

Universität für Bodenkultur Wien Interuniversitäres Department für Agrarbiotechnologie, IFA-Tulln

Konrad-Lorenz-Straße 20 – A-3430 Tulln - AUSTRIA - EUROPE Tel. +43 2272 66280 402 - Fax +43 2272 66280 403 – officeaz@boku.ac.at

Analytikzentrum Leiter: Univ.Prof.DI Dr. Rudolf KRSKA

Development and Application of Analytical Methods for the Metabolic Profiling of Volatiles Produced by Grapevine

Dissertation

zur Erlangung des Doktorgrades

Doctor rerum naturalium technicarum (Dr.nat.techn.)

an der Universität für Bodenkultur Wien

durchgeführt von

Georg Weingart

am Analytikzentrum, IFA-Tulln eingereicht im September 2011

Danke! Danke! Danke!

kann ich nur zu all den vielen Menschen sagen, die dazu beigetragen haben, dass diese Arbeit angefangen, durchgeführt und auch beendet worden ist.

Rudi, Du warst ein wunderbarer OB, meist im Hintergrund, aber dann da, wenn ich etwas gebraucht habe. Du hast ein tolles Team am um dich geschart, das Arbeitsklima am AZ ist wunderbar. Danke, dass ich meinen Arbeitsplatz bis zur Fertigstellung dieser Arbeit behalten konnte.

Renate, Du entsprichst so gar nicht dem Klischee einer Institutssekretärin sonder erledigst sämtliche administrativen Angelegenheiten souverän, schnell und immer freundlich. Danke für Deine Hilfe in all den Jahren!

Vinay, thanks a lot for enhancement of my Indian vocabulary, tasting of marvellous Indian cuisine, fruitful discussions and of course that I could contribute to your work.

Bernhard, danke dass Du Dich mit großer Geduld und Genauigkeit einer Vielzahl von Weinblättern, Wurzelproben und vor allem AMDIS angenommen hast.

Danke an die Bioinformatiker **Christoph** und **Nora** (die leider viel zu spät ans AZ gekommen sind). R ist jetzt für mich mehr als ein Buchstabe im Alphabet.

Alex, Sabine, Franz, Wolfgang, Marko, Kurt, danke für Rat und Tat in technischen und fachlichen Belangen.

Astrid, Katharina und **Noooora** möchte ich für die Blatt- und Wurzelproben, sowie der Erweiterung meines Wissens über die Weinpflanze danken.

Bei allen **Kollegen, Studenten, Ferialpraktikanten** und **Innen** möchte ich mich bedanken: durch Euch war meine Zeit am AZ äußert lehrreich, bereichernd, lustig und sehr schön! Wandern, Heurigenbesuche, Staffellauf, Pilates, Weinverkostungen, Diskussionen über Gott und die Welt und natürlich Kuchen Kuchen Kuchen – all das wird mir fehlen. Die vier Jahre, die ich am AZ verbringen durfte, zählen auf jeden Fall zu den interessantesten und ereignisreichsten meines bisherigen Lebens!

Weiters sei gedankt: den KollegInnen von der Tierproduktion für literweise N₂, der Pflanzenproduktion und FH für die Schwingmühle, der EDV für ihren immer prompten Service, und allen Anderen, die das IFA am Laufen halten. Danke der Tullner Spitalsküche für die mittägliche Nahrungszufuhr.

Ein Danke auch an jene Menschen, die ein System geschaffen haben und aufrecht erhalten, welches ermöglicht, dass Menschen frei forschen und lernen

können, Spaß dabei haben und auch noch dafür bezahlt werden. Ich finde, das ist ein Privileg, und wird oft für viel zu selbstverständlich genommen.

Besonders hervorheben möchte ich auch eine Frau, mit der ich die letzten Jahre mehr Zeit verbracht habe, als mit meiner Ehefrau: **Liz**, Du bist die beste Sitznachbarin wo gibt! Danke für Nüsse, Schnittis, Markierstifte, Taschenrechner, gute Musik, besseres Englisch, erheiternde Comics, ein geniales T-Shirt, immer griffbereite Bücher, Weckerlservice, Laufbeleitung und Deine offenen Ohren für meine fachlichen aber auch außeruniversitären Sorgen.

Rainer, mein AB! Du hast so viel für mich getan während meiner Diss, ich weiß gar nicht, wie ich das alles aufzählen soll und wie ich Dir danken kann! Du hast mir diese Dissertantenstelle verschafft und bist nie müde geworden mich zu unterstützen. Mehrere Vertragsverlängerungen, geduldiges, wiederholtes Erklären von statistischen Grundlagen, immer wieder Korrigieren meiner minimalistischen schriftlichen Ergüsse, Assistenz beim Probenehmen, eine Einführung in die Welt des Sherrys, ein Besuch im Krankenhaus, etliche Weinverkostungen, die Motivation zu und Schrittmacher bei meinem ersten Halbmarathon, Taxi zu Konferenzen, ein Bett, viele, viele Unterschriften, das sind nur einige der Dinge, für die ich Dir sehr sehr dankbar bin.

In diesem Zusammenhang ein großes Dankeschön an Dich **Alex**, dass du deinen Rainer so viel mit mir geteilt hast!

Danke **Mama**, dass Du gerade in den Monaten vor der Fertigstellung dieses Werkes großartige Unterstützungsarbeit für Sabine geleistet hast und ich dadurch viel Zeit zum Schreiben hatte.

Sabine, Max und **Stani**: Ihr seid großartig und ich liebe euch über alles! Ihr habt mich zwar mehr vom Arbeiten abgehalten, als mir zu helfen, dadurch aber dafür gesorgt, dass ich nicht zum verrückten Wissenschaftler mutiert bin!

Wenn Denken Deine Meinung verändert, dann ist das Philosophie. Wenn Gott Deine Meinung verändert, dann ist das Glaube. Wenn Fakten Deine Meinung verändern, dann ist das Wissenschaft.

TABLE OF CONTENT

Pref	ace	1	
1	Biological background and aims of this thesis		
2	Abstract	7	
3	Kurzfassung		
4	List of publications		
Meta	abolomics		
5	Introduction		
6	Sample handling		
7	Solid phase microextraction SPME		
8	Separation and detection of metabolites		
9	Annotation and identification of metabolites		
10	Data analysis, statistics, chemometrics	55	
11	References	57	
Results			
12	Final analytical workflow	65	
13	Original works	71	
14	Conclusion and outlook	177	
Арр	endix		
15	List of abbreviations		
16	Curriculum vitae		

Preface

1	Biological Background and Aims of this Thesis	. 3
2	Abstract	. 7
3	Kurzfassung	. 9
4	List of publications	13

"Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house."

Jules Henrí Poíncare´ (1854–1912) La Science et l'hypothe´se. (in Brown et al., 2005)

1 Biological background and aims of this thesis

The major goal of my thesis was the development and application of analytical methods for the detection and identification of grapevine metabolites. The techniques used can be summarised with the keyword "metabolomics". Since metabolomics covers much more than only analytical techniques but also e.g. the biological experiment or statistical data analysis, I will start in this first chapter with the description of the biological background and the major goals of this thesis. The metabolomics concept is discussed in chapter 5 including a discussion of the techniques used during this thesis and their role in metabolomics.

Biological background

After decades of simplifying and reducing investigations in plants to one or a small number of genes, proteins, metabolites, etc. researchers changed their view to look at the whole genome, transcriptome, proteome, and metabolome. The –omics era begun and whole organisms were investigated. The availability of the –omics techniques together with the knowledge that "the whole is more than the sum of the parts" led to the concept of systems biology.

"But one thing is clear: to understand the whole, one must study the whole." (Kacser, 1986)

In practice, systems biology frequently means to investigate the biological response of a cell, an organism or a biological system to e.g. genetic or environmental changes. The functions of the biological system can be analysed on various levels, i.e. genes, proteins, metabolites, etc. The newly developed – omics techniques – genomics, transcriptomics, proteomics, and metabolomics – are combined to obtain a comprehensive view into the biochemical and molecular processes. Systems biology demands the combination of all these techniques to an integrative approach (Fukushima et al., 2009).

Metabolomics is defined as the qualitative and quantitative analysis of the whole metabolome of an organism (Fiehn, 2001). This cannot be achieved with a single analytical technique or method at the moment, therefore a combination of different sample preparation and analysis methods is necessary. Metabolomics is not reduced to the technical analysis of biological systems but covers a complex multi-step process.

A typical metabolomics workflow, as it will be presented in this thesis, consists of several steps (Figure 1.1). It begins with a scientific biological question

followed by the setup and realisation of an appropriate experiment. Thereafter, samples have to be taken (e.g. plant or animal tissue, biofluids), the metabolism interrupted (quenching) and the samples prepared for further analysis. Metabolites sometimes have to be extracted from the samples, the samples sometimes need to be purified, concentrated and then analysed, e.g. with a chromatographic system coupled to a detector. The last step is processing of the data and interpretation of the results in relation to the initial biological question.

Figure 1.1: Typical metabolomics workflow

The biological background of this the presented research work was the project "Physiological Fingerprinting in Viticulture".

This project mainly aimed at the development of tools to identify and measure indicators for grapevine vitality. Such tools can help to improve vineyard management and hence wine quality. Former studies used mostly grape samples for quality analysis. Total soluble solids, acidity and colour parameters were measured to determine the grape quality. However, these existing parameters alone are insufficient for assessment of the plants vitality. Therefore, the "Fingerprint-project" aimed at the development and application of techniques for the detection of physiological (water potential, photosynthesis activity) as well as biochemical indicators (sugar and polyphenol content, secondary plant metabolites) for plant vitality. While two other PhD students investigated well-known stress markers from the substance classes of polyphenols and sugars with a targeted analytical approach, my challenge was to find yet unknown stress markers in the metabolome of grapevine.

To this end, techniques from the rather new metabolomics research area were established and used at the Center for Analytical Chemistry, IFA-Tulln.

Aims of this thesis

This thesis describes the development and application of a workflow for metabolite profiling of grapevine metabolites. Individual steps of the presented workflow are discussed in view of the intended and realised applications. Moreover, existing challenges in the field of metabolomics for plant volatiles will also be described.

The following aims were defined at the beginning of this work:

- 1. **Comprehensive literature survey** to get an overview about the substances detected so far in grapevine plants.
- 2. **Development of an analytical method** for identification of grapevine leaf metabolites with the focus on volatile metabolites.

Development of a GC-MS method for measurement of **volatiles produced by grapevine leaves.** Optimisation of method parameters and evaluation of the method.

- 3. **Automation of** metabolite annotation with the aim to minimise the number of false positive annotations.
- 4. Integration of the analytical method in a workflow covering all steps from sampling to detection of biomarkers.
- 5. **Application** of the developed workflow **to selected biological samples** of **grapevine** with the specific aims to:
 - a. identify volatile metabolites of Pinot Noir leaves
 - b. test if leaf samples originating from different sampling dates can be differentiated
 - c. identify metabolites, differentially expressed due to drought and UV-B stress and might serve as biomarkers for this type of stress
 - d. **identify root metabolites** the concentrations of which are directly **influenced due to insect attack** (grapevine louse phylloxera)

2 Abstract

This thesis presents the development and applications of a workflow for the investigation of the volatile metabolome of grapevine plants and metabolite profiling of volatile constituents of settled floor dust samples. The rather new scientific area of metabolomics offers a couple of techniques, which are suited for such investigations. The challenge was to choose the appropriate methods and settings for the given task. The workflow consists of the following steps:

Grapevine leaves were harvested in the field and metabolism was quenched by immediate insertion of the leaves into liquid nitrogen. Frozen leave samples were homogenised with a ball mill under cooled conditions, weighed into headspace (HS)- vials, and stored at -80°C until analysis. For the extraction of volatile metabolites, I used headspace solid phase microextraction (HS-SPME) as this technique needs no further sample preparation and additionally offers the possibility of analyte concentration on the fibre. Furthermore, by means of an autosampler the extraction as well as desorption process into a chromatographic system can be fully automated. I made use of the excellent separation efficiency of gas chromatography (GC) in combination with high selectivity and the potential of structure elucidation by mass spectrometry and realised a GC-MS method for the analysis of volatile metabolite. Additionally, retention time indices (RIs) on two GC columns with different polarity (apolar DB-5MS, polar Optima-WAX) were used to increase the quality of metabolite identification. For automated mass spectra deconvolution and comparison of both mass spectra and RI with library entries I applied AMDIS software. Strict criteria were used for metabolite identification. Minimum mass spectral match factor was 90 and maximum relative RI deviation was ±2% from reference value. After its successful development the analytical workflow was applied in various studies.

The investigation of open field samples of Pinot Noir grapevine leaves resulted in the annotation/identification of 63 metabolites. Several standards were available and the identity of about 47 metabolites has been proven. I evaluated the analytical (below 40% RSD for the majority of metabolites) as well as the biological variability (7-119% RSD) with grapevine leaves. The data analysis was done with multivariate statistics (principal component analysis) and showed for leaves from two different sampling dates two clearly separated clusters. This application and the workflow development and method evaluation are described in paper #3, which has been submitted to *Phytochemical Analysis*.

To compare the results with former studies, a literature survey was carried out resulting in the compilation of a database for metabolites detected in grapevine by GC. The database covers now data from 39 research studies using GC. In total 1619 entries referring to *Vitis* metabolites are contained in this database.

A further application was the investigation of the metabolic response of grape vine roots to the grapevine louse phylloxera in cooperation with Nora C. Lawo who kindly provided the root tissue. The applied workflow was nearly identical as described above but smaller sample amounts had to be handled. Univariate statistics showed 14 differentially expressed metabolites between control and phylloxera attacked roots, 32 metabolites were described in grape vine roots for the first time. Evaluation of the differentially expressed metabolites indicated that defence related pathways such as the mevalonate and/or alternative isopentenyl pyrophosphate-, the lipoxygenase- and the phenylpropanoid pathway are affected in root galls as a response to phylloxera attack. The re sults have been published recently in *Plant Physiology and Biochemistry* (paper #1).

Based on this experiment, I participated in writing a book chapter "Study of the volatile metabolome in plant-insect interactions" in "The Handbook of Plant Metabolomics'" which is currently in the process of editing and shall be published soon. The book chapter represents a general description of a typical metabolomics workflow suited for the investigation of plant-insect interactions. Furthermore, it contains a protocol exactly describing how to sample, treat, and analyse plant tissue followed by data processing and statistics to find volatile metabolites with different concentrations in plants attacked by insects compared to non-attacked plants.

Additionally, the developed workflow was the basis of another application, which investigated settled floor dust samples. Together with a PhD colleague, Vinay Vishwanath, we used the workflow for the detection of fungal metabolites in dust samples. Although dust is not a biological system per se, it consists of substantial amounts of organic material, therefore the application of metabolomics techniques was appropriate. The results of this study are presented in paper #2.

To sum up, the presented metabolomics workflow is well-suited for the annotation/identification of volatile metabolites of plants but also other samples. The detected metabolites are able to separate different sample groups if data is processed with multivariate statistics. The method is sensitive and accurate enough to provide significant differences in the metabolite concentrations in differentially treated plants. I tried to use only simple and well established techniques in the workflow to enable a broad range of applications.

The results of this thesis contribute to the rather new field of grapevine metabolomics in the future. It enables the easy investigation of grapevine plant tissue for metabolite identification and biomarker detection. I was able to describe several metabolites for the first time in grapevine leave or root tissue. The compiled grapevine metabolite database serves as valuable basis for future research of grapevine plants.

3 Kurzfassung

Die vorliegende Arbeit stellt die Entwicklung und Anwendung eines Arbeitsablaufes (workflow) für die Untersuchung der flüchtigen Metabolite der Weinrebe und flüchtiger Bestandteile von Staubproben (settled floor dust, SFD) dar. Ein relativ neuer wissenschaftlicher Forschungszweig, die Metabolomik, hält eine Reihe von Techniken bereit, die bestens für diese Aufgabenstellung geeignet sind. Die besondere Herausforderung in dieser Arbeit war das Auswählen der geeigneten Methoden und Techniken sowie die Optimierung der zahlreichen Verfahrenschritte zur Probenahme, Probenaufbereitung, Analyse und Datenauswertung. Der entwickelte Arbeitsablauf besteht aus folgenden Schritten:

Blätter der Weinrebe wurden geerntet und sofort in flüssigen Stickstoff getaucht, um möglichst alle Stoffwechselprozesse zu stoppen (Quenching). Die gefrorenen Blätter wurden in einer Kugelmühle homogenisiert, wobei darauf geachtet wurde, dass alle Gegenstände (Spatel, Mahlbecher, Mahlkugel) immer mit flüssigem Stickstoff gekühlt wurden, um ein Auftauen der Probe zu verhindern. Nach dem Vermahlen wurde das Blattpulver in 20-mL Glasgefäße eingewogen und im Kühlschrank bei -80°C bis zur weiteren Analyse gelagert. Für die Extraktion der flüchtigen Metabolite wurde die Festphasen-Mikroextraktions-Technik (solid phase microextraction, SPME) verwendet. Mit dieser Technik kann die manuelle Probenvorbereitung auf ein Minimum reduziert werden. Bei der SPME erfogt die Anreicherung der Analyte auf einer Faser und es besteht die Möglichkeit, den ganzen Extraktionsprozess zu automatisieren. Für die Trennung und Detektion der Metabolite verwendete ich Gaschromatographen einem einen (GC) in Verbinduna mit Massenspektrometer (MS). Die Gaschromatographie bietet eine sehr gute Auftrennung der Metabolite und das MS bietet die Möglichkeit einer detektierten Substanzen aufgrund Annotierung der der erhaltenen Massenspektren. Zur besseren Absicherung der Identifizierung der Metabolite wurden zusätzlich Retentionsindices (RIs) verwendet. Diese wurden auf zwei Säulen unterschiedlicher Polarität (apolare DB-5MS, polare Optima-WAX) ermittelt. Die Dekonvolution der gemessenen Massenspektren, deren Vergleich mit Spektren einer Referenzdatenbank sowie der Vergleich der gemessen RIs mit Literaturwerten erfolgte vollautomatisiert mit dem Programm AMDIS. Für eine sichere Identifizierung (es sollten möglichst wenig falsch positive Resultate erhalten werden), wurden strenge Kriterien angelegt: Der Vergleich zwischen und Referenzmassenspektren musste mindestens gemessenem eine Ähnlichkeit von 90 (minimum match factor) ergeben und der gemessene RI durfte nicht mehr als ±2% vom Referenzwert abweichen, um einen Metaboliten als annotiert (vorläufig identifiziert) bezeichnen zu dürfen Der Arbeitsablauf ist detailliert in den Publikationen #3 und #4 beschrieben).

Die Untersuchung von Weinblättern (Vitis vinfera cv. Pinot Noir 18 Gm) aus einem Versuchsweingarten ergab die Annotierung 63 flüchtiger Metabolite. Die Identität von 47 dieser Metabolite konnte mittels authentischer Standards abgesichert werden. Die Variabilität der analytischen Methode lag für einen Großteil der Metabolite unter 40 % (relative Standardabweichung, RSD), die biologische Variabilität zwischen den Pflanzen reichte von 7 - 119% RSD. Die Daten wurden mit multivariater Statistik (Hauptkomponentenanalyse, HKA) weiter ausgewertet. Ich konnte zeigen, dass die Blätter zweier verschiedener Probenahmetermine in der HKA zwei entsprechende Häufungen bilden. Diese Anwendung und die Entwicklung der Methode sowie des ganzen Arbeitsablaufes wurden zur Publikation bei der Fachzeitschrift Phytochemical Analysis eingereicht (Publikation #3).

Zum Vergleich der eignen Ergebnisse mit der Literatur wurde eine intensive Literatursuche durchgeführt. Das Ergebnis ist eine Datenbank mit 1619 Substanzeinträgen, die als Inhaltsstoffe der Weinpflanze mittels GC in insgesamt 39 ausgewerteten Studien gefunden wurden. Die Datenbank ist der Publikation #3 als zusätzliches Material beigefügt.

Die zweite äußerst interessante Anwendung war die Untersuchung von Wurzeln der Weinrebe, die von der Reblaus (Phylloxera) befallen waren. Der analytische Arbeitsablauf war beinahe identisch mit dem oben beschriebenen, lediglich die Probenmenge der Wurzeln war sehr viel kleiner im Vergleich zu den Blättern. Es wurden 38 Metabolite annotiert, wovon 32 zum ersten Mal in Wurzeln der Weinrebe beschriebenen wurden. Mittels univariater Statistik (t-test) wurden 14 Metabolite gefunden, deren Konzentrationen in befallenen Wurzelspitzen signifikant höher oder niedriger waren, als in nicht-befallenen Wurzelspitzen. Diese Substanzen weisen darauf hin, dass die Aktivität einiger Stoffwechselwege (z.B. Mevalonat und/oder alternative Isopentenvl pyrophosphat -, Lipoxygenase -, Phenylpropanoid Stoffwechselweg), die bei der Verteidigung der Pflanze gegen Fraßfeinde eine Rolle spielen, durch den Reblausbefall verändert wurde. Die Ergebnisse wurden in Plant Physiology and Biochemistry veröffentlicht (Publikation #1).

Auf Basis dieses Experiments entstand auch das Buchkapitel "Study of the volatile metabolome in plant-insect interactions", welches in "The Handbook of Plant Metabolomics" veröffentlicht wird. In dem Buchkapitel ist eine allgemeine Beschreibung eines typischen Metabolomik-Arbeitsablaufes beschrieben. Weiters findet sich eine Schritt-für-Schritt-Anleitung für die Untersuchung von Pflanze-Insekt Interaktionen. Diese reicht vom Aufbau eines biologischen Experimentes über Probenahme und -vorbereitung, Analyse der Metabolite bis hin zur statistischen Datenauswertung (Publikation #4).

Eine weitere eher unkonventionelle Anwendung der in dieser Arbeit etablierten Methoden war die Analyse von Staubproben gemeinsam mit meinem Kollegen Vinay Vishwanath. Obwohl Staub kein Organismus ist, konnte der Metabolomik-Arbeitsablauf angewendet werden, besteht Staub ja zu einem Teil aus organischem Material. Durch die Analyse der Pilzmetabolite in Staub kann auf die An- oder Abwesenheit von Schimmelpizen im betreffenden Gebäude geschlossen werden. Die Ergebnisse der Studie wurden mittlerweile in *Talanta* veröffentlicht (Publikation #2).

Zusammengefasst lässt sich sagen, dass der entwickelte und hier vorgestellte Arbeitsablauf sehr gut geeignet ist, um flüchtige Metabolite von Pflanzen aber auch die Inhaltsstoffe anderer Proben zu annotieren/identifizieren. Mittels multivariater Statistik konnte gezeigt werden, dass die gefundenen Metabolite charakteristisch für verschiedene Probengruppen sind. Die Methode ist sensitiv und signifikante Unterschiede denau aenua. um in den Metabolitkonzentrationen verschieden behandelter Pflanzen zu finden. Ich legte Wert darauf, etablierte und robuste Methoden zu verwenden, um eine breite Anwendung des entwickelten Arbeitsablaufes zu ermöglichen.

Die vorgelegte Arbeit hat das Potential, zu einem besseren und tieferen Verständnis des Weinrebenmetaboloms beizutragen. Der präsentierte Arbeitsablauf ermöglicht eine einfache Untersuchung von Weinreben zur Identifizierung und Detektion von Biomarkern. Ich konnte einige Metabolite von Blättern und Wurzeln der Weinrebe zum ersten Mal beschreiben. Die Datenbank flüchtiger Inhaltsstoffe von Weinreben stellt ein weiteres hilfreiches Werkzeug für zukünftige Forschungen im Bereich der Weinrebe dar.

4 List of publications

International peer-reviewed publications

Paper #1 Phylloxera attacked grapevine roots

Lawo* NC, **Weingart*** **GJF**, Schuhmacher R, Forneck A **2011** The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack. *Plant Physiology and Biochemistry* 49:1059-1063. * shared first authorship

Paper #2 Settled floor dust samples

Vishwanath V, Sulyok M, **Weingart G**, Kluger B, Täubel M, Mayer S, Schuhmacher R, Krska R **2011** Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor environments by LC-MS/MS and GC-MS methods. *Talanta* 85:2027-2038.

International peer-reviewed publications, revised version submitted

Paper #3 Method development, grapevine leaves

Weingart GJF, Kluger B, Forneck A, Krska R, Schuhmacher R **2011** Establishment and application of a metabolomics workflow for identification and profiling of volatiles from leaves of *Vitis vinifera* by HS-SPME-GC-MS. *Phytochemical Analysis.*

Other publications

Paper #4 Plant-insect interaction, book chapter, submitted

Weingart GJF, Lawo NC, Forneck A, Krska R, Schuhmacher R **2012** Study of the volatile metabolome in plant-insect interactions. In: Weckwerth W, Kahl G, editors. The Handbook of Plant Metabolomics. Wiley-Blackwell-VCH.

Oral presentations

Weingart GJF, Lawo NC, Schuhmacher R, Forneck A **2010** Metabolomic profiles of phylloxerated gall tissues of root tips, 5th Phylloxera Symposium, September 19th – 23rd, 2010, Vienna, Austria

Weingart GJF, Schoedl K, Krska R, Forneck A, Schuhmacher R **2010** GC-MS based metabolomics of volatile metabolites produced by leaves of *Vitis vinifera*. International Metabolomics Austria, August 29th - September 3rd, 2010, Vienna, Austria

Weingart GJF, Krska R, Forneck A, Schuhmacher R **2010** Identifying grapevine leaf metabolites with GC-MS - just a routine application? MassSpec-Forum, February 16th - 17th, 2010, Vienna, Austria

Weingart GJF, Schumacher R, Krska R, Forneck A **2009** A bottom up metabolic profiling approach for the detection of potential stress markers in Pinot Noir grapevine leaves. 5. ASAC JunganalytikerInnen Forum, September 5th-6th, 2009, Innsbruck, Austria

Weingart GJF, Schuhmacher R, Krska R, Forneck A **2009** Preliminary study for the identification of stress induced volatiles of *Vitis vinifera* leaves – analytical method development and evaluation. 27^{th} Informal Meeting on Mass Spectrometry, May $3^{rd} - 6^{th}$, 2009, Retz, Austria

Poster presentations

Weingart GJF, Schoedl K, Krska R, Schuhmacher R, Forneck A **2010** Finding of stress related metabolites in *Vitis vinifera* by GC-MS, 28th Informal Meeting on Mass Spectrometry, May 2nd-6th, 2010, Köszeg, Hungary

Weingart GJF, Schuhmacher R, Krska R, Forneck A **2009** A bottom up metabolic profiling approach for the detection of potential stress markers in Pinot Noir grapevine leaves. Euroanalysis, September $6^{th} - 10^{th}$, 2009, Innsbruck, Austria

Weingart GJF, Schuhmacher R, Krska R, Forneck A **2009** A bottom up metabolic profiling approach for the detection of volatile metabolites of in Pinot Noir grapevine leaves. Metabomeeting, July $5^{th} - 8^{th}$, 2009, Norwich, Great Britain

Weingart GJF, Schuhmacher R, Krska R, Forneck A **2008** Metabolic profiling of volatile compounds in leaves of *Vitis vinifera* cv. Pinot noir by GC-MS. Advances in Metabolic Profiling, October $16^{th} - 17^{th}$, 2008, Lisbon, Spain

Lawo NC, **Weingart G**, Schuhmacher R, Forneck A **2011** First insights into a metabolic fingerprint of grapevine roots upon phylloxera attack. Entomology Congress, March 21st – 24th, 2011 in Berlin, Germany

Schöfbeck D, **Weingart G**, Lemmens M, Krska R, Schuhmacher R **2010** Profiling of Volatiles of Wheat Ears Using Headspace SPME-GC-MS. Metabolomics and More: The Impact of Metabolomics on the Life Sciences, March, $10^{th} - 12^{th}$, 2010, München, Germany

METABOLOMICS

5		Intro	oduction	17	
6		Sam	ple handling	27	
	6.1		Selection of biological samples, sampling	27	
	6.2		Quenching	29	
	6.3		Sample storage	29	
	6.4		Sample preparation	30	
7		Soli	d phase microextraction SPME	32	
8		Sep	aration and detection of metabolites	37	
	8.1		Gas chromatography	37	
	8.2		Mass Spectrometry	40	
	8.	.2.1	Quadrupole mass analyser	42	
9		Ann	otation and identification of metabolites	45	
	9.1		Mass spectrum	45	
	9.2		Retention index	47	
	9.3		Deconvolution	48	
	9.	3.1	Noise analysis	49	
	9.	3.2	Component perception	50	
	9.	3.3	Extraction of "purified" spectra	53	
	9.4		Final identification criteria	53	
10	0 Data analysis, statistics, chemometrics				
11	11 References				

"Progress in science depends on new techniques, new discoveries and new ideas, probably in that order."

Sydney Brenner (in Robertson, 1980)

5 Introduction

"When a thing was new, people said, 'It is not true'. Later, when the truth became obvious, people said, 'Anyway, it is not important.' And when its importance could not be denied, people said, 'Anyway, it is not new."

William James (1842-1920) (in Goodacre et al., 2004)

This chapter will give a short overview about definitions and history of the rather new and important metabolomics area. A typical metabolomics workflow as it was developed and used in this thesis is presented. Further on, the steps of the workflow and the techniques used in this thesis are presented. The particular challenges in metabolomics applications are discussed.

Definition

The term "metabolome" is derived from ancient Greek" metabole" which means "change" whereas "-omics" refers to the Greek "oma" which means "indicating process, action" and "-ics" forms nouns referring to fields of knowledge or practice. According to the Metabolomics Society homepage metabolomics is "concerned with the comprehensive characterisation of the small molecule metabolites in biological systems" (http://www.metabolomicssociety.org/ metabolomics.html, access 22.8.2011). One of the first definitions by Oliver Fiehn (2001) describes metabolomics as "a comprehensive and quantitative analysis of all metabolites" in a biological system. Today metabolomics covers a whole scientific area with several sub-areas. Table 5.1 gives some general definitions of terms that are frequently associated with metabolomics and related techniques. In the beginning of the metabolomics era, metabolomics was regarded to be an enhancement of genomics and proteomics. Hence, the first definitions (Fiehn, 2002) connect metabolomics closely with investigations of the functions of genes in organisms. Nowadays the definitions are more general (e.g. Krastanov, 2010). Due to the impossibility of analysing all metabolites of an organism simultaneously, different approaches have evolved.

Metabolomics is one of the younger –omics techniques consequently following other high-throughput analytical approaches as genomics, transcriptomics or proteomics. Due to the limited variety of the building blocks of genes or proteins they can be investigated by using just a small number of analytical techniques (Brown et al., 2005). In contrast to genes or proteins, metabolites occur in a wide range of substance classes (ionic, neutral, polar, apolar). Concentrations cover several orders of magnitude within an organism or one single cell. Hence, in metabolomics, we have to deal with an unknown number of metabolites. It is estimated that there are about 200000 metabolites present in the plant kingdom, the metabolome of a single plant is estimated to consist up to 5000 different metabolites (Bino et al., 2004). At the moment, no analytical technique is capable to face this challenge and cover the whole metabolome of an organism. Therefore, it is necessary to combine different extraction, separation, and detection methods for full comprehensive studies.

Table 5.1:Definitions of important terms in the field of metabolomics (Fiehn, 2001; Harrigan
and Goodacre, 2003; Goodacre et al., 2004; Dettmer et al., 2007; Allwood et al.,
2008).

Metabolome	All small molecules produced by an organism, tissue, cell.			
Metabolomics	An unbiased identification and quantification of all (low molecular weight) metabolites of a biological system, organism, tissue, or cell under well-defined conditions.			
Metabonomics	Quantitative analysis of metabolites of an organism changing in response to pathophysiological stimuli (stress, disease, toxic exposure, specific dietary or drugs) or genetic modification.			
Metabolic profiling*	Identification and (approximate) quantification of a predefined set of			
Global metabolomic profiling	metabolites, e.g. belonging to a substance class (lipids, carbohydrates, isoprenoids, volatiles) or to a particular pathway or all metabolites ascertainable with a specific analytical technique.			
Metabolite fingerprinting	Classifying (a large number) of samples whose metabolites alter due to e.g. disease, environmental or genetical perturbations. Aims in the identification of the discriminating metabolite but qualitative and quantitative assignment of metabolites is initially not necessary.			
Metabolite footprinting	Analysis of all emitted/secreted metabolites. Offers the advantage of non-invasive measurement.			
Targeted metabolite analysis	Identification and precise quantification of a single metabolite or small set of target compounds. Based on existing knowledge or after unbiased metabolomics analysis, offers the advantage of selective extraction separation and detection techniques.			

* This approach is described and discussed in this thesis.

Despite the above mentioned analytical challenges in metabolomics, there are several reasons why metabolomics studies have advantage over other –omics studies and are well suited for system-wide characterisation of biological systems (e.g. Fiehn, 2001; Dunn and Ellis, 2005; Goodacre, 2005; Álvarez-Sánchez et al., 2010a):

- Smaller number of metabolites per organism compared to genes and proteins, reduced sample complexity.
- Metabolomics techniques are cheaper, more robust, mature and frequently available by most labs dealing with analytical chemistry. The instruments used are faster and allow high-throughput analysis. Additionally, metabolomics analysis are cheaper than the application of genomics or proteomics techniques.
- A large number of metabolites are exactly the same in different organisms whereas genes and proteins are frequently organism specific. This eases the availability of standard compounds and facilitates the study of different biological systems with the same metabolomics platform.
- A large number of metabolites can be affected by one or only a few genes (Figure 5.1a). Hence, metabolomics studies have great potential to illuminate the function/influence of genes.
- Although the change in concentration of enzymes may be not significant due to a treatment of the organism, the change in metabolite concentrations might well be.

Finally no –omics technique alone can answer biological questions completely. Realisation of full comprehensive approaches needs the integration of several -omics techniques. As a result, of such combined approaches e.g. pathways are today not longer considered to be linear but complex metabolic networks (Figure 5.1b).

Figure 5.1: (a) Systems biology needs the investigation of all levels of a biological system. Information from the genome is written to the transcriptome, which codes for the proteome resulting in many chemically different metabolites. All levels feedback and influence each other.

(b) The traditional linear pathways as models for the processing in organisms are out of date. Modern approaches/models use so-called scale free metabolic networks. It is one of the challenges in metabolomics to find all metabolites participating in a particular pathway (from Goodacre, 2005).

History

The concept of detecting as much metabolites as possible in a sample is rather old (Table 5.2). For example Dalgliesh et al. reported 1966 "A Gas-Liquid-Chromatographic Procedure for Separating a Wide Range of Metabolites occurring in Urine or Tissue Extracts" in which they identified about 100 metabolites simultaneously.

The term "metabolic profiling" appears in scientific literature for the first time in an article title 1975 (Thompson and Markey, 1975) according to SciFinder (access 8.8.2011). A review from the same year about "Clinical Chemistry" mentions several studies about metabolic profiling (Gochman and Young, 1975). Clinical chemistry and medicine were the birth place for all metabolomics related approaches. Oliver et al. (1998) first mentioned the term "metabolome" in literature. At the website of the Scripps Center for Metabolomics and Mass Spectrometry a timeline about important steps towards metabolomics is given (Table 5.2).

Table 5.2:Timeline presenting milestones in the development of today's metabolomics.
(modified from http://masspec.scripps.edu/metabo_science/timeline.php, access
3.8.2011).

Contributions	Year
Body fluids used to predict disease Ancient Greeks recognise the value of examining body fluids (at this time called humors) to predict disease.	300 BC
Quantitative basis of metabolism Santorio Sanctorius, considered to be the founding father of metabolic studies, pub- lishes his work on 'insensible perspiration' in De Statica medicina, and determined that the sum total of visible excrement (urine, feces, sweat) was less than the amount of substance ingested. This work is considered the first effort to obtain physiological data and provide a quantitative basis to pathophysiology via meticulous study and precise instrumentation.	1614
First mass spectrometer J.J. Thomson at the University of Cambridge constructs the first mass spectrometer (then called a parabola spectrograph).	1905
GC development by Martin and Synge	1940's
NMR introduced Felix Bloch at Stanford University and Edward Purcell at Harvard University simultaneously publish the first NMR spectra in the same issue of Physical Review.	1946
Mass spectrometry-based metabolomics 1966 Dalgliesh et al. perform the first GC/MS Metabolomic experiments and report it in Biochemical Journal 101, 792. 1971 Mamer and Horning publish an approach to Human Metabolite Mass Spec- trometry Profiling in Clinical Chemistry 17, 802-809	1966
NMR based metabolomics Observation of tissue metabolites using 31P nuclear magnetic resonance. Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ. Nature. 1974 Nov 22;252(5481):285-7	1974
First use of the word "metabolome" SG Oliver, MK Winson, DB Kell and F Baganz use the term 'metabolome' for the first time, published in Trends in Biotechnology.	1998-9
Introduction of SPME by Arthur and Pawliszyn	1990
1 st meeting of the Metabolomics Society	2005
XCMS bioinformatics platform for untargeted metabolomics A bioinformatic platform XCMS was developed for untargeted mass spectrometry based metabolomics.	2006
metaXCMS meta-metabolomics analysis approach A major challenge in interpreting metabolomics data is distinguishing metabolites that are causally associated with the phenotype of interest from those that are unrelated but altered in downstream pathways as an effect.	2010

In 1999 Trethewey et al. (1999) reported only two publications in the field of plant metabolomics. In the following years, the application of GC-MS for the profiling of plant metabolites, mainly non-volatiles after derivatisation, increases steadily (Allwood et al., 2008). The investigation of the plant volatile metabolome is still rare. Koek et al. (2011) give an overview of plant

metabolomics studies using GC-MS. The authors report 27 studies, three of them extracted the volatiles from the plant sample headspace whereas two useed SPME, the method which has been used during this work.

Metabolomics workflow

A typical metabolomics experiment consists of not only the analytical part but begins with the biological question (hypothesis), followed by the appropriate experimental setup, sampling, sample preparation, measurement, data handling, interpretation of results and finally answering the initial biological questions (Figure 5.2).

Figure 5.2: Typical metabolomics workflow

Often new questions appear which require new experiments to be answered (hypothetic-deductive reductionistic approach, Figure 5.3). On the other hand, the hypothesis can be generated out of the data (inductive approach to knowledge discovery, holistic approach, Figure 5.3). Since there are several scientific disciplines involved, metabolomics needs a close cooperation of e.g. biologists, analytical chemists, and bioinformaticians.

leads to a hypothesis and data are connected in science. Left: Existing knowledge leads to a hypothesis, which is tested experimentally. The resulting data either verifies or falsifies the starting hypothesis. Right: Analysis of the data via "active learning" computation algorithms provides ideas for hypothesis which can then be tested like in the left approach (adapted from Goodacre et al., 2004).

Comparative studies

As shown in the definitions section above, different approaches can be chosen depending on the biological question or the hypothesis. The majority of the published metabolomics studies deal with the investigation of gene or protein functions or aim in the detection of biomarkers. Therefore, a comparative approach is suitable. Scientists compare the metabolome of e.g. wild-type and mutant or a stressed group of plants with a unstressed control group. For the detection of the metabolites (biomarkers) which are affected by e.g., genetical mutation, stress or insect attack, two procedures are reported:

- bottom up or targeted: The data handling starts with the identification of the metabolites. Subsequently the concentrations (or if not quantified the peak areas) of these metabolites are compared between the two sample groups with the aim to find significant differences.
- top down or untargeted: the data handling starts with an annotation of all peaks followed by the search for differentially expressed peaks. Only those were further considered e.g. for identification/structure elucidation.

Independent of the chosen approach, the bias in the steps before data analysis shall be as low as possible.

Database

The targeted approach requires a list of substances (positive list), which shall be searched for in the GC-MS files. This positive list can either be derived from known literature data or from an untargeted approach. Thereby, as many metabolites as possible are identified and these results used as positive list. Best solution will be to combine both procedures, as it was done in this work.

Before I started with the method development, I wanted to gather an overview about the substance classes I would have to expect in grapevine leaves. Therefore, I started an intense literature research about previous studies of

grapevine leaves and other parts of this plant species. This investigation resulted in the compilation of a database with about 1619 entries of substances found in 39 studies referring to the investigation of grapevine using GC. If available, the CAS number and the systematic name were added as well as part of the plant where the substance was detected and the corresponding reference. The database is available as supplementary material to paper #3.

Additionally, in all grapevine studies the recorded mass spectra were searched against combined Wiley NIST 08 reference MS spectra library. Details about the annotation and identification process can be found in chapter 9.4, paper #1, and #3.

Standardising metabolomics experiments

"The nice thing about standards is that there are so many to choose from." Andrew S. Tannenbaum (in Quackenbush, 2006).

As mentioned above, one and the same metabolite always has the same chemical structure independent of its origin (plant, animal, fungi). Thus, the results of metabolomics experiments can complement each other and therefore it makes sense to standardise metabolomics experiments. In most cases, authors refer to the standardisation of the reporting of the experiments. Additionally, there are suggestions to standardise the experiments or single steps in the metabolomics workflow itself. There are several reasons for standardising or at least document accurately metabolomics experiments in detail including all steps and all factors possibly influencing the results (Fiehn et al., 2006). Standardisation is required to

- make the studies repeatable
- have the possibility of judging metabolomics experiments
- enable the finding of new correlations, pathways and/or networks of metabolites as the results are colleted in databases

One of the first suggestions for "Minimum Information About a METabolomics experiment" (MIAMET) was described by Bino et al., 2004. In the same year Jenkins et al. (2004) presented ArMet (architecture for metabolomics). Several publications describing standards for every step in metabolomics experiments were initialised by the Metabolomics Standards Initiative (MSI) (Fiehn et al., 2006, 2007a,b, 2008; Goodacre et al., 2007; Morrison et al., 2007; Sumner et al., 2007). There exist now suggestions for minimum reporting standards for:

- biological study design, biological context metadata
- chemical analysis
- data acquisition, data exchange

• data processing/analysis and interpretation relative to the biological hypotheses

The knowledge about the metabolites resulting from metabolomics studies ought to be compiled into databases whereby also mass spectra of unidentified substances are stored. The final aim of metabolomics is to reduce "terra incognita" in biological pathways and systems.

LC-MS or GC-MS for metabolite profiling?

Originally the "fingerprint project" aimed in the detection of secondary metabolites in grapevine plants, which can be conducted with different analytical techniques e.g. liquid chromatography (LC) or GC coupled to a MS detector. Both techniques have their own advantages and disadvantages.

LC covers a wider range of metabolites than GC but identification of metabolites is more challenging. LC is frequently coupled to a MS detector allowing MS/MS, which leads to fragmentation spectra characteristic for the fragmented metabolite. Hence, LC provides the m/z of the metabolite ion and a spectrum of ion fragments. Nevertheless, the fragmentation pattern depends strongly to the instrument settings and also to the instrument itself. Therefore, the spectra cannot be compared easily and only small spectra library exist.

GC-MS instruments are frequently equipped with a single quadrupole (see 8.2) and provide standardised fragmentation spectra but only in rare cases the metabolites ion m/z. However, the standardised substance spectra have been collected for many years in commercial available mass spectra databases. Hence, identification of metabolites is much easier than with LC-MS instruments. Additionally, GC offers a higher reproducibility of the elution behaviour of the metabolites, which enables the usage of retention time indices for further metabolites identification. Since volatiles are a major group of the secondary metabolites, application of GC-MS is a good alternative to LC-MS. In the project, the identification of potential biomarkers for stress was demanded, which GC-MS can provide more easy than LC-MS. All in all GC-MS was the method of choice for this thesis.

Volatile organic compounds

According to Wenke et al. (2010) volatile organic compounds (VOCs) are mostly lipophilic substances with a high vapour pressure (0.01 kPa or higher at 20° C) and a low molecular mass (≤ 300 Dalton). Therefore, they easily evaporate. Their volatility makes VOCs well suited for the investigation with GC.

The investigation of volatiles is of great interest since VOCs are produced and emitted by plants and hence contribute to a high extent to the communication of plants with their environment. VOCs participate e.g. in plants defence, attraction of pollinators or seed-dispersing animals (Pichersky and Gershenzon, 2002). Among plant volatiles nearly all substance classes can be found, mainly C_{6} -compounds, terpenoids, aromatic compounds, alcohols and n-alkanes.

In this thesis, I ended up with a bottom up metabolic profiling approach. Using HS-SPME and GC-MS the metabolites to be detected are limited to volatiles. I took care that this was the only restriction. The workflow was developed and evaluated using open field grapevine leaf samples and later on applied to grapevine roots. The set of metabolites for investigation of two differently treated sample groups was derived from the samples itself by identifying as much metabolites as possible (see paper #1 and #3).

6 Sample handling

Samples are the basis of each analysis. This chapter describes, what plant parts and how they can be sampled, discusses quenching of metabolism, sample storage and sample preparation for further analysis.

6.1 Selection of biological samples, sampling

In plant metabolomics studies, it is important to have well defined plant material. Especially in comparative studies, the external influences shall be under control to avoid effects beside the intended treatment to the plants. This can be largely achieved with plants grown in the greenhouse or an artificial growth chamber (Fukusaki and Kobayashi, 2005). On the other hand, some plants cannot be grown under greenhouse conditions simulating the real world. For example trees are simply to big and growing too slow. In general, perennial or indeciduos plants might show different behaviour depending on their age but in greenhouse studies mostly young plants, growing for some weeks or months are used. Although the environmental influences cannot be controlled in field studies, they can be at least monitored and will reflect the natural metabolome more realistically.

While the most published literature deals with improvement of metabolite detection, identification and data handling, only a few papers deal with the starting point of every analytical process, the selection of the appropriate sample for the given task (e.g. Álvarez-Sánchez et al., 2010 a). In target analyses the sampling and in particular the sample treatment are very important steps, which are frequently optimised and evaluated intensively. The sampling has to provide a representative part of the organism. This is easy for small organisms like e.g. *Arabidopsis thaliana*, where the whole plant can be sampled but difficult for larger plants as for example grapevine or even trees. Strategies for sample pooling and homogenisation are necessary. Unfortunately, it is not possible to verify whether a sampling step is appropriate due to missing reference methods yet.

Samples can be obtained by invasive or non-invasive methods. While DNA, RNA or primary metabolites are not accessible without damaging plant tissue, volatiles can be sampled without any damage. Non-invasive methods allow frequent sampling of one and the same plant but require a more complex equipment than invasive sampling techniques. A plant provides several parts, which can be sampled: roots, stems, leaves, stalks, sap, tubers, flowers, fruits, and the derived products as oils, juices, etc. (Álvarez-Sánchez et al., 2010a).

Depending on the biological question, different plant parts can be sampled. Sampling xylem or phloem sap e.g. can provide knowledge about molecules serving as signalling substances. Leaves for example are one of the favourite parts for investigation of the volatile plant metabolome as the leaves can easily be harvested and are available over the most time of the year. Roots are more difficult to sample as they are surrounded by soil, which has to be removed before analysis. Therefore, the plant has to be taken out of the soil, which can cause stress to the plant and hence change the metabolome. Or the soil has to be replaced with a soil-less culture system (Fukusaki et al., 2003).

The biological experiment shall provide an adequate number of samples. Plants grown in the greenhouse may be less influenced by environmental factors than plants in open field experiments. The latter might show a higher biological variability, which complicates the detection of differentially expressed metabolites (biomarkers). Taking more samples and/or pooling samples can help to overcome these problems. In addition, the size of the plant and the number of samples harvested has to be taken into account. Every invasive sampling can lead to a change of the metabolome. Therefore, in the ideal case, plants, which have been sampled once, shall be excluded from the further experiment. This demands a high number of plants for the whole experiment. For bigger plants or field experiments or if it can be guaranteed that the control and the treated group experience the same sampling treatment it might be acceptable to take several samples from the same plant at different time points.

During this thesis, only detached plant material was analysed. The grapevine plants in the fingerprint project used for method development (paper #3) were grown in the field. Hence, we judged the environmental influences higher than the influence of the sampling of four leaves per plant and sampled the same plants a second time a month later.

In the phylloxera experiment (paper #1), we assumed that the small number of roots which were cut did not have such a large influence to the metabolome as the feeding insect. In addition, roots were also cut from plants of a control group (identical sampling procedure) so that eventually appearing changes due to the sampling process are expected to be the same in both groups.

The dust samples (paper #2) were non-living material, therefore this particular aspect of sampling had not to be considered in this case.
6.2 Quenching

It is necessary to "freeze" (quench) the actual status of a sample immediately upon sampling. The quenching process has to fulfil certain needs (Fiehn, 2002; Dettmer et al., 2007; Álvarez-Sánchez et al., 2010b):

- The quenching has to be very fast, before the metabolome can change. Turnover rates of some primary metabolites e.g. have been reported to be in the range of 1mM/s. D'Auria et al. (2007) reported a maximum of emitted green leaf volatiles (GLV) 30-45 seconds after plant tissue wounding. For terpenoids, it has been described to last several hours until a change can be observed (Arimura et al., 2009).
- During sampling, the damage of cells must be minimised as this may lead to undesirable reactions between metabolites, which are normally separated in different cell organelles.
- The quenching technique itself must not lead to any change in terms of chemical properties.
- After quenching, the sample shall be available for further sample treatments.

The following quenching techniques are reported in literature, all are based on the fast change of sample conditions (Álvarez-Sánchez et al., 2010b):

- Change of pH to high (alkali) or low (acidic) values
- Change of temperature: e.g. with cold methanol, lq. nitrogen, hot ethanol

The quenching with cold methanol is very common when the non-volatile metabolites are investigated whereas the volatile metabolome of plants is quenched mostly with liquid nitrogen. It is a simple and fast method, feasible for lab and field samples.

In the presented publications (paper #1, #3, #4) dealing with grapevine tissue the quenching was done with liquid nitrogen. The dust samples (paper #2) were not quenched due to any risk of changes of the metabolites.

6.3 Sample storage

After successful quenching, the samples shall be analysed as fast as possible. Often this is not possible, hence they have to be stored for a certain time period. Especially in comparative studies or time course studies it makes sense to measure all samples within a short time interval to minimise imprecision due to varying instrument performance. The rule is in general the colder the better but freezing does not stop but just slow the chemical processes in the plant tissue. Repeated freezing and thawing cycles have to be avoided (Al-Jowder et al., 1997). Inappropriate storage can lead to conversion and degradation of metabolites (Peng and Jay-Allemand, 1991; Teahan et al., 2006). Because liquid nitrogen is well suited for quenching it is as well suited for storage. Due to high costs of liquid nitrogen storage, most laboratories store the plant samples at -80 °C.

Freeze-drying is often reported to be well suited for stabilising plant samples for long-term storage. It reduces the water content and therefore enzymes can no longer be active. For the investigation of the volatile metabolome it has turned out that freeze-drying leads to the loss of volatile metabolites (Aprea et al., 2011). Therefore, no samples were freeze-dried within the presented work. The grapevine leaves and roots were stored at -80 °C whereas the dust samples were stored at -20 °C until analysis.

6.4 Sample preparation

The goal of sample preparation in target analysis, e.g. by extraction and subsequent purification, is to separate matrix compounds from the analyte(s) of interest and to increase their concentration to facilitate the measurement. The sample preparation in metabolomics studies is supposed to lead to no or as little changes in the metabolome as possible. The following sample preparations prior to analysis are reported (e.g. Kim and Verpoorte, 2010; Álvarez-Sánchez et al., 2010 b):

- Freeze-drying
- Homogenisation
- Liqud extraction
- Extraction from headspace
- Derivatisation

Either a single method or any combination of the listed options can be applied. The extraction step has to fulfil the following requirements (e.g. Álvarez-Sánchez et al., 2010 b):

- Extraction of all metabolites in the same relation, as they exist in the sample. This is not possible at the moment with the available techniques.
- Preparation of the sample for subsequent analytical analysis.
- Eventually it might be necessary to concentrate the metabolites in order to enable the detection of traces.

• If only part of the metabolome is under investigation, it might be useful to remove disturbing substances without changing the metabolites of interest.

Prior to HS extraction, homogenisation of the plant tissue is recommended due to two reasons. First, if an aliquot of the sampled plant tissue is used for analysis a representative and defined amount has to be transferred to HS vials. Second, to increase extraction efficiency which can be achieved by larger sample surface (Villas-Boas et al., 2007, p 51). The breaking of the cell walls carries the risk of undesirable reactions (Álvarez-Sánchez et al., 2010b). I suppose, adding antioxidants or inert gas to the sample in the HS-vial might reduce the risk of oxidation products.

Homogenisation can be done e.g. with mortar and pestle, ball mill, vibration mill, UltraTurrax, ultrasonic probe or thermomixer (Álvarez-Sánchez et al., 2010b). Since thawing has to be avoided all steps have to be carried out under cooling e.g. with liquid nitrogen. For this purpose, ball mills are available which allow the milling container to be cooled during the milling process.

In the presented grapevine studies (paper #1, #3, #4), a ball mill (Retsch MM 301) was applied for leaf and root sample homogenisation. The used equipment did not offer the possibility of cooling the milling containers during the milling process. Therefore, I cooled the stainless steel beakers in liquid nitrogen before and after milling. I achieved always a fine powder and no thawing of the samples was observed. Immediately after the homogenisation process, the samples were weighed into 20-mL HS-vials and stored at -80 °C till analysis.

No further sample preparation was applied to the dust samples (paper #2). Samples were weighed into 20-mL HS-vials prior to analysis.

7 Solid phase microextraction SPME

SPME is a technique for the simultaneous extraction and enrichment of metabolites (Arthur and Pawliszyn, 1990). It is well established in routine analytical chemistry nowadays, applied in food chemistry, drug analysis, forensic, wastewater, and environmental chemistry. SPME can be applied for either screening, qualitative or even quantitative challenges. It is a rather cheap technique (about 100 EURO per PDMS fibre) and the fibre can be used up to several hundred times in HS mode. No solvents are necessary and the HS vials can be reused. For high-throughput analysis, which is neccessary in metabolomics, an autosampler with a needle heater and a vial heating station is available.

Different coatings of the fibre are available the selection of which has to be adjusted to the properties of the metabolites of interest (Table 7.3). Larger molecules can be sampled with a fibre with a thin coating whereas small metabolites need a thicker fibre coating otherwise they will desorb to fast.

Coating	Thickness [µm]	Mechanism	Polarity
Polydimethyl-siloxane (PDMS)	7, 30, 100	Absorbtion	Apolar
Polyacrylate (PA)	85	Absorbtion	Polar
Polyethylene glycol (PEG)	60	Absorbtion	Polar
Carbopack Z/PDMS	15	Adsorbtion	Bipolar
PDMS/Divinylbenzene (DVB)	65	Adsorbtion	Bipolar
Carboxen (CAR)/PDMS	85	Adsorbtion	Bipolar
DVB/CAR/PDMS	55/30	Adsorbtion	Bipolar

Table 7.3: Different fibre coatings, sorbtion mechanism and polarity (Pawliszyn, 2009, p 91).

The coating is fixed on a fused silica core and in case of PDMS can be considered as a thin liquid film like the coating in a GC column. Depending on the coating material, the metabolites are ad- or absorbed (Table 7.3). In case of mixed coating materials, both processes can occur. In SPME, a multiphase equilibrium occurs: between sample and gas phase and between gas-phase and fibre. The initial concentration of a metabolite in a sample C_0 is the sum of the equilibrium concentrations C^{∞} of this metabolite in the sample, the headspace and the fibre coating after reaching the equilibrium state (Equation 7.1). Also the volumes of the three phases play a role. The concentration of the analyte in the fibre is related to the concentration of the analyte in the sample. It depends on the distribution constant (diffusion of the metabolites between the phases) which is temperature dependent (Equation 7.2). With this knowledge, the SPME parameters time and temperature for equilibration and extraction and fibre coating have to be optimised for best extraction results. The multiphase equilibrium can be expressed with the following equation (simplified, Pawliszyn, 2009, p 25):

$$C_{0}V_{s} = C_{f}^{\infty}V_{f} + C_{HS}^{\infty}V_{HS} + C_{S}^{\infty}V_{S}$$
(7.1)

defining
$$K_{fHS} = \frac{C_f^{\infty}}{C_{HS}^{\infty}}$$
 and $n = C_f^{\infty}V_f$ leads to

$$n = \frac{K_{fHS}K_{HSS}V_fC_0V_S}{K_{fHS}K_{HSS}V_f + K_{HSS}V_{HS} + V_S}$$
(7.2)

- Initial concentration of metabolite in sample
- Equilibrium concentration
- Equilibrium concentration of metabolite in fibre coating
- $\begin{array}{c} C_0 \\ C^{\infty} \\ C_f \\ C_{HS} \\ C_s \\ V_s \end{array}$ Equilibrium concentration of metabolite in headspace
- Equilibrium concentration of metabolite in sample
- Volume of sample
- V_{f} Volume of fibre coating
- V_{HS} Volume of headspace
- Distribution constant between fibre coating and headspace K_{fHS}
- Distribution constant between headspace and sample **K**_{HSS}
- Mass of analyte in fibre coating n

For most reproducible SPME results, metabolites shall be extracted after equilibrium between sample and headspace has been reached. The extraction itself shall last until equilibrium between the metabolites in/on the fibre and the HS has been reached (Figure 7.4). The time interval necessary to reach this equilibrium is substance dependent and can range from a few minutes to hours. Typically, for the whole SPME procedure (equilibration plus extraction time) a time range from a few minutes up to 1 hour is reported in literature.

Figure 7.4: Saturation curve, the amount of analyte on the fibre reaches a maximum after a certain time period (Supelco Bulletin 929).

Two problems have to be solved regarding the equilibrium: first, some substances reach the equilibrium after hours, which will lead to unacceptable long analysis time. Second, different substances show different time intervals until the equilibrium is reached.

The first problem can be solved by heating the sample. The metabolites will evaporate faster and the equilibrium is reached faster. Regarding the second aspect, it is not necessary to wait until all substances have reached an equilibrium state. If one can reproduce the time and temperature for each extraction precisely, repeatability of the extraction yield will also be acceptable. This can be achieved by usage of an autosampler.

The theory above is valid in case of a single analyte in the sample with no matrix (at least no volatile matrix). In case of a complex matrix and many metabolites as in plant tissue samples, the matrix generally influences the equilibrium process heavily.

This leads us directly to one of the major disadvantages using SPME in metabolomics. It is nearly impossible to quantify absolutely and precisely a large number of metabolites with different polarities or volatility simultaneously with SPME. Additionally, in comparative studies differently treated plants are sampled which might have to some extent different metabolomes. Therefore also the matrix, which influences the metabolites' equilibrium between the phases is different. Complex biological samples such as e.g. plant leaves contain volatile metabolites of varying boiling points and polarity. Hence, the simultaneous analysis can always be regarded as a compromise. The chosen SPME conditions cannot be ideal for all metabolites simultaneously.

In my experience with SPME the most important SPME parameters to be optimised are the temperature for equilibration and extraction as well as the extraction time. These parameters were optimised with grapevine leave samples. I aimed to optimise the before-mentioned parameters in a way to achieve a high number of peaks (metabolites) and at the same time a high abundance of the peaks (paper #3). In this work, for the extraction of grapevine metabolites, a DVB/CAR/PDMS fibre was used because it covers the largest range of metabolites. During method development for grapevine leave samples the SPME parameters equilibration time, extraction time, equilibration temperature, and extraction temperature were optimised. The optimised conditions were: equilibration time: 30 minutes, extraction time: 60 minutes, equilibration and extraction temperature: 90 °C (paper #3).

Figure 7.5: Assembly of a multicoating fibre (Pawliszyn, 2009, p 101).

In case of dust samples, different fibre types were tested and the extraction conditions optimised. It turned out that the CAR/PDMS fibre extracted most metabolites from the dust samples. Optimum extraction time was 30 minutes at 90 $^{\circ}$ C and no equilibration of the samples was necessary.

8 Separation and detection of metabolites

One of the major goals of this thesis was to develop a method providing potential markers indicating stress in grapevine plants. Therefore, it was necessary to identify these potential markers. The ideal detector would be able to provide the metabolites unambiguous identity. A separation system in front of the detector will provide two benefits. First, concentration of the single metabolites resulting in higher detector signals. Second, separation of the metabolites will lead to consecutive arrival at the detector. Since this will avoid detecting substance mixtures, the identification of metabolites is more reliable. Unfortunately, no such ideal system is available at the moment. As I was interested in the volatile metabolome of grapevine leaves and wanted to identify potential stress markers, GC-MS was chosen for separation and detection, a technique, which fulfils most of the above-mentioned demands.

8.1 Gas chromatography

Gas chromatography (GC) is a widespread and well-established technique for separation of low boiling, low mass compounds even in complex mixtures. A gas chromatograph (GC) consists of a sample inlet, an oven compartment holding the chromatographic column, and a detector (Figure 8.6 and Figure 8.6).

Figure 8.6: Scheme of a GC-MS instrument

For successful GC separation, analytes have to evaporate at the temperature applied in the GC inlet without being destroyed. The sample is evaporated in the hot inlet (200 - 400 °C) and further on transported with the mobile phase to the chromatographic column where the metabolites are separated. An inert gas (nitrogen, hydrogen or helium) is used as mobile phase. The column is a thin

 $(0.1 - 0.5 \text{ mm} \text{ inner diameter}) 10 - 100 \text{ meter long fused silica capillary which is coated at the outer side with polyimide to make the column flexible. The stationary phase is located on the inner side of the capillary as a liquid film with a thickness of typically <math>0.1 - 5 \mu \text{m}$ (Figure 8.7). Stationary phases are available in different polarities to address different separation challenges. The column is placed in an oven, which can be heated either to a constant temperature (isothermal) or in a gradient mode with high precision. Compared to isothermal mode, the usage of the oven by applying a temperature gradient to the column has several advantages: it fastens the separation and therefore the whole analysis, it leads to narrower peak shapes, which is combined with a better separation and it enables the detection of substances with different boiling points within one run.

Figure 8.7: Assembling of a GC column (from www.chem.agilent.com/cag/cabu/capgccols.htm, access 28.8.2011)

Although GC shows a very good chromatographic separation efficiency, which means a high number of theoretical plates and high peak capacity, it is not possible to achieve a complete separation of all analytes in metabolomics. Typical peak capacity in GC is 150 - 250 peaks in a 5 - 60 minutes run (Medina et al., 2001). In a typical chromatogram of grapevine leaves, more than 350 peaks can be detected (Figure 8.8). Thus, overlapping peaks originating from coeluting substances are unavoidable.

Figure 8.8: A typical GC-MS chromatogram of a leaf sample. Manual inspection shows more than 100 peaks.

Another challenge in metabolomics is to prevent or at least minimise the risk of producing artefacts. It is very important to test which substances origin from the GC inlet, column or SPME fibre. The bleeding of substances from these devices cannot be completely avoided. They contain for example a high number of silicium and can therefore easily be excluded from the results list.

Furthermore, artefacts might be produced from sample constituents during injection into the GC instrument. This can either be tested with authentic standards or by injection of aliquots of the same sample under varying inlet temperatures.

For the experiments carried out in the presented work, an Agilent 6890 instrument was used for GC (Figure 8.9). The injector was set to 250 °C which is sufficient for desorption of the majority of the metabolites from the SPME fibre. A flat temperature ramp of 5 °C/min was applied with a gas flow of 1 mL/min helium for separation of sample metabolites. This kind of settings is typically described in literature for the separation of a large number of analytes (e.g. Fiehn et al., 2000; Broeckling et al., 2005; Batovska et al., 2008). Metabolites were measured on two columns with different polarity: an apolar DB-5MS and a polar Optima-WAX (chapter 12).

Figure 8.9: GC-MS with autosampler for fully automated SPME. The photo was taken at the Center for Analytical Chemistry. With the shown setup all analysis presented in this work have been done.

8.2 Mass Spectrometry

Mass spectrometry (MS) is a technique to determine the mass-to-charge-ratio (m/z) of a substance. Although is not a real spectroscopic technique it is frequently referred to as "spectrometry "or "spectroscopy". The reason is the similar appearance of the resulting mass spectra compared to real spectroscopic spectra. An MS detector is coupled to GC frequently (GC-MS). MS detectors are very sensitive, show low substance specificity, and allow even the detection of substances in case of coelution. Additionally, MS provides the ability of substance identification by comparison of experimental MS spectra with reference spectra, hence there is not necessarily a need for authentic standards. After separation of the substances in the GC part, they are ionised, and their m/z is determined.

