Beschattungspotential von Ufervegetation im Lauf der Vegetationsperiode

Ein Modellversuch zur Strahlungsdurchlässigkeit der Purpur-Weide (Salix purpurea)

Shading potential of riparian vegetation over a vegetation period A model experiment regarding the solar radiation transmitability of the purple willow (Salix purpurea)

Diplomarbeit

Stefan Fürbass

Diplomstudium Landschaftsplanung und Landschaftspflege Matrikelnummer: 0240002

Universität für Bodenkultur, Wien Department für Bautechnik und Naturgefahren Institut für Ingenieurbiologie und Landschaftsbau

Betreuung: O. Univ. Prof. Dr. Florin Florineth DI Gerda Holzapfel

1 Inhaltsverzeichnis

1	Inhaltsverzeichnis	2	
Kurzf	assung	4	
Abstr	Abstract5		
2	Einleitung	6	
3	Strahlung und Beschattung	8	
3.1	Grundlagen der terrestrischen Strahlung	8	
3.2	Die Bedeutung der Strahlungsverhältnisse für aquatische Lebensgemeinschaften	10	
3.3	Beschattung von Fließgewässern	12	
3.3.1	Die Pflanze als Beschattungselement	13	
4	Untersuchungsmethode	16	
4.1	Modellaufbau	18	
4.2	Aufbau und Funktionsweise des Messroboters	21	
4.2.1	Sensoren und Aufnahmemodul	23	
4.3	Stecksystem	26	
4.4	Sonnenstände	30	
5	Vegetationsaufnahmen	32	
5.1	Messgrößen	33	
5.2	Blattflächenbestimmung	34	
6	Aufbereitung der Messdaten	37	
7	Ergebnisse	39	
7.1	Ergebnisse der Vegetationsaufnahmen	39	
7.1.1	Blatttrockengewicht, Holztrockengewicht und Basisdurchmesser	39	
7.1.2	Blattfläche	47	
7.2	Ergebnisse der Strahlungs- und Beschattungsleistung	54	
7.3	Zusammenhang zwischen Blattfläche und Strahlungsdurchlässigkeit	64	
7.4	Vergleich der Beschattungsleistung 2011 und 2010	70	
8	Schlussfolgerung und Ausblick	73	
9	Literaturverzeichnis	74	

82
82
85
94
100
114
115

Kurzfassung

Die auf ein Gewässer einwirkende Strahlungsintensität steht in unmittelbarem Zusammenhang zur Wassertemperatur und stellt somit einen Schlüsselfaktor bezüglich der Ausprägung aquatischer Lebensgemeinschaften dar. Aus diesem Grund untersucht die vorliegende Diplomarbeit die Strahlungsintensität, die theoretisch auf die Wasseroberfläche von Fließgewässern auftrifft um diese zukünftig durch gezielten Einsatz von Ufervegetation als Beschattungselement im Flusslandschaftsbau, im positiven Sinne zu beeinflussen.

Es wurde ein standardisierter Modellversuch durchgeführt, der Aufschluss über Qualität und Quantität, der durch die Ufervegetation hervorgerufene Beschattung geben soll. Dabei wurde die Strahlungsintensität nach Durchgang einer der Natur nachempfundenen Weidenhecke gemessen. Um Aussagen über die Strahlungsintensität und das Beschattungspotenzial im Lauf der Vegetationsperiode treffen zu können, wurde der Modellversuch an drei Schönwettertagen, nämlich im Mai, Juli und September durchgeführt. Als Gehölz zur Errichtung der Weidenhecke wurde die Salix purpurea (Purpur-Weide) ausgewählt, da diese aufgrund ihres breiten Einsatzspektrums gerne für ingenieurbiologische und flusslandschaftsbauliche Maßnahmen herangezogen wird. An jedem der drei Messtage wurde unabhängig von einander mit zwei grundlegend unterschiedlichen Entnahmesystemen der Hecke gemessen: mit dem gleichmäßigen Entnahmesystem und dem flächigen Entnahmesystem. Im Lauf der Arbeit soll beantwortet werden, wie sich der Strahlungsdurchgang der beiden Stecksysteme verhält, um in weiterer Folge Aussagen über die Positionierung und Zusammensetzung von Ufervegetation im Flusslandschaftsbau treffen zu können.

Aus den Untersuchungen geht sich hervor, dass die erprobten Entnahmesysteme grundlegend voneinander unterscheiden. Unter Anwendung gleichmäßigen Entnahmesystems sind in Summe eine höhere des Beschattungsleistung sowie eine homogene Verteilung des Schattens zu Beim flächigen Entnahmesystem erfolgt der Schattenwurf erwarten. lückenhafter, konzentriert auf kleinere Teilbereiche des Gewässers.

Abstract

The intensity of solar radiation having an effect on waters immediately connects the water temperature. Therefore it represents a key factor regarding the markedness of aquatic long-term relationships. For this reason the master thesis examines the intensity of radiation which theoretically hits the surface of rivers and influences them by a specific use of riparian vegetation as shading element at the riverside.

A standardized experiment was carried out, which should provide evidence about quality and quantity of shading, caused by the riparian vegetation. The model experiment measured the intensity of radiation, which goes through a willowhedge. To get periodical data about the transmitted radiation, the experiment was carried out on three fair weather days in May, July and September. The purple willow (Salix purpurea) was selected for the the measuring model, as it is an often used plant for soil bioengineering structures due to her wide use spectrum. At each of the three measure days the measurements were carried out with two different plug - in systems: with the *uniform plug - in system* and the *areal plug - in system*. The theses will discuss how the transmission of radiation of these two systems behave, to be able to make statements about the positioning and compound of riparian vegetation which are applied on construction sites. In addition to the intensity of radiation vegetation recordings are carried out in order to provide evidence about the geometry of the branches.

The analysis provides evidence that the plug - in systems being tested do differ systematically. Higher performance in shadow and homogeneity in distribution as well can be expected under conditions defined by the uniform plug - in system. On the contrary, shading is more incomplete and being focused on smaller areas of the water when testing the areal plug - in system.

2 Einleitung

Die Beschattung durch Ufervegetation hat eine Vielzahl positiver Wirkungen auf Okosystem das Fließgewässer. Bedauernswerter Weise wurden mit zunehmender Nutzung der Täler Au- und Bruchwälder beseitigt. Den Gewässern wurde mit der Entfernung seiner uferbegleitenden Vegetation Strukturreichtum und Vielfalt genommen, was die Ausprägung aquatischer und terrestrischer Lebensgemeinschaften drastisch einschränkte. So führte der Landschaftswandel in einer ersten unbeschatteten, Etappe zum sonnendurchfluteten Wiesenbach in der Kulturlandschaft. In zweiter Etappe folgten, hervorgerufen durch wachsende Nutzungsanforderungen an die zwangsweise Ausbaumaßnahmen wie Sohlenvertiefungen Fließgewässer, oder Begradigungen mit Erhöhung des Gefälles, die den Zustand der Fließgewässer und seiner Habitate erneut maßgeblich beeinträchtigten.

Im Zuge eines Forschungsprojektes mit dem Themenschwerpunkt "Beschattungspotential von Ufervegetation", im Jahr 2010 vom Institut für Ingenieurbiologie und Landschaftsbau initiiert, wird der gezielte Einsatz von Ufervegetation als Beschattungselement erforscht und maximiert, um den Fließgewässern sein ursprüngliches Element zurückzugeben. Als Teil des Forschungsprojektes untersucht diese Arbeit die Strahlungsdurchlässigkeit der Purpur-Weide anhand eines standardisierten Modellversuches. Es wurden folgende Forschungsfragen formuliert, die im Lauf der vorliegenden Arbeit beantwortet werden:

- Welche Eigenschaften der Ufervegetation beeinflussen die Strahlungsdurchlässigkeit ?
- Wie verändert sich der Strahlungsdurchgang innerhalb der Vegetationsperiode ?
- Bei welcher Dichte (Biomasse) der Vegetation gelangen wie viel Prozent der Strahlung an die Wasseroberfläche ?
- Wie unterscheiden sich die beiden Stecksysteme (gleichmäßige und flächige Steckweise) voneinander ?

Im folgenden Kapitel wird kurz auf Grundlagen der Strahlung und Beschattung an Fließgewässern eingegangen. Im Kapitel 4 wird die Untersuchungsmethode, also der Modellversuch zur Ermittlung der Strahlungsdurchlässigkeit erklärt. Kapitel 5 beschäftigt sich mit den Vegetationsaufnahmen, bei denen die Weidenzweige des Modellversuches einzeln aufgenommen, vermessen und gewogen werden. Nach der Aufbereitung der Messdaten in Kapitel 6, werden im Kapitel 7 die im Modellversuch ermittelten Strahlungsdaten untersucht und interpretiert mit um diese anschließend den Ergebnissen der Vegetationsaufnahmen zu vergleichen. Kapitel 8 gibt einen kleinen Ausblick, in dem Lösungsvorschläge zur Anwendung von Ufervegetation in der Praxis diskutiert werden und in welche Richtung sich weitere Untersuchungen orientieren sollen.

3 Strahlung und Beschattung

Im folgenden Kapitel werden grundlegende Einflüsse des Strahlungsklimas auf die Pflanze und das Fließgewässer behandelt. Die wichtigsten physikalischen Eigenschaften der Strahlung sollen erklärt, Abhängigkeiten aquatischer Lebensgemeinschaften bezüglich der Strahlungsverhältnisse beleuchtet und die Bedeutung der Beschattung durch Ufervegetation untersucht werden.

3.1 Grundlagen der terrestrischen Strahlung

"Will man sich mit dem Verhalten der Strahlung in den Gewässern befassen, so muss man vorher den Strahlungsverhältnissen über dem Wasser Betrachtung schenken, da ja die Strahlung im Wasser ganz von der darüber herrschenden abhängig ist. Die Energiequelle aller hier behandelten Strahlungsvorgänge ist die Sonne" (SAUBERER, RUTTNER, 1941 S. 7).

"Die Strahlung ist ein physikalischer Vorgang, bei dem Energie ohne materiellen Träger transportiert wird. Damit besitzt die Strahlung die Möglichkeit, Energie durch den "luftleeren" Weltraum von der Sonne auf die Erde zu übertragen" (HÄCKEL 2008, S. 161). Die immense, von der Sonne in nur siebeneinhalb Sekunden abgestrahlte Energie, entspricht in etwa dem täglichen Energieverbrauch der Menschheit. Die extraterrestrische Strahlung, auch als Solarkonstante bekannt, ist die außerhalb der Erdatmosphäre gemessene Strahlung. Sie beträgt 1.368 W/m². Grundsätzlich ist der Energiegehalt der Strahlung von der Wellenlänge abhängig. Je kürzer die Wellenlänge ist, desto höher ist der Energiegehalt der Strahlung. Mit jeder Verkürzung der Wellenlänge um ein Zehntel steigt der Energiegehalt auf das 10fache an (vgl. HÄCKEL, 2005).

"Bezüglich der Lichtverhältnisse wird zwischen direkter Sonneneinstrahlung und diffuser Himmelstrahlung unterschieden, die beide zusammen als Globalstrahlung bezeichnet werden" (JUNGWIRTH et al. 2003, S. 32). Gut ein Viertel des von der Sonne kommenden Strahlenstroms (26%) durchdringt die Erdatmosphäre ohne jegliche Veränderung. Dieser Anteil der Strahlung, der es uns ermöglicht die Sonne am Himmel zu sehen, heißt direkte Sonnenstrahlung. Sie ist für den Schattenwurf verantwortlich. Ein Großteil der kurzwelligen Strahlung wird jedoch beim Durchgang durch die Atmosphäre von Wolken und Luftteilchen reflektiert und gestreut. Dieser Anteil macht 29% der extraterrestrischen und wird diffuse Strahlungsenergie aus als bezeichnet. Aufgrund von Reflexion und Streuung, Himmelsstrahlung verursacht durch Wolken, verlassen in etwa 20% der von der Sonne kommenden Strahlung die Atmosphäre in Richtung Weltraum. Der Rest der Strahlung wird in erster Linie vom Ozon aber auch anderen Gasen, von Aerosolen und von den Wolken absorbiert. Die Summe aus direkter Sonnenstrahlung und diffuser Himmelsstrahlung ergibt also die Globalstrahlung. Weltweit und über alle Jahreszeiten gemittelt macht diese 55% aus, was bedeutet, dass nur etwas mehr als die Hälfte der extraterrestrischen Sonnenstrahlung bis zur Erdoberfläche vordringt (vgl. HACKEL, 2008).

Die Globalstrahlung deckt einen Wellenlängenbereich von 300nm – bis 3000nm ab. Der Anteil der Globalstrahlung, den Pflanzen für die Photosynthese nutzen können. wird als photosynthetisch aktive Strahlung (PAR-Strahlung) bezeichnet. Sie beschreibt den Spektralbereich zwischen 400nm – 700nm (vgl. HÄCKEL 2008). In der Abbildung 1 wird die spektrale Wirkungsfunktion der Photosynthese grafisch dargestellt.

funktion der Photosynthese. Beiträge der einzelnen Wellenlängen zur Photosynthese. (Quelle: HÄCKEL, 2008)

Die PAR-Strahlung ist Teil des umgangssprachlich bezeichneten sichtbaren Lichtes, das einen Wellenlängenbereich von 380nm bis 750nm aufweist. In der Physik hingegen, wird als Licht der Wellenlängenbereich von 280nm bis 3000nm definiert, der in drei Strahlungsbereiche gegliedert wird:

Ultraviolette Strahlung (UV-Strahlung)

Wellenlängenbereich: 280nm – 380nm Eigenschaften: kurzwellige Strahlung mit schädlicher Wirkung auf Organismen

Sichtbare Strahlung

Wellenlängenbereich: 380nm – 750nm Eigenschaften: ein Großteil dieser Strahlung dient der Photosynthese (400nm – 700nm). Etwa 47% der auf die Erdoberfläche auftreffenden Strahlung ist für die Photosynthese nutzbar.

* Infrarote Strahlung (IR-Strahlung)

Wellenlängenbereich: 750nm – 3000nm Eigenschaften: langwellige Wärmestrahlung

3.2 Die Bedeutung der Strahlungsverhältnisse für aquatische Lebensgemeinschaften

Das Licht bzw. die Strahlung als wichtigste Wärme- und Energiequelle von Gewässern beeinflusst aquatische Lebensgemeinschaften in hohem Ausmaß. Nahezu alles Geschehen innerhalb eines Gewässers wird direkt oder indirekt durch die von der Sonne eingestrahlte Energie verursacht und reguliert (vgl. SAUBERER, RUTTNER, 1941).

Eine der bedeutendsten Steuergrößen für jahreszeitliche Kreisläufe, die innerhalb des Gewässers stattfindet, ist daher die Photoperiode. Wegen ihrer Regelmäßigkeit ist sie ein entscheidender Faktor bezüglich saisonaler Zyklen, zahlreicher im Wasser lebender Organismen. Beispielsweise hängen die Drift mehrerer Benthostierarten und Fischen, speziell im Jungfischstadium, die Verteilung und Produktion der meisten Primär- und Sekundärproduzenten als auch aerobe Abbauprozesse stark von den jeweiligen Lichtverhältnissen im Gewässer ab. Licht ist somit eine entscheidende Grundlage und gleichzeitig Steuergröße der komplexen aquatischen Nahrungsketten (vgl. JUNGWIRTH et al. 2003).

Die Absorption der langwelligen Wärmestrahlung bewirkt eine Erwärmung der Gewässer und ist somit verantwortlich für die Ausprägung des Temperaturregimes einzelner Gewässerteile. Da ein Großteil der lebenden Organismen, die in Binnengewässern vorkommen (vor allem Evertebraten und Fische) poikilotherm (wechselwarm) sind, hängen Atmung, Wachstum, Aktivität, Verdauung und Reproduktion wesentlich von der Temperatur des jeweiligen Gewässers ab, die wiederum wie zuvor erwähnt, von der auf das Gewässer treffenden Strahlungsenergie abhängt (vgl. JUNGWIRTH et al. 2003). Ein gewisser Teil der auf die Wasseroberfläche auftreffenden Strahlung wird reflektiert. Welches Ausmaß die Reflexion annimmt, hängt vom Sonnenstand (Einfallswinkel), der Wellenlänge, der Brechung und von der Rauigkeit der Wasseroberfläche ab. Ein größerer Teil der Strahlung wird jedoch beim Eintritt in das Wasser absorbiert oder gestreut. Das in untere Wasserschichten eindringende Streulicht wird in weiterer Folge an kleinen mineralischen Partikeln (Trübstoffen) reflektiert. Die durch Absorption und Streuung verursachten Strahlungsverluste werden Extinktion oder Attenuation genannt. Durchgehende Strahlung wird als Transmission bezeichnet (vgl. JUNGWIRTH et al. 2003).

Für die photoautotrophe Primärproduktion (Photosynthese), die im Gewässer stattfindet und daher in weiterer Folge auch für die biogene Sauerstoffversorgung, ist wie auch oberhalb des Wasserspiegels die eindringende Strahlung mit einem Wellenlängenbereich zwischen 400nm und 700nm entscheidend: die PAR-Strahlung (vgl. LAMPERT, SOMMER, 1993; SCHWÖBERL, 1993).

3.3 Beschattung von Fließgewässern

Gehölze und Stauden auf dem Uferstreifen verbessern die Beschattung und verringern die Temperatur des Wasserkörpers, wodurch sich der Gehalt an gelöstem Sauerstoff, der dem Ökosystem Gewässer in kritischen Situationen zur Verfügung steht, erhöht. Dies kommt vor allem belasteten Gewässern zugute. Die Kombination aus beschatteten und lichtdurchfluteten Gewässerabschnitten fördert somit die biologischen Abbauraten eines Gewässers (vgl. DVWK, 244/1997).

"Aus der Praxis des angewandten Gewässerschutzes stehen zahlreiche Beispiele zur Verfügung, wie Eingriffe in das Licht- Temperaturregime von Fließgewässern in entsprechenden direkten oder indirekten Folgewirkungen für die aquatische Fauna resultieren. So ist beispielsweise gut bekannt, dass Makrophytenwachstum und sommerliche Aufwärmung in Gewässerstrecken mit dichter Ufervegetation infolge der Beschattung unterbunden werden" (JUNGWIRTH et al. 2003, S. 32). Durchgehende Entfernung von Ufergehölzen und damit Entfall der Beschattung im Zuge von Regulierungen führt dementsprechend vielfach zu explosionsartiger Entfaltung (vgl. BÖTTGER, PÖPPERL, 1990; HAIDEKKER, HERING, 2002).

Die Beschattung eines Gewässers durch Ufervegetation wird durch die Mittelwasserbreite, die Bewuchshöhe und die Strahlungsverhältnisse geprägt. Vollständiger Kronenschluss kann die auf die Gewässeroberfläche auftreffende photosynthetisch nutzbare Reststrahlung um über 90% reduzieren (vgl. RICKERT, 1986). "Der Energieeintrag in den Wasserkörper durch Strahlung wird von den Schattenlängen und der mittleren täglichen Abschirmung beeinflusst, die von der Höhe der Gehölze, deren Lage zum Gewässer und der Exposition des Uferstreifens abhängig sind" (DVWK 244/1997, S. 11). Innerhalb der Vegetationszeit können abhängig von der Wuchshöhe der Vegetation Strahlungsminderungen von 70 - 80% (Gewässersüdseite) und 20 - 45% (Ostoder Westseite) erzielt werden (vgl. DVWK, 244/1997). Zum Vergleich ermitteln LINNENKAMP und HOFFMANN im Jahr 1990 an einem Flachlandbach folgende Werte:

- Geschlossene Bepflanzung: Reduzierung des Lichteinfalls um > 90%
- Lückige Bepflanzung: Reduzierung des Lichteinfalls um ca. 60%
- Laubfreier Zustand: Reduzierung des Lichteinfalls um ca. 30%

3.3.1 Die Pflanze als Beschattungselement

"Geschlossene Pflanzenbestände entwickeln ein Assimilationssystem, das aus einander überdeckenden und sich gegenseitig beschattenden Blattschichten aufgebaut ist. Eine tief gestaffelte Pflanzendecke nützt durch stufenweise Absorption die auftreffende und eindringende Strahlung fast vollständig aus" (LARCHER 1994, S. 39).

