 and 6. Blue line indicates the
depth of the mass. The black line marks the back wall of the flume.
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(a) Experiment (b) Simulation

Figure 7.8: (a) Measured time histories of impact force for different flume
inclinations, by Moriguchi et al. [43]. (b) Time histories of impact force for
different flume inclinations computed by continuum mechanical model with
friction angles δ = φ = 35◦.

line indicates the depth of the mass.
The results for different flume inclinations are shown in Figure 7.8, with

measurements by Moriguchi et al. [43] in Figure 7.8a and numerical results
of the continuum mechanical model in Figure 7.8b. It can be seen that the
simulation yields a far higher force than observed in the experiment. This
can be explained by the low gauge in experiment, that is overflown. In the
continuum mechanical model boundary conditions are used to simulate the
back wall, hence no overflow is possible and the full impact is calculated.

For the simulations shown in Figure 7.7 and Figure 7.8, the friction angles
δ and φ have been chosen according to the simulations of Moriguchi et al.
[43]. A variation of the friction angles is shown in Figure 7.9. The slope angel
is kept constant at ζ = 65◦. The three curves show the impact force over
time for three different sets of friction angles, δ = φ = 35◦, as in Figure 7.8,
δ = φ = 40◦ and a set where the basal friction angle δ = 35◦ is lower than
the internal friction angle φ = 40◦. Especially for δ = 35◦, φ = 40◦ it can be
seen that the first impact, caused by the kinetic energy of the granular mass,
is far more distinguished than for the other parameter sets. A strong first
impact is followed by rapid decrease of acting force, till a constant level, equal
to the gravitational force of the mass, is reached. Very similar to what has
been observed in the experiment. Again, the simulation is not comparable
to the measurements, due to the overflow. Further experiments are needed
to validate the model and identify the parameters.
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Figure 7.9: Measured time histories of impact force for different fiction angles:
(a) δ = φ = 35◦, (b) δ = 35◦, φ = 40◦ and (c) δ = φ = 40◦.

Figure 7.10: Evaluation of the impact forces against an obstacle for quartz
(left panel) and yellow sand (right panel) from DEM simulations.

7.2 Discrete Element Method

DEM [11], as described in Section 4.3, using the comercial software PFC3d
(Version 3.0, Itasca Consulting Group), can also be used to compute forces
acting on an obstacle hit by a granular flow. The following simulations are
based on and compared to the same laboratory experiments as used for the
continuum mechanical model. In Section 7.2.1, the results for an granular
flow passing a cuboid obstruction, comparable to the experiments by Chiou
[8] are discussed. In Section 7.2.2 a channel flow, based on experiments by
Moriguchi et al. [43], is discussed.
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7.2.1 Cuboid

The set-up is describes in Section 4.1. A granular material, e.g. quartz or
yellow sand, is released from a cap, flowing down an inclined Plexiglas chute
until reaching, via a constantly curved transition zone, the horizontal run-
out zone, where it comes to rest. In the lower part of the slope, a Plexiglas
wall is positioned at the centerline of the chute, so that it is hit centrally by
the granular flow. At the front side of this wall, a bi-directional stress gauge
measures normal and shear stresses caused by the granular flow. The stress
gauge is spherical and covers only a central part of the front side of the wall.
PFC3d does not support spherical wall elements, so similar sized rectangular
elements are used, on which acting stresses are computed on. The results
of these computations are shown in Figure 7.10. When comparing these
measurements to the experimental results of Chiou [8] (see Figure 7.5), the
stresses are captured very well. Although, the same critical remarks on the
identification of the sensitive material parameters as in Section 4.3 are true
for these simulations. The experimental results can be successfully simulated,
but forecasts based on DEM simulations are not reliable.

7.2.2 Flume

The flume experiment described in Section 7.1.3 is also implemented in a
DEM model built in PFC3d. The parameter identification is as difficult
as in the chute experiment. In addition to the viscous damping and particle
rotation, also the basal surface conditions, i.e. the threshold velocity vbwsr , the
retarding time λbw and the basal friction µbw for ball-wall interaction, have
strong impact on the results, due to the rough surface of the sand coated
flume.

Figure 7.11 shows a comparison for the impact force over time for dif-
ferent inclination angles ζ = 45◦, 50◦, 55◦, 60◦, 65◦. The left panel shows the
measured values in the experiments by Moriguchi et al. [43], the right panel
shows the results of the DEM simulations performed in PFC3d. As can be
seen, the measured result can be predicted well by the DEM model.

7.3 Conclusions

All experiments for forces acting on obstructions interacting with granular
flows, found in literature and used for validation within this work, are deal-
ing with wall elements with steep front surfaces. Furthermore, they are not
capturing the whole flow. The gauges are overflown, or don’t cover the whole
obstruction a priorily.
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Figure 7.11: Left panel: Measured time histories of impact force for different
flume inclinations, by Moriguchi et al. [43]. Right panel: Time histories of
impact force for different flume inclinations computed by PFC3d.

Such experiments cannot be simulated properly in a depth averaged contin-
uum mechanical model. For tetrahedral obstructions and simulations where
obstructions can be built in as border conditions, the continuum mechanical
model delivered realistic results, but other experiments are needed to vali-
date these results.
The DEM model has proven to be applicable to simulate all presented exper-
iments. The parameter identification is difficult and critical to achieve good
results. Forecast simulations are hardly reliable due to the high sensitivity
to the choice of the parameters. Also the demand on computational memory
is large, making it difficult to handle large scale simulations.