A typical mass spectrometer used in GC-MS consists of an ion source, a mass analyser, an ion detector, vacuum pumps and a computer (Figure 8.10). Several mass analysers are mainly used in combination with a GC instrument: ion trap (IT), time-of-flight (TOF), and quadrupole (single quad or triple quad QqQ). All experiments in this thesis have been carried out with a single quadrupole instrument, therefore only this type of mass analyser will be explained in detail.

The ion source, the mass analyser and the detector are under extremely low pressure (about $6*10^{-9}$ bar) to remove the mobile phase and avoid collisions of analyte molecules. Since the mass analyser can only deal with charged

molecules, an ion source is needed in front. Two types of ion sources are common in GC-MS: chemical ionisation (CI) which is a soft ionisation technique providing mainly intact charged molecules (parent ions) with nearly no fragmentation. Or electron ionisation (EI) which was applied in the instrument used for the thesis' experiments.

Figure 8.10: Scheme of an MS instrument (www.ull.chemistry.uakron.edu)

Electron ionisation

In the ion source the analytes are bombarded with electrons and subsequently the analyte molecule looses an electron resulting in a positive charged parent ion ([M]⁺, Figure 8.11).

Figure 8.11: Electron ionisation (EI). An analyte molecule passes the electron beam, looses one electron, is therefore positively charged and repelled to the mass filter (quadrupole). Lenses serve for focussing the ions (www.ull.chemistry.uakron.edu).

Due to the high ionisation energy (70 eV) most parent ions carry an excess of internal energy and consequently charged and uncharged fragments are generated. In a mass spectrum the m/z of the intact molecule ion and the corresponding fragments (x-axis) as well as the intensity (or abundance, y-axis) are displayed (Figure 8.12). The fragment pattern is characteristic for each substance and provides information about the structure of the analyte. One

disadvantage of the fragmentation in EI is the loss in sensitivity since the initial intensity of a molecule is distributed over all fragments.

Figure 8.12: Complex mass spectrum of beta-caryophyllene recorded after extraction and separation of a phylloxera- infested grapevine root tip. m/z 204 represents the parent ion.

8.2.1 Quadrupole mass analyser

A quadrupole consists of four parallel rods (Figure 8.14). The opposite rods are under the same (one pair positive, one negative) direct current (Figure 8.13). This is overlaid by a radio frequency. Entering a high frequency field, the ions are stimulated to follow oscillating trajectories. The electromagnetic field in the quadrupole stabilises only the trajectory of a certain m/z ratio – only ions with this m/z can pass the quadrupole and reach the detector. All other ions with other m/z ratios leave the quadrupole on the side or collide with the rods and therefore do not reach the detector (Figure 8.14).

Figure 8.13: "High-pass" filters ions with too low *m/z*-ratios, "low pass" filters ions with too high *m/z*-ratios (www.vias.org, accessed 28.8.2011).

Figure 8.14: Only ions with a predefined *m*/*z*-ratio can pass the quadrupole (www.vias.org, accessed 28.8.2011).

An Agilent 5975B MSD mass analyser was used for the presented studies in full scan mode. The recorded mass range was 35 - 500 m/z. Three scans per second were measured. The MS was calibrated weekly with PFTBA. For further settings see chapter 12.

The detector counting the ions passing the mass filter was an electron multiplier (Figure 8.10).

9 Annotation and identification of metabolites

Comparative metabolomics studies frequently aim at the detection of metabolites whose concentration is different in samples that were treated differently. Further on the results shall be interpreted in relation to the starting hypothesis (biological question). Therefore, it is necessary to assign the metabolites to their biological role or pathways. This can only be done correctly if these metabolites are unambiguously identified. To detect significant differences between the sample groups it is necessary to at least annotate the metabolites, i.e. to give them either a preliminary name or a code. It is also extremely important to compare relative concentrations of always the same substance between the samples otherwise false results will be obtained which might lead to wrong interpretations.

I want to point out here that the use of data processing software can only provide annotated metabolites. To term a metabolite identified the validation of the annotation with authentic standards is required (Fiehn, 2008). GC-MS offers two features, which ease the annotation/identification enormously:

- mass spectrum
- retention index

These two analytical characteristics are briefly described in the following chapters. The descriptions always refer to AMDIS software, which was used for raw data processing throughout this thesis. Other software packages providing similar features are e.g. MetaboliteDetector (Hiller et al., 2009) or Tagfinder (Luedemann et al., 2008).

9.1 Mass spectrum

Since the ionisation energy in GC-MS is standardised (70 eV), for a certain substance mass spectra with nearly identical fragment patterns are obtained independent of the instrumentation. These fragmentation patterns are collected in so called mass spectra (MS) libraries, e.g. Wiley (McLafferty, 2008), NIST (NIST/EPA/NIH, http://www.nist.gov/srd/nist1a.cfm, access 23.8.2011) or the Eight Peak Index of Mass Spectra (Royal Society of Chemistry, 1991). By means of appropriate software the automated comparison of the measured spectra with the library entries and hence, the annotation of the metabolites is possible. Additionally, self-made MS libraries can be compiled. For the automated comparison two approaches are reported in literature: the first simply treats the mass spectra as row vector, consisting of intensity values for each m/z of the scan range. The second more complex approach tries to reproduce

the physical properties underlying each spectrum (Hertz et al., 1971; PBM probability based matching: McLafferty, 1976). For the former, three possibilities have been reported to measure the similarity of the spectra: the Euclidean distance, the absolute value distance and the dot-product between measured and reference spectrum (Stein and Scott, 1994). I want to briefly describe the principle of the algorithm for the automated comparison of measured and reference spectra, which is applied by AMDIS software used for spectra comparison during this work (Stein, 1999).

The algorithm aims at the comparison of the similarity of the measured spectrum (m) and the reference spectrum (r). If m is generated from a single pure compound, all peaks in m and r have to match for a good match factor (pure spectrum match factor, weighted match factor). If there are signals in m which are not present in r and e.g. originate from other substances or from background ions, the algorithm has to ignore these signals in m (impure spectrum match factor, reverse match factor). AMDIS combines both approaches in a 70:30 ratio (net match factor = 70*weighted+30*reverse). The function used by AMDIS for the comparison is the normalised dot-product of the spectra chosen for comparison (Equation 9.3, modified from Stein, 1999).

$$100 \frac{\left(\sum w \left(\frac{m}{z}\right) (A_m A_r)^{1/2}\right)^2}{\sum \left(\frac{m}{z}\right) A_m \sum \left(\frac{m}{z}\right) A_r}$$
(9.3)

w Weighting factor penalising uncertain peaks

A_m Vector with abundances in measured spectrum

A_r Vector with abundances in reference spectrum

The whole algorithm includes several corrections and a weighting term (e.g. for spectra with few major peaks). Further details can be found in Stein (1999).

The mass spectrum also contains information about the structure of the corresponding metabolite. If a metabolite cannot be found in a MS library, the information about the structure can help to narrow down the possible number of candidates. If no library entry matches a recorded mass spectrum, it can be added to a self-made library. Afterwards, the other samples are searched for matching mass spectra. Hence, unidentified compounds can be taken into account for comparison between differently treated samples. If it turns out, that an unknown compound has the potential to be a biomarker the structure might be elucidated with the help of the recorded mass spectrum.

It is worth to mention, that a successful and correct identification of a metabolite requires mainly two things: a "clean" measured mass spectrum and most

important an entry in the reference database of this metabolite. Therefore, large and comprehensive spectra libraries are necessary. The new 2011 version of the NIST mass spectra library contains spectra of 212961 substances. As this number includes also inorganic substances and the number of plant metabolites is estimated to about 200000 (Bino et al., 2004) it is obvious that not all metabolites can be annotated at the moment by their mass spectra. Nevertheless, the libraries can help to find at least similarities of unknown metabolites to referenced substances and therefore enable partly structure elucidation.

Metabolites with similar structure can provide nearly identical mass spectra. Therefore, a metabolite identification based only on the mass spectrum is not always reliable (Wagner et al., 2003). To avoid confusion, the retention index (RI, see below) can be used as an additional and complementary parameter to improve the quality of the identification.

9.2 Retention index

The concept of retention index was developed by Kováts in 1958 for isothermal GC measurements. It was then adapted for temperature ramps by Van den Dool and Kratz (1963) by introducing the linear temperature programmed retention time index (LTPRI, Equation 9.4). Figure 9.15 shows the principle. A series of alkane standards (or other homologues, e.g. fatty acid methyl esters) is either added to every sample or at least included once in a measurement sequence. Every metabolite is bracketed by two alkanes, which allow the calculation of the corresponding RI. In principle, the RI is the ratio of the retention time interval between the metabolite and the earlier eluting alkane to the retention time interval between the two bracketing alkanes.

$$RI = 100(n + \frac{t_{Ri} - t_{Rn}}{t_{R(n+1)} - t_{Rn}})$$
(9.4)

t _{Ri}	Retention time of metabolite
t _{Rn}	Retention time of earlier eluting alkane
t _{R(n+1)}	Retention time of later eluting alkane
n	Number of C-atoms of earlier eluting alkane

Although the retention index is characteristic for a substance, it is not sufficient for an unambiguous identification when used as a single criterion. In some cases, not even the combination of MS data with RI provides a reliable identification. Therefore, the RI shall be determined on two GC columns with different polarities (Royal Society of Chemistry, Analytical Methods Committee, 1981). The use of a second stationary phase is useful, since substances, which

coelute on one column and therefore have the same or very close RI can be expected to be clearly separated (in the most cases) on a column with different polarity.

Figure 9.15: Calculation of LTPRI. C₁₄ tetradecane, C₁₅ pentadecane.

The LTPRI was used throughout this thesis. Alkane standards were included in every measurement sequence and ranged from $C_7 - C_{30}$. The RI was automatically calculated by AMDIS software (paper #4). Details about the applied metabolite annotation/identification workflow are discussed below (9.4).

9.3 Deconvolution

In case of (partly) coeluting substance peaks the recorded mass spectrum shows ions of two or more substances. Hence, spectrum comparison with library entries will result in no, false or low guality matches. Biller and Biemann (1974) presented the first solution for this problem. Their algorithm for deconvolution of mass spectra chose only m/z-intensity pairs for comparison with library entries, which show maximum abundance in the selected or the adjacent scan (maximising peaks concept). The concept of maximised peaks works fine for overlapping substances, which do not have common ions in their mass spectra. Problems occur when there are some ions in the same scan originating from both (or more) overlapping substances. Dromey et al. (1976) reported an algorithm based on the comparison of the peak shapes of all ions. They assumed, that the chromatographic peaks of individual m/z traces (extracted ion chromatogram EIC) originating from the same substance have the same peak shape (model peak concept). The more recent and sophisticated algorithms from AMDIS (Stein, 1999) or MetaboliteDetector (Hiller et al., 2009) are based on this idea.

During this thesis, I applied the AMDIS software to the measured mass spectra. AMDIS stands for Automated Mass spectral Deconvolution and Identification System and was developed at the National Institute for Standards and Technology NIST (Stein, 1999). This software is freely available (www.amdis.net) and provides not only the possibility of deconvolution of recorded mass spectra but also their automated comparison with MS library entries. The following section describes the principles of the deconvolution algorithm implemented in the AMDIS software. The deconvolution process consists of three main steps:

- noise analysis
- component perception
- extraction of "purified" spectra

which are briefly described below following the publications of Stein (1999) and Mallard (2001).

9.3.1 Noise analysis

Signals produced by ion-counting detectors show a certain amount of fluctuation. In average, this fluctuation is proportional to the square root of the signal abundance (Peterson and Hayes, 1978). In AMDIS this average is expressed as median of random deviation (Equation 9.5). The proportionality factor (noise-factor N_f) can be obtained from regions with constant signal abundance to be found in every GC-MS chromatogram.

$$N_f = \frac{\text{median of random deviation}}{\sqrt{\text{signal}}}$$
(9.5)

For these regions, a local abundance mean is calculated for every EIC and the TIC. Then the algorithm tries to find these regions in the EIC (and TIC) where one-half of the signal abundances are below the signal-level corresponding to the mean abundance and the other one-half shows abundance above the mean. This is termed "crossing" as figuratively the signal "crosses" the mean abundance frequently in such regions (Figure 9.16). Subsequently, the median deviation of all signals from the calculated mean abundance within this region is calculated. Dividing this median value by the square root of the mean abundance of the region gives the noise factor of this region. The noise factor for the whole GC-MS run is the median of noise factors of all regions.

Figure 9.16: Illustration of how to find segments in a chromatogram, which can serve for noise-factor calculation. The AMDIS algorithm uses regions with a width of 13 scans which have to be crossed at least seven times by the signal (from Stein, 1999).

The "median of random deviation" from equation (9.5) then equals one noise unit and corresponds to the detector-derived scan-to-scan variation in the signal. Analysis of noise is a crucial part of every algorithm dealing with the detection of peaks. On basis of the noise level it is decided which maxima in an EIC chromatogram (or TIC) were caused by a substance and which are just by random. In AMDIS e.g. a peak is assigned when it shows minimum abundance of 5 noise units.

9.3.2 Component perception

This is a very complex but important step. Errors in this step can lead to false results in metabolite identification. Briefly, a component is perceived when the detector signals for a lot of m/z values with adequate abundance show maxima within a small retention time window. The component perception consists of:

- 1. Determination of peaks in the EIC chromatogram
- 2. **De-skewing** of mass spectra, **retention time correction** (i.e. calculation of true EIC peak maximum)
- 3. Determination of sharpness values for detected EIC peaks
- 4. Binning of sharpness values, final determination of components
- 5. Determination of **model peak shape**

All steps are carried out for each EIC and the TIC.

Ad 1 Determination of peaks in the EIC chromatogram The recognition of a peak is based on the detection of local maxima in the EIC chromatogram and further the peak height, which has to be at least 5 noise units. This value can be changed in the AMDIS deconvolution settings under "Sensitivity" (Figure 9.17). Local (tentative) maxima are found in AMDIS by searching for ion chromatogram points which are at least 5 noise unites above the adjacent scans. Subsequently, the peak width is determined i.e. how many scans on both sides of the local maximum belong to the peak. The maximum number of scans to be assigned to a peak can be defined in the AMDIS settings under "Component width" (Figure 9.17). The value should correspond with the actual

peak width of the GC-MS data. The default value is 12 scans. This equals a peak width of 8 seconds at a scan rate of 3 scans per second, which was the setting of the MS instrument used during this work. Peak widths in the recorded chromatograms ranged from 6 - 20 seconds, therefore I kept the default value. Changes in "Shape requirements" will affect both the tolerated distance to the next maximum and the required peak height.

Analysis Settings				
Identif. Instr. Deconv. Libr. QA/QC Scan Sets				
12 Component width				
Cmit m/z				
Adjacent peak subtraction: One				
Resolution: Medium 💌				
Sensitivity: Medium				
Shape requirements: Medium 💌				
Save Save As Cancel Default Help				

Figure 9.17: Screenshot of deconvolution settings in AMDIS (Analyze, Settings, Deconvolution).

Ad 2 De-skewing of mass spectra, retention time correction Skewing is a phenomenon, appearing in instruments, which scan the m/z one at a time as it is the case in a quadrupole, ion trap or magnetic sector field instrument. Since chromatographic peaks in GC are narrow, it occurs that during a single scan (over a pre-defined m/z scan range) the concentration of an eluting substance increases (at the beginning of a chromatographic peak) or decreases (after the signal has reached the maximum value). If the concentration of the substance increases during a scan, low m/z values will be discriminated (if the scan direction is from low to high m/z). This results in a false ratio of the ion abundances in the recorded spectrum. In addition, the local maxima of the EICs originating from a single metabolite can appear in different scans. The retention time which corresponds to a EIC peak maximum) is corrected based on a three-point-quadratic-interpolation of the EIC signal values obtained for the maximum and the two adjacent scans (Figure 9.18).

Retention time

Figure 9.18: Time correction for detected local maxima of the EIC chromatogram. Three ions with low, medium and high m/z are shown. In a quadrupole instrument, these ions do not reach the detector at the same time point. A parabola is fitted into the maximum and the two adjacent scans. This leads to a time corrected peak maximum for every local m/z maximum (adapted from Mallard, 2001).

Ad 3 Determination of sharpness values EIC peaks originating from the same substance are assumed to have similar chromatographic peak shape. This can be described in a simplified way with the peak sharpness value, which is defined as:

$$\frac{A_{\max} - A_n}{nN_f \sqrt{A_{\max}}} \tag{9.6}$$

A_{max} Abundance of maximum

A_n Abundance of nth scan beside maximum

n Number of scan counted from scan representing maximum

N_f Noise factor

Ad 4 Binning, final determination of components On basis of the corrected retention times (step 2) and the sharpness values of the EIC peaks, components are detected. This process is also called binning and is in principle the search for small retention time intervals (AMDIS: one-tenth of the duration of a scan) where many peaks with high sharpness values c. Only at such retention time points a component is perceived. A detailed explanation of this process is beyond the scope of this thesis. I want to mention one detail because the AMDIS user can manipulate this particular setting. According to Figure 9.17, the

setting for "Resolution" can be changed. Resolution refers to the minimum distance (in time) between two perceived components. Setting of resolution to "low" allows more components to be determined within a certain retention time window than "high".

Ad 5 Determination of model peak shape Generally, a model peak is defined to rise and fall fastest. In AMDIS, the model peak shape is based on all EICs corresponding to a component and which have sharpness values within 75 % of the maximum sharpness of this component.

9.3.3 Extraction of "purified" spectra

So far, the algorithm provides the ions (m/z-values) which belong to a certain component but no information about the ion abundance. To compare the purified mass spectrum with library entries additionally the abundance of each ion has to be assigned. On basis of a least-squares method, which fits each EIC peak of a component to the model peak shape and the so detected maximum abundance, the abundance of every individual m/z value is calculated. The result, a purified mass spectrum is also termed component in AMDIS software and is indicated with a blue triangle in the graphical output of the deconvolution process.

9.4 Final identification criteria

According to the pre-work of a colleague at our institute, I applied the following criteria for metabolite annotation/identification (Stoppacher et al., 2010) throughout all experiments during this thesis. For a positive identification, a minimum (mass spectral) match factor of 90 and a maximum RI deviation of $\pm 2\%$ from the reference value were tolerated. Additionally, these criteria had to be fulfilled on two GC-columns of different polarities (apolar DB-5MS, polar Optima-WAX) to specify a substance as annotated. Moreover, the identity of several metabolites has been proven with authentic standards if available.

After the annotation/identification of metabolites all samples of an experiment were analysed in batch job mode with AMDIS software. Therefore a library containing the before annotated/identified substances mass spectra and RI was compiled. Different libraries for grapevine leaves, roots and the dust sample analysis were created.

To include low abundant metabolites or peaks with poor deconvolution I lowered the minimum match factor to 60 but increased the RI deviation to max. 5 RI values. These settings were applied only to the grapevine samples (paper #1, #3, #4).

10 Data analysis, statistics, chemometrics

"Errors using inadequate data are much less than those using no data at all" Charles Babbage (1792–1871) (in Brown et al., 2005)

In this thesis, the term data analysis is used to describe the statistical treatment of the AMDIS processed data. Chemometrics is an umbrella term including development and application of formal methods (statistics, informatics) with the aim to extract a maximum of relevant information from the data derived by chemical analysis (Varmuza and Filzmoser, 2009, p 1).

In metabolomics studies, large amounts of data are produced. A manual data analysis will be too time consuming and is often not possible (e.g. PCA). Therefore, several data analysis software tools have been developed, which are especially suited for metabolomics studies using GC-MS, e.g. Spectconnect (Styczynski et al., 2007), MetaboliteDectector (Hiller et al., 2009), Tagfinder (Luedemann et al., 2008) or XCMS (Smith et al., 2006). Of course, any software providing statistical tools can be used for further treatment of data, e.g. R (www.r-project.org/, access 26.8.2011), Matlab (www.mathworks.de/products/ matlab/, access 26.8.2011) or Unscrambler (www.camo.com/rt/Products/ Unscrambler.html, access 26.8.2011).

The biological question (hypothesis) in a metabolomics experiment frequently refers to the difference in the metabolome of a control (untreated) and a treated sample group. This can be answered by searching for patterns in the data, which can be found with multivariate statistical methods as e.g. principal component analysis (PCA), multivariate calibration or multivariate classification. Unsupervised methods use only the dependent variables (e.g. concentrations of metabolites) for calculating the model. These methods show the whole variation of the variables used to describe the respective samples independent from the origin of the variations. Supervised methods try to describe the part of the variance which originates from the applied treatment of the biological samples.

PCA is an unsupervised method commonly used in metabolomics (Fukusaki and Kobayashi, 2005; Hall, 2006) to simplify/enable the illustration of the ndimensional data by reduction to two or three dimensions. PCA is a linear data transformation in n-dimensional data space, which aims to choose a new coordinate system for the dataset. The new axes are termed principal components (PC). The first PC represents the direction of maximum variance in the data. The second PC is orthogonal to the first PC and again represents the maximum variance in this direction of the data. Typically, the result of a PCA is presented with two graphs. One, the loadings plot, shows the samples (objects). If the variance in the data results from differences between groups of differentially treated biological samples this leads to clusters in the plot corresponding to the different sample groups. The other graph, the scores plot, shows the contribution of each metabolite (variable) to the variance in the data (for an example see paper #3). However, no information about significance of the metabolites' contribution to the variance in the data is given.

Another unsupervised method for classification is hierarchical cluster analysis (HCA) which is well suited for discriminatory analysis (Fukusaki and Kobayashi, 2005). It is based on the similarity or distance between sample pairs. Typical for HCA are the dendrogram (tree) plots. No information about the contribution of the metabolites to the result is obtained.

As an example for multivariate calibration methods, I want to mention partial least-squares regression (PLS), a supervised method. PLS like PCA uses a linear transformation of a given set of variables to a new set of variables, which are linear combinations of the original variables. In contrast to PCA, PLS is a supervised method thus allowing correlation of the dependent y-variables (e.g. concentrations of metabolites) to the x-variables (different treatment of sample groups) whereas PCA only describes the variation in the x-variables. PLS can also be used to prove whether the determined set of metabolites is selective for the different states of the samples (Hall, 2006).

Although rarely used in metabolomics studies also univariate statistical methods considering only one variable (e.g. concentration of a metabolite) can be used for data analysis. E.g. to compare the means of relative metabolite concentrations between two sample groups. T-test and Mann-Whitney-U-test are suited for this purpose. Both methods provide a measure whether a substances' relative concentration is significantly different between two sample groups.

In general, for metabolomics studies robust statistical methods are necessary. Robust methods do not require normally distributed data, such methods are unsusceptible to outliers and can be applied to small datasets.

The statistical treatment of the data produced during this thesis was done with R software using t-test, PCA-, and HCA-function.

T-test was applied in the phylloxera experiment to determine which of the detected metabolites shows significantly different concentrations between the two sample groups (paper #1). 14 out of 38 metabolites showed significant differences.

PCA was used in this thesis for differentiating between grapevine leaves originating from two sampling dates (paper #3).

HCA and PCA were applied to the dust samples (paper #2).

11 References

Al-Jowder O, Kemsley EK, Wilson RH **1997** Mid-infrared spectroscopy and authenticity problems in selected meats: a feasibility study. *Food Chemistry* 59:195-201.

Allwood JW, Ellis DI, Goodacre R **2008** Metabolomic technologies and their application to the study of plants and plant–host interactions. *Physiologia Plantarum* 132:117-135.

Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD **2010a** Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. *TrAC Trends in Analytical Chemistry* 29:111-119.

Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD **2010b** Metabolomics analysis II. Preparation of biological samples prior to detection. *TrAC Trends in Analytical Chemistry* 29:120-127.

Aprea E, Gika H, Carlin S, Theodoridis G, Vrhovsek U, Mattivi F **2011** Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. *Journal of Chromatography A* 1218:4517-4524.

Arimura G-ichiro, Matsui K, Takabayashi J **2009** Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions. *Plant and Cell Physiology* 50:911 -923.

Arthur CL, Pawliszyn J **1990** Solid phase microextraction with thermal desorption using fused silica optical fibers. *Analytical Chemistry* 62:2145-2148.

Batovska DI, Todorova IT, Nedelcheva DV, Parushev SP, Atanassov AI, Hvarleva TD, Djakova GJ, Bankova VS, Popov SS **2008** Preliminary study on biomarkers for the fungal resistance in *Vitis vinifera* leaves. *Journal of Plant Physiology* 165:791-795.

Biller JE, Biemann K **1974** Reconstructed Mass Spectra, A Novel Approach for the Utilization of Gas Chromatograph—Mass Spectrometer Data. *Analytical Letters* 7:515-528.

Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW **2004** Potential of metabolomics as a functional genomics tool. *Trends in Plant Science* 9:418-425.

Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW **2005** Metabolic profiling of *Medicago truncatula* cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. *Journal of Experimental Botany* 56:323 -336.

Brown M, Dunn WB, Ellis DI, Goodacre R, Handl J, Knowles JD, O'Hagan S, Spasić I, Kell DB **2005** A metabolome pipeline: from concept to data to knowledge. *Metabolomics* 1:39-51-51.

D'Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J **2007** Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in *Arabidopsis thaliana*. *The Plant Journal* 49:194-207.

Dalgliesh CE, Horning EC, Horning MG, Knox KL, Yarger K **1966** A gas-liquidchromatographic procedure for separating a wide range of metabolites occuring in urine or tissue extracts. *Biochemical Journal* 101:792-810.

Dettmer K, Aronov PA, Hammock BD **2007** Mass spectrometry-based metabolomics. *Mass Spectrometry Reviews* 26:51-78.

Van den Dool H, Kratz P **1963** A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. *Journal of Chromatography A* 11:463-471.

Dromey RG, Stefik MJ, Rindfleisch TC, Duffield AM **1976** Extraction of mass spectra free of background and neighboring component contributions from gas chromatography/mass spectrometry data. *Analytical Chemistry* 48:1368-1375.

Dunn WB, Ellis DI **2005** Metabolomics: Current analytical platforms and methodologies. *TrAC - Trends in Analytical Chemistry* 24:285-294.

Fiehn O **2002** Metabolomics - The link between genotypes and phenotypes. *Plant Molecular Biology* 48:155-171.

Fiehn O **2001** Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. *Comparative and Functional Genomics* 2:155-168.

Fiehn O **2008** Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. *TrAC Trends in Analytical Chemistry* 27:261-269.

Fiehn O, Kopka J, Trethewey RN, Willmitzer L **2000** Identification of Uncommon Plant Metabolites Based on Calculation of Elemental Compositions Using Gas Chromatography and Quadrupole Mass Spectrometry. *Analytical Chemistry* 72:3573-3580. Fiehn O, Kristal B, Ommen BV, Sumner LW, Sansone S-A, Taylor C, Hardy N, Kaddurah-Daouk R **2006** Establishing Reporting Standards for Metabolomic and Metabonomic Studies: A Call for Participation. *OMICS: A Journal of Integrative Biology* 10:158-163.

Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, Sumner L, Goodacre R, Hardy N, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, van Ommen B, Lindon J, Sansone S-A **2007a** The metabolomics standards initiative (MSI). *Metabolomics* 3:175-178-178.

Fiehn O, Sumner L, Rhee S, Ward J, Dickerson J, Lange B, Lane G, Roessner U, Last R, Nikolau B **2007b** Minimum reporting standards for plant biology context information in metabolomic studies. *Metabolomics* 3:195-201-201.

Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee DY, Lu Y, Moon S, Nikolau B **2008** Quality control for plant metabolomics: reporting MSI-compliant studies. *The Plant Journal* 53:691-704.

Fukusaki E-I, Ikeda T, Suzumura D, Kobayashi A **2003** A facile transformation of *Arabidopsis thaliana* using ceramic supported propagation system. *Journal of Bioscience and Bioengineering* 96:503-505.

Fukusaki E, Kobayashi A **2005** Plant metabolomics: potential for practical operation. *Journal of Bioscience and Bioengineering* 100:347-354.

Gochman N, Young DS **1975** Clinical chemistry. *Analytical Chemistry* 47:16R-37r.

Goodacre R 2005 Metabolomics – the way forward. *Metabolomics* 1:1-2-2.

Goodacre R, Broadhurst D, Smilde A, Kristal B, Baker J, Beger R, Bessant C, Connor S, Capuani G, Craig A, Ebbels T, Kell D, Manetti C, Newton J, Paternostro G, Somorjai R, Sjöström M, Trygg J, Wulfert F **2007** Proposed minimum reporting standards for data analysis in metabolomics. *Metabolomics* 3:231-241-241.

Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB **2004** Metabolomics by numbers: acquiring and understanding global metabolite data. *Trends in biotechnology* 22:245-252.

Hall RD **2006** Plant metabolomics: from holistic hope, to hype, to hot topic. *New Phytologist* 169:453-468.

Harrigan GG, Goodacre R eds **2003** Metabolic profiling: Its role in biomarker discovery and gene function analysis. Boston. Kluwer Academic Publishers.

Hertz HS, Hites RA, Biemann K **1971** Identification of mass spectra by computer-searching a file of known spectra. *Analytical Chemistry* 43:681-691.

Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D **2009** MetaboliteDetector: Comprehensive Analysis Tool for Targeted and Nontargeted GC/MS Based Metabolome Analysis. *Analytical Chemistry* 81:3429-3439.

Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB **2004** A proposed framework for the description of plant metabolomics experiments and their results. *Nat Biotech* 22:1601-1606.

Kim HK, Verpoorte R **2010** Sample preparation for plant metabolomics. *Phytochemical Analysis* 21:4-13.

Koek M, Jellema R, van der Greef J, Tas A, Hankemeier T **2011** Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. *Metabolomics* 7:307-328.

Kováts E **1958** Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. *Helvetica Chimica Acta* 41:1915-1932.

Krastanov A **2010** Metabolomics - The state of art. *Biotechnology and Biotechnological Equipment* 24:1537-1543.

Luedemann A, Strassburg K, Erban A, Kopka J **2008** TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. *Bioinformatics* 24:732 -737.

Mallard WG **2001** An Introduction to NIST Software for Chemical Identification using Mass Spectrometry and Gas Chromatography. NIST MS Database and AMDIS.

McLafferty FW **1976** Probability based matching system using a large collection of reference mass spectra. *Analytical Chemistry* 48:1362-1368.

McLafferty FW **2008** Wiley Registry of Mass spectral Data, with NIST 2008. 8th ed. Wiley-Blackwell.

Medina JC, Wu N, Lee ML **2001** Comparison of Empirical Peak Capacities for High-Efficiency Capillary Chromatographic Techniques. *Analytical Chemistry* 73:1301-1306.

Morrison N, Bearden D, Bundy J, Collette T, Currie F, Davey M, Haigh N, Hancock D, Jones O, Rochfort S, Sansone S-A, Štys D, Teng Q, Field D, Viant M **2007** Standard reporting requirements for biological samples in metabolomics experiments: environmental context. *Metabolomics* 3:203-210-210.

Oliver SG, Winson MK, Kell DB, Baganz F **1998** Systematic functional analysis of the yeast genome. *Trends in Biotechnology* 16:373-378.

Pawliszyn J ed **2009** Handbook of Solid Phase Microextraction. China. Chemical Industry Press.

Peng S, Jay-Allemand C **1991** Use of antioxidants in extraction of tannins from walnut plants. *Journal of Chemical Ecology* 17:887-896-896.

Peterson DW, Hayes JM **1978** Signal-to-noise ratios in mass spectroscopic ioncurrent-measurement systems. In: Hercules DM, Hieftje G, Snyder LR, Evenson MA (eds.). Contemporary Topics in Analytical and Clinical Chemistry. Vol. 3. New York. Plenum Press. p 217-251.

Pichersky E, Gershenzon J **2002** The formation and function of plant volatiles: perfumes for pollinator attraction and defense. *Current Opinion in Plant Biology* 5:237-243.

Quackenbush J **2006** Standardizing the standards. *Molecular Systems Biology* 2:1-3.

R Development Core Team **2010** R: A Laguage and Environment for Statistical Computing. Vienna. R Foundation for Statistical Computing.

Robertson M **1980** Biology in the 1980s, plus or minus a decade. *Nature* 285:358-359.

Royal Society of Chemistry **1991** Eight Peak Index of Mass Spectra. Cambridge.

Royal Society of Chemistry, Analytical Methods Committee **1981** Application of gas - liquid chromatography to the analysis of essential oils: Part VIII. Fingerprinting of essential oils by temperature-programmed gas - liquid chromatography using methyl silicone stationary phases. *The Analyst* 106:448-455.

Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G **2006** XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. *Analytical Chemistry* 78:779-787. Stein SE **1999** An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. *Journal of the American Society for Mass Spectrometry* 10:770-781.

Stein SE, Scott DR **1994** Optimization and testing of mass spectral library search algorithms for compound identification. *Journal of the American Society for Mass Spectrometry* 5:859-866.

Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R **2010** Identification and profiling of volatile metabolites of the biocontrol fungus *Trichoderma atroviride* by HS-SPME-GC-MS. *Journal of Microbiological Methods* 81:187-193.

Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN **2007** Systematic Identification of Conserved Metabolites in GC/MS Data for Metabolomics and Biomarker Discovery. *Analytical Chemistry* 79:966-973.

Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C, Fan T, Fiehn O, Goodacre R, Griffin J, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane A, Lindon J, Marriott P, Nicholls A, Reily M, Thaden J, Viant M **2007** Proposed minimum reporting standards for chemical analysis. *Metabolomics* 3:211-221-221.

Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, Keun HC **2006** Impact of Analytical Bias in Metabonomic Studies of Human Blood Serum and Plasma. *Analytical Chemistry* 78:4307-4318.

Thompson JA, Markey SP **1975** Quantitative metabolic profiling of urinary organic acids by gas chromatography-mass spectrometry. Comparison of isolation methods. *Analytical Chemistry* 47:1313-1321.

Trethewey RN, Krotzky AJ, Willmitzert L **1999** Metabolic profiling: a rosetta stone for genomics? *Current Opinion in Plant Biology* 2:83-85.

Varmuza K, Filzmoser P **2009** Introduction to Multivariate Statistical Analysis in Chemometrics. Florida. CRC Press.

Villas-Boas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J **2007** Metabolome Analysis. New Jersey. John Wiley & Sons.

Wagner C, Sefkow M, Kopka J **2003** Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. *Phytochemistry* 62:887-900.

Wenke K, Kai M, Piechulla B **2010** Belowground volatiles facilitate interactions between plant roots and soil organisms. *Planta* 231:499-506-506.

RESULTS

12	Final analytical workflow	65
13	Original works	71
14	Conclusion and outlook 1	77

Data does not equal information; information does not equal knowledge; and, most importantly of all, knowledge does not equal wisdom. We have oceans of data, rivers of information, small puddles of knowledge, and the odd drop of wisdom."

Henry Níx 1990 (in Goodacre et al., 2004)

I have not succeeded in answering all questions. The answers I have found only serve to raise a whole set of new questions. In some ways I feel I am confused as ever. But I do believe I am confused on a higher level and about more important things.

(adapted from Kelley, 1951, p 2)
12 Final analytical workflow

Here, a graphical overview (Figure 12.1) is presented together with some additional remarks on practical aspects to be considered during application of the workflow. All steps refer to grapevine samples. Additional detailed descriptions of the experimental procedure and the workflow are given in paper #3, #4.

Figure 12.1: Workflow for investigation of plant tissue samples. * refers to numbers of metabolites detected in the study presented in paper #3.

Sampling

Leaves were sampled between 10 - 12 o'clock in the morning. They were cut with the stem and inserted in aluminium envelopes or 50 mL plastic tubes with tightly closing screw cap. The envelopes or the tubes are then cooled in liquid nitrogen (lq. N₂) immediately. Sampling and subsequent insertion to lq. N₂ as fast as possible will avoid or minimise changes in the metabolome caused by the sampling itself.

Homogenisation

Homogenisation was conducted with a ball mill (Retsch MM301, Haan, Germany). I used 10-mL stainless steel beakers with 12-mm stainless steel balls. The beakers and balls were pre-cooled in lq. N_2 before filled with leaf tissue.

Leaves in envelopes: Envelopes were removed from lq. N_2 , opened, the stem removed and the leaf pieces transferred via a funnel into the pre-cooled milling beakers.

Leaves in plastic tubes: tubes were placed in lq. N_2 , the stem removed, leaves crushed with a pre-cooled glass rod and subsequently transferred via a funnel into the pre-cooled milling beakers.

A ball was added to every beaker, the beakers sealed with a screw-lid and cooled in Iq. N_2 before the milling process.

Samples were milled for 3 minutes at 30 Hz. After the milling, the beakers were cooled again in lq. N_2 .

Weighing

20-mL HS-vials were pre-washed with methanol/water (50/50 v/v) twice. Vials, caps (magnetic with hole) and septa (1.3 mm silicone/PTFE) were baked out at 120 $^{\circ}$ C for at least 60 minutes.

Before weighing, HS-vials were cooled by insertion to an ice/water bath. 105±5 mg of leave leaf powder were weighed into the HS-vials and the exact weight was noted. The HS-vials were tightly closed with screw caps containing septa and stored at -80 ℃ until analysis.

SPME-GC-MS

Materials

- Agilent 6890N GC with 5975B MSD (Agilent, Waldbronn, Germany)
- MPS2XL (Gerstel, Mühlheim a.d. Ruhr, Germany) autosampler with cooled tray, HS-vial heating station, needle heater, SPME holder
- Apolar column DB-5MS, 95% dimethyl-, 5% diphenyl-polysiloxane 30 m length, 0.25 mm inner diameter, 0,25 μm film thickness (Agilent)

- Polar column Optima-WAX, polyethylene glycol, 30 m length, 0.25 mm inner diameter, 0,25 μm film thickness (Machery-Nagel, Düren, Germany)
- Alkanes for RI calibration covering the range of $C_7 C_{30}$: C_5 - C_{10} : inhouse mix, C_8 - C_{20} (40 mg each in hexane, Fluka, Sigma-Aldrich, Vienna, Austria), C_{21} - C_{40} (40 mg each in toluene, Fluka)
- Quality control samples: pooled leaf samples
- SPME-liner 0.75 mm inner diameter
- SPME-fibre 2 cm 50/30 µm Carboxen/ Divinylbenzene/ Polydimethylsiloxane (CAR/DVB/PDMS, Supelco, from Gerstel) for autosampler, conditioned to suppliers recommendation
- Mobile phase GC: He 5.0

SPME-method

- Equilibration time: 30 min
- Extraction time: 60 min
- Equilibration and extraction temperature: 90 ℃
- Needle heater: 270 °C, N₂ flushed, 10 min bake out prior to extraction
- Desorption: 2 min at 250 °C in GC-inlet, splitless mode

GC-Method

- Gas-flow: 1 mL/min He 5.0
- Inlet: 250 °C, splitless for 2 min (during desorption of VOCs from fibre)
- Oven programme: starting temperature: 35 ℃ hold 2 min
- Temperature ramp: 5 °C/min to 260 °C, hold 5 min
- Transfer line: 270 ℃

MS-settings

- Electron ionisation mode (EI), ionisation energy: 70 eV
- Source temperature: 230 ℃
- Quadrupole temperature: 150 ℃
- Scan range: 35 500 *m/z*
- Scan speed: 3 scans/s
- Weekly tuning with PFTBA

Data processing

AMDIS, version 2.65

- Substance identification: default settings; Minimum match factor: 90; Type of analysis: Use Retention Index Data; RI window: 1 + 2 x 0.01 RI; Match factor penalties: Level: Infinite; Maximum penalty: 100; No RI in library: 100
- Comparative study, Batch job mode: default settings, except: Minimum match factor: 60; Type of analysis: Use Retention Index Data; RI window: 5 + 0 x 0.01 RI; Match factor penalties: Level: Infinite; Maximum penalty: 100; No RI in library: 100; Use the positive list resulting from the substance identification step as target library.

Data analysis

For all data analysis steps R-functions and -scripts have been used. In the following, the R-functions used to perform t-test and PCA will be illustrated. I used R version 2.13.0 available from www.r-project.org (R Development Core Team, 2010).

T-test This script enables the application of a t-test to a matrix with variables (metabolite concentrations) in columns. The matrix was of the following structure (8 rows with control samples, 8 rows with treated samples):

sample info	variabel x	variable y	variable z
control	x1	y1	z1
Ļ	Ļ	ţ	Ļ
treated	x9	у9	z9
Ļ	Ļ	Ļ	Ļ

```
> x <- read.table(fileName, header=TRUE, sep="\t")
> sampletype <-x[,1]
                                           # sample type in 1. column
> y < -x[,-1]
                                           # delete 1. column
> SubstanceNames <- scan("fileName", what=character(0), sep="\t", nline=1)
> z < -as.matrix(y)
                                           # create a matrix
> s <- as.vector(SubstanceNames)
> ls <- length(s)
> s <- s[2:ls]
#### loop for t-test calculation of all columns ####
> results2 <- matrix(ncol=4)
                                           # creates a matrix with 4 columns
> count=0
> for(i in 1:length(z[1,])){
>
        count=count+1
>
        print(count)
        print(s[i])
>
>
        names <- as.vector(s[i])</pre>
        vec1 <- as.vector(z[1:8,i])
>
        vec2 <- as.vector(z[9:16,i])
>
                                           # both vectors must have same length!
        cat("vec1: ", vec1, "\n")
>
                                           #cat (concatenate) writes result in R-console
        cat("vec2: ", vec2, "\n")
>
>
        if((length(na.omit(vec1)))>1 && (length(na.omit(vec2)))>1){
>
                 print(t.test(vec1, vec2, alternative=c("two.sided"), var.equal=FALSE, conf.level=0.95))
                                                                              # t-test result on screen
                 tres<-t.test(vec1, vec2, alternative=c("two.sided"), var.equal=FALSE, conf.level=0.95)
>
                                                                      # saves t-test results as "tres"
                 means <- as.vector(tres$estimate)
>
>
                 means <- c(means[1], means[2])
                                                             # "$" reads saved values from function
                 results <- c(names, tres$p.value, means)
>
# c...combine
        } else {
>
>
                 results <- c(names, "p-value", "mean control", "mean treated")
>
        ł
>
        results2 <- rbind(results2, results)
>}
```

PCA This script allows calculation of PCA and plotting of loadings and scores plot. The matrix is of the following form (for better readability of the loadings plot, the substance names were replaced by numbers):

sample info	1	2	3
date1	x1	y1	z1
Ļ	Ļ	Ļ	ţ
date2	x32	y32	z32
Ļ	Ļ	Ļ	ţ

```
##### loading data #####
> require(tcltk)
> fileName <- tclvalue(tkgetOpenFile())
> X <- read.table(fileName, header=TRUE, sep="\t")
> Y < -as.matrix(X)
> Date <- X[,1]
                                  # read out sample info
> X2 < -Y[,-1]
                                  # delete sample info, delete 1. column
> Substances <- scan("fileName", what=character(0), sep="\t", nline=1)
> SubstanceNumbers <- as.vector(Substances)
#### autoscale, mean-center ####
> X3scale <- scale(X2)
###### PCA #####
> PCA_X <- svd(X3scale)
> scores <- PCA_X$u %*% diag(PCA_X$d)
> loadings <- PCA_X$v
#### variance #####
> vars <- PCA_X d^2/(nrow(X2)-1)
> totalvar <- sum(vars)
> relvars <- vars/totalvar
> variances <- 100*round(relvars, digits=3)
> variances[1:5]
##### scores-plot #### plot as tiff ####
#### choose file-name ####
> require(tcltk)
> filesavename <- tclvalue(tkgetSaveFile())
> tiff(filesavename, width=10, height=10, units="cm", pointsize=8, res=1000)
        plot(scores[,1:2], type="n", xlab=paste("PC 1 (", variances[1], "%)", sep=""),
>
                 ylab=paste("PC 2 (", variances[2], "%)", sep=""))
+
>
        abline(h=0, v=0, col="gray")
        points(scores[,1:2], pch=Date)
>
        legend("topleft", inset=0.05, legend=c("June", "July"), pch=c(1,2))
>
> dev.off()
##### loadings-plot ####
#### choose file-name ####
require(tcltk)
filesavename2 <- tclvalue(tkgetSaveFile())
> tiff(filesavename2, width=10, height=10, units="cm", pointsize=8, res=1000)
        plot(loadings[,1], loadings[,2], type="n", xlab=paste("PC 1 (", variances[1], "%)", sep="")
>
+
                 ylab=paste("PC 2 (", variances[2], "%)", sep=""))
        abline(h=0, v=0, col="gray")
>
        text(loadings[,1:2], labels=SubstanceNumbers, cex=0.7)
>
>dev.off()
```

13 Original works

Paper #1 Phylloxera attacked grapevine roots

Lawo* NC, **Weingart*** **GJF**, Schuhmacher R, Forneck A **2011** The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack. *Plant Physiology and Biochemistry* 49:1059-1063. * shared first authorship

Paper #2 Settled floor dust samples

Vishwanath V, Sulyok M, **Weingart G**, Kluger B, Täubel M, Mayer S, Schuhmacher R, Krska R **2011** Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor environments by LC-MS/MS and GC-MS methods. *Talanta* 85:2027-2038.

Paper #3 Method development, grapevine leaves

Weingart GJF, Kluger B, Forneck A, Krska R, Schuhmacher R **2011** Establishment and application of a metabolomics workflow for identification and profiling of volatiles from leaves of *Vitis vinifera* by HS-SPME-GC-MS. *Phytochemical Analysis*

Paper #4 Plant-insect interaction, book chapter, submitted

Weingart GJF, Lawo NC, Forneck A, Krska R, Schuhmacher R 2012 Study of the volatile metabolome in plant-insect interactions. In: Weckwerth W, Kahl G, editors. The Handbook of Plant Metabolomics. Wiley-Blackwell-VCH.

Contents lists available at ScienceDirect

Plant Physiology and Biochemistry

journal homepage: www.elsevier.com/locate/plaphy

Research article

The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack

Nora C. Lawo^{a,*,1}, Georg J.F. Weingart^{b,1}, Rainer Schuhmacher^b, Astrid Forneck^a

^a Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz Str. 24, 3430 Tulln, Austria ^b Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Life Sciences, Konrad-Lorenz Str. 20, 3430 Tulln, Austria

ARTICLE INFO

Article history: Received 20 April 2011 Accepted 22 June 2011 Available online 1 July 2011

Keywords: Phylloxera Nodosity Volatile secondary metabolites Metabolite profiling HS-SPME–GC–MS Vitis berlandieri × Vitis riparia Rootstock

ABSTRACT

Many plant species respond to herbivore attack by an increased formation of volatile organic compounds. In this preliminary study we analysed the volatile metabolome of grapevine roots [Teleki 5C (*Vitis berlandieri* Planch. \times *Vitis riparia* Michx.)] with the aim to gain insight into the interaction between phylloxera (*Daktulosphaira vitifoliae* Fitch; Hemiptera: Phylloxeridae) and grapevine roots. In the first part of the study, headspace solid phase microextraction (HS-SPME) coupled to gas chromatography – mass spectrometry (GC–MS) was used to detect and identify volatile metabolites in uninfested and phylloxera-infested root tips of the grapevine rootscck Teleki 5C. Based on the comparison of deconvoluted mass spectra with spectra databases as well as experimentally derived retention indices with literature values, 38 metabolites were identified, which belong to the major classes of plant volatiles including C6-compounds, terpenes (including modified terpenes), aromatic compounds, alcohols and *n*-alkanes. Based on these identified metabolites, changes in root volatiles were investigated and resulted in metabolite profiles caused by phylloxera infestation. Our preliminary data indicate that defence related pathways such as the mevalonate and/or alternative isopentenyl pyrophosphate-, the lipoxygenase- (LOX) as well as the phenylpropanoid pathway are affected in root galls as a response to phylloxera attack.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Grape phylloxera, *Daktulosphaira vitifoliae* Fitch (Hemiptera: Phylloxeridae), is one of the most devastating grapevine pests worldwide, causing organoid galls (nodosities) on the root tips. After its introduction to Europe in the second part of the 19th century phylloxera caused major economic losses to the wine industry [1]. The spreading of this pest could be prevented by grafting susceptible European grape varieties onto tolerant rootstocks. However, in the last decades the appearance of more aggressive phylloxera biotypes has been reported (e.g., [2,3]). Thus, understanding the interaction between phylloxera and the grape-vine root in more detail would be of utmost interest.

The number of studies, which investigated the physiological and molecular response of grapevine to phylloxera root-infestation are sparse and mainly focus on primary metabolites on detached root tissue. So far, increased concentrations of mono- and disaccharides [4,5], starch [4–6] and amino acids [6] and amides [7] have been found to be present in nodosities compared to uninfested root tips. Additionally, recent studies evaluating the metabolic response of grapevine leaves to a phylloxera root infestation, reported a reduction in the ratio of linoleic acid to linolenic acid [8] as well as the chlorophyll content but an increase in xanthophyll-cycle related pigments [9].

Volatile compounds constitute another important class of metabolites known to be involved in the response of many plant species to various types of abiotic (e.g., [10,11]) and biotic stress (e.g., [12,13]), and it is further well known that plant herbivory is associated with an increased formation of volatile metabolites in leaves [14] or roots [15].

Surprisingly, no reports on the involvement of volatile metabolites in the interaction between phylloxera and grapevine have been published so far. While several publications described the detection and identification of volatiles in leaves (e.g., [16,17]) and berries (e.g., [18,19]) of grapevine plants, to the best of our knowledge, there is only a single report on volatile metabolites produced by grapevine roots. Du et al. [20] investigated the volatile metabolites produced by one phylloxera resistant [5BB (*Vitis berlandieri* \times *Vitis riparia*)] and one susceptible [Kyoho (*Vitis*

^{*} Corresponding author. Tel.: +43 1 47654 3439; fax: +43 1 47654 3359.

E-mail address: nora.lawo@gmx.de (N.C. Lawo).

¹ Both authors contributed equally to this work.

^{0981-9428/\$ –} see front matter @ 2011 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.plaphy.2011.06.008

vinifera \times *Vitis labrusca*)] cultivar and tried to correlate the nymphal preference for the susceptible cultivar Kyoho with the volatile metabolites.

In the present study, the volatile metabolome of grapevine roots of the cultivar Teleki 5C (*V. berlandieri* \times *V. riparia*) was investigated by GC–MS. This is the first report on a differential comparison of volatile metabolites of uninfested and phylloxera-infested root tips of grapevine plants.

2. Results and discussion

2.1. Identification of root metabolites

A typical GC–MS total ion current chromatogram obtained after analysis of a phylloxera-infested root tip sample from cultivar Teleki 5C is shown in Fig. 1. This cultivar was chosen due to its phylloxera tolerance [21,22] and its widely use as a model rootstock cultivar in different experiments (e.g., [23,24]).

Manual inspection of the chromatograms resulted in assignment of at least 100 different substances. The automated deconvolution of

Table 1

Volatile substances identified in grapevine root tissue [phylloxera-infested (nodosities) and uninfested]. Numbering of first column corresponds to elution order on DB-5 column, see Fig. 1.

Number	CAS-Number ^a	er ^a Identified substance		LTPRI				Formerly described in Vitis sp. ^e			
in Fig. 1		(trivial name in parentheses)	DB-5MS		Optima-V	VAX					
			Sample	Reference value	Sample	Reference value	roots	leaves	flowers	berries	
1	66-25-1	Hexanal ^c	805	805	1091	1087	x	x	х	x	
2	98-01-1	Furan-2-carbaldehyde ^c	842	837	1482	1479				х	
3	6728-26-3	(E)-Hex-2-enal ^c (leaf aldehyde)	858	858	1232	1229		х		х	
4	928-95-0	(E)-Hex-2-en-1-ol ^c	858	862	1424	1422		х		х	
5	111-27-3	Hexan-1-ol ^c	874	873	1370	1370		х		х	
6	100-51-7	Benzaldehyde ^c	967	967	1548	1546		х		х	
7	123-35-3	beta-Myrcene ^c	994	993	1152	1151				х	
8	3777-69-3	2-Pentylfuran ^c	995	994	1227	1223					
9	124-13-0	Octanal ^c	1007	1005	1296	1294					
10	104-76-7	2-Ethylhexan-1-ol ^c	1032	1031	1505	1504				х	
11	5981-54-8	Limonene ^c	1034	1032	1192	1191	х		х	х	
12	100-51-6	Phenylmethanol ^c	1042	1042	1908	1905		х	х	х	
13	122-78-1	2-Phenylacetaldehyde	1048	1047 ^d	1668	1648 ^d		х			
14	111-87-5	Octan-1-ol ^c	1073	1073	1576	1575			х	х	
15	124-19-6	Nonanal ^c	1105	1106	1404	1403	х	х	х	х	
16	60-12-8	2-Phenylethanol ^c	1119	1120	1946	1944		х	х	х	
17	18 829-56-6	(E)-Non-2-enal	1162	1161 ^d	1556	1536 ^d		х	х	х	
18	124-07-2	Octanoic Acid ^c	1178	1177	2124	2115					
19	119-36-8	Methyl 2-hydroxybenzoate ^c (Methyl salycilate)	1201	1202	1806	1805		х	х	х	
20	112-31-2	Decanal ^c	1207	1208	1511	1510	х	х			
21	67-47-0	5-(Hydroxymethyl)furan-2-carbaldehyde ^c	1236	1238	2550	2551		х			
22	106-24-1	(2E)-3,7-dimethylocta-2.6-dien-1-ol ^c (Geraniol)	1257	1258	1870	1869		х	х	х	
23	112-05-0	Nonanoic acid ^c	1273	1274	2233	2234		х			
24	141-27-5	(2E)-3,7-dimethylocta-2.6-dienal ^c (Geranial)	1274	1275	1759	1758				х	
25	7786-61-0	4-Ethenyl-2-methoxyphenol ^c	1322	1322	2232	2221				х	
26	97-53-0	2-Methoxy-4-prop-2-enylphenol ^c (Eugenol)	1364	1365	2202	2195				х	
28	87-44-5	beta-Caryophyllene ^{b,c}	1432	1433	1617	1619	х	х	х	х	
29	3796-70-1	(5E)-6,10-Dimethylundeca-5.9-dien-2-one ^c	1456	1456	1877	1876			х	х	
		(Geranyl acetone)									
30	6753-98-6	Humulene (alpha-Caryophyllene)	1466	1453 ^d	1691	1654 ^d			х		
31	39 029-41-9	gamma-Cadinene	1526	1513 ^d	1780	1759 ^d			х		
32	483-76-1	delta-Cadinene	1533	1524 ^d	1773	1747 ^d				х	
33	143-07-7	Dodecanoic acid ^c	1568	1565	2557	2564		х			
34	629-78-7	Heptadecane ^c	1696	1700	1699	1700	х	х	х	х	
35	2765-11-9	Pentadecanal	1716	1714 ^d	2050	2041 ^d					
36	593-45-3	Octadecane ^c	1797	1800	1800	1800		х			
37	57-10-3	Hexadecanoic acid ^c	1962	1962	2986	2986		х	х		
38	112-95-8	Eicosane ^c	1999	2000	2000	2000		х	х		

^a Chemical Abstracts Service, SciFinder Scholar 2007.

^b Only detected in infested samples.

^c Confirmed with standard.

^d LTPRI corresponds to the median from NIST Chemistry Webbook.

^e Substances described in former studies are marked with "x", references see text (2.1).

mass spectra [25] and comparison with MS databases together with evaluation of linear temperature programmed retention index (LTPRI) values [26] on two types of stationary phases led to the positive identification of 38 metabolites (Table 1). Thirty two of these metabolites were additionally confirmed with authentic standards. It shall be noted here that in case of terpenes special caution has to be taken. These substances comprise a very large and diverse class of natural compounds with closely related chemical structures, many of which show similar mass spectra and retention indices. Hence, there is a strong need for the use of authentic standards to avoid false positive identifications.

The identified volatiles comprise numerous chemical substance classes. More precisely, ten aldehydes, nine terpenes five C6compounds, five alcohols, four acids, three alkanes, one ether and one ester were detected in the investigated samples (Table 1). The chromatograms also contained peaks which have been assigned to dibutyl phthalate and 2,4-di-tert-butylphenol (data not shown). Since these compounds are frequently used as plasticizers and stabilizers of synthetic polymers, they have not been further considered in this study as they represent most likely artefacts.

The majority of the identified substances have already been found with GC–MS in other parts of *Vitis* plants such as leaves (e.g., [12,16,17,27–29]), berries (e.g., [16–18,30–32]) or flowers (e.g., [16,33]). These findings have been summarized in Table 1. To the best of our knowledge, 32 of the metabolites are described for *Vitis* root tissue for the first time, whereas four of those, namely pentylfuran, octanal, octanoic acid and pentadecanal have not been described for *Vitis* spp. at all.

In a recent study Du et al. [20] investigated root volatiles in phylloxera resistant (5BB) and susceptible (Kyoho) rootstock cultivars and detected in total 79 substances. For the resistant 5BB they reported 56 volatile metabolites, whereas 47 volatiles were assigned in total to the cultivar Kyoho. Partly different volatiles were found for the cultivars 5BB and Kyoho with fatty acid methyl esters being the dominating volatile substance classes for both cultivars. In our study, no fatty acid methyl esters were detected. Unfortunately, Du et al. [20] did not describe their extraction method in detail, therefore a direct comparison with our findings is not feasible. Nevertheless, we also found hexanal, limonene, nonanal, decanal, beta-caryophyllene and heptadecane.

2.2. Comparison of volatile profiles obtained for uninfested root tips and nodosities

As presented in Fig. 2 significant differences (p < 0.05) in peak areas were found for 14 metabolites. Remarkably, all but one substance (dodecanoic acid) occurred at elevated levels in nodosity samples, whereas beta-caryophyllene was exclusively found in mature nodosity samples. Interestingly, relative standard deviations of peak areas were significantly lower in uninfested root samples compared to mature nodosities (Fig. 2). Furthermore, we detected significant differences for concentration levels of geraniol, eugenol, vanillin and delta-cadinene in roots infested by one 2nd nymphal stage phylloxera (young nodosities) compared to uninfested root tips and elevated levels of phenylmethanol, methyl salicylate, 4-ethenyl-2-methoxyphenol as well as eugenol in mature nodosities compared to young ones (data not shown). Those findings indicate that the metabolic response appears to be highly dynamic and requires closer investigation in the future.

Considering relevant metabolic routes acting on the formation of volatile organic compounds after herbivore attack, we found that at least three different pathways might be affected in phylloxerainfested root tips. The detected and/or elevated terpenoids (betacaryophyllene, geraniol, beta-myrcene) allow the assumption that the mevalonate (MEV) and/or alternative isopentenyl pyrophosphate

Fig. 2. Overview of differentially expressed volatiles detected in uninfested root tips and mature nodosities (infested by one adult phylloxera producing maximal 5 eggs). Intensities of some metabolite peaks were multiplied by a factor of 10 or 10^{-1} respectively (see graph). Asterisks indicate significant differences between the two sample types: *p < 0.05; **p < 0.01, ***p < 0.001; n.d.: not detected.

(alt. IPP) pathway are modified as a consequence of phylloxera damage. Beta-caryophyllene for example, is well known to be associated with the response of various plants to herbivore root attack and has been reported to attract natural enemies [15]. Geraniol [34] and beta-myrcene [35] are also known to be produced by the green parts of plants after hemiptera attack such as aphids or stink bugs. Further, it can be suggested that the phenylpropanoid pathway is triggered due to a phylloxera infestation. The aromatic compounds, phenylacetaldehyde, methyl salicylate and eugenol, which have been found at elevated levels in phylloxera-infested samples compared to uninfested root tips, have also been described to be produced by plants after leave herbivory [36] or pathogen attack [37]. Mallinger and colleges, for example further suggest that methyl salicylate attracts natural enemies of soybean aphids [38]. Moreover, elevated levels of the C6-compounds (E)-hex-2-enal and hexanal were observed in mature nodosities compared to uninfested root tips which indicates that the lipoxygenase (LOX) pathway might be initiated after phylloxera infestation. C6-compounds result from the oxidative cleavage of linoleic- and linolenic acid. Both substances are well known to be released after herbivore attack [39] as well as C6-compounds from V. vinifera [40].

3. Conclusion

Applying strict identification criteria we identified 38 volatile metabolites in grapevine root samples, including C6-compounds, terpenes, aromatic compounds, aldehydes, alcohols and *n*-alkanes. Comparing in a second step mature nodosities with uninfested root tips we identifying twelve substances at significantly increased concentration levels in infested root samples, while dodecanoic acid was found at decreased levels and beta-caryophyllene exclusively in mature nodosity samples. Our preliminary data indicate that several defence related metabolic pathways, namely the MEV and/or alt. IPP, the phenylpropanoid as well as the LOX pathway might be affected as a consequence of phylloxera attack. However, more detailed studies are required to gain deeper insight into the metabolic processes induced upon phylloxera attack e.g., on nodosities still attached to the plant evaluating which volatiles might be involved in plant—plant signalling as well as direct or

indirect defence responses against phylloxera. Furthermore, comparing the metabolic response of rootstocks with different levels of susceptibility to phylloxera and *V. vinifera* will provide a better understanding of the molecular mechanisms mediating resistance against root-feeding phylloxera.

4. Material and methods

4.1. Insect and plant material

Leaf-galling *D. vitifoliae* Fitch (Hemiptera: Phylloxeridae) were collected in Grosshoeflein, Austria in 2007 and maintained since then as a single founder lineage in the greenhouse on the grapevine rootstock Teleki 5C (*V. berlandieri* Planch. \times *V. riparia* Michx.).

Samples from different vegetatively propagated cuttings of this rootstock clone were collected during several independent runs during June–October 2009 in the greenhouse. Further details on the experimental setup are given in Lawo et al. [41]. We sampled uninfested root tips and mature nodosities, which were infested by one adult phylloxera producing maximal five eggs. In case of nodosities, the phylloxera was removed and both, uninfested root tips and mature nodosities were immediately cooled with liquid nitrogen and stored at -80 °C until further sample preparation and analysis.

4.2. Sample preparation and HS-SPME-GC-MS analysis

Cooled root tissues were homogenized via a pre-cooled pestle and 25–50 mg of the homogenized sample were weighted into a 20 ml screw cap headspace (HS) vial, sealed with 1.3 mm silicone/ PTFE septa (Supelco, distributed by Gerstel, Mühlheim a.d. Ruhr, Germany). Subsequently, samples were incubated for 30 min and extracted for 60 min at 90 °C by headspace solid phase microextraction (HS-SPME) (fibre coating: DVB/CAR/PDMS 50/30 µm, 2 cm stableflex fibre, Gerstel). Thereafter, samples were analyzed by GC–MS according to Stoppacher et al. [42], with the following modifications: apolar column: DB-5MS (Agilent, Waldbronn, polar column: Optima-WAX (Machery-Nagel, Germany); Germany), dimensions for both columns: length 30 m, inner diameter 0.25 mm, film thickness 0.25 µm, oven program: 35 °C (hold 2 min), 5 °C min⁻¹ to 260 °C (hold 5 min), no solvent delay, m/z scan range: 35–500 amu.

4.3. Analysis of standards and determination of retention indices

Standard substances were purchased from Sigma-Aldrich (Vienna, Austria) (summarised by brand, minimum purity in parentheses): SAFC: (2E)-3,7-dimethylocta-2,6-dien-1-ol (97%), (5E)-6,10-dimethylundeca-5,9-dien-2-one (97%), 4-ethenyl-2methoxyphenol (98%), beta-caryophyllene (80%), 2-pentylfuran (97%), hexadecanoic acid (98.9%), octanal (92%), Aldrich: (E)-hex-2-en-1-ol (96%), (E)-hex-2-enal (98%), 5-(hydroxymethyl)furan-2carbaldehyde (99%), dodecanoic acid (98%), furan-2-carbaldehyde (98%), (-)-limonene (96%), nonanal (95%), Sigma-Aldrich: 4hydroxy-3-methoxybenzaldehyde (99%), benzaldehyde (99%), hexan-1-ol (98%), phenylmethanol (99%), Sigma: decanal (98%), nonanoic acid (97%), Riedel de Haën: octanoic acid (99%), Supelco: octan-1-ol (99.9%), Fluka: 3,7-dimethylocta-2.6-dienal (cis + trans, 95%), 2-ethylhexan-1-ol (99.5%), 2-methoxy-4-prop-2-enylphenol (99.8%), 2-phenylethanol (99%), beta-myrcene (95%), hexanal (97%), methyl 2-hydroxybenzoate (99.5%), alkane standards C8-C20 (40 mg L⁻¹ each in hexane), C21-C40 (40 mg L⁻¹ each in toluene). Additionally, a C5-C10 alkane standard was mixed from the pure substances (pentane 99% Sigma-Aldrich, hexane Supra-Solv Merck, heptane 99.5% J.T. Baker, octane 99% Sigma Aldrich, nonane 99% Sigma Aldrich, decan p.a. Promochem) in a ratio resulting in narrow peak shapes.