Die Strahlungsabschwächung nach Durchgang durch die Vegetation wird wie auch nach Durchgang durch einen Wasserkörper als Strahlungsattenuation bezeichnet und hängt von der Belaubungsdichte, von der Verteilung der Blätter im Bestand und von der Blattneigung ab. Beim Durchgang durch hintereinanderliegender Blätter nimmt die Strahlungsintensität nach dem Lambert-Beer'schen Gesetz exponentiell ab. MONSI und T. SAEKI (zitiert in LARCHER, 1994) entwickelten eine Extinktionsgleichung, mit welcher der Strahlungsabfall bei homogener Laubschichtung berechnet werden kann:

$I_z = I_0 \cdot e^{-k.LAI}$

- I_z... Intensität der Strahlung in einem bestimmten Abstand vom Oberrand der Pflanzendecke.
- I₀... Strahlung im Freien.
- k ... Attenuationskoeffizient der jeweiligen Pflanzengesellschaft. Er gibt das Ausmaß des Lichtabfalls durch Lichtabsorption und Lichtstreuung im Bestand an.
- LAI ... Gesamtsumme der Blattflächen über der Meßstelle pro Einheit der Bodenfläche.

(vgl. LARCHER, 1994)

In Pflanzenbeständen wie Hochstaudenfluren, unter Schwimmblattdecken, im Waldunterwuchs und im Nutzpflanzenanbau erreicht der Attenuationskoeffizient beispielsweise Werte um 0,7 – 1. In solchen Beständen sind bereits in halber Bestandshöhe 2/3 – 3/4 des einfallenden Lichtes absorbiert (vgl. LARCHER, 1994).

Eine weitere Maßzahl zur Beschreibung des Strahlungsangebotes auf lichtarmen Standorten ist der relative Lichtgenuss. Er gibt an, welcher Anteil des Außenlichtes am Wuchsplatz einer Pflanze ankommt. Während in Laubwäldern und lichten Nadelwäldern der gemäßigten Zone innerhalb der Vegetationsperiode durchschnittlich 3 – 10% und in winterkahlen Wäldern 50 – 70% der Freilandhelligkeit unter das Kronendach gelangen, kann der Lichtgenuss in immergrünen Laubwäldern und artenreichen Tropenwäldern auf wenige Prozent, sogar bis unter 1% absinken (vgl. LARCHER, 1994).

"Von der Strahlung, die auf ein Blatt fällt, wird ein Teil remittiert (d.h. diffus reflektiert), ein Teil wird absorbiert, was übrig bleibt, wird durchgelassen" (LARCHER 1994, S. 44). Abhängig von der Wellenlänge der auf das Blatt auftreffenden Strahlung werden in Abbildung 2 die relative Reflexion, Transmission und Absorption dargestellt.

Abbildung 2 Relative Reflexion, Transmission und Absorption eines Blattes in Abhängigkeit von der Wellenlänge der auf das Blatt auftreffenden Strahlung. (Quelle: MONTEITH, UNSWORTH, 1990)

Die Oberflächenbeschaffenheit der Blätter bestimmt das **Reflexionsverhalten** maßgeblich. Beispielsweise erhöht ein Haarfilz, wie er bei vielen Pflanzen auftritt, die Reflexion beträchtlich. Durchschnittlich werden im sichtbaren Bereich nur 6 – 10% der Strahlung vom Blatt remittiert. Im Vergleich wird rotes und orangenes Licht am wenigsten (3 – 10%) und grünes Licht (10 – 20%) am stärksten remittiert. Manche Bäume tropischer Regenwälder tragen stark glänzende Blätter, die das sichtbare Licht bis zu 15% zurückwerfen können, was zu erhöhtem Streulicht führt und das Innere solcher "Glanzlichtwälder" etwas aufhellt (vgl. LARCHER, 1994).

Beim Durchgang durch das Blatt wird die Strahlung durch **Absorption** abgeschwächt. Dabei nimmt der Strahlungsgewinn hintereinander liegender Zellschichten exponentiell ab. Je nach Blattaufbau und Ausstattung mit Chloroplasten absorbieren Blätter in der Regel 60 – 80% der PAR-Strahlung (vgl. LARCHER, 1994).

Als **Transmission** wird die Strahlungsdurchlässigkeit der Blätter bezeichnet. Sie ist vom Aufbau des Blattes und der Blattdicke abhängig. "Weichlaubige Blätter lassen 10 – 20% der Sonnenstrahlung durchtreten, sehr dünne Blätter bis zu 40%, dicke und derbe Blätter sind fast undurchlässig für die Strahlung (unter 3%)" (LARCHER 1994, S. 46).

4 Untersuchungsmethode

- Ein Modellversuch zur Strahlungsdurchlässigkeit der Purpur-Weide

Als Grundlage der Datenerhebung wurde ein Modellversuch durchgeführt. Mit Versuch unter standardisierten Bedingungen Voraussetzung den der anzuwenden, nicht Freiland statt. fand er im Die Idee der Untersuchungsmethode basiert auf einer, nach Vorbild der Natur erschaffenen Weidenhecke, die Eigenschaften einer natürlichen Ufervegetation möglichst treffend wiederspiegeln soll. Nach Durchgang der Strahlung durch diese "künstlich" errichtete Versuchshecke verringert sich die Strahlungsintensität, welche mit Hilfe von Strahlungssensoren für verschiedene Vegetationsdichten gemessen und aufgenommen wurde. Diese waren auf einem beweglichen Messroboter angebracht, der im beschatteten Bereich der Versuchsfläche positioniert war.

Als Gehölz zur Beschattung der Versuchsfläche wurde Salix purpurea (Purpur-Weide) ausgewählt, da diese gerne für ingenieurbiologische und flusslandschaftsbauliche Maßnahmen herangezogen wird. Außerdem hat diese Weidenart aufgrund der engen Zweigstellung und der Dichttriebigkeit sehr gute Beschattungseigenschaften, vor allem im unmittelbaren Nahbereich (vgl. EBERSTALLER-FLEISCHANDERL, 2008). Gerade wegen letzterer Eigenschaft ist sie auch im durchgeführten Modellversuch optimal als Beschattungspflanze geeignet.

Um die Ergebnisse der Strahlungsintensität und der Beschattungseigenschaften des Modellversuchs nach Abschluss dieser Arbeit besser mit erhobenen Messungen aus dem Freiland vergleichen zu können, fanden an drei Tagen mit klarem Himmel Messungen statt. Für diese wurden der 25.05.2011, der 12.07.2011 und der 27.09.2011 ausgewählt. Die Messtage den wurden gewählt, Versuchsverlauf Lauf SO dass der einer Vegetationsperiode widerspiegelt. So Trends können bezüglich der Strahlungsleistung, Strahlungsdurchganges des und der Beschattung beobachtet werden, die Aufschluss über den Einsatz von Ufervegetation im

Flusslandschaftsbau geben und deren praktische Anwendung zukünftig erleichtern sollen.

Ort der Durchführung der drei Messversuche war die Terrasse des Schwackhöferhauses der BOKU, Wien. Die Terrasse befindet sich im dritten Stock des Universitätsgebäudes und bietet aufgrund ihrer Exponiertheit optimale Voraussetzungen für die Messung der Strahlungsleistung. In Abbildung 3 wird der Aufbau des Modellversuches bildlich dargestellt.

Überblick über das Programm und den Ablauf der Messtage:

- ✤ 6:30 9:00 Groß-Enzersdorf: Schneiden der Weidenzweige
- ✤ 9:00 10:00 Transport der Weidenzweige auf die BOKU
- ✤ 10:00 11:00 Vorbereitungen f
 ür den Messversuch Robotercheck
- 11:00 14:00 Messungen und Protokollierung
- ab 14:00 Durchführung der Vegetationsaufnahmen

Genaue Erläuterungen des Modellaufbaus, der Aufnahmemethode und der Auswertungsmethodik folgen in den nächsten Kapiteln.

Abbildung 3 Modellversuch zur Strahlungsdurchlässigkeit der Salix purpurea am 25.05.2011 auf der Terrasse des Schwackhöferhauses im 3. Stock / BOKU – Wien.

4.1 Modellaufbau

Da sich der Sonnenstand und der daraus resultierende Schattenbereich im Verlauf der Messungen deutlich änderten, bot es sich an, den Modellversuch auf einer drehbaren Plattform aufzubauen. Diese auf Rollen montierte Basisplattform machte es möglich, den gesamten Versuchsaufbau nach jeder Einzelmessung problemlos dem Lauf der Sonne nach zu drehen. So konnten ungenaue, verfälschte Strahlungsergebnisse auf einfachem Weg vermieden werden. Es wurden somit bei jeder Einzelmessung quantitativ gleichwertige Strahlungs- bzw. Schattenverhältnisse geschaffen. Um sicherzugehen, dass der Versuchsaufbau nach drehen mit der Sonne, nicht von dem mittels Kreide vordefinierten Fixpunkt auf der Terrasse abweicht, wurde die Basisplattform mit Hilfe einer Metallstange, welche die Drehachse darstellen sollte, gedreht.

Der Modellversuch setzt sich aus drei Hauptkomponenten zusammen: Aus dem mit Wasser gefüllten Stecktisch, in den die Weidenzweige eingesteckt werden, aus den Weidenzeigen in Vertretung der natürlichen Ufervegetation und aus dem Messroboter, der die Strahlungsintensität eines Quadratmeters misst und aufnimmt. Dieser ist in Abbildung 4 dargestellt. In Abbildung 5 wird der Aufbau des Modellversuchs anhand einer schematischen Darstellung gezeigt.

Abbildung 4 Messroboter zur Ermittlung der Strahlungsdurchlässigkeit der Versuchshecke am 12.07.2011, dem zweiten Messtag.

Abbildung 5 Schematische Darstellung des Modellaufbaus (Quelle: REINER 2011 S. 42)

Der Stecktisch

Die Konstruktion des Stecktisches ist aus Holz, da dieser Werkstoff vergleichsweise kostengünstig und leicht zu verarbeiten ist. Die Verbindungsstellen wurden teilweise geleimt und verschraubt. Er ist 125 cm lang und 30 cm hoch. Die Abdeckplatte ist mit 47 Stecklöchern versehen, die zweireihig, im Abstand von 5 cm mit einem 12 mm Holzbohrer gebohrt wurden. Aufgabe des Stecktisches ist es unter anderem, den Weidenzweigen Standsicherheit zu bieten. Um gleiche Verhältnisse während der Messungen zu gewährleisten, mussten die Weidenzweige, vom Schnitt um 6:30 Uhr bis zur letzten Messserie um ca. 14:00 Uhr möglichst frisch und vital bleiben. Um die Austrocknung der Weidenzweige, verbunden mit einer Verfälschung der Ergebnisse der durchgehenden Strahlung, zu vermeiden wurde die Innenseite des Stecktisches mit einer Teichfolie ausgekleidet. Es wurde somit ein Wasserreservoir geschaffen, aus dem die Weidenzweige über die Schnittstellen der Zweigbasis Wasser aufnehmen konnten. Um die an Wasseraufnahmefähigkeit der Weidenzweige zusätzlich zu steigern, wurden die einzelnen Zweige an der Basis schräg abgeschnitten.

Die Weidenzweige

"Die Purpur-Weide ist die am häufigsten verwendete Weide zur Ufer- und Hangsicherung, nicht nur wegen der großen ökologischen Amplitude (feuchte bis trockene Böden und niedere bis hohe Lagen), sondern auch wegen der ausgezeichneten vegetativen Vermehrbarkeit. Als elastische Strauchweide ist sie für den Einsatz an der Nieder- und Mittelwasserlinie von Fließgewässern sehr geeignet" (HÖRANDL et al. 2002, S. 138).

Die Zweige der Purpur-Weide, die im Modellversuch als Beschattungselement eingesetzt wurden, stammen aus dem Weidengarten des Institutes in Groß-Enzersdorf. Dies ist ein Weidenbestand mittleren Alters, ausgepflanzt und unterhalten von der Universität für Bodenkultur. Ein Großteil der dort vorkommenden Weidenarten sind Purpurweiden (Salix purpurea). Geschnitten wurden sie auf eine Gesamtlänge von 1,8 m unter der Zweigspitze. Bei dem Transport vom Ort des Schnittes zum Durchführungsort des Versuches wurden die Weidenzweige in wassergetränktes Geotextil eingewickelt, gebündelt und zusätzlich in einem Wasserbehälter frischgehalten. Während des Roboterchecks wurden sie bis zum Versuchsstart im Schatten gelagert. Für den die Modellversuch wurden 1,8 m langen Weidenzweige einzeln durchnummeriert und in die vorgesehenen, nummerierten Stecklöcher des Stecktisches (Abbildung 6) gesteckt. Nach diesem Arbeitsschritt misst der aus dem Stecktisch ragende Teil der Weidenzweige 1,5 m Länge. Dies resultiert aus der Höhe des Stecktisches, welcher 30 cm hoch ist. Die Fotos aller Weidenzweige werden im Anhang 4 gezeigt.

Abbildung 6 Stecktisch mit nummerierten Stecklöchern und Weidenzweigen am ersten Messtag (25.05.2011). Terrasse Schwackhöferhaus 3. Stock, BOKU – Wien.

4.2 Aufbau und Funktionsweise des Messroboters

Die Strahlungsintensität wurde mittels Aufnahme eines Messroboters ermittelt, welcher an der Universität für Bodenkultur von DI Gerda Holzapfel mit Hilfe von Mittarbeitern des Instituts für Ingenieurbiologie und Landschaftsbau und des Instituts für Meteorologie entwickelt und gebaut worden ist (vgl. REINER, 2011). Vom Startpunkt der zu messenden Fläche ausgehend fährt der Messroboter, angetrieben durch einen Elektromotor, bei jedem Messdurchgang zweimal an den Endpunkt und wieder zurück um genauere Durchschnittswerte zu erhalten. Um diese Strecke zweimal zurückzulegen benötigt er ca. 120 Sekunden. Pro Sekunde werden vier Messungen durchgeführt und von einem Datenlogger erfasst. Dies ergibt in etwa 480 Messungen pro Messdurchgang. An allen drei Messtagen (25.05.2011, 12.07.2011 und 27.09.2011) wurden insgesamt 60 Messdurchgänge durchgeführt. Abzüglich fehlerhafter Werte und Durchgangswiederholungen fanden somit 28.800 Messungen statt. Bei jeder dieser Messungen wurden fünf Werte der Globalstrahlungssensoren und fünf Werte der PAR-Sensoren ermittelt. Insgesamt wurden im Lauf des Modellversuchs somit 288.000 Strahlungswerte gesammelt und aufgenommen. Diese sind unter anderem Grundlage für die Interpretation der Ergebnisse.

In Abbildung 7 wird der Aufbau des Messroboters schematisch dargestellt. Angetrieben wird der Messroboter durch einen Elektromotor (1). Die Energieversorgung erfolgt durch einen Akku (2). Holzschienen (7) zeigen dem Roboter die Laufrichtung an und sorgen für ein gleichmäßiges Zurücklegen der konstanten Weglänge. So können gleiche Verhältnisse für die einzelnen Messdurchgänge erwartet und Ungenauigkeiten in der Aufnahme der Daten minimiert werden. Vier Sensorenstände (5) befinden sich im beschatteten Modellbereich um die Strahlungsintensität nach Durchgang durch die Weidenhecke zu messen. Auf jedem Sensorenstand befinden sich zwei unterschiedliche Messsensoren, ein PAR- und ein Globalsensor. Insgesamt sind es somit acht Strahlungssensoren, die die definierte Fläche eines Quadratmeters bemessen. Um nach jeder Einzelmessung parallel zu den Messwerten des Beschattungsbereiches, Messwerte betreffend der aktuellen Gesamtstrahlung zu ermitteln, wurden ein PAR- und ein Globalsensor als Referenzsensoren direkter Sonnenstrahlung ausgesetzt.. Die durch die Referenzsensoren eingehenden Werte sind einer Strahlungsintensität von 100% gleichzusetzen. Die durch die Strahlungssensoren aufgenommenen Daten werden unmittelbar nach der Erfassung mittels Aufnahmemodul (3), dem Datenlogger gespeichert. Dieser kann in weiterer Folge an einem Computer angeschlossen werden um die aufgenommenen Daten in Tabellenform zu übertragen. Die am Fuß der Konstruktion angebrachten Taster (4) geben Auskunft über die Lage des Roboters im Messystem. Für die Auswertung der Messergebnisse sind die gespeicherten Informationen der Taster essentiell, da sie Auskunft darüber geben, wo sich der Messroboter zu einer bestimmten Zeit befand und in welche Richtung er fuhr. Die Übertragung der erhobenen Daten der Messsensoren und der Taster erfolgte mittels Datenübertragungskabeln. Diese sind mit dem Datenlogger (3) verbunden.

4.2.1 Sensoren und Aufnahmemodul

Jeweils ein PAR- und ein Globalsensor wurden an fünf Sensorenständen angebracht. Der Abstand der einzelnen Sensorenstände zueinander beträgt 20 cm. Durch diese Aufteilung der Sensorenpaare konnten alle vier vordefinierten Höhenstufen (H1, H2, H3 und H4) der Weidenhecke bemessen werden. Wie schon im vorhergehenden Kapitel 4.2 "Aufbau und Funktionsweise Messroboters" beschrieben. des befinden sich insgesamt zehn Strahlungsmesssensoren am Messroboter. Acht Messsensoren befinden sich im beschatteten Bereich des Modellversuchs. Vier PAR-Sensoren und vier Globalsensoren. Weitere zwei Messsensoren befinden sich im unbeschatteten Bereich und sind der Strahlung der Sonne somit voll ausgesetzt. Diese sind die Referenzsensoren. Ihre Aufgabe ist es, die Strahlungsdaten auch dann vergleichen zu können, wenn sich die Strahlungsintensität während der Durchführung der Messungen ändert. Dies kann durch Wolkenbildung oder einer Erhöhung der Streuung in der Atmosphäre während des Versuchsverlaufs stattfinden. Auf die Funktionsweise der Sensoren und des Aufnahmemoduls wird nun näher eingegangen.

PAR-Sensoren

Die Abkürzung "PAR" steht für Photosynthetically Active Radiation. Als photosynthetisch aktive Strahlung wird der kurzwellige Bereich der solaren Einstrahlung zwischen 400 nm und 700 nm bezeichnet. Die PAR ist Antrieb der Photosynthese und trägt somit maßgeblich zur Steuerung der Primärproduktion von terrestrischer und mariner Vegetation bei (vgl. FISTRIC, 2004). Abbildung 8 zeigt einen PAR-Sensor.

Eckdaten der PAR-Sensoren

"Typenbezeichnung: Quantum Sensor EMS 12 Firma: Environmental Measurement Systems Wellenlängenbereich: 400 nm – 700 nm Wirkungsweise: Photovoltaischer Silikondetektor

Abbildung 8 PAR-Sensor

Spezifikation:

- Elektrisches Ausgangssignal
- Empfindlichkeit: 25 mV @ 2000 µmol.s⁻¹.m²
- Linearität bis zu 1% bis zu 2000 µmol.s⁻¹.m²
- Kosinusfehler < 10% bis zu 85°Einfallswinkel
- Betriebstemperatur: -20 ℃ bis 60 ℃" (EMSBRNO, 2010)

Globalstrahlungssensoren

Mittels Globalstrahlungssensoren (Abbildung 9) kann die gesamte auf eine horizontale Fläche einfallende kurzwellige Himmelsstrahlung gemessen werden. Die Globalstrahlung setzt sich aus der, auf direktem Weg eintreffenden Solarstrahlung (Direktstrahlung) und der Strahlung, die über Reflexion an Wolken, Wasser- und Staubteilchen die Erdoberfläche erreicht, zusammen.

Eckdaten der Globalsensoren

"Typenbezeichnung: Global radiation sensor EMS 11 Firma: Environmental Measurement Systems Wellenlängenbereich: 300 nm – 3000 nm Wirkungsweise: Photovoltaischer Silikondetektor Spezifikation:

- Elektrisches Ausgangssignal
- Empfindlichkeit: 20 mV pro 1000 Wm⁻²
- Kalibrierungsfehler unter Voraussetzung von Tageslicht max. 7%
- Linearität bis zu 1%
- Kosinusfehler < 10% bis zu 85° Einfallswinkel
- Betriebstemperatur: -20 ℃ bis 60 ℃ " (EMSBRNO, 2010)

Eckdaten des Datenloggers "Für die Aufzeichnung der Strahlungsdaten der Messsensoren wird der CR 1000 Datenlogger (Abbildung 10) von Campbell Scientific Inc. verwendet. Dieser ist für wartungsfreie Netzanwendungen ausgelegt. Er besitzt einen vier GB SRAM Speicher, wobei eine zusätzliche Datenspeicherung auf einer Compact – Flash Karte möglich ist. Die

Abbildung 9 Globalsensor

Datenspeicherung basiert auf einer Tabellenform. Das beinhaltete Betriebssystem heißt PakBus" (REINER 2011, S. 51).

Abbildung 10 CR 1000 Datenlogger von Campbell Scientific Inc. für wartungsfreie Netzanwendungen ausgelegt.