96



Chapter 8

Concluding Remarks and
Outlook

This chapter contains a summery of the main results. The topic of this thesis
is on the interaction between granular flows and obstructions. The focus is on
the continuum mechanical model based on Savage-Hutter theory. Moreover,
an interesting alternative based on the Discrete Element Method using the
commercial software PFC3d is discussed. The numerical simulations are
compared with laboratory experiments.

8.1 Continuum Mechanical Model

The Savage-Hutter theory is suitable to simulate granular flows. The for-
mulation is very elegant, yet physically substantial. The performance of the
presented model is excellent if the topography is smooth.
If obstructions are implemented, like dams, the topography is no longer
smooth. But the modelling of dams is of great interest for practice. Imple-
menting obstructions with steep front walls by using the elevation function,
originally added to model channel flows, leads to unrealistic results. The im-
pact of the obstruction is underestimated. Some overflow over the obstruction
is inevitable, although the material accumulation in front of the obstruction
is far too low to expect overflow. This is partly due to the numerical scheme.
It has been shown that the numerical scheme can be significantly improved
by using local grid refinement, e.g. the Adaptive Mesh Refinement method
(AMR).
Realistic simulation of the interaction with a steep wall cannot be provided
though. In reality, the behaviour is too complex to be simulated by a depth-
averaged model. The first mass hitting the obstruction is stopped and ac-
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cumulates till it forms a wedge. The successive mass flows along the surface
of the accumulated mass. To simulate such behaviour a three dimensional
deposition model is needed. To simulate overflow of an obstruction, trajec-
tories of single particles need to be modeled, the overflowing material cannot
be modeled by a dense-flow model.
Simulations of granular flows interacting with tetrahedral wedges show much
better results. Since the front sides of these obstructions are not steep and
no mass is accumulated at its front, the assumptions of the theory still hold
for material interacting with the obstruction. Still, the resolution of the grid
influences the quality of the result significantly and the local grid refine-
ment, by applying AMR, especially in cross-slope direction is useful. The
documentation of experiments found in literature, regarding such objects,
are rare though. Better experimental observations are needed to validate the
model.

8.2 Numerical Scheme

Different numerical schemes have been tested to be applied to the extended
Savage-Hutter model. The presented non-oscillatory central scheme (NOC)
scheme with a Minmod Total Variation Diminishing (TVD) limiter has pro-
vided the best results. Being a Finite Difference scheme, it shares its draw-
backs with other Eulerian schemes. The grid is inflexible, especially with
regard to the local refinement and the computation time is larger than the
Lagrangian schemes. The Adaptive Mesh Refinement (AMR) method en-
ables local refinement, which also gives rise to reduced computation time.
As alternative the meshfree particle methods, which have been developed
and applied to many different fields in the last years, could be applied to the
model. But this has not been tested on avalanche models yet.

8.3 Discrete Element Method

The physical laws applied in the Discrete Element Method (DEM) are very
simple. But the computational effort is large. In the last decades, with
development of hardware, DEM became popular and is nowadays applied in
many different fields.
In the presented examples, it can be seen that granular flows can be simulated
very nicely. DEM allows a full three-dimensional simulation of the interaction
between granular flow and obstruction. In cases where shallowness cannot be
assumed and the movement can be observed in all spacial dimensions, DEM
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is superior to the depth-averaged model.
DEM enables a good visualization of the flow dynamics and can be helpful for
understanding the mechanisms. However, it seems less suitable for practice.
The parameter identification is often very difficult. The numerical results
can be hardly appreciated due to the high sensitivity to the choice of the
parameters. Also the demand on computational effort is very high, making
it difficult to handle large scale simulations.

8.4 Practice

In practice, dams are used mainly for three purposes, i.e. breaking, deflecting
and capturing. Breaking dams shall break the avalanche, reduce its force and
split it into smaller avalanches, deflecting dams are used to deflect the flow,
while capturing dams are built to shorten the run-out zone, usually built
directly in front of the infrastructure to be protected.
In the presented work only breaking dams are considered. The steep walls
used in the laboratory experiments differ from the dams in practice. In
practice, the front planes are not as steep, neither are the back nor the side
planes. Alternatively, tetrahedral wedges, comparable to those presented in
this work can be also found for breaking purposes.
Simulations of interaction with tetrahedral wedges seem to be possible with
the existing model. For dams with plane front surface, the quality of results
is dependent on various factors. The smoother the transition between slope
and dam, the better the results. The steeper the front plane, the poorer the
results.
For physically correct simulations of interaction with wall obstructions, like
the ones presented here, the depth-averaged continuum is not suitable. This
might be of interest for scientific investigations, but is it necessary to simulate
such walls for practical purpose?
Even if the front plane of a dam is steep enough to store granular mass, the
stored mass will act as a wedge for successive mass, similar to the effect of the
tetrahedral shaped dams. Therefore, only the first part of mass hitting the
dam needs some refined modelling. In large scale this should be negligible.

8.5 Outlook

Most well documented laboratory experiments, describing the interaction be-
tween granular flows and obstruction in literature deal with similar obstruc-
tions, namely wall elements. Of greater interest for testing depth-averaged
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continuum models are tetrahedral wedges, or dams with small front slope
angles. However, such experiments are scarce.
For evaluating the presented model against such obstructions, such experi-
ments would be useful. Also measurements of impact forces on such obstruc-
tions are needed.

As to the numerical solution, the presented NOC scheme with AMR brings
some improvement. The meshfree particle methods can be regarded as al-
ternative. They allow more flexibility in grid coverage and could be more
efficient in both solution quality and computation time.
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