From the original standards (liquids and solids) stock solutions with a concentration of 100 mg L^{-1} in acetonitrile (HPLC gradient grade, VWR, Vienna, Austria) were prepared and stored at 4 °C. Standards and dilutions were always handled with gastight Hamilton syringes.

For determination of linear temperature programmed retention indices (LTPRI, [26]) the standards were combined in a mixture resulting in a concentration of 25 μ L L⁻¹ in MilliQ-water (in-house device, Millipore, Molsheim, France). Twenty μ L of the mix were transferred in a 20 mL HS vial and measured with the same SPME–GC–MS method as the root samples. The alkane standards were measured with the following SPME-methods to achieve narrow peak shapes: C5–C10: 1 μ L in 20 mL HS vial, sampling out of tray (10 °C) for 0.01 min, C8–C20: 10 μ L in 20 mL HS vial, extraction for 10 min at 90 °C, C21–C40: 30 min equilibration and 60 min extraction both at 120 °C.

4.4. Data evaluation

4.4.1. Detection and identification of metabolites

For identification of metabolites, two pooled samples (one uninfested and one infested root sample) were used. Peak detection, spectra deconvolution, comparison of MS spectra against Wiley/NIST 08 spectra library [43] and LTPRI calculation were carried out with the AMDIS software (version 2.65, www.amdis.net, [25]) with default settings for deconvolution. Putative metabolites found on both columns with a match factor \geq 90 and a LTPRI deviation of \leq 15 (if determined from a standard) or \pm 2% (if derived from literature) were put to the results list according to Stoppacher et al. [42]. Median values of those LTPRIs listed in the NIST Chemistry Webbook [44] which corresponded to the same column diameter and film thickness as well as a comparable stationary phase material were used as reference. Substances known to originate from the fibre coating or the stationary phase of the GC-column (e.g., silicium containing substances) were removed from the results list.

4.4.2. Differential comparison of uninfested root tips and nodosities

Metabolites identified according to the criteria listed in 4.4.1, were considered for further comparison of volatile profiles associated with uninfested root tips (N = 8) and nodosities (N = 7). For this purpose, a sub library containing mass spectra of all identified substances was created. The well defined uninfested and nodosity samples were measured on the DB-5MS column and data were evaluated again with AMDIS with the following settings: minimum match factor = 60, RI-window = 5, match factor penalties: level infinite, maximum penalty and "no RI in library": 100.

The data were grouped according to sample type. For those metabolites detected in ≥ 6 out of 7 (nodosities) or in ≥ 6 out of 8 (uninfested) samples the arithmetic means of each sample type were compared by an unpaired two-sided Welch's *t*-test with a confidence level of 0.95 (R statistic software version 2.9.2).

Acknowledgements

The authors thank the Austrian Science Fund (FWF) for the financial support (project number: P21203-B16), Bernhard Kluger and Sarah Bardakji are greatly acknowledged for their technical assistance.

References

 C. Campbell, Phylloxera: How Wine was Saved for the World. HarperCollinsPublishers, London, 2004.

- [2] J. Granett, P. Timper, L.A. Lider, Grape Phylloxera (*Daktulosphaira vitifoliae*) (Homoptera: Phylloxeridae) biotypes in California, J. Econ. Entomol. 78 (1985) 1463–1467.
- [3] A. Forneck, M.A. Walker, R. Blaich, Ecological and genetic aspects of grape phylloxera Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae) performance on rootstock hosts, B. Entomol. Res. 91 (2001) 445–451.
- [4] V.V. Zotov, Characteristics of carbohydrate metabolism in the roots of grapes infected with Phylloxera, Biokhimiya (Moscow) 19 (1954) 649–651.
- [5] H. Schaefer, Metabolite differences between Phylloxera root galls and healthy grapevine roots, Wein-Wissenschaft 40 (1985) 219–227.
- [6] A.V. Kellow, M. Sedgley, R. Van Heeswijck, Interaction between Vitis vinifera and grape phylloxera: changes in root tissue during nodosity formation, Ann. Bot. – London 93 (2004) 581–590.
- [7] A.V. Kellow, A study of the interaction between susceptible and resistant grapevines and phylloxera, PhD Thesis, The University of Adelaide, Australia, 2000.
- [8] D.J. Tucker, D.L. Lamb, K.S. Powell, A.L. Blanchfield, I.M. Brereton, Detection of phylloxera infestation in grapevines by NMR methods, Acta Hortic. 733 (2007) 173-181.
- [9] A.L. Blanchfield, S.A. Robinson, L.J. Renzullo, K.S. Powell, Phylloxera-infested grapevines have reduced chlorophyll and increased photoprotective pigment content – can leaf pigment composition aid pest detection? Funct. Plant Biol. 33 (2006) 507–514.
- [10] M. Seki, T. Umezawa, K. Urano, K. Shinozaki, Regulatory metabolic networks in drought stress responses, Curr. Opin. Plant. Biol. 10 (2007) 296–302.
- [11] M.Y. Hirai, M. Yano, D.B. Goodenowe, S. Kanaya, T. Kimura, M. Awazuhara, M. Arita, T. Fujiwara, K. Saito, Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in *Arabidopsis thaliana*, Proc. Natl. Acad. Sci. U S A 101 (2004) 10205–10210.
- [12] D.I. Batovska, I.T. Todorova, D.V. Nedelcheva, S.P. Parushev, A.I. Atanassov, T.D. Hvarleva, G.J. Djakova, V.S. Bankova, S.S. Popov, Preliminary study on biomarkers for the fungal resistance in *Vitis vinifera* leaves, J. Plant Physiol. 165 (2008) 791–795.
- [13] J. Hofmann, A.E.N. El Ashry, S. Anwar, A. Erban, J. Kopka, F. Grundler, Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism, Plant J. 62 (2010) 1058–1071.
- [14] M. Dicke, T.A. Van Beek, M.A. Posthumus, N. Ben Dom, H. Van Bokhoven, A. De Groot, Isolation and identification of volatile kairomone that affects acarine predatorprey interactions involvement of host plant in its production, J. Chem. Ecol. 16 (1990) 381–396.
- [15] S. Rasmann, T.G. Köllner, J. Degenhardt, I. Hiltpold, S. Toepfer, U. Kuhlmann, J. Gershenzon, T.C.J. Turlings, Recruitment of entomopathogenic nematodes by insect-damaged maize roots, Nature 434 (2005) 732–737.
- [16] M. Tasin, G. Anfora, C. Ioriatti, S. Carlin, A. De Cristofaro, S. Schmidt, M. Bengtsson, G. Versini, P. Witzgall, Antennal and behavioral responses of grapevine moth *Lobesia botrana* females to volatiles from grapevine, J. Chem. Ecol. 31 (2005) 77–87.
- [17] J. Wirth, W. Guo, R. Baumes, Z. Günata, Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from *Vitis vinifera* Muscat of Alexandria and Shiraz cultivars, J. Agric. Food Chem. 49 (2001) 2917–2923.
- [18] S.M. Rocha, E. Coelho, J. Zrostlíková, I. Delgadillo, M.A. Coimbra, Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability, J. Chromatogr. A 1161 (2007) 292–299.
- [19] E. Coelho, S.M. Rocha, A.S. Barros, I. Delgadillo, M.A. Coimbra, Screening of varietyand pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile, Anal. Chim. Acta 597 (2007) 257–264.
- [20] Y.-P. Du, Q.-L. Zheng, H. Zhai, E.-S. Jiang, Z.-Y. Wang, Selectivity of Phylloxera viticola Fitch (Homoptera: Phylloxeridae) to grape with different resistance and the identification of grape root volatiles, Acta Entomol. Sinica 52 (2009) 537–543.
- [21] J.A. De Benedictis, J. Granett, Laboratory evaluation of grape roots as hosts of California grape phylloxera biotypes, Am. J. Enol. Viticult. 44 (1993) 285–291.
- [22] A. Forneck, M.A. Walker, R. Blaich, M. Yvon, F. Leclant, Interaction of phylloxera (*Daktulosphaira vitifoliae Fitch*) with grape (*Vitis spp.*) in simple isolation chambers, Am. J. Enol. Viticult. 52 (2001) 28–34.

- [23] M. Keller, M. Kummer, M.C. Vasconcelos, Reproductive growth of grapevines in response to nitrogen supply and rootstock, Aust. J. Grape Wine R 7 (2001) 12–18.
- [24] M.V. McKenry, D. Luvisi, S.A. Anwar, P. Schrader, S. Kaku, Eight-year nematode study from uniformly designed rootstock trials in fifteen table grape vineyards, Am. J. Enol. Viticult. 55 (2004) 218–227.
- [25] S.E. Stein, An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data, J. Am. Soc. Mass Spectrom. 10 (1999) 770–781.
- [26] H. Van den Dool, P. Kratz, A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography, J. Chromatogr. A 11 (1963) 463–471.
- [27] P. Hernández-Orte, N. Loscos, A.-C. Lapena, J. Cacho, V. Ferreira, Aroma compounds released from glycosidic precursors present in vine leaves from some Spanish cultivars, Proceedings of the WAC 2008 International Conference, Wine Active Compounds, 2008.
- [28] D.H. Cha, S. Nojima, S.P. Hesler, A. Zhang, C.E. Linn Jr., W.L. Roelofs, G.M. Loeb, Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (*Paralobesia viteana*), J. Chem. Ecol. 34 (2008) 1180–1189.
- [29] D.I. Batovska, I.T. Todorova, S.P. Parushev, D.V. Nedelcheva, V.S. Bankova, S.S. Popov, I.I. Ivanova, S.A. Batovski, Biomarkers for the prediction of the resistance and susceptibility of grapevine leaves to downy mildew, J. Plant Physiol. 166 (2009) 781–785.
- [30] E. Coelho, S.M. Rocha, I. Delgadillo, M.A. Coimbra, Headspace-SPME applied to varietal volatile components evolution during *Vitis vinifera* L. cv. 'Baga' ripening, Anal. Chim. Acta 563 (2006) 204–214.
- [31] T. Ji, I.E. Dami, Characterization of free flavor compounds in traminette grape and their relationship to vineyard training system and location, J. Food Sci. 73 (2008) C262–C267.
- [32] S.A. Lamorte, A. Gambuti, A. Genovese, S. Selicato, L. Moio, Free and glycoconjugated volatiles of V. vinifera grape 'Falanghina', Vitis 47 (2008) 241–243.
- [33] G. Buchbauer, L. Jirovetz, M. Wasicky, A. Herlitschka, Headspace analysis of Vitis vinifera (Vitaceae) flowers, J. Essent. Oil Res. 6 (1994) 313–314.
- [34] B.-Y. Han, Z.-M. Chen, Composition of the volatiles from intact and tea aphiddamaged tea shoots and their allurement to several natural enemies of the tea aphid, J. Appl. Entomol. 126 (2002) 497–500.
- [35] L. Williams III, C. Rodriguez-Saona, P.W. Paré, S.J. Crafts-Brandner, The piercing-sucking herbivores *Lygus hesperus* and *Nezara viridula* induce volatile emissions in plants, Arch. Insect. Biochem. 58 (2005) 84–96.
- [36] M. Gutensohn, A. Klempien, Y. Kaminaga, D.A. Nagegowda, F. Negre-Zakharov, J.-H. Huh, H. Luo, R. Weizbauer, T. Mengiste, D. Tholl, N. Dudareva, Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different *Arabidopsis* ecotypes, Plant J. 66 (2011) 591–602.
- [37] R.N. Bennett, R.M. Wallsgrove, Transley review No.72. Secondary metabolites in plant defence mechanisms, New Phytol. 127 (1994) 617–633.
- [38] J.H. Loughrin, D.A. Potter, T.R. Hamilton-Kemp, M.E. Byers, Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves, Phytochemistry 45 (1997) 919–923.
- [39] N.J. Bate, S.J. Rothstein, C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes, Plant J. 16 (1998) 561–569.
- [40] C.E.M. Van den Boom, T.A. Van Beek, M.A. Posthumus, A. De Groot, M. Dicke, Qualitative and quantitative variation among volatile profiles induced by *Tetranychus urticae* feeding on plants from various families, J. Chem. Ecol. 30 (2004) 69–89.
- [41] N. Lawo, F. Maleno, M. Griesser, A. Forneck, Expression of reference genes in nodosities and their application, Acta Hort., in press.
- [42] N. Stoppacher, B. Kluger, S. Zeilinger, R. Krska, R. Schuhmacher, Identification and profiling of volatile metabolites of the biocontrol fungus *Trichoderma* atroviride by HS-SPME-GC-MS, J. Microbiol. Methods 81 (2010) 187–193.
- [43] F.W. McLafferty, Wiley Registry of Mass Spectral Data, with NIST 2008. Wiley-Blackwell, 2008.
- [44] S.E. Stein, "Retention indices" by NIST mass Spec data Center, in: NIST Chemistry Webbook, NIST Standard Reference Base Number 69, P.J. Linstrom, W.G. Mallard (Eds.), Gaithersburg MD, 20899, 2010.

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor environments by LC–MS/MS and GC–MS methods

Vinay Vishwanath^a, Michael Sulyok^{a,*}, Georg Weingart^a, Bernhard Kluger^a, Martin Täubel^b, Stefan Mayer^c, Rainer Schuhmacher^a, Rudolf Krska^a

^a Center for Analytical Chemistry (CAC), Department IFA-Tulln, Konrad Lorenz Strasse 20, A-3430 Tulln, Austria

^b Department of Environmental Health, National Institute for Health and Welfare; P.O. Box 95, 70701 Kuopio, Finland

^c Institution for Statutory Accident Insurance and Prevention in the Trade and Goods Distribution, Mannheim, Germany

ARTICLE INFO

Article history: Received 13 April 2011 Received in revised form 5 July 2011 Accepted 9 July 2011 Available online 4 August 2011

Keywords: Mass spectrometry Multivariate statistics Mycotoxins Settled floor dust Volatile organic compounds Headspace solid-phase micro-extraction (HS-SPME)

ABSTRACT

This study reports on detection of a large number of biological and anthropogenic pollutants using LC–MS/MS and GC–MS technologies in settled floor dust (SFD). The latter technique was applied to obtain a general picture on the presence of microbial as well as non-microbial volatile organic compounds, whereas the targeted LC–MS/MS analysis focused on identification of species specific secondary metabolites. In the absence of moisture monitoring data the relevance of finding of stachybotrylactam and other metabolites of tertiary colonizers are confined only to accidental direct exposure to SFD. To the best of our knowledge 30 of the 71 identified volatile organic compounds (VOCs) are newly reported in SFD matrix. Coordinated application of "AMDIS and Spectconnect" was found beneficial for the evaluation and identification of prime volatile pollutants in complex environmental samples. Principal component analysis (PCA) of peak areas of 18 microbial volatile organic compounds (MVOCs) resulted in identification of nonanal as potential MVOC marker. Two more volatiles toluene and 1-tetradecanol though had discriminative influence, are not regarded as MVOC markers, considering their probable alternate origin from paints and cosmetics, respectively.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The advantages of various methods and matrices for the purpose of indoor evaluation are well documented in earlier reports [1–9]. The suitability of settled floor dust (SFD) for the above mentioned purpose can be best explained on the basis of mode of its formation. SFD is typically formed by the deposition of indoor aerosols, outdoor particles (due to ventilation) and also particles brought by foot trafficking. Moreover criticality and relevance of chosen SFD matrix for the mass spectrometric evaluation are also justified by the reports of Rosas et al. [1] for the detection of antibiotic multi resistance *E. coli* serotypes and reports of SFD surface adsorption of polycyclic aromatic hydrocarbons and other volatile and semi-volatile organic compounds [10,11]. Since the process of degradation indoors is typically slow, settled floor dust is also considered as a well preserved fossil evidence for indoor evaluation [12].

The new findings since reports of sick building syndrome (SBS). indoor pollutants are classified either as biogenic or anthropogenic pollutants. Biogenic pollutants include aerosols of viruses, bacteria, fungal spores and mycelial fragments containing toxic metabolites (e.g.: Stachybotrys containing Stachybotrylactam and Satra toxins), pollen, animal dander, dust mite residues and other particles of biological origin [13]. Anthropogenic pollutants are hazardous chemicals which arise as a consequence of their wide spread use in day to day consumer products (phthalate in PVC products). A variety of adverse health effects following human exposure to bioaerosols have been well documented [14]. Some of them are allergy, hypersensitivity, respiratory and toxicological problems, and infectious diseases [15]. Microbial role in indoor pollution and health implications are well known. For instance, fungi as well as bacteria (antigens, structural components, bioactives compounds as endotoxins) in humidifiers have been implicated in "humidifier fever", a disease with both toxic and allergic manifestations [16]. Bacteria in indoor air of houses or offices have also been reported to be associated with extrinsic allergic alveolitis among occupants [17].

Under non obvious moisture complications types and levels of fungal spores in the indoor samples are generally lower to those

^{*} Corresponding author. Tel.: +43 2272 66280 409; fax: +43 2272 66280 403. *E-mail address:* michael.sulyok@boku.ac.at (M. Sulyok).

^{0039-9140/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.talanta.2011.07.043

detected in the outdoor samples. Fungal flora of damp buildings comprises species addition to outdoor fungi that can utilize the nutrients present in building materials and adaptable to particular level of water activity. Based on water activity molds grown on building materials can be divided into primary, secondary and tertiary colonizers. Many of the toxigenic species Stachybotrys, Chaetomium, Memnoniella, Aspergillus and Trichoderma belong to the class of tertiary colonizers. Indoor isolates of A. versicolor from building materials are reported to produce sterigmatocystin, a class 2B carcinogen and biosynthetic precursor of aflatoxin B₁. Prevalence of airborne spores of Stachybotrys chartarum in houses with water incursion [18] and satratoxin G-albumin adducts (in vivo) upon human and animal exposures to S. chartarum [19] are some evidences for probable health threats due to mycotoxins in water damaged indoor environments. Animal exposure studies of low molecular weight compounds from fungi from the built environment have shown implications on health, such as inflammatory processes [20]. Microbial volatile organic compounds (MVOCs) are an addition to the list of biogenic indoor pollutants and have drawn attention as potential contributors for adverse health effects observed in residents of moisture damaged buildings [21]. In vitro studies of histamine release by bronchoalveolar cells exposed to MVOCs of Trichoderma viride [22], is a good example of the experimental evidences of MVOCs connections to clinical aspects.

Studies on house dust have shown for the presence of banned chemicals, and chemicals with endocrine disrupting, carcinogenic, neurotoxic potentials at levels that are considered to be of concern for human health [23,24]. Traditionally, consumption of food has been considered a primary route of exposure to contaminants mentioned above. However, it is becoming clear that exposure through ingestion and/or inhalation of indoor dust may be comparable to corresponding food consumption especially for younger children [24]. Independent studies monitoring for occupational exposure to volatile organic compounds (VOCs) toluene, o-xylene and n-butyl acetate and correlation of these substances to clinical symptoms upon long-term exposure such as deficits in concentration and memory, and an increase in the reaction time are proofs for ill effects of some of the VOCs in adults too [25,26].

State-of-the-art technology GC–MS may be useful for detecting hidden mold [27] and proved to be useful to differentiate between fungal strains [28]. Extremely low MVOC concentrations and the existence of many disturbing concomitants indoor complicate the analysis of microbial VOC in moldy houses leading to false positives [29]. Secondary metabolites being inconsistent in distribution throughout the fungal kingdom are unique as markers for speciation and chemotaxonomy purposes [30]. This was also reported true for fungal species found indoors [31,32]. Hence application of complementary technologies GC–MS and LC–MS/MS for evaluation of complex indoor matrix as SFD can be highly advantageous for comprehensive indoor evaluation and to monitor, e.g., ongoing remediation processes.

Enumeration studies based on microbial viability [1,2], detection of microbial volatiles [3–6] and non volatiles [7–9] in indoor matrices including settled dust are known. To our knowledge this is the first report of comparison of dust matrix from indoors used for different purposes using microbial volatiles and secondary metabolites. Dust samples from vastly differing indoor environments such as waste management and recycling units (WMU), houses with and without any water damage and mold infestation are screened for microbial effectors and subsidiary chemicals. Additionally, we wanted to test feasibility of source recognition/apportionment based on (M)VOC pattern among various indoor dust samples using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Some of the methodological challenges in GC–MS such as sample volume, extraction time, and temperature for the optimal extraction of volatile substances in dust matrix are addressed. Appertain to data evaluation we demonstrated usability of AMDIS deconvoluted chromatograms in combination with Spectconnect [33] for additional verification of sampling and method performance. Practical relevance of the study can be best explained in relation to safety of toddlers in homes with crawling and hand to mouth behavior and workers of WMUs. The extraction temperature condition (max 90 °C) of our GC–MS method is similar considering the working temperature of common home appliances (e.g. surface of a electric bulb (110–160 °C)). This aforementioned fact makes volatile pattern generated under our experimental conditions realistic and comparable to real world scenario. This is the first comparative study of individual SFD samples derived from relatively differing indoor environments in their purposes using both LC–MS/MS and GC–MS methods.

2. Materials and methods

2.1. Study sites and sampling

2.1.1. Waste management facilities

Settled floor dust samples were collected using vacuum cleaner from different waste management units (WMU) in Germany dealing with municipal waste or paper recycling. Samples MWD 1–7 (Municipal waste dust, Group A) were collected from waste handling facilities treating municipal waste with "biological and mechanical" or "biological" methods. Samples PWD 1–8 (Paper waste dust, Group B) were from enclosures used for paper recycling activities such as sorting, storage, or mechanical pressing (Table 1).

2.2. Residential indoors

Settled floor dust samples were collected from houses inhabited by small group of people, generally less than 5. Samples AHD 1–5 (Affected house dust, Group D) were vacuum cleaner dust bag dust samples derived from single family houses located in Eastern and southern Finland. These houses had severe moisture damage/dampness problems that were confirmed by trained engineers upon building inspection. Residents of these buildings typically complained about building related symptoms. Samples CHD 1–2 (Control house dust, Group C) were samples, respectively, from United States of America (SRM 2583) and India (CHD-2). SRM 2583 is a certified reference material (CRM) for 5 elements viz., Arsenic, Cadmium, Chromium, Lead and Mercury. CHD-2 is a self collected house dust where no clinical symptoms of ill health or visible mold growth were observed or reported.

3. Methods for analysis of non volatile and volatile substances

Volatile organic compounds (microbial and anthropogenic) were evaluated using GC–MS technology. Non volatile microbial organic compounds were monitored using LC–MS/MS technology.

3.1. GC–MS screening for volatile and microbial volatile organic compounds

3.1.1. Analytical reagents and supplies

The alkane mixture C_5-C_{10} was mixed in-house. C_8-C_{20} and $C_{21}-C_{40}$ straight chain alkanes of 40 mg L⁻¹ concentration in hexane and toluene, respectively, were purchased from Fluka (Buchs, Switzerland). All pure GC–MS standards (substances in Table 2 and Supplementary Table 1 highlighted with "*") used in this study were purchased from Sigma–Aldrich, Vienna, Austria. To avoid artifact originating from GC-column bleeding, SPME fiber coating or from laboratory air, head space vials were left open for 24 h in laboratory

Table 1	
---------	--

Sample description. MW: municipal waste management units, PW: Paper waste recycling units, TA: treatment area, ST: storage, NA: not applicable.

Sample	Nature of sample	Sampling site	Mode of waste treatment at the sampling site	Ventilation of sampling site	Processing load/turn over of waste handling units (kilotons/year)
MWD-1	MW	ТА	Biological and Mechanical	Mechanical	62
MWD-2	MW	TA	Biological and Mechanical	Mechanical	62
MWD-3	MW	TA	Biological and Mechanical	Mechanical	62
MWD-4	MW	TA	Biological and Mechanical	Mechanical	62
MWD-5	MW	TA	Biological and Mechanical	NA	62
MWD-6	MW	TA	Mechanical	Natural	400
MWD-7	MW	TA	Mechanical	Natural	200
PWD-1	PW	ST	Paper-Storage	Natural	7.3
PWD-2	PW	TA	Mechanical	Natural	100
PWD-3	PW	TA	Sorting-Mechanical & Manual	Natural	40
PWD-4	PW	TA	Sorting-Mechanical	Natural	20
PWD-5	PW	TA	Sorting-Mechanical	Natural	60
PWD-6	PW	TA	Sorting & Pressing-Mechanical	Natural	10
PWD-7	PW	TA	Sorting & Pressing-Mechanical	Natural	10
PWD-8	PW	TA	Sorting & Pressing-Mechanical	Natural	10

and subsequently analysed. Substances identified this way were excluded during final compilation of data.

3.1.2. GC-MS

Automated sample extraction, chromatographic separation and MS detection was done with an Agilent 6890 GC (Waldbronn, Germany) instrument, coupled to a 5975B MSD detector for recording the mass spectra. The following pair of GC–MS columns were used one at a time during the entire study:

- (A) HP-5MS 30 m \times 0.25 mm, 0.25 μm f.th. (Agilent, Waldbronn, Germany),
- (B) Optima[®] Wax $30 \text{ m} \times 0.25 \text{ mm}$, $0.25 \mu \text{m}$ f.th. (Agilent, Waldbronn, Germany).

For both columns Helium (5.0, Messer, Austria, Gumpoldskirchen) was used as carrier gas at a constant flow rate of 1 mL/min. Oven program: HP-5MS: (apolar) 35 °C (hold 2 min), 5 °C/min to 230 °C, 40 °C/min to 260 °C (hold 5 min). Optima® Wax: 35 °C (hold 2 min), 5 °C/min to 250 °C (hold 10 min). The inlet was equipped with a headspace inlet glass liner, 1.5 mm i.d. (Supelco, Bellefonte, USA) and set to 250 °C in splitless mode during desorption (2 min) of analytes from the fiber. The transfer line to MS was at 270 °C. MSD parameters: electron impact ionisation (EI) at 70 eV, source temperature 230 °C, quadrupole temperature 150 °C, full scan mode, mass range 35–500 amu.

3.1.3. HS-SPME

Sampling was done by headspace volatiles extraction procedure fully automated by an auto sampler (MPS 2 XL, Gerstel, Mülheim a.d. Ruhr, Germany).

Fiber selection and extraction optimization were done on a 30 m HP-5MS column using real world settled dust (n = 5) and SRM 2583 (certified indoor reference dust) with an empirical sample amount of 0.05 g which was found to be well suited upon validation in due course of the study. The following SPME-fibers with different polarities were tested: polydimethylsiloxane (PDMS), 100 µm; polydimethylsiloxane/divinylbenzene (PDMS/DVB), 65 µm; carboxene/polydimethylsiloxane (CAR/PDMS), 85 µm; polyacrylate (PA), 85 µm and divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS), 50/30 µm (Supelco, Bellefonte, USA). Selection of fiber was on the basis of number of conserved component upon extraction of representative sample of each group using above mentioned 5 fibers. All fibers tested and used were preconditioned according to the manufacturer's guidelines. Dust samples were weighed into 20 mL head space glass vials covered with Teflon capping and heated to 90 °C for 30' to release dust bound volatiles. The conditioned fiber was then inserted 21 mm into the head space vial and incubated for 60' unagitated at constant temperature of 90 °C for adsorption of volatiles. For desorption, the fiber was inserted for 2 min in the split less injector (250 °C, fiber penetration depth 57 mm).

The following SPME parameters were tested: equilibration time (0 and 30 min), extraction time (30 and 60 min), and equilibration and extraction temperature (30, 60 and 90 °C). For all subsequent experiments of parameter evaluation the best found SPME fiber CAR/PDMS, 85 μ m was employed (fiber selection elaborated in Section 4).

3.1.4. Method evaluation: reproducibility, representative sampling and source recognition/apportionment studies

For all the above purposes systematic conserved component identification was done, using open source software http://spectconnect.mit.edu. The working principle, algorithm, data extraction procedures followed by Spectconnect are described elsewhere in detail [33]. This is the first report of application of Spectconnect for evaluation of both analytical method and comparability of samples without compound identification. Criterions for picking conserved components were kept stringent and are as follows: elution threshold of 0.5 min (high), support threshold occurrence in all samples (high) and similarity threshold with minimum spectral similarity of 90% (high). Statistical software Unscrambler[®] [34] and R package (R 2.12.0) [35] were used for multivariate statistics Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), respectively. The data was leverage corrected and centered before subjecting to PCA and for the hierarchical clustering "Euclidean" distance and "Ward" linkage methods (between groups) were used. The effect of several well established clustering methods as single linkage, complete linkage and centroid methods were tested before finalizing with ward linkage. The results from PCA and HCA were used in concurrence for drawing final conclusion.

3.1.5. Volatile data evaluation: identification and confirmation of components

The data acquisition software MSD Chemstation G1701EA E.01.00.237 (Agilent, Waldbronn, Germany) was used to compare mass spectra of chromatographic peaks found in combined Nist and Wiley 2008 databases/spectral libraries. For peak picking all chromatograms were queried to an empty/blank msl library prior querying against combined Nist and Wiley 2008 spectral library. This method was found beneficial avoiding omission of peaks. Addition to this in-house sub libraries were built deriving mass spectra from Nist 05a and Wiley 7n for all those volatiles with AMDIS mass

V. Vishwanath et al. / Talanta 85 (2011) 2027–2038

CAS No.	Name	<i>m</i> / <i>z</i> (precursor ion)	RT-HP5 (min)	RI-HP5 literature	RI-HP5 experimental	RT-Optima® Wax (min)	RI-Optima® Wax literature	RI-Optima [®] Wax experimental	References
123-73-9	2-Butenal, (E)-	70.08	6.29	644.0	657.3	9.95	1046.0	1046.4	
79-09-4	Propanoic acid	74.07	8.02	740.0	732.7	23.37	1528.0	1560.1	
71-36-3	1-Butanol	74.12	6.52	668.9*	669.3	13.05	1140.0	1162.6	[45,47]
110-62-3	Pentanal	86.13	7.22	698.0	704.3	8.35	983.0	981.0	[45.47]
107-92-6	Butanoic acid	88.10	10.81	831.0	827.4	25.57	1637.0	1654.7	1
71-41-0	1-Pentanol	88.14	9.13	764.0	771.8	15.89	1261.0	1266.6	[47]
108-88-3	Toluene	92.13	9.10	771.2*	770.9	9.78	1037.9*	1040.0	1
108-95-2	Phenol	94.11	16.01	983.9*	985.6	33.32	2023.4*	2026.0	[48]
109-08-0	2-Methylpyrazine	94 11	10.99	832.0	832.7	16.45	1312.0	1287.0	()
6728-26-3	2-Hexenal (E)-	98.14	11.81	859.7*	857.9	14 90	1228.8*	1230.1	
66-25-1	Hexanal	100.15	10.07	804.8*	804.6	10.97	1086.3*	1086.0	[45 47]
109-52-4	Valeric acid	102.13	13.15	921.0	899.0	28 10	1744.0	1770.0	[47]
503-74-2	Isovaleric acid	102.13	11 74	876.0	855.8	26.55	1674.0	1698.0	[47]
111-27-3	1-Hexanol	102.13	12.28	873.3*	872 3	18.61	1370.2*	1369.0	[47]
100-42-5	Styrene	104.14	13.09	880.0	897.3	15.51	1260.0	1260.6	[45]
100-41-4	Ethylbenzene	106.16	12.05	869.6*	874.4	12.12	1128.1*	1128.9	[45]
106-42-3	p_Yylene	106.16	12.55	875 0 [*]	874.6	12.12	1120.1	1125.5	
100-42-5	1.2 Dimothyl bonzono	106.16	12.50	864.4	974.6	12.51	11/0.0	1126.0	
95-47-6	o_Yylene	106.16	12.35	879.0*	874.0	12.51	1140.0	1185.7	
100 51 6	Bonzul alcohol	100.10	17.50	1042.0*	10/1 2	20.86	1005.2*	1002.15	
100-31-0	2.4 Hoptadional (F.F.)	100.15	17.03	1042.0	1041.5	20.00	1515.2	15147	
4313-03-3 57266 96 1	2,4-neplatienal, (E,E) -	110.15	17.05	058.0	061 5	17.92	1212.0	1314.7	
37200-80-1	Z-neptenal, (Z)-	112.10	13.22	956.0	901.5	17.05	1100.25*	1559.1	[45 47]
111-/1-/	Heptanal	114.18	13.30	904.4	905.4	13.79	1180.20	1189.4	[45,47]
23232-33-4	1-Heptanoi	110.20	15.58	974.0	972.0	21.24	1458.0	14/2.2	
102-87-0	4-Methyl-benzaldenyde	120.14	19.45	1079.0	1091.0	25.44	1053.0	1649.0	
108-67-8	1,3,5-Trimethyl-belizelle	120.19	16.48	1006.0	999.6	14.70	1221.0	1222.8	[45]
526-73-8	1,2,3-1fimethyl-benzene	120.19	16.48	1019.9	999.7	18.00	1344.0	1345.5	[45]
611-14-3	o-Ethylmethylbenzene	120.19	15.95	975.0	983.7	15.36	1248.0	1247.2	
620-14-4	m-Ethylmethylbenzene	120.19	15.37	958.5	966.2	14.80	1231.0	1226.4	
622-96-8	p-Ethylmethylbenzene	120.19	15.50	960.0	970.0	14.15	1181.0	1202.5	
95-63-6	ψ-Cumene	120.19	16.46	989.0	999.2	15.36	1252.0	1247.2	
589-18-4	4-Methyl-benzenemethanol	122.16	20.96	1135.0	1141.2	32.58	1977.0	1989.0	
2363-89-5	2-Octenal	126.19	18.48	1060.0	1061.2	20.61	1436.0	1447.1	L 4 5 4 5 1
124-13-0	Octanal	128.21	16.69	1005.6	1006.3	16.70	1294.33	1296.4	[45,47]
3391-86-4	1-Octen-3-ol	128.21	15.92	981.9	982.7	21.00	1462.6	1462.7	
104-76-7	2-Ethyl-1-hexanol	130.22	17.46	1031.4	1030.0	22.03	1504.0	1503.8	
111-87-5	1-Octanol	130.22	18.81	1073.1	1071.2	23.73	1574.67	1575.0	[47]
1195-32-0	Dehydro-p-cymene	132.20	19.54	1087.0	1093.7	20.25	1415.0	1433.0	
874-41-9	1-Ethyl-2,4-dimethyl-benzene	134.21	19.06	1078.0	1079.0	18.27	1348.0	1356.0	
99-87-6	p-Cimene	134.21	17.46	1040.0	1029.9	16.08	1250.0	1273.3	[11]
138-86-3	α-Limonene	136.23	17.61	1041.9	1034.3	13.92	1190.6	1194.1	
5989-54-8	L-Limonene	136.23	17.61	1031.0	1034.3	13.92	1199.0	1194.1	[45]
80-56-8	α-Pinene	136.23	14.47	939.0	939.0	9.28	1026.0	1020.3	[46]
3777-69-3	2-Pentylfuran	138.20	16.26	994.0*	992.9	14.84	1222.8*	1228.2	[45,47]
18829-56-6	2-Nonenal, (E)-	140.22	21.59	1164.0	1162.3	23.26	1524.0	1555.5	
90-12-0	1-Methyl-naphthalene	142.19	25.77	1306.8	1310.6	30.46	1875.0	1882.4	
124-19-6	Nonanal	142.23	19.90	1107.0*	1105.4	19.52	1403.0*	1403.6	[47]
4180-23-8	Anethole	148.20	25.31	1283.0	1293.7	29.76	1818.0	1848.4	
25152-84-5	2,4-Decadienal, (E,E)-	152.23	22.90	1314.0	1207	29.56	1800.0	1838.6	
3913-81-3	2-Decenal, (E)-	154.24	24.53	1261.0	1265.5	25.78	1630.0	1664.3	
112-31-2	Decanal	156.26	22.90	1207.7^{*}	1207.1	22.185	1510.33*	1510.3	
112-05-0	Nonanoic acid	158.23	24.70	1273.7*	1271.8	36.51	2233.5 [*]	2196.0	

ladie 2 (Lonunuea)									
CAS No.	Name	m/z (precursor ion)	RT-HP5 (min)	RI-HP5 literature	RI-HP5 exnerimental	RT-Optima® Wax (min)	RI-Optima® Wax literature	RI-Optima® Wax experimental	References
			()		asher marine	()		avpenning and	
644-08-6	p-Phenyltoluene	168.23	30.58	1492.0	1498.9	35.11	2117.0	2117.1	
2463-77-6	2-Undecenal	168.27	27.28	1350.0	1368.2	28.26	1755.0	1777.0	
334-48-5	n-Decanoic acid	172.26	27.72	1380.0	1384.9	38.35	2258.0	2303.4	[47]
112-53-8	1-Dodecanol	186.33	30.82	1472.0	1509.0	32.57	1920.0	1988.4	
143-07-7	Dodecanoic acid	200.31	32.55	1565.0^{*}	1582.8	41.97	2564.0*	2526.5	[48]
112-70-9	n-Tridecan-1-ol	200.36	32.46	1577.0^{*}	1578.7	34.47	2076.0	2083.5	[48]
96-76-4	2,4-Bis(1,1-dimethylethyl)-phenol	206.32	30.82	1519.0	1509.1	38.71	2323.3*	2324.75	
120-51-4	Benzyl benzoate	212.24	36.98	1765.0	1783.9	44.27	2613.0	2658.6	
128-37-0	Butylated hydroxytoluene	220.35	30.80	1513.6^{*}	1508.3	31.28	1920.6^{*}	1923.1	
629-80-1	Palmitaldehyde	240.42	37.72	1811.0	1819.7	35.76	2124.0	2153.5	
36653-82-4	Cethyl alcohol	242.44	38.99	1876.0	1882.8	39.97	2363.0	2400.6	
57-10-3	Palmitic acid	256.42	40.63	2010.0	1966.7	49.04	2865.0	2903.0	[48]
502-69-2	Hexahydrofarnesyl acetone	268.47	38.18	1846.0^{*}	1842.6	35.55	2134.0	2141.7	
1921-70-6	2,6,10,14-Tetramethyl-pentadecane	268.52	35.29	1703.0	1704.6	25.93	1669.0	1670.7	
110-27-0	lsopropyl myristate	270.45	37.78	1824.0	1822.7	33.77	2023.0	2048.3	
112-39-0	Hexadecanoic acid methyl ester	270.45	39.81	1926.7^{*}	1924.3	37.15	2229.5*	2233.0	
112-92-5	1-Octadecanol	270.49	42.87	2081.0	2084.4	43.26	2569.0	2607.0	
84-69-5	Isobutyl-o-phthalate	278.34	38.66	1868.0	1866.2	42.78	2526.0	2578.1	
84-74-2	Dibutyl phthalate	278.34	40.51	1969.0	1960.3	45.18	2726.0	2705.3	
* Retention index (RI)	values determined by us with pure refere	nce standards. Listed in	the order o	of increasing prec	ursor ion mass.				

spectral match factor >90. This was done to minimize data evaluation time in addition to convenient automation. Moreover. the in-house sub libraries dedicated for individual column specifications were supplemented with linear temperature programmed retention indices (LTPRI, Van Den Dool and Kratz index values) corresponding to the stationary phases of the GC used in the study. The added LTPRI values were either experimentally determined by us using authentic standards or literature values retrieved from NIST Chemistry Web Book (2009). In case a putatively identified substance was reported with more than one LTPRI, the value most frequently stated was taken into account. Automated data evaluation was done by AMDIS software (automated mass spectral deconvolution and identification system, version 2.64) [36]. The optimization of AMDIS parameters for deconvolution and identification were done as described earlier by Meyer et al. [37]. The following parameters were found optimal and used for deconvolution and identification during the study; width, 20; adjacent peak subtraction, 1; sensitivity, high; resolution, high; shape requirement, high. Mixture of alkane standards (C_5-C_{10}) , (C_8-C_{20}) and (C₂₁-C₄₀) were analysed separately and LTPRI values were determined [38]. Data presented in Table 2 are designated as "identified" when LTPRI value of a volatile compound was within relative deviation of $\pm 2\%$ from literature or from experimentally determined value (using pure standard) in addition to mass spectral match factor greater or equal to 90 on both columns of inverse polarities in triplicates. In cases where detection was on one of the columns meeting the other three criterions for identification, compounds were designated "annotated" (Supplementary Table 1). The set criterions in this study are based on our previous investigation [39] of fungal and other complex matrices and other reports for impact of matrix composition on RI [40,41].

3.2. Liquid chromatography/tandem mass spectrometry – non volatile microbial metabolites

3.2.1. Analytical reagents and supplies

Methanol, acetonitrile (both LC gradient grade) were purchased from J.T. Baker (Deventer, The Netherlands), ammonium acetate (MS grade) and glacial acetic acid (p.a.) were obtained from Sigma–Aldrich (Vienna, Austria). Water was purified successively by reverse osmosis and a Milli-Q plus system from Millipore (Molsheim, France). Individual fungal and bacterial metabolites were from the same sources as mentioned in our earlier publication [7].

3.2.2. LC-MS/MS

Detection and quantification was done with a QTrap 4000 LC–MS/MS System (Applied Biosystems, Foster City, CA) equipped with a TurbolonSpray electrospray ionization (ESI) source and an 1100 Series HPLC System (Agilent, Waldbronn, Germany). Chromatographic separation was performed at 25 °C on a Gemini[®] C18-column, 150 mm × 4.6 mm i.d., 5 μ m particle size, equipped with a C18 security guard cartridge, 4 mm × 3 mm i.d. (all from Phenomenex, Torrance, CA, USA). Elution was carried out in binary gradient mode. Both mobile phases contained 5 mM ammonium acetate and were composed of methanol/water/acetic acid 10:89:1 (v/v/v; eluent A) and 97:2:1 (v/v/v; eluent B), respectively. After an initial time of 2 min at 100% A, the proportion of B was increased linearly to 100% within 12 min, followed by a hold-time of 4 min at 100% B and 2.5 min column re-equilibration at 100% A. The flow rate was 1000 μ L min⁻¹.

ESI-MS/MS was performed in the scheduled multiple reaction monitoring (sMRM) mode both in positive and in negative polarities in two separate chromatographic runs per sample by scanning two fragmentation reactions per analyte. The sMRM detection window of each analyte was set to the respective retention time ± 24 s and the target scan time was set to 1 s. The settings of the ESI source

Fiber selection based on conserved components

Fig. 1. Comparison of different fiber coatings and number of adsorbed components.

were as follows: source temperature 550 °C, curtain gas 10 psi (69 kPa of max. 99.5% nitrogen), ion source gas 1 (sheath gas) 50 psi (345 kPa of nitrogen), ion source gas 2 (drying gas) 50 psi (345 kPa of nitrogen), ion-spray voltage –4000 V and +4000 V, respectively, collision gas (nitrogen) high. Confirmation of positive analyte identification is obtained by the acquisition of two sMRMs per analyte, which yields 4.0 identification points according to commission decision 2002/657/EC [42]. In addition, the LC retention time and the intensity ratio of the two sMRM transitions have to agree with values of corresponding standards.

3.2.3. Secondary metabolite data evaluation

LC–MS/MS data evaluation was done using the Analyst[®] 1.5 (AB SCIEX 2008). Identification of positive target analytes in samples was confirmed by comparing retention time (RT) and ratios of qualifier to quantifier to authentic standards, measured before and after a particular sample batch of 30 samples.

4. Results and discussion

4.1. SPME and GC-MS

The sensitivity of the HS-SPME-GC-MS technique depends mainly on the distribution constant of analytes partitioned between sample and stationary phase of fiber (K_{fs}) [43]. To generate comprehensive profile of volatiles with variable volatility, selection of optimal fiber becomes a crucial factor in qualitative but mainly in quantitative analysis, where limits of detection are related to amount of adsorbed compound on phase covering the fiber. Among the tested fibers the most polar fiber coatings of polyacrylate (PA) as well as non polar polydimethylosiloxane (PDMS) were found not suitable for our profiling study. Fiber performances of CAR/PDMS, PDMS/DVB and PDMS/DVB/CAR were similar concerning the number of conserved components derived from Spectconnect (Figs. 1 and 2a-e). Hence annotation was considered as an additional criterion for the selection. Among the three semipolar fibers CAR.PDMS was found superior for the purpose with 30% more identification or annotation (Fig. 3). CAR.PDMS is often a fiber of choice in food industries for sensory aroma evaluation [44]. Better suitability of this fiber for profiling purpose is also reported for fungal volatile profiling [6]. Comparison of different extraction temperatures showed that use of 90 °C was suitable for evaluation of substances with wide range of volatilities. Choice of extraction temperature becomes critical, since use of higher temperatures though

promoting detection of low volatile substance can be inappropriate as causing premature desorption of other more volatile analytes from the fiber coating which is not suitable for profiling studies like ours [43]. Other factors that need to be considered selecting extraction temperature are nature of matrix and stationary phase. Sample volume and pre-incubation time and temperature were also evaluated in order not to overlook low abundant or moderately volatile substances. Optimization for these parameters resulted in values of 0.05 g sample mass/vial and extraction at 90 °C for 30 min, respectively (Supplementary Tables 2 and 3). Increasing the sample volume did not show any significant increase in number of conserved components indicating either fiber saturation or limitation of the fiber in terms of its potential to adsorb different compounds. The reduction of empirical sample amount (0.025 g)reduced number of components by 25% possibly due to inadequate ion current/intensity of low abundant substances. In our method pre incubation and extraction temperatures are kept constant to minimize temperature ramping. We assume that this in addition to reducing ramping time is also beneficial achieving equilibrium of low and semi volatile compounds in the mixture. Application of a pair of columns with inverse polarities for identification was compared to earlier reports based on single column [6,11,45-47], found advantageous in case of stereo isomers o- and p-xylenes and constitutional isomers ψ -cumene, mesitylene, hemimellitene. The compounds which were barely resolved on apolar column were well resolved on polar Optima® Wax with RT and RI of 13.69 min and 12.31 min and 1186 and 1136, respectively, for o and p-xylenes. Similarly mesitylene, ψ -cumene, hemimellitene had RT of 14.7, 15.4 and 18.0 min and LTPRI 1223, 1247, 1346, respectively.

Total of 71 volatile organic compounds were detected (Table 2) on both columns of different polarity. 20 of the compounds have been reported as microbial volatile organic compounds produced by either individual or mixtures of microbes under laboratory conditions on different matrices [5,6,45,48–51]. Additionally 85 substances designated as "annotated" (Supplementary table 1) were detected on only one of the two columns HP5(89%)/Optima[®] Wax (11%) with exact LTPRI match or LTPRI within relative deviation of $\pm 2\%$ from literature or from a value determined by measuring a pure standard. Spectral match factor for both identified and annotated compounds were above or equal to 90. Assigning the origin of a compound might not be straight forward as many of the detected volatiles are produced by microbes and plants, as well as they were known to be integral part of many solvents that are commonly used indoors. The best observed examples for

Fig. 2. Fiber selection-chromatographic profile of extracted volatile from sample AHD-1 on different fiber coatings.

this class of compounds were toluene, phenol, ethylbenzene, 1butanol, limonene, styrene and α -pinene [51–53]. The compounds nonanal, toluene, butanoic acid, benzyl alcohol, phenol, 1-octanal, phthalic acid, and dibutyl phthalate were uniform in their occurrence across all four groups of samples. 1-Octanol and nonanal without any ambiguity could be related to microbial origin [51]. All other frequently found substances with exception of toluene and phenol could be traced back to either combustion by product of gasoline, adhesive or plasticizers [53]. Limonene is a constituent of many household consumer products such as deodorizers, polishes, fabric softeners, cigarettes and food beverages [52,54]. Limonene occurrence in samples derived exclusively from municipal waste management units and not in other can be an argument for its insignificant synthesis and release by microbes compared to non biological sources.

4.1.1. Statistical evaluation: GC–MS method performance and source identity recognition/apportionment based on volatile profile of samples

Multivariate statistics PCA and HCA were employed to identify probably existing differences and similarities in volatile profiles of different indoor environments. Our assumption for this was discrepancies in volatile profiles of different indoor environments also exist in dust samples (due to surface adsorption and particle accumulation), and arises as a result of dissimilar indoor purposes, climate and geographical location. For this purpose ISmatrix generated by Spectconnect was used. ISmatrix is a result output Microsoft Excel CSV file, consisting of complement peaks areas consistently detected in multiple chromatograms across sample groups or sample replicates. ISmatrix of the order 66*1993 representing conserved peak areas across 22 samples in replicates of

Fig. 3. Comparison of different fiber coatings and number of identified components.

Samples

Fig. 4. Hierarchical clustering considering selected volatile components with loading score >0.1 with resultant matrix (66*7). Data clusters 1: PWD, Data clusters 2: AHD, CHD, MWD, PWD, Data clusters 3: AHD.

Fig. 5. PCA of selected volatile components with loading score >0.1 with resultant matrix (66*7). Data clusters 1: PWD, Data clusters 2: AHD, CHD, MWD, PWD, Data clusters 3: AHD.

three or at least conserved in triplicates of a single sample was used for hierarchical clustering to verify analytical aspects (sample homogeneity and component distribution) in addition to other mentioned purposes. Concerning homogeneity and component distribution 17 of the 22 samples showed good clustering among replicates. This resulted in two super-clusters with 2 sub clusters each (Supplementary Fig. S1). Replicates of individual house dust samples from distant geographical origins clustered along with the samples from municipal waste handling units forming one of the four major clusters consisting of 11 elements (Supplementary Fig. S1) with the exception one sample MWD-2. Four of the five Finnish house dust samples from moisture damaged houses (AHD 1-5) were equidistant and clustered together and were different to other groups in their volatile pattern. Contrary to anticipation samples from paper recycling units (exception of PWD 1-2) split into two sub clusters of four and three elements each, representing occurrence of probable intrinsic differences. This minor separation could be explained by the different waste handling methods and its influence on aerosols or deposited particles and ultimately leading to formation of dust with compositional irregularities. One or more sample replicates clustering sparsely or distant samples merging into a close knit cluster may not be amenable for an easy explanation (example Fig. 5, clustering of MWD-2 along with PWD samples highlighted with red square). Nevertheless clustering among the majority of sample replicates is good evidence for validity and applicability of our method and instrumental set up for indoor evaluation studies. The recommended procedure for PCA for differentiation of samples is to analyse all variables at the same time. But in cases where numbers of variable are higher than the number of cases this may not be feasible. The observation of loading scores from the matrix 66*1993 suggests that the majority of variables had typically low in the magnitude of <0.1 indicating insignificant influence on separation. Hence a cut off loading score of 0.1 was fixed for variable selection. The resulting new matrix (66*7) comprising both volatiles and reported microbial volatiles (two) accounted for 86.95% of the total variance in the data on PCA. The first principal component (PC1) explained

Fig. 6. Hierarchical clustering considering literature reported microbial volatile components with resultant matrix (22*18). Data cluster: 1: CHD1, Data cluster: 2: AHD, MWD, PWD, Data cluster: 3: AHD, MWD, CHD, Data cluster: 4: PWD.

Fig. 7. PCA of selected microbial volatile components with loading score >0.1 with resultant matrix (22*18). Data cluster: 1: CHD1, Data cluster: 2: AHD, MWD, PWD, Data cluster: 3: AHD, MWD, CHD, Data cluster: 4: PWD.

64.01% of the variance separating samples and second principal component (PC2) with 22.94% of variance. The PC1 identified as linear combination of 2,6-diisopropylnaphtalene and 1-tetradecanol. The PC2 was mainly characterized by variables diethyl phthalate and minor influence by 1-butyl 2-isobutyl phthalate and Toluene. Scattered plot corresponding to this discrimination is illustrated in Fig. 5.The conclusion that can be drawn from the illustrated classification study is that 71% of affected house dust samples and 75% of waste management units dealing with paper were clearly separable on first principal component. Considering samples from a distinct cluster on negative PC1 and PC2 it can be concluded that overlap in volatile and semi volatile profiles are consistent with the statistical reports of the Parliament office of science and technology, England (statistics discussed at later part) for household contribution for municipal waste formation. Hierarchical clustering of the same matrix resulted in two major clusters each having two minor clusters (Figs. 4 and 5). Comparative evaluation of dendrograms showed grouping in Fig. 4 is similar to Supplementary Fig. S1, thus confirming the independent influence of chosen variables in separation for the group of samples. In parallel averaged replicates peak areas of identified MVOCs that are well documented in the scientific literature were considered for PCA. This was done to verify their probable role in separation of samples and differentiation of enclosures (22*18). The PCA of MVOCs indicated the extraction of two principal components representing total variance of 92.10% of the data set. PC1 represented 66.75% of variance and was strongly characterized by toluene, PC2 on the other hand accounted for 25.36% of variance due to nonanal. Due to ambiguity concerning the origin of toluene this compound may not be an ideal volatile marker for separation of samples and sources, based on microbial volatile profile. In this view nonanal underlying PC2 and explaining a variance of 25.36% could be an important microbial marker for separation of samples in the indoor environments. HCA of the same matrix (22*18) resulted in three super-clusters. Extreme right cluster (Fig. 6), where samples belonging to paper recycling units can be seen grouped together (PWD 1, 3, 4, 6, 8). This may explain similar purposes of indoor or occurrence of common abundant cellulose matrix promoting climate favorable for particular set microbes, in addition to influencing their physiology and volatile pattern. Similarly another main cluster consisting of house dust samples (AHD 2, 4, 5 and CHD 2) cluster at similar height which could be best reasoned as a consequence of comparable thermal and humidity comfort pattern practiced in homes leading to comparable/general micro climates in these indoor environments (Figs. 6 and 7).

4.2. Evidence for natural occurrence of microbial secondary metabolites in settled dust

The analysis of non volatile/secondary microbial metabolites in settled dust matrix was done using a validated method described earlier [7]. In cases of samples from waste management units containing paper and other matrices with absorptive consistency a larger sample to solvent ratio of 1:8 or 1:12 was used to ensure complete submersion of samples and optimum extraction. Dust samples were source of 38 different microbial metabolites to variable quantities. The concentrations of the investigated toxins in the positive samples are listed in Table 3. Their relative standard deviation between replicates was generally below 20% (e.g. 50% of samples), which we consider to be a reasonable value in view of the heterogeneity of the matrix (thus confirming the accuracy of the method). The microbial metabolite spectrum detected included following microbial taxa, Penicillum (n=12), Aspergillus (n=5), Fusarium (n=7), Beauveria (n=1), Trichoderma (n=1), Claviceps (n=1), Alternaria (n=2), Stachybotrys (n=1), Metarrhizium (n=1), Chaetomium (n=1) and Bacterial (n=6) [55]. A few of the metabolites could be attributed to more than one genus of indoor fungi and bacteria.

Samples from municipal and paper recycling waste management units were similar in terms of microbe-metabolite pattern and quantities. A post note released by the Parliament office of science and technology, England (http://www.parliament.uk/ documents/post/postpn252.pdf) provides some insight concerning organic content of municipal waste and offers an additional indirect explanation for high prevalence of saprophytic/parasitic microbes in dust samples procured from municipal waste dealing units. The above mentioned report states that, the bulk of municipal waste generation is contributed by the households and consists of biodegradable material (41%, kitchen, garden, soil), biodegradable & recyclable material (18%, paper, cardboard), recyclable waste (17%, glass, plastic, metal) and other materials (20%, wood, non-combustibles, textiles). Municipal waste with complex organic content thus could be a potential matrix nurturing diverse set of fungi and bacteria. Each group of enclosures was unique having set of metabolites not found in the other sampling sites. The samples of WMUs dealing with municipal waste were distinct from samples of WMUs dealing with paper by the presence of griseofulvin, dechlorogriseofulvin, chlamydeosporal, malformin C, myriocin, patulin and puromycin. Presence of griseofulvin and its halogenated derivative, dechlorogirsofulvin in one and the same municipal waste management sample is confirmation for mutual occurrence addition to proving the greater relevance of our chosen indoor target metabolites in the course of method expansion [56,57]. Patulin, a mycotoxin on decomposing apples and a metabolite of species of Pencillium and Aspergillus is not frequently found in indoor dust makes its presence interesting. Presence of malformin C could indicate occurrence of the indoor mold. Aspergillus niger [58] known for causing skin diseases and ear infection [59]. Similarly samples from paper recycling units were different to those of municipal waste management units in their microbe-metabolite pattern due to the presence of deoxybrevinamide E and cytochalsin D. Cytochalasin D is a metabolite produced by filamentous saprophobic ascomycetes of the genus Chaetomium found in soil, air and plant debris [60]. Several species of Chaetomium are common in indoor environments such as C. elatum, C. globosum, C. murorum [61]. Similarities in the metabolite patterns of the two waste handling units might be a result of similarities in the fungal spectra present in such work places due to similar micro-climatic conditions, substrates and the hygiene principles applied.

As apprehended settled dust samples from inhabited houses showed lower metabolite diversity (n=18) compared to other groups. Metabolites enniatin B2 and alternariol were exclusively

Table 3

Non volatile/secondary microbial metabolites detected in settled floor dust samples from Groups A, B, C and D. Quantification values presented are average of replicates.

Metabolite	Precursor ion	Municipal waste (Gp A) management	Household paper (Gp B) recycling (µg/kg)	Settled dust from (Gp C) house (μg/kg)	Settled dust from (Gp D) house (µg/kg)
		(µg/kg)			
3-Methylviridicatin	281.07[M+H]+	5.8-10.0	8.5-9.0	_	-
Alamethicin F30	775.5 [y7 ^d +H] ⁺	4.0-35.0	14.0-15.0	_	-
Alternariol	257.0 [M–H] ⁻	_	_	39.7	34.6-41.0
AME	271.1 [M–H] [–]	11.2-42.0	17.3-37.0	8.0	7.3-10.0
Apicidin	622.4 [M–H] [–]	1.1-1.4	0.5-0.8	_	-
Beauvericin	801.5 [M+NH ₄] ⁺ 806.5 [M+Na] ⁺	1.6-22.0	0.3-10.4	3.1	0.7-1.8
Chaetoglobosin A	695.0 [M–H] [–]	193.0-258.0	83.0-242.0	-	-
Chanoclavine	257.1[M+H] ⁺	1.9-2.8	0.6-5.9	-	-
Chlamydosporol	245.2[M+H] ⁺	16.0-59.0	_	-	-
Chloramphenicol	320.9 [M-H] ⁻	39.5-108.3	2.7-22.6	_	3.6-4.6
Cyclopenin	295.1[M+H] ⁺	32.0-188.0	26.0-303.0	_	-
Cyclopeptine	281.07[M+H] ⁺	7.8-50.0	3.0-46.0		-
Cycloaspeptide A	642.3 [M+H]+	9.6-29.0	10.8-11.7	155.4	_
Cytochalasin D	609.3 [M+2H] ²⁺	_	51.0-221.0	_	57.1
Dechlorogriseofulvin	319.1[M+H] ⁺	230.5	_	13.0	-
Deoxybrevianamid E	352.2[M+H] ⁺	-	221.3	-	-
Emodin	269.0 [M-H]-	61.0-314.0	26.0-88.0	15.15	4.0-117.0
Enniatin A	699.4 [M+NH ₄] ⁺	7.4-17.0	3.0-17.0	_	0.7-223.0
Enniatin A1	685.4 [M+NH ₄] ⁺	2.0-30.0	1.3-14	_	1.4-185.0
Enniatin B	657.5 [M+NH ₄] ⁺	2.2-23.0	0.2-8.1	_	0.9-10.3
Enniatin B1	671.4 [M+NH ₄] ⁺	4.0-49.0	1.3-19.3	-	_
Enniatin B2	643.5 [M+NH ₄] ⁺	-	_	1.9	0.6-2.0
Equisetin	372.2 [M–H] ⁻	21.2-422.4	12.5-185.3	-	19.0-20.0
Fumigaclavine	299.3 [M+H] ⁺	13.0-86.0	10.0-23.0	-	_
Griseofulvin	353.2 [M+H] ⁺	87.0-1598.0	_	210.0	-
Malformin C	530.3[M+H] ⁺	8.0-78.0	_	-	-
Meleagrin	434.3 [M+H]+	14.0-52.0	29.0-67.0	-	_
Monactin	768.8 [M+NH ₄] ⁺	4.0-101.0	0.4-2.3	-	0.65
Myriocin	402.4 [M+H] ⁺	52.0-1941.0	_	-	-
Nonactin	754.6 [M+NH ₄] ⁺	0.2-50.0	0.5-1.2	0.8	0.2-0.3
Patulin	152.9 [M–H] [–]	49144.0	_	_	-
Pentoxyfylline	279.2 [M+H] ⁺	11.0-186.0	2.0-101.0	-	-
Physcion	283.0 [M–H] ⁻	409.0-1034.0	231.0-1565.0	-	-
Puromycin	472.4 [M+H] ⁺	40.0-126.0	_	-	-
Roquefortine C	390.2 [M+H] ⁺	83.0-176.4	18.0-350.0	-	-
Stachybotrylactam	386.3 [M+H] ⁺	52.6-104.5	87.0-160.0	_	-
Sterigmatocystine	325.1 [M+H] ⁺	3.0-45.3	6.0-32.0	_	1.6-11.0
Valinomycin	1128.8 [M+NH ₄] ⁺	0.05-8.0	0.3-2.0	0.4	0.04-0.6
Viridicatin	238.1 [M+H]+	110.0-920.0	108.0-369.0	-	-

detected in settled floor dust (SFD) samples of control and houses with severe moisture damage (Table 3) along with some other *Fusarium* metabolites. However control and damaged houses had certain metabolite signature pattern. The control houses differed by the presence of metabolites griseofulvin, dechlorogriseofulvin and cyclosapeptide A. The moisture damaged houses were positive for the presence of alternariol monomethyl ether (AME) and monactin which are metabolites of tertiary colonizers *Alternaria alternata* and *Actinomycetes* [14] indicating for water damage. The presence of bacterial metabolites produced by *Streptomyces* and related genera in the damaged houses clearly links to conditions of excess moisture damage and dampness indoors, as this groups of bacteria has been described earlier as being indicative for such indoor conditions [62].

5. Conclusion

The detection and quantification of wider range of metabolites in concentration range of $0.04-49,144.0 \mu g/kg$ are evidences for the competency of our developed multi target LC–MS/MS method for the purpose. Occurrence of broader array of metabolites (primary, secondary and tertiary colonizing microbes) in samples of waste handling units (municipal waste (>50%) and paper recycling units (>33%)) is affirmation for microbial succession. Metabolites of *S. chartarum*, which is well known to be indoor specific fungi was found in waste management units in high concentrations $(52-160 \,\mu g/kg)$. In the absence of moisture monitoring data of evaluated environments, origin (indoor or outdoor) of stachybotrylactam remains to be an open question. The presence of emodin, griseofulvin and dechlorogriseofulvin along with metabolites of tertiary colonizer are not unexpected findings, considering processes involved in waste handling (collection, transportation, storage) during which moisture accumulation is an obvious possibility. To the best of our knowledge 30 of the 71 identified volatiles are new report in the indoor context, particularly in settled floor dust matrix. Though as many as 20 previously reported MVOCs were found in our study, a direct correlation to secondary metabolite profiles could not be possible due to the known ambiguity in MVOC and the non-availability of authentic environmental control samples and volatile profiles corresponding to them. The applications of AMDIS and Spectconnect for volatile profiling are advantageous identifying major indoor pollutants clouded amidst extremely high number of variables/components. The wide range biogenic and anthropogenic pollutants in dust qualify it as an indicator matrix of indoor status, hence can be valuable for evaluation purposes.

Acknowledgments

The authors thank the Austrian Research Promotion Agency, the government of Lower Austria and Romer Labs Division Holding GmbH, Austria for their financial support. Authors are obliged to Marc Heinrichmeyer and Kathi Järvi for sampling and Nora Neumann and Christoph Büschl for their cooperation during statistical data evaluation.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.talanta.2011.07.043.