4.3 Stecksystem

Da Ufervegetation als Beschattungselement von Fließgewässern, egal ob aus natürlichen oder anthropogen Prozessen entstanden, verschiedenste Dichten erreichen kann, wurde der Faktor Bestandsdichte im durchgeführten Modellversuch berücksichtigt.

Durch stetige Entnahme von Weidenzweigen wurde die für den Modellversuch "künstlich" errichtete Hecke händisch ausgelichtet um anschließend Messungen der PAR- und Globalstrahlung durchzuführen. Die Auslichtung der Hecke erfolgte nach einem Entnahmesystem, bei dem nach jedem Messdurchgang 10% der Weidenzweige entfernt wurden. Um bei jeder ersten Messung der drei Versuchstage (25.05.2011, 12.07.2011 und 27.09.2011) gegen 11:00 Uhr, Strahlungsdaten für die vollständige Beschattung der Versuchsfläche zu ermitteln, wurde eine strahlungsundurchlässige schwarze Platte vor der Die nach diesem Weidenhecke aufgestellt. ersten Messdurchgang aufgenommenen Daten, wurden in den Messprotokollen (siehe Anhang 1) als "100% Platte" betitelt. Für die zweite Messung wurde die Platte entfernt und der Messdurchgang für "100% Pflanze" durchgeführt. Ab dieser Messung wurden nach und nach 10% der Weidenzweige entnommen und zwar nach dem Muster zwei verschiedener Stecksysteme: der gleichmäßigen und der flächigen Steckweise (Abbildung 11).

Abbildung 11 *Gleichmäßige Steckweise* (Bild links) und *flächige Steckweise* (Bild rechts) bei 50% Steckdichte am 25.05.2011. Terrasse Schwackhöferhaus 3. Stock / BOKU – Wien.

Die Vorgangsweise des Auslichtens ist beim gleichmäßigen Stecksystem grundsätzlich anders als beim flächigen Stecksystem. Gleich bleibt nur die Summe der Weidenzweige, die bei den verschiedenen Dichten (100%, 90%, 80%, 70%, 50%, 40%, 30%, 20% und 10%) im Stecktisch stecken bleiben. Während die Entnahme des gleichmäßigen Stecksystems gleichförmig verteilt über den gesamten Stecktisch erfolgt, werden die Weidenzweige beim flächigen Stecksystem abschnittsweise von rechts nach links entnommen. Im Anhang 12 (CD-ROM) werden die Frontalfotos des ersten Messtages, dem 25.05.2011 für die Dichten 80%, 50% und 20% bei gleichmäßiger und flächiger Steckweise zur Übersicht gezeigt. In der folgenden Darstellung (Abbildung 12) kann die Vorgangsweise der Entnahme des gleichmäßigen Stecksystems näher betrachtet werden. Den einzelnen Prozentwerten wurden Farben zugeordnet. Diese geben an, welche Einzelzweige bei der jeweiligen Steckdichte zu entnehmen sind.

100			
-	%	Anz.Zweige	Anz. Zweige
	100	47	47
	90	43	43 (1,15,32,47)
	80	38	38 (18,22,27,29,37)
	70	33	33 (6,20,26,35,40)
	60	28	28 (5,14,23,33,42)
	50	23	23 (3,12,17,31,44)
	40	19	19 (10,30,39,45)
	30	14	14 (4,13,24,34,41)
	20	9	9 (2,7,8,19,38)
	10	5	5 (11,21,25,43)
	0	0	0 (9,16,28,36,46)

Flächig	Gleichmäßig

Abbildung 12 Vorgangsweise der Entnahme des gleichmäßigen und des flächigen Stecksystems. Erläutert werden die zu entfernenden Weidenzweige nach ihrer Nummer sowie die Anzahl der Weidenzweige, die bei den jeweiligen Prozentwerten entnommen werden. Den Prozentwerten wurden Farben zugeteilt. (Quelle: HOLZAPFEL, 2010)

In Abbildung 13 wird die Entnahmereihenfolge des gleichmäßigen und des flächigen Stecksystems anhand einer schematischen Darstellung des Stecktisches erklärt.

Abbildung 13 Darstellung der gleichmäßigen und der flächigen Steckweise anhand einer schematischen Abbildung des Stecktisches (Quelle: HOLZAPFEL, 2010)

Im Rahmen der Auswertung wurden die erhobenen Strahlungsdaten der Steckdichten 80%, 50% und 20% (Abbildung 14) der drei Messtage, bei gleichmäßiger und flächiger Steckweise genauer untersucht und interpretiert. Diese Dichten geben Auskunft über das Beschattungspotenzial in Abhängigkeit zur Strahlungsleistung und bieten ein breites Spektrum an möglichen Bestandsdichten von Ufervegetation im Freiland.

Gleichmäßig 20%

Flächig 20%

Gleichmäßig 50%

Flächig 50%

Gleichmäßig 80%

Flächig 80%

Abbildung 14 *Gleichmäßiges* und *flächiges* Stecksystem bei 80%, 50% und 20% Steckdichte. Aus dem Stecktisch entnommene Zweige wurden grün dargestellt. (Quelle: HOLZAPFEL, 2010)

4.4 Sonnenstände

Um den exakten Eintrittswinkel der Sonnenstrahlung zu ermitteln, werden drei Informationen benötigt. Das Datum, die Uhrzeit und die jeweilige geographische Lage des Untersuchungsortes.

Die geographische Lage Wiens... geographische Breite: 48,20° geographische Länge: 16,37°

Die Länge der für den Modellversuch geschnittenen Weidenzweige setzt sich aus einem 30 cm langen unverzweigten Stiel, der sich im Wasserbehälter des Stecktisches befindet und dem 150 cm langen, belaubten Zweigteil zusammen, der aus dem Stecktisch emporragt. Diese Länge wurde ausgewählt, um die zu vermessende Versuchsfläche im Lauf des Modellversuches vollständig zu beschatten. Die Länge des benötigten Schattenbereiches musste am 25.05.2011 und am 12.07.2011 80 cm aufweisen. Sie resultiert aus dem Abstand zwischen den vier Sensorenpaaren, die die Strahlungsleistungen der Versuchsfläche aufzeichnen. Dieser beträgt konstant 20 cm. Der Abstand zwischen Stecktisch und dem erstem Sensorenstand ist an diesen Messtagen ebenfalls 20 cm. Da die Eintrittswinkel der Sonnenstrahlung am 27.09.2011 bereits vergleichsweise niedrig waren, vergrößerte sich der Schattenbereich hinter der Weidenhecke maßgeblich. Aus diesem Grund musste der gesamte Messroboter auf dem die Sensorenstände angebracht sind, inklusive der Holzschienen, vom Stecktisch ausgehend, verschoben werden. Am dritten Messtag (27.09.2011) beträgt der Abstand zwischen Stecktisch und erstem Sensorenstand 90,5 cm.

In Abbildung 15 sind die Schattenwürfe der Weidenhecke der drei Messtage zu unterschiedlichen, dem Modellversuch entsprechenden Tageszeiten abgebildet, nämlich jeweils um 11:00, 12:00, 13:00 und 14:00 Uhr. Das Institut für Meteorologie stellte die für den Versuch relevanten Klimadaten zu Verfügung.

Abbildung 15 Darstellung der Schattenwürfe der drei Messtage zu unterschiedlichen Tageszeiten. Schattenlängen [cm] wurden jeweils für den Schattenwurf von Höhenstufe 1 (H1) und Höhenstufe 4 (H4) um 12:00 Uhr angegeben.

5 Vegetationsaufnahmen

Um zusätzlich zu der im Modellversuch ermittelten Strahlungsleistung Informationen über den Aufbau der einzelnen Weidenzweige und damit der Dichte der gesamten Hecke zu erlangen, wurden nach jedem der drei Messtage (25.05.2011, 12.07.2011 und 27.09.2011) Vegetationsaufnahmen durchgeführt. Anhand dieser Daten konnten die nach Durchgang durch die Versuchshecke ermittelten Strahlungsleistungen in direkten Zusammenhang mit dem Aufbau der Weidenzweige gebracht werden. Die vier Höhenstufen der Zweige wurden separiert betrachtet um dichtere und weniger dichte Bereiche der jeweiligen Weidenhecke verorten und eventuelle Schwankungen einzelner Sensorenwerte besser nachvollziehen zu können.

Im Zuge der Vegetationsaufnahmen wird jeder nummerierte Weidenzweig, der im Lauf des Modellversuches zur Beschattung der Versuchsfläche beitrug, einzeln aufgenommen, fotografiert und vermessen. Um diese Arbeitsschritte einfacher zu gestalten, wird ein Aufnahmetisch (Abbildung 16) aufgestellt, der mit einem Zentimeterraster versehen ist. Dieser gibt Auskunft über die Aufteilung der vier Höhenstufen, in die jeder Einzelzweig unterteilt wird.

Abbildung 16 Aufnahmetisch mit Aufteilung der vier Höhenstufen (H1, H2, H3 und H4) für den Zweig Nr. 6 des 25.05.2011

Jede der vier Höhenstufen, nach denen die Weidenzweige unterteilt und vermessen werden, beträgt 37,5 cm. Dies resultiert aus dem Viertel der 150 cm langen Weidenzweige. Somit beinhalten die Höhenstufen folgende Längenabschnitte:

H1 0 - 37,5 cm
H2 37,5 - 75 cm
H3 75 - 112,5 cm
H4 112,5 - 150 cm

5.1 Messgrößen

Die jeweils 47 Weidenzweige der drei Messtage wurden nach Abschluss der Modellversuche nacheinander am Messtisch mittels Klebeband befestigt, um einzeln in den Messprotokollen der Vegetationsaufnahmen erfasst zu werden. Die Messprotokolle der Vegetationsaufnahmen sind zur genaueren Betrachtung im Anhang 2 beigefügt.

Zu Beginn der Untersuchung wird der jeweilige Zweig fotografiert und die Aufnahmenummer zwecks Nachvollziehbarkeit festgehalten. Als nächstes wird die Höhe des ersten Astes [cm] ausgehend von der Zweigbasis gemessen. Um Informationen betreffend der Dichte des Weidenzweiges zu erhalten, wird die Anzahl der Verzweigungen gezählt. Diese werden in Verzweigung erster-, zweiter- und dritter Ordnung unterteilt und separat in das Protokoll übertragen. Hier wird der Haupttrieb des Zweiges als Verzweigung erster Ordnung bezeichnet. Ist dieser durchgehend über die gesamte Zweiglänge ausgebildet, so wird ihm der Wert eins zugeteilt. Teilt sich der Haupttrieb im Verlauf des Zweiges in zwei annähernd gleich starke Triebe, so wird ihm der Wert zwei zugeteilt. Als Verzweigungen zweiter Ordnung werden jene Triebe gezählt, welche vom Haupttrieb abzweigen. Verzweigungen dritter Ordnung sind vergleichsweise kleine Triebe, die von den Trieben der zuvor beschriebenen Verzweigungen der zweiten Ordnung ausgehen. Als letztes werden die Durchmesser gemessen, die die Weidenzweige in den jeweiligen Höhenabschnittsgrenzen aufweisen. (H1 bei 0 cm, H2 bei 37,5 cm, H3 bei 75 cm und H4 bei 112,5 cm). Diese werden mittels Schiebelehre ermittelt.

Um in weiterer Folge, indirekt über das Blatttrockengewicht, Aussagen in Bezug auf die Blattfläche treffen zu können, werden die jeweiligen Höhenabschnitte der Weidenzweige abgetrennt und die gesamten Blätter händisch vom Holz abgezupft. Blatt- und Holzteile werden nach Höhenstufen getrennt, im Trockenschrank vier Tage lang bei 105 °C getrocknet. Diese Maßnahme ist notwendig um den Wasseranteil der Blatt- und Holzteile auf ein Minimum, annähernd 0% zu reduzieren ("Gewichtskonstanz"). Somit bestehen gleiche Bedingungen um Blatt- und Holztrockengewicht aller Weidenzweige zu eruieren und zu vergleichen. Die Messung erfolgt mittels einer Feinwaage, die das Trockengewicht [g] auf Hundertstel genau angibt. Das nächste Unterkapitel gibt Aufschluss über die Vorgangsweise zur Ermittlung der Blattfläche.

5.2 Blattflächenbestimmung

Eine der wichtigsten Methoden um die photosynthetisch aktive Blattfläche eines Pflanzenbestandes zu ermitteln ist der Blattflächenindex (BFI, englisch LAI von *leaf area index*). Er beschreibt das Verhältnis der gesamten Blattoberfläche eines Bestandes zur gesamten Bestandsgrundfläche und gibt somit Information über die Belaubungsdichte eines Pflanzenbestandes. Existieren keine Blätter oder Nadeln beträgt der LAI = 0, entspricht die Blattfläche der horizontalen Bodenfläche ist er = 1, ist die Blattfläche doppelt so groß wie die Bodenfläche ist er = 2 usw. Der maximale Wert des LAI beträgt 16 und wird in den immergrünen Wäldern der Westküste der USA erreicht. Bei einem LAI > 1 sind nicht mehr alle Blätter bzw. Nadeln von oben zu sehen (vgl. WOHLRAB et al. 1992)

Anders als bei der Erhebung des Blattflächenindex wird im Zuge des Beschattungsversuches der Faktor Bestandsgrundfläche nicht berücksichtigt. Ermittlungen konzentrieren sich ausschließlich auf die Blattflächen, die Belaubungsdichte der einzelnen Weidenzweige mit ihren vier Höhenstufen und auf die Gesamtblattfläche der Hecken an den drei Messtagen. Bei je zwei Referenzruten pro Messtag wird neben den Messdaten, die auch bei den Versuchszweigen erhoben wurden, die Blattfläche (Anhang 2) genau eruiert. Im Anschluss werden die erhobenen Flächenwerte auf die einzelnen Weidenzweige der Versuchshecken der jeweiligen Messung aufgerechnet. Die Kennzeichnung der Referenzzweige erfolgt durch Großbuchstaben von A – F.

Messung 1 am 25.05.2011	 Referenzzweige A und B
Messung 2 am 12.07.2011	– Referenzzweige ${\bf C}$ und ${\bf D}$
Messung 3 am 27.09.2011	 Referenzzweige E und F

Für die Erhebung der Blattfläche werden die Blätter dieser Referenzzweige nach den Abschnitten der einzelnen Höhenstufen gruppiert auf das Einleseglas eines Flachbettscanners gelegt und gescannt. Mit Hilfe des Programmes "Adobe Photoshop CS4 Extended" wird die Blattfläche ermittelt. Dazu werden die Blattflächen unter Verwendung des Tools "Zauberstab" markiert, der Toleranzbereich von 50 auf 100 Pixel erhöht und mit der Histogrammfunktion die Pixelzahl der markierten Fläche ermittelt. Anhand der Pixelzahl einer bestimmten Fläche (DIN A4 Blatt) bei gleicher Einstellung konnte so die Blattfläche ermittelt werden. In Abbildung 17 wird einer der zahlreich durchgeführten Blattscans dargestellt. Die gesamten Blattscans aller Referenzzweige können im Anhang 3 genauer betrachtet werden. Die Änderung des Toleranzbereiches bewirkt durch eine Erhöhung der Pixel eine exaktere Markierung des Blattumrisses. Die beim Scanvorgang entstehenden Schattenbereiche der Blätter werden demgemäß nicht mitgerechnet und aufgenommen.

Abbildung 17 Blattscann: Scan1_Referenzzweig D_Höhenstufe 3_Messung 2_12.07.2011

Wie auch die Weidenzweige des Modellversuches werden die sechs Referenzzweige nach Aufnahme der benötigten Messgrößen vier Tage lang bei 105 ℃ getrocknet und gewogen. Anschließend wird für jeden Messtag ein durchschnittlicher Faktor der zwei jeweiligen Referenzzweige berechnet (z.B.: Messtag 2 Referenzzweig C und D). Der Faktor resultiert aus dem Verhältnis aus Blattfläche [cm²] und Blattrockengewicht [g]. In weiterer Folge wird die Blattfläche aller Versuchszweige anhand der jeweilig ermittelten Faktoren hochgerechnet. Dieser Vorgang wird für alle vier Höhenstufen der Zweige eines Messtages angewendet. Nun hat jeder Zweig und jede Höhenstufe eine errechnete, repräsentative Blattfläche, die den Strahlungsdurchgang und den Schattenwurf maßgeblich gestaltet. In Abbildung 18 befindet sich ein Auszug aus dem Excel Dokument, der die Umrechnungsfaktoren zur Blattflächenermittlung beinhaltet.

Messung	RZ	cm ²	Blatt [g]	Verhältnis cm²/Blatt [g]	Mittelwert Verhältnis AB CD EF
M1 - 25.05.2011	A	2447.1513430	19.11	128.0560619	
	В	1715.4422060	<mark>14.3</mark> 7	119.3766323	123.7163471
NO. 10.07.0011		4222 0424050	14.05	142 444000	
M2 - 12.07.2011	C	1328.9121850	11.85	112.1444882	
	D	1463.2879530	12.2	119.9416355	116.0430618
M3 - 27.09.2011	E	1106.7973290	11.27	98.20739388	
	F	785.0683855	8.5	92.36098653	95.2841902

Abbildung 18 In diesem Tabellenausschnitt werden die Blattfläche [cm²], das Blatttrockengewicht, das Verhältnis aus Blattfläche zu Blatttrockengewicht und die Mittelwerte dieser Verhältniswerte der jeweiligen zwei Referenzzweige (RZ) zahlenmäßig festgehalten. Die Umrechnungsfaktoren zur Blattflächenermittlung werden im grünen Bereich der Tabelle dargestellt.
6 Aufbereitung der Messdaten

Wie im Kapitel 4.2 "Aufbau und Funktionsweise des Messroboters" beschrieben, nahm der Messroboter während des gesamten Modellversuches 288.000 Strahlungsintensitätswerte auf. Vier PAR-Sensoren und vier Globalstrahlungssensoren ermittelten in vier verschiedenen Entfernungen zur Hecke Messwerte. Um Aussagen bezüglich der relativen Gesamtstrahlung treffen zu können, erhoben zwei Referenzsensoren die Strahlungsintensität im unbeschatteten Bereich des Modells.

Nach Abschluss des Modellversuches wurden die vom Datenlogger gespeicherten Datenstränge für die Interpretation aufbereitet. Dies erfolgte mittels Microsoft Excel, in dem die ermittelten Daten ausgewertet und sortiert wurden. Um Fehlmessungen, meist verursacht durch Wolkenbildung oder Windeinfluss, eruieren zu können und um sie im Anschluss aus der Messreihe zu streichen. wurden jeder Einzelmessung zum Versuchszeitpunkt Messnummer und Messzeitpunkt am Datenlogger zugeteilt. Dieser Vorgang trägt wesentlich zum Erhalt genauer Ergebnisse bei. Im Anhang 1 werden die Aufnahmeprotokolle der einzelnen Messtage als "Notizen zum Messtag" beigefügt. Ein Ausschnitt des Aufnahmeprotokolls des 12.07.2011 wird in Abbildung 19 gezeigt. Diese geben zusätzlich zu den am Datenlogger gespeicherten Informationen Auskunft über Zeitpunkt, Steckweise, Bestandsdichte und aktuelle Witterungsverhältnisse.

Uhrzeit	Bedeckung in %	gleich- mäßig	flächig	Foto v. vorne	Fisheye	Bemerkungen
10:01	100%	x	x	x	1,2	PLATTE
10:04	100%	x	x	x	1,2	PLATTE
10:09	100%	x	x	x	4	leicht bedeckt (durchzogen)
10:12	100%	x	x	×	4	leicht bedeckt, am Schluß runtergeflogen
10:18	90%	×		x	6	leicht bedeckt
10:20	90%	x		x	6	leicht bedeckt
10:25	80%	x		x	8	leicht bedeckt
10:27	80%	x		x	8	leicht bedeckt
10:32	70%	x		x	10	noch dichter
10:34	70%	x		x	10	noch dichter
10:38	60%	x		×	12	leicht bedeckt

Abbildung 19 Ausschnitt des Aufnahmeprotokolls des zweiten Messtages am 12.07.2011

Zusätzlich wurden bei jeder Messung Frontalfotos gemacht, deren Fotonummern protokolliert worden sind. Im Anhang 12 (CD-ROM) werden die Frontalfotos des ersten Messtages, dem 25.05.2011 für die Dichten 80%, 50% und 20%, bei gleichmäßiger und flächiger Steckweise zur Übersicht gegenübergestellt.