References

- [1] I. Rosas, E. Salinas, A. Yela, E. Calva, C. Eslava, A. Cravioto, Applied and Environmental Microbiology 63 (1997) 4093-4095.
- [2] M.A. Andersson, M. Nikulin, U. Koljalg, M.C. Andersson, F. Rainey, K. Reijula, E.L. Hintikka, M. Salkinoja-Salonen, Applied and Environmental Microbiology 63 (1997) 387-393.
- [3] E. Bloom, K. Bal, E. Nyman, L. Larsson, Journal of Environmental Monitoring: JEM 9 (2007) 151-156.
- [4] K.F. Nielsen, U. Thrane, Journal of Chromatography A 929 (2001) 75–87.
- [5] E. Barbieri, A.M. Gioacchini, A. Zambonelli, L. Bertini, V. Stocchi, Rapid Communications in Mass Spectrometry: RCM 19 (2005) 3411-3415.
- [6] H.H. Jelen, Letters in Applied Microbiology 36 (2003) 263-267.
- V. Vishwanath, M. Sulyok, R. Labuda, W. Bicker, R. Krska, Analytical and Bioan-[7] alytical Chemistry 395 (2009) 1355-1372.
- K.F. Nielsen, J. Smedsgaard, Journal of Chromatography A 1002 (2003) 111-136. [9]
- B. Delmulle, S. De Saeger, A. Adams, N. De Kimpe, C. Van Peteghem, Rapid Communications in Mass Spectrometry: RCM 20 (2006) 771-776.
- S.J. Rothenberg, P.A. Nagy, J.A. Pickrell, C.H. Hobbs, American Industrial Hygiene [10] Association Journal 50 (1989) 15-23.
- [11] P. Wolkoff, C.K. Wilkins, Indoor Air 4 (1994) 248-254.
- [12] J. Roberts, W. Budd, J. Chuang, R. Lewis, Chemical contaminants in house dust: occurrence and sources [Govt Reports Announcements and Index (GRA&I), Issue 24, 1993]; US Environmental Protection Agency, Atmospheric Research and Exposure Assessment Lab; Research Triangle Park, NC, 1993.
- [13] H.A. Burge, Occupational Medicine (Philadelphia, PA) 10 (1995) 27-40.
- [14] WHO Guidelines for Indoor Air Quality: Dampness and Mold, 2009.
- [15] R. Rylander, Mediators of Inflammation 6 (1997) 275-277.
- [16] M.J. Mendell, Indoor Air 3 (1993) 227-236.
- [17] D.B. Teculescu, E.A. Sauleau, N. Massin, A.B. Bohadana, O. Buhler, L. Benamghar, J.M. Mur, International Archives of Occupational and Environmental Health 71 (1998) 353–356.
- [18] R.C. Kuhn, M.W. Trimble, V. Hofer, M. Lee, R.S. Nassof, Canadian Journal of Microbiology 51 (2005) 25-28.
- [19] I. Yike, A.M. Distler, A.G. Ziady, D.G. Dearborn, Environmental Health Perspectives 114 (2006) 1221-1226.
- [20] J.D. Miller, M. Sun, A. Gilyan, J. Roy, T.G. Rand, Chemico-Biological Interactions 183 (2010) 113–124.
- [21] D. Nakajima, R. Ishii, S. Kageyama, Y. Onji, S. Mineki, N. Morooka, K. Takatori, S. Goto, Journal of Health Science 52 (2006) 148-153.
- [22] F.O. Larsen, P. Clementsen, M. Hansen, N. Maltbaek, T. Ostenfeldt-Larsen, K.F. Nielsen, S. Gravesen, P.S. Skov, S. Norn, Inflammation Research: Official Journal of the European Histamine Research Society 47 (Suppl. 1) (1998) S5-S6.
- [23] H.M. Hwang, E.K. Park, T.M. Young, B.D. Hammock, The Science of the Total Environment 404 (2008) 26-35.
- [24] P.J. Lioy, N.C. Freeman, J.R. Millette, Environmental Health Perspectives 110 (2002)969-983.
- [25] I. Bockelmann, S. Darius, N. McGauran, B.P. Robra, B. Peter, E.A. Pfister, Disability and Rehabilitation 24 (2002) 455-461.

- [26] J. Caro, M. Gallego, Chemosphere 77 (2009) 426-433.
- [27] K. Fiedler, E. Schutz, S. Geh, International Journal of Hygiene and Environmental Health 204 (2001) 111-121.
- [28] K. Karlshoj, T.O. Larsen, Journal of Agricultural and Food Chemistry 53 (2005) 708-715.
- [29] S. Schuchardt, H. Kruse, Journal of Basic Microbiology 49 (2009) 350-362.
- [30] J.C. Frisvad, B. Andersen, U. Thrane, Mycological Research 112 (2008) 231–240.
- [31] B. Andersen, K.F. Nielsen, U. Thrane, T. Szaro, J.W. Taylor, B.B. Jarvis, Mycologia 95 (2003) 1227-1238.
- [32] U. Thrane, S.B. Poulsen, H.I. Nirenberg, E. Lieckfeldt, FEMS Microbiology Letters 203 (2001) 249-255.
- [33] M.P. Styczynski, J.F. Moxley, L.V. Tong, J.L. Walther, K.L. Jensen, G.N. Stephanopoulos, Analytical Chemistry 79 (2007) 966-973.
- The Unscrambler[®] v9.6, Camo Software AS, Oslo, 2006.
- [35] The R Foundation for Statistical Computing, Version 2.12.0, 2010.
- [36] S.E. Stein, Journal of the American Society for Mass Spectrometry 10 (1999) 770-781. [37]
- M.R. Meyer, F.T. Peters, H.H. Maurer, Clinical Chemistry 56 (2010) 575-584.
- H. van Den Dool, P.D. Kratz, Journal of Chromatography A 11 (1963) 463-471 [38] **i**391 N. Stoppacher, B. Kluger, S. Zeilinger, R. Krska, R. Schuhmacher, Journal of Microbiological Methods 81 (2010) 187-193.
- [40] N. Strehmel, J. Hummel, A. Erban, K. Strassburg, J. Kopka, Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences 871 (2008) 182-190.
- [41] C. Wagner, M. Sefkow, J. Kopka, Phytochemistry 62 (2003) 887-900.
- Commission Decision 2002/657/EC, Brussels, 2002 [42]
- W. Wardencki, M. Michulec, J. Curylo, International Journal of Food Science and [43] Technology 39 (2004) 703-717.
- O. Pinho, C. Peres, I.M. Ferreira, Journal of Chromatography A 1011 (2003) 1-9.
- i45i K. Wilkins, E.M. Ntelsen, P. Wolkoff, Indoor Air 7 (1997) 128-134.
- [46] H. Lagesson, A. Nilsson, C. Tagesson, Chromatographia 52 (2000) 621-630.
- [47] E.K. Pedersen, O. Bjorseth, T. Syversen, M. Mathiesen, Indoor Air 13 (2003)
- 106 117[48] R.T. Griffith, K. Jayachandran, K.G. Shetty, W. Whitstine, K.G. Furton, Sensors-Basel 7 (2007) 1496-1508.
- [49] G. Fischer, R. Schwalbe, M. Moller, R. Ostrowski, W. Dott, Chemosphere 39 (1999) 795-810.
- [50] M. Kuske, A.-C. Romain, J. Nicolas, Building and Environment 40 (2005) 824-831.
- [51] A. Korpi, J. Jarnberg, A.L. Pasanen, Critical Reviews in Toxicology 39 (2009) 139-193.
- [52] S. Wang, H.M. Ang, M.O. Tade, Environment International 33 (2007) 694-705.
- [53] T. Salthammer, Indoor Air Pollution, Part F, Berlin/Heidelberg, Springer-Verlag, 2004
- [54] A. Korpi, A.L. Pasanen, P. Pasanen, Applied and Environmental Microbiology 64 (1998) 2914-2919.
- [55] H. Laatsch, AntiBase 2005 (software), John Wiley & Sons Hoboken, New Jersey, 2005. ISBN 3-527-31721-X.
- [56] K. Fog Nielsen, Fungal Genetics and Biology FG & B 39 (2003) 103-117.
- [57] B.B. Jarvis, Y. Zhou, J. Jiang, S. Wang, W.G. Sorenson, E.L. Hintikka, M. Nikulin, P. Parikka, R.A. Etzel, D.G. Dearborn, Journal of Natural Products 59 (1996) 553-554
- [58] E. Pieckova, Z. Kunova, Annals of Agricultural and Environmental Medicine: AAEM 9 (2002) 59-63
- Z.B. Pontes, A.D. Silva, E.O. Lima, M.H. Guerra, N.M. Oliveira, M.F. Carvalho, F.S. [59] Guerra, Brazilian Journal of Otorhinolaryngology 75 (2009) 367-370.
- [60] I. Guarro, L. Soler, M.G. Rinaldi, European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 14 (1995) 613-618.
- J.A. Arx von, J. Guarro, M.J. Figueras, The Ascomycete Genus Chaetomium, E. [61] Schweizerbart Science Publishers, Beih Nova Hedwigia, 1986.
- [62] H. Rintala, A. Hyvärinen, L. Paulin, A. Nevalainen, Indoor Air 14 (2004) 112-119.

Supplementary Table (1); List of annotated volatile organic compounds found in settled floor dusts from Groups A, B, C and D, * Retention index(RI) values determined by us with pure reference standards. Listed in the order of precursor ion mass.

CASNo	Nome	m/z(precursor	RT-HP5	RI-HP5-	RI-HP5-
CA5.NO	name	ion)	(min)	Literature	Experimental
64-19-7	Acetic acid	60.05	6.02	600.0	643.0
3102-33-8	3-Penten-2-one, (E)-	84.11	8.34	735.0	743.9
498-60-2	3-Furaldehyde	96.08	11.16	815.0	838.2
98-01-1	2-Furaldehyde	96.08	11.18	836.0	838.6
98-00-0	2-Furanmethanol	98.09	12.01	853.0	863.9
80-62-6	2-Methyl-2-propenoic acid methyl ester	100.11	7.50	/32.0	/14.1
100-32-7	2 Hoptopol (E)	100.12	15.51	961.0	970.5
142 62 1	2-neptenal, (E)-	112.10	13.22	950.0	1034.3
142-02-1	1-Hentanol	116.15	17.01	961.0	072 7
122-78-1	Benzeneacetaldehvde	120.14	18.14	1042.0	1050.8
529-20-4	2-methyl- Benzaldehyde	120.14	19.45	1067.0	1091.0
98-86-2	Acetophenone	120.14	18.85	1066.0	1072.5
65-85-0	Benzoic acid	122.12	22.49	1214.4*	1192.7
60-12-8	Benzyl Carbinol	122.16	20.32	1120.3*	1119.4
91-20-3	Naphthalene	128.17	22.62	1183.0	1197.1
111-13-7	2-Octanone	128.21	16.24	992.0	992.3
646-14-0	1-nitro- hexane	131.17	18.04	1046.5	1047.8
122-00-9	p-Acetyltoluene	134.17	22.50	1189.0	1193.1
585-74-0	1-(3-methylphenyl)- ethanone	134.17	22.50	1176.0	1193.1
488-23-3	1,2,3,4-tetramethyl- Benzene	134.21	20.46	1150.0	1124.3
95-93-2	1,2,4,5-tetramethyl- benzene	134.21	20.42	1131.0	1122.8
272-16-2	1,2-Benzisothiazole	135.18	23.81	1221.0	1239.8
95-16-9	Benzothiazole	135.18	23.81	1228.0	1239.9
5989-27-5	D-Limonene	136.23	17.61	1027.0	1034.3
122-99-6	2-Phenoxyethanol	138.10	23.43	1245.3	1226.1
5910-87-2	2,4-Nonadienal, (E,E)-	138.20	23.20	1219.0	1220.1
60784 31 8	2,4-Nonadienal 2 Nonanal (Z)	138.20	25.20	1219.0	1220.1
01-57-6	Nanhthalene 2-methyl	140.22	21.39	1290.5	1310.6
124-07-2	Octanoic Acid	144.21	21.95	1177 3*	1174 5
149-57-5	2-ethyl- Hexanoic acid	144 21	20.13	11167	1113.0
143-08-8	Nonan-1-ol	144.25	21.85	1173.4*	1171.3
106-46-7	p-Dichlorobenzene	147.00	17.24	1013.0	1023.0
541-73-1	1.3-dichloro- Benzene	147.00	17.24	1005.0	1022.9
104-46-1	Anethole	148.20	25.31	1289.3	1293.7
1197-01-9	p-Cymen-α-ol	150.21	22.28	1182.0	1185.8
2363-88-4	2,4-Decadienal	152.23	25.45	1317.0	1298.7
92-52-4	Phenylbenzene	154.20	27.94	1377.3	1393.4
2497-25-8	2-Decenal, (Z)-	154.24	24.53	1250.0	1265.5
571-61-9	1,5-Dimethylnaphthalene	156.22	29.00	1439.8	1435.4
575-37-1	1,7-dimethyl- Naphthalene	156.22	29.00	1418.7	1435.4
575-43-9	1,6-dimethyl- naphthalene	156.22	29.00	1419.6	1435.3
581-42-0	2,0-dimethyl- naphthalana	150.22	28.09	1401.0	1423.1
382-10-1 112 32 3	2,7-dimetryi- hapithalene	158.22	28.09	1402.2	1425.1
112-32-3	1-Decanol	158.25	20.30	1272.0	127.7
643-58-3	2-Methylbiphenyl	168.23	28.33	1402.3	1408.7
643-93-6	3-Methylbiphenyl	168.23	30.58	1487.8	1499.0
90-43-7	o-Xenol(fungicide)	170.20	31.35	1506.0	1531.6
112-12-9	2-Undecanone	170.29	25.30	1295.1*	1293.3
112-42-5	1-Undecanol	172.30	27.90	1370.0	1391.8
120-12-7	Anthracene	178.22	37.56	1786.4	1811.8
136-60-7	n-Butyl benzoate	178.22	27.63	1377.0	1381.4
85-01-8	Phenanthrene	178.22	37.56	1780.0	1811.7
78-40-0	Triethyl phosphate	182.15	20.32	1137.2	1119.5
119-61-9	Benzophenone	182.21	34.02	1621.0	1647.3
3/96-70-1	trans-Geranylacetone	194.31	29.36	1454.6	1450.1
295-17-0	Licomonyl 7 mathyl 4 mathyland	196.37	34.74	16/3.0	16/9./
30021-74-0	1-Isopropyi-/-methyl-4-methylene-	204.35	30.82	1477.0	1509.1
13360 61 7	1 Pentadecene	210.30	30.41	1402.5	1402.2
24157-81-1	2.6-Dijsopropylnaphthalene	210.39	35 91	1728.0	1733 7
124-25-4	Tetradecanal	212.33	33 32	1611.0	1616.1
112-72-1	1-Tetradecanol	214 38	34.73	1672.0	1679.5
84-66-2	Diethyl phthalate	222.23	32.80	1597.0	1593.4
295-65-8	Cyclohexadecane	224.42	38.99	1883.0	1882.8
544-63-8	Tetradecanoic acid	228.37	36.62	1780.0	1767.2
84-15-1	o-Terphenyl	230.30	39.37	1903.0	1901.3
64437-47-4	9-hexadecenol (E)	240.42	39.00	1868.0	1883.3
18435-45-5	1-Nonadecene	266.50	39.01	1892.0	1883.5

Supplementary Table (1) continued

CAS.No	Name	m/z (precursor ion)	RT- Optima [®] Wax (min)	RI-Optima [®] Wax- Literature	RI-Optima [®] Wax- Experimental
17851-53-5	1-Butyl 2-isobutyl phthalate	278.34	38.66	1900.0	1866.3
117-82-8	2-Methoxyethyl phthalate	282.28	40.52	1965.0	1961.0
638-36-8	2,6,10,14-tetramethyl- Hexadecane	282.54	37.45	1810.7	1806.6
4170-30-3	Crotonaldehyde	70.08	9.95	1408.0	1046.4
123-72-8	Butanal	72.10	6.28	877.0	877.0
534-22-5	2-methyl- Furan	82.10	6.14	871.0	867.3
1003-29-8	α-Pyrrolaldehyde	95.09	33.91	2044.0	2055.5
142-83-6	2,4-Hexadienal, (E,E)-	96.12	20.01	1423.6*	1423.1
3658-80-8	Dimethyl trisulfide	126.26	18.81	1378.0	1376.8
629-33-4	n-Hexyl formate	130.18	18.61	1382.0	1369.0
104-61-0	γ-Nonalactone	156.22	34.19	2028.0	2069.1
112-34-5	O-Butyl diethylene glycol	162.22	29.36	1796.0	1829.0
1454-84-8	n-Nonadecanol-1	284.52	43.28	2637.0	2607.8

Supplementary Table (2); Fiber selection for SPME : All samples used for the purpose are naturally contaminated real world samples.

	CAR.I	PDMS	Polyac	rylate	PD	MS	PDMS	.DVB	PDMS.D	VB.CAR
Samples	Conserved	Identified								
MWD-3	329	94	112	32	244	46	322	76	329	71
MWD-6	415	86	131	39	255	59	372	77	443	80
PWD-2	323	89	126	36	247	50	334	75	356	71
AHD-1	248	65	81	25	173	37	233	45	221	49
AHD-2	303	72	98	29	210	41	284	54	318	58
CHD-1	396	51	110	24	303	26	425	35	426	33

Supplementary Table (3); HS-SPME: The values shown above are averages of triplicates. Spectconnect (conserved components) and AMDIS (Identification).

AHD-1 sample extraction and chromatography with CAR.PDMS and apolar HP5 column

Sa	mple amount (gr	ams)	Extraction	/incubation temp	erature	Extra	action/incubation t	ime
	Spectconnect	AMDIS		Spectconnect	AMDIS		Spectconnect	AMDIS
0.025	132	34	30'60'30°C	40	6	0'30'90°C	145	39
0.05	248	65	30'60'60°C	76	19	0'60'90°C	170	44
0.1	171	49	30'60'90°C	248	65	30'30'90°C	152	45
						30'60'90°C	248	65

Establishment and application of a metabolomics workflow for identification and profiling of volatiles from leaves of *Vitis vinifera* by HS-SPME-GC-MS

Georg Weingart^a, Bernhard Kluger^a, Astrid Forneck^b, Rudolf Krska^a, Rainer Schuhmacher^a*

^aCenter for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20; 3430 Tulln, Austria

^bDivision of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Str. 82, 1190 Vienna, Austria

* Corresponding author: rainer.schuhmacher@boku.ac.at

Abstract

Introduction - Volatile organic compounds (VOCs) occurring in leaves of plants carry information about the physiological state of the plant. Monitoring of VOCs assists in detecting plant stress before visible.

Objective - To establish and apply a simple workflow for the automated extraction, measurement and annotation/identification of *Vitis vinifera* cv. Pinot Noir leaf metabolites.

Methodology - Leaf samples were harvested, cooled with liquid nitrogen and homogenised under cooled conditions. VOCs were extracted and enriched by solid phase microextraction (SPME) and analysed by GC-MS. Samples were measured on two columns with different polarity of stationary phases. Mass spectral deconvolution and identification was done by AMDIS software. Strict identification criteria were applied: match factor \geq 90; relative retention index deviation \leq 2% from reference value on both columns. Data of two sampling dates were analysed with multivariate statistics.

Results - We found ~600 components in a single chromatogram. Applying the mentioned criteria resulted in annotation of 63 metabolites of which 47 were confirmed with authentic standards. For the majority of the compounds technical variability was <40% (RSD), biological variability among plants was 7 - 119%. Principal component analysis (PCA) scores plot of leaf samples from two different sampling dates showed two clearly separated clusters. The presented workflow enabled for the first time the detection and identification of 19 metabolites, which have so far not been described for *Vitis* spp.

Conclusion – The developed workflow enabled the identification of grapevine leaf metabolites, which allowed the separation of leaves from two sampling dates by PCA.

Introduction

Volatile organic compounds (VOCs) are emitted by nearly all plant organs including leaves, flowers or roots. Typical substance classes of VOCs are alkanes, alkenes, aldehydes, ketones, aromatic compounds and terpenes (including modified terpenes, terpenoides). All of them have been detected in grapevine leaves. The emission of volatiles by plants enables these sessile organisms to send signals over relatively

long distances. Moreover, VOCs are well known to be involved in defence related processes (e.g. Schulze et al., 2006; Choudhary et al., 2008) and can be used for signalling within the plant or to attract e.g. predators of an attacking aphid/insect. Hence, the synthesis of primary and secondary metabolites changes in response to biotic (e.g. Maes and Debergh, 2003; Batovska et al., 2008, 2009a) and abiotic stress (e.g. Ormeño et al., 2007; Vickers et al., 2009). Changes of secondary metabolites as a reaction to abiotic stress is not yet fully understood (Loreto and Schnitzler, 2010) but can serve as markers for stress, which often cannot be noticed visually. Detecting relevant volatile profiles and novel volatiles indicating plant stress requires unbiased and comprehensive approaches including stringent controls to a treated group.

An analytical concept, which has proven to have a high potential for the comprehensive determination of volatile metabolites is metabolomics or, if restricted to a number of predefined compounds, metabolite profiling (Fiehn, 2002). It aims to detect, identify and quantify (at least semi quantitatively or relatively) as many metabolites as possible within one single analysis. Recently, some studies using a metabolomics approach investigating wine (e.g. Son et al., 2009) and grapevine leaves (Figueiredo et al., 2008) have been published which used NMR, a well suited technique for fingerprint approaches. However, it is less suited for profiling of low level metabolites which often occur in plant samples (Hall, 2006). An adequate technique for this purpose is gas chromatography – mass spectrometry (GC-MS). It enables metabolite identification due to the high separation power of GC in combination with the large mass spectra libraries available. The number of false positive identifications can be reduced by the use of retention time indices (RIs) which are also available through databases.

Different sample preparation techniques for the determination of VOCs produced by plants are available: liquid extraction with organic solvents, often followed by a solid phase extraction (SPE) cleanup or concentration or derivatisation step or a combination of all (Dunn and Ellis, 2005; Kim and Verpoorte, 2010). Wildenradt et al. (1975) and Hebash et al. (1991) for example, investigated volatiles of grapevine leaves by steam distillation extraction followed by GC–MS and found 32 and 27 metabolites, respectively. Wirth et al. (2001) described 73 substances for leaves and berries after liquid extraction followed by enzymatic hydrolysis and GC-MS. Most substances were identified by comparison of mass spectra and RI of authentic standards. Batovska et al. (2008, 2009a,b) analysed liquid extracts of grapevine leaves resulting in more than 125 detected metabolites.

In contrast to these time consuming and hardly automatable sample extraction techniques solid phase microextraction (SPME, Arthur and Pawliszyn, 1990) offers minimal sample treatment and the possibility to fully automate the extraction and measurement process. Additionally, the analytes are enriched on the fibre during the extraction process so that very low concentrations can be detected. SPME has been successfully employed to extract volatiles from wine (e.g. Rebière et al. 2010, Robinson et al. 2011) and from grapevine leaves. E.g. Tasin et al. (2005) identified 24 volatiles in leaves whereas Cha et al. (2008) investigated grape shoot volatiles and identified 11 volatiles.

A key step in comprehensive metabolite profiling is data analysis. To handle large amounts of data and to receive as much information from the samples as possible, efficient software tools for peak picking, peak deconvolution, mass spectra comparison and retention index calculation are necessary (Dunn and Ellis, 2005; Boccard et al., 2010). For this purpose, various platform independent software tools are available, e.g. AMDIS (Automated Mass Spectral Deconvolution and Identification System, Stein, 1999), Tagfinder (Luedemann et al., 2008) or MetaboliteDetector (Hiller et al., 2009).

The second step of data processing is the detection of differentially expressed metabolites. This can be done with uni- or multivariate statistics like for example, simple t-test or principal component analysis (PCA).

The objectives of this study were (i) to create a workflow for the annotation of metabolites based on mass spectra and RIs, (ii) to apply the workflow to Pinot Noir leaf samples, (iii) to confirm the identity of the annotated substances with authentic standards, (iv) to check the technical and biological variability of the developed method with field samples and (v) apply multivariate statistics. The resulting workflow should provide extended knowledge of the grapevine leaf metabolome and function as a basis to detect differentially expressed volatile metabolites indicating for example stress in grapevine plants in future studies.

95

Experimental

Chemicals and standards. All Standards listed in Table 2, the alkane calibrants C8-C20 (40 mg/L each in hexane, Fluka) and C21-C40 (40 mg/L each in toluene, Fluka) were purchased from Sigma-Aldrich (Vienna, Austria). A C5-C10 alkane calibrant was prepared using the pure substances in a ratio resulting in narrow and symmetric peak shapes (pentane 99% Sigma-Aldrich, hexane SupraSolv Merck, heptane 99.5% J.T.Baker, octane 99% Sigma-Aldrich, nonane 99% Sigma-Aldrich, decane p.a. Promochem). Methanol (LiChrosolv) was from Merck (Darmstadt, Germany), acetonitrile (HPLC gradient grade) from VWR (Vienna, Austria) and MilliQ-water from an in-house equipment (Millipore, Molsheim, France).

Standard preparation and RI determination. From the original pure standard compounds (liquids and solids) individual stock solutions with a concentration of 100 mg/L in acetonitrile were prepared and stored at 4 °C. Standards and dilutions were always handled with gastight Hamilton syringes.

The standards from stock solutions were combined in 4 mixtures resulting at a concentration of 100 μ g/L in MilliQ-water (mix 1, 2, 3) or acetonitrile (mix 4) for each component (see Table 1 for details). For GC-MS measurement, 20 μ L of a standard mix were transferred to a 20 mL HS-vial. Measurements were done within several weeks on both columns (see GC-MS section) at least 4 times. Some standards that could not be detected in the mixes were measured individually at a higher concentration (20 μ L of 100 mg/L stock) in duplicate. The RI was based on a series of n-alkanes (C5–C40) and automatically calculated by AMDIS software (see below) using the formula of Van den Dool and Kratz (1963), calculating the linear temperature programmed retention time index (LTPRI).

Plant material. Grapevine leaves of healthy *Vitis vinifera* cv. Pinot Noir clone 18 Gm, (3 years old in 2009, vertical shoot positioning- (VSP) trellis) were sampled from the field in an experimental vineyard (Jedlersdorf, Vienna, Austria). Vineyard management was done to provide optimum plant growth including fertilisation, plant protection treatments, irrigation and canopy management according to standards in commercial viticulture of the region (Schoedl et al., unpublished data).

From each of nine plants, four leaves of the outer layer were sampled: two leaves from two shoots, opposite the primary cluster (insertion level 3) and the leaf below (insertion level 2). Leaves were sampled at two dates between 10 and 12 am on June, 3^{rd} and July, 30^{th} in 2009 and inspected visually before sampling and only intact and healthy leaves were sampled. A control sample for determining technical variability and to check instrument performance was obtained by pooling four leaves of one grapevine plant. All other leaves (n = 32) were measured individually.

Sample preparation. The leaves were cooled with liquid nitrogen immediately after harvest. In the lab they were subsequently ground using a ball mill (MM301 Retsch, Haan, Germany) and pre-cooled (liquid nitrogen) 10 mL stainless steel-beakers (Retsch) with a 9 mm stainless steel ball (Retsch) for 3 min at 30 Hz resulting to a fine powder. Leaf powder was transferred into plastic tubes and stored at -80 °C until analysis. 20 mL headspace (HS) vials (Supelco, Gerstel, Mühlheim a.d. Ruhr, Germany) were rinsed with MeOH/H₂O (50/50 v/v) and vials, caps and septa (1.3 mm silicone/PTFE, Supelco, Gerstel) were baked out in an oven for at least 60 min at 120 °C before usage. 105±5 mg of homogenized leaf sample were weighed in and the vials were tightly sealed with screw caps.

HS-SPME. For the extraction of volatiles from leaf samples and standards we used a 2 cm 50/30 μ m CAR/DVB/PDMS fibre (Supelco, Gerstel). The fibre was conditioned before first use at 270 °C for 1 hour according to the supplier's recommendation. Sample extraction was done with an autosampler (MPS2XL, Gerstel, Mühlheim a.d. Ruhr, Germany) equipped with a coolable sample tray holder, a needle heater and an agitator/stirrer (all parts from Gerstel) for heating the vials. Gerstel Maestro software was used for autosampler control. The fibre was beaked out in the needle heater for 10 min at 270 °C before each extraction. The HS vial was placed in the cooled tray (10 °C) of the autosampler. After 30 min of equilibration in the agitator at 90 °C the fibre was inserted into the HS of the vial for 60 min at 90 °C and the volatiles were extracted and enriched on the fibre. After extraction, the SPME needle was removed

from the HS vial and inserted into the GC-MS inlet, where the analytes were desorbed for 2 min in splitless mode at 250 °C.

Optimization of SPME parameters was carried out in triplicate using bulked grapevine leaf powder obtained after homogenisation (see above). Equilibration times of 0, 10, 20 and 30 min were tested as well as extraction times of 20, 40 and 60 min with the aim to maximise the overall peak area of the total ion current (TIC) chromatogram determined manually (from beginning of the first peak to the end of the last peak) by Agilent MSD ChemStation (G1701EA E.02.00.493). Additionally the data was automatically processed by AMDIS program for evaluation of the number of derived components.

For alkane RI-calibrants different SPME conditions were necessary to achieve narrow peak shapes. C5-C10: 1 μ L in 20 mL HS vial, sampling out of tray (10 °C) for 0.01 min, C8-C20: 10 μ L in 20 mL HS vial, extraction for 10 min at 90 °C, C21-C40: 30 min equilibration, 60 min extraction both at 120 °C.

GC-MS of extracted leaf samples and VOC standards. For separation and detection of the volatiles an Agilent 6890N coupled to a 5975B MSD detector (Agilent, Waldbronn, Germany) was used. The apolar column was a DB-5MS (95% dimethyl-diphenyl polysiloxane, Agilent J&W), length 30 m, inner diameter 0.25 mm and film thickness 0.25 μ m. The polar column was an Optima-WAX (100% polyethylene glycol, Machery-Nagel, Düren, Germany) with identical dimensions. To facilitate column exchange we used a restriction capillary connected to the column with SilTite ferrules (Agilent). Inlet septa were prepierced low bleed septa (Agilent), extra pierced with an old SPME needle before first use. The liner was a 1.5 mm HS-liner (Gerstel) and inlet temperature was 250 °C. Oven program started with 35 °C (hold 2 min), increase of 5 °C/min to 260 °C (hold 5 min) and the transfer line was set at 270 °C. The carrier gas was helium 5.0 (Messer, Gumpoldskirchen, Austria) with a flow rate of 1 mL/min (constant flow mode).

The MS was operated in electron ionisation mode (EI 70 eV); source temperature: 230 °C; quadrupole temperature: 150 °C; scan range: m/z 35 – 500; scan speed: 3 scans/s; tuning: weekly with PFTBA.

Data evaluation and annotation of metabolites. For peak picking, RI calculation, determination of a number of components in a sample and substance annotation we used AMDIS software (version 2.65, www.amdis.net, Stein, 1999). The default settings for deconvolution were: component width: 12; adjacent peak subtraction: one; resolution, sensitivity, shape requirements: medium; level: infinite; maximum penalty and "no RI in library": 100.

For substance annotation deconvoluted mass spectra were compared to the Wiley/NIST 08 MS library (McLafferty, 2008) using the "Search NIST library" function of AMDIS which uses the NIST MS Search software (version 2.0, delivered with Wiley/NIST spectra library).

Reference RI values were obtained from NIST Chemistry WebBook (NCWB, Stein, 2010, http://webbook.nist.gov/chemistry/). In case of multiple literature RI values for an individual substance, the median of the reported values (corresponding to the same column diameter and film thickness as well as a comparable stationary phase material) was used for comparision (Stoppacher et al., 2010).

Evaluation of method performance

Trueness of RI values. RI trueness was determined by comparing the arithmetic mean values (n = 2-11) of the experimentally measured RIs of the standard substances with the respective median values of NCWB entries. The relative bias in percent was calculated.

Formation of artefacts. One mixture containing four alcohols (1-hexanol, 1-tridecanol, benzenemethanol, E-geraniol) and one containing four aldehydes (E-2-hexenal, benzaldehyde, hexanal, tridecanal) were measured with the same SPME-GC-MS method as the leaf samples. The chromatograms were evaluated by AMDIS software with the aim to detect the substances added to the mixture and their potential oxidation products (hexanal, tridecanal, benzaldehyde, E-geranial and hexenoic acid, benzoic acid, hexanoic acid, tridecanoic acid). The same identification criteria as described above were applied.

Technical and biological variability. Peak areas of the annotated and identified metabolites were derived by AMDIS software. The setting for minimum match factor was 60 and the RI deviation was \pm 5 RI units from the value obtained from the annotation/identification step. Technical variability was determined for the annotated/identified substances by calculating the relative standard deviation (RSD) of AMDIS derived peak areas obtained from the control samples (pooled leaf sample). The control samples were analysed at the beginning of a measuring sequence and after every fifth sample. This resulted in eight replicate measurements.

Biological variability (including the technical variability) within the plants was calculated as the root mean square (RMS) of RSD of metabolite peak areas obtained for each of eight grapevine plants (four leaves per plant). The average variability of a substance between the plants was calculated as the RSD of the arithmetic means of peak areas derived from the leaves of each plant.

Statistics

Multivariate statistics (PCA) was applied to differentiate between the two sampling dates using R software (2.13.0). Only substances detected in at least 50% of the leaf samples of (at least) one sampling date were taken into account. Peak areas derived by AMDIS were scaled and mean centred prior to PCA using the 'scale' function of R.

Results and Discussion

Different strategies have been applied in so far published plant metabolomics studies searching for differentially expressed peaks (biomarkers). This is often done via a so-called top down approach (e.g. Jonsson et al., 2004). Thereby the differentially expressed peaks are searched first and then only these peaks are considered for further identification of the corresponding metabolite. This is a very elegant way and avoids the identification of many compounds without biological significance but requires appropriate software, which often works as a black box.

The presented study uses a bottom up metabolomics approach (e.g. Kanani et al., 2008). First step is the identification of *Vitis* leaf metabolites followed by multivariate statistics applied to the data obtained from two sampling dates to detect differentially expressed metabolites. Together with sampling and measurement, the developed workflow is composed of four steps: sampling and sample pre-treatment, measurement, metabolite annotation/identification and data processing/statistics for detection of differentially expressed metabolites (Fig. 1). We did not further evaluate the sampling and sample preparation steps as the procedure is already described in literature to be sufficient for efficient quenching of metabolism (e.g. Fiehn, 2002; Álvarez-Sánchez et al., 2010). Freeze-drying of samples was omitted to avoid the loss of volatiles (e.g. Aprea et al., 2011). Our study aimed to develop a highly automatable workflow for the detection of a high number of volatile leaf metabolites as well as minimum sample manipulation to avoid the generation of artefacts. Therefore, we decided to use SPME, which is a well-established extraction and enrichment technique (Wang et al., 2008).

HS-SPME Optimisation

All SPME experiments were carried out using a Gerstel MPS2XL autosampler in standard configuration in combination with Gerstel Maestro software for programming instrument sequence parameters. In a prestudy (data not shown) we tested 5 fibre coatings (PA, PDMS, CAR/PDMS, DVB/PDMS, CAR/DVB/PDMS) by using a mix of 10 standards (3-methyl-1-butanol, hexanal, 6-methyl-5-hepten-2one, limonene, E-geranial, E-geraniol, nonanoic acid, beta-caryophyllene, nerolidol, 6,10,14-trimethyl-2pentadecanone). The PA fibre showed lowest abundance for the substances followed by the PDMS fibre. Between the three fibres with mixed coating there was no obvious difference in terms of abundance and repeatability of GC-MS peak intensities so we decided to use the CAR/DVB/PDMS fibre which is also recommended by the supplier to extract the widest range of substances. As we aimed to maximise the number of detected substances in a single run our goal was to explore conditions resulting in high peak abundances and high peak numbers. The number of peaks was determined by AMDIS, which was used to evaluate the number of components. The overall peak area derived by manual integration (Agilent ChemStation) functioned as parameter for overall abundance of all peaks in the chromatogram.

Higher extraction temperature lead to an increase in the number of volatiles in the headspace above the leaf sample. Thus, we chose a temperature of 90 °C, which is slightly below the boiling point of water and therefore minimises the risk of damage of the vials and the agitator. The test of different extraction times (20, 40, 60 min) showed increasing overall peak area $(1.82 \times 10^7 \text{ at } 20 \text{ min up to } 2.74 \times 10^7 \text{ at } 60 \text{ min})$, mean of three replicates, 30 min equilibration time) and greater number of components (414 at 20 min up to 523 at 60 min, mean of three replicates, 30 min equilibration time) with increasing extraction time. The increase of equilibration time from 0 to 30 min only resulted in a small increase in both total peak area and number of components (461 components without equilibration, Fig. 2). Nevertheless, we kept the longer equilibration time of 30 min to ensure that we obtain as many substances as possible and to standardise conditions at the beginning of extraction. This resulted in an overall measuring duration of 90 min per leaf, which corresponds to a measurement capacity of 16 samples per day.

GC-MS of extracted leaf samples and annotation of metabolites

A preliminary study (data not shown) showed that a decreasing number of components was detected with increasing rate of temperature gradient by the use of the AMDIS programme. Therefore, we chose a flat ramp of 5 °C/min. Additionally, this kind of GC settings is typically described in literature for the separation of a large number of analytes (e.g. Fiehn et al., 2000; Broeckling et al., 2005; Batovska et al., 2008). When measuring leaf samples the subsequent annotation of metabolites from all AMDIS deconvoluted spectra resulted in an average number of 150 hits per chromatogram. The results of all files from both columns were combined and only substances found on both columns were kept which led to a list of 313 substances (including multiple hits, Fig. 1). The RIs for those substances were searched within NCWB and compared with the experimentally determined RIs. For 113 substances we found a RI for both types of columns. A maximum relative deviation of measured RI of $\pm 2\%$ from literature value was accepted reducing the list of annotated metabolites to 71. Among them were seven alkanes, which were also part of the alkane RI calibrant, which was measured within the same sequence. Therefore only a small deviation of the RI of maximum 5 RI units was accepted which was only met by one alkane, nonadecane. Two of the annotated substances are known as plasticizers, and therefore were removed from the list resulting in 63 annotated metabolites.

Confirmation of annotated metabolites

For these 63 metabolites, 47 authentic standards were available at our lab. To experimentally determine the RI of the standards they were measured in four different mixtures (mix 1 - 4) with the same method as the leaf samples at least in duplicate. The mean of the RI obtained by the replicate measurements was compared with the RI of the annotated metabolites. The choice of appropriate identification criteria, i.e. mass spectral match factor and RI deviation from a given reference value, are crucial for the correct assignment/annotation of metabolites. Different studies use various settings for the identification (e.g. Schauer et al., 2005; Stoppacher et al., 2010) but no standardised rules are available at the date. Again, we accepted a maximum deviation of the RI of the annotated metabolite from the reference RI value of $\pm 2\%$ which led to the falsification of two and the confirmation of 45 annotated metabolites (Table 1).

Some of the metabolites for which spectral match factor was \geq 90 but which were rejected because their RI deviated more than $\pm 2\%$ from literature RI value, were available as pure standard compounds. In additional measurements their RI was also determined. Thus, the identity of two substances could be confirmed and they were added to the result list (Table 1) of finally 63 metabolites, of which 47 were confirmed with authentic standards. Table 1 lists the metabolites found with this workflow in Pinot Noir clone 18 Gm leaf samples. They cover the substance classes of terpenes, alcohols, aldehydes, ketones and aromatic compounds. To the best of our knowledge 19 of them have never been reported to occur in *Vitis* plants so far. Of the remaining 44 metabolites, 10 were detected in *Vitis* leaves for the first time. The references for the above mentioned 44 substances which are already described in the literature to occur in *Vitis* plants (leaves, flowers, roots, berries) are given exemplarily in Table 1 (for more information see supplementary material). Hexanal, (2E)-hexenal, 1-hexanol and (3Z)-hexen-1-ol acetate belong to the group of green leaf odour compounds and were also reported for example by Tasin et al. (2005), Loughrin

et al. (1997) and Wirth et al. (2001). From the group of terpenes and terpenoids several have been detected in other studies, e.g. E-geraniol, 4-ethenyl-2-methoxy-phenol and eugenol by Wirth et al. (2001), beta-limonene, beta-ionone and methyl salicylate by Tasin et al. (2005), beta-myrcene, beta-cyclocitral, E-citral and allo-ocimene by Rocha et al. (2007). Batovska et al. (2008, 2009a,b) also found nonadecane, hexahydrofarnesylacetone, phytol, dihydroactinoline, (2E)-undecenal, nonanal and decanal in grapevine leaves. From the substance class of alcohols 2-ethyl-1-hexanol, 1-octanol and 1-nonanol are reported for example by Canuti et al. (2009), benzenemethanol and benzeneethanol by Wirth et al. (2001). The annotated/identified volatile metabolites include several substance classes, which have been described to be directly associated to biotic or abiotic plant stress. Isoprenoids for example have been described to have antioxidant properties (Vickers et al., 2009). Further, Ormeño et al. (2007) report a change in the mono- and sesquiterpene emission due to water stress. Increased emission of green leaf volatiles (GLV, mainly C6-compounds, saturated or monounsaturated aldehydes, alcohols, esters, e.g. hexanol) is also a symptom of plant stress (Holopainen, 2004). Thus, the presented method appears to be well suited to investigate metabolic response to different types of biotic and abiotic plant stress in the future.

Evaluation of method performance

Determination of RI from standards, RI trueness

Table 2 shows the RIs derived from the authentic standards compared with NCWB entries. For all standards measured on the DB-5 column, the measured RIs were within ±1.7% of the corresponding NCWB median, implying satisfying trueness. The measurements with the polar column resulted in a maximum relative deviation from NCWB of 3.1%. This is in accordance with the findings of d' Acampora Zellner et al. (2008), who reported the accuracy of RIs on polar columns to be worse compared to apolar columns. Nevertheless, we used the RI value of our standards for deciding whether a metabolite is included in the results list or not. Isidorov and Szczepaniak (2009) suggested the ageing of columns to be an explanation for the broad range found for some RIs reported in NCWB. Regarding our own replicate measurements, we observed a difference in the obtained RI between the beginning and the end of the measurements (some 100 injections in between) of max. 16 RI values for early eluting compounds (2-ethyl-furan) on DB-5 column. For the majority of the compounds the difference was less than five RI units. Strehmel et al. (2008) reported similar observations. On the PEG column, the RI showed a similar behaviour. These findings support the acceptance of a deviation of $\pm 2\%$ of the experimentally found RI from the reference value even when using the reference RI from a standard. The observed standard deviation (SD) of RIs within a measuring sequence was maximum 1.2 RI units. Comparing the RI or retention time of a particular substance within a sequence can serve as a technical control for the correct peak detection of the data processing software AMDIS.

Formation of Artefacts

To check whether the SPME conditions lead to the production of artefacts we measured two standard mixes (one with alcohols, one with aldehydes) with the same SPME conditions used for the leaf samples. For the alcohols some of the oxidation products (aldehydes) were detected in small amounts (< 5% of the peak area of the corresponding alcohol). Oxidation products of the aldehydes could not be observed. This indicates that oxidation products have to be rejected from the result list if both, the oxidation product and its educt are present in a similar ratio as observed for the standards. Additionally, artefacts could origin from the column, the fibre, the septa or anything else that was in contact with the sample. Therefore, all substances containing silicium were excluded from the results list as well as all substances reported to be used as plasticizers. We identified for example diisobutylphthalate and 2,4-bis(1,1-dimethylethyl)-phenol which are also reported in literature as plant metabolites (e.g. Du et al., 2009; Roy et al., 2010). Due to the ubiquity of these substances, it is possible that they are really found in plant samples. We also found them after measurement of empty vials without plant material and therefore excluded them from the resulting leaf metabolites list.

Technical and biological variability

It is our intention to use the presented method in the future with the aim to detect differentially expressed metabolites of differentially treated samples. Therefore, knowledge is required on the extent of the

variability of both, the analytical method and the plants in the field. For these measurements a sublibrary (leaf-lib) containing only mass spectra and RI of the annotated and identified substances present in leaf samples (Table 1) was created. Hence, AMDIS was used to process all raw data files in a batch job. Now the RI criterion was set more stringent (maximum 5 RI values deviation) but a less strict mass spectral match factor (≥ 60) was applied to include low abundant substances or substances where the deconvolution process did not lead to a complete elimination of interfering mass signals. Table 3 shows the technical variability which was in the range of 13-86% (RSD). The majority of metabolites (35) showed a RSD < 40%. Other studies which deal with SPME and metabolomics found lower levels for the analytical variability, for example Aprea et al. (2011) who report a CV% of < 30% for the majority of investigated substances and Tikunov et al. (2005) who report an analytical variation (%SD) of 3-23% (16 substances, n = 4). Stashenko et al. (2004) report a variation up to 83% RSD (n = 5). Using a standard mixture (10 substances) for quality control in another study, we achieved also a lower technical variability of 7-58% (RSD, n = 17, data not shown). Table 3 also shows the biological variability (including the technical variability) within the plants and between the plants. The within plant variability, given as root mean square (RMS), ranged from 4-30% for 19 substances, 31-50% for 23 and 51-106% for 18 substances. The variability between the plants was 7-30% for 32 substances 31-50% for 21 and 51-119% for 8 substances. Tikunov et al. (2005) report a biological variability of 8-35% within one tomato genotype for 16 substances. Another study dealing with open field samples (Ossipov et al., 2008) reported a biological variation of 10-50% for the majority of the metabolites but for a few ranging up to 140%. Our findings are in agreement with the results reported in these studies.

Literature study and compilation of an in-house Vitis metabolites database (vitis-db)

For the leaf metabolites listed in Table 1, literature references for their occurrence in *Vitis* were searched. This literature study resulted in a database (vitis-db) which lists the substance name as used in the article, the CAS-number if available (source SciFinder Scholar 2007 or NCWB), the part of the plant where it was detected (leaf, flower, root, berry) and the corresponding reference. At present, the database contains 1619 entries referring to *Vitis* volatiles from 39 studies and is available as supplementary material.

Statistics

The last step of the workflow provides the differentially expressed metabolites by means of uni- or multivariate statistics. 61 substances, occurring in more than 50% of the leaves of (at least) one sampling date, were used for PCA (Fig. 3). Each of the points in the scores-plot represents a single leaf sample. There are two clusters, which correspond to the two sampling dates. The first principal component (PC1) explains 50% of the variance in the data. The loadings-plot shows the contribution of each substance to the variance in the data. In the present study, we did not investigate this further. Our aim here was to demonstrate that the established workflow leads to annotation/identification of metabolites, which are suited to separate leaves originating from different sample dates.

To summarise, this study presents a comprehensive metabolomics workflow including steps for sampling, sample preparation, measurement, metabolite annotation/identification and statistical data analysis. We intended to use only established devices and open source software to provide the opportunity for a broad application of the method. SPME parameters were optimised to be able to detect a large number of metabolites and to achieve sufficient method precision. Additionally, the presented study provides extended knowledge of the grapevine leaf metabolome by describing 63 grapevine leaf metabolites whereof 19 are reported for the first time in plants of *Vitis* spp. Moreover, multivariate statistics (PCA) were applied and showed two clearly separated clusters for leaves from two different sampling dates. The workflow will be applied in further studies for the detection of differentially expressed metabolites indicating for example stress in grapevine plants. It can also easily be applied to leaves of various plant species or other plant tissues.
Acknowledgements

This work was supported by the Federal Ministry of Agriculture, Forestry, Environment and Water Management (project "Physiological Fingerprinting in Viticulture" number 100196) and the Austrian Science Fund (project "SFB Fusarium" number 3706-B11).

References

d' Acampora Zellner B, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L. 2008. Linear retention indices in gas chromatographic analysis: A review. *Flavour Frag J* **23**: 297-314.

Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD. 2010. Metabolomics analysis II. Preparation of biological samples prior to detection. *Trac-Trends Anal Chem* **29**: 120-127.

Aprea E, Gika H, Carlin S, Theodoridis G, Vrhovsek U, Mattivi F. 2011. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. *J Chromatogr A* **1218**: 4517-4524.

Arthur CL, Pawliszyn J. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. *Anal Chem* **62**: 2145-2148.

Batovska DI, Todorova IT, Nedelcheva DV, Parushev SP, Atanassov AI, Hvarleva TD, Djakova GJ, Bankova VS, Popov SS. 2008. Preliminary study on biomarkers for the fungal resistance in *Vitis vinifera* leaves. *J Plant Physiol* **165**: 791-795.

Batovska DI, Todorova IT, Parushev SP, Nedelcheva DV, Bankova VS, Popov SS, Ivanova II, Batovski SA. 2009a. Biomarkers for the prediction of the resistance and susceptibility of grapevine leaves to downy mildew. *J Plant Physiol* **166**: 781-785.

Batovska DI, Todorova IT, Popov SS. 2009b. Seasonal variations in the leaf surface composition of field grown grapevine plants. *J Serb Chem Soc* **74**: 1229-1240.

Boccard J, Veuthey J-L, Rudaz S. 2010. Knowledge discovery in metabolomics: An overview of MS data handling. *J Sep Sci* **33**: 290-304.

Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW. 2005. Metabolic profiling of *Medicago truncatula* cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. *Journal of Experimental Botany* **56**: 323 -336.

Buchbauer G, Jirovetz L, Wasicky M, Herlitschka A. 1994. Headspace analysis of *Vitis vinifera* (Vitaceae) flowers. *J Essent Oil Res* 6: 313-314.

Canuti V, Conversano M, Calzi ML, Heymann H, Matthews MA, Ebeler SE. 2009. Headspace solidphase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. *J Chromatogr A* **1216**: 3012-3022.

Cha DH, Nojima S, Hesler SP, Zhang A, Linn Jr. CE, Roelofs WL, Loeb GM. 2008. Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (*Paralobesia viteana*). *J Chem Ecol* **34**: 1180-1189.

Choudhary DK, Johri BN, Prakash A. 2008. Volatiles as priming agents that initiate plant growth and defence responses. *Current Science* **94:** 595-604.

Van den Dool H, Kratz P. 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. *J Chromatogr A* **11**: 463-471.

Du Y-P, Zheng Q-L, Zhai H, Jiang E-S, Wang Z-Y. 2009. Selectivity of *Phylloxera viticola* Fitch (Homoptera: Phylloxeridae) to grape with different resistance and the identification of grape root volatiles. *Acta Entomologica Sinica* **52**: 537-543.

Dunn WB, Ellis DI. 2005. Metabolomics: Current analytical platforms and methodologies. *Trac-Trends Anal Chem* 24: 285-294.

Fan W, Xu Y, Jiang W, Li J. 2010. Identification and Quantification of Impact Aroma Compounds in 4 Nonfloral *Vitis vinifera* Varieties Grapes. *J Food Sci* **75**: S81-S88.

Fiehn O. 2002. Metabolomics - The link between genotypes and phenotypes. *Plant Mol Biol* **48:** 155-171. Fiehn O, Kopka J, Trethewey RN, Willmitzer L. 2000. Identification of Uncommon Plant Metabolites Based on Calculation of Elemental Compositions Using Gas Chromatography and Quadrupole Mass Spectrometry. *Analytical Chemistry* **72:** 3573-3580.

Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, Sousa L, Acioli-Santos B, Pessoa F, Verpoorte R, Pais MS. 2008. Transcriptional and metabolic profiling of grape (*Vitis vinifera* L.) leaves unravel possible innate resistance against pathogenic fungi. *J Exp Bot* **59**: 3371 -3381.

Hall RD. 2006. Plant metabolomics: from holistic hope, to hype, to hot topic. *New Phytologist* **169:** 453-468.

Hebash KAH, Fadel HM, Soliman MMA. 1991. Volatile components of grape leaves. *Journal of Islamic Academy of Sciences* **4**: 26-28.

Hernández-Orte P, Loscos N, Lapena A-C, Cacho J, Ferreira V. 2008. Aroma compounds released from glycosidic precursors present in vine leaves from some Spanish cultivars. In *Proceedings of the WAC 2008 International Conference*. Presented at the Wine Active Compounds, Oenoplurimedia, Château de Chaintré, pp. 112-114.

Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D. 2009. MetaboliteDetector: Comprehensive Analysis Tool for Targeted and Nontargeted GC/MS Based Metabolome Analysis. *Anal Chem* **81**: 3429-3439.

Holopainen JK. 2004. Multiple functions of inducible plant volatiles. Trends Plant Sci 9: 529-533.

Isidorov VA, Szczepaniak L. 2009. Gas chromatographic retention indices of biologically and environmentally important organic compounds on capillary columns with low-polar stationary phases. *J Chromatogr A* **1216**: 8998-9007.

Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T. 2004. A Strategy for Identifying Differences in Large Series of Metabolomic Samples Analyzed by GC/MS. *Analytical Chemistry* **76**: 1738-1745.

Kalua CM, Boss PK. 2010. Comparison of major volatile compounds from Riesling and Cabernet Sauvignon grapes (*Vitis vinifera* L.) from fruitset to harvest. *Aust J Grape Wine R* **16**: 337-348.

Kanani H, Chrysanthopoulos PK, Klapa MI. 2008. Standardizing GC-MS metabolomics. *Journal of Chromatography B* 871: 191-201.

Kim HK, Verpoorte R. 2010. Sample preparation for plant metabolomics. Phytochem Anal 21: 4-13.

Lamorte SA, Gambuti A, Genovese A, Selicato S, Moio L. 2008. Free and glycoconjugated volatiles of *V. vinifera* grape "Falanghina". *Vitis* **47:** 241-243.

Loreto F, Schnitzler J-P. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci 15: 154-166.

Loughrin JH, Potter DA, Hamilton-Kemp TR, Byers ME. 1997. Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves. *Phytochemistry* **45**: 919-923.

Luedemann A, Strassburg K, Erban A, Kopka J. 2008. TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. *Bioinformatics* **24**: 732 -737.

Maes K, Debergh PC. 2003. Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. *Plant Cell Tissue Organ Cult* **75**: 73-78-78.

McLafferty FW. 2008. Wiley Registry of Mass spectral Data, with NIST 2008 (8th Edn.). Wiley-Blackwell.

Ormeño E, Mévy JP, Vila B, Bousquet-Mélou A, Greff S, Bonin G, Fernandez C. 2007. Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. *Chemosphere* **67**: 276-284.

Ossipov V, Ossipova S, Bykov V, Oksanen E, Koricheva J, Haukioja E. 2008. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. *Metabolomics* **4**: 39-51.

Rebière L, Clark AC, Schmidtke LM, Prenzler PD, Scollary GR. 2010. A robust method for quantification of volatile compounds within and between vintages using headspace-solid-phase micro-extraction coupled with GC-MS - Application on Semillon wines. *Anal Chim Acta* **660**: 149-157.

Robinson AL, Boss PK, Heymann H, Solomon PS, Trengove RD. 2011. Development of a sensitive nontargeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. *J Chromatogr A* **1218:** 504-517.

Rocha SM, Coelho E, Zrostlíková J, Delgadillo I, Coimbra MA. 2007. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. *J Chromatogr A* **1161**: 292-299.

Roy S, Rao K, Bhuvaneswari C, Giri A, Mangamoori L. 2010. Phytochemical analysis of *Andrographis paniculata* extract and its antimicrobial activity. *World J Microbiol Biotechnol* **26**: 85-91-91.

Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J. 2005. GC-MS libraries for the rapid identification of metabolites in complex biological samples. *FEBS Lett* **579**: 1332-1337.

Schulze B, Kost C, Arimura G-I, Boland W. 2006. Signal reception, biosynthesis and ecology. Scents: The language of plants. *Chem Unserer Zeit* **40**: 366-377.

Son H-S, Hwang G-S, Ahn H-J, Park W-M, Lee C-H, Hong Y-S. 2009. Characterization of wines from grape varieties through multivariate statistical analysis of 1H NMR spectroscopic data. *Food Res Int* **42**: 1483-1491.

Stashenko EE, Jaramillo BE, Martínez JR. 2004. Comparison of different extraction methods for the analysis of volatile secondary metabolites of *Lippia alba* (Mill.) N.E. Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. *Journal of Chromatography A* **1025**: 93-103.

Stein SE. 1999. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. *J Am Soc Mass Spectrom* **10**: 770-781.

Stein SE. 2010. "Retention Indices" by NIST Mass Spec Data Center. In *NIST Chemistry Webbook, NIST Standard Reference Base Number69*. Linstrom PJ, Mallard WG (Eds.). Gaithersburg MD, 20899.

Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus *Trichoderma atroviride* by HS-SPME-GC-MS. *J Microbiol Meth* **81**: 187-193.

Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J. 2008. Retention index thresholds for compound matching in GC-MS metabolite profiling. *J Chromatogr B* **871:** 182-190.

Tasin M, Anfora G, Ioriatti C, Carlin S, De Cristofaro A, Schmidt S, Bengtsson M, Versini G, Witzgall P. 2005. Antennal and behavioral responses of grapevine moth *Lobesia botrana* females to volatiles from grapevine. *J Chem Ecol* **31**: 77-87.

Tikunov Y, Lommen A, De Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG. 2005. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. *Plant Physiol* **139**: 1125-1137.

Vickers CE, Gershenzon J, Lerdau MT, Loreto F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. *Nat Chem Biol* **5**: 283-291.

Wang Y, McCaffrey J, Norwood DL. 2008. Recent advances in headspace gas chromatography. J. Liq. Chromatogr. R. T. **31:** 1823-1851.

Wildenradt HL, Christensen EN, Stackler B, Caputi A, Slinkard K, Scutt K. 1975. Volatile Constituents of Grape Leaves. I. *Vitis Vinifera* Variety "Chenin Blanc". *Am J Enol Vitic* **26**: 148-153.

Wirth J, Guo W, Baumes R, Günata Z. 2001. Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from *Vitis vinifera* Muscat of Alexandria and Shiraz cultivars. *J Agric Food Chem* **49**: 2917-2923.

Yang C, Wang Y, Liang Z, Fan P, Wu B, Yang L, Wang Y, Li S. 2009. Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC-MS. *Food Chem* **114**: 1106-1114.

Number	CAS- number ^a	Name (trivial name in parenthesis)	Described in Vitis by (e.g.) ^b	Measured ^c RI DB-5	Reference ^d RI	% dev. from ref.	Measured ^c RI WAX	Reference ^d RI	% dev. from ref.
1	616251	1-Penten-3-ol	-	710	708	-0.3	1172	1164	-0.7
2	3208160	Furan, 2-ethyl-	-	718	714	-0.6	952	948	-0.4
3	1576870	2-Pentenal, (2E)-	-	764	763	-0.1	1138	1141	0.3
4	1576961	2-Penten-1-ol, (2E)-	-	778	775	-0.4	1329	1328	-0.1
5	66251	Hexanal	Tasin	801	805	0.5	1087	1087	0.0
6	98011	2-Furancarboxaldehyde (2-Furfural)	Lamorte	838	837	-0.1	1473	1479	0.4
7	6728263	2-Hexenal, (2E)-	Tasin	860	858	-0.2	1226	1229	0.2
8	111273	1-Hexanol	Wirth	872	873	0.1	1362	1370	0.6
9	111717	Heptanal	Hebash	904	904	0.0	1183	1186	0.3
10	142836	2,4-Hexadienal, (2E,4E)-	Tasin	914	916	0.2	1407	1424	1.2
11	100527	Benzaldehyde	Tasin	965	967	0.2	1540	1546	0.4
12	110930	5-Hepten-2-one, 6-methyl-	Buchbauer	989	990	0.1	1340	1349	0.7
13	123353	1,6-Octadiene, 7-methyl-3-methylene- (β-Myrcene)	Rocha	992	993	0.1	1143	1135	-0.7
14	3777693	Furan, 2-pentyl-	-	993	994	0.1	1215	1223	0.7
15	124130	Octanal	Hebash	1005	1005	0.0	1286	1294	0.6
16	3681718	3-Hexen-1-ol, 1-acetate, (3Z)-	Tasin	1008	1007 ^N	-0.1	1313	1321 ^N	0.6
17	111900	Ethanol, 2-(2-ethoxyethoxy)-	-	1012	1001 ^N	-1.1	1655	1628 ^N	-1.7
18	4313035	2,4-Heptadienal, (2E,4E)-	-	1013	1015	0.2	1510	1516	0.4
19	99865	1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- (alpha-Terpinen)	-	1019	1021	0.2	1143	1160	1.5
20	38514135	1-Pentanol, 3-ethyl-4-methyl-	-	1023	1020^{N}	-0.3	1521	1507 ^{N, e}	-0.9
21	104767	1-Hexanol, 2-ethyl-	Lamorte	1031	1031	0.0	1496	1504	0.5
22	5989548	Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (4S)- (beta-Limonene)	Tasin	1033	1032	-0.1	1183	1191	0.7
23	2408379	Cyclohexanone, 2,2,6-trimethyl-	Kalua 2010	1038	1039	0.1	1325	1333	0.6
24	100516	Benzenemethanol (Benzyl Alcohol)	Tasin	1043	1042	-0.1	1907	1905	-0.1
25	122781	Benzeneacetaldehyde (Phenylacetaldehyde)	Hernandez	1047	1044 ^N	-0.3	1666	1648 ^N	-1.1
26	2548870	2-Octenal, (2E)-	Yang	1060	1062	0.2	1439	1450	0.8
27	111875	1-Octanol	Hebash	1071	1073	0.2	1569	1575	0.4
28	529204	Benzaldehyde, 2-methyl-	-	1073	1073	0.0	1647	1646	-0.1
29	78706	1,6-Octadien-3-ol, 3,7-dimethyl- (beta-Linalool)	Tasin	1100	1102	0.2	1554	1560	0.4
30	124196	Nonanal	Tasin	1104	1106	0.2	1393	1403	0.7

Table 1. Substances found in *Vitis vinifera* cv. Pinot Noir (clone 18 Gm) leaves sorted by ascending RI on DB-5 column.