Der erste Schritt im Zuge der Datenaufbereitung war es, die erhobenen Strahlungsdaten aller Messdurchgänge in eine einheitliche Länge zu bringen, sodass jede Messung mit 480 Messpunkten gleich ist. Um sich in den langen Excel-Datenblättern besser orientieren zu können, war es hilfreich, sich an die jeweiligen Recordnummern, Aufnahmezeitpunkte (Timestamps) und die aufgezeichneten Signale der Taster zu halten. Um möglichst exakte Strahlungswerte der jeweiligen Sensoren zu erhalten, wurden Mittelwerte von den Wiederholungen berechnet. Zuletzt wurden die Strahlungswerte der Globalstrahlungssensoren [W/m²] und der PAR-Sensoren [µmoll/m²/s] mittels ihres Verhältnisses zu den Referenzsensoren berechnet, um Aussagen über die relative Gesamtstrahlung [%] treffen zu können. Die mithilfe von Excel ausgewerteten "Rohdaten" befinden sich in bearbeiteter und unbearbeiteter Form auf der CD-ROM im Anhang 12.

7 Ergebnisse

Die erhobenen Daten des Modellversuches und der Vegetationsaufnahmen stellen das Fundament dar, auf dem die Ergebnisse dieser Arbeit aufbauen. Dieses Kapitel soll Zusammenhänge und Wechselwirkungen, der durch Ufervegetation hervorgerufenen Beschattung und der Strahlungsintensität aufzeigen und diesbezügliche Trends im Lauf einer Vegetationsperiode untersuchen.

7.1 Ergebnisse der Vegetationsaufnahmen

7.1.1 Blatttrockengewicht, Holztrockengewicht und Basisdurchmesser

Die Ergebnisse des Blatt- und Holztrockengewichtes der Vegetationsaufnahmen, die im Lauf der Vegetationsperiode an drei Tagen stattgefunden haben, weisen deutliche Ungleichheiten auf. Während sich das Blatttrockengewicht [g] im Zeitraum von 25.05.2011 (Messtag 1) bis 27.09.2011 (Messtag 3) kontinuierlich verringert, nimmt das Holztrockengewicht [g] im selben Zeitraum (siehe Abbildung 23) zu. In Abbildung 20 wird die Abnahme des gesamten Blatttrockengewichtes der jeweiligen Messungen innerhalb des Versuchszeitraumes dargestellt.

Abbildung 20 Gesamtblatttrockengewicht der jeweiligen Messungen im Versuchsverlauf(M1 25.05.2011, M2 12.07.2011, M3 27.09.2011)(M1, M2, M3 = Messungen 1,2,3)

Die gesamte Blattmasse des ersten Versuchstages am 25.05.2011 ergab 892,89 g. Bis zum 12.07.2011 verringerte sich diese auf 693,93 g, bis sie am letzten Messtag nur noch 358,83 g betrug. Um in weiterer Folge Aussagen bezüglich der Beschattungsqualität der Versuchshecken treffen zu können, wird auf die Aufteilung der Blattmasse in die vier Höhenstufen in der Abbildung 21 näher eingegangen.

In größerem Ausmaß verringert sich das Blatttrockengewicht der unteren Höhenstufen der Weidenhecke, welche nach Entwicklung der Blätter im Versuchsverlauf vergleichsweise weniger Strahlung genießen. Durch die Beschattung der oberen Höhenstufen werfen die unteren Blattschichten im Lauf der Vegetationsperiode Blätter ab. Wie aus Abbildung 22 ersichtlich wird, ist die Blattmasse [g] der Höhenstufe vier am dritten und letzten Messtag des Versuches deshalb deutlich höher als die der Höhenstufe drei.

Das Blatttrockengewicht aus H1 (Höhenstufe 1) der Einzelzweige im Durchschnitt sinkt im Lauf des Versuchszeitraumes (25.05.2011 – 27.09.2011) von 0,15 g auf 0,01 g (93%). Das Blatttrockengewicht aus H2 verringert sich im selben Zeitraum von 3,28 g auf 0,59 g (82%). Bei H3 von 7,8 g auf 2,73 g (65%) und bei H4 von 7,8 g auf 4,29 g (45%).

Abbildung 22 Durchschnittliches Blatttrockengewicht der einzelnen Weidenzweige im Lauf der Vegetationsperiode.

Wie schon erwähnt, nimmt die Summe des Holztrockengewichtes der Weidenzweige während des Versuchsverlaufes zu. Da alle Weidenzweige für den Stecktisch auf 150 cm unter Zweigspitze geschnitten wurden, kann jedoch nicht davon ausgegangen werden, dass das Dickenwachstum der Zweige und somit auch das Holztrockengewicht im Lauf des Versuchszeitraumes angestiegen ist. Aus den Excel – Datenblättern der Vegetationsaufnahmen (Anhang 2) wird ersichtlich, dass die Weidenzweige im Lauf der drei Messungen jeweils um ein Minimum dicker geschnitten wurden. Solche Ungenauigkeiten von weniger als einem halben mm wirken sich bei den 47 Zweigen einer Modellhecke bereits maßgeblich aus. In Abbildung 23 wird der Anstieg des Holztrockengewichtes dargestellt, um die Größenordnung der Holzmasse ersichtlich zu machen.

Abbildung 23 Holztrockengewicht im Verlauf der drei Messtage.

Um Aussagen bezüglich des Zusammenhangs treffen zu können, der zwischen Blatt- und Holzmasse der drei bemessenen Versuchshecken (25.05.2011, 12.07.2001 und 27.09.2011) sowie zwischen den Einzelzweigen der Weidenhecke besteht, wurden unter anderem die prozentuellen Anteile der Blattmasse der jeweiligen Messtage untersucht. Diese stellen grobe Richtwerte dar, die einen Überblick über die Gewichtung von Blatt- und Holzteilen der Modellversuche ermöglichen und Einschätzungen im Freiland erleichtern sollen. Abbildung 24 beschreibt anhand einer Diagrammserie den Blattanteil der drei Die Holztrockengewichte der jeweiligen Messtage in Prozenten. 47 Weidenzweige werden 100 Prozent gleichgesetzt und die Blattmasse als prozentueller Anteil der Holzmasse dargestellt.

Abbildung 24 Prozentueller Anteil der Blattmasse [g] an jedem Messtag.

Wie der Abbildung 24 zu entnehmen ist, verringert sich der Anteil der Blattmasse im Versuchszeitraum deutlich. Der Weidenzweig Nr. 33 der dritten und letzten Messung weist mit 5,1 % den geringsten Anteil an Blattmasse [g] im Vergleich zur Holzmasse [g] auf. An diesem Zweig wurde auch das niedrigste Blatttrockengewicht aller drei Messtage gemessen. Der Weidenzweig Nr. 43 der ersten Messung am 25.05.2011 hingegen weist mit 54,3 % den höchsten Anteil an Blattmasse zu Holzmasse im gesamten Versuchsverlauf auf. Nur an einem Weidenzweig dieses Messtages wurde ein höheres Blatttrockengewicht gemessen. Der dem Durchschnitt aller Einzelzweige betreffend des Blattanteils [%] (dieser beträgt in etwa 28,3 %) am ehesten entsprechende Zweig ist der Zweig Nr. 31 aus der zweiten Messung. An diesem wurde ein Blattanteil von 28,1 % berechnet. In der Abbildung 25 werden nun der Zweig Nr. 43 aus der ersten Messung (höchster Blattanteil [%] im Versuchsverlauf), der Zweig Nr. 31 aus der zweiten Messung (der dem Durchschnitt des Blattanteils [%] aller Einzelzweige am ehesten entsprechende Zweig) und der Zweig Nr. 33 aus der dritten Messung (geringsten Blattanteil [%] im Versuchsverlauf) zum Vergleich bildlich dargestellt.

Abbildung 25 Zweig Nr.43 mit höchstem Blattanteil [%] (Bild links - 25.05.2011), Zweig Nr.31 mit durchschnittlichem Blattanteil (Bild mittig – 12.07.2011), Zweig Nr.33 mit geringstem Blattanteil (Bild rechts – 27.09.2011)

Anhand einer Gegenüberstellung der drei Weidenzweige aus Abbildung 25 können Blatttrockengewicht [g], Holztrockengewicht [g], Höhe des ersten Astes [cm], Anzahl der Verzweigungen zweiter Ordnung, und die Holzdurchmesser [cm] der jeweiligen Höhenabschnittsgrenzen in Abbildung 26 verglichen werden.

Zweignr.	Blatttrockengewicht [g]	Holztrockengewicht [g]	Höhe 1 Ast [cm]	Verzweigungen 2 O.	Zweigdurchmesser [cm] H1	H2 [cm]	H3 [cm]	H4 [cm]
43 - M1	26.86	49.5	15	8	0.90	0.80	0.50	0.40
31 - M2	16.52	58.8	61	7	1.00	0.90	0.70	0.40
33 - M3	2.56	50.16	42	14	0.90	0.80	0.60	0.30

Abbildung 26 Vegetationsdaten zu den Zweigen Nr. 43 am 25.05.2011, Nr. 31 am 12.07.2011 und Nr. 33 am 27.09.2011.

Da die dargestellten Zweige aus verschiedenen Einzelmessungen innerhalb der Vegetationsperiode stammen und die Blattmasse in diesem Zeitraum stark abnimmt, soll diese nicht in direktem Bezug zu anderen Messgrößen, wie zum Beispiel dem Zweigdurchmesser der 4 Höhenstufengrenzen, betrachtet werden. Für solche Vergleiche eignen sich Zweige, die am selben Messtag geschnitten wurden. In Abbildung 27 wird anhand einer Serie von Tortendiagrammen die Zusammensetzung von Holz- und Blattmasse der drei Messtage dargestellt.

im Versuchsverlauf (M1- 25.05.2011, M2 - 12.07.2011, M3 - 27.09.2011)

Ein weiterer Zusammenhang aus Blattmasse und Holzmasse innerhalb des Versuchszeitraumes, der in etwa einer Vegetationsperiode entspricht, ist in Abbildung 28 dargestellt. Aus dem Diagramm geht hervor, dass das Holztrockengewicht der Weidenzweige im Gegensatz zum Blatttrockengewicht vergleichsweise konstant bleibt. Dies resultiert aus den für die Modellhecke festgelegten Basisdurchmessern, da beim Schnitt darauf geachtet wurde, Zweige auszuwählen, die Durchmesser möglichst innerhalb des Bereiches zwischen 0.8 cm und 1,2 cm aufweisen. Des Weiteren wird ersichtlich, in welcher Größenordnung die Abnahme der Blattmasse im Lauf der Versuchszeit aufgrund des stetigen Blattabwurfes der immer stärker beschatteten unteren Blattschichten stattfindet.

Abbildung 28 Zusammenhang Holztrockengewicht zu Blatttrockengewicht im Lauf der Versuchszeit, dargestellt für alle drei Messtage (25.05.2011, 12.07.2011 und 27.09.2011).

Um auf den Anstieg der Blattmasse mit steigendem Holztrockengewicht der einzelnen Messtage einzugehen und diesen genau zu definieren, wurden die Zusammenhänge der Gewichte aus Blatt und Holz für jeden Messtag separat anhand von Diagrammen dargestellt. In diesen werden die Anstiege der jeweiligen Einzelmessungen des Versuchsverlaufes durch die Anwendung polynomischer Trendlinien deutlich gemacht und exakt definiert. Eines dieser Diagramme (M1 am 25.05.2011) wird in Abbildung 29 gezeigt. Die Diagramme aller drei Messtage werden dem Anhang 12 (CD-ROM) beigefügt.

Abbildung 29 Zusammenhang Holztrockengewicht zu Blatttrockengewicht am 25.05.2011, dargestellt durch eine polynomische Trendlinie.

Die Beschreibung von Datensätzen mittels polynomischer Trendlinie ist eine oft angewendete Darstellungsmethode im Zuge einer Korrelationsanalyse. R² wird als Bestimmtheitsmaß bezeichnet. Je näher R² gegen 1 geht, desto höher ist die Wahrscheinlichkeit einer Abhängigkeit und umso näher liegen die einzelnen Messpunkte an der Trendlinie. Je näher R² gegen 0 geht, desto niedriger ist diese Wahrscheinlichkeit. Ist R² gleich 0, bedeutet dies, dass kein Zusammenhang zwischen den Werten der x- und y- Achse besteht. Wie aus dem Diagramm 29 ersichtlich wird, betrug R^2 am 25.25.2011, dem ersten Messtag 0,666. Der Wert dieses Bestimmtheitsmaßes erlaubt die Annahme eines direkten Zusammenhanges, der zwischen Blatttrockengewicht und Holztrockengewicht besteht. Es kann somit davon ausgegangen werden, dass die Blattmasse [g] eines Weidenzweiges mit zunehmendem Holztrockengewicht ansteigt.

7.1.2 Blattfläche

Ein Indiz für die Dichte von Pflanzenbeständen ist die Blattfläche. Die erhobenen Werte der Blattflächen der drei Messtage resultieren aus den Referenzzweigen A – F, für die zusätzlich zum Blatttrockengewicht die Blattflächen anhand von Blattscans ermittelt wurden, um diese in weiterer Folge mittels Umrechnungsfaktor auf die Versuchszweige der jeweiligen Messungen übertragen zu können. Somit wurde für jeden Einzelzweig und für jede seiner vier Höhenstufen, welche den Strahlungsdurchgang und die Beschattung der Versuchsfläche maßgeblich gestalten, eine repräsentative Blattfläche errechnet. Aus der Abbildung 30 wird ersichtlich, dass sich die Abnahme der Blattfläche innerhalb des Versuchszeitraumes der drei Messungen ident der Abnahme des Blatttrockengewichtes (Abbildung 20) desselben Zeitraumes verhält.

Abbildung 30 Gesamtblattfläche der jeweiligen Messungen im Versuchsverlauf (M1 25.05.2011, M2 12.07.2011, M3 27.09.2011)

Wie schon in den Ergebnissen der Blatttrockenmasse interpretiert, verringert sich auch die Blattfläche bis zur dritten Messung, vor allem die der unteren Höhenschichten, welche nach Laubentwicklung vergleichsweise weniger Strahlung bekommen. Durch die Beschattung höher gelegener Blattschichten werfen untere Höhenstufen im Verlauf der Vegetationsperiode Blätter ab. Die Aufteilung der Blattfläche in vier Höhenstufen wird in Abbildung 31 im Verlauf der drei Messtage dargestellt.

Abbildung 31 Blattflächensummen der jeweiligen Höhenstufen im Versuchsverlauf, von 25.05.2011 – 27.09.2011.

Die Summe der Blattfläche der Höhenstufe eins, die aus allen Einzelzweigen der jeweiligen Versuchshecke gebildet wird, sinkt im Lauf des Versuchszeitraumes (25.05.2011 – 27.09.2011) von 870 cm² auf 52 cm². Da in der ersten Höhenstufe im Allgemeinen relativ wenig Blattfläche vorhanden ist und viele Einzelzweige kein einziges Blatt in dieser untersten Höhenschicht aufwiesen, ist die Anzahl der Quadratzentimeter an Blattfläche hier vergleichsweise gering ausgefallen. In Höhenstufe zwei ergab die Summe der Blattflächen am 25.05.2011, dem ersten Messtag 19.061 cm². Dieser Wert verringerte sich bis zum 27.09.2011, dem zweiten Messtag auf 2.660 cm². Die Summe der Blattfläche der Höhenstufe drei sank im Lauf der Messtage von 45.185 cm² auf 12.248 cm². In der Höhenstufe vier wurde im Lauf des Versuches die höchste Blattfläche erhoben. Hier sinkt die Summe der Blattfläche von der ersten Messung im Frühjahr bis zur letzten Messung im Spätsommer von 45.354 cm² auf 19.230 cm².

Um diese Verringerung der Blattfläche, die innerhalb des Versuchszeitraumes beobachtet wurde, erfassbarer und übersichtlicher darzustellen, wird die Abnahme nun in Prozentwerten ausgedrückt. Zwischen dem ersten Versuchstag am 25.05.2011 und dem letzten Versuchstag am 27.09.2011,

betrug die Abnahme der Blattfläche der ersten Höhenstufe 94%, der zweiten Höhenstufe 86%, der dritten Höhenstufe 73% und der vierten Höhenstufe 58%. Anhand dieser, stellvertretend für die einzelnen Höhenschichten ermittelten Werte, kann gedeutet werden, dass die Blattfläche im Lauf der Vegetationsperiode umso geringer ausfällt, desto tiefer in einen geschlossenen Pflanzenbestand vorgedrungen wird. Die durchschnittliche Abnahme der Blattflächen aller Höhenstufen, die in diesem Zeitraum (25.05.2011 – 29.07.2011) stattfindet, macht 78% aus.

Um 7.3 "Zusammenhang im Kapitel zwischen Vegetation und Strahlungsdurchlässigkeit", die Verortung von Blattflächenwerten am Stecktisch besser mit dem durch die Hecke verursachten Strahlungsrückhalt vergleichen zu können, wurden die Summen der Blattflächen ermittelt, die pro 10 cm Stecktisch den Strahlungsdurchgang mindern sollen. Dies erfolgt anhand von Diagrammserien, die im Zuge des Modellverlaufes gemessenen Steckdichten darstellen. Genauere Untersuchungen wurden für die Steckdichten 80%, 50% und 20% der drei Messtage, bei gleichmäßiger und flächiger Steckweise durchgeführt. Diese Diagrammserien sind dem Anhang 12 (CD-ROM) beigefügt. Abbildung 32, 33 und 34 zeigen Ausschnitte dieser Diagrammserie, in denen die Aufteilung der Blattfläche auf den Stecktisch für den ersten Messtag am 25.05.2011 gezeigt wird. Dargestellt wird jeweils die gleichmäßige und die flächige Steckweise für die Steckdichten 80%, 50% und 20%. Zum Vergleich kann in Abbildung 35, 36 und 37 die Summe der Blattflächen dieser Steckdichten (80%, 50% und 20%) bei gleichmäßiger und flächiger Steckweise gleichen Messtages (25.05.2011) studiert werden. Die gesamte des Diagrammserie ist dem Anhang 12 (CD-ROM) beigefügt. Sie enthält die Ergebnisse aller Messtage.

Abbildung 32 Summen der Blattflächen pro 10 cm Stecktisch. Dargestellt für die gleichmäßige und die flächige Steckweise bei 80% Steckdichte am 25.05.2011

Abbildung 33 Summen der Blattflächen pro 10 cm Stecktisch. Dargestellt für die gleichmäßige und die flächige Steckweise bei 50% Steckdichte am 25.05.2011

Abbildung 34 Summen der Blattflächen pro 10 cm Stecktisch. Dargestellt für die gleichmäßige und die flächige Steckweise bei 20% Steckdichte am 25.05.2011

Abbildung 35 Summe der Blattflächen der Steckdichte 80% bei gleichmäßiger und flächiger Steckweise, aufgeteilt auf die vier Höhenstufen - 25.05.2011

Abbildung 36 Summe der Blattflächen der Steckdichte 50% bei gleichmäßiger und flächiger Steckweise, aufgeteilt auf die vier Höhenstufen - 25.05.2011

Abbildung 37 Summe der Blattflächen der Steckdichte 20% bei gleichmäßiger und flächiger Steckweise, aufgeteilt auf die vier Höhenstufen - 25.05.2011

Da die Summe der Weidenzweige nach der jeweiligen Entnahme zur Erlangung der gewünschten Untersuchungsdichten bei der gleichmäßigen Steckweise und der flächigen Steckweise gleich bleibt, unterscheiden sich die Blattflächen der Höhenstufen der beiden Steckmodelle nur minimal. Starke Veränderungen der Blattfläche werden nur im direkten Vergleich unterschiedlicher Messtage der Versuchsperiode festgestellt.

Die Gegenüberstellung der beiden Auslichtungsmethoden zur Verringerung der jeweiligen Heckendichten wird in den Abbildungen 32, 33 und 34 dargestellt, um Aussagen bezüglich der Aufteilung der Blattfläche auf die neun Teilbereiche des Stecktisches treffen zu können. Zwischen der gleichmäßigen und der flächigen Steckweise besteht ein grundlegender Unterschied, der aus der Streuung der Blattfläche am Stecktisch resultiert. Während sich die Blattfläche beim flächigen Stecksystem entsprechend der jeweiligen Steckdichte auf einen geschlossenen Teilbereich konzentriert, verteilt sie sich beim gleichmäßigen Ungleichheit innerhalb der zwei Systeme stellt sich die Frage, ob sie sich auch hinsichtlich des Strahlungsdurchganges unterscheiden. Auf diese Frage wird unter anderem im nächsten Kapitel 7.2 eingegangen.