Table 1. continued

Number	CAS- number ^a	Name (trivial name in parenthesis)	Described in Vitis by (e.g.) ^b	Measured ^c RI DB-5	Reference ^d RI	% dev. from ref.	Measured ^c RI WAX	Referenced RI	% dev. from ref.
31	60128	Benzeneethanol (2-Phenylethanol)	Wirth	1118	1120	0.2	1946	1944	-0.1
32	118718	4H-Pyran-4-one, 3-hydroxy-2-methyl- (Maltol)	-	1119	1121	0.2	2015	2011	-0.2
33	3016191	2,4,6-Octatriene, 2,6-dimethyl-, (2E,6E)- ((E)-Allo-ocimene)	Rocha	1129	1130 ^N	0.1	1367	1367 ^N	0.0
34	4748781	Benzaldehyde, 4-ethyl-	-	1167	1182^{N}	1.3	1735	1714 ^N	-1.2
35	143088	1-Nonanol	Fan	1170	1173	0.3	1674	1678	0.2
36	124072	Octanoic acid	Fan	1175	1177	0.2	2105	2117	0.6
37	585740	Ethanone, 1-(3-methylphenyl)- (m-Methylacetophenone)	-	1193	1176 ^N	-1.5	1814	1804 ^{N, e}	-0.6
38	112312	Decanal	Cha	1203	1208	0.4	1501	1510	0.6
39	119368	Benzoic acid, 2-hydroxy-, methyl ester (Methyl salicylate)	Tasin	1203	1202	-0.1	1805	1805	0.0
40	432257	1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl- (beta-Cyclocitral)	Rocha	1224	1229	0.4	1646	1650	0.2
41	67470	2-Furancarboxaldehyde, 5-(hydroxymethyl)-	Batovska08	1232	1224 ^N	-0.7	2486	2513 ^N	1.1
42	106241	2,6-Octadien-1-ol, 3,7-dimethyl-, (E)- (E-Geraniol)	Tasin	1259	1258	-0.1	1869	1869	0.0
43	141275	2,6-Octadienal, 3,7-dimethyl-, (2E)- (E-Geranial)	Rocha	1273	1275	0.2	1757	1758	0.1
44	7786610	Phenol, 4-ethenyl-2-methoxy- (4-Vinylguaiacol)	Wirth	1319	1322	0.2	2214	2221	0.3
45	97530	Phenol, 2-methoxy-4-(2-propen-1-yl)- (Eugenol)	Wirth	1360	1365	0.4	2186	2195	0.4
46	53448070	2-Undecenal, (2E)-	Batovska09a	1367	1367	0.0	1775	1776	0.1
47	121335	Benzaldehyde, 4-hydroxy-3-methoxy- (Vanillin)	Wirth	1410	1400^{N}	-0.7	2542	2577 ^N	1.4
48	3796701	5,9-Undecadien-2-one, 6,10-dimethyl-, (5E)- (E-Geranyl acetone)	Buchbauer	1452	1456	0.3	1875	1876	0.1
49	79776	3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (3E)- (trans-beta-Ionone)	Tasin	1488	1495	0.5	1977	1976	-0.1
50	10486198	Tridecanal	-	1506	1513	0.5	1833	1834	0.1
51	15356748	2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- (Dihydroactinolide)	Batovska08	1542	1537 ^N	-0.3	2384	2372 ^N	-0.5
52	143077	Dodecanoic acid (Lauric acid)	Batovska08	1558	1568 ^N	0.6	2478	2495 ^N	0.7
53	112709	1-Tridecanol	-	1574	1577	0.2	2088	2086	-0.1
54	124254	Tetradecanal	-	1609	1611 ^N	0.1	1940	1927 ^N	-0.7
55	544638	Tetradecanoic acid (Myristic acid)	Batovska08	1760	1771 ^N	0.6	2648	2694 ^N	1.7
56	629801	Hexadecanal	-	1816	1817^{N}	0.1	2148	2135 ^N	-0.6
57	502692	2-Pentadecanone, 6,10,14-trimethyl- (Hexahydrofarnesylacetone)	Batovska08	1844	1846	0.1	2136	2140	0.2
58	629925	Nonadecane	Batovska09a	1899	1900	0.1	1897	1900	0.2
59	1117528	5,9,13-Pentadecatrien-2-one, 6,10,14-trimethyl-, (5E,9E)- (E-Farnesylaceton)	-	1924	1917 ^N	-0.4	2360	2385 ^{N, e}	1.1

Table 1. continued

CAS- number ^a	Name (trivial name in parenthesis)	Described in Vitis by (e.g.)b	Measured ^c RI DB-5	Reference ^d RI	% dev. from ref.	Measured ^c RI WAX	Referenced RI	% dev. from ref.
112390	Hexadecanoic acid, methyl ester	Buchbauer	1928	1927	-0.1	2217	2230	0.6
505328	1-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)	-	1948	1950	0.1	2276	2297	0.9
57103	Hexadecanoic acid	Batovska08	1962	1972 ^N	0.5	2858	2909 ^N	1.8
150867	2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)	Batovska08	2111	2106	-0.2	2548	2589	1.6
	CAS- number ^a 112390 505328 57103 150867	CAS- numberaName (trivial name in parenthesis)112390Hexadecanoic acid, methyl ester5053281-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)57103Hexadecanoic acid1508672-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)	CAS- numberaDescribed in Vitis by (e.g.)b112390Hexadecanoic acid, methyl esterBuchbauer5053281-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)-57103Hexadecanoic acidBatovska081508672-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)Batovska08	CAS- numberaDescribed in Vitis by (e.g.)bMeasured RI DB-5112390Hexadecanoic acid, methyl esterBuchbauer19285053281-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)-194857103Hexadecanoic acidBatovska0819621508672-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)Batovska082111	CAS- numberaName (trivial name in parenthesis)Described in Vitis by (e.g.)bMeasured c RI DB-5Referenced RI112390Hexadecanoic acid, methyl esterBuchbauer192819275053281-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)-1948195057103Hexadecanoic acidBatovska0819621972 ^N 1508672-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)Batovska0821112106	CAS- numberName (trivial name in parenthesis)Described in Vitis by (e.g.)bMeasured RI DB-5Referenced RI% dev. from ref.112390Hexadecanoic acid, methyl esterBuchbauer19281927-0.15053281-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)-194819500.157103Hexadecanoic acidBatovska0819621972 ^N 0.51508672-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)Batovska0821112106-0.2	CAS- numberaName (trivial name in parenthesis)Described in Vitis by (e.g.)bMeasured RI DB-5Referenced RI% dev. from ref.Measured RI WAX112390Hexadecanoic acid, methyl esterBuchbauer19281927-0.122175053281-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)-194819500.1227657103Hexadecanoic acidBatovska0819621972 ^N 0.528581508672-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)Batovska0821112106-0.22548	CAS- numberName (trivial name in parenthesis)Described in Vitis by (e.g.)bMeasured RI DB-5Referenced RI% dev. from ref.Measured RI WAXReferenced RI% dev. from ref.Measured RI WAXReferenced RI% dev. from ref.Measured RI WAXReferenced RI% dev. from ref.Measured RI WAXReferenced RI% dev. from ref.Measured RI WAXReferenced RI% dev. from ref.Measured RI WAXReferenced RI% dev. from ref.Measured RI WAXReferenced RI%112390Hexadecanoic acid, methyl esterBuchbauer19281927-0.1221722305053281-Hexadecanoic acid-194819500.12276229757103Hexadecanoic acidBatovska0819621972 ^N 0.528582909 ^N 1508672-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)Batovska0821112106-0.225482589

^a source: SciFinder Scholar 2007

^b (Hebash et al., 1991; Buchbauer et al., 1994; Wirth et al., 2001; Tasin et al., 2005; Rocha et al., 2007; Batovska et al., 2008, 2009a; Cha et al., 2008; Hernández-Orte et al., 2008; Lamorte et al., 2008; Yang et al., 2009; Kalua and Boss, 2010; Fan et al., 2010)

^c refers to RI in leaf samples

^d refers to RI from authentic standard, except those indicated with "N" which refer to RI values from NIST Chemistry WebBook

^e column dimensions for this RI value do not exactly correspond to the one used in this study ^N reference RI value was taken from NIST Chemistry WebBook

Table 2. Retention indices of standard substances measured on DB-5 and Optima-WAX column compared to corresponding median RIs of NIST Chemistry WebBook. Substances sorted by increasing RI on DB-5.

Standard brand, minimum purity	Mix	Name (trivial name in parenthesis)	Measured ^b RI Std	RI in NCWB (median)	% dev. from NCWB	Measured RI Std	RI in NCWB (median)	% dev. from NCWB
			DB-5	5% phenyl		PEG	polar	
A 99%	2	1-Penten-3-ol	708	704	0.6	1164	1158	0.5
SAFC 99%	4	Furan, 2-ethyl-	714	702	1.7	948	955	-0.7
SAFC 95%	1	2-Pentenal, (2E)-	763	754	1.2	1141	1143	-0.2
A 95%	2	2-Penten-1-ol, (2E)-	775	769	0.8	1328	1306	1.7
Fluka 97%	4	Hexanal	805	802	0.4	1087	1085	0.2
A 98%	3	2-Furancarboxaldehyde (2-Furfural)	837	832	0.6	1479	1465	1.0
A 98%	3	2-Hexenal, (2E)-	858	854	0.5	1229	1212	1.4
SA 98%	2	1-Hexanol	873	867	0.7	1370	1355	1.1
A 95%	3	Heptanal	904	900	0.4	1186	1186	0.0
A 95%	3	2,4-Hexadienal, (2E,4E)-	916	911	0.6	1424	1408	1.1
SA 99%	3	Benzaldehyde	967	961	0.6	1546	1523	1.5
SAFC 98%	4	5-Hepten-2-one, 6-methyl-	990	985	0.5	1349	1324	1.9
Fluka 95%	4	1,6-Octadiene, 7-methyl-3-methylene- (β-Myrcene)	993	991	0.2	1135	1157	-1.9
SAFC 97%	4	Furan, 2-pentyl-	994	993	0.1	1223	1236	-1.1
	Standard brand, minimum purity A 99% SAFC 99% SAFC 95% A 95% Fluka 97% A 98% A 98% A 98% A 98% A 98% SA 98% SA 98% SA 98% SA 95% SAFC 98% Fluka 95% SAFC 98%	Standard brand, minimum purity Mix A 99% 2 SAFC 99% 4 SAFC 95% 1 A 95% 2 Fluka 97% 4 A 98% 3 SA 98% 2 A 95% 3 SA 98% 4 SAFC 98% 4 Fluka 95% 4 SAFC 98% 4 SAFC 97% 4	Standard brand, minimum purityMixName (trivial name in parenthesis)A 99%21-Penten-3-olSAFC 99%4Furan, 2-ethyl-SAFC 95%12-Pentenal, (2E)-A 95%22-Penten-1-ol, (2E)-Fluka 97%4HexanalA 98%32-Furancarboxaldehyde (2-Furfural)A 98%32-Hexenal, (2E)-SA 98%21-HexanolA 95%3HeptanalA 95%32,4-Hexadienal, (2E,4E)-SA 99%3BenzaldehydeSAFC 98%45-Hepten-2-one, 6-methyl-Fluka 95%41,6-Octadiene, 7-methyl-3-methylene- (β-Myrcene)SAFC 97%4Furan, 2-pentyl-	Standard brand, minimum purityMixName (trivial name in parenthesis)Measured ^b RI StdA 99%21-Penten-3-olDB-5A 99%21-Penten-3-ol708SAFC 99%4Furan, 2-ethyl-714SAFC 95%12-Pentenal, (2E)-763A 95%22-Penten-1-ol, (2E)-775Fluka 97%4Hexanal805A 98%32-Furancarboxaldehyde (2-Furfural)837A 98%32-Furancarboxaldehyde (2-Furfural)873A 98%32-Hexenal, (2E)-858SA 98%21-Hexanol873A 95%3Heptanal904A 95%32,4-Hexadienal, (2E,4E)-916SA 99%3Benzaldehyde967SAFC 98%45-Hepten-2-one, 6-methyl-990Fluka 95%41,6-Octadiene, 7-methyl-3-methylene- (β-Myrcene)993SAFC 97%4Furan, 2-pentyl-994	Standard brand, minimum purityMix MixName (trivial name in parenthesis)Measured RI StdRI in NCWB (median)A 99%21-Penten-3-ol $B^{-5\%}$ phenylA 99%21-Penten-3-ol708704SAFC 99%4Furan, 2-ethyl-714702SAFC 95%12-Pentenal, (2E)-763754A 95%22-Pentenal, (2E)-763754A 95%22-Pentenal, (2E)-765802Fluka 97%4Hexanal805802A 98%32-Furancarboxaldehyde (2-Furfural)837832A 98%32-Hexenal, (2E)-858854SA 98%21-Hexanol805802A 95%3Heptanal904900A 95%32,4-Hexadienal, (2E,4E)-916911SA 99%3Benzaldehyde967961SAFC 98%45-Hepten-2-one, 6-methyl-990985Fluka 95%41,6-Octadiene, 7-methyl-3-methylene (β-Myrcene)994993	Standard brand, minimum purityMixName (trivial name in parenthesis)Measured RI StdRI in NCWB% dev. from NCWBA 99%21-Penten-3-ol $\mathcal{DB}-5$ \mathcal	Standard brand, minum purityMixName (trivial name in parenthesis)Measured RI StdRI in NCWB% dev. from RI StdMeasured RI StdA 99%21-Penten-3-ol 5% phenyl -26% phenyl -26% 	Standard brand, minimum purityMixName (trivial name in parenthesis)Measured RI StdRI in NCWB (median)% dev. from NCWBRI in NCWB% dev. from ML StdRI in NCWB% dev. ML Std% dev.% dev. ML Std% dev.% dev. ML Std% dev.% dev. ML Std% dev.%

Table 2. cor	ntinued								
124130	SAFC 92%	3	Octanal	1005	1002	0.3	1294	1279	1.2
4313035	A 90%	3	2,4-Heptadienal, (2E,4E)-	1015	1009	0.6	1516	1491	1.7
99865	A 95%	4	1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- (alpha-Terpinen)	1021	1017	0.4	1160	1165	-0.4
104767	Fluka 99%	2	1-Hexanol, 2-ethyl-	1031	1029	0.2	1504	1484	1.4
5989548	A 98%	4	Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (4S)- (beta-Limonene)	1032	1030	0.2	1191	1195	-0.3
2408379	SAFC 98%	4	Cyclohexanone, 2,2,6-trimethyl-	1039	1029	1.0	1333	1312	1.6
100516	SA 99%	2	Benzenemethanol; (Benzyl Alcohol)	1042	1034	0.8	1905	1870	1.9
2548870	A 94%	1	2-Octenal, (2E)-	1062	1058	0.4	1450	1430	1.4
111875	Su >99%	2	1-Octanol	1073	1070	0.3	1575	1553	1.4
529204	Fluka 98%	3	Benzaldehyde, 2-methyl-	1073	1067	0.6	1646	1644	0.1
78706	A 97%	2	1,6-Octadien-3-ol, 3,7-dimethyl-; (beta-Linalool)	1102	1099	0.3	1560	1544	1.0
124196	Aldrich 95%	3	Nonanal	1106	1103	0.3	1403	1390	0.9
60128	Fluka 99%	2	Benzeneethanol (2-Phenylethanol)	1120	1114	0.5	1944	1899	2.4
118718	A 99%	4	4H-Pyran-4-one, 3-hydroxy-2-methyl-; (Maltol)	1121	1111	0.9	2011	1969	2.1
143088	SAFC 98%	2	1-Nonanol	1173	1172	0.1	1678	1658	1.2
124072	RdH 99%	4	Octanoic acid	1177	1187	-0.8	2117	2055	2.9
119368	Fluka 99%	4	Benzoic acid, 2-hydroxy-, methyl ester (Methyl salicylate)	1202	1192	0.8	1805	1754	2.9
112312	Sigma 98%	3	Decanal	1208	1205	0.3	1510	1485	1.7
432257	SAFC 90%	1	1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl- (beta-Cyclocitral)	1229	1218	0.9	1650	1601	3.1
106241	SAFC 97%	2	2,6-Octadien-1-ol, 3,7-dimethyl-, (E)- (E-Geraniol)	1258	1255	0.2	1869	1838	1.7
141275	Fluka 95%	3	2,6-Octadienal, 3,7-dimethyl-, (2E)- (E-Geranial)	1275	1270	0.4	1758	1714	2.6
7786610	SAFC 98%	1	Phenol, 4-ethenyl-2-methoxy- (4-Vinylguaiacol)	1322	1315	0.5	2221	2181	1.8
97530	Fluka 99%	2	Phenol, 2-methoxy-4-(2-propen-1-yl)- (Eugenol)	1365	1357	0.6	2195	2155	1.9
53448070	SAFC 90%	1	2-Undecenal, (2E)-	1367	1365	0.2	1776	1734	2.4
3796701	SAFC 97%	1	5,9-Undecadien-2-one, 6,10-dimethyl-, (5E)- (E-Geranyl acetone)	1456	1454	0.1	1876	1859	0.9
79776	Fluka 95%	1	3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (3E)- (trans-beta-Ionone)	1495	1485	0.7	1976	1936	2.1
10486198	A 90%	3	Tridecanal	1513	1511	0.1	1834	1812	1.2
112709	A 97%	2	1-Tridecanol	1577	1575	0.1	2086	2076	0.5
502692	SA	1	2-Pentadecanone, 6,10,14-trimethyl- (Hexahydrofarnesylacetone)	1846	1846	0.0	2140	2118	1.0
112390	Fluka 99%	1	Hexadecanoic acid, methyl ester	1927	1926	0.1	2230	2218	0.5
505328	A 97%	1	1-Hexadecen-3-ol, 3,7,11,15-tetramethyl- (Isophytol)	1950	1949	0.4	2297	2282	0.7
150867	SAFC 97%	1	2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)- (E-Phytol)	2106	2114	-0.4	2589	2588	0.0
^a source: Sc	iFinder Schola	ar 200	7 ^b refers to RI from authentic standard A Aldrich, SA Sigma-Ald	drich, RdH	Riedel de H	laën, Su Sı	ipelco		

Table 3. Technical and biological variability of grapevine leaf samples obtained from measurements within the same sequence. Technical variability is given as arithmetic mean and % RSD of peak areas [counts x s] of metabolites detected in $\geq 50\%$ (n = 5-8) of control samples are shown. Biological (including the technical) variability was calculated as root mean square (% RMS) of eight plants (four leaves each) and shows the variability within the plants in the vineyard. The last column reports the variability between the plants.

Variability	Techn	ical	Biological			
	. 1 1		within	between		
	control sa	control samples		nts		
Metabolite	Area	RSD	RMS	RSD		
1-Penten-3-ol	1.97×10^{3}	68.9	30.0	22.3		
Furan, 2-ethyl-	6.01×10^3	53.5	37.8	37.1		
2-Pentenal, (2E)-	8.62×10^3	36.9	23.8	14.8		
2-Penten-1-ol, (2E)-	5.56×10^3	55.6	80.6	32.8		
Hexanal	5.54×10^4	40.1	23.8	17.2		
2-Furancarboxaldehyde	1.55×10^4	85.9	69.4	36.1		
2-Hexenal, (2E)-	1.26×10^{6}	28.6	15.7	8.5		
1-Hexanol	3.40×10^3	44.6	83.6	33.8		
Heptanal	1.26×10^4	34.7	56.6	47.5		
2,4-Hexadienal, (2E,4E)-	1.64×10^5	39.3	20.1	11.0		
Benzaldehyde	$7.07 \text{x} 10^4$	24.9	21.5	10.2		
5-Hepten-2-one, 6-methyl-	8.94×10^3	24.8	39.8	27.2		
beta-Myrcene	3.01×10^4	41.2	45.3	52.6		
Furan, 2-pentyl	1.86×10^{3}	27.8	30.1	9.9		
Octanal	-	-	44.5	39.5		
3-Hexen-1-ol, acetate, (3Z)-	1.61×10^{3}	50.8	93.7	114.5		
Ethanol, 2-(2-ethoxyethoxy)-	-	-	-	-		
2,4-Heptadienal, (2E,4E)-	6.45×10^4	29.5	19.7	14.7		
alpha-Terpinene	1.06×10^3	34.6	36.5	39.0		
1-Pentanol, 3-ethyl-4-methyl-	4.22×10^3	51.5	56.4	59.3		
1-Hexanol, 2-ethyl-	3.30×10^3	32.2	74.0	65.7		
beta-Limonene	4.16×10^3	55.0	52.8	35.7		
Cyclohexanone, 2,2,6-trimethyl-	-	-	33.0	59.6		
Benzyl alcohol	2.08×10^4	77.0	70.0	40.5		
Benzeneacetaldehyde	7.05×10^4	29.7	39.7	32.3		
2-Octenal, (2E)-	3.68×10^3	29.7	31.8	16.4		
1-Octanol	2.37×10^4	31.5	46.3	29.5		
Benzaldehyde, 2-methyl-	2.50×10^3	45.5	29.0	21.6		
beta-Linalool	4.65×10^4	25.9	32.3	41.6		
Nonanal	2.16×10^5	31.4	51.0	43.3		
Benzeneethanol	2.23×10^4	66.7	70.3	44.6		
Maltol	4.16×10^3	39.9	36.8	24.9		
Allo-Ocimene, (E)-	1.61×10^3	49.7	56.6	69.7		
Benzaldehyde, 4-ethyl-	6.69×10^3	43.4	20.7	14.6		
1-Nonanol	3.03×10^4	27.4	35.4	23.3		
Octanoic acid	3.99×10^3	32.3	61.5	38.7		
Ethanone, 1-(3-methylphenyl)-	2.67×10^3	36.4	19.1	14.4		
Benzoic acid, 2-hydroxy-, methyl ester	3.78×10^3	30.0	74.0	45.0		
Decanal	5.32×10^4	24.8	25.5	10.2		
beta-Cyclocitral	$4.82 \text{x} 10^4$	36.3	24.1	12.9		
2-Furancarboxaldehyde, 5-(hydroxymethyl)-	1.92×10^4	58.4	43.3	29.7		
Geraniol, (E)-	3.93×10^5	27.0	34.4	46.8		

Table 3. continued				
Variability	Techn	ical	Biolo	ogical
			within	between
	control sa	amples	pla	ints
Metabolite	Area	RSD	RMS	RSD
Citral, (E)-	1.66×10^4	50.6	36.0	30.7
Phenol, 4-ethenyl-2-methoxy-	3.74×10^3	56.7	30.5	25.4
Eugenol	3.36×10^4	17.8	51.5	40.7
2-Undecenal, (E)-	-	-	-	51.5
Vanillin	-	-	-	-
Geranyl acetone, (E)-	8.67×10^4	23.2	21.6	15.2
beta-Ionone	2.13×10^{5}	35.7	15.0	14.9
Tridecanal	5.48×10^4	21.4	18.9	7.2
2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-	9.11×10^4	34.4	12.9	13.3
1-Tridecanol	3.91×10^3	12.6	34.8	27.0
Dodecanoic acid	2.20×10^4	49.6	3.6	19.3
Tetradecanal	5.46×10^4	21.8	56.1	33.4
Tetradecanoic acid	6.74×10^3	64.3	36.1	18.7
Hexadecanal	$1.06 \text{x} 10^4$	14.6	43.8	21.4
Hexahydrofarnesyl acetone	$9.90 ext{x} 10^4$	25.0	22.7	7.9
Nonadecane	3.37×10^3	24.2	46.3	28.7
Farnesylacetone, (E,E)-	$5.17 \text{x} 10^4$	23.0	24.1	16.3
Hexadecanoic acid, methyl ester	6.33×10^3	34.1	105.8	118.6
Isophytol	3.50×10^5	42.4	49.1	26.1
Hexadecanoic acid	$4.97 \text{x} 10^4$	69.8	39.7	36.4
Phytol	3.58×10^5	46.1	57.0	37.8
- insufficient number of data points for calculation.				

109

Figure 1. Workflow for the annotation / identification of leaf metabolites and the detection of differentially expressed peaks. Once the metabolites are annotated/identified this step can be skipped and the data processing step follows directly the measurements (dotted arrow).

RI: retention index, NCWB: NIST Chemistry WebBok, *: refers to numbers of metabolites detected in this study

Figure 2. Overall peak area and number of AMDIS derived components obtained for different SPME conditions regarding equilibration time, extraction time and temperature. Results of three replicates are depicted.

Figure 3. Left: Scores-plot of PCA. The leaves of two sampling dates cluster in two groups. 50% of the variance in the data result from the different sampling dates. Right: Loadings plot of PCA. Numbers correspond to numbers of metabolites listed in Table 1.

Supplementary data

The following pages show the *Vitis* metabolites database, which is added to this paper. The database was compiled by the author in the years 2008-2011.

Abbreviations: l leaf b berry, grape f flower s shoot nf not found

References in Vitis database:

Batovska DI, Todorova IT, Djakova GJ, Ivanova II, Popov SS. 2010. GC-MS analysis of the leaf surface components of four Bulgarian grapevines grown under different conditions. Natural Product Research 24: 1027-1032.

Batovska DI, Todorova IT, Nedelcheva DV, Parushev SP, Atanassov AI, Hvarleva TD, Djakova GJ, Bankova VS, Popov SS. 2008. Preliminary study on biomarkers for the fungal resistance in *Vitis vinifera* leaves. J Plant Physiol 165: 791-795.

Batovska DI, Todorova IT, Parushev SP, Nedelcheva DV, Bankova VS, Popov SS, Ivanova II, Batovski SA. 2009a. Biomarkers for the prediction of the resistance and susceptibility of grapevine leaves to downy mildew. J Plant Physiol 166: 781-785.

Batovska DI, Todorova IT, Popov SS. 2009b. Seasonal variations in the leaf surface composition of field grown grapevine plants. J Serb Chem Soc 74: 1229-1240.

Buchbauer G, Jirovetz L, Wasicky M, Herlitschka A. 1994. Headspace analysis of *Vitis vinifera* (Vitaceae) flowers. J Essent Oil Res 6: 313-314.

Canuti V, Conversano M, Calzi ML, Heymann H, Matthews MA, Ebeler SE. 2009. Headspace solidphase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J Chromatogr A 1216: 3012-3022.

Cha DH, Nojima S, Hesler SP, Zhang A, Linn Jr. CE, Roelofs WL, Loeb GM. 2008. Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (*Paralobesia viteana*). J Chem Ecol 34: 1180-1189.

Coelho E, Rocha SM, Delgadillo I, Coimbra MA. 2006. Headspace-SPME applied to varietal volatile components evolution during *Vitis vinifera* L. cv. "Baga" ripening. Anal. Chim. Acta 563: 204-214.

Coelho E, Rocha SM, Barros AS, Delgadillo I, Coimbra MA. 2007. Screening of variety- and prefermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Analytica Chimica Acta 597: 257-264.

Du Y-P, Zheng Q-L, Zhai H, Jiang E-S, Wang Z-Y. 2009. Selectivity of *Phylloxera viticola* Fitch (Homoptera: Phylloxeridae) to grape with different resistance and the identification of grape root volatiles. Acta Entomologica Sinica 52: 537-543.

Fan W, Xu Y, Jiang W, Li J. 2010. Identification and Quantification of Impact Aroma Compounds in 4 Nonfloral *Vitis vinifera* Varieties Grapes. J Food Sci 75: S81-S88.

Fenoll J, Manso A, Hellín P, Ruiz L, Flores P. 2009. Changes in the aromatic composition of the *Vitis vinifera* grape Muscat Hamburg during ripening. Food Chemistry 114: 420-428.

Gunata YZ, Bayonove CL, Baumes RL, Cordonnier RE. 1985. The aroma of grapes I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. Journal of Chromatography A 331: 83-90.

Gunata YZ, Bayonove CL, Baumes RL, Cordonnier RE. 1986. Changes in free and bound fractions of aromatic components in vine leaves during development of muscat grapes. Phytochemistry 25: 943-946.

Hampel D, Mosandl A, Wust M. 2005. Induction of de Novo Volatile Terpene Biosynthesis via Cytosolic and Plastidial Pathways by Methyl Jasmonate in Foliage of *Vitis vinifera* L. Journal of Agricultural and Food Chemistry 53: 2652-2657.

Hayasaka Y, Baldock GA, Parker M, Pardon KH, Black CA, Herderich MJ, Jeffery DW. 2010. Glycosylation of Smoke-Derived Volatile Phenols in Grapes as a Consequence of Grapevine Exposure to Bushfire Smoke. Journal of Agricultural and Food Chemistry 58: 10989-10998.

Hebash KAH, Fadel HM, Soliman MMA. 1991. Volatile components of grape leaves. Journal of Islamic Academy of Sciences 4: 26-28

Hernández-Orte P, Loscos N, Lapena A-C, Cacho J, Ferreira V. 2008. Aroma compounds released from glycosidic precursors present in vine leaves from some Spanish cultivars. In Proceedings of the WAC 2008 International Conference. Presented at the Wine Active Compounds, Oenoplurimedia, Château de Chaintré, pp. 112-114.

Ibarz JM, Ferreira V, Hernández-Orte P, Loscos N, Cacho J. 2006. Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavor precursors extracted from grapes. Journal of Chromatography A 1116: 217-229.

Ji T, Dami IE. 2008. Characterization of free flavor compounds in traminette grape and their relationship to vineyard training system and location. J. Food Sci. 73: C262-C267.

Jirovetz L, Buchbauer G, Bonin G, Nikiforov A. 1994. Analysis of grapevine secretion, grapevine tears, using GC-FTIR-MS. Vitis 33: 97-98.

Kalua CM, Boss PK. 2009. Evolution of Volatile Compounds during the Development of Cabernet Sauvignon Grapes (*Vitis vinifera* L.). J Agric Food Chem 57: 3818-3830.

Kalua CM, Boss PK. 2010. Comparison of major volatile compounds from Riesling and Cabernet Sauvignon grapes (*Vitis vinifera* L.) from fruitset to harvest. Aust J Grape Wine R 16: 337-348.

Kawaguchi M, Imai H, Naoe M, Yasui Y, Ohnishi M. 2000. Cerebrosides in Grapevine Leaves: Distinct Composition of Sphingoid Bases Among the Grapevine Species Having Different Tolerances to Freezing Temperature. Bioscience, Biotechnology, and Biochemistry 64: 1274-1273.

Lamorte SA, Gambuti A, Genovese A, Selicato S, Moio L. 2008. Free and glycoconjugated volatiles of *V. vinifera* grape "Falanghina". Vitis 47: 241-243.

Loughrin JH, Potter DA, Hamilton-Kemp TR, Byers ME. 1996. Role of Feeding Induced Plant Volatiles in Aggregative Behavior of the Japanese Beetle (Coleoptera: Scarabaeidae). Environmental Entomology 25: 1188-1191(4).

Loughrin JH, Potter DA, Hamilton-Kemp TR, Byers ME. 1997. Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves. Phytochemistry 45: 919-923.

Masa A, Vilanova M. 2008. Flavonoid and aromatic characterisation of cv. Albarín blanco (*Vitis vinifera* L.). Food Chemistry 107: 273-281.

Parker M, Pollnitz AP, Cozzolino D, Francis IL, Herderich MJ. 2007. Identification and Quantification of a Marker Compound for 'Pepper' Aroma and Flavor in Shiraz Grape Berries by Combination of Chemometrics and Gas Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry 55: 5948-5955.

Rocha SM, Coelho E, Zrostlíková J, Delgadillo I, Coimbra MA. 2007. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. J Chromatogr A 1161: 292-299.

Ruberto G, Renda A, Amico V, Tringali C. 2008. Volatile components of grape pomaces from different cultivars of Sicilian *Vitis vinifera* L. Bioresource Technology 99: 260-268.

Skouroumounis GK, Winterhalter P. 1994. Glycosidically Bound Norisoprenoids from *Vitis vinifera* cv. Riesling Leaves. Journal of Agricultural and Food Chemistry 42: 1068-1072.

Tamborra P, Esti M. 2010. Authenticity markers in Aglianico, Uva di Troia, Negroamaro and Primitivo grapes. Analytica Chimica Acta 660: 221-226.

Tasin M, Anfora G, Ioriatti C, Carlin S, De Cristofaro A, Schmidt S, Bengtsson M, Versini G, Witzgall P. 2005. Antennal and behavioral responses of grapevine moth *Lobesia botrana* females to volatiles from grapevine. J Chem Ecol 31: 77-87.

Tesniere C, Torregrosa L, Pradal M, Souquet J-M, Gilles C, Dos Santos K, Chatelet P, Gunata Z. 2006. Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J. Exp. Bot. 57: 91-99.

Todorova IT, Batovska DI, Parushev SP, Djakova GJ, Popov SS. 2010. Surface metabolic composition of berries collected from 13 Bulgarian grapevine plants. Natural Product Research: Formerly Natural Product Letters 24: 935-941.

Wildenradt HL, Christensen EN, Stackler B, Caputi A, Slinkard K, Scutt K. 1975. Volatile Constituents of Grape Leaves. I. *Vitis Vinifera* Variety "Chenin Blanc". Am J Enol Vitic 26: 148-153.

Wirth J, Guo W, Baumes R, Günata Z. 2001. Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from *Vitis vinifera* Muscat of Alexandria and Shiraz cultivars. J Agric Food Chem 49: 2917-2923.

Yang C, Wang Y, Liang Z, Fan P, Wu B, Yang L, Wang Y, Li S. 2009. Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC-MS. Food Chem 114: 1106-1114.

Nr.	Name	CAS	Т	b	f	S	other	reference
1	Alanine	56417	х					Batovska et al., 2009a
2	2 Glutamine	56859	Х					Batovska et al., 2009a
3	3 Hexadecanoic acid	57103	Х					Batovska et al., 2009a
4	Ethylamine	75047	х					Batovska et al., 2009a
5	5 Hydroxyacetic acid	79141	х					Batovska et al., 2009a
6	S Sitosterol	83465	х					Batovska et al., 2009a
7	7 Myoinositol	87898	х					Batovska et al., 2009a
8	3 Inositol	87898	х					Batovska et al., 2009a
ç) Nonanal	124196	х					Batovska et al., 2009a
10) Ethanedioic acid	144627	х					Batovska et al., 2009a
11	3-Hydroxybutanoic acid	300856	х					Batovska et al., 2009a
12	2 beta-Amyrine	559706	х					Batovska et al., 2009a
13	3 Hydroxybutanedioic acid	6915157	х					Batovska et al., 2009a
14	Fructose	7660255	х					Batovska et al., 2009a
15	5 Arabinoic acid	13752835	х					Batovska et al., 2009a
16	3 14,16-Hentriacontanedione	24724843	х					Batovska et al., 2009a
17	2,3-Dihydroxypropanoic acid	473814	х					Batovska et al., 2009a
18	3 2-Butanedioic acid	nf	х					Batovska et al., 2009a
19	9 2,3,4-Trihydroxybutanoic acid	10191352	х					Batovska et al., 2009a
20) 2,3,4-Trihydroxybutanoic acid isomer	nf	х					Batovska et al., 2009a
21	5-(Hydroxymethyl)-2-furancarboxaldehyde	67470	х					Batovska et al., 2009a
22	2 Aldohexoses	nf	х					Batovska et al., 2009a
23	3 Monoethyl esther of phophoric acid	nf	х					Batovska et al., 2009a
24	I 3-Hydroxyhexanoic acid	10191249	х					Batovska et al., 2009a
25	5 3-(hydroxyphenyl)-2-propenoic acid	588307	х					Batovska et al., 2009a
26	6 1-(4-Methoxyphenyl)-2-propanone	122849	х					Batovska et al., 2009a, suppl. info
27	7 14,16-Hentriacontanedione	24724843	х					Batovska et al., 2009a, suppl. info
28	3 2,3,4-Trihydroxybutanoic acid	10191352	х					Batovska et al., 2009a, suppl. info
29	9 2,3,4-Trihydroxybutanoic acid (isomer)	nf	х					Batovska et al., 2009a, suppl. info
30) 2,3-Dihydro-1,1,3-trimethyl-3-phenyl-1H-indene	3910358	х					Batovska et al., 2009a, suppl. info
31	2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one	28564832	х					Batovska et al., 2009a, suppl. info
32	2 2,3-Dihydroxybutanedioic acid	87694	х					Batovska et al., 2009a, suppl. info
33	3 2,3-Dihydroxypropanoic acid	473814	х					Batovska et al., 2009a, suppl. info
34	2,4-Diphenyl-4-methyl-1-pentene	6258737	х					Batovska et al., 2009a, suppl. info
35	5 2-Butenedioic acid	6915180	х					Batovska et al., 2009a, suppl. info
36	3 2-Ethylhexanoic acid	149575	х					Batovska et al., 2009a, suppl. info
37	2-Hydroxybutanoic acid	600157	х					Batovska et al., 2009a, suppl. info
38	3 2-Hydroxypentanoic acid	617312	х					Batovska et al., 2009a, suppl. info
39	9 2-Hydroxypropane- 1,2,3-tricarboxylic acid	77929	х					Batovska et al., 2009a, suppl. info
40) 2-Hydroxypropanoic acid	50215	х					Batovska et al., 2009a, suppl. info
41	2-Methyl-butanoic acid	116530	Х					Batovska et al., 2009a, suppl. info

Nr.	Name	CAS	I	b	f	S	other	reference
42 3	3-(3,4-Dihydroxyphenyl)-2-propenoic acid	331395	х					Batovska et al., 2009a, suppl. info
43 3	3-(4-Hydroxyphenyl)-2-propenoic acid	7400080	х					Batovska et al., 2009a, suppl. info
44 3	3-(Hydroxyphenyl)-2-propenoic acid	588307	х					Batovska et al., 2009a, suppl. info
45 3	3,4,5-Trihydroxybenzoic acid	149917	х					Batovska et al., 2009a, suppl. info
46 3	3,4-Dihydroxybenzoic acid	99503	х					Batovska et al., 2009a, suppl. info
47 3	3-Hydroxybutanoic acid	300856	х					Batovska et al., 2009a, suppl. info
48 3	3-Hydroxyhexanoic acid	10191249	х					Batovska et al., 2009a, suppl. info
49 3	3-Methyl-4-oxo-2-pentenoic acid	nf	х					Batovska et al., 2009a, suppl. info
50 4	4,14-Dimethyl-ergosta-8,24(28)-dien-3-ol	nf	х					Batovska et al., 2009a, suppl. info
51 5	5-(Hydroxymethyl)-2-furancarboxaldehyde	67470	х					Batovska et al., 2009a, suppl. info
52 9	9,19-Cyclolanost-24-en-3-ol	13639388	х					Batovska et al., 2009a, suppl. info
53 A	Alanine	56417	х					Batovska et al., 2009a, suppl. info
54 A	Aldohexoses	nf	х					Batovska et al., 2009a, suppl. info
55 a	alpha-Amyrin	638959	х					Batovska et al., 2009a, suppl. info
56 a	alpha-Tocopherol	1406184	х					Batovska et al., 2009a, suppl. info
57 A	Arabinoic acid	13752835	х					Batovska et al., 2009a, suppl. info
58 A	Arabinoic acid (isomer)	nf	х					Batovska et al., 2009a, suppl. info
59 k	beta-Amyrine	559706	х					Batovska et al., 2009a, suppl. info
60 E	3ranched hydrocarbon	nf	х					Batovska et al., 2009a, suppl. info
61 E	3utanedioic acid	110156	х					Batovska et al., 2009a, suppl. info
62 E	3utyl ester of hydroxybutanedioic acid	nf	х					Batovska et al., 2009a, suppl. info
63 (Campesterol	474624	х					Batovska et al., 2009a, suppl. info
64 (Cholesterol	57885	х					Batovska et al., 2009a, suppl. info
65 c	Jelta-Tocopherol	119131	х					Batovska et al., 2009a, suppl. info
66 E	Dihydro-3,4-hydroxy-2(3H)-furanone	nf	х					Batovska et al., 2009a, suppl. info
67 E	Dihydro-3,4-hydroxy-2(3H)-furanone (isomer)	nf	х					Batovska et al., 2009a, suppl. info
68 E	Docosane	629970	х					Batovska et al., 2009a, suppl. info
69 E	Ethane-1,2,3-triol	nf	х					Batovska et al., 2009a, suppl. info
70 E	Ethane-1,2-diol	107211	х					Batovska et al., 2009a, suppl. info
71 E	Ethanedioic acid	144627	х					Batovska et al., 2009a, suppl. info
72 E	Ethyl ester of 2,3-dihydroxybutanedioic acid	nf	х					Batovska et al., 2009a, suppl. info
73 E	Ethylamine	75047	х					Batovska et al., 2009a, suppl. info
74 F	⁻ ructose	7660255	х					Batovska et al., 2009a, suppl. info
75 F	Fucosterol	17605673	х					Batovska et al., 2009a, suppl. info
76 g	jamma-Tocopherol	7616220	х					Batovska et al., 2009a, suppl. info
77 (Glucofuranose	18549401	х					Batovska et al., 2009a, suppl. info
78 (Glutamine	56859	х					Batovska et al., 2009a, suppl. info
79 (Glycerophosphate	927208	х					Batovska et al., 2009a, suppl. info
80 H	Heneicosane	629947	х					Batovska et al., 2009a, suppl. info
81 H	Hentriacontane	630046	х					Batovska et al., 2009a, suppl. info
82 H	Heptacosane	593497	х					Batovska et al., 2009a, suppl. info

Nr.	Name	CAS	I	b	f	S	other	reference
83 Hexacosane	9	630013	х					Batovska et al., 2009a, suppl. info
84 Hexadecand	pic acid	57103	х					Batovska et al., 2009a, suppl. info
85 Hexanoic ad	cid	142621	х					Batovska et al., 2009a, suppl. info
86 Hexenoic ad	cid	1289403	х					Batovska et al., 2009a, suppl. info
87 Hydroxyace	tic acid	79141	х					Batovska et al., 2009a, suppl. info
88 Hydroxybuta	anedioic acid	6915157	х					Batovska et al., 2009a, suppl. info
89 Hydroxyprol	line	51354	х					Batovska et al., 2009a, suppl. info
90 Indole		120729	х					Batovska et al., 2009a, suppl. info
91 Inositol		87898	х					Batovska et al., 2009a, suppl. info
92 Isopropyl he	exadecanoate	142916	х					Batovska et al., 2009a, suppl. info
93 Isopropyl te	tradecanoate	110270	х					Batovska et al., 2009a, suppl. info
94 Lanost-7-en	-3-one	5985808	х					Batovska et al., 2009a, suppl. info
95 Lanosterol		79630	х					Batovska et al., 2009a, suppl. info
96 Levoglucosa	an	498077	х					Batovska et al., 2009a, suppl. info
97 Lupeol		545471	х					Batovska et al., 2009a, suppl. info
98 Methyl-2-hy	droxybutanoic acid	nf	х					Batovska et al., 2009a, suppl. info
99 Monoethyl e	ester of phosphoric acid	nf	х					Batovska et al., 2009a, suppl. info
100 Myo-inositol		87898	х					Batovska et al., 2009a, suppl. info
101 Nonadecane	e	629925	х					Batovska et al., 2009a, suppl. info
102 Nonanal		124196	х					Batovska et al., 2009a, suppl. info
103 Nonanoic ad	cid	112050	х					Batovska et al., 2009a, suppl. info
104 Octacosane		630024	х					Batovska et al., 2009a, suppl. info
105 Octadecand	vic acid	57114	х					Batovska et al., 2009a, suppl. info
106 Pentacosan	e	629992	х					Batovska et al., 2009a, suppl. info
107 Phosphoric	acid	78400	х					Batovska et al., 2009a, suppl. info
108 Proline		147853	х					Batovska et al., 2009a, suppl. info
109 Sitosterol		83465	х					Batovska et al., 2009a, suppl. info
110 Squalene		94016350	х					Batovska et al., 2009a, suppl. info
111 Stigmastero	l	83487	х					Batovska et al., 2009a, suppl. info
112 Stigmastero	l	83487	х					Batovska et al., 2009a, suppl. info
113 Tetracosane	9	646311	х					Batovska et al., 2009a, suppl. info
114 Tetradecand	pic acid	544638	х					Batovska et al., 2009a, suppl. info
115 Triacontane		638686	х					Batovska et al., 2009a, suppl. info
116 Tricosane		638675	х					Batovska et al., 2009a, suppl. info
117 Glycolic aci	d	79141	х					Batovska et al., 2008
118 Tartaric acid	t t	87694	х					Batovska et al., 2008
119 Isopropyl m	yristate	110270	х					Batovska et al., 2008
120 Squalen		94016350	х					Batovska et al., 2008
121 3-Hydroxyb	utanoic acid	300856	х					Batovska et al., 2008
122 Hexahydrof	arnesylacetone	502692	х					Batovska et al., 2008
123 Lupeol		545471	х					Batovska et al., 2008

Nr.	Name	CAS	I	b	f	S	other	reference
124 I	beta-Amyrine	559706	х					Batovska et al., 2008
125 a	alpha-Amyrine	638959	х					Batovska et al., 2008
126 a	alpha-Amyrines	638959	х					Batovska et al., 2008
127 a	alpha-Tocopherol	1406184	х					Batovska et al., 2008
128 I	Malic acid	6915157	х					Batovska et al., 2008
129 g	gamma-Tocopherol	7616220	х					Batovska et al., 2008
130 /	Arabinoic acid	13752835	х					Batovska et al., 2008
131 (3-Hydroxycaproic acid	10191249	х					Batovska et al., 2008
132 I	Erythronic acid	nf	х					Batovska et al., 2008
133 I	Monoethyl phosphate	1623149	х					Batovska et al., 2008
134	Undecyl laurate	3658444	х					Batovska et al., 2008
135 \$	Stigmata-3,5-dien-7-one	nf	х					Batovska et al., 2008
136 I	Hexadecanoic acid	57103			х			Buchbauer et al., 1994
137 2	2-Phenylethanol	60128			х			Buchbauer et al., 1994
138 2	2-Phenylethanol	60128			х			Buchbauer et al., 1994
139 I	Ethanol	64175			х			Buchbauer et al., 1994
140 I	Linalool	78706			х			Buchbauer et al., 1994
141 I	Linalool	78706			х			Buchbauer et al., 1994
142 ((E)-3,7-Dimethyl-2,6-octadien-1-ol	106241			х			Buchbauer et al., 1994
143 (6-Methyl-5-hepten-2-one	110930			х			Buchbauer et al., 1994
144 I	Hexan-1-ol	111273			х			Buchbauer et al., 1994
145 I	Hexan-1-ol	111273			х			Buchbauer et al., 1994
146 (Octan-1-ol	111875			х			Buchbauer et al., 1994
147 (Octan-1-ol	111875			х			Buchbauer et al., 1994
148 I	Methyl hexadecanoate	112390			х			Buchbauer et al., 1994
149 I	Methyl hexadecanoate	112390			х			Buchbauer et al., 1994
150 l	Benzyl benzoate	120514			х			Buchbauer et al., 1994
151 I	Nonanal	124196			Х			Buchbauer et al., 1994
152 I	Nonanal	124196			х			Buchbauer et al., 1994
153	1-Methyl-4-(1-methylethenyl)-cyclohexene	138863			х			Buchbauer et al., 1994
154 l	Ethyl acetate	141786			х			Buchbauer et al., 1994
155 l	Ethyl acetate	141786			х			Buchbauer et al., 1994
156 l	Ethyl acetate	141786			х			Buchbauer et al., 1994
157 ⁻	1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)-cyclohex-1-ene	495614			х			Buchbauer et al., 1994
158	1-Hexene	592416			х			Buchbauer et al., 1994
159 I	Nonadecane	629925			х			Buchbauer et al., 1994
160 ⁻	1-Tridecene	2437561			х			Buchbauer et al., 1994
161 [·]	1-Tridecene	2437561			Х			Buchbauer et al., 1994
162 ((Z)-1,2,3,5,6,7,8,8alpha-Octahydro-1,4-dimethyl-7-(prop-1-en-2-yl)azulene	3691110			Х			Buchbauer et al., 1994
163 ((Z)-1,2,3,5,6,7,8,8alpha-Octahydro-1,4-dimethyl-7-(prop-1-en-2-yl)azulene	3691110			Х			Buchbauer et al., 1994
164	7-IsopropenyI-1,4-dimethyI-1,2,3,4,5,6,7,8-octahydroazulene	3691121			Х			Buchbauer et al., 1994

Nr.	Name	CAS	1	b	f	s other	reference
165 (E)-6,10-Dimethy	/I-5,9-undecadien-2-one	3796701			х		Buchbauer et al., 1994
166 1-Nonadecene		18435455			х		Buchbauer et al., 1994
167 2-Phenylethanol		60128		х			Canuti et al, 2009
168 beta-Linalool		78706		х			Canuti et al, 2009
169 beta-lonone		79776		х			Canuti et al, 2009
170 beta-Citronellol		106229		х			Canuti et al, 2009
171 3-Octanone		106683		х			Canuti et al, 2009
172 Isovalerone		108838		х			Canuti et al, 2009
173 2-Octanone		111137		х			Canuti et al, 2009
174 Nonanal		124196		х			Canuti et al, 2009
175 1-Nonanol		143088		х			Canuti et al, 2009
176 (E)-3-Hexen-1-ol		928972		х			Canuti et al, 2009
177 (E,Z)-2,6-Nonadi	ienal	557482		х			Canuti et al, 2009
178 3-Octanol		589980		х			Canuti et al, 2009
179 (Z)-2-Hexen-1-ol		2305217		х			Canuti et al, 2009
180 1-Octen-3-ol		3391864		х			Canuti et al, 2009
181 Geranyl/neryl ac	etone	nf		х			Canuti et al, 2009
182 (E)-2-Nonenal		18829566		х			Canuti et al, 2009
183 Nerol		106252		х			Canuti et al, 2009
184 1-Hexanol		111273		х			Canuti et al, 2009
185 1-Octanol		111875		х			Canuti et al, 2009
186 (Z)-2-Hexenal		505577		х			Canuti et al, 2009
187 Hexanal		66251		х			Canuti et al, 2009
188 (E)-2-Hexenal		6728263		х			Canuti et al, 2009
189 4-Methyl-2-hepta	anone	6137060		х			Canuti et al, 2009
190 2-Ethyl-1-hexand	bl	104767		х			Canuti et al, 2009
191 Dihydroedulan I		63335660		х			Canuti et al, 2009
192 (Z)-3-Nonen-1-ol		10340235		х			Canuti et al, 2009
193 beta-Damascenc	on	36649635		х			Canuti et al, 2009
194 Linalool		78706				whole plant	Cha et al., 2008
195 Decanal		112312	Х			whole plant	Cha et al., 2008
196 Nonanal		124196	х			whole plant	Cha et al., 2008
197 Z-3-Hexen-1-yl a	acetate	3681718	х			whole plant	Cha et al., 2008
198 Z-Linalool Oxide		5989333	х			whole plant	Cha et al., 2008
199 E-Linalool Oxide		34995772	х			whole plant	Cha et al., 2008
200 Methyl Salicylate	9	119368				whole plant	Cha et al., 2008
201 Germacrene-D		23986745				whole plant	Cha et al., 2008
202 alpha-Farnesene)	502614				whole plant	Cha et al., 2008
203 beta-Caryophylle	ene	87445				whole plant	Cha et al., 2008
204 E-4,8-Dimethyl 1	,3,7-nonatriene	19945610	Х			whole plant	Cha et al., 2008
205 2-Phenylethanol		60128		х			Coelho et al., 2006

Nr.	Name	CAS	I	b	f	S	other	reference
206 Linalool		78706		х				Coelho et al., 2006
207 beta-lond	one	79776		х				Coelho et al., 2006
208 Naphthal	ene	91203		х				Coelho et al., 2006
209 E-Gerani	ol	106241		х				Coelho et al., 2006
210 beta-Cyc	locitral	432257		х				Coelho et al., 2006
211 alpha-An	norphene	483750		х				Coelho et al., 2006
212 Cadalene	9	483783		х				Coelho et al., 2006
213 beta-Cac	linene	523477		х				Coelho et al., 2006
214 alpha-Gu	laiene	3691121		х				Coelho et al., 2006
215 Valencer	ne	4630073		х				Coelho et al., 2006
216 gamma-l	sogeraniol	5944207		х				Coelho et al., 2006
217 delta-Ele	mene	20307840		х				Coelho et al., 2006
218 E-beta-D	amascenone	23726934		х				Coelho et al., 2006
219 gamma-l	Elemene	30824670		х				Coelho et al., 2006
220 gamma-l	Elemene	30824670		х				Coelho et al., 2006
221 (-)-Isoled	ene	95910364		х				Coelho et al., 2006
222 2-Isoprop	byl-5-methyl-9-methylene-bicyclo[4.4.0]dec-1-en	150320528		х				Coelho et al., 2006
223 Benzyl a	lcohol	100516		х				Coelho et al., 2006
224 Citronello	bl	106229		х				Coelho et al., 2006
225 Limonen	e	138863		х				Coelho et al., 2006
226 alpha-Yla	angene	14912448		х				Coelho et al., 2006
227 Germacr	ene B	15423571		х				Coelho et al., 2006
228 Hotrienol		20053887		х				Coelho et al., 2006
229 alpha-Ca	lacorene	21391991		х				Coelho et al., 2006
230 alpha-Ca	lacorene	21391991		х				Coelho et al., 2006
231 Germacr	ene D	23986745		х				Coelho et al., 2006
232 alpha-Mu	Jurolene	31983229		х				Coelho et al., 2006
233 Geranyl	acetone	3796701		х				Coelho et al., 2006
234 gamma-0	Cadinene	39029419		х				Coelho et al., 2006
235 gamma-0	Cadinene	39029419		х				Coelho et al., 2006
236 Epizonar	ene	41702630		х				Coelho et al., 2006
237 Geranic	acid	459803		х				Coelho et al., 2006
238 delta-Ca	dinene	483761		х				Coelho et al., 2006
239 (+)-Arom	adendrene	489394		х				Coelho et al., 2006
240 Manoyl c	vxide	596849		х				Coelho et al., 2006
241 3,7-Guai	adiene	6754047		х				Coelho et al., 2006
242 beta-Car	yophyllene	87445		х				Coelho et al., 2006
243 alpha-Te	rpineol	98555		х				Coelho et al., 2006
244 1,1,6-Trii	methyl-1,2-dihydronaphthalene	30364386		x				Coelho et al., 2006
245 (+)-Cyclo	bisosativene	406485436		x				Coelho et al., 2006
246 beta-Bou	rbonene (iosmer 1)	nf		х				Coelho et al., 2006

Nr.	Name	CAS	I	b	f	s othe	r reference
247 beta-Bourbonene (iosmer 2)		nf		х			Coelho et al., 2006
248 beta-Bourbonene (iosmer 3)		nf		х			Coelho et al., 2006
249 beta-Cubebene		13744155		х			Coelho et al., 2006
250 Epi-bicyclosesquiphellandrene		54274736		х			Coelho et al., 2006
251 (-)-delta-Selinene		28624239		х			Coelho et al., 2006
252 Calamenene		483772		х			Coelho et al., 2006
253 Theaspirane A (2R,5R)		43126223		х			Coelho et al., 2006
254 Dihydroedulan I		63335660		х			Coelho et al., 2006
255 Vitispiran isomer 1		nf		х			Coelho et al., 2006
256 Vitispiran isomer 2		nf		х			Coelho et al., 2006
257 Theaspirane B (2R,5S)		66537404		х			Coelho et al., 2006
258 2-Phenylethanol		60128		х			Coelho et al., 2007
259 n-Hexanal		66251		х			Coelho et al., 2007
260 Linalool		78706		х			Coelho et al., 2007
261 beta-lonone		79776		х			Coelho et al., 2007
262 Z-Citral		106263		х			Coelho et al., 2007
263 E-2-Hexenol		928950		х			Coelho et al., 2007
264 gamma-Isogeraniol		5944207		х			Coelho et al., 2007
265 E-beta-Damascenone		23726934		х			Coelho et al., 2007
266 Linalool E-pyranic oxide		41720621		х			Coelho et al., 2007
267 Benzyl alcohol		100516		х			Coelho et al., 2007
268 Citronellol		106229		х			Coelho et al., 2007
269 Geraniol		1		х			Coelho et al., 2007
270 Nerol		106252		х			Coelho et al., 2007
271 1-Hexanol		111273		х			Coelho et al., 2007
272 Limonene		138863		х			Coelho et al., 2007
273 E-Citral		141275		х			Coelho et al., 2007
274 Hotrienol		20053887		х			Coelho et al., 2007
275 Geranic acid		459803		х			Coelho et al., 2007
276 alpha-Terpinolene		586629		х			Coelho et al., 2007
277 E-2-Hexenal		6728263		х			Coelho et al., 2007
278 Z-3-Hexenol		928961		х			Coelho et al., 2007
279 alpha-Terpineol		98555		х			Coelho et al., 2007
280 Linalool Z-pyranic oxide		nf		х			Coelho et al., 2007
281 Linalool Z-furanic oxide		nf		х			Coelho et al., 2007
282 Terpendiol I		nf		х			Coelho et al., 2007
283 beta-Ocimene		13877913				stem	Hampel et al., 2005
284 4,8-Dimethylnona-1,3,7-triene		51911821				stem	Hampel et al., 2005
285 E,E-alpha-Farnesene		502614				stem	Hampel et al., 2005
286 Z-beta-Ocimene		3338554				stem	Hampel et al., 2005
287 S-Linalool		126909				stem	Hampel et al., 2005

Nr.	Name	CAS	1	b	f	S	other	reference
288 beta-Caryophyllene		87445					stem	Hampel et al., 2005
289 alpha-Humulene		6753986					stem	Hampel et al., 2005
290 Germacrene D		23986745					stem	Hampel et al., 2005
291 Linalool		78706		х				Ji and Dami, 2008
292 Undecanal		112447		х				Ji and Dami, 2008
293 Phenylacetaldehyde		122781		х				Ji and Dami, 2008
294 Nonanal		124196		х				Ji and Dami, 2008
295 trans Rose Oxide		876186		х				Ji and Dami, 2008
296 cis-3-Hexen-1-ol		928961		х				Ji and Dami, 2008
297 cis-Ocimene		3338554		х				Ji and Dami, 2008
298 trans-Ocimene		3779611		х				Ji and Dami, 2008
299 trans-2-Hexenal		6728263		х				Ji and Dami, 2008
300 Geraniol		106241		х				Ji and Dami, 2008
301 Nerol		106252		х				Ji and Dami, 2008
302 Neral		106263		х				Ji and Dami, 2008
303 1-Hexanol		111273		х				Ji and Dami, 2008
304 Decanal		112312		х				Ji and Dami, 2008
305 Dodecanal		112549		х				Ji and Dami, 2008
306 Limonene		138863		х				Ji and Dami, 2008
307 Geranial		141275		х				Ji and Dami, 2008
308 Nerol Oxide		1786089		х				Ji and Dami, 2008
309 Geranyl acetone		3796701		х				Ji and Dami, 2008
310 Hexanal		66251		х				Ji and Dami, 2008
311 alpha-Terpineol		98555		х				Ji and Dami, 2008
312 cis Rose Oxide		3033236		х				Ji and Dami, 2008
313 Hexadecanoic acid		57103	х					Kawaguchi et al. 2000
314 Octadecanoic acid		57114	х					Kawaguchi et al. 2000
315 Eicosanoic acid		506309	х					Kawaguchi et al. 2000
316 Uncosanoic acid		nf	х					Kawaguchi et al. 2000
317 Docosanoic acid		112856	х					Kawaguchi et al. 2000
318 Tricosanoic acid		2433967	х					Kawaguchi et al. 2000
319 Tetracosanoic acid		557595	х					Kawaguchi et al. 2000
320 Pentacosanoic acid		506387	х					Kawaguchi et al. 2000
321 Hexacosanoic acid		506467	х					Kawaguchi et al. 2000
322 4-Hydroxysphinganine		13552119	х					Kawaguchi et al. 2000
323 4-Hydroxy-8-E-sphingenine		nf	х					Kawaguchi et al. 2000
324 4-Hydroxy-8-Z-sphingenine		nf	х					Kawaguchi et al. 2000
325 Sphinganine		764227	Х					Kawaguchi et al. 2000
326 8-E-sphingenine		nf	Х					Kawaguchi et al. 2000
327 8-Z-Sphingenine		nf	Х					Kawaguchi et al. 2000
328 4-E,8-E-Sphingadienine		nf	Х					Kawaguchi et al. 2000

Nr.	Name	CAS		b	f	S	other	reference
329 4-E,8-Z-Sphingadienine		41679338	х					Kawaguchi et al. 2000
330 2-Phenylethanol		60128				х		Lamorte et al., 2008
331 1-Pentanol		71410				х		Lamorte et al., 2008
332 Linalool		78706				х		Lamorte et al., 2008
333 Eugenol		97530				х		Lamorte et al., 2008
334 Furfural		98011				х		Lamorte et al., 2008
335 Benzaldehyde		100527				х		Lamorte et al., 2008
336 2-Ethyl-1-hexanol		104767				х		Lamorte et al., 2008
337 1-Heptanol		111706				х		Lamorte et al., 2008
338 4-Methyl-3-penten-1-ol		763893				х		Lamorte et al., 2008
339 1H-Pirrole-2-carboxaldehyde		1003298				х		Lamorte et al., 2008
340 1-Phenylethanol		1445916				х		Lamorte et al., 2008
341 1-Octen-3-ol		3391864				х		Lamorte et al., 2008
342 Z-Linalool oxide		5989333				х		Lamorte et al., 2008
343 Exo-2-hydroxy-1,8-cineole		92999785				х		Lamorte et al., 2008
344 Benzyl alcohol		100516				х		Lamorte et al., 2008
345 Citronellol		106229				х		Lamorte et al., 2008
346 Geraniol		106241				х		Lamorte et al., 2008
347 Nerol		106252				х		Lamorte et al., 2008
348 1-Hexanol		111273				х		Lamorte et al., 2008
349 3-Methyl-1-butanol		123513				х		Lamorte et al., 2008
350 Geranic acid		459803				х		Lamorte et al., 2008
351 Hexanal		66251				х		Lamorte et al., 2008
352 E-2-Hexenal		6728263				х		Lamorte et al., 2008
353 E-2-Hexen-1-ol		928950				х		Lamorte et al., 2008
354 Z-3-Hexen-1-ol		928961				х		Lamorte et al., 2008
355 E-3-Hexen-1-ol		928972				х		Lamorte et al., 2008
356 alpha-Terpineol		98555				х		Lamorte et al., 2008
357 Pyranic linalool oxide		nf				х		Lamorte et al., 2008
358 3-Oxo-alpha-Ionol		34318213				х		Lamorte et al., 2008
359 Hexanal		66251	х					Loughrin et al., 1997
360 Linalool		78706	х					Loughrin et al., 1997
361 Hexanol		111273	х					Loughrin et al., 1997
362 Methyl Salicylate		119368	х					Loughrin et al., 1997
363 Indole		120729	х					Loughrin et al., 1997
364 Limonene		138863	х					Loughrin et al., 1997
365 E,E-alpha-Farnesene		502614	х					Loughrin et al., 1997
366 E-beta-Ocimene		3779611	х					Loughrin et al., 1997
367 E-2-Hexenal		6728263	х					Loughrin et al., 1997
368 Z-3-Hexenal		6789806	х					Loughrin et al., 1997
369 Nerolidol		7212444	Х					Loughrin et al., 1997

Nr.	Name	CAS	I	b	f	S	other	reference
370 Z-3-Hexenyl benzoate		25152856	х					Loughrin et al., 1997
371 E-4,8-Dimethyl 1,3,7-nonatriene		19945610	х					Loughrin et al., 1997
372 Z-3-Hexenyl Acetate		3681718	х					Loughrin et al., 1997
373 2-Phenylethanol		60128		х				Masa and Vilanova, 2008
374 1-Propanol		71238		х				Masa and Vilanova, 2008
375 Linalool		78706		х				Masa and Vilanova, 2008
376 beta-lonone		79776		х				Masa and Vilanova, 2008
377 Methanol		89781		х				Masa and Vilanova, 2008
378 Eugenol		97530		х				Masa and Vilanova, 2008
379 Ethyl lactate		97643		х				Masa and Vilanova, 2008
380 Ethyl butyrate		105544		х				Masa and Vilanova, 2008
381 Ethyl octanoate		106321		х				Masa and Vilanova, 2008
382 Ethyl decanoate		110383		х				Masa and Vilanova, 2008
383 Diethyl succinate		123251		х				Masa and Vilanova, 2008
384 Isoamyl alcohol		123513		х				Masa and Vilanova, 2008
385 Ethyl hexanoate		123660		х				Masa and Vilanova, 2008
386 Isoamyl acetate		123922		х				Masa and Vilanova, 2008
387 Ethyl myristate		124061		х				Masa and Vilanova, 2008
388 Ethyl acetate		141786		х				Masa and Vilanova, 2008
389 Hexyl acetate		142927		х				Masa and Vilanova, 2008
390 Benzyl alcohol		100516		х				Masa and Vilanova, 2008
391 Citronellol		106229		х				Masa and Vilanova, 2008
392 Geraniol		106241		х				Masa and Vilanova, 2008
393 Nerol		106252		х				Masa and Vilanova, 2008
394 1-Butanol		71363		х				Masa and Vilanova, 2008
395 2-Methyl-1-propanol		78831		х				Masa and Vilanova, 2008
396 alpha-Terpineol		98555		х				Masa and Vilanova, 2008
397 Theaspirane-b		43126212		х				Masa and Vilanova, 2008
398 Terminem-4-ol		nf		х				Masa and Vilanova, 2008
399 4-Terpinenol		562743		х				Rocha et al., 2007
400 Z-Herboxide		13679862		х				Rocha et al., 2007
401 beta-Myrcene		123353		х				Rocha et al., 2007
402 1S-alpha-Pinene		7785264		х				Rocha et al., 2007
403 E-Herboxide		13679862		х				Rocha et al., 2007
404 1,8-Cineole		470826		х				Rocha et al., 2007
405 2-Carene		554610		х				Rocha et al., 2007
406 Linalool Z-furanic oxide		nf		х				Rocha et al., 2007
407 Z-Rose oxide (cis)		16409431		х				Rocha et al., 2007
408 alpha-Phellandrene+B1055		nf		х				Rocha et al., 2007
409 E-Rose oxide		876186		х				Rocha et al., 2007
410 4-Carene		29050337		х				Rocha et al., 2007

Nr.	Name	CAS	T	b	f	S	other		reference
411 alpha-Pinene oxide		1686142		х				Rocha et al.	, 2007
412 1R-alpha-Pinene		7785708		х				Rocha et al.	, 2007
413 Limonene		138863		х				Rocha et al.	, 2007
414 Nerol oxide		1786089		х				Rocha et al.	, 2007
415 beta-Phellandrene		555102		х				Rocha et al.	, 2007
416 E-2,3-Epoxycarane		35071295		х				Rocha et al.	, 2007
417 Linalool E-pyranic oxide		41720621		х				Rocha et al.	, 2007
418 beta-Ocimene		13877913		х				Rocha et al.	, 2007
419 2,6-Dimethyl-2,6-octadiene		2792394		х				Rocha et al.	, 2007
420 Dihydromyrcenol		53219219		х				Rocha et al.	, 2007
421 Linalool Z-pyranic oxide		nf		х				Rocha et al.	, 2007
422 Linalool		78706		х				Rocha et al.	, 2007
423 2,6-Dimethyl-1,7-octadien-3-ol		22460599		х				Rocha et al.	, 2007
424 gamma-Terpinene		99854		х				Rocha et al.	, 2007
425 alpha-Terpinolene		586629		х				Rocha et al.	, 2007
426 neo-allo-Ocimene		673847		х				Rocha et al.	, 2007
427 Hotrienol		20053887		х				Rocha et al.	, 2007
428 Plinol C		4028608		х				Rocha et al.	, 2007
429 Ocimenol		5986389		х				Rocha et al.	, 2007
430 p-Menthan-1-ol		21129271		х				Rocha et al.	, 2007
431 Borneol		507700		х				Rocha et al.	, 2007
432 p-Cymen-8-ol		1197019		х				Rocha et al.	, 2007
433 (+)-alpha-Terpineol		98555		х				Rocha et al.	, 2007
434 gamma-Isogeraniol		5944207		х				Rocha et al.	, 2007
435 Citronellol		106229		х				Rocha et al.	, 2007
436 Lilac alcohol D		33081377		х				Rocha et al.	, 2007
437 Myrtenol (alpha-pinene-10-ol)		515004		х				Rocha et al.	, 2007
438 Nerol		106252		х				Rocha et al.	, 2007
439 3,7-Dimethyl-1,5-octadien-3,7-diol		13741214		х				Rocha et al.	, 2007
440 Geraniol		106241		х				Rocha et al.	, 2007
441 3,7-Dimethyl-1,7-octadien-3,6-diol		51276336		х				Rocha et al.	, 2007
442 3,7-Dimethyl-1-octen-3,7-diol		nf		х				Rocha et al.	, 2007
443 Lilac aldehyde B		53447464		х				Rocha et al.	, 2007
444 Z-Citral		106263		х				Rocha et al.	, 2007
445 Safranal		116267		х				Rocha et al.	, 2007
446 p-Menth-1-en-9-al		29548149		х				Rocha et al.	, 2007
447 beta-Cyclocitral		432257		х				Rocha et al.	, 2007
448 E-Citral		141275		х				Rocha et al.	, 2007
449 Geranyl formate		105862		х				Rocha et al.	, 2007
450 Isobornyl acetate		125122		х				Rocha et al.	, 2007
451 E-Ethyl geranate		32659215		х				Rocha et al.	, 2007

Nr.	Name	CAS	1	b	f	s other	reference
452	Neryl acetate	141128		х			Rocha et al., 2007
453	1R-(+)-Norinone	38651659		х			Rocha et al., 2007
454	Carvone	99490		х			Rocha et al., 2007
455	Geranic acid	459803		х			Rocha et al., 2007
456	Palmitic acid	57103				stem	Ruberto et al., 2008
457	Linalool	78706			х	stem	Ruberto et al., 2008
458	Biphenyl oxide	101848				stem	Ruberto et al., 2008
459	beta-Phenyl-ethyl-acetate	103457				stem	Ruberto et al., 2008
460	Ethyl propionate	105373				stem	Ruberto et al., 2008
461	Ethyl octanoate	106321				stem	Ruberto et al., 2008
462	Ethyl octanoate	106321				pomace	Ruberto et al., 2008
463	Ethyl dodecanoate	106332				stem	Ruberto et al., 2008
464	Ethyl dodecanoate	106332				pomace	Ruberto et al., 2008
465	Ethyl decanoate	110383				stem	Ruberto et al., 2008
466	Ethyl decanoate	110383				pomace	Ruberto et al., 2008
467	Ethyl octadecanoate	111625				pomace	Ruberto et al., 2008
468	3-Methyl-butan-1-ol	123513				stem	Ruberto et al., 2008
469	Ethyl hexanoate	123660				pomace	Ruberto et al., 2008
470	Ethyl tetradecanoate	124061				pomace	Ruberto et al., 2008
471	2-Methylbutan-1-ol	137326				stem	Ruberto et al., 2008
472	2-Methylbutan-1-ol	137326				pomace	Ruberto et al., 2008
473	Hexyl acetate	142927				stem	Ruberto et al., 2008
474	Eudesm-7(11)-en-4-ol	473041				stem	Ruberto et al., 2008
475	6,10,14-Trimethyl-pentadecan-2-one	502692				stem	Ruberto et al., 2008
476	1,2-Dimethylcyclohexane	583573				stem	Ruberto et al., 2008
477	1,3-Dimethylcyclohexane	591219				stem	Ruberto et al., 2008
478	Ethyl hexadecanoate	628977				stem	Ruberto et al., 2008
479	Ethyl hexadecanoate	628977				pomace	Ruberto et al., 2008
480	Palmitic aldehyde	629992				stem	Ruberto et al., 2008
481	3-E-Hexen-1-ol	928972				stem	Ruberto et al., 2008
482	Ethyl linolenate	1191419				stem	Ruberto et al., 2008
483	3-Methyl butyl octanoate	2035996				pomace	Ruberto et al., 2008
484	3-Methyl butyl decanoate	2306914				pomace	Ruberto et al., 2008
485	3-Z-Hexenyl acetate	3681718				stem	Ruberto et al., 2008
486	cis-Linalool oxide (Z)	5989333				stem	Ruberto et al., 2008
487	gamma-Amorphene	6980467				pomace	Ruberto et al., 2008
488	delta-Cadinol	19435973				stem	Ruberto et al., 2008
489	Cyclosativene	22469529				stem	Ruberto et al., 2008
490	alpha-Cadinene	24406051				stem	Ruberto et al., 2008
491	9-Z-Tricosene	27519024				stem	Ruberto et al., 2008
492	alpha-Muurolene	31983229				stem	Ruberto et al., 2008

Nr.	Name	CAS	I	b	f	s other	reference
493 tra	ans-Linalool oxide	34995772	х			stem	Ruberto et al., 2008
494 1-	-Butoxy-1-ethoxy ethane	57006878				pomace	Ruberto et al., 2008
495 V	itispirane	65416593				stem	Ruberto et al., 2008
496 2-	Methyl butyl decanoate	68067334				pomace	Ruberto et al., 2008
497 1,	1-Diethoxy ethane	105577				stem	Ruberto et al., 2008
498 1,	1-Diethoxy ethane	105577				pomace	Ruberto et al., 2008
499 G	eraniol	106241				stem	Ruberto et al., 2008
500 P	ropyl acetate	109604				stem	Ruberto et al., 2008
501 C	yclohexane	110827				pomace, stem	Ruberto et al., 2008
502 C	yclohexane	110827				pomace	Ruberto et al., 2008
503 H	exanol	111273				stem	Ruberto et al., 2008
504 O	ictane	111659				pomace	Ruberto et al., 2008
505 H	eptanal	111717				stem	Ruberto et al., 2008
506 N	onane	111842				pomace	Ruberto et al., 2008
507 D	ecanal	112312				stem	Ruberto et al., 2008
508 P	henylacetaldehyd	122781				stem	Ruberto et al., 2008
509 1-	-Butanol, 3-methyl acetate	123922				pomace	Ruberto et al., 2008
510 N	onanal	124196				stem	Ruberto et al., 2008
511 al	pha-trans-Bergamotene	13474594				stem	Ruberto et al., 2008
512 Li	imonene	138863				stem	Ruberto et al., 2008
513 Li	imonene	138863				pomace	Ruberto et al., 2008
514 H	eptane	142825				stem	Ruberto et al., 2008
515 H	eptane	142825				pomace	Ruberto et al., 2008
516 al	lpha-Ylangene	14912448				stem	Ruberto et al., 2008
517 al	lpha-Ylangene	14912448				pomace	Ruberto et al., 2008
518 G	ermacrene B	15423571				stem	Ruberto et al., 2008
519 2-	-E-Nonenal	18829566				stem	Ruberto et al., 2008
520 al	pha-Calacorene	21391991				stem	Ruberto et al., 2008
521 G	ermacrene D	23986745				stem	Ruberto et al., 2008
522 2-	-E-4-Z-Decadienal	25152834				stem	Ruberto et al., 2008
523 de	elta-Selinene	28624239				stem	Ruberto et al., 2008
524 ga	amma-Muurolene	30021740				stem	Ruberto et al., 2008
525 ga	amma-Muurolene	30021740				pomace	Ruberto et al., 2008
526 1,	1-Diethoxy-2-methyl butane	3658944				pomace	Ruberto et al., 2008
527 2-	-Pentylfuran	3777693				stem	Ruberto et al., 2008
528 2-	-Pentyl-furan	3777693				pomace	Ruberto et al., 2008
529 al	pha-Copaene	3856255				stem	Ruberto et al., 2008
530 ga	amma-Cadinene	39029419				stem	Ruberto et al., 2008
531 ga	amma-Cadinene	39029419				pomace	Ruberto et al., 2008
532 2-	-E-Decenal	3913813				stem	Ruberto et al., 2008
533 E	pizonarene	41702630				stem	Ruberto et al., 2008

Nr.	Name	CAS	I	b	f	s other	reference
534 1,8-Cineole		470826				stem	Ruberto et al., 2008
535 Epi-alpha-Cadinol		481345				stem	Ruberto et al., 2008
536 delta-Cadinene		483761				stem	Ruberto et al., 2008
537 Aromadendrene		489394				stem	Ruberto et al., 2008
538 Aromadendrene		489394				pomace	Ruberto et al., 2008
539 beta-Bourbonene		5208593				stem	Ruberto et al., 2008
540 Ethyl linoleate		544354				stem	Ruberto et al., 2008
541 Ethyl linoleate		544354				pomace	Ruberto et al., 2008
542 Ethyl 9-hexadecenoate		54546224				stem	Ruberto et al., 2008
543 Ethyl 9-hexadecenoate		54546224				pomace	Ruberto et al., 2008
544 3,3-Dimethylpentane		562492				stem	Ruberto et al., 2008
545 Terpinolene		586629				pomace	Ruberto et al., 2008
546 3-Methylhexane		589344				pomace	Ruberto et al., 2008
547 3-Methylhexane		589344				pomace	Ruberto et al., 2008
548 2-Methylheptane		592278				stem	Ruberto et al., 2008
549 Manoyl oxide		596849				stem	Ruberto et al., 2008
550 Manoyl oxide		596849				pomace	Ruberto et al., 2008
551 1-Butanol, 2-methyl acetate		624419				pomace	Ruberto et al., 2008
552 Tetradecane		629594				stem	Ruberto et al., 2008
553 Pentadecane		629629				stem	Ruberto et al., 2008
554 3-Methylbutyl dodecanoate		6309519				pomace	Ruberto et al., 2008
555 Tricosane		638675				stem	Ruberto et al., 2008
556 Ethyl 9-octadecenoate		6512998				pomace	Ruberto et al., 2008
557 Hexanal		66251				stem	Ruberto et al., 2008
558 Ethyl 9-decenoate		67233914				pomace	Ruberto et al., 2008
559 3,7-Guaiadiene		6754047				stem	Ruberto et al., 2008
560 3,7-Guaiadiene		6754047				pomace	Ruberto et al., 2008
561 Nerolidol		7212444				stem	Ruberto et al., 2008
562 E-Muurola-4(14),5-diene		262352874				stem	Ruberto et al., 2008
563 Neophytadiene		504961				stem	Ruberto et al., 2008
564 2-Methyl butyl octanoate		nf				pomace	Ruberto et al., 2008
565 3-Ethyl-4-methyl-pentan-1-ol		nf				stem	Ruberto et al., 2008
566 1-Ethoxy-1-pentoxy ethane		13442905				pomace	Ruberto et al., 2008
567 2-E-Hexenal		6728263				stem	Ruberto et al., 2008
568 2-E-Heptenal		18829555				stem	Ruberto et al., 2008
569 2-Hexyl-3-methyl maleic anhyd	lride	75052754				stem	Ruberto et al., 2008
570 3,4-Dihydroxy-7,8-dihydro-beta	-ionone-3-O-beta-D-glucopyranoside	nf	х				Skouroumounis et al., 1994
571 3-Oxomegastigman-9-yl-tetra-0	D-acetyl-beta-D-glucopyranoside	nf	х				Skouroumounis et al., 1994
572 4,5-Dihydrovomifoliol-9-O-beta	-D-glucopyranoside	nf	х				Skouroumounis et al., 1994
573 3-Hydroxy-5,6-epoxy-beta-iono	ne-3-O-beta-D-glucopyranoside	nf	х				Skouroumounis et al., 1994
574 Grasshopper ketone -3-O-beta	D-glucopyranoside	nf	Х				Skouroumounis et al., 1994

Nr.	Name	CAS	I	b	f	S	other	reference
575 Be	nzyl-tetra-O-acetyl-beta-D-glucopyranoside	nf	х					Skouroumounis et al., 1994
576 8-H	Hydroxytheaspiranes (2 isomers)	nf	х					Skouroumounis et al., 1994
577 3-0	Dxo-4,5-dihydro-alpha-ionol	nf	х					Skouroumounis et al., 1994
578 3-0	Dxoactinidols (4 isomers)	nf	х					Skouroumounis et al., 1994
579 3-H	lydroxy-7,8-dehydro-beta-ionol	58023726	х					Skouroumounis et al., 1994
580 3-H	Hydroxy-beta-ionol	27185804	х					Skouroumounis et al., 1994
581 3-0	Dxomegastigman-9-ol	nf	х					Skouroumounis et al., 1994
582 3-0	Dxo-alpha-ionol	34318213	х					Skouroumounis et al., 1994
583 3-H	lydroxy-7,8-dihydro-beta-ionol	113110024	х					Skouroumounis et al., 1994
584 3-H	lydroxyactinidol	nf	х					Skouroumounis et al., 1994
585 4-0	Dxo-beta-ionol	80945239	х					Skouroumounis et al., 1994
586 3-H	lydroxy-5,6-epoxy-beta-ionone-3-O-beta-D-glucopyranoside	nf	х					Skouroumounis et al., 1994
587 3-H	lydroxy-beta-ionone	14398346	х					Skouroumounis et al., 1994
588 3-0	Dxo-retro-alpha-ionol (2 isomers)	nf	х					Skouroumounis et al., 1994
589 3-0	Dxo-7,8-dihydro-alpha-ionol	nf	х					Skouroumounis et al., 1994
590 4-0	Dxo-7,8-dihydro-beta-ionol	nf	х					Skouroumounis et al., 1994
591 4,5	i-Dihydrovomifoliol	155418976	х					Skouroumounis et al., 1994
592 Gr	asshopper ketone	41703382	х					Skouroumounis et al., 1994
593 Vo	mifoliol	23526456	х					Skouroumounis et al., 1994
594 De	hydrovomifoliol	39763332	х					Skouroumounis et al., 1994
595 3,4	-Dihydroxy-7,8-dihydro-beta-ionone	nf	х					Skouroumounis et al., 1994
596 3,4	-Dihydroxy-7,8-dihydro-beta-ionol	nf	х					Skouroumounis et al., 1994
597 3,4	-Dihydroxy-beta-ionone	28494340	х					Skouroumounis et al., 1994
598 7,8	B-Dihydrovomifoliol	nf	х					Skouroumounis et al., 1994
599 be	a-Carotene	7235407	х			be	erry skin	Skouroumounis et al., 1994
600 Lu	ein	127402	х			be	erry skin	Skouroumounis et al., 1994
601 5,6	i-Epoxylutein	28368083	х			be	erry skin	Skouroumounis et al., 1994
602 Ne	oxanthin	14660914	х			be	erry skin	Skouroumounis et al., 1994
603 Dil	nydroderivative of vomifoliol	nf	х					Skouroumounis et al., 1994
604 Ep	oxyionone	nf	х					Skouroumounis et al., 1994
605 Gl	cosides of 3-oxonorisoprenoids	nf	х					Skouroumounis et al., 1994
606 Te	traacetyl-beta-D-glucopyranoside	nf	х					Skouroumounis et al., 1994
607 be	a-D-Glucopyranoside of 4,5-dihydrovomifoliol	nf	х					Skouroumounis et al., 1994
608 be	a-D-Glucopyranoside of vomifoliol (=roseoside)	nf	х					Skouroumounis et al., 1994
609 4,5	-Dihydro-roseoside	nf	х					Skouroumounis et al., 1994
610 be	a-D-Glucose	28905126	х					Skouroumounis et al., 1994
611 Be	nzyl-beta-D-glucopyranoside	nf	х					Skouroumounis et al., 1994
612 3-H	lydroxy-5,6-epoxy-beta-ionone	38274010	х					Skouroumounis et al., 1994
613 Ra	spberry ketone -beta-D-glucopyranoside	38963949	х					Skouroumounis et al., 1994
614 Ra	spberry ketone	5471512	х					Skouroumounis et al., 1994
615 Ra	spberry ketone	5471512	Х					Skouroumounis et al., 1994

Nr.	Name	CAS		b	f	S	other	reference
616 Benzyl glucoside		nf	х					Skouroumounis et al., 1994
617 2-Phenylethyl glycosides		nf	х					Skouroumounis et al., 1994
618 2-Phenylethanol		60128	х					Tesniere et al., 2006
619 Benzyl alkohol		100516	х					Tesniere et al., 2006
620 Benzaldehyde		100527	х					Tesniere et al., 2006
621 Methyl Salicylate		119368	х					Tesniere et al., 2006
622 Zingerone		122485	х	х				Tesniere et al., 2006
623 Isopentanol		123513	х					Tesniere et al., 2006
624 2-Hexenal		505577	х					Tesniere et al., 2006
625 cis-Furan Linalool Oxide		5989333	х					Tesniere et al., 2006
626 Vomifoliol		23526456	х					Tesniere et al., 2006
627 trans-Furan Linalool Oxid	e	34995772	х					Tesniere et al., 2006
628 4-Methyl-1-phenylethanol		589184 ?	х					Tesniere et al., 2006
629 3,4-Dihydro-3-oxoactinido	bl	nf	х					Tesniere et al., 2006
630 Methyl benzyl methanol is	somer 1	nf	х					Tesniere et al., 2006
631 Methyl benzyl methanol is	somer 2	nf	х					Tesniere et al., 2006
632 Methyl benzyl methanol i	osmer 3	nf	х					Tesniere et al., 2006
633 Dimethyl-benzyl alcohol i	osmer 1	nf	х					Tesniere et al., 2006
634 Dimethyl-benzyl alcohol i	osmer 2	nf	х					Tesniere et al., 2006
635 Hexenol		17102646	х					Tesniere et al., 2006
636 3-Hydroxy-beta-ionone		116296754	х					Tesniere et al., 2006
637 Megastigmane-3,9-diol		nf	х					Tesniere et al., 2006
638 3-Oxo-7,8-dihydro-alpha-	ionol	nf	х					Tesniere et al., 2006
639 3-Oxo-5,6-epoxy-beta-ior	ione	nf	х					Tesniere et al., 2006
640 4,5-Dihydrovomifoliol isor	mer 1	nf	х					Tesniere et al., 2006
641 4,5-Dihydrovomifoliol isor	mer 2	nf	х					Tesniere et al., 2006
642 3,6-Dihydroxy-megastig-7	⁷ -ene-9-one	nf	х					Tesniere et al., 2006
643 7,8-Dihydrovomifoliol		nf	х					Tesniere et al., 2006
644 Geraniol hydrate		856943549	х					Tesniere et al., 2006
645 2-Phenylethanol		60128	х					Wirth et al., 2001
646 Pentanol		71410	х					Wirth et al., 2001
647 alpha-Terpineol		98555	х	х				Wirth et al., 2001
648 Benzyl alcohol		100516	х					Wirth et al., 2001
649 Geraniol		106241	х					Wirth et al., 2001
650 Phenol		108952	х	х				Wirth et al., 2001
651 Hexan-1-ol		111273	х	х				Wirth et al., 2001
652 Methyl Salicylate		119368	х					Wirth et al., 2001
653 Vanillin		121335	х	х				Wirth et al., 2001
654 Zingerone		122485	х	х				Wirth et al., 2001
655 e-Methylheptanol		123966	х					Wirth et al., 2001
656 Geranic acid		459803	х	х				Wirth et al., 2001

Nr.	Name	CAS	1	b	f	S	other	reference
657	Acetovanillone	498022	х	х				Wirth et al., 2001
658	Tyrosol	501940	х					Wirth et al., 2001
659	3,4,5-Trimethoxyphenol	642717	х	х				Wirth et al., 2001
660	3-Methylbut-3-en-1-ol	763326	х					Wirth et al., 2001
661	E-Hex-2-en-1-ol	928950	х	х				Wirth et al., 2001
662	Z-Hex-3-en-1-ol	928961	х	х				Wirth et al., 2001
663	Methyl 2,6-Dihydroxybenzoate	2150450	х	х				Wirth et al., 2001
664	2-(4-Guaiacyl)-Ethanol	2380781	х	х				Wirth et al., 2001
665	4-(4-Hydroxyphenyl)-butan-2-ol	3681718	х					Wirth et al., 2001
666	2-Methylbut-2-en-1-ol	4675870	х	х				Wirth et al., 2001
667	Raspberry ketone	5471512	х					Wirth et al., 2001
668	p-Menthan-7-ol	13674196	х					Wirth et al., 2001
669	cis-Pyran Linalool Oxide	14009713	х	х				Wirth et al., 2001
670	trans-Furan Linalool Oxide	34995772	х	х				Wirth et al., 2001
671	Zingerol + Norisoprenoidic unknown	nf	х					Wirth et al., 2001
672	trans-Pyran Linalool Oxide	39028585	х	х				Wirth et al., 2001
673	Tyrosol Isomer	nf	х	х				Wirth et al., 2001
674	Syringealdehyde + Methyl 4-Hydroxybenzoate	nf	х	х				Wirth et al., 2001
675	Furan Linolool Oxide + 6-Methylhept-5-en-2-ol	nf	х					Wirth et al., 2001
676	cis-Furan Linalool Oxide + 6-Methylhept-5-en-2-ol	nf	х	х				Wirth et al., 2001
677	Nerol + 1-Phenylethanol	nf	х	х				Wirth et al., 2001
678	Nerol hydrate + E-8-Hydroxylinalool	nf	х	х				Wirth et al., 2001
679	E-8-Hydroxynerol	nf	х					Wirth et al., 2001
680	Z-8-Hydroxygeraniol	nf	х	х				Wirth et al., 2001
681	E-8-Hydroxygeraniol	156155532	х	х				Wirth et al., 2001
682	Nerol + 1-Phenylethanol	nf	х	х				Wirth et al., 2001
683	Geraniol hydrate + Z-8-Hydroxylinalool	nf	х	х				Wirth et al., 2001
684	p-Menth-1-ene-7,8-diol	5502749	х	х				Wirth et al., 2001
685	Geranic acid hydrate	nf	х					Wirth et al., 2001
686	Acetic acid	64197	х	х	Х			Tasin et al., 2005
687	Hexanoic acid	142621	х	х				Tasin et al., 2005
688	Ethylhexanoic acid	149575	х	х				Tasin et al., 2005
689	Tetradecane	629594			х			Tasin et al., 2005
690	1-Tetradecene	1120361	х		Х			Tasin et al., 2005
691	Pentadecane	629629	х	х	Х			Tasin et al., 2005
692	1-Pentadecene	13360617	х		х			Tasin et al., 2005
693	Heptadecane	629787	х	х	х			Tasin et al., 2005
694	1-Heptadecene	6765395		х	Х			Tasin et al., 2005
695	Octadecane	593453	Х		Х			Tasin et al., 2005
696	Nonadecane	629925	Х		Х			Tasin et al., 2005
697	1-Nonadecene	18435455			Х			Tasin et al., 2005

Nr.	Name	CAS	T	b	f	s other	reference
698 Eicosane		112958			х		Tasin et al., 2005
699 Heneicosane		629947			х		Tasin et al., 2005
700 Ethanol		64175		х			Tasin et al., 2005
701 1-butanol		71363		х			Tasin et al., 2005
702 (Z)-3-Hexen-1-ol		928961		х			Tasin et al., 2005
703 (E)-3-Hexen-1-ol		928972		х			Tasin et al., 2005
704 3-Methylbutanol		6423069		х			Tasin et al., 2005
705 1-Hexadecanol		36653824			х		Tasin et al., 2005
706 1-Heptadecanol		1454859			х		Tasin et al., 2005
707 1-Octadecanol		112925			х		Tasin et al., 2005
708 Hexanal		66251	х	х	х		Tasin et al., 2005
709 (E)-2-Hexenal		6728263	Х	х			Tasin et al., 2005
710 (Z)-3-Hexenal		6789806	х		х		Tasin et al., 2005
711 (E,E)-2,4-Hexadienal		142836		х			Tasin et al., 2005
712 Nonanal		124196	х	х	х		Tasin et al., 2005
713 (E)-2-Nonenal		18829566	х	х	х		Tasin et al., 2005
714 (E,Z)-2,6-Nonadienal		557482			х		Tasin et al., 2005
715 2-Undecanone		112129			x		Tasin et al., 2005
716 2-Dodecanone		6175491			x		Tasin et al., 2005
717 2-Tridecanone		593088			х		Tasin et al., 2005
718 2-Tetradecanone		2345279			х		Tasin et al., 2005
719 Methyl acetate		79209		х	х		Tasin et al., 2005
720 Ethyl acetate		141786		х			Tasin et al., 2005
721 Butyl acetate		123864		х			Tasin et al., 2005
722 (Z)-3-Hexenyl acetate		3681718		х	х		Tasin et al., 2005
723 Methyl hexadecanoate		112390		х	х		Tasin et al., 2005
724 1-Methylethyl benzene		nf			х		Tasin et al., 2005
725 Propyl benzene		103651		х	x		Tasin et al., 2005
726 Methyl benzoate		93583		х			Tasin et al., 2005
727 Benzyl alcohol		100516	Х	х	х		Tasin et al., 2005
728 Benzaldehyde		100527		х			Tasin et al., 2005
729 Methyl salicylate		119368	х		х		Tasin et al., 2005
730 beta-lonone		79776	х				Tasin et al., 2005
731 4,8-Dimethyl-1,(E)3,7-nonatriene		19945610	х		х		Tasin et al., 2005
732 Limonene		138863			х		Tasin et al., 2005
733 (Z)-beta-Ocimene		3338554			х		Tasin et al., 2005
734 (E)-beta-Ocimene		3779611	х	х	х		Tasin et al., 2005
735 alpha-Phellandrene		99832			х		Tasin et al., 2005
736 alpha-terpineol		98555	х		х		Tasin et al., 2005
737 Geraniol		106241	х				Tasin et al., 2005
738 Linalool		78706		х			Tasin et al., 2005

Nr.	Name	CAS	I	b	f	s other	reference
739 beta-caryophyllene		87445			х		Tasin et al., 2005
740 Humulene		6753986			х		Tasin et al., 2005
741 Germacrene-D		23986745	х				Tasin et al., 2005
742 Methyl farnesoate		10485708			х		Tasin et al., 2005
743 (E)-beta-Farnesene		18794848			х		Tasin et al., 2005
744 (Z,E)-alpha-Farnesene		26560145	х	х	х		Tasin et al., 2005
745 (E,E)-alpha-Farnesene		502614	х	х	х		Tasin et al., 2005
746 (Z)-3-Hexenyl acetate		3681718		х			Kalua and Boss, 2009
747 (Z)-3-Hexenyl butanoate		16491364		х			Kalua and Boss, 2009
748 (E)-2-Hexenal		6728263		х			Kalua and Boss, 2009
749 Hexanal		66251		х			Kalua and Boss, 2009
750 Heptanal		111717		х			Kalua and Boss, 2009
751 Pentanal		110623		х			Kalua and Boss, 2009
752 Hexan-1-ol		111273		х			Kalua and Boss, 2009
753 (Z)-3-Hexen-1-ol		928961		х			Kalua and Boss, 2009
754 Eucalyptol (1,8-cineole)		470826		х			Kalua and Boss, 2009
755 beta-caryophyllene		87445		х			Kalua and Boss, 2009
756 beta-caryophyllene		87445		х			Kalua and Boss, 2009
757 2-Phenylethanol		60128		х			Kalua and Boss, 2009
758 trans-Furan linalool oxide		34995772		х			Tamborra and Esti, 2010
759 cis-Furan linalool oxide		5989333		х			Tamborra and Esti, 2010
760 Linalool		78706		х			Tamborra and Esti, 2010
761 trans-Pyran linalool oxide		39028585		х			Tamborra and Esti, 2010
762 cis-Pyran linalool oxide		14009713		х			Tamborra and Esti, 2010
763 2,6-Dimethyl-3,7-octadien-2,6-dia	bl	13741214		х			Tamborra and Esti, 2010
764 2,6-Dimethyl-7-octen-2,6-diol		nf		х			Tamborra and Esti, 2010
765 8-Hydroxydihydrolinalool		nf		х			Tamborra and Esti, 2010
766 trans-8-Hydroxylinalool		75991616		х			Tamborra and Esti, 2010
767 cis-8-Hydroxylinalool		103619063		х			Tamborra and Esti, 2010
768 Nerol		106252		х			Tamborra and Esti, 2010
769 Geraniol		106241		х			Tamborra and Esti, 2010
770 Hydroxycitronellol		107744		х			Tamborra and Esti, 2010
771 Hydroxynerol		nf		х			Tamborra and Esti, 2010
772 Hydroxygeraniol		nf		х			Tamborra and Esti, 2010
773 Geranic acid		459803		х			Tamborra and Esti, 2010
774 alpha-Terpineol		98555		х			Tamborra and Esti, 2010
775 2-Hydroxy-1,8-cineole		nf		х			Tamborra and Esti, 2010
776 Terpine 1		nf		х			Tamborra and Esti, 2010
777 p-menth-1-ene-7,8-diol		5502749		х			Tamborra and Esti, 2010
778 5,6-Epoxy-beta-ionon		23267574		х			Tamborra and Esti, 2010
779 3-Hydroxy-beta-damascone		35734613		х			Tamborra and Esti, 2010

Nr.	Name	CAS	I	b	f	S	other	reference
780 3-Oxo-alpha-ionol		34318213		х				Tamborra and Esti, 2010
781 3,9-Dihydroxymegastigma-5-ene		nf		х				Tamborra and Esti, 2010
782 3-Hydroxy-beta-ionon		116296754		х				Tamborra and Esti, 2010
783 Vomifoliol		23526456		х				Tamborra and Esti, 2010
784 Benzoic aldehyde		100527		х				Tamborra and Esti, 2010
785 Methyl salicylate		119368		х				Tamborra and Esti, 2010
786 alpha-Methyl benzenmethanol		nf		х				Tamborra and Esti, 2010
787 Benzyl alcohol		100516		х				Tamborra and Esti, 2010
788 2-Phenyl ethanol		60128		х				Tamborra and Esti, 2010
789 Eugenol		97530		х				Tamborra and Esti, 2010
790 Vanillin		121335		х				Tamborra and Esti, 2010
791 Methyl vanillate		3943746		х				Tamborra and Esti, 2010
792 Acetovanillone		498022		х				Tamborra and Esti, 2010
793 Zingerone		122485		х				Tamborra and Esti, 2010
794 Vanillic alcohol		498000		х				Tamborra and Esti, 2010
795 Butirrovanillone		nf		х				Tamborra and Esti, 2010
796 Homovanillic alcohol		2380781		х				Tamborra and Esti, 2010
797 Syringaldehyde		134963		х				Tamborra and Esti, 2010
798 Methyl syringate		884355		х				Tamborra and Esti, 2010
799 Dihydroconiferyl alcohol		2305137		х				Tamborra and Esti, 2010
800 Hexanol		111273		х				Tamborra and Esti, 2010
801 cis-3-Hexenol		928961		х				Tamborra and Esti, 2010
802 trans-2-Hexenol		928950		х				Tamborra and Esti, 2010
803 Myrcene		123353		х				Fenoll et al., 2009
804 Limonene		138863		х				Fenoll et al., 2009
805 Rose oxide I (trans)		5258117		х				Fenoll et al., 2009
806 Rose oxide II (cis)		3033236		х				Fenoll et al., 2009
807 Linaloloxide I		nf		х				Fenoll et al., 2009
808 Linaloloxide II		nf		Х				Fenoll et al., 2009
809 Benzaldehyde		100527		х				Fenoll et al., 2009
810 Linalool		78706		х				Fenoll et al., 2009
811 Methyl benzoate		93583		Х				Fenoll et al., 2009
812 Acetophenone		98862		Х				Fenoll et al., 2009
813 alpha-Terpineol		98555		Х				Fenoll et al., 2009
814 Citral		5392405		Х				Fenoll et al., 2009
815 Benzyl acetate		140114		х				Fenoll et al., 2009
816 Citronellol		106229		х				Fenoll et al., 2009
817 Methylsalicylate		119368		х				Fenoll et al., 2009
818 Nerol		106252		х				Fenoll et al., 2009
819 Geraniol		106241		х				Fenoll et al., 2009
820 Benzyl alcohol		100516		х				Fenoll et al., 2009

Nr.	Name	CAS	I	b	f	S	other	reference
821 2-Phenylethanol		60128		х				Fenoll et al., 2009
822 Diendiol I		nf		х				Fenoll et al., 2009
823 Isopropyl myristinate		nf		х				Fenoll et al., 2009
824 o-Cresol		95487		х				Fenoll et al., 2009
825 Diphenylether		32575517		х				Fenoll et al., 2009
826 p-Cresol		106445		х				Fenoll et al., 2009
827 m-Cresol		108394		х				Fenoll et al., 2009
828 Diendiol II		nf		х				Fenoll et al., 2009
829 Eugenol		97530		х				Fenoll et al., 2009
830 2,6-Dimethoxyphenol		91101		х				Fenoll et al., 2009
831 Vanillin		121335		х				Fenoll et al., 2009
832 Benzyl Benzoate		120514		х				Fenoll et al., 2009
833 Hexanal		66251		х				Yang et al., 2009
834 trans-2-Hexenal		6728263		х				Yang et al., 2009
835 cis-3-Hexenol		928961		х				Yang et al., 2009
836 trans2-Hexenol		928950		х				Yang et al., 2009
837 1-Hexanol		111273		х				Yang et al., 2009
838 1-Octen-3-ol		3391864		х				Yang et al., 2009
839 2-Ethylhexanol		104767		х				Yang et al., 2009
840 1-Octanol		111875		х				Yang et al., 2009
841 Phenylethyl alcohol		60128		х				Yang et al., 2009
842 Heptanal		111717		х				Yang et al., 2009
843 Benzeneacetaldehyde		122781		х				Yang et al., 2009
844 trans-2-Octenal		2548870		х				Yang et al., 2009
845 Mesifuran		4077478		х				Yang et al., 2009
846 Nonanal		124196		х				Yang et al., 2009
847 Ethyl acetate		141786		х				Yang et al., 2009
848 Isopropyl acetate		108214		х				Yang et al., 2009
849 Ethyl propanoate		105373		х				Yang et al., 2009
850 Propyl acetate		109604		х				Yang et al., 2009
851 Methyl butanoate		623427		х				Yang et al., 2009
852 Ethyl isobutanoate		97621		х				Yang et al., 2009
853 Ethyl butanoate		105544		х				Yang et al., 2009
854 Ethyl 2-butenoate		10544635		х				Yang et al., 2009
855 Ethyl pentanoate		539822		х				Yang et al., 2009
856 Methyl hexanoate		106707		х				Yang et al., 2009
857 Ethyl 3-hydroxybutanoate		5405414		х				Yang et al., 2009
858 Ethyl tiglate		5837785		х				Yang et al., 2009
859 Ethyl trans-2-pentenoate		24410842		х				Yang et al., 2009
860 Ethyl hexanoate		123660		х				Yang et al., 2009
861 Hexyl acetate		142927		х				Yang et al., 2009

Nr.	Name	CAS	1	b	f	s other	reference
862 trans-2-Hexenyl acetate		2497189		х			Yang et al., 2009
863 Isopropyl hexanoate		2311468		х			Yang et al., 2009
864 Ethyl 2-hexenoate		1552676		х			Yang et al., 2009
865 Ethyl heptanoate		106309		х			Yang et al., 2009
866 Ethyl benzoate		93890		х			Yang et al., 2009
867 Diethyl butanedioate		123251		х			Yang et al., 2009
868 Ethyl octanoate		106321		х			Yang et al., 2009
869 Ethyl benzeneacetate		101973		х			Yang et al., 2009
870 Ethyl 2-octenoate		2351908		х			Yang et al., 2009
871 2-Phenethyl acetate		103457		х			Yang et al., 2009
872 Diethyl pentanedioate		818382		х			Yang et al., 2009
873 4-Decenoic acid, ethyl ester		6142445		х			Yang et al., 2009
874 Ethyl decanoate		110383		х			Yang et al., 2009
875 Ethyl 2,4-decadienoate		37549749		х			Yang et al., 2009
876 Eucalyptol		470826		х			Yang et al., 2009
877 trans-Furan linalool oxide		34995772		х			Yang et al., 2009
878 cis-Furan linalool oxide		5989333		х			Yang et al., 2009
879 Linalool		78706		х			Yang et al., 2009
880 cis-Rose oxide		3033236		х			Yang et al., 2009
881 trans-Rose oxide		5258117		х			Yang et al., 2009
882 Nerol oxide		1786089		х			Yang et al., 2009
883 trans-Pyran linalool oxide		39028585		х			Yang et al., 2009
884 4-Terpineol		562743		х			Yang et al., 2009
885 cis-Pyran linalool oxide		14009713		х			Yang et al., 2009
886 alpha-Terpineol		98555		х			Yang et al., 2009
887 Nerol		106252		х			Yang et al., 2009
888 Citronellol		106229		х			Yang et al., 2009
889 Neral		106263		х			Yang et al., 2009
890 Geraniol		106241		х			Yang et al., 2009
891 Geranial		141275		х			Yang et al., 2009
892 Geranic acid		459803		х			Yang et al., 2009
893 Sitosterol		83465	х				Batovska et al., 2010
894 Sitosterol acetate		915059	х				Batovska et al., 2010
895 Campesterol		474624	х				Batovska et al., 2010
896 Stigmasterol		83487	х				Batovska et al., 2010
897 Cholesterol		57885	х				Batovska et al., 2010
898 Pinane		473552	х				Batovska et al., 2010
899 alpha-Tocopherol		1406184	х				Batovska et al., 2010
900 gamma-Tocopherol		7616220	х				Batovska et al., 2010
901 delta-Tocopherol		119131	х				Batovska et al., 2010
902 beta-Amyrine		559706	Х				Batovska et al., 2010

903 Lupeol548-71XBatovska et al., 2010905 Tetradescanoic acid2002/2813XBatovska et al., 2010905 Tetradescanoic acid544638XBatovska et al., 2010906 Hexadescanoic acid57103XBatovska et al., 2010907 Octadescanoic acid57114XBatovska et al., 2010908 Dety isobutyrate5464228XBatovska et al., 2010909 Methy Iteradescanoica2472443XBatovska et al., 2010910 14,16-Hentriacontanedione2472443XBatovska et al., 2010911 2,3-Dihydrobenzofuran486162XBatovska et al., 2010912 3,2-Dihydrobenzofuran496162XBatovska et al., 2010913 Thymine65774XBatovska et al., 2010914 Ethyl acetate141786XFan et al., 2009915 3-Methylbutanal66254XFan et al., 2009916 ethyl butanal66254XFan et al., 2009917 Ethyl-2-methylbutanal6728263XFan et al., 2009923 Hethyloropanol71831XFan et al., 2009923 ethyl hexanoate123660XFan et al., 2009923 ethyl hexanoate12366	Nr.	Name	CAS	1	b	f	S	other	reference
904 4, 1, 2, 16. Tetramethylheptadecane-4-olide 200272613 X Batovska et al., 2010 905 Tetradecanoic acid 544638 X Batovska et al., 2010 906 Hexadecanoic acid 57113 X Batovska et al., 2010 907 Octadecanoic acid 57113 X Batovska et al., 2010 909 Boeyi isobulyrate 5645428 X Batovska et al., 2010 909 Methyl tetradecanoate 124107 X Batovska et al., 2010 910 14, 16-Hentriacontanedione 2474243 X Batovska et al., 2010 912 2, 3-Dihydro-3,5-dihydrobenzofuran 496162 X Batovska et al., 2010 913 Thymine 65714 X Fan et al., 2009 914 Ethyl acetate 141786 X Fan et al., 2009 915 Hethyl butanote 105544 X Fan et al., 2009 917 Ethyl-2-methyl butanote 10564 X Fan et al., 2009 919 2-Methyl butanote 10564 X Fan et al., 2009 917 Ethyl-2-methyl butanote 10564 X Fan et al., 2009 920 1-Butanof 6728263 <td>903 Lupeol</td> <td></td> <td>545471</td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td>Batovska et al., 2010</td>	903 Lupeol		545471	х					Batovska et al., 2010
906 Tetradecanoic acid544638Batovska et al., 2010907 Octadecanoic acid57114XBatovska et al., 2010907 Octadecanoic acid57114XBatovska et al., 2010908 Detryl iteradecanoic acid5454228Batovska et al., 2010909 Methyl iteradecanoite24724843Batovska et al., 2010910 14, 16-Hentriacontanecione24724843Batovska et al., 2010912 2,3-Dihydrobenzofuran496162XBatovska et al., 2010913 Thymine66714XBatovska et al., 2010914 Ethyl acetate11786XFan et al., 2009915 3-Methylbutanal59063XFan et al., 2009917 Ethyl-2-methylbutanoatenfXFan et al., 2009918 Hexanal66251XFan et al., 2009919 2-MethylbutanoatenfXFan et al., 2009917 Ethyl-2-methylbutanoatenfXFan et al., 2009918 Hexanal66251XFan et al., 2009912 (E)-2-Hexenal672366XFan et al., 2009924 (E)-Lexenal672366XFan et al., 2009924 (E)-Lexenal6723069XFan et al., 2009925 (E)-3-Hexen-1-ol928972XFan et al., 2009926 (E)-3-texn-3-ol393164XFan et al., 2009928 Achyl hexanoate10477XFan et al., 2009929 Acetic acid64197XFan et al., 2009929 Acetic acid64197XFan et al., 2009929 Acetic acid64197<	904 4,8,12,16-	Tetramethylheptadecane-4-olide	200272613	х					Batovska et al., 2010
906 Hexadecanoic acid 57103 K Batovska et al., 2010 907 Octadecanoic acid 57114 X Batovska et al., 2010 908 Decyl isobutyrate 5454228 X Batovska et al., 2010 909 Mathyl iteradecanoate 124107 X Batovska et al., 2010 909 Mathyl iteradecanoate 2724843 X Batovska et al., 2010 911 2, 3-Dihydro-3,5-dihydroxy-6-methylpyran-4-one 28564392 X Batovska et al., 2010 913 Thymine 66714 X Batovska et al., 2010 Batovska et al., 2010 913 Thymine 65714 X Batovska et al., 2000 913 Thymine 913 Shutyloutanal 590863 X Fan et al., 2009 916 ethyl butanoate nf <x< td=""> Fan et al., 2009 917 Ethyl-2-methylbutanoate nf<x< td=""> Fan et al., 2009 919 2-Methylpropanol 62811 X Fan et al., 2009 921 (E): 2-Hexenal 626263 X Fan et al., 2009 921 (E): 2-Hexenal 622368 X Fan et al., 2009 923 ethyl hexanoate 123660 <</x<></x<>	905 Tetradeca	noic acid	544638	х					Batovska et al., 2010
907 Octadecanoic acid 57114 Batovska et al., 2010 908 Decyl isobutyrate 554228 X Batovska et al., 2010 909 Methyl tetradecanoate 124107 X Batovska et al., 2010 910 14, 16-Hentriacontanedione 2472443 X Batovska et al., 2010 911 2, 3-Dihydrobenzofuran 28564832 X Batovska et al., 2010 913 Thymine 65714 X Batovska et al., 2010 913 Thymine 65714 X Batovska et al., 2009 913 Thymine 65714 X Fan et al., 2009 915 3-Methylbutanal 590663 X Fan et al., 2009 917 Ethyl-2-methylbutanoate nf X Fan et al., 2009 918 Hexanal 66251 X Fan et al., 2009 919 2-Methylpropanol 71863 X Fan et al., 2009 921 (E)-2-Hexenal 6722283 X Fan et al., 2009 921 (E)-2-Hexenal 67231 X Fan et al., 2009 922 (E)-2-Hexenal 6724208 X Fan et al., 2009 923 (E) (For-Hexena	906 Hexadeca	noic acid	57103	х					Batovska et al., 2010
908 Decyl isobutyrate 5454.28 x Batovska et al., 2010 909 Methyl tetradecanoate 124107 x Batovska et al., 2010 909 Methyl tetradecanoate 24724843 x Batovska et al., 2010 911 4.16-Hentriacontaneetione 24724843 x Batovska et al., 2010 911 2.3-Dihydro-3.5-dihydroxy-6-methylpyran-4-one 28564822 x Batovska et al., 2010 913 Thymine 66714 x Batovska et al., 2010 913 Thymine 590863 x Fan et al., 2009 915 3-Methylbutanoate 105544 x Fan et al., 2009 916 ethyl butanoate 10554 x Fan et al., 2009 917 Ethyl-2-methylbutanoate nrd x Fan et al., 2009 918 Hexanal 66251 X Fan et al., 2009 919 2-Methylpropanol 7183 X Fan et al., 2009 921 -Butanol 7183 X Fan et al., 2009 923 -Methylpropanol 6423069 X Fan et al., 2009 923 -Methylpropanol 6423069 X Fan et al., 2009 </td <td>907 Octadecar</td> <td>noic acid</td> <td>57114</td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td>Batovska et al., 2010</td>	907 Octadecar	noic acid	57114	х					Batovska et al., 2010
909 Methyl tetradecancate 12410 x Batovska et al., 2010 910 14,16-Hentriacontanedione 24724843 x Batovska et al., 2010 911 2,3-Dihydro-3,5-dihydroxy-6-methylpyran-4-one 28564832 x Batovska et al., 2010 913 Thymine 496162 x Batovska et al., 2010 913 Thymine 65714 x Batovska et al., 2010 914 Ethyl acetate 141766 x Fan et al., 2009 915 3-Methylbutanal 509683 x Fan et al., 2009 916 ethyl butanoate nf x Fan et al., 2009 917 Ethyl-2-methylbutanoate nf x Fan et al., 2009 919 2-Methylpropanol 71863 x Fan et al., 2009 921 (E)-2-Hexenal 6728629 x Fan et al., 2009 922 3-Methylbutanol 6423069 x Fan et al., 2009 923 4thyl hexanote 123660 x Fan et al., 2009 924 1-Dcten-3-one 123660 x Fan et al., 2009 925 1-Hexen-1-ol 928971 X Fan et al., 2009	908 Decyl isob	butyrate	5454228	х					Batovska et al., 2010
910 14, 16-Hentriacontanedione 24784483 x Batovska et al., 2010 911 2, 3-Dihydro-3,5-dihydroxy-6-methylpyran-4-one 28564832 x Batovska et al., 2010 913 Thymine 66714 x Batovska et al., 2010 913 Thymine 66714 x Batovska et al., 2010 913 Thymine 66714 x Batovska et al., 2010 915 3-Methylbutanal 590863 x Fan et al., 2009 916 ethyl butanoate n x Fan et al., 2009 917 Ethyl-2-methylbutanoate n x Fan et al., 2009 912 Methylpopanol 71863 x Fan et al., 2009 912 Nethylbutanol 6423069 x Fan et al., 2009 921 (F)-2-Hexenal 6423069 x Fan et al., 2009 923 ethyl hexanoate 12360 x Fan et al., 2009 924 1-Octen-3-one 23609 x Fan et al., 2009 927 (C)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 111273 X Fan et al., 2009 927 (C)-3-Hexen-1-ol 928961 X Fan et al., 2009	909 Methyl teti	radecanoate	124107	х					Batovska et al., 2010
911 2.3-Dihydro-3.5-dihydroxy-6-methylpyran-4-one 2864832 X Batovska et al., 2010 912 2.3-Dihydrobenzofuran 496162 X Batovska et al., 2010 913 Thymine 66714 X Fan et al., 2009 914 Ethyl acetate 141786 X Fan et al., 2009 915 3-Methylbutanal 590863 X Fan et al., 2009 916 ethyl butancate 105544 X Fan et al., 2009 917 Ethyl-2-methylbutanoate n X Fan et al., 2009 918 Hexanal 66251 X Fan et al., 2009 920 1-Butanol 78831 X Fan et al., 2009 921 (E)-2-Hexenal 6728263 X Fan et al., 2009 921 (E)-2-Hexenal 6423069 X Fan et al., 2009 923 ethyl hexanote 12298 X Fan et al., 2009 924 1-Octen-3-one 4312996 X Fan et al., 2009 925 (E)-3-Hexen-1-ol 928961 X Fan et al., 2009 926 (E)-3-Hexen-1-ol 928961 X Fan et al., 2009 926 (E)-3-Hexen-1-ol 928961 X Fan et al., 2009	910 14,16-Hen	Itriacontanedione	24724843	х					Batovska et al., 2010
912 2.3-Dihydrobenzofuran 496162 x Batovska et al., 2010 913 Thymine 65714 x Fan et al., 2009 914 Ethyl acetate 141786 x Fan et al., 2009 915 3-Methylbutanal 590863 x Fan et al., 2009 916 ethyl butanoate 105544 x Fan et al., 2009 917 Ethyl-2-methylbutanoate nf x Fan et al., 2009 918 Hexanal 66251 x Fan et al., 2009 919 2-Methylpropanol 78831 x Fan et al., 2009 920 1-Butanol 78831 x Fan et al., 2009 921 (E)-2-Hexenal 6728263 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 927 (2)-3-Hexen-1-ol 928961 x Fan et al., 2009 927 (2)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 Acetic acid 64197 x Fan et al., 2009 928 Acetic acid 64197 </td <td>911 2,3-Dihydr</td> <td>ro-3,5-dihydroxy-6-methylpyran-4-one</td> <td>28564832</td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td>Batovska et al., 2010</td>	911 2,3-Dihydr	ro-3,5-dihydroxy-6-methylpyran-4-one	28564832	х					Batovska et al., 2010
913 Thymine 65714 x Batovska et al., 2010 914 Ethyl acetate 141786 x Fan et al., 2009 915 3-Methylbutanal 590863 x Fan et al., 2009 916 ethyl butanoate 105544 x Fan et al., 2009 917 Ethyl-2-methylbutanoate nf x Fan et al., 2009 918 Hexanal 66251 x Fan et al., 2009 919 2-Methylpopanol 74863 x Fan et al., 2009 921 (E)-2-Hexenal 6728263 x Fan et al., 2009 921 (E)-2-Hexenal 64230660 x Fan et al., 2009 923 ethyl hexanoate 111273 X Fan et al., 2009 924 ti-Octen-3-one 928972 X Fan et al., 2009 925 1-Hexanol 111273 X Fan et al., 2009 926 (E)-3-Hexen-1-ol 928961 X Fan et al., 2009 928 Acetic acid 64197<	912 2,3-Dihydr	robenzofuran	496162	х					Batovska et al., 2010
914 Ethyl acetate 141786 x Fan et al., 2009 915 3-Methylbutanal 590863 x Fan et al., 2009 916 ethyl butanoate 105544 x Fan et al., 2009 917 Ethyl-2-methylbutanoate nf x Fan et al., 2009 918 Hexanal 66251 x Fan et al., 2009 919 2-Methylpropanol 78831 x Fan et al., 2009 920 1-Butanol 71363 x Fan et al., 2009 921 (E)-2-Hexenal 6728263 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 412996 x Fan et al., 2009 925 1-Hexen-1-ol 928972 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928961 x Fan et al., 2009 927 (2)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 931 2-Ethyl-1-hexanol 1	913 Thymine		65714	х					Batovska et al., 2010
915 3-Methylbutanal 590683 x Fan et al., 2009 916 ethyl butanoate 105544 x Fan et al., 2009 917 Ethyl-2-methylbutanoate nf x Fan et al., 2009 918 Hexanal 66251 x Fan et al., 2009 919 2-Methylpropanol 71833 x Fan et al., 2009 920 1-Butanol 71363 x Fan et al., 2009 921 5-Methylbutanoate 6728263 x Fan et al., 2009 922 3-Methylbutanoate 6728263 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Oten-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 928 cetic acid 64197 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 931 2-Ethyl-1-hexanol 1004527 X <td>914 Ethyl aceta</td> <td>ate</td> <td>141786</td> <td></td> <td>х</td> <td></td> <td></td> <td></td> <td>Fan et al., 2009</td>	914 Ethyl aceta	ate	141786		х				Fan et al., 2009
916 ethyl butanoate 105544 x Fan et al., 2009 917 Ethyl-2-methylbutanoate nf x Fan et al., 2009 918 Hexanal 66251 x Fan et al., 2009 919 2-Methylpropanol 78831 x Fan et al., 2009 920 1-Butanol 71363 x Fan et al., 2009 921 (E)-2-Hexnal 672826 x Fan et al., 2009 922 3-Methylbutanol 672826 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 4312966 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928972 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 928 ethyl octanoate 104767 x Fan et al., 2009 931 2-Ethyl-1-hexanol <t< td=""><td>915 3-Methylbi</td><td>utanal</td><td>590863</td><td></td><td>х</td><td></td><td></td><td></td><td>Fan et al., 2009</td></t<>	915 3-Methylbi	utanal	590863		х				Fan et al., 2009
917 Ethyl-2-methylbutanoate nf x Fan et al., 2009 918 Hexanal 66251 x Fan et al., 2009 919 2-Methylpropanol 7831 x Fan et al., 2009 920 1-Butanol 71363 x Fan et al., 2009 921 (E)-2-Hexenal 6728263 x Fan et al., 2009 922 3-Methylbutanol 6423069 x Fan et al., 2009 923 4-Methylbutanol 6423060 x Fan et al., 2009 924 1-Octen-3-one 4312966 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 Acetic acid 64197 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 Fan et al., 2009	916 ethyl butar	noate	105544		х				Fan et al., 2009
918 Hexanal 66251 x Fan et al., 2009 919 2-Methylpropanol 7881 x Fan et al., 2009 921 Fan et al., 2009 71363 x Fan et al., 2009 921 (E) 2-Hexenal 6728263 x Fan et al., 2009 923 athylpkutanol 6423069 x Fan et al., 2009 923 athylpkutanol 6423069 x Fan et al., 2009 924 i-Octen-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 6417 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 931 2-Ethyl-1-hexanol 100527 x Fan et al., 2009 933 Benzaldehyde 100527 x	917 Ethyl-2-me	ethylbutanoate	nf		х				Fan et al., 2009
919 2-Methylpropanol 78831 x Fan et al., 2009 920 1-Butanol 71363 x Fan et al., 2009 921 (E)-2-Hexenal 6728263 x Fan et al., 2009 923 Abethylbutanol 6423069 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 4312966 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 925 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 932 Decanal 112731 x Fan et al., 2009 932 Decanal 112812 Fan et al., 2009 933 Benzaldehyde 100527 X Fan et al., 2009 934 Linalool 78706 X Fan et al., 2009 935 2-Methylpropanoic acid 78716 X <td< td=""><td>918 Hexanal</td><td></td><td>66251</td><td></td><td>х</td><td></td><td></td><td></td><td>Fan et al., 2009</td></td<>	918 Hexanal		66251		х				Fan et al., 2009
920 1-Butanol 71363 x Fan et al., 2009 921 (E)-2-Hexenal 6728263 x Fan et al., 2009 922 3-Methylbutanol 6423069 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928071 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 935 2-Methylpropanoic acid 78716 x Fan et al., 2009 935 2-Methylpropanoic acid 78716 x Fan et al., 2009 935 2-Methylpropanoic acid	919 2-Methylpi	ropanol	78831		х				Fan et al., 2009
921 (E)-2-Hexenal 6728263 x Fan et al., 2009 922 3-Methylbutanol 6423069 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 925 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 (Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,2)-2,6-Nonadienal 557482 X Fan et al., 2009 939 Phenylacetaldehyde	920 1-Butanol		71363		х				Fan et al., 2009
922 3-Methylbutanol 6423069 x Fan et al., 2009 923 ethyl hexanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Benzaldehyde 100527 x Fan et al., 2009 933 Benzaldehyde 78706 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 73312 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 12774 x Fan et al., 2009 939 Phenylacetaldehyde <	921 (E)-2-Hexe	enal	6728263		х				Fan et al., 2009
923 ethyl hxanoate 123660 x Fan et al., 2009 924 1-Octen-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 104767 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 937 4-Terpineol 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781	922 3-Methylbi	utanol	6423069		х				Fan et al., 2009
924 1-Octen-3-one 4312996 x Fan et al., 2009 925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 X Fan et al., 2009 934 Linalool 78706 X Fan et al., 2009 935 2-Methylpropanoic acid 79312 X Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 X Fan et al., 2009 937 4-Terpineol 562743 X Fan et al., 2009 938 Butanoic acid 107926 X Fan et al., 2009 939 Phenylacetaldehyde 122781 X Fan et al., 2009 940 ethyl decanoate 1	923 ethyl hexa	inoate	123660		х				Fan et al., 2009
925 1-Hexanol 111273 x Fan et al., 2009 926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 10038 x Fan et al., 2009 941 Acetophenone 9886	924 1-Octen-3	-one	4312996		х				Fan et al., 2009
926 (E)-3-Hexen-1-ol 928972 x Fan et al., 2009 927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 98862 x Fan et al., 2009 941 Acetophenone	925 1-Hexanol		111273		х				Fan et al., 2009
927 (Z)-3-Hexen-1-ol 928961 x Fan et al., 2009 928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 104767 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 X Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 X Fan et al., 2009 937 4-Terpineol 562743 X Fan et al., 2009 938 Butanoic acid 107926 X Fan et al., 2009 939 Phenylacetaldehyde 122781 X Fan et al., 2009 939 Phenylacetaldehyde 122781 X Fan et al., 2009 941 Acetophenone 98862 X Fan et al., 2009 941 Acetophenone 98862 Fan et al., 2009 Fan et al., 2009	926 (E)-3-Hexe	en-1-ol	928972		х				Fan et al., 2009
928 ethyl octanoate 106321 x Fan et al., 2009 929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	927 (Z)-3-Hexe	en-1-ol	928961		х				Fan et al., 2009
929 Acetic acid 64197 x Fan et al., 2009 930 1-Octen-3-ol 3391864 x Fan et al., 2009 931 2-Ethyl-1-hexanol 104767 x Fan et al., 2009 932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	928 ethyl octar	noate	106321		х				Fan et al., 2009
930 1-Octen-3-ol3391864xFan et al., 2009931 2-Ethyl-1-hexanol104767xFan et al., 2009932 Decanal112312xFan et al., 2009933 Benzaldehyde100527xFan et al., 2009934 Linalool78706xFan et al., 2009935 2-Methylpropanoic acid79312xFan et al., 2009936 (E,Z)-2,6-Nonadienal557482xFan et al., 2009937 4-Terpineol562743xFan et al., 2009938 Butanoic acid107926xFan et al., 2009939 Phenylacetaldehyde122781xFan et al., 2009940 ethyl decanoate110383xFan et al., 2009941 Acetophenone98862xFan et al., 2009941 A	929 Acetic acid	d	64197		х				Fan et al., 2009
931 2-Ethyl-1-hexanol104767xFan et al., 2009932 Decanal112312xFan et al., 2009933 Benzaldehyde100527xFan et al., 2009934 Linalool78706xFan et al., 2009935 2-Methylpropanoic acid79312xFan et al., 2009936 (E,Z)-2,6-Nonadienal557482xFan et al., 2009937 4-Terpineol562743xFan et al., 2009938 Butanoic acid107926xFan et al., 2009939 Phenylacetaldehyde122781xFan et al., 2009940 ethyl decanoate110383xFan et al., 2009941 Acetophenone98862xFan et al., 2009941 Acetophenone98862xFan et al., 2009	930 1-Octen-3-	-ol	3391864		х				Fan et al., 2009
932 Decanal 112312 x Fan et al., 2009 933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	931 2-Ethyl-1-I	hexanol	104767		х				Fan et al., 2009
933 Benzaldehyde 100527 x Fan et al., 2009 934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	932 Decanal		112312		х				Fan et al., 2009
934 Linalool 78706 x Fan et al., 2009 935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009 940 ethyl decanoate 98862 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	933 Benzaldeh	nyde	100527		х				Fan et al., 2009
935 2-Methylpropanoic acid 79312 x Fan et al., 2009 936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009 940 Ethyl decanoate 98862 x Fan et al., 2009	934 Linalool		78706		х				Fan et al., 2009
936 (E,Z)-2,6-Nonadienal 557482 x Fan et al., 2009 937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	935 2-Methylpi	ropanoic acid	79312		х				Fan et al., 2009
937 4-Terpineol 562743 x Fan et al., 2009 938 Butanoic acid 107926 x Fan et al., 2009 939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	936 (E,Z)-2,6-1	Nonadienal	557482		х				Fan et al., 2009
938 Butanoic acid107926xFan et al., 2009939 Phenylacetaldehyde122781xFan et al., 2009940 ethyl decanoate110383xFan et al., 2009941 Acetophenone98862xFan et al., 2009940 Ethyl decanoate98862xFan et al., 2009	937 4-Terpined	bl	562743		х				Fan et al., 2009
939 Phenylacetaldehyde 122781 x Fan et al., 2009 940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	938 Butanoic a	acid	107926		х				Fan et al., 2009
940 ethyl decanoate 110383 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	939 Phenylace	etaldehyde	122781		х				Fan et al., 2009
941 Acetophenone 98862 x Fan et al., 2009 941 Acetophenone 98862 x Fan et al., 2009	940 ethyl deca	noate	110383		х				Fan et al., 2009
	941 Acetopher	none	98862		х				Fan et al., 2009
942 Ethyl benzoate 93890 x Fan et al., 2009	942 Ethyl benz	zoate	93890		х				Fan et al., 2009
943 1-Nonanol 143088 x Fan et al., 2009	943 1-Nonanol	l	143088		х				Fan et al., 2009
Nr.	Name	CAS	1	b	f	S	other	reference	
-----	--	-----------	---	---	---	---	-------	------------------------	
944	- 3-Methylbutanoic acid	503742		х				Fan et al., 2009	
945	alpha-Terpineol	98555		х				Fan et al., 2009	
946	Naphthalene	91203		х				Fan et al., 2009	
947	'Ethyl-2-phenylacetate	101973		x				Fan et al., 2009	
948	Methyl 2-hydroxybenzoate	119368		х				Fan et al., 2009	
949	Anethole	104461		х				Fan et al., 2009	
950	beta-Damascenone	36649635		х				Fan et al., 2009	
951	Hexanoic acid	142621		х				Fan et al., 2009	
952	2 (Z)-Geranylacetone	3879263		х				Fan et al., 2009	
953	Benzyl alcohol	100516		х				Fan et al., 2009	
954	2-Phenylethanol	60128		х				Fan et al., 2009	
955	beta-lonone	79776		х				Fan et al., 2009	
956	Benzothiazolec	95169		х				Fan et al., 2009	
957	gamma-Nonalactone	104610		х				Fan et al., 2009	
958	Octanoic acid	124072		х				Fan et al., 2009	
959	4-Methylphenol	106445		х				Fan et al., 2009	
960	Nonanoic acid	112050		х				Fan et al., 2009	
961	4-Ethylphenol	123079		x				Fan et al., 2009	
962	Vanillin	121335		х				Fan et al., 2009	
963	Acetovanillone	498022		х				Fan et al., 2009	
964	14,16-Hentriacontanedione	24724843	х					Batovska et al., 2009b	
965	2-Decenal	3913711	х					Batovska et al., 2009b	
966	2-Pentenal	764396	х					Batovska et al., 2009b	
967	2-Undecenal	2463776	х					Batovska et al., 2009b	
968	4-(3-Cyclohexen-1-yl)-3-buten-2-one	nf	х					Batovska et al., 2009b	
969	4-(3-Cyclohexen-1-yl)-3-buten-2-one (isomer)	nf	х					Batovska et al., 2009b	
970	4,8,12,16-Tetramethylheptadecan-4-olide	200272613	х					Batovska et al., 2009b	
971	4-Methyl-3-penten-2-one	141797	х					Batovska et al., 2009b	
972	2 4-Methylacetophenone	122009	х					Batovska et al., 2009b	
973	6,10,14-Trimethyl-pentadecan-2-one	502692	х					Batovska et al., 2009b	
974	alpha-Tocopherol	1406184	х					Batovska et al., 2009b	
975	beta-amyrine	559706	х					Batovska et al., 2009b	
976	Decanal	112312	х					Batovska et al., 2009b	
977	Decyl isobutyrate	5454228	х					Batovska et al., 2009b	
978	delta-Tocopherol	119131	х					Batovska et al., 2009b	
979	Docosane	629970	х					Batovska et al., 2009b	
980	Eicosane	112958	х					Batovska et al., 2009b	
981	Ethyl linoleate	544354	х					Batovska et al., 2009b	
982	gamma-Terpinene	99854	х					Batovska et al., 2009b	
983	Heneicosane	629947	х					Batovska et al., 2009b	
984	Hentriacontane	630046	Х					Batovska et al., 2009b	