7.2 Ergebnisse der Strahlungs- und Beschattungsleistung

Zehn Sensoren zur Ermittlung der Strahlungsintensität, jeweils fünf PAR- und fünf Globalstrahlungssensoren, lieferten innerhalb von drei Messtagen 288.000 Einzelmesswerte. Zwei Sensoren wurden als Referenzsensoren eingesetzt. Die von ihnen gemessenen Strahlungswerte werden dem Wert 100% gleichgesetzt, um die Ergebnisse der vier PAR-Sensoren und der vier Globalsensoren, die die Versuchsfläche vermessen, in relativen Strahlungswerten ausdrücken zu können. Zur Auswertung, der Interpretation und der grafischen Darstellung dient dieser einzelnen der Mittelwert von den Sensoren gemessenen Strahlungsdaten, der für jede der erprobten Steckdichten hinsichtlich des Strahlungsdurchganges untersucht wird um folglich auf die jeweiligen Beschattungsleistungen schließen zu können.

Wie den Abbildungen 38, 39 und 40 zu entnehmen ist, liegen die aufgenommenen Daten der relativen Gesamtstrahlung der Fläche, die von den PAR- und den Globalstrahlungssensoren innerhalb der drei Messtage des Versuchsverlaufes für die einzelnen Steckdichten ermittelt wurden, sehr nahe beieinander. Die maximale Abweichung der aufgenommenen Werte der PARund der Globalstrahlungssensoren wurde am ersten Messtag, dem 25.05.2011 (bei klarem Himmel) und zwar beim vorletzten Messdurchlauf der flächigen Steckweise, also bei 20% Steckdichte gemessen. Zu diesem Zeitpunkt betrug die Differenz zwischen den durchschnittlichen Strahlungswerten der PAR- und der Globalstrahlungssensoren 6,7%. Dies kann in der Abbildung 38 näher betrachtet werden. Im Durchschnitt beträgt diese Abweichung im Verlauf des gesamten Modellversuches, das heißt für alle Messtage, alle Steckdichten und beide Stecksysteme 2,9%. Bei gleichmäßiger Steckweise verhält sich der Strahlungsverlauf an allen drei Messtagen (25.05.2011, 12.07.2011 und 27.09.2011) und bei allen prozentuellen Anteilen der Bestandsdichten fast ident. Am ehesten decken sich die aufgenommenen Werte der PAR- und Globalstrahlungssensoren bei der dritten Messung am 27.09.2011 die bei klarem Himmel durchgeführt wurde. Die vergleichsweise höchsten Differenzen der zwei Sensorenbauarten wurden am 12.07.2011 bei bewölktem Himmel festgestellt.

Aufgrund dieser *deutlichen Übereinstimmung der Ergebnisse der PAR-Sensoren und der Globalstrahlungssensoren* werden diese im Zuge der Auswertung nicht getrennt voneinander behandelt.

Abbildung 38 Relative Gesamtstrahlung und relative Beschattung der Fläche nach Durchgang durch die Weidenhecke für den 25.05.2011. Dargestellt wird der Verlauf der Strahlungsintensität bei Abnahme der Heckendichte für die gleichmäßige und die flächige Steckweise bei **klarem Himmel**. Die Strahlungsintensitätswerte sind bei der flächigen Steckweise an diesem Messtag wie erwartet höher ausgefallen als die der gleichmäßigen Steckweise.

Abbildung 39 Relative Gesamtstrahlung und relative Beschattung der Fläche nach Durchgang durch die Weidenhecke für den 12.07.2011. Dargestellt wird der Verlauf der Strahlungsintensität bei Abnahme der Heckendichte für die gleichmäßige und die flächige Steckweise bei **bewölktem Himmel**. Hier sind die Strahlungsintensitätswerte bei der flächigen Steckweise niedriger ausgefallen als bei der gleichmäßigen Steckweise. Grund dafür ist die niedrigere Strahlungsleistung die während der Messungen der gleichmäßigen Steckweise erfasst wurde.

Abbildung 40 Relative Gesamtstrahlung und relative Beschattung der Fläche nach Durchgang durch die Weidenhecke für den 27.09.2011. Dargestellt wird der Verlauf der Strahlungsintensität bei Abnahme der Heckendichte für die gleichmäßige und die flächige Steckweise bei klarem Himmel. Wie auch am 25.05.2011 sind die Strahlungsintensitätswerte bei der flächigen Steckweise an diesem Messtag höher ausgefallen als die der gleichmäßigen Steckweise.

Wie erwartet nehmen die Strahlungsintensitätswerte, die stellvertretend für die gesamte Versuchsfläche ermittelt wurden, mit der Abnahme der erprobten Steckdichten (100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, und 10%) bei der gleichmäßigen als auch bei der flächigen Steckweise kontinuierlich zu, während die Beschattungsleistung bei einer Verminderung der Bestandsdichte abnimmt.

Der Anstieg der Strahlungskurven also die Abnahme des Schattenwurfes die an den jeweiligen Messtagen, erwirkt durch das Auflichten der Versuchshecke untersucht wurde, kann in den Abbildungen 38, 39 und 40 betrachtet werden. Anhand einer Gegenüberstellung der Strahlungsintensitätswerte der PAR-Sensoren sollen die Effekte der beiden Stecksysteme, als auch die dem jeweiligen Messtag entsprechenden Strahlungs- und Beschattungsleistungen bei klarem und bewölktem Himmel beschrieben und verglichen werden. In den Messprotokollen (Anhang 1) der einzelnen Versuchstage, in denen Notizen zu den Versuchsverhältnissen gemacht wurden, wird zusätzlich auch auf etwaige Störungen, hervorgerufen durch Witterungs- oder Strahlungsänderungen eingegangen.

Messung 1 - 25.05.2011

Um genauer auf die Anstiege der Strahlungsintensität mit abnehmender Steckdichte bei gleichmäßiger und flächiger Steckweise einzugehen, werden die jeweiligen Anstiege nun in Prozent ausgedrückt. Dies erfolgt anhand der steigt Aufnahmewerte der PAR-Sensoren. Am ersten Messtag der durchschnittliche Messwert der PAR-Sensoren bei der gleichmäßigen Steckweise von 11% auf 70% (relative Strahlung) an. Wie aus der Abbildung 38 ersichtlich wird, verläuft der Anstieg der Strahlungskurve hier gleichmäßig. Bei der flächigen Steckweise steigt der durchschnittliche Messwert, der von den PAR-Sensoren ermittelt wurde, von 11% auf über 90% (relative Strahlung). Außerdem steigt die Strahlungskurve bei der flächigen Steckweise vergleichsweise steiler an. Ein erhöhter Anstieg der Kurve ab der Steckdichte 40% kann beobachtet werden. Ab diesem Messpunkt steigt die Strahlungsdurchlässigkeit rasant an und erreicht gegen Ende des Messdurchganges bei 10% beinahe die 100% - Marke des Referenzsensors.

Aus dem Vergleich der Intensitätskurven der gleichmäßigen Steckweise und der flächigen Steckweise wird klar, dass der Strahlungsdurchgang bei der flächigen Steckweise höher ist als bei der gleichmäßigen Steckweise. Nach dem Verlauf der beiden Strahlungskurven kann festgestellt werden, dass das gleichmäßige Stecksystem am 25.05.2011 bei klarem Himmel demnach mehr Beschattungspotential aufweist als das flächige Stecksystem. Die Qualität und die Quantität des Schattenwurfes fallen beim gleichmäßigen Stecksystem somit höher aus als beim flächigen Stecksystem.

Am 25.05.2011 wurden in den Aufnahmeprotokollen keine groben Störfälle, hervorgerufen durch eine Änderung der Witterung, vermerkt. Ausschließlich eine kleine Windböe am letzten Sensorenpaar wurde bei der Messung 80% gleichmäßige Steckweise um 11:11 Uhr vermerkt. Der kleine Sprung der Strahlungskurve bei dieser Messung resultiert vermutlich aus dieser Windböe. Es kann sein, dass die vergleichsweise dünnen Triebspitzen der Weidenhecke durch vom Wind ausgelöste Bewegungen mehr Strahlung durchließen.

Messung 2 - 12.07.2011

Am zweiten Messtag steigt der durchschnittliche Messwert der PAR-Sensoren bei der gleichmäßigen Steckweise von 17,5% auf 79% (relative Strahlung) an. Bis auf einen kleinen Sprung, der Strahlungskurve, bei 50% gleichmäßiger Steckweise, steigt diese gleichmäßig an. Bei der flächigen Steckweise steigt der durchschnittliche Messwert, der von den PAR-Sensoren ermittelt wurde, von 17,5% auf 77% (relative Strahlung). Die Kurve der Strahlungsintensität steigt einheitlich an.

Auffällig ist jedoch, dass die Strahlungswerte an diesem zweiten Messtag am 12.07.2011 bei der flächigen Steckweise niedriger ausfallen als die der gleichmäßigen Steckweise. Die Qualität und die Quantität des Schattenwurfes dieser Messung fallen beim flächigen Stecksystem unerwartet höher aus, allerdings bei bewölktem Himmel.

Dies wird anhand der Abbildung 39 dargestellt. Die Voraussetzung, die drei Messversuche an Tagen mit gänzlich unbedecktem Himmel, also maximaler Strahlungsleistung, durchzuführen, konnte aufgrund einer unvorhersehbaren Änderung, die am zweiten Messtag während der Messungen des gleichmäßigen Stecksystems, die Strahlungswerte minderte, nicht erfüllt werden. Da der Himmel am zweiten Messtag, während der ersten Hälfte der Strahlungsmessungen, also bei der Messung des gleichmäßigen Stecksystems, durchgehend bewölkt war, sind diese Messwerte untypischerweise niedrig ausgefallen. Aus dem Messprotokoll des 12.07.2011, das sich im Anhang 1 befindet, können die Notizen bezüglich der Versuchsverhältnisse genauer betrachtet werden. Ein bedeutender Ausschnitt aus den Notizen zum Messtag 2 wird nun zusammengefasst.

10:09 _ 100% Steckdichte _ Himmel leicht bedeckt bis 11:22 _ 10% gleichmäßige Steckweise _ stark, fast vollständig bedeckt!!! _ ab 11:34 _ 90% flächige Steckweise _ nur noch ganz leicht bedeckt _ ab 11:48 _ 70% flächige Steckweise _ klarer Himmel bis zum Schluß!!!

Messung 3 - 27.09.2011

Am dritten Messtag steigt der durchschnittliche Messwert der PAR-Sensoren bei der gleichmäßigen Steckweise von 18% auf 76% (relative Strahlung) an. Der Anstieg der Strahlungskurve verläuft gleichmäßig. Bei der flächigen Steckweise steigt der durchschnittliche Messwert, der von den PAR-Sensoren ermittelt wurde, von 18% auf 95,5% (relative Strahlung). Beinahe erreichen die Strahlungswerte gegen Ende des Messdurchganges bei 10%. die 100% - Marke des Referenzsensors. Da sich bei der flächigen Steckweise gegen Ende eines Messdurchganges die wenigen Zweige auf einen kleinen Teil des Stecktisches konzentrieren, wird nur ein kleiner Teilabschnitt der Versuchsfläche vollständig beschattet. Die Strahlungsintensität der besonnten Bereiche kann beinahe so hoch sein wie die vom Referenzsensor gemessene.

Wie schon bei der ersten Messung festgestellt, ist der Strahlungsdurchgang bei der flächigen Steckweise des dritten Messtages am 27.09.2011 bei klarem Himmel, höher ausgefallen als bei der gleichmäßigen Steckweise. Außerdem kann nach der Betrachtung der beiden Strahlungskurven erneut davon ausgegangen werden, dass das gleichmäßige Stecksystem ein höheres Beschattungspotential aufweist. Die Qualität und die Quantität des Schattenwurfes beim gleichmäßigen Stecksystem sind am 27.09.2011 höher als beim flächigen Stecksystems.

Der Himmel war an diesem Tag durchgehend wolkenlos. In den Notizen zum Messtag drei wurden keine Störungen durch jähe Witterungsänderung festgestellt.

Aus dem ersten und dem dritten Messtag, an denen der Himmel bei beiden Entnahmesystemen wolkenlos und klar war, geht deutlich hervor, dass sich Quantität und Qualität des Schattenwurfes des gleichmäßigen Stecksystems grundlegend von jenen des flächigen Stecksystems unterscheiden.

Es kann davon ausgegangen werden, dass der Strahlungsdurchgang bei gleichen Witterungsverhältnissen, bei der flächigen Steckweise höher ist als bei der gleichmäßigen Steckweise. Der Schattenwurf der mit gleichmäßigem Stecksystem erzielt wird, ist somit ausgeprägter und wirkungsvoller. Je mehr sich die Bestandsdichte durch Entnahme einzelner Weidenzweige gegen Ende einer Versuchsreihe verringert, desto geringer fällt die Beschattungsleistung der beiden Stecksysteme aus und desto höher ist der von den Strahlungssensoren ermittelte Strahlungsdurchgang.

Für den zweiten Messtag am 12.07.2011 an dem der Himmel während den Messungen des gleichmäßigen Stecksystems bewölkt war, konnte diese Feststellung erst nach gründlicher Durchleuchtung und Interpretation der Strahlungswerte, anhand aufgenommener Notizen zur Witterung, bestätigt werden. Da dem Referenzsensor bei der Messung der relativen Gesamtstrahlung der Wert 100% zugeordnet wird, sind die gemessenen, relativen Strahlungswerte der Versuchsfläche nur dann vergleichbar, wenn innerhalb eines Versuchszeitraumes gleiche Strahlungsverhältnisse vorliegen.

Da sich die Strahlungsverhältnisse an diesem Tag bei der gleichmäßigen Steckweise jedoch grundsätzlich von den Strahlungsverhältnissen der flächigen Steckweise unterscheiden, sind die zwei *Stecksysteme am 12.07.2011 nicht direkt miteinander vergleichbar. Es kann davon ausgegangen werden, dass der Strahlungsdurchgang bei gleichen Versuchsverhältnissen bei der flächigen Steckweise höher ausgefallen wäre.*

Um nun auf die Strahlungsintensität nach Durchgang durch die Weidenhecke genauer einzugehen und um die Frage zu beantworten, welcher Sensor der Versuchsfläche wie viel Strahlung abbekommt, werden die Eingangswerte der auf der Versuchsfläche positionieren Sensoren für die Dichten 80%, 50% und 20% grafisch dargestellt. Es wird überprüft, ob vom Sensor der weiter vom Stecktisch entfernt ist, mehr Strahlung aufgenommen wird als vom Sensor, dessen Abstand zum Stecktisch vergleichsweise gering ist. Weiters wird zusätzlich zu den Auslichtungsstufen der Effekt untersucht, der hinsichtlich des Schattenbildes durch die gleichmäßige und die flächige Steckweise ausgelöst wird. Die beschriebenen Ermittlungen werden in den folgenden Abbildungen anhand der aufgenommenen Strahlungswerte der PAR-Sensoren dargestellt. In Abbildung 41, 42 und 43 wird der Durchgang der PAR-Strahlung bei 80%, 50% und 20% Steckdichte bei gleichmäßiger und flächiger Steckweise anhand des 27.09.2011, des Messtages 3 gezeigt. An diesem Versuchstag war der Himmel vom Beginn bis zum Ende der durchgeführten Messungen wolkenlos und klar. Die gesamte Diagrammserie, die den Durchgang der PAR-Strahlung aller Messtage für die Steckdichten 80%, 50% und 20% für beide Stecksysteme beschreibt, ist dem Anhang 12 (CD-ROM) beigefügt.

Abbildung 42 PAR-Sensoren bei 50% gleichmäßiger und flächiger Steckweise - 27.09.2011

Die einzelnen Strahlungsverläufe der in den Abbildungen 41, 42 und 43 dargestellten PAR-Strahlungswerte unterscheiden sich hinsichtlich der untersuchten Steckdichten und der erprobten Stecksysteme grundlegend voneinander. Während die Strahlungsabschwächung nach Durchgang durch die Weidenhecke beim gleichmäßigen Stecksystem homogen über den ganzen Stecktisch verteilt erfolgt, konzentriert sich der Schattenwurf beim flächigen Stecksystem auf Teilbereiche der Versuchsfläche. Je mehr Weidenzweige im Lauf einer Versuchsreihe entnommen werden, desto deutlicher kann dieser Effekt beobachtet werden.

Bei der Vermessung der Steckdichte 80% verhalten sich die Schattenbilder der gleichmäßigen und der flächigen Steckweise beinahe noch ident. Laut der Abbildung 41 kann bei 80% Steckdichte, beim gleichmäßigen als auch beim flächigen Stecksystem davon ausgegangen werden, dass der Abstand der Sensoren zum Stecktisch entscheidend die Intensität der von den Sensoren aufgenommenen Strahlungsleistung beeinflusst. Hier wird die geringste nach Durchgang durch die Hecke vom PAR-Sensor 3 Strahlungsleistung aufgenommen. Die höchsten Werte werden vom PAR-Sensor vier gemessen. Dies resultiert vermutlich aus den vergleichsweise zarten Spitzenpartien, die die Höhenstufe vier (H4) der Weidenzweige durchlässiger machen. Welche Sensoren wie viel Strahlung abbekommen, hängt vom Abstand der einzelnen Sensoren zum Stecktisch, dem Einstrahlungswinkel der Sonne und der Aufteilung der Blattmasse in die vier Höhenstufen ab. Die Einfallswinkel der Sonne können in Abbildung 15 des Kapitels 4.4 verglichen werden. Diese Darstellung zeigt auch, durch welche Höhenstufen der Hecke die jeweiligen Sensoren beschattet werden.

Bei der **Steckdichte 50%** weisen die beiden Stecksysteme bereits deutliche Unterschiede bezüglich der Verteilung des Schattens auf. Da beim gleichmäßigen Stecksystem die einzelnen Messpunkte, welche in der Abbildung 42 entlang der x-Achse des Diagrammes verlaufen, über die ganze Länge des Stecktisches homogene Werte aufweisen, kann hier von einem qualitativ hochwertigen Schattenwurf ausgegangen werden. Bei der flächigen Steckweise dieser Bestandsdichte wird ersichtlich, dass die Strahlungswerte ab dem Messpunkt 124, der sich kurz vor der Hälfte der Stecktischlänge befindet, stark ansteigen. Dies resultiert aus dem Ende der Weidenhecke, das sich bei 50% Steckdichte am halben Stecktisch befindet. Ab diesem Punkt beschattet die Hecke die Versuchsfläche fast vollständig. Auch hier wird die geringste Strahlungsleistung nach Durchgang durch die Hecke vom PAR-Sensor 3 aufgenommen. Die höchsten Werte werden bei der flächigen Steckweise von den PAR-Sensoren 4 und 2 gemessen. Bei der gleichmäßigen Steckweise dieser Steckdichte sind die Werte des Sensors 4 deutlich am höchsten.

Bei der Steckdichte 20% werden im Vergleich der beiden Stecksysteme die Unterschiede bezüglich der Schattenbilder festgestellt. größten Die Versuchsfläche wird bei der gleichmäßigen Steckweise homogen beschattet. Aus der Abbildung 43 geht hervor, dass bei der flächigen Steckweise, spätestens ab dem Messpunkt 25, der sich fast ganz am Anfang des Messtisches befindet, alle Strahlungswerte rasant ansteigen. Bis zum Messwert 52 erreichen die PAR-Sensoren 1, 2 und 4 die 100% - Marke des Referenzsensors. Die Strahlungswerte, die vom PAR-Sensor 3 aufgenommenen wurden, steigen bis zum Messpunkt 56 steil an und pendeln sich dort bei einer Strahlungsintensität von etwa 70% ein. Bei beiden Stecksystemen fielen die vom PAR-Sensor 3 aufgenommenen Werte am niedrigsten aus. Bei dieser Steckdichte von 20% wird die Versuchsfläche beim gleichmäßigen Stecksystem nur noch geringfügig beschattet. Beim flächigen Stecksystem dienen gerade einmal 20% der gesamten Heckenlänge der Beschattung der Versuchsfläche. Der Schatten trifft die Versuchsfläche nur im ersten Teilabschnitt.

7.3 Zusammenhang zwischen Blattfläche und Strahlungsdurchlässigkeit

Wie den bereits behandelten Kapiteln zu entnehmen ist, kann man erkennen, dass die im Zuge des Modellversuches ermittelten Größen in engem Zusammenhang stehen. Zum Großteil korrelieren die Ergebnisse der Vegetationsaufnahmen mit den Ergebnissen der Strahlungsmessungen. Der bedeutendste Zusammenhang besteht zwischen der erhobenen Blattfläche und der nach Durchgang durch die Versuchshecke ermittelten Strahlungsintensität.