Nr.	Name	CAS	I	b	f	S	other	reference
985	Heptacosane	593497	х					Batovska et al., 2009b
986	Hexadecanoic acid	57103	х					Batovska et al., 2009b
987	Hexadecanol	36653824	х					Batovska et al., 2009b
988	Lupeol	545471	х					Batovska et al., 2009b
989	Methyl eicosanoate	1120281	х					Batovska et al., 2009b
990	Methyl hexadecanoate	112390	х					Batovska et al., 2009b
991	Methyl tetracosanoate	2442491	х					Batovska et al., 2009b
992	Methyl tetradecanoate	124107	Х					Batovska et al., 2009b
993	Neophytadiene	504961	х					Batovska et al., 2009b
994	Neophytadiene (isomer)	504961	х					Batovska et al., 2009b
995	Nonacosane	630035	Х					Batovska et al., 2009b
996	Nonadecan	629925	х					Batovska et al., 2009b
997	Nonadecanone	82986558	х					Batovska et al., 2009b
998	Nonanal	124196	х					Batovska et al., 2009b
999	Octacosane	630024	х					Batovska et al., 2009b
1000	Octadecan	593453	х					Batovska et al., 2009b
1001	Octadecanoic acid	57114	х					Batovska et al., 2009b
1002	Pentacosane	629992	х					Batovska et al., 2009b
1003	Pentacosanone	104921439	х					Batovska et al., 2009b
1004	Pentadecanone	76940915	х					Batovska et al., 2009b
1005	Sitosterol	83465	х					Batovska et al., 2009b
1006	Tetracosane	646311	х					Batovska et al., 2009b
1007	Tetradecanoic acid	544638	х					Batovska et al., 2009b
1008	Tetradecanol	112721	х					Batovska et al., 2009b
1009	Triacontane	638686	х					Batovska et al., 2009b
1010	Tricosane	638675	Х					Batovska et al., 2009b
1011	Octadecane	593453		х				Todorova et al., 2010
1012	Octadecene	27070582		х				Todorova et al., 2010
1013	Nonadecane	629925		х				Todorova et al., 2010
1014	Icosane	112958		х				Todorova et al., 2010
1015	Icosene	112958		х				Todorova et al., 2010
1016	Henicosane	629947		х				Todorova et al., 2010
1017	Docosane	629970		х				Todorova et al., 2010
1018	Tricosane	638675		х				Todorova et al., 2010
1019	Pentacosane	629992		х				Todorova et al., 2010
1020	Hexacosene	64808919		х				Todorova et al., 2010
1021	Heptacosane	593497		х				Todorova et al., 2010
1022	Sitosterol	83465		х				Todorova et al., 2010
1023	alpha-Amorphene	483750		х				Todorova et al., 2010
1024	T-Muurolol	19912620		х				Todorova et al., 2010
1025	Cyperene	2387782		x				Todorova et al., 2010

Nr.	Name	CAS	I.	b	f	s (other	reference
1026	Neophytadiene	504961		х				Todorova et al., 2010
1027	Phytol	7541493		х				Todorova et al., 2010
1028	beta-Amyrine	559706		х				Todorova et al., 2010
1029	Lupeol	545471		х				Todorova et al., 2010
1030	6,10,14-Trimethylpentadecan-2-one	502692		х				Todorova et al., 2010
1031	4,8,12,16-Tetramethylheptadecane-4-olide	200272613		х				Todorova et al., 2010
1032	Octadecanal	638664		х				Todorova et al., 2010
1033	Hexacosanal	26627850		х				Todorova et al., 2010
1034	Hexadecanoic acid	57103		х				Todorova et al., 2010
1035	1-Methylethyl dodecanoate	10233133		х				Todorova et al., 2010
1036	Isopropyl tetradecanoate	110270		х				Todorova et al., 2010
1037	Ethyl hexadecanoate	628977		х				Todorova et al., 2010
1038	Ethyl octadecanoate	111625		х				Todorova et al., 2010
1039	Ethyl octadecenoate	111625		х				Todorova et al., 2010
1040	Ethyl octadecadienoate	nf		х				Todorova et al., 2010
1041	Ethyl icosanoate	18281055		х				Todorova et al., 2010
1042	Methyl docosanoate	929771		х				Todorova et al., 2010
1043	Methyl tricosanoate	2433978		х				Todorova et al., 2010
1044	Methyl tetracosanoate	2442491		х				Todorova et al., 2010
1045	Ethyl tetracosanoate	24634955		х				Todorova et al., 2010
1046	Methyl 2,9-dimethylpentacosanoate	nf		х				Todorova et al., 2010
1047	2-Ethylhexyl benzoate	5444757		х				Todorova et al., 2010
1048	Guaiacol	90051		х				Hayasaka et al., 2010
1049	4-Methylguaiacol	93516		х				Hayasaka et al., 2010
1050	o-Cresol	95487		х				Hayasaka et al., 2010
1051	Phenol	108952		х				Hayasaka et al., 2010
1052	p-Cresol	106445		х				Hayasaka et al., 2010
1053	m-Cresol	108394		х				Hayasaka et al., 2010
1054	Syringol	91101		х				Hayasaka et al., 2010
1055	4-Methylsyringol	6638057		х				Hayasaka et al., 2010
1056	1,3,6-Octatriene, 3,7-dimethyl-	13877913				root		Du et al., 2009
1057	1,3-Cyclohexadiene, 1,3,5,5,6,6-hexamethyl-	959004898				root		Du et al., 2009
1058	1,3-Hexadiene, 3-ethyl-2,5-dimethyl-	62338072				root		Du et al., 2009
1059	1,4,7,-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z-	nf				root		Du et al., 2009
1060	1-[2-Methyl-3-(methylthio) allyl] cyclohex-2-enol	nf				root		Du et al., 2009
1061	11-Hexadecenoic acid, methyl ester	55000425				root		Du et al., 2009
1062	14-Isopentyl-8,13-dimethylpodocarpane	nf				root		Du et al., 2009
1063	17-Pentatriacontene	6971400				root		Du et al., 2009
1064	1-Hentetracontanol	40710427				root		Du et al., 2009
1065	1-Pentanol, 4-methyl-	626891				root		Du et al., 2009
1066	1-Undecene	821954				root		Du et al., 2009

Nr.	Name	CAS	1	b	f	S	other reference
1067	2,2-Dimethyl-3-methylenebicyclo[2.2.1]heptane	79925				root	Du et al., 2009
1068	2,3-Heptanedione	96048				root	Du et al., 2009
1069	2-IsopropyI-5-methyI-1-hexanol	2051334				root	Du et al., 2009
1070	2-Pinen-10-ol	515004				root	Du et al., 2009
1071	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	7541493				root	Du et al., 2009
1072	3,7-Dimethyl-6-nonen-1-ol	19550540				root	Du et al., 2009
1073	3-Hexen-1-ol	544127				root	Du et al., 2009
1074	3-IsopropyI-6,7-dimethyltricyclo[4.4.0.0(2,8)]decane-9,10-diol	nf				root	Du et al., 2009
1075	4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]unde	nf				root	Du et al., 2009
1076	4-Methyl-2-oxovaleric acid	816660				root	Du et al., 2009
1077	9,12-Octadecadienoic acid, methyl ester	2462853				root	Du et al., 2009
1078	9-Hexadecenoic acid, methyl ester, (Z)-	1120258				root	Du et al., 2009
1079	Acetaldehyde, (3,3-dimethylcyclohexylidene)-, (E)	26532252				root	Du et al., 2009
1080	Allopregnane	641850				root	Du et al., 2009
1081	alpha-Pinene	80568				root	Du et al., 2009
1082	Azulene	275514				root	Du et al., 2009
1083	Benzonorbornadiene	4453901				root	Du et al., 2009
1084	beta-Iso-methyl ionone	79890				root	Du et al., 2009
1085	Bicyclo[3.1.1]heptan-3-ol, 6,6-dimethyl-2-methylene-	5947364				root	Du et al., 2009
1086	Bicyclo[7.2.0]undecane,10,10-dimethyl-2,6-bis(methylene)-,[1S-(1R*,9S*)]	nf				root	Du et al., 2009
1087	Butyl aldoxime, 2-methyl-, syn-	53061044				root	Du et al., 2009
1088	Carbonic acid, allyl heptyl ester	nf				root	Du et al., 2009
1089	Caryophyllene	87445				root	Du et al., 2009
1090	Cholestane	481210				root	Du et al., 2009
1091	Cyclodocosane, ethyl-	934589421				root	Du et al., 2009
1092	Cyclohexene, 4-pentyl-1-(4-propylcyclohexyl)-	172098452				root	Du et al., 2009
1093	Cyclohexene,3-butyl-	3983071				root	Du et al., 2009
1094	Decanal	112312				root	Du et al., 2009
1095	Decane, 2,3,5,8-tetramethyl-	192823157				root	Du et al., 2009
1096	Dibutyl phthalate	84742				root	Du et al., 2009
1097	Diethyl Phthalate	84662				root	Du et al., 2009
1098	D-Limonene	5989275				root	Du et al., 2009
1099	E,E,Z-1,3,12-Nonadecatriene-5,14-diol	959012078				root	Du et al., 2009
1100	Elaidic acid, methyl ester	1397628				root	Du et al., 2009
1101	Estradiol, 3-deoxy-	2529648				root	Du et al., 2009
1102	Ethanol, 1-(2-butoxyethoxy)-	54446785				root	Du et al., 2009
1103	Eucalyptol	470826				root	Du et al., 2009
1104	Geranyl isovalerate	109206				root	Du et al., 2009
1105	Heptadecane	629787				root	Du et al., 2009
1106	Heptadecane, 2,6,10,15-tetramethyl-	54833486				root	Du et al., 2009
1107	Hexadecanoic acid, 14-methyl-, methyl ester	2490495				root	Du et al., 2009

	relefence
1108 Hexadecanoic acid, 15-methyl-, methyl ester 6929040 root Du et al.,	2009
1109 Hexadecanoic acid, methyl ester 112390 root Du et al.,	2009
1110 Hexanal 66251 root Du et al.,	2009
1111 Hexatriacontane 630068 root Du et al.,	2009
1112 Hexyl chloroformate 6092542 root Du et al.,	2009
1113 L-Camphor 464482 root Du et al.,	2009
1114 L-Fenchone 7787204 root Du et al.,	2009
1115 Linoleic acid, methyl ester 112630 root Du et al.,	2009
1116 m-Cymene 535773 root Du et al.,	2009
1117 Methyl 8-(2-furyl)octanoate 38199507 root Du et al.,	2009
1118 Nonanal 124196 root Du et al.,	2009
1119 Nonanoic acid, 9-oxo-, methyl ester 1931631 root Du et al.,	2009
1120 Octadecanoic acid, methyl ester 112618 root Du et al.,	2009
1121 Oxalic acid, dodecyl 3,5-difluorophenyl ester nf root Du et al.,	2009
1122 Pregn-20-yn-17-ol 127995395 root Du et al.,	2009
1123 Sclareoloxide nf root Du et al.,	2009
1124 Stigmastane 601581 root Du et al.,	2009
1125 Sulfurous acid, cyclohexylmethyl hexadecyl ester 959302411 root Du et al.,	2009
1126 Tetradecane, 2,6,10-trimethyl- 14905567 root Du et al.,	2009
1127 Tetratriacontane 14167590 root Du et al.,	2009
1128 Triacontane 638686 root Du et al.,	2009
1129 Tritetracontane 7098217 root Du et al.,	2009
1130 Ylangene 14912448 root Du et al.,	2009
1131 alpha-Cedrene 469614 root Du et al.,	2009
1132 Hexanal 66251 x Kalua an	d Boss, 2010
1133 E-2-Hexenal 6728263 x Kalua an	d Boss, 2010
1134 Hexanol 111273 x Kalua an	d Boss, 2010
1135 Z-3-Hexenyl butanoate 16491364 x Kalua an	d Boss, 2010
1136 Hexyl acetate 142927 x Kalua an	d Boss, 2010
1137 Geraniol 106241 x Kalua an	d Boss, 2010
1138 beta-lonone 79776 x Kalua an	d Boss, 2010
1139 alpha-Caryophyllene 6753986 x Kalua an	d Boss, 2010
1140 alpha-Muurolene 31983229 x Kalua an	d Boss, 2010
1141 Calamene 1406504 x Kalua an	d Boss, 2010
1142 Octanal 124130 x Kalua an	d Boss, 2010
1143 2,4-Hexadienal 80466348 x Kalua an	d Boss, 2010
1144 Z-3-Hexen-1-ol 928961 x Kalua an	d Boss, 2010
1145 2,2,6-Trimethyl-cyclohexanone 2408379 x Kalua an	d Boss, 2010
1146 Eucalyptol 470826 x Kalua an	d Boss, 2010
1147 alpha-Copaene 3856255 x Kalua an	d Boss, 2010
1148 alpha-Cubebene 17699148 x Kalua an	d Boss, 2010

Nr.	Name	CAS	I	b	f	s	other	reference
1149 alpha-Gurjunene		489407		х				Kalua and Boss, 2010
1150 gamma-Muurolene		30021740		х				Kalua and Boss, 2010
1151 alpha-Muurolene		31983229		х				Kalua and Boss, 2010
1152 Galamenene		nf		х				Kalua and Boss, 2010
1153 Nonanal		124196		х				Kalua and Boss, 2010
1154 2-Heptanol		543497		х				Kalua and Boss, 2010
1155 Methyl hexanoate		106707		х				Kalua and Boss, 2010
1156 Benzyl alcohol		100516		х				Kalua and Boss, 2010
1157 Benzaldehyde		100527		х				Kalua and Boss, 2010
1158 2-Phenyl ethanol		60128		х				Kalua and Boss, 2010
1159 Geraniol		106241		х				Gunata et al., 1985
1160 Linalool		78706		х				Gunata et al., 1985
1161 Nerol		106252		х				Gunata et al., 1985
1162 alpha-Terpineol		98555		х				Gunata et al., 1985
1163 Citronellol		106229		х				Gunata et al., 1985
1164 2-Phenylethynol		nf		х				Gunata et al., 1985
1165 Benzyl alcohol		100516		х				Gunata et al., 1985
1166 Geraniol		106241	х					Gunata et al., 1985
1167 Linalool		78706	х					Gunata et al., 1985
1168 Nerol		106252	х					Gunata et al., 1985
1169 alpha-Terpineol		98555	х					Gunata et al., 1985
1170 Citronellol		106229	х					Gunata et al., 1985
1171 2-Phenylethynol		nf	х					Gunata et al., 1985
1172 Benzyl alcohol		100516	х					Gunata et al., 1985
1173 p-Cymene		99876		х				Parker et al., 2007
1174 Limonene		138863		х				Parker et al., 2007
1175 beta-Phellandrene		555102		х				Parker et al., 2007
1176 1,8-cineole		470826		х				Parker et al., 2007
1177 cis-Rose oxide		3033236		х				Parker et al., 2007
1178 Camphor		76222		х				Parker et al., 2007
1179 cis-linalool oxide (pyran)		14009713		х				Parker et al., 2007
1180 trans-Linalool oxide (pyran)		39028585		х				Parker et al., 2007
1181 Carvone		99490		х				Parker et al., 2007
1182 Geraniol		106241		х				Parker et al., 2007
1183 Cyclosativene		22469529		х				Parker et al., 2007
1184 alpha-Ylangene		14912448		х				Parker et al., 2007
1185 beta-Bourbonene		5208593		х				Parker et al., 2007
1186 beta-Ylangene		20479065		х				Parker et al., 2007
1187 beta-Copaene		18252443		х				Parker et al., 2007
1188 Guaia-6,9-diene		37839648		х				Parker et al., 2007
1189 Selina-3,7-diene		10064343		х				Parker et al., 2007

Nr. Name	CAS	I	b	f	s	other	reference
1190 gamma-Muurolene	30021740		х				Parker et al., 2007
1191 Bicyclosesquiphellandrene	54324037		х				Parker et al., 2007
1192 alpha-Amorphene	483750		х				Parker et al., 2007
1193 epizonarene	41702630		х				Parker et al., 2007
1194 Zonarene	nf		х				Parker et al., 2007
1195 gamma-Cadinene	39029419		х				Parker et al., 2007
1196 Isocalamenene	68566701		х				Parker et al., 2007
1197 alpha-Cadinene	24406051		х				Parker et al., 2007
1198 alpha-Calacorene	21391991		х				Parker et al., 2007
1199 beta-Calacorene	50277344		х				Parker et al., 2007
1200 Cadelene	483783		х				Parker et al., 2007
1201 1,2,3-Butanetriol	4435501	х					Batovska et al., 2008, suppl. info
1202 1,3-Butanediol	107880	х					Batovska et al., 2008, suppl. info
1203 1,3-Propanediol	504632	х					Batovska et al., 2008, suppl. info
1204 11-Butyl docosane	13475768	х					Batovska et al., 2008, suppl. info
1205 1-Cyclohexene-1-carboxylic acid	636828	х					Batovska et al., 2008, suppl. info
1206 1-Hydroxy-4-ethyloxy-phenyl-beta-D-glucopyranoside	nf	х					Batovska et al., 2008, suppl. info
1207 2,3-Dihydro-3,5-dihydroxy-6-methylpyrane-4-one	28564832	х					Batovska et al., 2008, suppl. info
1208 2,3-Dihydrobenzofurane	496162	х					Batovska et al., 2008, suppl. info
1209 2,3-Dihydroxybutanoic acid	3413976	х					Batovska et al., 2008, suppl. info
1210 2,4-Butanediol	107880	х					Batovska et al., 2008, suppl. info
1211 2,5-Furandione	108316	х					Batovska et al., 2008, suppl. info
1212 24-Methylene-9,19-cyclolanostan-3-ol	nf	х					Batovska et al., 2008, suppl. info
1213 2-Butenal	4170303	х					Batovska et al., 2008, suppl. info
1214 2-Ethylhexanoic acid	149575	х					Batovska et al., 2008, suppl. info
1215 2-Methoxypropanoic acid	4324372	х					Batovska et al., 2008, suppl. info
1216 2-Methyleicosane	1560845	х					Batovska et al., 2008, suppl. info
1217 2-Methylheptadecane	1560890	х					Batovska et al., 2008, suppl. info
1218 2-Methylnaphtalene	91576	х					Batovska et al., 2008, suppl. info
1219 2-Methylpentadecane	1560936	х					Batovska et al., 2008, suppl. info
1220 3,4,5-Trimethoxyacetophenone	1136863	х					Batovska et al., 2008, suppl. info
1221 3-Hydroxy-2,4-dimethylpentanoic acid	nf	х					Batovska et al., 2008, suppl. info
1222 3-Hydroxybutanoic acid	300856	х					Batovska et al., 2008, suppl. info
1223 3-Hydroxycaproic acid	10191249	х					Batovska et al., 2008, suppl. info
1224 3-Methylnaphtalene	nf	х					Batovska et al., 2008, suppl. info
1225 3-Methyltetradecane	18435228	х					Batovska et al., 2008, suppl. info
1226 4,8,12,16-Tetramethylheptadecan-4-olide	200272613	х					Batovska et al., 2008, suppl. info
1227 4-Methylcyclohexan-1-ol	7731295	х					Batovska et al., 2008, suppl. info
1228 5,6,7,7a-Tetrahydro-4,4,7a-trimethyl-2(4H)-benzofuranone	15356748	х					Batovska et al., 2008, suppl. info
1229 5-Hydroxy-7-methoxy-2-phenyl-4H-1-benzopyran-4-one	520285	х					Batovska et al., 2008, suppl. info
1230 5-Hydroxymethyl-2-furanecarboxaldehyde	67470	х					Batovska et al., 2008, suppl. info

Nr.	Name	CAS	I.	b	f	S	other	reference
1231 6-Methyl-2H-1-benzopyran-2-one		92488	х					Batovska et al., 2008, suppl. info
1232 8-Methyloctahydronaphtalen-2-one		nf	х					Batovska et al., 2008, suppl. info
1233 9,19-Cyclolanostan-24-en-3-ol		nf	х					Batovska et al., 2008, suppl. info
1234 9,19-Cyclolanostan-7-en-3-ol		nf	х					Batovska et al., 2008, suppl. info
1235 Aldohexose		50997	х					Batovska et al., 2008, suppl. info
1236 Arabinoic acid		13752835	х					Batovska et al., 2008, suppl. info
1237 Butyl butanoate		109217	х					Batovska et al., 2008, suppl. info
1238 Caffeic acid		331395	х					Batovska et al., 2008, suppl. info
1239 Campesterol		474624	х					Batovska et al., 2008, suppl. info
1240 Chloroacetophenone		532274	х					Batovska et al., 2008, suppl. info
1241 Cholesterol		57885	х					Batovska et al., 2008, suppl. info
1242 Dihydroactidiolide		nf	х					Batovska et al., 2008, suppl. info
1243 Dimethylnaphtalene		65338081	х					Batovska et al., 2008, suppl. info
1244 Docosane		629970	х					Batovska et al., 2008, suppl. info
1245 Dodecane		112403	х					Batovska et al., 2008, suppl. info
1246 Eicosane		112958	х					Batovska et al., 2008, suppl. info
1247 Eicosene		27400788	х					Batovska et al., 2008, suppl. info
1248 Erythronic acid		nf	x					Batovska et al., 2008, suppl. info
1249 Ethyl palmitate		628977	x					Batovska et al., 2008, suppl. info
1250 Ethyl stearate		111615	х					Batovska et al., 2008, suppl. info
1251 Ethylenediol		nf	х					Batovska et al., 2008, suppl. info
1252 Fructose		7660255	х					Batovska et al., 2008, suppl. info
1253 Gallic acid		149917	х					Batovska et al., 2008, suppl. info
1254 Glyceric acid		473814	х					Batovska et al., 2008, suppl. info
1255 Glycerol		56815	х					Batovska et al., 2008, suppl. info
1256 Glyceryl 3-caprylate		nf	х					Batovska et al., 2008, suppl. info
1257 Glycine-N-phenylethyl ester		nf	х					Batovska et al., 2008, suppl. info
1258 Glycolic acid		79141	х					Batovska et al., 2008, suppl. info
1259 Henicosane		629947	х					Batovska et al., 2008, suppl. info
1260 Heptacosane		593497	х					Batovska et al., 2008, suppl. info
1261 Heptadecane		629787	х					Batovska et al., 2008, suppl. info
1262 Hexacosane		630013	х					Batovska et al., 2008, suppl. info
1263 Hexadecane		544763	х					Batovska et al., 2008, suppl. info
1264 Hexadecene		68855594	х					Batovska et al., 2008, suppl. info
1265 Hexahydrofarnesylacetone		502692	х					Batovska et al., 2008, suppl. info
1266 Isopropyl myristate		110270	x					Batovska et al., 2008, suppl. info
1267 Isopropyl palmitate		142916	x					Batovska et al., 2008, suppl. info
1268 Lactic acid		50215	х					Batovska et al., 2008, suppl. info
1269 Lauric acid		143077	x					Batovska et al., 2008, suppl. info
1270 Linoleic acid		60333	x					Batovska et al., 2008, suppl. info
1271 Linolenic acid		463401	х					Batovska et al., 2008, suppl. info

Nr.	Name	CAS	I	b	f	S	other	reference
1272 Lupeol		545471	х					Batovska et al., 2008, suppl. info
1273 Malic acid		6915157	х					Batovska et al., 2008, suppl. info
1274 Methyl ester of 11,14,17-eicosatri	enoic acid	55682887	х					Batovska et al., 2008, suppl. info
1275 Methyl linolenate		301008	х					Batovska et al., 2008, suppl. info
1276 Monoethyl phosphate		1623149	х					Batovska et al., 2008, suppl. info
1277 Myoinositol		87898	х					Batovska et al., 2008, suppl. info
1278 Myristic acid		544638	х					Batovska et al., 2008, suppl. info
1279 Naphtalene diol		nf	х					Batovska et al., 2008, suppl. info
1280 Naphtalene diol (isomer)		nf	х					Batovska et al., 2008, suppl. info
1281 Nonacosane		630035	х					Batovska et al., 2008, suppl. info
1282 Nonadecane		629925	х					Batovska et al., 2008, suppl. info
1283 Norpristane		3892000	х					Batovska et al., 2008, suppl. info
1284 Octacosane		630024	х					Batovska et al., 2008, suppl. info
1285 Octadecane		593453	х					Batovska et al., 2008, suppl. info
1286 Octadecane		593453	х					Batovska et al., 2008, suppl. info
1287 Palmitic acid		57103	х					Batovska et al., 2008, suppl. info
1288 p-Coumaric acid		7400080	х					Batovska et al., 2008, suppl. info
1289 Pentacosane		629992	х					Batovska et al., 2008, suppl. info
1290 Pentadecane		629629	х					Batovska et al., 2008, suppl. info
1291 Pentadecylcyclohexane		6006957	х					Batovska et al., 2008, suppl. info
1292 Phosphoric acid		78400	х					Batovska et al., 2008, suppl. info
1293 p-Hydroxybenzaldehyde		123080	х					Batovska et al., 2008, suppl. info
1294 Phytane		638368	х					Batovska et al., 2008, suppl. info
1295 Phytol		7541493	х					Batovska et al., 2008, suppl. info
1296 Pinene		80568	х					Batovska et al., 2008, suppl. info
1297 Pristane		1921706	х					Batovska et al., 2008, suppl. info
1298 Sacharose		nf	х					Batovska et al., 2008, suppl. info
1299 Sitosterol		83465	х					Batovska et al., 2008, suppl. info
1300 Sitosterol acetate		915059	х					Batovska et al., 2008, suppl. info
1301 Sorbopyranose		7270771	х					Batovska et al., 2008, suppl. info
1302 Squalene		94016350	х					Batovska et al., 2008, suppl. info
1303 Stearic acid		57114	х					Batovska et al., 2008, suppl. info
1304 Stigma-4-en-3-one		nf	х					Batovska et al., 2008, suppl. info
1305 Stigmasta-3,5-dien-7-one		2034722	х					Batovska et al., 2008, suppl. info
1306 Stigmasterol		83487	х					Batovska et al., 2008, suppl. info
1307 Succinic acid		110156	х					Batovska et al., 2008, suppl. info
1308 Taraxerol		127220	х					Batovska et al., 2008, suppl. info
1309 Tartaric acid		87694	х					Batovska et al., 2008, suppl. info
1310 Tetracosane		646311	х					Batovska et al., 2008, suppl. info
1311 Tetradecane		629594	х					Batovska et al., 2008, suppl. info
1312 Tetradecyl palmitate		adecyl ester	Х					Batovska et al., 2008, suppl. info

Nr.	Name	CAS	1	b	f	s other	reference
1313 Thymine		65714	х				Batovska et al., 2008, suppl. info
1314 Tributylphosphate		80094399	х				Batovska et al., 2008, suppl. info
1315 Tricosane		638675	х				Batovska et al., 2008, suppl. info
1316 Tridecane		629505	х				Batovska et al., 2008, suppl. info
1317 Undecyl laurate		3658444	х				Batovska et al., 2008, suppl. info
1318 Vanillin		121335	х				Batovska et al., 2008, suppl. info
1319 alpha-Amyrine		638959	х				Batovska et al., 2008, suppl. info
1320 alpha-Tocopherol		1406184	х				Batovska et al., 2008, suppl. info
1321 beta-Amyrine		559706	х				Batovska et al., 2008, suppl. info
1322 gamma-Tocopherol		7616220	х				Batovska et al., 2008, suppl. info
1323 delta-Tocopherol		119131	х				Batovska et al., 2008, suppl. info
1324 Z-3-Hexenal		6789806				whole plant	Loughrin et al., 1996
1325 E-2-Hexenal		6728263				whole plant	Loughrin et al., 1996
1326 Z-3-Hexenol		928961				whole plant	Loughrin et al., 1996
1327 E-Hexenol		nf				whole plant	Loughrin et al., 1996
1328 Z-3-Hexenyl acetate		3681718				whole plant	Loughrin et al., 1996
1329 Benzyl alcohol		100516				whole plant	Loughrin et al., 1996
1330 E-beta-Ocimene		3779611				whole plant	Loughrin et al., 1996
1331 Linalool		78706				whole plant	Loughrin et al., 1996
1332 E-4,8-Dimethyl-1,3,7-nonatriene)	19945610				whole plant	Loughrin et al., 1996
1333 Indole		120729				whole plant	Loughrin et al., 1996
1334 E,E-alpha-Farnesene		502614				whole plant	Loughrin et al., 1996
1335 Nerolidol		7212444				whole plant	Loughrin et al., 1996
1336 Z-3-Hexenyl benzoate		25152856				whole plant	Loughrin et al., 1996
1337 alpha-terpinolene		586629	х				Hernádez-Orte et al., 2008
1338 Linalool		78706	х				Hernádez-Orte et al., 2008
1339 alpha-Terpineol		98555	х				Hernádez-Orte et al., 2008
1340 beta-Citronellol		106229	х				Hernádez-Orte et al., 2008
1341 Nerol		106252	х				Hernádez-Orte et al., 2008
1342 Geraniol		106241	х				Hernádez-Orte et al., 2008
1343 Z-Linalool oxide		5989333	х				Hernádez-Orte et al., 2008
1344 E-Linalool oxide		34995772	х				Hernádez-Orte et al., 2008
1345 Nerol oxide		1786089	х				Hernádez-Orte et al., 2008
1346 Linalool acetate		115957	х				Hernádez-Orte et al., 2008
1347 2,6-Dimethyl-1,7-octadien-3,6-c	liol	51276336	х				Hernádez-Orte et al., 2008
1348 delta-Terpineol		7299425	х				Hernádez-Orte et al., 2008
1349 Neric acid		37349294	х				Hernádez-Orte et al., 2008
1350 beta-Damascenone		36649635	х				Hernádez-Orte et al., 2008
1351 beta-lonone		79776	х				Hernádez-Orte et al., 2008
1352 Vitispirane A		99944793	х				Hernádez-Orte et al., 2008
1353 Vitispirane B		99881853	Х				Hernádez-Orte et al., 2008

Nr.	Name	CAS	I	b	f	s other	reference
1354 Riesling acetal		129601941	х				Hernádez-Orte et al., 2008
1355 TDN		30364386	х				Hernádez-Orte et al., 2008
1356 TPB		644976705	х				Hernádez-Orte et al., 2008
1357 3-Oxo-beta-ionone		29790292	х				Hernádez-Orte et al., 2008
1358 Actinidols		nf	х				Hernádez-Orte et al., 2008
1359 3-Oxo-alpha-ionone		79734433	х				Hernádez-Orte et al., 2008
1360 Z-Whiskylactone		nf	х				Hernádez-Orte et al., 2008
1361 delta-Octalactone		698760	х				Hernádez-Orte et al., 2008
1362 gamma-Nonalactone		104610	х				Hernádez-Orte et al., 2008
1363 delta-Nonalactone		3301948	х				Hernádez-Orte et al., 2008
1364 gamma-Decalactone		706149	х				Hernádez-Orte et al., 2008
1365 Vanillin		121335	х				Hernádez-Orte et al., 2008
1366 Methyl vanillate		3943746	х				Hernádez-Orte et al., 2008
1367 Ethyl vanillate		617050	х				Hernádez-Orte et al., 2008
1368 Acetovanillone		498022	х				Hernádez-Orte et al., 2008
1369 Zingerone		122485	х				Hernádez-Orte et al., 2008
1370 Homovanillyl alcohol		2380781	х				Hernádez-Orte et al., 2008
1371 Syringaldehyde		134963	х				Hernádez-Orte et al., 2008
1372 Acetosyringone		2478388	х				Hernádez-Orte et al., 2008
1373 Guaiacol		90051	х				Hernádez-Orte et al., 2008
1374 Eugenol		97530	х				Hernádez-Orte et al., 2008
1375 o-Cresol		95487	х				Hernádez-Orte et al., 2008
1376 m-Cresol		108394	х				Hernádez-Orte et al., 2008
1377 4-Ethylphenol		123079	х				Hernádez-Orte et al., 2008
1378 4-Vinylguaiacol		7786610	х				Hernádez-Orte et al., 2008
1379 2,6-Dimethoxy phenol		91101	х				Hernádez-Orte et al., 2008
1380 E-Isoeugenol		5932683	х				Hernádez-Orte et al., 2008
1381 4-Vinylphenol		2628173	х				Hernádez-Orte et al., 2008
1382 Dihydromethyl eugenol		nf	х				Hernádez-Orte et al., 2008
1383 Benzaldehyde		100527	х				Hernádez-Orte et al., 2008
1384 Phenylacetaldehyde		122781	х				Hernádez-Orte et al., 2008
1385 Benzyl alcohol		100516	х				Hernádez-Orte et al., 2008
1386 beta-Phenylethanol		60128	х				Hernádez-Orte et al., 2008
1387 Z-3-Hexen-1-ol		928961	х				Hernádez-Orte et al., 2008
1388 E-2-Hexen-1-ol		928950	х				Hernádez-Orte et al., 2008
1389 2-Methylbutyric acid		116530	х				Hernádez-Orte et al., 2008
1390 Ethyl cinnamate		103366	х				Hernádez-Orte et al., 2008
1391 Benzyl alcohol		100516				cutting secretion	Jirovetz et al., 1994
1392 Butanol		71363				cutting secretion	Jirovetz et al., 1994
1393 Butylacetate		nf				cutting secretion	Jirovetz et al., 1994
1394 Carvacrol		499752				cutting secretion	Jirovetz et al., 1994

Nr.	Name	CAS	I	b	f	s other		reference
1395 beta-Caryophyllene		87445				cutting secretion	Jirovetz et al.	, 1994
1396 beta-Caryophyllene oxide		1139306				cutting secretion	Jirovetz et al.	, 1994
1397 1,8-Cineol		470826				cutting secretion	Jirovetz et al.	, 1994
1398 Cuminaldehyde		122032				cutting secretion	Jirovetz et al.	, 1994
1399 1,2-Dimethylbenzol		95476				cutting secretion	Jirovetz et al.	, 1994
1400 Acetic acid		64197				cutting secretion	Jirovetz et al.	, 1994
1401 Ethylacetate		141786				cutting secretion	Jirovetz et al.	, 1994
1402 beta-Farnesene		18794848				cutting secretion	Jirovetz et al.,	, 1994
1403 beta-Farnesol		58181763				cutting secretion	Jirovetz et al.	, 1994
1404 Hexanol		111273				cutting secretion	Jirovetz et al.	, 1994
1405 1-Hexen-3-ol		4798441				cutting secretion	Jirovetz et al.,	, 1994
1406 Hexylacetate		142927				cutting secretion	Jirovetz et al.	, 1994
1407 Campher		nf				cutting secretion	Jirovetz et al.	, 1994
1408 Myristic acid		544638				cutting secretion	Jirovetz et al.	, 1994
1409 Octanol		11875				cutting secretion	Jirovetz et al.,	, 1994
1410 Palmitic acid		57103				cutting secretion	Jirovetz et al.	, 1994
1411 Palmitic acid methyl ester		112390				cutting secretion	Jirovetz et al.	, 1994
1412 alpha-Pinene		80568				cutting secretion	Jirovetz et al.	, 1994
1413 Propanol		71238				cutting secretion	Jirovetz et al.	, 1994
1414 Sabinene		3387415				cutting secretion	Jirovetz et al.	, 1994
1415 Stearic acid		57114				cutting secretion	Jirovetz et al.	, 1994
1416 alpha-Teroineol		98555				cutting secretion	Jirovetz et al.,	, 1994
1417 Terpinolene		586629				cutting secretion	Jirovetz et al.,	, 1994
1418 Terpinyl acetate		80262				cutting secretion	Jirovetz et al.	, 1994
1419 Tetradecane		629594				cutting secretion	Jirovetz et al.	, 1994
1420 Thymol		89838				cutting secretion	Jirovetz et al.	, 1994
1421 Tridecane		629505				cutting secretion	Jirovetz et al.	, 1994
1422 1,2,3-Trimethylbenzol		526738				cutting secretion	Jirovetz et al.	, 1994
1423 t-2-Hexenal		6728263		x			lbarz et al., 20	006
1424 1-Hexen-3-ol		4798441		x			lbarz et al., 20	006
1425 <i>c</i> -3-Hexenol		928961		х			lbarz et al., 20	006
1426 t-2-Hexenol		928950		x			lbarz et al., 20	006
1427 <i>c</i> -Whiskylactone		nf		x			lbarz et al., 20	006
1428 delta-Octalactone		698760		x			lbarz et al., 20	006
1429 gamma-Nonalactone		104610		x			lbarz et al., 20	006
1430 gamma-Decalactone		706149		х			lbarz et al., 20	006
1431 delta-Nonalactone		3301948		х			lbarz et al., 20	006
1432 Wine lactone		182699770		x			lbarz et al., 20)06
1433 delta-Decalactone		705862		x			lbarz et al., 20)06
1434 Ethyl isobutyrate		97621		x			lbarz et al., 20)06
1435 Isobutyl acetate		110190		x			lbarz et al., 20)06

Nr.	Name	CAS	I	b	f	S	other	reference
1436 Ethyl decanoate		110383	2	x				lbarz et al., 2006
1437 Hexanoic acid		142621	2	x				lbarz et al., 2006
1438 2-Ethylhexanoic acid		149575	2	x				lbarz et al., 2006
1439 Octanoic acid		124072	2	x				lbarz et al., 2006
1440 Nonanoic acid, 9-oxo-, ethyl ester		3433167	2	x				lbarz et al., 2006
1441 3-Methyl-2-hexanone		2550212	2	x				lbarz et al., 2006
1442 1,5-Heptadiene-3,4-diol		51945983	2	x				lbarz et al., 2006
1443 (E,Z)-2,6-Nonadienal		557482	2	x				lbarz et al., 2006
1444 8-Hydroxy-2-octanone		25368541	2	x				lbarz et al., 2006
1445 Benzaldehyde		100527	2	x				lbarz et al., 2006
1446 Phenylacetaldehyde		122781	2	x				lbarz et al., 2006
1447 1-Phenyl-propanone		nf	2	x				lbarz et al., 2006
1448 Phenylethyl acetate		103457	2	x				lbarz et al., 2006
1449 Benzyl alcohol		100516	2	x				lbarz et al., 2006
1450 2-Phenylethanol		60128	2	x				lbarz et al., 2006
1451 2-Phenoxyethanol		122996	2	x				lbarz et al., 2006
1452 4-Methoxybenzenemethanol		105135	2	x				lbarz et al., 2006
1453 Benzoic acid		65850	2	x				lbarz et al., 2006
1454 Phenylacetic acid		103822	2	x				lbarz et al., 2006
1455 3,4-Dimethoxybenzenemethanol		93038	2	x				lbarz et al., 2006
1456 3-Hydroxybenzaldehyde		100834	2	x				lbarz et al., 2006
1457 Ethyl paraben		120478	2	x				lbarz et al., 2006
1458 Guaiacol		90051	2	x				lbarz et al., 2006
1459 o-Cresol		95487	2	x				lbarz et al., 2006
1460 4-Ethylguaiacol		2785899	2	x				lbarz et al., 2006
1461 p-Cresol		106445	2	x				lbarz et al., 2006
1462 m-Cresol		108394	2	x				lbarz et al., 2006
1463 4-Propylguaiacol		2785877	2	x				lbarz et al., 2006
1464 Eugenol		97530	2	x				lbarz et al., 2006
1465 4-Ethylphenol		123079	2	x				lbarz et al., 2006
1466 2-(1,1-Dimethylethyl)-phenol		nf	2	x				lbarz et al., 2006
1467 4-Vinylguaiacol		7786610	2	x				lbarz et al., 2006
1468 Isoeugenol(a)		nf	2	x				lbarz et al., 2006
1469 2,6-Dimethoxyphenol		91101	2	x				lbarz et al., 2006
1470 Isoeugenol(b)		nf	2	x				lbarz et al., 2006
1471 4-Vinylphenol		2628173	2	x				lbarz et al., 2006
1472 4-Allyl-2,6-dimethoxyphenol		6627889	2	x				lbarz et al., 2006
1473 Dihydromethyleugenol		nf	2	x				lbarz et al., 2006
1474 Vanillin		121335	2	x				lbarz et al., 2006
1475 Methyl vanillate		3943746		x				lbarz et al., 2006
1476 Ethyl vanillate		617050	2	x				lbarz et al., 2006

Nr.	Name	CAS	I	b	f	S	other	reference
1477 Ace	etovanillone	498022		х				lbarz et al., 2006
1478 Zin	gerone	122485		х				lbarz et al., 2006
1479 Hoi	movanillyl alcohol	2380781		х				lbarz et al., 2006
1480 Syr	ringaldehyde	134963		х				lbarz et al., 2006
1481 Viti	spirane A	99944793		х				lbarz et al., 2006
1482 Viti	spirane B	99881853		х				lbarz et al., 2006
1483 Rie	sling acetal; 2,2,6,8-Tetramethyl-7,11-dioxatricyclo[6.2.1.0(1,6)]undec-4-e	129601941		х				lbarz et al., 2006
1484 TD	N	30364386		х				lbarz et al., 2006
1485 bet	a-Damascenone	36649635		х				lbarz et al., 2006
1486 TPI	В	644976705		х				lbarz et al., 2006
1487 alp	ha-lonone	127413		х				lbarz et al., 2006
1488 3-C	Dxo-beta-ionone	29790292		х				lbarz et al., 2006
1489 bet	a-lonone	79776		х				lbarz et al., 2006
1490 Act	inidols	nf		х				lbarz et al., 2006
1491 OH	I-TDN	nf		х				lbarz et al., 2006
1492 Dih	ydroactinidiolide	17092921		х				lbarz et al., 2006
1493 3-H	lydroxy-beta-damascone	35734613		х				lbarz et al., 2006
1494 c-3	B-Oxo-alpha-ionol	896107690		х				lbarz et al., 2006
1495 t-3-	Oxo-alpha-ionol	8961073		х				lbarz et al., 2006
1496 3-H	lydroxy-7,8-dihydro-beta-ionol	113110024		х				lbarz et al., 2006
1497 3-C	Dxo-7,8-dihydro-alpha-ionol	nf		х				lbarz et al., 2006
1498 3-H	lydroxy-7,8-dehydro-beta-ionol	58023726		х				lbarz et al., 2006
1499 2,3	-Dehydro-4-oxo-beta-ionol	nf		х				lbarz et al., 2006
1500 Blu	menol A	23526456		х				lbarz et al., 2006
1501 gar	nma-Terpinene	99854		х				lbarz et al., 2006
1502 alp	ha-Terpinolene	586629		х				lbarz et al., 2006
1503 Ros	se oxide	1640943		х				lbarz et al., 2006
1504 c-L	inalool oxide	5989333		х				lbarz et al., 2006
1505 Nei	rol oxide	1786089		х				lbarz et al., 2006
1506 t-Li	inalool oxide	68780916		х				lbarz et al., 2006
1507 Lina	alool	78706		х				lbarz et al., 2006
1508 1-T	erpinenol	586823		х				lbarz et al., 2006
1509 Ter	rpinen-4-ol	562743		х				lbarz et al., 2006
1510 2,6	-Dimethyl-1,7-octadiene-3,6-diol	51276336		х				lbarz et al., 2006
1511 My	rcenol	543395		х				lbarz et al., 2006
1512 del	ta-Terpineol	7299425		х				lbarz et al., 2006
1513 Oci	imenol	5986389		х				lbarz et al., 2006
1514 alp	ha-Terpineol	98555		x				lbarz et al., 2006
1515 Ter	pinyl acetate	80262		x				lbarz et al., 2006
1516 bet	a-Citronellol	106229		х				lbarz et al., 2006
1517 Nei	rol	106252		х				lbarz et al., 2006

Nr.	Name	CAS	1	b	f	S	other	reference
1518 Geraniol		106241		х				lbarz et al., 2006
1519 p-Cymen-8-ol		1197019		х				lbarz et al., 2006
1520 Geranyl acetone		3796701		х				lbarz et al., 2006
1521 3,7-Dimethyl-1,5-octadien-3,7-dic	ol se	13741214		х				lbarz et al., 2006
1522 6,7-Dihydroxylinalool		nf		х				lbarz et al., 2006
1523 Terpin		80535		х				lbarz et al., 2006
1524 8-Hydroxylinalool		64142785		х				lbarz et al., 2006
1525 Neric acid		37349294		х				lbarz et al., 2006
1526 Farnesol(2E,6E)		106285		х				lbarz et al., 2006
1527 c-2,7-Dimethyl-4-octene-2,7-diol		160790498		х				lbarz et al., 2006
1528 3-Methyl-2-butenol		556821		x				lbarz et al., 2006
1529 2,4,4-Trimethylcyclopentanol		56470838		х				lbarz et al., 2006
1530 2-Methyl-1-penten-3-ol		2088075		х				lbarz et al., 2006
1531 5-Methylfurfural		620020		х				lbarz et al., 2006
1532 Pantolactone		599042		x				lbarz et al., 2006
1533 5-Hydroxy-methylfurfural		67470		x				lbarz et al., 2006
1534 2,5,8-Trimethyl-1,2-dihydronapht	nalene	30316235		x				lbarz et al., 2006
1535 4-(4-Hydroxy-2,2,6-trimethyl-7-ox	abicyclo[4.1.0]-hept-1-yl)-3-buten-2-one	397869884		x				lbarz et al., 2006
1536 5-Methyl-2-furfural		620020	х					Wildenradt et al., 1975
1537 2-Methyl-2-propanol		75650	х					Wildenradt et al., 1976
1538 Iso-butyl alcohol		78831	х					Wildenradt et al., 1977
1539 Benzene		71432	х					Wildenradt et al., 1978
1540 3-Pentanone		96220	х					Wildenradt et al., 1979
1541 trans-2-Hexenal		6728263	х					Wildenradt et al., 1980
1542 Furfural		98011	х					Wildenradt et al., 1981
1543 cis-3-Hexen-1-ol		928961	х					Wildenradt et al., 1982
1544 n-Hexanol		111273	х					Wildenradt et al., 1983
1545 trans-2-Hexen-1-ol		928950	х					Wildenradt et al., 1984
1546 -Hexa-2,4-dienal (cis or trans)		nf	х					Wildenradt et al., 1985
1547 2-Furyl methyl ketone		1192627	х					Wildenradt et al., 1986
1548 -2-Heptenal (cis or trans)		nf	х					Wildenradt et al., 1987
1549 Benzaldehyde		100527	х					Wildenradt et al., 1988
1550 Myrcene		123353	х					Wildenradt et al., 1989
1551 Hexyl acetate		142927	х					Wildenradt et al., 1990
1552 Nonanal		124196	х					Wildenradt et al., 1991
1553 Linalool		78706	х					Wildenradt et al., 1992
1554 tert-Butyl benzene		98066	х					Wildenradt et al., 1993
1555 Safranal		116267	х					Wildenradt et al., 1994
1556 alpha-Terpineol		98555	х					Wildenradt et al., 1995
1557 Isopulegone		29606799	х					Wildenradt et al., 1996
1558 Citral (cis or trans)		5392405	Х					Wildenradt et al., 1997

Nr.	Name	CAS	I	b	f	S	other	reference
1559 Geraniol (or nerol)		nf	х					Wildenradt et al., 1998
1560 alpha-lonone		127413	х					Wildenradt et al., 1999
1561 beta-lonone		79776	х					Wildenradt et al., 2000
1562 -3,5-Dimethyl-1,2,4-trithiolane		23654924	х					Wildenradt et al., 2001
1563 1-Hexanal		66251	х					Wildenradt et al., 2002
1564 Phenethyl butyrate		103526	х					Wildenradt et al., 2003
1565 Tetrathiocane		nf	х					Wildenradt et al., 2004
1566 Trimethyl-dihydronaphthalene		nf	х					Wildenradt et al., 2005
1567 Pentanal		110623		х				Kalua and Boss, 2009
1568 n-Heptan-2-ol		543497		х				Kalua and Boss, 2009
1569 Methyl butanoate		623427		х				Kalua and Boss, 2009
1570 Hexyl acetate		142927		х				Kalua and Boss, 2009
1571 Hexanal		66251		х				Kalua and Boss, 2009
1572 Hexan-1-ol		111273		х				Kalua and Boss, 2009
1573 heptanal		111717		х				Kalua and Boss, 2009
1574 gamma-Muurolene		30021740		х				Kalua and Boss, 2009
1575 Eucalyptol (1,8-cineole)		470826		х				Kalua and Boss, 2009
1576 Ethyl acetate		141786		х				Kalua and Boss, 2009
1577 Ethanol		64175		х				Kalua and Boss, 2009
1578 Ethanal		75070		х				Kalua and Boss, 2009
1579 beta-Ionone		79776		х				Kalua and Boss, 2009
1580 beta-Cymene		535773		х				Kalua and Boss, 2009
1581 beta-Cyclocitral		432257		х				Kalua and Boss, 2009
1582 beta-Caryophyllene		87445		х				Kalua and Boss, 2009
1583 Benzyl alcohol		100516		х				Kalua and Boss, 2009
1584 alpha-muurolene		31983229		х				Kalua and Boss, 2009
1585 alpha-Caryophyllene		6753986		х				Kalua and Boss, 2009
1586 7-Oxabicyclo[4.1.0]heptane		286204		х				Kalua and Boss, 2009
1587 3-Methylbutanal		590863		х				Kalua and Boss, 2009
1588 2-Phenylethanol		60128		х				Kalua and Boss, 2009
1589 2-Phenylethanal		122781		х				Kalua and Boss, 2009
1590 2,2,6-Trimethylcyclohexanone		2408379		х				Kalua and Boss, 2009
1591 (Z)-3-Hexenyl butanoate		16491364		х				Kalua and Boss, 2009
1592 (Z)-3-Hexenyl acetate		3681718		х				Kalua and Boss, 2009
1593 (Z)-3-Hexen-1-ol		928961		х				Kalua and Boss, 2009
1594 (E)-2-Hexenal		6728263		х				Kalua and Boss, 2009
1595 (-)-alpha-Cubebene		17699148		х				Kalua and Boss, 2009
1596 (-)-alpha-Copaene		3856255		х				Kalua and Boss, 2009
1597 Ethanol		54175	х					Hebash et al., 1991
1598 2-Methylbutanal		96173	х					Hebash et al., 1991
1599 3-Methylbutanal		590863	Х					Hebash et al., 1991

Nr.	Name	CAS	I	b	f	S	other		reference
1600 1-Propanal		123386	х					Hebash et al.	1991
1601 2-Methylpropanal		78842	х					Hebash et al.	1991
1602 2-Methylpentanal		123159	Х					Hebash et al.	1991
1603 1-Pentanal		110623	х					Hebash et al.	1991
1604 1-Butanol		71363	Х					Hebash et al.	1991
1605 1-Pentanol		71410	Х					Hebash et al.	1991
1606 2-Pentenal		764396	Х					Hebash et al.	1991
1607 2-Hexanone		591786	Х					Hebash et al.	1991
1608 2-Pentenol		20273249	Х					Hebash et al.	1991
1609 E-2-Hexenal		6728263	Х					Hebash et al.	1991
1610 2-Heptanone		110430	Х					Hebash et al.	1991
1611 1-Hexenol		nf	Х					Hebash et al.	1991
1612 2-Hexenol		nf	Х					Hebash et al.	1991
1613 Heptanal		111717	Х					Hebash et al.	1991
1614 Z-3-Hexenal		6789806	Х					Hebash et al.	1991
1615 Octanal		124130	Х					Hebash et al.	1991
1616 2-Heptenol		22104774	Х					Hebash et al.	1991
1617 1-Octanol		111875	Х					Hebash et al.	1991
1618 1-Nonanal		124196	Х					Hebash et al.	1991
1619 E-2-Nonenal		18829566	Х					Hebash et al.	1991

Study of the volatile metabolome in plant-insect interactions

Georg J.F. Weingart, Nora C. Lawo, Astrid Forneck, Rudolf Krska, Rainer Schuhmacher

Abstract

The study of the molecular basis of plant-insect interactions is a rewarding research area which is fundamental in character and can lead to an improved understanding of these interaction processes. While earlier studies frequently focused on the investigation of a limited number of substances, the so called "omics-techniques" led to a shift to system-wide approaches which aim to describe whole biological systems. The first part of this chapter presents a general overview of the methodology used for the study of volatile plant metabolomes. The protocol covers the profiling of volatiles induced in plant tissue by insect feeding and is exemplified with grapevine roots attacked by the piercing/sucking phylloxera (grape louse). Volatiles were extracted from root tissue with solid phase microextraction (SPME), separated with gas chromatography (GC) and detected with mass spectrometry (MS). Data were processed with AMDIS software, which enables to deconvolute mass spectra of coeluting metabolites. In addition, the software matches the recorded mass spectra with library entries and compares the retention index (RI) with reference values. This led to a list of annotated compounds whereof the identity of the majority could be confirmed with authentic standards. Finally, univariate and multivariate statistics were applied to provide differentially expressed metabolites comparing a non infested control group of plants with plants attacked by phylloxera. Most of the described procedures are general in character and can be applied to other plant-insect interaction studies after slight modifications. All methods and instruments employed are well established and easy to handle in order to enable also non-specialists to utilise the developed protocol.

1

Introduction

1.1

Plant-insect interactions

The interaction between plants and insects is a highly complex and fascinating research area. These interactions can be mutually beneficial (symbiotic) but also pathogenic, i.e. leading to plant diseases or affecting the insect negatively [1, 2]. An example for an interaction beneficial for both partners is the attraction of insects by pollinating flowers: the insect takes care for the pollination of the plant and thereby receives nutrition. Plant-insect interactions can also be beneficial for just one of the interaction partners. Some plants for example permanently emit volatiles (repellents) to be less attractive to herbivores, others actively defend against herbivory by producing metabolites, which are toxic to the attacking insect. As the permanent synthesis and emission of repellents, for example comes at considerable metabolic energy costs, many plants have developed defence strategies, which are only activated when the plant is attacked the so called induced defence [3]. Induced defence can either work in a direct mode against the attacker [4, 5] or indirectly, by the attraction of natural enemies of the attacker [6, 7]. The herbivore does not only cause a metabolic change in the directly affected part of the plant but could also lead to a response in other plant parts - a phenomenon called systemic defence [8, 9]. The changes in the metabolite pattern due to herbivore attack are reported to last from days to years [3, 10].

There are various further ways to classify plant-insect interactions. It can be differentiated between chewing and piercing/sucking insects for example, or interaction below ground (roots) or above ground (shoot, e.g. leaves). Recent studies have shown that the metabolic activity of different plant organs can be affected simultaneously, as e.g. Bezemer et al. [11] have demonstrated that the attack by root feeding insects can lead to increased non-volatile terpenoid concentration in leaves.

1.2

Significance of volatile plant metabolites

Volatile organic compounds (VOCs) originating from plants are frequently involved in plantinsect interactions since plants, being sessile organisms, make use of volatiles for signalling either within the plant or by sending signals over relatively long distances [12, 13]. Besides the use of brightly coloured flowers, plants can also emit volatiles to attract potential pollinators [1] or as a defence mechanism against herbivory [14]. The attack of a feeding insect usually induces a signalling cascade, whereby the attacked leaf and in some plants also leaves nearby the attacked leaf start to produce VOCs for defence [13]. Typical plant derived VOCs consist of low molecular weight, mostly lipophilic substances such as terpenoids, phenylpropanoids, benzenoids and other aliphates with a high vapour pressure of ≥ 0.01 kPa at 20 °C [15, 16]. Several reviews recently published discuss VOCs concerned in plant-insect interactions, e.g. [15, 17-21]).

Plant VOCs generally consist of complex mixtures and play a key role in plant-insect interactions and therefore the comprehensive study of these metabolites is of major importance for a better understanding of the underlying molecular mechanisms. The analytical methodology for the study of volatile plant metabolomes will be described in more detail in the following sections.

1.3

Study of the plant volatile metabolome in plant-insect interactions

The study of the volatile metabolome, i.e. the entirety of the volatile metabolites produced by an insect-affected plant requires a comprehensive analytical approach. After thoroughly planning and realising the biological experiment, plant samples must be taken and, if plant tissue is physically harvested, efficiently quenched to freeze the plants' metabolic state. These steps are followed by homogenisation and further sample preparation, measurement of the metabolites and processing of raw data. In a targeted metabolomics approach, which will be described here, parts of the metabolome are detected, identified or annotated and (relatively) quantified. Relative or absolute concentrations of the detected metabolites are then compared by various statistical methods with the aim to identify metabolites being differentially expressed in the tested biological samples. Finally, the analytical and statistical results require biological interpretation, which again leads to the setup of new biological experiments. The analytical workflow of such a metabolomics approach covers all of the above mentioned steps and is schematically illustrated in Figure 1.

Figure 1 Typical steps in a general metabolomics workflow. Starting with a biological question the experiment is designed and carried out. Samples are harvested, treated and measured. The data is processed and analysed by means of various data processing software and statistic/chemometric tools. The results are interpreted in relation to the initial biological questions. Eventually new scientific questions can be defined which then can be addressed by additional experiments.

It is worth to mention that comprehensive metabolomics studies require numerous analytical techniques to cover other parts of the plant metabolome like non-volatile polar (mostly primary) or non-volatile apolar secondary metabolites. Additionally, metabolomics studies are frequently complemented by the simultaneous measurement of further biological parameters. For example, in addition to metabolite identification and quantification, water potential, gas exchange or photosynthetic activity are recorded to describe the physiological state of the tested plants. Moreover, plant metabolomics is frequently carried out in combination with other "-omics techniques" such as functional genomics, transcriptomics or proteomics.

In the presented protocol a major focus is laid on the VOCs produced within the plant tissue after attack by an insect. In the following, the setup of biological experiments, sampling, sample preparation and measurement of volatiles by GC-MS will be discussed.

1.3.1

Setup of biological experiments

Since most metabolomics methods aim at the measurement of as many low molecular weight metabolites as possible with the method in use, the simultaneous absolute quantification of all detected metabolites is not feasible. Instead, a typical metabolomics experiment affords the differential comparison of a defined number of replicate samples (i.e. relative quantification of metabolites), which have been grown in parallel and represent different states, e.g. "control vs. treatment" or "wildtype vs. mutant" [22]. The ultimate goal of this type of metabolomics study generally is to link the differentially expressed metabolites (i.e. the differences detected in the metabolome) to the experimental factor which was varied to generate the different sample states.

Therefore, all factors potentially influencing the metabolome (i.e. genotype, developmental and physiological states as well as environmental conditions) have to be controlled carefully during a biological experiment. Compared to biological experiments in the field, greenhouse experiments can be better standardised than field trials, the latter however offers the advantage of having more natural experimental conditions. If the metabolomics study aims at the investigation of the interaction between different organisms, the experiment has to consider the tested organisms alone as well as combinations thereof. In plant-insect interaction studies for example, in which the response of a plant to an insect is to be tested, the metabolome of a set of insect-affected plants (treatment) can be compared to the metabolome of plants grown in absence of the insect

(control). Furthermore, in experiments addressing plant response directly at the interaction site, it can be difficult to differentiate between plant and insect derived metabolites. In this case, the sampled and analysed plant tissue might contain metabolites from both interaction partners. This type of study ideally includes both types of control groups, plants and insects versus a group of treated plants.

During the setup of the biological experiment it also has to be considered that some volatiles can act as signalling molecules which might affect the metabolome of plants being exposed to these metabolites. Thus, if necessary, e.g. treated and non-treated plants have to be grown separately without direct contact.

For both, control and treated groups, the number of replicates should be large enough to allow the estimation of technical and biological variability. Moreover, (biological) quality control samples should be included in every measurement sequence to monitor and verify proper performance of the analytical process.

1.3.2

Sampling, quenching and sample preparation

Sampling and quenching of plant material. Sampling and quenching and are crucial steps in plant metabolomics. Numerous factors, such as metabolic turnover rates, diurnal or nocturnal rhythm of plants, tissue specificity of metabolic activity, or induction of metabolic change by invasive sampling techniques have to be considered [23].

Various techniques have been described for sampling of plant volatiles, which can be classified in two main categories: non-invasive and invasive methods. The former technique usually makes use of dynamic headspace enrichment of volatiles and allows the (online/onsite) investigation of the living plant without largely influencing the biological system, while the latter affords sampling of the whole plant or selected detached plant organs/tissue in combination with subsequent extraction of volatiles. For a detailed description and discussion of the techniques available for sampling and measurement of volatiles, the reader is referred to the excellent review of Tholl et al. [16]. Here, some general aspects of sampling in plant metabolomics shall briefly be discussed.

The formation of green leave volatiles for example, is induced by mechanical damage of plant tissue and can be extremely fast (within seconds). This means that sampling of leaf- or root tissue for example, requires efficient quenching (i.e. freezing of the metabolic state at the time point of sampling). Immediate cooling of the plant tissue with liquid nitrogen (lq. N_2) after sampling is the most simple and common method today [23], which can also be applied in the field. Many secondary metabolites undergo a diurnal or nocturnal rhythm as described for example by Urbanczyk-Wochniak et al. [24]. Therefore, the time of day for sampling should be kept constant and has to be chosen carefully according to the metabolic cycle and the metabolites of interest.

Another important point to consider is the choice of the plant tissue to be sampled. Choi et al. [25] for example reported different metabolomes in terms of metabolite concentrations as well as the type of metabolites in younger versus older leaves or within the same leaf when leaf veins were compared to other leaf tissue. While it should be kept in mind that the metabolomes of different plant tissues can vary significantly, analysis of whole plants or pooling of tissue from multiple plants can also be useful. In case of small sample weight, root tips for example, pooling might help to collect enough material for further analysis. If large variability of metabolite concentrations can be expected e.g. for field samples, pooling might also facilitate to detect differences between the metabolomes of the different sample groups.

Sample preparation. Here, the term sample preparation is used to describe all sample manipulation steps between quenching and instrumental analysis. In general it can be recommended to reduce sample preparation to a minimum since every step carries the risk of loosing metabolites or introducing artefacts. Usually, quenching is followed by measures to stabilise the plant sample. This can be done by permanent cooling with lq. N₂, storage in the freezer at -80 °C or freeze drying. The latter technique is well suited for stabilising plant material, as many enzymes need water to be active. However, freeze drying has been reported to lead to a loss of volatiles [26] and is therefore not appropriate for the determination of VOCs.

Usually, sample stabilisation is followed by homogenisation of the frozen or dried plant samples under cooled conditions, either by manual crushing in a mortar or by the aid of a ball mill.

While headspace analysis can directly be carried out with defined amounts of the homogenised plant powder, methods employing the analysis of liquid sample extracts require an additional solvent extraction step e.g. with acetone, dichloromethane or butanol, e.g. [27, 28].

If the non-volatile metabolome shall also be analysed, a procedure involving a mixture of methanol/chloroform/water (e.g. 2.5/1/1 v/v/v) [29] has been used frequently in plant metabolomics. This allows the separation of DNA and proteins from polar (mostly primary) and non-polar metabolites, among which also most of the volatile metabolites can be found.

1.3.3

Headspace extraction and measurement by GC-MS

In metabolomics, extraction and measurement of volatile metabolites is most frequently carried out by headspace techniques in combination with gas chromatography-mass spectrometry (GC-MS).

GC-MS provides highly efficient chromatographic separation. In capillary GC using standard wall coated open tubular columns, peak capacities typically range between 120 and 250 for a standard GC temperature gradient programme of 5 - 60 minutes runtime [30]. Full scan mass spectrometric detection adds extra and complementary selectivity to the chromatographic separation and furthermore leads to standardised mass spectra, independent of the type of GC-MS instrument manufacturer. Large spectra libraries e.g. NIST (http://www.nist.gov) or Wiley MS libraries (http://www.wiley.com) containing some 100,000s of mass spectra are available which can be used for the automated comparison with measured spectra.

Headspace extraction techniques can be roughly divided in static and dynamic approaches. **Dynamic headspace** techniques make use of a continuous gas stream flowing through a container in which the sample is located. The gas stream transports the headspace constituents to some kind of trap (e.g. adsorbent or cryogenic) where the volatiles are enriched during the extraction process. Dynamic headspace extraction can be carried out in a closed (i.e. closed loop stripping) or open (i.e. purge and trap) system. Trapped VOCs, then have to be eluted from the trap by organic solvents or the loaded trap is directly connected to the carrier gas stream of a GC instrument and the VOCs are desorbed onto the GC column by rapidly heating the trap to high temperatures (thermodesorption). Due to the exhaustive extraction and enrichment of volatiles, dynamic headspace techniques are extremely sensitive but are also prone to artefacts as e.g. impurities which are present in the gas stream are also enriched.