Aus diesem Grund wird das Hauptaugenmerk auf diese Einflussfaktoren gerichtet. Um sie zu beleuchten und um ihre Beziehung zueinander treffend definieren zu können, wurde eine Diagrammserie erstellt, die die Minderung des Strahlungsdurchganges und somit die Erhöhung der Schattenwirkung mit steigender Blattfläche beschreibt. In Abbildung 44, 45 und 46 werden diese Diagramme für die drei Messtage, die im Zuge des Modellversuches durchgeführt wurden, gezeigt. Wie im Kapitel 7.2 "Ergebnisse der Strahlungsund Beschattungsleistung" erläutert, ist auch hier zu erkennen, dass bei gleichmäßiger Steckweise und bei gleicher Blattdichte, der in Relativwerten [%] ausgedrückte Strahlungsdurchgang geringer ausfällt als bei der flächigen Steckweise. Die Bestätigung der Annahme, dass der Strahlungsdurchgang und die ieweilige Blattfläche der einzelnen Versuchsdichten in engem Zusammenhang stehen, liefert das Bestimmtheitsmaß R², das an allen der drei Messtage sehr hoch ausgefallen ist.

Abbildung 44 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang am ersten Messtag (25.05.2011) bei klarem Himmel.

Abbildung 45 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang am zweiten Messtag (12.07.2011). Während der Messungen der gleichmäßigen Steckweise war der Himmel an diesem Versuchstag fast vollständig bedeckt. Ab Beginn der Messungen der flächigen Steckweise war der Himmel klar.

Abbildung 46 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang am dritten Messtag (27.09.2011) bei klarem Himmel.

An allen drei Versuchstagen erreicht das Bestimmtheitsmaß bei der gleichmäßigen als auch bei der flächigen Steckweise Werte über $R^2 = 0,971$. Beim höchstmöglichen Wert den R^2 annehmen kann, also $R^2 = 1$ liegen alle einzelnen Messpunkte direkt auf der Trendlinie. Ein hoher Wert für R^2 besagt, dass die Wahrscheinlichkeit eines Zusammenhangs der zu untersuchenden Parameter umso höher ist, desto näher R^2 gegen 1 geht.

Am **25.05.2011** (klarer Himmel), bei gleichmäßiger Steckdichte 100%, bei einer relativen Gesamtstrahlung von 13% (nach Strahlungsdurchgang), wurde eine Blattmassensumme von 110,5 m² ermittelt. *Bei 50% Steckdichte werden 25,7% relative Strahlung und 58 m² Blattfläche ermittelt.* Bei einer relativen Gesamtstrahlung von 70%, bei 10% Steckdichte betrug die gesamte Blattfläche nur noch 13,7 m². Der Anstieg der Trendlinie, die den Zusammenhang aus relativer Strahlungsintensität und Blattfläche beschreibt, wird in Abbildung 44 dargestellt.

Zum Vergleich wurde bei bewölktem Wetter am 12.07.2011 dem zweiten 100%, Messtag, bei gleichmäßiger Steckdichte bei einer relativen 27% Gesamtstrahlung von (nach Strahlungsdurchgang) eine Blattmassensumme von 80,5 m² ermittelt. Bei 50% Steckdichte werden 51,5% relative Strahlung und 38,5 m² Blattfläche ermittelt. Bei einer relativen Gesamtstrahlung von 80% und bei 10% Steckdichte, betrug die gesamte Blattfläche nur noch 7,7m². Der Anstieg der Trendlinie die den Zusammenhang aus relativer Strahlungsintensität und Blattfläche beschreibt wird in Abbildung 45 dargestellt.

Am **27.09.2011**, dem dritten Messtag (klarer Himmel), wurde bei gleichmäßiger Steckdichte 100%, bei einer relativen Gesamtstrahlung von 24,4% (nach Strahlungsdurchgang) eine Blattmassensumme von 34,2 m² ermittelt. *Bei 50% Steckdichte werden 44,2% relative Strahlung und 17,5 m² Blattfläche ermittelt.* Bei einer relativen Gesamtstrahlung von 76,1% und bei 10% Steckdichte betrug die gesamte Blattfläche nur noch 4 m². Der Anstieg der Trendlinie wird in Abbildung 46 dargestellt. Werden die einzelnen Messtage im Verlauf des Versuches verglichen, sinkt die Blattmassensumme von 25.05.2011 bis 27.09.2011 stetig. Die relative Gesamtstrahlung sinkt bei der flächigen Steckweise vom Messtag 1 bis zum Messtag 2 und erreicht am Messtag 3 ihr Maximum. Die höchsten Werte der relativen Gesamtstrahlung werden somit am Messtag 3 bei strahlendem Himmel gemessen. Dies wird in Abbildung 47 dargestellt.

Abbildung 47 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang bei der Steckdichte 50% der flächigen Steckweise im Lauf der Vegetationsperiode.

Abbildung 48 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang bei der Steckdichte 50% der gleichmäßigen Steckweise im Lauf der Vegetationsperiode.

Wird der in Abbildung 48 dargestellte Strahlungsdurchgang der gleichmäßigen Steckweise bei 50% Steckdichte im Lauf der Vegetationsperiode betrachtet, fällt auf, dass die Werte des Messtages 2 deutlich höher ausgefallen sind als die des Messtages 1 und des Messtages 3. Dies resultiert aus der Bewölkung des Himmels, während der Messungen des gleichmäßigen Stecksystems.

Da sich die Strahlungswerte der Modellsensoren aufgrund der Bedeckung des Himmels nur wenig von denen der freistehenden Referenzsensoren unterscheiden, fallen die relativen Werte der gleichmäßigen Steckweise am Messtag 2 vergleichsweise höher aus. Es kann davon ausgegangen werden, dass die ermittelten relativen Werte des Strahlungsdurchganges bei klarem Himmel niedriger ausgefallen wären, da sich die relativen Strahlungswerte auf den freistehenden Referenzsensoren beziehen.

Zusammenfassend wird bestätigt, dass die Qualität und die Quantität des Schattens von der am jeweiligen Standort vorherrschenden Strahlungsleistung und von der Blattfläche der Beschattungspflanze, deren Ausmaß den Strahlungsdurchgang und somit den Schattenwurf wesentlich beeinflusst, abhängig sind.

Die Minderung der Blattfläche, hervorgerufen durch eine Reduzierung der Pflanzendichte, bewirkt eine Steigerung des Strahlungsdurchganges und zwar nicht nur bei klarem, sondern auch bei bewölktem Himmel. Dabei wird der Schattenwurf mit Abnahme der Vegetationsdichte umso stärker abgeschwächt desto höher die Strahlungsleistung am Standort zunimmt. Dies bedeutet, dass die Beschattungswirkung der Ufervegetation umso bedeutsamer wird, desto klarer der Himmel und desto höher die Strahlungsleistung ist.

7.4 Vergleich der Beschattungsleistung 2011 und 2010

Ein vergleichbarer Modellversuch zur Ermittlung der Strahlungsdurchlässigkeit der Purpur-Weide (Salix purpurea) wurde im Zuge einer Masterarbeit, abgeschlossen durch Alexander Reiner, schon im Jahr 2010 durchgeführt. Da in dieser Arbeit ebenfalls auf die relative Gesamtstrahlung der Fläche eingegangen wurde, können die neuen im Jahr 2011 ermittelten Werte der relativen Gesamtstrahlung mit den Werten des Jahres 2010 verglichen werden.

"Die Strahlungsintensität, ausgedrückt durch eine Zahl und stellvertretend für die ganze Fläche, steigt wie erwartet im Verlauf der Messungen bei gleichmäßiger Abnahme der Weidenzweige stetig an" (REINER 2011, S. 61). Jahr 2010 fanden ebenfalls Im drei Messungen statt. die die Strahlungsdurchlässigkeit und somit das Beschattungspotential der Weide beschreiben sollten. Sie wurden jedoch nicht im Lauf der Vegetationsperiode durchgeführt, sondern an drei Schönwettertagen in Folge, nämlich dem 30.06.2010, dem 01.07.210 und dem 02.07.2010. "Für die Auswertung der durchschnittliche Mittelwert Ergebnisse diente der der Strahlungsintensitätswerte der einzelnen PAR-Sensoren und ein durchschnittlicher der Strahlungsintensität Mittelwert der einzelnen Globalsensoren pro zwei Messungen jeder prozentuellen Steckdichte" (REINER 2011, S. 61). In Abbildung 49 wird die relative Gesamtstrahlung der Fläche aller drei Messtage (30.06.2010, 01.07.2010 und 02.07.210) im Durchschnitt für die gleichmäßige und die flächige Steckweise dargestellt.

2010 verhält sich der Anstieg der Strahlungskurve der relativen Gesamtstrahlung, welcher aus diesem Diagramm (Abbildung 49) ersichtlich wird, ähnlich dem Anstieg der Strahlungskurve, die 2011 im Zuge dieser Arbeit eruiert und interpretiert wird. Hinsichtlich des Aufnahmezeitpunktes entsprechen die in der Abbildung 49 dargestellten durchschnittlichen Werte der relativen Gesamtstrahlung, des 30.06.2010, 01.07.2010 und des 02.07.2010, am ehesten dem Messtag 2 am 12.07.2011. Da die Werte der Strahlungskurven während der ganzen Messung der gleichmäßigen Steckweise an diesem Messtag aufgrund bewölktem Himmel, vergleichsweise hoch ausfallen, und die Messung 2 daher nur bedingt mit den Ergebnissen der Messung 1 und 3 vergleichbar ist, dient die in Abbildung 49 dargestellte Strahlungskurve (2010) der gleichmäßigen Steckweise als Vergleichskurve für das Jahr 2011. Um die Strahlungs- und Beschattungsleistung der Jahre 2010 und 2011 untereinander vergleichen zu können, wird zusätzlich zur Abbildung 49, die Abbilungen 39 und 40 gezeigt, die die Ergebnisse bei klarem und bewölktem Himmel darstellen.

Abbildung 49 Relative Gesamtstrahlung der Fläche, aller drei Messtage des **Jahres 2010** (30.06.2010, 01.07.2010 und 02.07.210) im Durchschnitt, für die gleichmäßige und die flächige Steckweise bei **klarem Himmel**. (Quelle: REINER, 2011)

Abbildung 40 Relative Gesamtstrahlung und relative Beschattung der Fläche für den 27.09.**2011**. Dargestellt wird der Verlauf der Strahlungsintensität bei Abnahme der Heckendichte für die gleichmäßige und die flächige Steckweise bei **klarem Himmel**.

Abbildung 39 Relative Gesamtstrahlung und relative Beschattung der Fläche für den 12.07.2011. Dargestellt wird der Verlauf der Strahlungsintensität bei Abnahme der Heckendichte für die gleichmäßige und die flächige Steckweise bei **bewölktem Himmel**. Hier sind die Strahlungsintensitätswerte bei der flächigen Steckweise niedriger ausgefallen als bei der gleichmäßigen Steckweise. Grund dafür ist die niedrigere Strahlungsleistung die während der Messungen der gleichmäßigen Steckweise erfasst wurde.
8 Schlussfolgerung und Ausblick

Da Ufervegetation im Freiland in verschiedensten Ausprägungen, Größen, Zusammensetzungen und Verteilungen vorkommt und die von Ihr ausgehende Beschattung im Voraus schwer einzuschätzen ist, könnten in weiterer Folge Strategien entwickelt werden, die Beurteilungen am Gewässer einfacher gestalten. Beispielsweise könnte der Faktor, welcher in dieser Arbeit der Umrechnung des Blatttrockengewichtes auf die Blattfläche diente, für andere flussbegleitende Uferpflanzen verschiedenster Pflanzenfamilien ermittelt werden. So könnte die Bestimmung der Blattfläche auch bei jeder anderen Pflanze, direkt nach der Trocknung, durch Hochrechnung anhand definierter Umrechnungsfaktoren rasch erfolgen.

Vor allem bei Fließgewässern geringerer Breite können Ufergehölze eine erhebliche Beschattung bewirken und stellen somit ein Regulativ für die lichtgesteuerte Primärproduktion und den Temperaturhaushalt dar. Nicht nur Gehölze sondern auch Hochstauden oder beispielsweise Röhrichte können zu Beschattungszwecken eingesetzt werden. Sie beschatten abhängig von der Gewässerbreite die gesamte Sohle oder einen Teil davon (vgl. DVWK, 224/1992). Bei strahlendem Wetter bietet die Pflegemaßnahme mit einer gleichmäßigen Entnahme mehr Schatten für das Fließgewässer als die streckenweise Verjüngung. Bei trübem Wetter verringert sich der Unterschied. Im Zuge weiterer Forschungen zum Thema "Beschattungspotential von Ufervegetation" könnte ermittelt werden, welche Unterschiede im Bezug auf die Beschattungseigenschaften zwischen Ufergehölzen und Hochstauden bestehen weiterer Folge ihre Strahlungsdurchlässigkeit und somit um in ihr Teilabschnitt Beschattungspotential zu vergleichen. In einem eines Fließgewässers könnte nun anhand eines Versuches im Freiland festgestellt werden, ob eine Kombination aus "weicher und harter" Ufervegetation sinnvoll ist und positive Wirkung auf die Strukturvielfalt ausübt.

9 Literaturverzeichnis

BÖTTGER K., PÖPPERL R. (1990): Limnische Wirbellose als Bioindikatoren für die Bewertung von Strukturparametern in Fließgewässern. Schr.-R.f.Landschaftspflege u. Naturschutz – Greven.

DVWK Merkblätter 224 (1992): Methoden und ökologische Auswirkungen der maschinellen Gewässerunterhaltung. Verlag P. Parey – Hamburg und Berlin.

DVWK Merkblätter 244 (1997): Uferstreifen an Fließgewässern – Funktion, Gestaltung und Pflege. Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH – Bonn.

EBERSTALLER-FLEISCHANDERL D. (2008): Die Donau im Wandel der Zeit (1726-2001) – Ein flussmorphologischer Rückblick in zehn Zeitschritten. 13. Congress "Cultural Heritage and new Technologies" – Wien.

EMSBRNO (2010): Environmental Measuring Systems. Hrsg. EMS Brno, Quelle: http://www.emsbrno.cz, Zugriff am 22.11.2011

FISTRIC S. (2004): Die Bestimmung der photosynthetisch aktiven Strahlung (PAR) für heterogene atmosphärische Bedingungen. Dissertation an der Technischen Universität – München.

HÄCKEL H. (2005): Meteorologie. 5. Auflage, Verlag Eugen Ulmer – Stuttgart.

HÄCKEL H. (2008): Meteorologie. 6. Auflage, Verlag Eugen Ulmer – Stuttgart.

HAIDEKKER A., HERING D. (2002): Untersuchungen zum Temperaturhaushalt zweier Fließgewässertypen im Mittelgebirge. DGL, Erweiterte Zusammenfassung der Jahrestagung – Kiel.

HOLZAPFEL G. (2010): Beschattung durch Ufervegetation – Modellversuch, Poster der Tagung: Ingenieurbiologische Herausforderungen – Wien. HÖRANDL E., FLORINETH F., HADACEK F. (2002): Weiden in Österreich und angrenzenden Gebieten. Eigenverlag des Arbeitsbereiches Ingenieurbiologie und Landschaftsbau, Institut für Landschaftsplanung und Ingenieurbiologie, Universität für Bodenkultur – Wien.

JUNGWIRTH M., HAIDVOGL G., MOOG O., MUHAR S., SCHMUTZ S. (2003): Angewandte Fischökologie an Fließgewässern. Facultas Verlags- und Buchhandels AG – Wien.

LAMPERT W., SOMMER U. (1993): Limnoökologie. Verlag Thieme – Stuttgart.

LARCHER W. (1994): Ökophysiologie der Pflanzen. 5. Auflage, Verlag Eugen Ulmer – Stuttgart.

LINNENKAMP J., HOFFMANN M. (1990): Auswirkung von Reihenpflanzungen auf den ökologischen Zustand eines Flachlandbaches. Wasser und Boden.-Heft 42.

MONTEITH J.L., UNSWORTH M.H. (1990): Principles of Envrionmental Physics. Second Edition, Arnold Press - London

REINER A. (2011): Beschattungspotential von Ufervegetation. Masterarbeit, Institut für Ingenieurbiologie und Landschaftsbau, Universität für Bodenkultur – Wien.

RICKERT K. (1986): Der Einfluß von Gehölzen auf die Lichtverhältnisse und das Abflußverhalten in Fließgewässern. – Mitteilungen Institut für Wasserwirtschaft – Hannover.

SAUBERER F., RUTTNER F. (1941): Die Strahlungsverhältnisse der Binnengewässer. Akademische Verlagsgesellschaft Becker & Erler Kom.-Ges. – Leipzig

SCHWÖBERL J. (1993): Einführung in die Limnologie. 7. Auflage, G. Fischer Verlag – Stuttgart.

WOHLRAB B., ERNSTBERGER H., MEUSER A., SOKOLLEK V. (1992): Landschaftswasserhaushalt: Wasserkreislauf und Gewässer im ländlichen Raum; Veränderungen durch Bodennutzung. Paul Parey – Hamburg.

10 Abbildungsverzeichnis

Abbildung 1 Spektrale Wirkungsfunktion der Photosynthese. Beiträge der einzelnen Wellenlängen zur Photosynthese. (Quelle: HÄCKEL, 2008)
Abbildung 2 Relative Reflexion, Transmission und Absorption eines Blattes in Abhängigkeit von der Wellenlänge der auf das Blatt auftreffenden Strahlung
(Quelle: MONTEITH, UNSWORTH, 1990)Seite14
Abbildung 3 Modellversuch zur Strablungsdurchlässigkeit der Salix nurpures am 25.05.2011
auf der Terrasse des Schwackhöferhauses im 3. Stock / BOKU – WienSeite 17
Abbildung 4 Messroboter zur Ermittlung der Strahlungsdurchlässigkeit der Versuchshecke am
12.07.2011, dem zweiten MesstagSeite 18
Abbildung 5 Schematische Darstellung des Modellaufbaus (Quelle: REINER, 2011)
Seite 19
Abbildung 6 Stecktisch mit nummerierten Stecklöchern und Weidenzweigen am ersten
Messtag (25.05.2011). Terrasse Schwackhöferhaus 3. Stock, BOKU – WienSeite 20
Abbildung 7 Aufbau des Messroboters schematisch dargestellt
(Quelle: REINER, 2011)Seite 21
Abbildung 8 PAR-SensorSeite 23
Abbildung 9 Globalsonsor Soito 24
Abbildung 9 Globalsensol
Abbildung 10 CR 1000 Datenlogger von Campbell Scientific Inc. für wartungsfreie
Netzanwendungen ausgelegtSeite 25
Abbildung 11 Gleichmäßige Steckweise (Bild links) und flächige Steckweise (Bild rechts) bei
50% Steckdichte am 25.05.2011. Terrasse Schwackhöferhaus
3. Stock / BUKU – WienSeite 26
Abbildung 12 Vorgangsweise der Entnahme des gleichmäßigen und des flächigen
Stecksystems. Erläutert werden die zu entfernenden Weidenzweige nach ihrer Nummer sowie

die Anzahl der Weidenzweige, die bei den jeweiligen Prozentwerten entnommen werden. Den Prozentwerten wurden Farben zugeteilt. (Quelle: HOLZAPFEL, 2010)......Seite 27

Abbildung 13 Darstellung der gleichmäßigen und der flächigen Steckweise anhand einer schematischen Abbildung des Stecktisches (Quelle: HOLZAPFEL, 2010)Seite 28
Abbildung 14 <i>Gleichmäßiges</i> und <i>flächiges</i> Stecksystem bei 80%, 50% und 20% Steckdichte. Aus dem Stecktisch entnommene Zweige wurden grün dargestellt. (Quelle: HOLZAPFEL, 2010)Seite 29
Abbildung 15 Darstellung der Schattenwürfe der drei Messtage zu unterschiedlichen Tageszeiten. Schattenlängen [cm] wurden jeweils für den Schattenwurf von Höhenstufe 1 (H1) und Höhenstufe 4 (H4) um 12:00 Uhr angegebenSeite 31
Abbildung 16 Aufnahmetisch mit Aufteilung der vier Höhenstufen (H1, H2, H3 und H4) für den Zweig Nr. 6 des 25.05.2011Seite 32
Abbildung 17 Blattscann: Scan1_Referenzzweig D_Höhenstufe 3 _Messung 2_12.07.2011Seite 35
Abbildung 18 In diesem Tabellenausschnitt werden die Blattfläche [cm²], das Blatttrockengewicht, das Verhältnis aus Blattfläche zu Blatttrockengewicht und die Mittelwerte dieser Verhältniswerte, der jeweiligen zwei Referenzzweige (RZ) zahlenmäßig festgehalten. Die Umrechnungsfaktoren zur Blattflächenermittlung werden im grünen Bereich der Tabelle dargestellt
Abbildung 19 Ausschnitt des Aufnahmeprotokolls des zweiten Messtages am 12.07.2011Seite 37
Abbildung 20 Gesamtblatttrockengewicht der jeweiligen Messungen im Versuchsverlauf (M1 25.05.2011, M2 12.07.2011, M3 27.09.2011) (M1, M2, M3 = Messungen 1,2,3)
Abbildung 21 Aufteilung der Gesamtblattmasse [g] des jeweiligen Messtages in die vier HöhenstufenSeite 40
Abbildung 22 Durchschnittliches Blatttrockengewicht der einzelnen Weidenzweige im Lauf der Vegetationsperiode
Abbildung 23 Holztrockengewicht im Verlauf der drei MesstageSeite 41
Abbildung 24 Prozentueller Anteil der Blattmasse [g] an jedem MesstagSeite 42