In comparison, **static headspace** extraction is a discontinuous process which makes use of passive sampling. The plant, parts of it or detached plant tissue is sealed in a container (e.g. headspace vial, plastic bag, bell jar). After a time period for equilibration the headspace is sampled by either withdrawal of a defined volume aliquot from the headspace (e.g. by sample loop or gas tight syringe) or the introduction of an ad(/ab)sorptive material attached to the sampling device. For this purpose solid phase microextraction (SPME) [31] or stir bar sorptive extraction (SBSE) [32] are used most frequently. Compared to dynamic headspace sampling, static techniques are generally less sensitive but also less prone to artefacts due to less enrichment of contaminants.

Both, dynamic as well as static headspace extraction techniques can be used to extract VOCs from (parts of) living plants or from detached, powdered plant samples. For metabolomics studies of living, intact plants the dynamic approaches offer the advantage of better control of relative humidity as well as temperature of the experimental setup.

A detailed discussion of these two concepts can be found e.g. in [16]. In this protocol, the cheap and easy to use SPME technique has been used and will therefore be described in more detail in the next section.

Solid phase microextraction (SPME). Developed by Arthur and Pawliszyn in the late 1980s [31], SPME is a very widespread technique for the extraction of trace amounts of all kinds of low molecular weight compounds. Headspace (HS)-SPME consists of two steps: First, a fibre with an adsorptive/absorptive coating is inserted into the sample container and exposed to the headspace above a solid or liquid sample. After partitioning of the volatile metabolites between the sample, headspace and fibre coating for a defined period of time, the fibre is withdrawn from the sample container. In a second step the fibre is introduced into the injector of a gas

chromatograph for desorption of the extracted volatiles and subsequent analysis. This technique is well suited to be used for both, manual or fully automated profiling of plant VOCs and can also be used for on-site sampling in the field. As there is an enrichment of substances on the fibre, very low concentrations (<ppb) can be detected, e.g. [16]. Various fibres combining different kinds of coating materials with different polarities are available [33] (Table 1). Depending on the coating material, the volatiles are either adsorbed in pores at the surface of the coating material (solid coating, e.g. carboxene) or absorbed into the coating material (liquid coating, e.g. polydimethyl siloxane). As the SPME efficiency of a certain volatile metabolite is mainly a function of the extraction temperature, extraction time and polarity of the fibre coating, these experimental parameters have to be evaluated carefully, selected and kept constant during method application in order to obtain acceptable extraction efficiency and precision of the SPME step. Moreover, it shall be noted that any selection of these experimental parameters always leads to a discrimination of some volatiles, whose polarity or volatility do not match the extraction conditions. Generally, with shorter extraction times, low boiling, highly volatile low molecular weight compounds are sampled preferentially. Longer extraction times lead to the preferential extraction of higher molecular weight molecules with lower boiling points [34]. HS-SPME is excellently suited for gualitative and semi-guantitative analysis of VOCs. Absolute quantification of volatiles is not straightforward and generally needs a thorough control of

sampling parameters and a detailed evaluation of matrix effects [16, 35, 36]. The accurate quantification of a few target compounds can be achieved by the use of internal standards, but the simultaneous quantification of a great number of compounds is more difficult. One option enabling quantification is multiple headspace extraction (MHE). With this technique, all metabolites for which a standard is available can be quantified by external calibration [37].

As only volatile compounds are enriched during HS-SPME, this technique yields relatively "clean" extracts and contamination of the GC inlet or MS detector is usually not an issue.

Fibre	Application
Polydimethylsiloxane (PDMS)	Nonpolar coating for nonpolar analytes
Polydimethylsiloxne/Divinylbenzene (PDMS/DVB)	Polar analytes, especially amines
Polyacrylate (PA)	Highly polar coating for general use, ideal for phenols
Carboxen/Polydimethylsiloxane	For gaseous/volatile analytes, high retention for
(CAN/FDIVIS)	For polar applyton, consciently for alaphala, low
Carbowax/Divinylbenzene (CW/DVB)	temperature limit
Divinylbenzene/Carboxen/PDMS	For broad range of analyte polarities, good for C3-
(DVB/CAR/PDMS)	C20 range
Carbowax/Templated Resin (CW/TPR	Developed for HPLC applications, e.g. surfactants

 Table 1 Commercial available SPME fibre coatings and their recommended application (according to the supplier).

Stir bar sorptive extraction (**SBSE**) [32] is based on the same extraction principle as SPME and can be used as an alternative. Through the higher amount of coating material on the stir bar compared to an SPME fibre coating, SBSE is more sensitive. A major drawback of this technique is that it can not be fully automated and for the desorption step into the GC inlet additional equipment is necessary. Because of the larger amount of substances ab(/ad)sorbed to the stir bar coating the absorbed volatiles can be eluted subsequently with liquid solvents and then multiple liquid injections of the same sample extract are possible.

1.3.4

Data handling

Data handling can be divided in data processing and data analysis steps [38] and shall be briefly addressed below.

Data processing. A typical metabolomics experiment comprises the analysis of at least two groups of biological samples (with several replicates per sample group) plus standards, blanks

and quality control samples. Each of the measurements results in large raw data files, which have to be processed in various ways. This makes manual data evaluation too labour intensive. Instead, efficient software tools are needed to process and analyse metabolomics data appropriately.

For example, the large number of volatiles extracted by HS-SPME of a plant sample usually exceeds the chromatographic peak capacity and therefore leads to the co-elution of volatiles into the mass spectrometer. Consequently, efficient software for peak picking and deconvolution of mass spectra is needed which helps to eliminate background signals as well as MS signals from interfering compounds. Additionally, annotation/identification of metabolites is also necessary. In GC-MS of volatiles, this is generally realised by the comparison of experimental mass spectra and retention indices (RI) with reference spectra and RI values from the literature [39, 40]. Various platform independent software tools are available, e.g. AMDIS (Automated Mass Spectral Deconvolution and Identification System [41]), Tagfinder [42] or MetaboliteDetector [43], which can be used for these data processing steps.

Data analysis (statistics/chemometrics). Data analysis is usually carried out with the aim to identify differences between the investigated groups of biological samples and to identify the metabolites that significantly contribute to these observed differences. For this purpose, various statistical methods are available. Depending on the setup of the biological experiment and the number and design of analytical measurement sequences as well as the used analytical techniques, simple univariate or more complex multivariate statistics are required.

In the presented protocol univariate t-tests and principal component analysis (PCA) have been carried out using the freely available R-software (www.r-project.org) [44].

1.3.5

Biological interpretation

In the last step of the metabolomics workflow the obtained results have to be put into biological context. Reliable metabolite annotation/identification, accurate relative quantification of the detected metabolites as well as proper statistics forms the basis of any meaningful biological interpretation. Usually, this last but essential step requires a joint effort of researchers from various disciplines such as plant biology, entomology, analytical chemistry and statistics.

2

Methods and protocols

For the scientific hypothesis and the design of the biological experiment, no general protocol is available. Therefore, we want to briefly exemplify these steps of the workflow with a setup for a thought study of roots of grapevine plants attacked by the piercing/sucking insect phylloxera. The majority of the presented procedures within this protocol are general in character and can be applied to other plant-insect interaction studies after appropriate (slight) modifications.

For grapevine roots attacked by phylloxera, for example the following hypothesis can be defined: The attack of phylloxera to roots of the grapevine cultivar Teleki 5C leads to the induction of volatile metabolites in the roots (local response) and leaves (systemic response) of the infested plants. It is further hypothesised that this metabolic change in the volatile metabolome can be measured by HS-SPME GC-MS. Therefore, the setup of the following thoughtbiological experiment could be assumed: Root tips of 24 plants, 12 of which inoculated with phylloxera, 12 serving as an untreated control group are sampled in regular intervals. At the end of the experiment, also the leaves shall be sampled.

Comments or hints to crucial steps in the protocol are referred to at the appropriate text passage. If company names are mentioned, they shall serve as an example for a suitable supplier. Other companies might be appropriate as well. Location of the respective company is given only when first mentioned.

Biological material

Permanent breed of insects

A single founder lineage of phylloxera (*Daktulosphaira vitifoliae* Fitch) was collected in Großhoeflein (Austria) in 2007 and has since been maintained in the greenhouse on the leaf-forming rootstock Teleki 5C with no additions of field-collected insects. Four plants were kept in

one plastic container (height: 125 cm, diameter: 50 cm), containing five holes (three for ventilation, 10 cm diameter) and two allowing operation (20 cm diameter). All holes were covered with a fine-mesh netting (149 μ m diameter), except the ones for handling which were closed via plastic foil. Plants were watered and fertilized depending on the weather conditions. To prevent insects from escaping the containers were maintained in a water containing tray.

Cultivation of grapevine plants and inoculation with phylloxera

The following protocol describes the routine procedure to produce root and leaf tissue samples for subsequent HS-SPME GC-MS analysis. It is based on a procedure published in [45].

Materials

- Seradix B2 (3g/kg indole-3-butyric acid, Kwizda, Austria) to support one-node cuttings in rooting
- "Jiffy-7" pots (40 mm diameter)
- Water + fertilizer (e.g. FERTY 3 Mega, N+P+K+Mg (18+12+18+2) + micronutrient, diluted with water to a concentration of 0.5 g/L, Planta, Regenstauf, Germany)
- Small spray bottle allowing gentle watering
- Rooting Teleki 5C (*V. berlandieri* Planch. x *V. riparia* Michx.) one-node cuttings 6 per plant tray, 24 in total
- Substrate (6 parts commercial potting soil, 1 part sand, 1 part perlite) for planting
- Tray-A: plant tray (including 6 pots, 26x31 cm, 4 pieces in total) with big holes on the bottom to allow roots to grow through
- Net (1x1 cm per hole) to prevent soil from falling out when turning the plant tray-A during harvest for 90°
- Wire to fix the net
- Perlite to fill box-A and box-B
- Box-A: plastic box (25x30x7 cm, 4 L, 4 pieces in total) filled ³/₄ with perlite and spacers to provide a space between the perlite and the plant tray-A
- Tray-B: big tray (68x63x12.5 cm, 2 pieces in total, providing space for 2 plant trays-A) filled 2 cm with water to prevent insect from escaping
- Box-B: large box (48x31x42 cm, 65 L, 2 pieces in total) to cover everything, the top of the box contains a vent hole (30x15 cm) covered with a fine-mesh netting plus 4 additional holes for ventilation (10 cm diameter)
- Ethanol (70%) to clean the working material
- Dish to provide a working platform
- Gloves
- Scalpel to open the leaf galls
- 4 heavily infested phylloxera leaves from a permanent single founder phylloxera lineage (as described above)

Procedures

Propagate one-node dormant cuttings from the rootstock variety Teleki 5C vegetatively in the greenhouse. Therefore, dip cuttings in indole-3-butyric acid for rooting and place them into "Jiffy-7" pots. Grow them for 4 - 5 weeks until rooting (depending on temperature) before preparing them for the experiment.

Take care that no insect can escape from the experimental setup (quarantine pest). Therefore, cover all venting holes with a fine net and settle the entire setup in water filled containments. During the experiment, water and fertilize the plants depending on the weather conditions to provide optimal conditions. Figure 2A illustrates how such a setup could look like. To have an appropriate number of biological replicates perform the experiment either several times consecutively or in parallel.

Setup of the plants:

- 1. Plant 6 rooting plants into plant tray-A including 6 pots in substrate, prepare 4 such trays with a total of 24 plants.
- 2. Cover and fix rootstocks with net (1x1 cm), fix net with wire.
- 3. Put tray with plants in box-A filled with perlite.

- 4. Store every 2 setups in a bigger tray-B. Fill tray-B 2 cm with water.
- 5. Cover each of the 2 boxes of type A containing the plants with a bigger box-B. The result are two independent but identical setups for the further experiment.
- 6. Let the roots grow for 1 − 2 weeks (until a sufficient root biomass is grown through the net).
- 7. Separate the 2 setups to avoid any sort of communication between the plants with each other via air.

Inoculation with insects:

- 1. Remove box-B and take out box-A with plants.
- 2. Turn the plant tray-A carefully for 90° (Figure 2B).
- 3. Prepare the inoculum (phylloxera eggs) by cutting off the tops of all leaf galls of a medium sized leaf with a scalpel.
- 4. Place the prepared leaves upside down on the perlite layer of the boxes-A (2 leaves per 6 plants).
- 5. Rebuild setup.
- 6. After a defined time interval (e.g. 3 days) of inoculation, remove leaves.

Figure 2 Setup of the biological experiment (A). For sampling of root tissue, the tray with the grapevine plants is removed from the perlite underground and turned for 90 ° (B). After cleaning the roots (C, arrows show some root galls) they can be sampled, pooled and filled into an Eppendorf tube. Finally, steel balls are added prior to the milling step (D).

Sampling and quenching of plant tissue (roots and leaves)

The typical mass of a root tip is in the range of a few mg. Thus around 50 root tips have to be collected for GC-MS measurements. In case of leaves, which weigh around 3-4 g, one single leaf offers enough material for >10 GC-MS measurements. This suggests different sampling strategies for roots and leaves. Additionally, due to the significant change of the physiological state of a plant, which is caused by the detachment of a leaf, the plant should be excluded from further sampling. In case of the root sampled plants the changes in the metabolome induced by the cutting can be regarded much smaller. Due to the simultaneous cutting of roots of the control group, it can be assumed that the influence does not appear in differentially expressed metabolites.

It shall be noted that for the handling of liquid nitrogen (lq. N_2) always safety gloves and a face shield should be used to protect against cold. Additionally, wear appropriate clothing in order to protect legs and feet.

Sampling and quenching of root tips Materials

- Polystyrene box with lid (20x15x10 cm) with lq.N₂
- Scalpel
- Fine tweezers
- Fine brush
- Ethanol (70%) and tissue to clean the working material
- Magnifying glass (12x)
- Dish to provide a working platform
- Gloves
- Lamp to provide additional light
- Plastic tubes (e.g. Eppendorf tubes 1.5 mL)
- Rack for holding the Eppendorf tubes in Iq. N₂

Procedures

- 1. Take samples in regular intervals (e.g. daily) at the same time of day (e.g. 10 12 am): young root galls (fed on by second nymphal instar phylloxera), mature root galls (feed on by one adult phylloxera producing maximal five eggs) or uninfested root tips.
- 2. For sampling, remove box-B and take out box-A with plants.
- 3. Turn the plant tray-A carefully for 90° (Figure 2B).
- 4. Free all roots foreseen for sampling from any soil with a fine brush.

Infested root tips:

- 5. Remove insect with a fine brush
- 6. Hold root tip with tweezers, cut root tips above the root gall with a scalpel (Figure 3), insert root into lq. N_2 immediately.
- 7. Pool root tissue from several plants until appr. 200 mg per Eppendorf tube. Separate different developmental stages (young root galls, mature root galls). If not enough material collected at one sampling date, pool with samples of the next sampling date.

Uninfested root tips:

- 8. Hold with tweezers, cut with scalpel at 1.5 cm length (Figure 3), insert in lq. N_2 immediately.
- **9.** Pool root tissue from several plants until appr. 200 mg per Eppendorf tube. Cut as many roots as from the infested plants. If not enough material collected at one sampling date, pool with samples of the next sampling date.

Figure 3 Illustration of uninfested (left) and infested (right) root tips. Arrows indicate where roots should be cut for sampling.

Sampling and quenching of grapevine leaves

Many plant metabolites undergo a diurnal rhythm. Therefore, it is essential for comprehensive studies to sample always at the same time of day and within a short time interval.

Materials

- Polystyrene box with lid (40x35x25 cm) with lq. N₂
- Scalpel (or scissors)
- Plastic tubes with screw cap (e.g. Sarstedt 50 mL or aluminium foil folded to an envelope, which can hold one leaf)
- Racks for holding 50 mL Sarstedt tubes in Iq. N₂

Procedures

- 1. Sample always at the same time of day, (e.g. 10 12 am).
- 2. Cut leaf with 1 cm stalk remaining and insert the cutting site in lq. N₂ immediately (within seconds).
- 3. Put sample into 50 mL Sarstedt tube, AVOID FURTHER DAMAGE of the sampled leaf!
- 4. Cool Sarstedt tube by inserting it into lq. N₂.

Milling and weighing of plant tissue (roots and leaves)

During the homogenisation and weighing steps care has to be taken that the plant material does not thaw. Therefore, all materials are pre-cooled with lq. N₂. It is also very important to minimise contamination. It is recommended to clean all material (except disposables) carefully (e.g. with methanol/water (50/50 v/v)) before use. Bake out HS vials, caps and septa at 120 $^{\circ}$ C for at least 1 hour.

The HS vials should also be pre-cooled before weighing in the plant tissue but this time ice is to be preferred. The weighing process should be carried out very fast to avoid thawing and the condensation of air humidity on the plant material or the HS vials. It is worth to practice this beforehand and to use a spatula that takes approximately the amount that should be weighed in.

Milling and weighing of root samples

When using the ball mill for homogenisation of root tips a sample mass of appr. 200 mg per Eppendorf tube is necessary to receive 100 - 150 mg of root tissue powder that can be weighed into HS vials for subsequent GC-MS measurements. If necessary, smaller sample amounts down to single root tips can be ground with a glass rod directly in the HS vial.

Materials

- Polystyrene boxes with lid (10x10x10 cm and 2 pieces 30x25x20 cm)
- Lq. N₂
- Frozen root samples in Eppendorf tubes
- Ball mill (e.g. MM 301, Retsch, Haan, Germany)
- Adapter for Eppendorf tubes fitting into ball mill (e.g. Retsch)
- Stainless steel balls (3 mm diameter, e.g. Retsch), 5 per Eppendorf tube
- Spatula
- HS vial 20 mL
- Magnetic screw cap with hole and 1.3 mm silicone/PTFE septa for HS vial
- Box with crushed ice for pre-cooling of HS vials before weighing step
- Analytical balance (e.g. RC 2010 P, Sartorius, Göttingen, Germany)
- Beaker holding HS vial in balance
- Tissue, methanol/water (50/50 v/v), for cleaning of the equipment
- Boxes for storage of HS vials and remaining root powder at -80 ℃

Procedures

- 1. Fill one small and one large polystyrene box to a height of 5 10 cm with lq. N₂.*
- 2. Place -80 °C storage box for HS vials and Eppendorf tubes in one large polystyrene box and fill to a height of ca. 2 cm with lq. N_2 .*
- 3. Cool Eppendorf tube in Iq. N₂ (small box).
- 4. Cool stainless steel balls and adapter in Iq. N₂ (large box).
- 5. Add 5 stainless steel balls to every Eppendorf tube (Figure 2D).
- 6. Close Eppendorf tubes tightly and put into adapter.
- 7. Cool adapter with tubes in Iq. N₂.

- 8. Fix adapter into ball mill. Both arms of the mill should carry the same weight to avoid damage.
- 9. Run ball mill at 30Hz for 3 minutes.
- 10. Remove adapter with Eppendorf tubes from ball mill and cool in Iq. N₂.
- 11. Place HS vial into a beaker located on the balance to avoid canting of the vial.
- 12. Weigh 50±5 mg sample powder into pre-cooled (ice) HS vial.
- 13. Note the exact weight.
- 14. Tightly seal HS vial with septum containing screw cap.
- 15. Place HS vial into -80 °C storage box, so that the bottom of HS vial is cooled in lg. N₂.
- 16. Remove balls from Eppendorf tube, close tightly and cool in lg. N₂.
- 17. Store HS vial and remaining root powder at -80 ℃ till analysis.

* Always close the lid of the boxes and refill lq. N₂ from time to time.

Milling and weighing of leaf samples

Materials

- Polystyrene boxes with lid (10x10x10 cm and 2 pieces 30x25x20 cm) ٠
- $Lq. N_2$
- Frozen leaf samples in 50 mL Sarstedt tubes
- Glass rod
- Ball mill (e.g. MM 301, Retsch)
- Stainless steel beaker 10 mL (e.g. Retsch)
- Stainless steel ball 9mm diameter (1 per beaker, e.g. Retsch)
- Spatula
- HS vial 20 mL •
- Magnetic screw cap with hole and 1.3 mm silicone/PTFE septa for HS vial
- Box with crushed ice for pre-cooling of HS vials before weighing step
- Analytical balance (e.g. RC 2010 P, Sartorius) •
- Beaker holding HS vial in balance •
- Tissue, methanol/water (50/50 v/v), for cleaning of the equipment •
- Plastic tube (e.g. Sarstedt 10 mL) for storage of the remaining leaf powder
- Boxes for storage of HS vials and remaining leaf powder at -80 °C

Procedures

- 1. Fill both a small and large polystyrene box to a height of 5-10 cm with lq. N₂.*
- 2. Place -80 °C storage box for HS vials and Eppendorf tubes in one large polystyrene box and fill to a height of ca. 2 cm with lq. N2.*
- 3. Cool tubes with leaf samples in Iq. N₂.
- 4. Pre-homogenise leaves with pre-cooled glass rod in Sarstedt tube (Figure 4A).

- Cool stainless steel beakers and balls in lq. N₂ (large box).**
 Transfer leaf sample to stainless steel beaker (Figure 4C).
 Close beaker and cool in lq. N₂.
 Fix beakers into ball mill. Both arms of the mill should carry the same weight to avoid damage.
- 9. Run ball mill at 30Hz for 3 minutes.
- 10. Remove beaker from ball mill and cool in lg. N₂.
- 11. Place HS vial into a beaker located on the balance to avoid canting of the vial.
- 12. Weigh 100±5 mg sample powder into pre-cooled (ice) HS vial (Figure 4F).
- 13. Note the exact weight.
- 14. Tightly seal HS vial with septum containing screw cap.
- 15. Place HS vial into -80 °C storage box, so that the bottom of HS vial is cooled in lg. N₂.
- 16. Remove ball from beaker and transfer remaining powder to pre-cooled (lg. N₂) Sarstedt tube (10 mL).
- 17. Cool 10 mL Sarstedt tube in lg. N₂.
- 18. Store HS-vial and 10 mL Sarstedt tube with remaining leaf powder at -80 ℃.
- * Always close the lid of the boxes and refill lq. N₂ from time to time.
- ** Take care that beakers are completely dry before cooling in Iq. N₂.

Figure 4 Leaf sample homogenisation and weighing. The leaf is crushed with a glass rod in a cooled (Iq. N₂) 50-mL Sarstedt tube (A). Thereafter the leaf tissue is transferred (C) into pre-cooled stainless steel beakers (B). Milling with a ball mill (D) results in fine powder (E) which can be easily weighed into HS-vials (F).

Measurement – automated HS-SPME extraction and GC-MS analysis Materials

- GC-MS instrument (e.g. Agilent 6890N GC coupled to 5975B MSD, Agilent, Waldbronn, Germany)
- Autosampler with cooled tray, HS-vial heating station, needle heater, SPME holder (e.g. MPS2XL from Gerstel, Mühlheim a.d. Ruhr, Germany)
- Apolar column, 95% dimethyl-, 5% diphenyl polysiloxane (e.g. DB-5MS, 30 m length, 0.25 mm inner diameter, 0,25 μm film thickness, Agilent)
- Polar column, polyethylene glycole, e.g. Optima-WAX 30 m length, 0.25 mm inner diameter, 0,25 μm film thickness, Machery-Nagel, Düren, Germany)
- Alkanes for RI calibration covering the range of C7 C30 (e.g. C5-C10: in-house mix, C8-C20, 40 mg each in hexane, Fluka, from Sigma-Aldrich, Vienna, Austria), C21-C40 (40 mg each in toluene, Fluka)
- Quality control samples (e.g. pooled root or leaf samples from both treatments)
- SPME-liner 0.75 mm inner diameter
- SPME-fibre 2 cm 50/30 μm Carboxen/Divinylbenzene/Polydimethylsiloxan (CAR/DVB/PDMS, Supelco, from Gerstel) for autosampler, conditioned to suppliers recommendation
- Mobile phase GC: He 5.0

SPME-method

- Equilibration time: 30 min
- Extraction time: 60 min
- Equilibration and extraction temperature: 90 °C
- Needle heater: 270 °C, N₂ flushed, 10 min beak out prior to extraction
- Desorption: 2 min at 250 °C in GC-inlet, splitless mode

SPME is an easy to use, rather cheap technique for metabolite extraction. Further advantages are the enrichment of metabolites on the fibre and the possibility to automate the extraction and enrichment process. No liquid solvents are necessary which preserves costs and environment.

HS-SPME causes only little contamination of the GC inlet liner and the MS source. The disadvantages are the need of permanent monitoring of fibre performance and the somewhat lower precision of GC-MS peak areas compared to liquid injection techniques. Absolute and simultaneous quantification of several ten to hundreds metabolites with SPME is difficult. One possibility is the use of multiple headspace extraction (MHE) [37]. Also the selection of the SMPE conditions (fibre type, equilibration time and temperature, extraction time and temperature) require optimisation depending on sample characteristics as sample amount, water content and metabolites of interest.

GC-Method

- Flow: 1 mL/min He 5.0
- Inlet: 250 ℃, splitless for 2 min (during desorption of VOCs from fibre coating)
- Oven programme: starting temperature: 35 °C hold 2 min
- Temperature ramp: 5 ℃/min to 260 ℃, hold 5 min
- Transfer line: 270 °C

MS-settings

- Electron ionisation mode (EI), ionisation energy: 70 eV
- Source temperature: 230 °C
- Quadrupole temperature: 150 ℃
- Scan range: 35 500 m/z
- Scan speed: 3 scans/s
- Weekly tuning with PFTBA

At the beginning of every sequence check the condition of the column (blank of column) and the fibre (blank of fibre). Then continue with e.g. 5 quality control samples to check performance of instrument. Proceed with alkane standards for RI calibration.

Include a quality control sample at regular intervals (e.g. every 5-10 samples) to check for method performance. For a typical measurement sequence, see Table 2.

Measurement of the quality control sample is important if no standards for quantification are measured within the sequence. This helps to monitor data variability associated with the weighing step, the SPME process or the separation/detection with GC-MS Further on, these QC samples can serve as basis for calculation of the technical variability of peak areas and RIs. Of course, also standard solutions containing single pure substances can be used for QC purposes. In this case the handling of volatile standards has to be evaluated and optimised since volatiles tend to evaporate during handling. This might result in low precision between HS-SPME GC-MS measurements. Additionally, the SPME conditions have to be optimised for the standard mix. The simplest and easiest way is to use pooled and homogenised plant material, which is available in appropriate amounts as in our example the leaf tissue.

If possible, measure all samples in one sequence or at least within a short time interval.

Due to the fact that a lot of plastics are used at various occasions of this protocol, it can be anticipated to find volatiles originating from these materials also when measuring the plant samples. Additionally, contaminants or artefacts from the lab environment, equipment (e.g. septa, SPME fibre coating or the GC instrument) might be found. The measurement of blank samples provides information which chromatographic peaks must be excluded from the results. The surrounding lab air for example can be measured by placing an open HS vial nearby the balance during the whole weighing procedure and subsequent treating it as the other samples.

Table 2 Illustration of the first	18 measurements of	f a typical GC	sequence table t	for measuring
leaf samples.				-

sequence 100409			
method	file	sample info	sample weight/volume
columnblank_HP5.M	100409_01	blank of column	-
fibreblank_HP5.M	100409_02	blank of fibre	-
30'60'90°_HP5.M	100409_03	empty vial	-
30'60'90°_HP5.M	100409_04	quality control	10µL
30'60'90°_HP5.M	100409_05	quality control	10µL
30'60'90°_HP5.M	100409_06	quality control	10µL
30'60'90°_HP5.M	100409_07	quality control	10µL
30'60'90°_HP5.M	100409_08	quality control	10µL
C5_10_HP5.M	100409_09	Alkane C5-10	1µL
C8_20_HP5.M	100409_10	Alkane C8-20	10µL
C21_40_HP5.M	100409_11	Alkane C21-40	50µL
30'60'90°_HP5.M	100409_12	quality control	10µL
30'60'90°_HP5.M	100409_13	leaf sample	101mg
30'60'90°_HP5.M	100409_14	leaf sample	105mg
30'60'90°_HP5.M	100409_15	leaf sample	104mg
30'60'90°_HP5.M	100409_16	leaf sample	108mg
30'60'90°_HP5.M	100409_17	leaf sample	102mg
30'60'90°_HP5.M	100409_18	quality control	10µL

Data processing with AMDIS

For the data processing procedures described in the following, AMDIS (Automated Mass Spectral Deconvolution and Identification System, version 2.65, www.amdis.net, Stein 1999 [41]), a freely available software for GC-MS peak picking, mass spectral deconvolution, RI calculation and annotation of compounds by comparing measured mass spectra and RI with library entries was used.

An in-house reference library has to be established in advance. In the targeted approach described below, data evaluation by AMDIS requires a reference library with a list of VOCs, which can be expected to occur in the plant samples. This library is limited to approx. 8000 entries each consisting of a unique chemical identification number (Chemical ID), corresponding reference mass spectra and reference RI value. It serves as a positive list of potential VOCs. Only metabolites contained in the library can be found by the below described "AMDIS batch job" analysis. VOCs of the library can be taken from own measurements of typical plant samples and subsequent annotation/identification of metabolites and/or from the literature. A more detailed description of how this library is established can be found in e.g. [46, 47]. When using more than one stationary GC-phase it is necessary to create separate libraries with RIs for each column type.

In the following a detailed description of typical settings and the operating steps required by the AMDIS programme will be given. This might be helpful during analysis since this type of documentation has not been found in the literature by the authors so far. Words in italic preceded by an arrow (\rightarrow) refer to either opening the respective menu or using the respective command in the software.

Underlined words refer to the headlines of register tabs in software dialog windows.

Generation of RI calibration file

First, generate a RI calibration file from the alkane standards included in every GC sequence (see Table 2). The RI calibration file is needed to automatically calculate and assign RI values of the deconvoluted metabolite peaks later on in the data evaluation process.

- 1) Open AMDIS
- 2) Check presence of alkane standards
 - a. Load GC-MS raw data: \rightarrow *File* \rightarrow *open* select GC-MS raw data file of alkane standard.
 - b. → Analyze → Settings → Default, Identif. tab: Minimum match factor: 90; Type of analysis: Simple, Libr. tab: Target Compounds Library: .MSL file containing mass spectra of the alkanes → Save. The software should now deliver a list with all alkane standards, their retention time and their match factor. Check, whether the identifications are correct, and in the correct order.
- 3) Create alkane standard calibration file for calculation of retention time indices (RI)
 - → Analyze → Settings → Default, except: Identif. tab: Minimum match factor:
 90; Type of analysis: RI Calibration/Performance; Libr. tab: Target Compounds
 Library: .MSL file containing mass spectra of the alkanes; RI Calibration Data:
 .CAL file where AMDIS writes the information about retention time and
 corresponding retention index → Save.

Batch job analysis for the simultaneous processing of multiple sample chromatograms

Second, evaluate all samples against the self-compiled library.

We want to point out here that it is very important to prove the identity of the detected metabolites. Otherwise, it might be that in the case of false positive identifications also the interpretation of the underlying biological processes is wrong. Unfortunately, there are no standardised rules how to identify a metabolite correctly. Different approaches are discussed e.g. in [46-49].

This protocol uses rather strict criteria to avoid false positives. According to [46, 47] we use a minimum match factor of 90 and a maximum relative RI deviation of $\pm 2\%$ if the reference value is from literature. In case of authentic standards measured within a short time interval to the sequence containing the samples, a lower minimum mass spectral match factor of e.g 60 and a narrower RI window of e.g ± 5 RI units has been used in the authors laboratory.

Although AMDIS has not been developed especially for quantification, we have checked reliability of the software's peak integration by comparison with manually integrated peaks using Agilent Chemstation software and found no significant difference.

- 4. AMDIS batch job analysis
 - a. Load GC-MS raw data: \rightarrow *File* \rightarrow *open* select GC-MS raw data file of sample.
 - Analyze → Settings → Default, except: <u>Identif</u>. tab: Minimum match factor: 90; Type of analysis: Use Retention Index Data; RI window: 1 + 2 x 0.01 RI (to allow a RI deviation of ±2% of the measured RI value from the reference value in the library); Match factor penalties: Level: Infinite; Maximum penalty: 100; No RI in library: 100; <u>Libr</u>. tab: Compounds Library: .MSL file containing mass spectra and RI of the metabolites of interest; RI Calibration Data: the .CLA file created in step 3 → Save.
 - b. → File → Batch Job → Create and Run Job..., Data files: → Add all GC-MS files to be processed; Analysis type: Use RI calibration data (CAL); Generate report: mark; Include only first 1 hits; → Save as... → Run.

The batch job function automatically generates a text file with the results in the same directory where the batch job is stored.

Statistics/Chemometrics

The last step of this protocol is carried out with the aim to find the metabolites that are differentially expressed between the control group and the group of phylloxera-infested plants. To this end, statistical data analysis is necessary. It is convenient to bring the text file generated by AMDIS batch job in a form where the samples are in rows and the corresponding metabolite

peak areas in columns. This can be done either manually, for example with Microsoft Excel or an R script. The resulting matrix can then easily be processed by several statistical or chemometric software programmes.

In the follwing, statistical data analysis shall be exemplified with a t-test and principal component analysis (PCA) using the software R (version 2.13.0). For a detailed description how to perform a t-test or a PCA with R, the reader can refer to websites dealing with R (e.g. www.r-project.org), to literature about statistics and chemometrics in metabolomics, e.g. [40, 50, 51] and to the bioinformatics chapter in this book.

Univariate statistics

To check which metabolites in the matrix show significantly different peak areas a simple t-test can be applied. First divide metabolite peak areas (integrated signal) by the exact sample weight to standardise peak areas. Keep only substances in the matrix, which have been found in most of the samples within the same sample group (e.g. ≥50% of the samples of the same group (control or treatment)).

Use for example the following R command to calculate an unpaired Welch's t-test:

```
> t.test(group1, group2, alternative=c("two.sided"), var.equal=FALSE,
+ conf.level=0.95)
```

where group1 and group2 refer to the normalised peak areas of a metabolite of the control and treated group, respectively. The variances of the peak areas of the two groups are assumed to be unequal and the confidence level is set to 95%.

In case of many metabolites to be tested, an R script for automated application of t-tests to all metabolites in the matrix might be useful.

Multivariate statistics

Principal component analysis (PCA) is a non-supervised statistical method which can be used to classify different sample groups and to provide information about the variance in the data. Ideally, the scores plot shows the two differentially treated samples in form of two separate clusters. Then the loadings plot provides information, which metabolites mainly contribute to this separation. In contrast to t-test no direct information about the statistical significance is provided by PCA.

For PCA also the same matrix with the rows representing the objects (i.e. samples) and the columns corresponding to variables (i.e. metabolites) is needed. Furthermore, the data has to be auto scaled and mean centred. Thus, each cell in the matrix contains the corresponding peak areas of the respective metabolites after auto scaling and mean centring. Keep only metabolites in the matrix, which have been found in most of the samples within the same sample group (e.g. \geq 50% of the samples of the same group (control or treatment)).

The R commands are:

```
> scale(matrix)
```

and for PCA:

```
> svd(scaled_matrix)
```

3

Applications of the Technology

The presented protocol was applied by the authors to study the metabolic response of grapevine roots to phylloxera attack [47]. 38 metabolites have been annotated whereas 32 have been confirmed with authentic standards. Applying univariate statistics (t-test) to the results obtained for the two sample groups (phylloxera infested root tips and non-infected root tips) resulted in 14 metabolites showing significantly different concentration levels. The differential expression of some terpenoids like eugenol, beta-myrcene, methyl salicylate, geraniol and beta-

caryophyllene is a hint of activation of the mevalonate (MEV) or the 2-C-methyl-D-erythritol 4phosphate (MEP) pathway [52]. Future investigations for example could aim to find JA which can be postulated to be present at an elevated level in infected tissue. Furthermore, the GLVs hexanal and (E)-2-hexenal were found at elevated levels in infested tissue, which indicated the involvement of the lipoxygenase (LOX) pathway [53].

HS-SPME based profiling of plant VOCs was successfully carried out in several studies. A recent metabolomics study for example showed how the terpenoid pattern emitted by *Mentha aquatica* L. changes either under attack of *Chrysolina herbacea* or mechanical damage [54]. The authors collected VOCs over 6 hours from the living plants with SPME followed by GC-MS analysis. They found eight terpenoids with significantly different levels in undamaged, mechanical damaged and herbivore damaged plants. Fernandes et al. [55] investigated the VOCs emitted by kale (*B. oleracea L. var. acephala*) plants before, during and after herbivore (*Pieris brassicae*) attack as well as the VOCs emitted from the insects alone by HS-SPME-GC-MS. A maximum in total terpene level was found after 1 h of herbivore feeding while the mechanical wounding showed no change of the total terpene level. More examples of studies investigating plant-insect interaction in terms of induced VOCs are discussed in e.g. [5, 7, 56-58].

In addition to the technology presented in this protocol, several other approaches have been used to investigate the metabolic response of plants to insects as for example dynamic HS trapping and subsequent two-dimensional GCxGC-ToF-MS [59] or investigation of primary metabolites using LC-MS e.g. [60, 61] or NMR technique e.g. [62, 63].

In recent years a shift from target analysis of a few metabolites towards more comprehensive metabolomics approaches can be observed.

4

Perspectives

Although VOCs play a major role in plant-insect interactions, studies of volatile plant metabolomes on a system level are still sparse. Most plant metabolomics studies, which are carried out on a systems biology level focus on the determination of polar metabolites (GC/MS after derivatisation) as well as non-volatile secondary metabolites (reversed phase LC/MS(/MS)) [64]. The approach presented in this chapter is well suited to be integrated with existing metabolomics platforms and the future consideration of VOCs will significantly extend the coverage of the investigated metabolomes.

Plant-insect interactions are very complex and comprise at least two organisms. The unambiguous assignment of the detected metabolites to one of the interaction partners is still a major challenge in plant-insect metabolomics research. The recently proposed technology of *in vivo* stable isotopic labelling (e.g. ¹³C- or ¹⁵N-labelling) offers a powerful tool to circumvent this limitation by introducing a mass spectral feature that is only observable for metabolites originating from the labelled organism [65, 66]. *In vivo* stable isotopic labelling will also help to develop quantitative HS-SPME GC-MS methods. Fully ¹³C-labelled plant material can be mixed with each of the plant samples from a biological experiment and used for internal standardisation. The precision of HS-SPME GC-MS based metabolomics methods (i.e. technical variability) will also be significantly improved by the concept of internal standardisation of biological samples.

The study of plant-insect interactions on a systems level requires the integration of the presented technology with both complementary analytical techniques and other "-omics technologies". In close co-operation with researchers from biological and computer disciplines, this type of metabolomics research will lead to an improved understanding of the complex molecular interactions between insects and plants.

Acknowledgements

The authors thank the Federal Ministry of Agriculture, Forestry, Environment and Water Management (project "Physiological Fingerprinting in Viticulture" number 100196) and the Austrian Science Fund (FWF, project "Phylloxera" number P21203-B16 and "SFB Fusarium" number 3706-B11) for financial support.
References

1 Raguso, R. A. (2011) Wake Up and Smell the Roses: The Ecology and Evolution of Floral Scent. *Annu. Rev. Ecol. Evol. Syst.* 39, 549-569.

2 Pichersky, E. and Gershenzon, J. (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. *Curr. Opin. Plant. Biol.* 5, 237-243.

3 Karban, R. and Baldwin, I. T. (1997) *Induced Responses to Herbivory*, The University of Chicago Press, Chicago.

4 Andersen, R. A., Hamilton-Kemp, T. R., Hildebrand, D. F., McCracken Jr., C. T., Collins, R. W., and Fleming, P. D. (1994) Structure-Antifungal Activity Relationships among Volatile C6 and C9 Aliphatic Aldehydes, Ketones, and Alcohols. *J Agric Food Chem* **42**, 1563-1568.

5 De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. *Nature* 410, 577-580.

6 Dicke, M., van Poecke, R. M. P., and de Boer, J. G. (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. *Basic Appl Ecol* **4**, 27-42.

7 Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. *Nature* 434, 732-737.

8 van Dam, N. M. and Oomen, M. W. A. T. (2008) Root and shoot jasmonic acid applications differentially affect leaf chemistry and herbivore growth. *Plant Signal Behav* 3, 91-98.

9 Martin, N. and Müller, C. (2007) Induction of plant responses by a sequestering insect: Relationship of glucosinolate concentration and myrosinase activity. *Basic Appl Ecol* 8, 13-25.

10 Agrawal, A. A. and Kurashige, N. S. (2003) A Role for Isothiocyanates in Plant Resistance Against the Specialist Herbivore *Pieris rapae*. *J Chem Ecol* 29, 1403-1415-1415.

11 Bezemer, T. M., Wagenaar, R., Van Dam, N. M., and Wäckers, F. L. (2003) Interactions between above- and belowground insect herbivores as mediated by the plant defense system. *Oikos* 101, 555-562.

12 Schulze, B., Kost, C., Arimura, G.-I., and Boland, W. (2006) Signal reception, biosynthesis and ecology. Scents: The language of plants. *Chem Unserer Zeit* 40, 366-377.

13 Walling, L. L. (2000) The Myriad Plant Responses to Herbivores. *J Plant Growth Regul* 19, 195-216-216.

14 Dicke, M. and Baldwin, I. T. (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the 'cry for help'. *Trends Plant Sci* 15, 167-175.

15 Wenke, K., Kai, M., and Piechulla, B. (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. *Planta* 231, 499-506-506.

16 Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., and Schnitzler, J.-P. (2006) Practical approaches to plant volatile analysis. *Plant J* 45, 540-560.

17 Arimura, G.-ichiro, Matsui, K., and Takabayashi, J. (2009) Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions. *Plant Cell Physiol* 50, 911 -923.

18 Tholl, D., Sohrabi, R., Huh, J.-H., and Lee, S. (2011) The biochemistry of homoterpenes - Common constituents of floral and herbivore-induced plant volatile bouquets. *Phytochemistry* 72, 1635-1646.

19 Glinwood, R., Ninkovic, V., and Pettersson, J. (2011) Chemical interaction between undamaged plants - Effects on herbivores and natural enemies. *Phytochemistry* **7**2, 1683-1689.

20 Lucas-Barbosa, D., van Loon, J. J. A., and Dicke, M. (2011) The effects of herbivoreinduced plant volatiles on interactions between plants and flower-visiting insects. *Phytochemistry* 72, 1647-1654.

21 Maffei, M. E., Mithöfer, A., and Boland, W. (2007) Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. *Phytochemistry* 68, 2946-2959.

22 Weckwerth, W. (2011) Metabolomics in Systems Biology. *Annu. Rev. Plant Biol.* 54, 669-689.

23 Kim, H. K. and Verpoorte, R. (2010) Sample preparation for plant metabolomics. *Phytochem Anal* 21, 4-13.

24 Urbanczyk-Wochniak, E., Baxter, C., Kolbe, A., Kopka, J., Sweetlove, L. J., and Fernie, A. R. (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (*Solanum tuberosum*) leaves. *Planta* 221, 891-903-903.

25 Choi, H.-K., Choi, Y. H., Verberne, M., Lefeber, A. W. M., Erkelens, C., and Verpoorte, R. (2004) Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. *Phytochemistry* 65, 857-864.

26 Aprea, E., Gika, H., Carlin, S., Theodoridis, G., Vrhovsek, U., and Mattivi, F. (2011) Metabolite profiling on apple volatile content based on solid phase microextraction and gaschromatography time of flight mass spectrometry. *J Chromatogr A* 1218, 4517-4524.

27 Batovska, D. I., Todorova, I. T., Nedelcheva, D. V., Parushev, S. P., Atanassov, A. I., Hvarleva, T. D., Djakova, G. J., Bankova, V. S., and Popov, S. S. (2008) Preliminary study on biomarkers for the fungal resistance in *Vitis vinifera* leaves. *J Plant Physiol* 165, 791-795.

28 Todorova, I. T., Batovska, D. I., Parushev, S. P., Djakova, G. J., and Popov, S. S. (2010) Surface metabolic composition of berries collected from 13 Bulgarian grapevine plants. *Nat Prod Res* 24, 935-941.

29 Weckwerth, W., Wenzel, K., and Fiehn, O. (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. *Proteomics* **4**, 78-83.

30 Medina, J. C., Wu, N., and Lee, M. L. (2001) Comparison of Empirical Peak Capacities for High-Efficiency Capillary Chromatographic Techniques. *Anal Chem* 73, 1301-1306.

31 Arthur, C. L. and Pawliszyn, J. (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. *Anal Chem* 62, 2145-2148.

32 Baltussen, E., Sandra, P., David, F., and Cramers, C. (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. *J Micro Sep* 11, 737-747.

33 Gorecki, T., Yu, X., and Pawliszyn, J. (1999) Theory of analyte extraction by selected porous polymer SPME fibres[dagger]. *Analyst* 124, 643-649.

34 Barták, P., Bednář, P., Čáp, L., Óndráková, L., and Stránský, Z. (2003) SPME – A valuable tool for investigation of flower scent. *J Sep Science* 26, 715-721.

35 Wang, Y., McCaffrey, J., and Norwood, D. L. (2008) Recent advances in headspace gas chromatography. *J. Liq. Chromatogr. R. T.* 31, 1823-1851.

36 Kalua, C. M. and Boss, P. K. (2008) Sample preparation optimization in wine and grapes: Dilution and sample/headspace volume equilibrium theory for headspace solid-phase microextraction. *J Chromatogr A* 1192, 25-35.

37 Kolb, B. (1982) Multiple headspace extraction—A procedure for eliminating the influence of the sample matrix in quantitative headspace, gas chromatography. *Chromatographia* 15, 587-594-594.

38 Katajamaa, M. and Oresic, M. (2007) Data processing for mass spectrometry-based metabolomics. *J Chromatogr A* 1158, 318-328.

39 Dunn, W. B. and Ellis, D. I. (2005) Metabolomics: Current analytical platforms and methodologies. *Trac-Trends Anal Chem* 24, 285-294.

40 Boccard, J., Veuthey, J.-L., and Rudaz, S. (2010) Knowledge discovery in metabolomics: An overview of MS data handling. *J Sep Sci* 33, 290-304.

41 Stein, S. E. (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. *J Am Soc Mass Spectrom* 10, 770-781.

42 Luedemann, A., Strassburg, K., Erban, A., and Kopka, J. (2008) TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. *Bioinformatics* 24, 732 -737.

43 Hiller, K., Hangebrauk, J., Jäger, C., Spura, J., Schreiber, K., and Schomburg, D. (2009) MetaboliteDetector: Comprehensive Analysis Tool for Targeted and Nontargeted GC/MS Based Metabolome Analysis. *Anal Chem* 81, 3429-3439.

44 R Development Core Team (2010) *R: A Laguage and Environment for Statistical Computing*, R Foundation for Statistical Computing, Vienna.

45 Lawo, N., Maleno, F., Griesser, M., and Forneck, A. (2011) Expression of reference genes in nodosities and their application. *Acta Hort.* In press.

46 Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R., and Schuhmacher, R. (2010) Identification and profiling of volatile metabolites of the biocontrol fungus *Trichoderma atroviride* by HS-SPME-GC-MS. *J Microbiol Meth* 81, 187-193.

47 Lawo, N. C., Weingart, G. J. F., Schuhmacher, R., and Forneck, A. (2011) The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack. *Plant Physiol Bioch* **4**9, 1059-1063.

48 Wagner, C., Sefkow, M., and Kopka, J. (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. *Phytochemistry* 62, 887-900.

49 Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgren, K., Roessner-Tunali, U., Forbes, M. G., Willmitzer, L., Fernie, A. R., and Kopka, J. (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. *FEBS Lett* 579, 1332-1337.

50 Wehrens, R. (2011) *Chemometrics with R*, Springer, Heidelberg.

51 Varmuza, K. and Filzmoser, P. (2009) *Introduction to Multivariate Statistical Analysis in Chemometrics*, CRC Press, Florida.

52 Arimura, G.-ichiro, Garms, S., Maffei, M., Bossi, S., Schulze, B., Leitner, M., Mithöfer, A., and Boland, W. (2008) Herbivore-induced terpenoid emission in *Medicago truncatula*: concerted action of jasmonate, ethylene and calcium signaling. *Planta* 227, 453-464-464.

53 Matsui, K. (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. *Curr. Opin. Plant. Biol.* 9, 274-280.

54 Atsbaha Zebelo, S., Bertea, C. M., Bossi, S., Occhipinti, A., Gnavi, G., and Maffei, M. E. (2011) *Chrysolina herbacea* Modulates Terpenoid Biosynthesis of *Mentha aquatica* L. *PLoS ONE* 6, e17195.

55 Fernandes, F., Pereira, D. M., Guedes de Pinho, P., Valentão, P., Pereira, J. A., Bento, A., and Andrade, P. B. (2010) Headspace solid-phase microextraction and gas chromatography/ion trap-mass spectrometry applied to a living system: Pieris brassicae fed with kale. *Food Chemistry* 119, 1681-1693.

56 Tapia, T., Perich, F., Pardo, F., Palma, G., and Quiroz, A. (2007) Identification of volatiles from differently aged red clover (*Trifolium pratense*) root extracts and behavioural responses of clover root borer (*Hylastinus obscurus*) (Marsham) (Coleoptera: Scolytidae) to them. *Biochem Syst Ecol* 35, 61-67.

57 Raghava, T., Ravikumar, P., Hegde, R., and Kush, A. (2010) Spatial and temporal volatile organic compound response of select tomato cultivars to herbivory and mechanical injury. *Plant Sci* 179, 520-526.

58 Piesik, D., Panka, D., Delaney, K. J., Skoczek, A., Lamparski, R., and Weaver, D. K. (2011) Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (*Oulema* spp.), or fungal infection (*Fusarium* spp.). *J Plant Physiol* 168, 878-886.

59 Gaquerel, E., Weinhold, A., and Baldwin, I. T. (2009) Molecular interactions between the specialist herbivore *manduca sexta* (lepidoptera, sphigidae) and its natural host *nicotiana attenuata*. VIII. An unbiased GCxGC-ToF MS analysis of the plant's elicited volatile emissions. *Plant Physiol* 149, 1408-1423.

60 Jansen, J., Allwood, J., Marsden-Edwards, E., van der Putten, W., Goodacre, R., and van Dam, N. (2009) Metabolomic analysis of the interaction between plants and herbivores. *Metabolomics* **5**, 150-161-161.

61 Gaquerel, E., Heiling, S., Schoettner, M., Zurek, G., and Baldwin, I. T. (2010) Development and validation of a liquid chromatography-electrospray ionization-time-of-flight mass spectrometry method for induced changes in *nicotiana attenuata* leaves during simulated herbivory. *J Agric Food Chem* 58, 9418-9427.

62 Widarto, H. T., Van Der Meijden, E., Lefeber, A. W. M., Erkelens, C., Kim, H. K., Choi, Y. H., and Verpoorte, R. (2006) Metabolomic differentiation of *Brassica rapa* following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. *J Chem Ecol* 32, 2417-2428.

63 Liu, C., Hao, F., Hu, J., Zhang, W., Wan, L., Zhu, L., Tang, H., and He, G. (2010) Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis. *J Proteome Res* 9, 6774-6785.

64 Allwood, J. W., Ellis, D. I., and Goodacre, R. (2008) Metabolomic technologies and their application to the study of plants and plant–host interactions. *Physiol Plantarum* 132, 117-135.

65 Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A., and Kopka, J. (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. *Trends Biotechnol* 23, 28-33.

66 Bennett, B. D., Yuan, J., Kimball, E. H., and Rabinowitz, J. D. (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. *Nat Protocols* 3, 1299-1311.

14 Conclusion and Outlook

The presented thesis provides a GC-MS based metabolomics workflow for the investigation of volatiles in plant samples. The aims of this work can be summarised as follows:

- 1. Comprehensive literature survey.
- Development of an HS-SPME-GC-MS method for measurement of volatiles produced by grapevine leaves. This part of the thesis also comprised optimisation of method parameters and evaluation of the method.
- 3. Automated metabolite annotation.
- 4. Integration of the analytical method in a workflow covering all steps from sampling to detection of biomarkers.
- 5. **Application** of the developed workflow **to selected biological samples** of **grapevine** with the aim to:
 - a. identify volatile metabolites of Pinot Noir leaves
 - b. test if leaf samples originating from different sampling dates can be differentiated
 - c. **detect volatile biomarkers** indicating **drought** and **UV-B stress** in grapevine
 - d. **identify root metabolites** the concentration of which is directly **influenced due to insect attack** (phylloxera, grapevine louse)

Ad 1 The literature study resulted in a database with 1619 entries covering 39 studies referring to the investigation of grapevine by GC. It is available as supplementary data to paper #3.

Ad. 2, 3, 4 The workflow starts with sampling and quenching of biological processes by cooling the samples in lq. nitrogen as fast as possible. For homogenisation a ball mill was used. Samples were milled 3 minutes at 30 Hz. I avoided thawing by cooling all equipment in lq. N₂. After milling, samples were weighed into 20-mL HS-vials, which were tightly sealed with magnetic screw caps containing septa. The samples were stored at -80 °C until further analysis. A HS-SPME-GC-MS method was developed and applied to the samples. The SPME parameters were optimised to extract as many metabolites as possible resulting in an equilibration time of 30 minutes, an extraction time of 60 minutes, both at a temperature of 90 °C. Recorded mass spectra were compared with combined Wiley-NIST 2008 reference mass spectra library and metabolites with

a match factor \geq 90 were termed annotated. To ensure the trueness of annotations the maximum deviation of measured RIs (measured on two GC columns, a apolar DB5-MS and a polar Optima-WAX) from reference values was ±2%. Several annotated metabolites have been identified with authentic standards.

Ad 5 The investigation of *Vitis vinifera* cv. Pinot Noir (clone 18 Gm) leaves (paper #3) sampled in open field resulted in the identification of 47 and the annotation of 16 metabolites. Thereof 19 metabolites have been described in *Vitis* spp. for the first time. Technical variability of the method was <40% for the majority of metabolites, biological variability ranges from 7 - 119% between plants. Applying multivariate statistic (PCA) to the detected metabolite showed two clearly separated clusters corresponding to the two sampling dates.

My favourite and very exciting application of the developed workflow was the investigation of volatiles in grapevine roots under attack of phylloxera (paper #1). The publication is the first report on the metabolic response of volatiles in grapevine roots due to phylloxera attack. I was able to identify 32 and annotate 6 root metabolites. The majority of them (32) was described in this paper for the first time to occur in grapevine roots, 4 of them have not been found in Vitis spp. then. metabolites showed significantly differences until 14 in their concentrations compared between attacked and non-attacked roots. Several if them are involved of defence related pathways. This is a marvellous example for a metabolomics study ending up with biological interpretation of the analytical results.

Ad 5c Potential stress markers have been found. As the data analysis is still under progress these two experiments have not been discussed in this thesis. The results are going to be published soon.

An additional very interesting application of the workflow out of the grapevine context was the investigation of dust samples. Thereby the matrix was nonliving material but consisted largely of organic material. Settled floor dust (SFD) contains a lot of metabolites originating from microorganisms. Therefore, SFD can serve to detect contamination of buildings affected by fungi. The workflow developed in this work also functioned for other than plant samples and my colleague identified 27 and annotated 44 VOCs in dust samples (paper #2).

Several improvements and alternative or complementary procedures are possible for future applications. Shortening of the SPME method and decreasing of equilibration and extraction temperature might result in a two fold improvement. On the one hand, it will offer the possibility to measure more samples per day and on the other hand, lower temperature during equilibration and extraction will reduce the probability of oxidation product formation. The addition of antioxidants or an inert gas (e.g. nitrogen) to the HS-vial containing the sample to be measured might also be tested. Eventually, another fibre coating might provide a better reproducibility of peak areas possibly leading to the detection of additional metabolites showing significantly different concentrations in differentially treated sample groups.

Improving the accuracy of metabolite quantification, at best establishing absolute quantification would be satisfying. The addition of internal standards or labelled substances might serve as a suitable approach for this purpose and is under investigation already at the institute by another colleague.

A rewarding long term goal in the investigation of the volatile plant metabolome consists in the cultivation of fully labelled living plants to see exactly which metabolites origin from the plant and which do not. Additionally, it will be of great interest to sample the living plants with dynamic HS techniques. E.g. volatiles emitted by leaves can be collected by enveloping a leaf with a bag where continuously air is pulled through and VOCs are trapped in adsorbent tubes.

Besides comprehensive quality control measures and appropriate choice of the analytical instruments and applied techniques, the key for high quality metabolomics studies is to keep an eye on the biological context. Hence, the collaboration with scientists from other disciplines, as biology, informatics, and statistics is necessary and was one of the parts of the PhD thesis where I learned most. I hope that the work done during this thesis has a positive impact to future investigations of the grapevine metabolome.

APPENDIX

15	List of abbreviations	183
16	Curriculum vitae	185

Entscheidend ist, was hinten rauskommt. Helmut Kohl, 1984

15 List of abbreviations

AMDIS	Automated Mass spectral Deconvolution and Identification System
ArMet	Architecture for metabolomics
CAR	Carboxene
DNA	Desoxyribonucleic acid
DVB	Divinylbenzene
EI	Electron ionisation
EIC	Extracted ion current
GC	Gas chromatography or gas chromatograph
GLV	Green leaf volatiles
HCA	Hierarchical cluster analysis
HS	Headspace
IT	lon trap
lq.	liquid
LTPRI	Linear temperature programmed retention index
m/z	Mass to charge ratio
MIAMET	Minimum Information About a METabolomics experiment
MS	Mass spectrometry
MSD	Mass selective detector
MSI	Metabolomics Standards Initiative
N ₂	Nitrogen
NIST	National Institute of Standards and Technology
NMR	Nuclear magnetic resonance
PA	Polyacrylate
PBM	Probability based matching
PC	Principal component
PCA	Principal component analysis
PDMS	Polydimethyl-siloxane
PEG	Polyethylene glycol
PLS	Partial least-squares
QqQ	Triple quadrupole
RI	Retention index
RNA	Ribonucleic acid
RSD	Relative standard deviation
SFD	Settled floor dust
SPME	Solid phase microextraction
TIC	Total ion current
TOF	Time of flight
VOC	Volatile organic compound

16 Curriculum vitae

Personal information

First name / Surname

Address

Mobile

E-mail

Nationality

classification

Date of birth

Gender Male

Georg WEINGART

++43 69910568652

sg.weingart@yahoo.com

Rührsdorf 14 3602 Rossatz AUSTRIA

Austrian

14.12.1977

Education and training

Dates October 2007 - September 2011 Title of qualification to be awarded Dr.nat.tech. (PhD) Principal subjects/occupational skills Thesis title: "Development and Application of Analytical Methods for the covered Metabolic Profiling of Volatiles Produced by Grapevine", Identification of leave metabolites and search for stress markers with GC-MS, part of the project: "Physiological Fingerprinting in Viticulture", http://www.physiological-fingerprint.com/pf-02-project-goals-en.html Compilation of a database for Vitis metabolites, about 1600 entries. University of Natural Resources and Life Sciences, Vienna, Department Name and type of organisation providing education and training for Agrobiotechnology, IFA Tulln, Center for Analytical Chemistry, http://www.ifa-tulln.ac.at/index.php?id=6&L=1 Level in national or international ISCED 6 classification October 1995 - May 2007 Dates Title of qualification awarded Mag.rer.nat. (MSc) Principal subjects/occupational skills Study of chemistry, focus on food, analytic, organic chemistry covered Master thesis: "Analytical and Organoleptic Determination of 2,4,6-Trichloroanisole and Geosmin in Wine", quantitative and qualitative determination of off-flavours in white and red wine with GC-MS, determination of olfactory threshold levels Name and type of organisation University of Vienna, Department of Chemistry providing education and training Master thesis at the Teaching and Research Center for Viticulture and Horticulture Klosterneuburg Level in national or international **ISCED 5**

Work experience			
Dates	July – August 2004, July – September 2003		
Occupation or position held	Internship		
Main activities and responsibilities	Synthesis of antibiotic agent, cleanup, prepHPLC		
Name and address of employer	Sandoz, Vienna, Austria		
Type of business or sector	Pharmacy		
Dates	July – September 2002		
Occupation or position held	Internship		
Main activities and responsibilities	Synthesis of pharmaceutical agent, cleanup, prepHPLC		
Name and address of employer	Novartis, Vienna, Austria		
Type of business or sector	Pharmacy		
Dates	November 2001 – June 2002		
Occupation or position held	Part time job		
Main activities and responsibilities	Recyclable and hazardous waste collecting point, sorting the waste for later treatment, advising people on how to avoid, reduce waste		
Name and address of employer	Municipality of Vienna, Austria		
Dates	August – September 2001		
Occupation or position held	Internship		
Main activities and responsibilities	Synthesis of perfume ingredient, cleanup, GC, preparation of olfactory tests		
Name and address of employer	KCCS Krems Chemie Chemical Services, Krems, Austria		
Type of business or sector	Chemical industry		
Dates	September 1998		
Occupation or position held	Internship		
Main activities and responsibilities	Laboratory for water analysis, checking quality of water needed in different processes of a refinery		
Name and address of employer	OMV refinery Schwechat, Austria		
Type of business or sector	Chemical industry		
Special experience			
Dates	May 2010 – September 2010		
Occupation or position held	Paternity leave		
Main activities and responsibilities	Changing nappies, cooking, doing the laundry, cleaning, entertaining, first aid		
Name and address of employer	Maximilian Weingart		
Type of business or sector	Household, parents		

competences							
Mother tongue	German						
Other language							
Self-assessment	Understanding		Spea	Writing			
European level (*)	Listening	Reading	Spoken interaction	Spoken production			
English	B2 Independent user	C1 Proficient user	B2 Independen t user	C1 Proficient user	C1 Proficient user		
	(*) <u>Common Euro</u>	pean Framewo	rk of Reference fo	or Languages	·		
Social skills and competences	Team work experience at University with project partners, at volunteer fire brigade and mountain rescue service, both, team leader and team member Courses concerning team work, leadership, and communication at the University and at fire fighters school Supervision of students during a practical course at the University and during their internship at our lab, taking care of a baccalaureate student Increasing interest in public relation work for fire brigade and civil defence						
Organisational skills and competences	Keeper of the minutes of monthly meeting of MS group during PhD Assisting in the organisation of annual fire brigade festival						
Technical skills and competences	hnical skills and competences Responsible for regularly maintenance of GC-MS and LC-MS (Orbitra during PhD Trainer for technical equipment at the volunteer fire brigade						
Computer skills and competences	Competent with most Microsoft Office programmes (Word, Excel, PowerPoint), Agilent Chemstation, Thermo Xcalibur, AMDIS, Spectconnect Basic knowledge in R, XCMS, SIEVE, MassFrontier, Tagfinder, MetaboliteDetector						
Other skills and competences	 1994 onwards Member of volunteer fire brigade Rossatz, several courses and trainings Year 2000: commander of the fire brigade 2001-2010: responsible for training of the fire brigade members (about 40 persons) Regularly attending competitions, in a team and individual Assisting in organisation of annual fire brigade festival 2008 - 2011 Member of mountain rescue service 2009 - 2011 Civil defense depute computits of Depute 						
	Civil defence deputy, community of Rossatz						

Driving licence Austrian drivers licence A, B, C, E, F, G

Personal skills and

Additional information

PUBLICATIONS

Lawo* NC, Weingart* GJF, Schuhmacher R, Forneck A **2011** The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack. Plant Physiology and Biochemistry 49, 9, 1059-1063 * shared first authorship

Vishwanath V, Sulyok M, Weingart G, Kluger B, Täubel M, Mayer S, Schuhmacher R, Krska R **2011** Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor environments by LC-MS/MS and GC-MS methods. Talanta 85, 4, 2027-2038

Weingart, G., H. Schwartz, R. Eder, G. Sontag **2010** Determination of geosmin and 2,4,6-trichloroanisole in white and red Austrian wines by headspace SPME-GC/MS and comparison with sensory analysis. European Food Research and Technology 231, 5, 771 - 779, DOI: 10.1007/s00217-010-1321-8

Brandes W; Nauer S; Weingart G **2010** Characterization of tertiary education and wine flavors topic: SCHIMMEL – KORK. Mitteilungen Klosterneuburg 60 (1) 160-164

Eder, R., E.M. Hütterer, G. Weingart, W. Brandes **2008** Reduction of 2,4,6-trichloroanisole and geosmin contents in wine by means of special filter layers. Mitteilungen Klosterneuburg 58, 12

PERSONAL INTERESTS Cooking, hiking, wine, reading (crimes), running, my family