Abbildung 25 Zweig Nr.43 mit höchstem Blattanteil [%] (Bild links - 25.05.2011), Zweig Nr.31	
mit durchschnittlichem Blattanteil (Bild mittig – 12.07.2011), Zweig Nr.33 mit geringstem	
Blattanteil (Bild rechts – 27.09.2011)Seite 4	13
Abbildung 26 Vegetationsdaten zu den Zweigen Nr. 43 am 25.05.2011, Nr. 31 am 12.07.2011	1
und Nr. 33 am 27.09.2011Seite 4	14
Abbildung 27 Zusammensetzung von Holz- und Blattmasse im Versuchsverlauf (M1-	
25.05.2011, M2 - 12.07.2011, M3 - 27.09.2011)Seite 4	14
Abbildung 28 Zusammenhang Holztrockengewicht zu Blatttrockengewicht im Lauf der	
(25.05.2011, 12.07.2011 und 27.09.2011)Seite 4	15
Abbildung 29 Zusammenhang Holztrockengewicht zu Blatttrockengewicht am 25.05.2011.	
Dargestellt durch eine polynomische TrendlinieSeite 4	46
Abbildung 30 Gesamtblattfläche der jeweiligen Messungen im Versuchsverlauf (M1	
25.05.2011, M2 12.07.2011, M3 27.09.2011)Seite 4	47
Abbildung 31 Blattflächensummen der jeweiligen Höhenstufen im Versuchsverlauf, von	
25.05.2011 – 27.09.2011Seite 4	18
Abbildung 32 Summen der Blattflächen pro 10 cm Stecktisch. Dargestellt für die gleichmäßige und die flächige Steckweise bei 80% Steckdichte am 25.05.2011Seite 5	е 50
Abbildung 33 Summen der Blattflächen pro 10 cm Stecktisch. Dargestellt für die gleichmäßige	e
und die flachige Steckweise bei 50% Steckdichte am 25.05.2011Seite 5	iU
Abbildung 34 Summen der Blattflächen pro 10 cm Stecktisch. Dargestellt für die gleichmäßige und die flächige Steckweise bei 20% Steckdichte am 25.05.2011Seite 5	е 51
Abbildung 35 Summe der Blattflächen der Steckdichte 80% bei gleichmäßiger und flächiger Steckweise, aufgeteilt auf die vier Höhenstufen - 25.05.2011Seite 5	51
Abbildung 36 Summe der Blattflächen der Steckdichte 50% bei gleichmäßiger und flächiger Steckweise, aufgeteilt auf die vier Höhenstufen - 25.05.2011Seite 5	52

Abbildung 37 Summe der Blattflächen der Steckdichte 20% bei gleichmäßiger und flächiger Steckweise, aufgeteilt auf die vier Höhenstufen - 25.05.2011......Seite 52

Abbildung 40 Relative Gesamtstrahlung und relative Beschattung der Fläche nach Durchgang durch die Weidenhecke für den 27.09.2011. Dargestellt wird der Verlauf der Strahlungsintensität bei Abnahme der Heckendichte für die gleichmäßige und die flächige Steckweise bei klarem Himmel. Wie auch am 25.05.2011 sind die Strahlungsintensitätswerte bei der flächigen Steckweise an diesem Messtag höher ausgefallen als die der gleichmäßigen Abbildung 41 PAR-Sensoren bei 80% gleichmäßiger und flächiger Steckweise - 27.09.2011......Seite 61 Abbildung 42 PAR-Sensoren bei 50% gleichmäßiger und flächiger Steckweise - 27.09.2011......Seite 62 Abbildung 43 PAR-Sensoren bei 20% gleichmäßiger und flächiger Steckweise Abbildung 44 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang am ersten Messtag (25.05.2011) bei klarem Himmel.....Seite 65 Abbildung 45 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang am zweiten Messtag (12.07.2011). Während der Messungen der gleichmäßigen Steckweise war der Himmel an diesem Versuchstag fast vollständig bedeckt. Ab Beginn der Messungen der flächigen Steckweise war der Himmel klar.....Seite 66

Abbildung 46 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang am dritten
Messtag (27.09.2011) bei klarem HimmelSeite 66
Abbildung 47 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang bei der
Steckdichte 50% der flächigen Steckweise im Lauf der VegetationsperiodeSeite 68
Abbildung 48 Zusammenhang zwischen Blattfläche und Strahlungsdurchgang bei der
Steckdichte 50% der gleichmäßigen Steckweise im Lauf der VegetationsperiodeSeite 68
Abbildung 49 Relative Gesamtstrahlung der Fläche, aller drei Messtage des Jahres 2010
(30.06.2010, 01.07.2010 und 02.07.210) im Durchschnitt, für die gleichmäßige und die flächige
Steckweise bei klarem Himmel. (Quelle: REINER, 2011)Seite 71

11 Anhang

11.1 Anhang 1: Messprotokolle der Strahlungsmessungen

M1 - 25.05.2011

Nr.		Bedeckung	gleich-		Foto v.		
Campell	Uhrzeit	in %	mäßig	flächig	vorne	Fisheye	Bemerkungen
3	10:27		6-				Test
4		100	x	x	x	1-3	Platte
5							Fehler
6	10:40	100	x	x	x	1-3	Platte
7	10:42	100	x	x	х	9-11	
8	10:44	100	x	x	x	9-11	
9	11:02	90	x		x	12-14	
10	11:04	90	x		x	12-14	
11	11:11	80	x		x	16-18	Wind am Letzten Sensorpaar G4 und P4
12	11:13	80	x		х	16-18	
13	11:19	70	x		x	20-22	
14	11:21	70	x		x	20-22	
15	11:31	60	X		X	26-28	
16	11:33	60	x		X	26-28	
17	11:39	50	x		x	30-32	
18	11:41	50	x		х	30-32	
19	11:51	40	x		x	34-36	
20	11:53	40	x		X	34-36	
21	12:14	30	x		x	38-40	bei beiden 13 nicht entfernt
22	12:16	30	X		x	38-40	bei beiden 13 nicht entfernt
23	12:27	20	x		x	42-44	bei beiden 13 nicht entfernt
24	12:29	20	x	-	х	42-44	bei Rückfahrt kurz gestoppt
25	12:34	10	x		x	46-48	bei beiden 13 nicht entfernt
26	12:36	10	x	50	x	46-48	bei beiden 13 nicht entfernt
27	12:49	90		X	x	50-52	
28	12:52	90	1	X	x	50-52	
29	12:57	80		x	x	54-56	
30	12:59	80		x	x	54-56	
31	13:04	70		x	x	58-60	
32	13:06	70		x	x	58-60	
33	13:12	60		x	x	62-64	
34	13:14	60		x	x	62-64	
35	13:19	50		х	х	66-68	
36	13:21	50		х	х	66-68	
37	13:26	40		x	x	70-72	
38	13:28	40		X	x	70-72	
39	13:32	30		X	x	74-76	
40	13:34	30		X	х	74-76	
41	13:38	20		х	х	78-80	
42	13:41	20	[X	x	78-80	
43	13:46	10		X	x	82-84	nicht gedreht
44	13: <mark>4</mark> 8	10		X	x	82-84	

Anhang 1: Messprotokolle der Strahlungsmessungen

M2 - 12.07.2011

Nr		Bedeckung	σleich-		Fotov		
Campell	Uhrzeit	in %	mäßig	flächig	vorne	Fisheve	Bemerkungen
4	10:01	100%	x	x	×	1.2	PLATTE
5	10:04	100%	x	x	x	1.2	PLATTE
6	10:09	100%	x	x	x	4	leicht bedeckt (durchzogen)
7	10:12	100%	x	x	x	4	leicht bedeckt, am Schluß runtergeflogen
8	10:18	90%	x		x	6	leicht bedeckt
9	10:20	90%	x		x	6	leicht bedeckt
10	10:25	80%	x		x	8	leicht bedeckt
11	10:27	80%	x		x	8	leicht bedeckt
12	10:32	70%	x		x	10	noch dichter
13	10:34	70%	x		x	10	noch dichter
14	10:38	60%	x		x	12	leicht bedeckt
18	10:48	60%	x		x	12	leicht bedeckt
19	10:52	50%	x		x	14	stärker bedeckt als vorher
20	10:54	50%	x		x	14	stärker bedeckt
21	11:00	40%	x		x	16	stärker bedeckt
22	11:02	40%	x		x	16	stärker bedeckt
23	11:07	30%	x		x	18	fast vollständig bedeckt
24	11:09	30%	x		x	18	fast vollständig bedeckt
25	11:14	20%	x		x	20	fast vollständig bedeckt
26	11:16	20%	x		x	20	fast vollständig bedeckt
27	11:20	10%	x		x	22	fast vollständig bedeckt
28	11:22	10%	x		x	22	fast vollständig bedeckt
29	11:34	90%		x	x	24	ganz leicht bedeckt
30	11:36	90%		x	x	24	ganz leicht bedeckt
31	11:40	80%		x	x	26	ganz leicht bedeckt
32	11:42	80%		x	x	26	ganz leicht bedeckt
33	11:48	7 <mark>0%</mark>		x	x	28	klar
34	11:50	70%		x	x	28	klar
35	11:53	60%		x	x	30	klar
36	11:56	60%		x	x	30	klar
37	12:00	50%		x	x	32	klar
38	12:02	50%		x	x	32	klar
39	12:06	40%		x	x	34	klar
40	12:08	40%		x	x	34	klar
41	12:13	30%		x	x	36,37	klar
42	12:16	30%		X	X	36,37	klar
43	12:21	20%		X	X	39,40	klar
44	12:23	20%		X	X	39,40	klar
45	12:26	10%		X	X	42,43	klar
46	12:28	10%		x	x	42,43	klar

Anhang 1: Messprotokolle der Strahlungsmessungen

M3 – 27.09.2011

Nir		Podockupa	gloich		Fotov		
Campell	Librzeit	in %	mäßig	flächig	vorne	Fisheve	Bemerkungen
Campen	10:42	1000/	maisig	nacing	vorne	Tistleye	
19	10:45	100%	X	x	X		
20	10:45	100%	X	x	X	1	PLATE
21	10:51	100%	X	x	x	1	wolkenios
22	10:55	100%	X	X	X	1	
23	11:07	90%	X		X	2	
24	11:09	90%	X		X	2	
25	11:15	80%	X		X	2	
20	11:17	80%	X		X	3	
27	11:25	70%	X		X	4	
28	11:27	70%	X		X	4	
24	11:40	60%	X		X	5	
20	11.40	50%	X		X	5	
20	11.55	50%	X		X	6	
20	12:06	10%	X		X	7	
30	12.00	40%	X		x	7	
10	12.00	30%	×		×	8	
40	12.15	30%	×		×	8	
41	12.10	20%	×		×	9	
42	12.25	20%	×	5	x	9	
43	12:29	10%	x	5	x	10	
45	12:23	10%	x		x	10	
46	12:49	90%		x	x	11	
47	12:52	90%		x	x	11	
48	12:56	80%		x	x	12	
49	12:59	80%		x	x	12	
50	13:03	70%		x	x	13	
51	13:05	70%		x	x	13	
52	13:10	60%		x	x	14	
53	13:13	60%		x	x	14	
55	13:20	50%		x	x	15	kleine Wolken (ohne Wolken wiederholt!)
56	13:23	50%		x	x	15	wolkenlos
57	13:26	40%		x	x	16	
58	13:29	40%		x	x	16	
59	13:33	30%		x	x	17	
60	13:35	30%		x	x	17	
61	13:39	20%		x	x	18	
62	13:41	20%		x	x	18	
63	13:46	10%		x	x	19	
64	13:48	10%		х	х	19	

11.2 Anhang 2: Messprotokolle der Vegetationsaufnahmen

M1 – 25.05.2011

		1. Ast in cm	Verzw. 1			······································			
Rute Nr.	Fotonr.	Höhe	(Rute)	Verzw. 2	Verzw. 3	Ø H1 in cm	Ø H2 in cm	Ø H3 in cm	Ø H4 in cm
A	2616	20	1	13	18	1.05	0.80	0.60	0.40
В	2617	37	1	20	14	0.90	0.85	0.50	0.30
1	2618	27	1	8	10	0.90	0.65	0.60	0.30
2	2647	10	1	11	16	0.90	0.80	0.55	0.35
3	2648	33	2	12	20	0.95	0.70	0.45	0.30
4	2649	6	1	13	12	0.85	0.80	0.65	0.35
5	2650	35	1	12	23	0.90	0.80	0.70	0.40
6	2651	18	1	8	6	0.80	0.75	0.65	0.35
7	2652	13	1	9	14	1.00	0.85	0.60	0.40
8	2630	7.5	1	18	11	0.90	0.80	0.65	0.45
9	2629	2	1	13	13	0.95	0.90	0.60	0.30
10	2644	35	2	9	19	0.90	0.80	0.70	0.35
11	2632	30	1	11	17	0.80	0.75	0.60	0.30
12	2631	5	2	19	8	0.80	0.80	0.50	0.35
13	2636	12.5	2	10	7	0.90	0.80	0.50	0.30
14	2635	15	12	12	11	0.85	0.70	0.60	0.40
15	2639	27.5	1	10	9	0.90	0.80	0.70	0.40
16	2640	7.5	1	14	12	0.80	0.70	0.60	0.50
17	2619	27.5	1	18	9	0.90	0.80	0.70	0.40
18	2621	40	1	12	17	0.90	0.90	0.60	0.35
19	(G)1000699	6	1	17	21	0.95	0.80	0.60	0.35
20	2625	0	1	6	4	0.80	0.80	0.50	0.40
21	2626	0	2	16	14	0.80	0.70	0.40	0.30
22	1 Foto fehit	34	1	9	/	0.85	0.70	0.50	0.30
23	(G)1000700	19	1	10	20	0.95	0.85	0.70	0.40
24	2642	52	1	11	15	1.00	0.90	0.55	0.40
25	2045	0	2	9	10	1.00	0.65	0.50	0.43
20	2043	20	2	14	0	0.90	0.03	0.50	0.30
27	2000	17	1	14	7	0.95	0.70	0.55	0.30
20	2034	25	1	11	0	0.00	0.70	0.00	0.40
30	2656	12.5	1	14	7	0.90	0.80	0.50	0.50
31	(G)1000694	20	1	10	17	0.90	0.80	0.60	0.35
32	2627	2.5	1	11	21	1.00	0.70	0.40	0.35
33	2641	7.5	1	4	0	0.90	0.80	0.70	0.40
34	2628	0	2	15	16	0.85	0.75	0.60	0.35
35	2637	10	1	10	8	0.75	0.65	0.50	0.35
36	2646	1	1	10	19	0.90	0.60	0.50	0.40
37	2633	25	1	13	5	0.80	0.70	0.55	0.50
38	2634	60	1	11	18	0.95	0.85	0.65	0.40
39	2638	7.5	1	8	10	0.90	0.80	0.50	0.40
40	2622	30	2	15	18	1.00	0.80	0.55	0.30
41	(G)1000695	18	2	21	23	1.00	0.90	0.75	0.50
42	(G)1000696	41.5	1	12	21	0.90	0.80	0.70	0.30
43	2620	15	1	8	7	0.90	0.80	0.50	0.40
44	2623	5	1	16	9	0.85	0.80	0.50	0.45
45	2624	8	1	9	14	0.95	0.85	0.60	0.35
46	(G)1000997	7	1	12	12	0.95	0.80	0.55	0.40
47	(G)1000998	49	1	9	10	0.90	0.80	0.55	0.30

Übersichtswerte aus M1 – 25.05.2011

Durchschnittliches Blatttrockengewicht	Höhenstufe 1	Höhenstufe 2	Höhenstufe 3	Höhenstufe 4
(ohne Referenzruten)				
	0.149574468	3.278085106	7.770851064	7.799148936
Durchschnittliches Holztrockengewicht	Alle Höhenstufen			
(ohne Referenzruten)				
	47.19531915			
Summe des Blattrockengewichtes	Alle Höhenstufen		[a]	
Referenzrute A	19 11		131	
Referenzrute B	14.37			
Durchschnittliches Blatttrockengewicht	Alle Höhenstufen			
Referenzruten A - B				
	16.74			
Durchschnittliches Blatttrockengewicht	Höhenstufe 1	Höhenstufe 2	Höhenstufe 3	Höhenstufe 4
Referenzruten A - B				
	0	1.87	9.99	4.88
Durchschnittliches Holztrockengewicht	Alle Honenstufen			
Referenzruten A - B	41.245			
B	All 1171			
Durchschnitt Holz/Blatt	Alle Honenstufen			
Referenzruten A - B	2.463551311			
Blatttrockengewicht - Messung 1	Aller Ruten			
(ohne Referenzruten)				
	892.89			
Holztrockongowicht Mossung 1	Aller Duter			
(ohne Referenzruten)	Aller Ruten			
	2210.10			

Rute	H1 [cm ²]	H2 [cm ²]	H3 [cm ²]	H4 [cm ²	Gesamtfläche [cm ²]
1	3.711490413	311.7651947	1127.055922	301.8678869	1744.400494
2	0	567.8580332	1134.478903	853.642795	2555.979731
3	0	189.2860111	1321.290587	1141.901884	2652.478482
4	70.51831785	183.1001937	838.7968333	676.7284186	1769.143764
5	0	205.3691362	906.8408242	1256.958087	2369.168047
6	9.897307768	163.3055782	523.3201482	882.0975548	1578.620589
7	7.422980826	520.8458213	1923.789197	1367.065635	3819.123635
8	32.16625025	258.5671654	857.3542854	1646.66458	2794.752281
9	91.55009685	442.9045226	862.3029393	1211.183038	2607.940597
10	0	202.8948092	451.5646669	1802.547177	2457.006653
11	3.711490413	361.2517335	1172.830971	957.5645266	2495.358721
12	25.98043289	122.4791836	783.1244771	950.1415457	1881.725639
13	24.74326942	498.5768788	1026.845681	1364.591309	2914.757138
14	0	794.2589484	371.1490413	1198.811403	2364.219393
15	0	89.07576991	773.2271694	1306.444625	2168.747565
16	16.08312512	185.5745207	707.6575054	1149.324865	2058.640016
17	0	612.3959181	958.80169	1180.253951	2751.45156

Summen	869.7259201	19060.9776	45184.92145	45349.46419	110465.0892
47	0	61.85817355	685.3885629	1013.236883	1760.483619
46	0	878.3860644	1350.98251	211.5549535	2440.923528
45	0	616.1074086	1625.632801	556.723562	2798.463771
44	0	243.7212038	528.2688021	825.1880352	1597.178041
43	43.30072149	595.0756296	1604.601022	1080.04371	3323.021083
42	0	147.222453	1187.676932	1230.977654	2565.877039
41	0	175.6772129	874.674574	1433.872463	2484.22425
40	0	434.2443783	1281.701356	859.8286123	2575.774347
39	22.26894248	715.0804862	1405.417703	934.0584206	3076.825552
38	0	17.32028859	671.7797648	2276.380787	2965.48084
37	0	304.3422139	815.2907274	967.4618343	2087.094776
36	21.03177901	1040.454479	916.738132	501.0512058	2479.275596
35	87.83860644	1025.608517	619.818899	585.1783218	2318.444345
34	149.69678	634.6648606	1308.918952	451.5646669	2544.84526
33	64.33250049	98.97307768	395.8923107	2067.30016	2626.498049
32	50.72370231	1218.606019	1376.962943	288.2590887	2934.551753
31	0	540.6404368	1096.126835	844.9826507	2481.749923
30	0	429.2957244	800.4447657	692.8115438	1922.552034
29	23.50610595	367.4375509	329.0854833	1150.562028	1870.591168
28	8.660144297	499.8140423	236.298223	491.153898	1235.926308
27	0	248.6698577	743.5352461	1207.471548	2199.676651
26	0	480.0194267	1134.478903	210.3177901	1824.81612
25	3.711490413	575.281014	1202.522894	520.8458213	2302.36122
24	0	50.72370231	1061.486258	1110.972797	2223.182757
23	0	355.0659162	1511.813762	1376.962943	3243.842621
22	0	186.8116841	769.515679	534.4546195	1490.781983
21	56.90951967	425.584234	665.5939474	867.2515932	2015.339294
20	33.40341372	153.4082704	759.6183712	405.7896185	1352.219674
19	18.55745207	569.0951967	1416.552174	635.9020241	2640.106847
18	0	262.2786559	1067.672075	769.515679	2099.46641

Anhang 2: Messprotokolle der Vegetationsaufnahmen

M2 - 12.07.2011

Rute Nr.FotonHole(Retw.)Verm. 2(Perm. 4)(Perm. 4)(Perm. 4)(Perm. 4)(Perm. 4)(Perm. 4)03014(2)111100.090.080.030.031202010111100.090.080.000.031292810111100.090.000.000.000.034292910111100.090.000.000.030.0342929101111000.090.000.030.03529682031110.090.000.050.03729270.131110.090.000.050.049293710111110.090.050.0411111110.090.050.0411111110.090.050.041111110.090.040.040.0411111110.090.050.0411111110.090.040.040.0411111110.090.040.040.040.0411111111 <th></th> <th></th> <th>1. Ast in cm</th> <th>Verzw. 1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			1. Ast in cm	Verzw. 1						
C 303 20 1 11 14 0.95 0.85 0.60 0.83 D 3014 2982 117 1 16 12 1.00 0.80 0.70 0.83 2 2978 12 1 10 8 0.90 0.86 0.70 0.83 3 2983 15 1 9 10 0.90 0.86 0.70 0.80 0.80 0.80 0.80 0.80 0.80 0.83 5 2968 23 1 5 10 0.99 0.85 0.60 0.33 6 29279 0.5 1 2 13 14 0.95 0.85 0.66 0.40 11 12 14 0.95 0.85 0.65 0.45 12 13 14 0.95 0.45 0.45 0.45 13 14 15 15 16 13 0.80 0.65	Rute Nr.	Fotonr.	Höhe	(Rute)	Verzw. 2	Verzw. 3	Ø H1 in cm	Ø H2 in cm	Ø H3 in cm	Ø H4 in cm
D 3014 23 1 11 39 0.90 0.80 0.70 0.35 1 2978 12 1 10 8 0.90 0.85 0.70 0.30 3 2983 15 1 9 10 0.90 0.70 0.60 0.33 4 2974 37 1 7 12 0.95 0.80 0.66 0.33 5 2968 21 1 8 11 1.00 0.99 0.60 0.35 6 2986 23 1 5 10 0.95 0.70 0.65 0.40 9 2973 0.5 1 9 17 1.00 0.85 0.70 0.66 0.40 1 1 1 1 15 1.00 0.85 0.80 0.70 0.85 0.80 0.70 0.85 0.80 0.70 0.40 1 1 1 1 </th <th>C</th> <th>3013</th> <th>20</th> <th>1</th> <th>11</th> <th>14</th> <th>0.95</th> <th>0.85</th> <th>0.60</th> <th>0.35</th>	C	3013	20	1	11	14	0.95	0.85	0.60	0.35
1 2982 17 1 16 12 1.00 0.85 0.00 0.03 2 2978 12 1 10 8 0.90 0.70 0.60 0.33 4 2974 37 1 7 12 0.95 0.86 0.60 0.33 5 2968 23 1 5 10 0.95 0.85 0.60 0.33 7 2972 31 2 13 14 0.95 0.85 0.60 0.33 9 2973 81 2 10 18 1.10 0.70 0.66 0.43 10 2973 81 2 10 18 0.95 0.75 0.25 0.43 11 10 295 0.75 0.25 0.43 0.40 0.95 0.75 0.25 12 2983 3 1 1 1.00 0.70 0.40 0.43	D	3014	23	1	11	19	0.90	0.80	0.70	0.35
2 2978 12 1 10 8 0.90 0.80 0.70 0.60 0.33 4 2974 37 1 7 12 0.95 0.80 0.65 0.30 5 2968 21 1 8 11 1.00 0.95 0.85 0.60 0.33 6 2986 23 1 5 10 0.95 0.85 0.60 0.35 7 2972 31 2 13 14 0.95 0.70 0.65 0.40 0 2977 8 1 6 8 0.05 0.70 0.66 0.40 1 10 11 11 10 0.75 0.25 0.25 14 300 2991 15 1 71 1.00 0.85 0.70 0.40 15 13 0.05 0.40 0.40 0.45 0.40 0.40 0.45 0.45	1	2982	17	1	16	12	1.00	0.80	0.60	0.35
3 2983 15 1 9 10 0.90 0.70 0.60 0.30 4 2974 37 1 7 12 0.95 0.80 0.60 0.33 5 2968 21 1 8 11 1.00 0.95 0.85 0.33 7 2972 31 2 13 14 0.95 0.85 0.70 0.65 0.43 9 2973 81 2 10 18 1.10 0.70 0.65 0.44 10 2977 8 1 6 8 0.95 0.75 0.75 11 150 7 11 1.00 0.70 0.65 0.45 14 3003 32 1 8 13 0.90 0.86 0.70 0.46 14 3003 32 1 11 13 0.95 0.80 0.75 0.43 12 299<	2	2978	12	1	10	8	0.90	0.85	0.70	0.30
4 2974 37 1 7 12 0.95 0.00 0.66 0.33 5 2986 23 1 5 10 0.95 0.85 0.60 0.33 7 2972 31 2 13 14 0.95 0.85 0.35 8 2979 0.5 1 9 17 1.00 0.88 0.70 0.65 0.40 0 2977 8 1 6 8 0.95 0.75 0.65 0.40 1 1 1 1 1 1 1 0.95 0.85 0.65 0.40 13 2981 36 1 6 8 1.00 0.70 0.55 0.45 14 3003 32 1 8 13 0.00 0.85 0.70 0.40 15 13 10 15 0.85 0.80 0.55 0.33 16	3	2983	15	1	9	10	0.90	0.70	0.60	0.30
5 2968 21 1 8 11 1.00 0.00 0.60 0.33 6 2972 31 2 13 14 0.95 0.85 0.60 0.35 8 2979 0.5 1 9 17 1.00 0.65 0.70 0.65 0.40 10 2973 81 1 6 8 0.05 0.70 0.66 0.43 11 160 11 1 12 14 0.95 0.75 0.25 13 2991 15 1 7 11 1.00 0.70 0.55 0.45 14 3003 32 1 11 13 0.95 0.80 0.70 0.44 15 2992 18 1 11 13 0.95 0.80 0.60 0.40 15 0.99 37.5 1 11 13 0.95 0.80 0.55 0.43 <th>4</th> <th>2974</th> <th>37</th> <th>1</th> <th>7</th> <th>12</th> <th>0.95</th> <th>0.80</th> <th>0.65</th> <th>0.30</th>	4	2974	37	1	7	12	0.95	0.80	0.65	0.30
6 2986 2.3 1 5 10 0.95 0.75 0.055 0.35 7 2972 31 2 11 9 17 1.00 0.85 0.70 0.55 0.43 0 2973 81 2 10 18 1.10 0.70 0.65 0.44 10 2977 8 1 6 8 0.95 0.70 0.66 0.33 11 15 1 7 11 1.00 0.75 0.25 13 2981 15 1 7 11 1.00 0.70 0.55 0.45 14 3003 32 1 8 13 0.90 0.86 0.70 0.44 15 2992 18 1 9 1.4 0.95 0.80 0.70 0.45 14 3003 32 1 15 1.03 0.80 0.65 0.33 13	5	2968	21	1	8	11	1.00	0.90	0.60	0.30
7 2972 31 2 13 14 0.95 0.75 0.55 0.35 8 2979 0.5 1 9 17 1.00 0.85 0.70 0.66 0.40 10 2977 8 1 6 8 0.95 0.85 0.66 0.43 12 2988 36 1 1 1 1 1 0.95 0.85 0.66 0.43 14 3003 32 1 8 1.00 0.95 0.80 0.70 0.40 15 2992 18 1 9 14 0.95 0.80 0.55 0.43 17 2994 37.5 1 101 15 0.85 0.80 0.55 0.33 18 3011 47.5 1 15 13 0.80 0.55 0.33 20 3004 5 1 17 15 1.00 0.80 <th< th=""><th>6</th><th>2986</th><th>23</th><th>1</th><th>5</th><th>10</th><th>0.95</th><th>0.85</th><th>0.60</th><th>0.35</th></th<>	6	2986	23	1	5	10	0.95	0.85	0.60	0.35
8 2979 0.5 1 9 17 1.00 0.85 0.70 0.50 9 2977 8 1 6 8 1.01 0.70 0.65 0.40 10 2977 8 1 6 8 0.05 0.70 0.60 0.33 11 15 (fot feht 11 1 12 14 0.95 0.70 0.05 0.44 13 2991 15 1 7 11 1.00 0.70 0.55 0.44 15 2992 18 1 9 1.01 1.00 0.85 0.70 0.40 15 2993 45 1 11 13 0.95 0.80 0.55 0.30 16 2993 45 1 15 0.80 0.65 0.50 17 2994 37.5 1 10 15 0.80 0.55 0.33 18 3004	7	2972	31	2	13	14	0.95	0.70	0.55	0.35
9 2973 81 2 10 18 1.10 0.70 0.65 0.045 10 1 Foto fehit 11 1 12 14 0.95 0.75 0.55 11 2988 36 1 6 8 1.00 0.75 0.25 13 2991 15 1 7 11 1.00 0.70 0.55 0.45 14 3003 32 1 8 13 0.90 0.85 0.70 0.40 15 2992 18 1 9 14 0.95 0.90 0.60 0.40 16 2993 45 1 13 0.80 0.65 0.35 19 3004 5 1 13 0.90 0.70 0.55 0.33 19 3004 5 1 13 0.90 0.70 0.55 0.35 21 2996 2 1 9 <	8	2979	0.5	1	9	1/	1.00	0.85	0.70	0.50
10 2977 8 1 6 8 0.95 0.70 0.00 0.03 11 Foto feht 11 1 12 14 0.95 0.75 0.25 13 2991 15 1 7 11 1.00 0.70 0.04 15 2992 18 1 9 14 0.95 0.80 0.70 0.44 16 2993 45 1 11 13 0.95 0.90 0.60 0.40 17 2994 37.5 1 10 15 0.88 0.65 0.55 0.33 19 3004 5 1 13 10 0.90 0.70 0.55 0.40 20 3001 37 1 17 15 1.00 0.88 0.65 0.33 21 2996 2 1 9 19 0.00 0.70 0.55 0.35 23	9	2973	81	2	10	18	1.10	0.70	0.65	0.40
11 12 14 0.95 0.85 0.80 0.85 0.84 12 298 36 1 6 8 1.00 0.95 0.75 0.25 13 2991 15 1 7 11 1.00 0.70 0.55 0.44 14 3003 32 1 8 13 0.90 0.60 0.40 15 2993 45 1 11 13 0.95 0.90 0.60 0.40 17 2994 37.5 1 10 15 0.85 0.80 0.55 0.33 18 3011 47.5 1 13 10 0.90 0.70 0.55 0.40 203 3001 37 1 17 15 1.00 0.80 0.50 0.35 21 2996 2 1 13 17 1.00 0.88 0.55 0.35 22 3005	10	2977	8	1	6	8	0.95	0.70	0.60	0.35
12 2988 36 1 6 8 1.00 0.79 0.75 14 3003 32 1 8 13 0.90 0.85 0.70 0.40 15 2992 18 1 9 14 0.95 0.80 0.70 0.40 16 2993 45 1 11 13 0.95 0.80 0.60 0.40 17 294 37.5 1 10 15 0.85 0.80 0.55 0.33 19 3004 5 1 13 10 0.90 0.70 0.55 0.40 20 3001 37 1 17 15 1.00 0.88 0.80 0.50 0.33 21 2996 2 1 9 15 1.00 0.85 0.50 0.40 23 3005 30 1 8 8 0.80 0.70 0.55 0.35	11	! Foto fehit	11	1	12	14	0.95	0.85	0.65	0.40
13 2991 15 1 7 11 1.00 0.70 0.35 0.70 14 2992 18 1 9 14 0.95 0.80 0.70 0.40 15 2993 45 1 11 13 0.95 0.90 0.60 0.40 17 2993 45 1 11 13 0.85 0.80 0.55 0.30 18 3011 47.5 1 15 13 0.80 0.65 0.35 19 3004 5 1 13 10 0.90 0.70 0.55 0.40 20 3001 37 1 15 15 0.95 0.80 0.50 0.33 21 296 2 1 9 10 0.85 0.50 0.33 23 3005 30 1 28 100 0.85 0.50 0.35 24 3005 <t< th=""><th>12</th><th>2988</th><th>30</th><th>1</th><th>0</th><th>11</th><th>1.00</th><th>0.95</th><th>0.75</th><th>0.25</th></t<>	12	2988	30	1	0	11	1.00	0.95	0.75	0.25
14 3003 32 1 8 15 0.00 0.80 0.70 0.44 15 2993 45 1 11 13 0.95 0.80 0.70 0.44 17 2994 37.5 1 10 15 0.85 0.80 0.65 0.33 18 3011 47.5 1 15 13 10 0.90 0.70 0.65 0.33 19 3004 5 1 13 10 0.90 0.70 0.65 0.40 20 3001 37 1 17 15 1.00 0.85 0.50 0.40 21 2996 2 1 9 15 0.95 0.80 0.55 0.40 23 3005 30 1 8 8 0.80 0.70 0.40 24 3005 5 1 13 17 1.00 0.85 0.55 0.35 <th>13</th> <th>2991</th> <th>15</th> <th>1</th> <th>0</th> <th>11</th> <th>1.00</th> <th>0.70</th> <th>0.55</th> <th>0.45</th>	13	2991	15	1	0	11	1.00	0.70	0.55	0.45
15 2992 18 1 9 14 0.93 0.80 0.70 0.80 16 2993 37.5 1 10 15 0.85 0.90 0.60 0.40 17 2994 37.5 1 15 13 0.80 0.65 0.55 0.33 18 3001 47.5 1 13 10 0.90 0.70 0.55 0.40 20 3001 37 1 17 15 1.00 0.80 0.65 0.55 21 2996 2 1 9 19 1.00 0.85 0.50 0.44 23 3005 30 1 8 8 0.80 0.70 0.40 0.35 24 3006 55 1 12 8 1.00 0.85 0.65 0.35 26 2975 22 1 10 14 0.90 0.70 0.55 0.35	14	3003	10	1	0	13	0.90	0.00	0.70	0.40
16 2993 43 1 11 13 0.33 0.34 0.44 17 2994 37.5 1 10 15 0.85 0.80 0.55 0.30 19 3004 5 1 13 10 0.90 0.70 0.55 0.40 20 3001 37 1 17 15 1.00 0.80 0.65 0.33 21 2996 2 1 9 19 1.00 0.85 0.50 0.40 22 3007 3 1 15 15 0.95 0.80 0.50 0.35 23 3005 30 1 8 8 0.80 0.70 0.40 0.35 24 3006 55 1 13 17 0.90 0.70 0.55 0.35 25 2984 13 1 13 17 0.90 0.70 0.50 0.35 <	15	2952	10	1	11	12	0.93	0.00	0.70	0.40
11 2394 37.3 1 10 13 0.00 0.00 0.00 0.00 19 3004 5 1 13 10 0.90 0.70 0.55 0.40 20 3001 37 1 17 15 1.00 0.86 0.65 0.35 21 2996 2 1 9 19 1.00 0.88 0.50 0.40 22 3007 3 1 15 1.05 0.85 0.60 0.55 23 3005 30 1 8 8 0.80 0.70 0.40 0.35 24 3006 55 1 12 8 1.00 0.85 0.65 0.45 25 2984 13 1 21 11 0.90 0.70 0.55 0.33 26 2975 22 1 13 17 1.00 0.85 0.55 0.40 28 2967 12 1 10 14 1.00 0.80 0.60 <	17	2955	37.5	1	10	15	0.95	0.50	0.00	0.40
16 3011 47.3 1 1.3 1.0 0.00 0.70 0.55 0.40 20 3001 37 1 17 15 1.00 0.80 0.65 0.33 21 2996 2 1 9 19 1.00 0.86 0.50 0.40 22 3007 3 1 15 0.95 0.80 0.50 0.40 24 3005 30 1 8 8 0.80 0.70 0.45 0.35 24 3006 55 1 12 8 1.00 0.85 0.65 0.44 25 2984 13 1 21 11 0.90 0.70 0.55 0.40 28 2969 14 1 13 17 1.00 0.85 0.55 0.40 29 2967 22 1 10 14 1.00 0.80 0.60 0.40	18	3011	47.5	1	15	13	0.80	0.65	0.55	0.33
13 1001 37 1 17 15 1.00 0.05 0.05 0.05 0.05 21 2996 2 1 9 19 1.00 0.08 0.05 0.03 22 3007 3 1 15 15 0.95 0.80 0.50 0.33 23 3005 30 1 8 8 0.80 0.70 0.40 0.35 24 3006 55 1 12 8 1.00 0.85 0.65 0.45 25 2884 13 1 21 11 0.90 0.70 0.55 0.35 26 2975 22 1 9 11 0.95 0.70 0.50 0.35 27 2976 8.5 1 13 17 1.00 0.85 0.55 0.40 28 2967 22 1 0 14 1.00 0.80 0.60 <	19	3004	5	1	13	10	0.00	0.03	0.55	0.30
20 3001 31 11 100 3000 3000 3000 21 2996 2 1 9 9 100 0.85 0.50 0.40 22 3007 3 1 15 15 0.95 0.80 0.50 0.40 23 3005 30 1 8 8 0.80 0.70 0.40 0.35 24 3006 55 1 12 8 1.00 0.85 0.65 0.45 25 2984 13 1 12 8 10.90 0.70 0.55 0.35 26 2975 22 1 9 11 0.95 0.85 0.70 0.40 29 2967 22 1 13 17 1.00 0.85 0.55 0.40 30 2985 1 8 8 0.95 0.80 0.60 0.40 31 2970	20	3001	37	1	17	15	1.00	0.80	0.55	0.35
1 1	21	2996	2	1	9	19	1.00	0.85	0.50	0.40
1 1	22	3007	3	1	15	15	0.95	0.80	0.50	0.35
24 3006 55 1 12 8 1.00 0.85 0.65 0.45 25 2984 13 1 21 11 0.90 0.70 0.55 0.35 26 2975 22 1 9 11 0.95 0.70 0.50 0.35 27 2976 8.5 1 13 17 1.00 0.85 0.55 0.40 28 2969 14 1 13 11 0.95 0.85 0.70 0.40 30 2985 5 1 8 8 0.95 0.80 0.60 0.40 31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.44 33 2981 20 1 10 17 1.05 0.85 0.45 0.40 <th>23</th> <th>3005</th> <th>30</th> <th>1</th> <th>8</th> <th>8</th> <th>0.80</th> <th>0.70</th> <th>0.40</th> <th>0.35</th>	23	3005	30	1	8	8	0.80	0.70	0.40	0.35
25 2984 13 1 21 11 0.90 0.70 0.55 0.35 26 2975 22 1 9 11 0.95 0.70 0.50 0.35 27 2976 8.5 1 13 17 1.00 0.85 0.55 0.40 28 2969 14 1 13 11 0.95 0.85 0.70 0.40 29 2967 22 1 10 14 1.00 0.80 0.60 0.40 30 2985 55 1 8 8 0.95 0.80 0.60 0.40 31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 17 1.05 0.85 0.45 0.25 </th <th>24</th> <th>3006</th> <th>55</th> <th>1</th> <th>12</th> <th>8</th> <th>1.00</th> <th>0.85</th> <th>0.65</th> <th>0.45</th>	24	3006	55	1	12	8	1.00	0.85	0.65	0.45
26 2975 22 1 9 11 0.95 0.70 0.50 0.35 27 2976 8.5 1 13 17 1.00 0.85 0.55 0.40 28 2969 14 1 13 11 0.95 0.85 0.70 0.40 29 2967 22 1 10 14 1.00 0.88 0.60 0.40 30 2985 55 1 8 8 0.95 0.80 0.60 0.35 31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 17 1.05 0.85 0.45 0.25 34 2987 0 1 10 17 1.05 0.85 0.65 0.44 <th>25</th> <th>2984</th> <th>13</th> <th>1</th> <th>21</th> <th>11</th> <th>0.90</th> <th>0.70</th> <th>0.55</th> <th>0.35</th>	25	2984	13	1	21	11	0.90	0.70	0.55	0.35
27 2976 8.5 1 13 17 1.00 0.85 0.55 0.40 28 2969 14 1 13 11 0.95 0.85 0.70 0.40 29 2967 22 1 10 14 1.00 0.80 0.60 0.40 30 2985 55 1 8 8 0.95 0.80 0.60 0.35 31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 17 1.05 0.85 0.45 0.25 34 2987 0 1 16 18 0.95 0.85 0.65 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 <	26	2975	22	1	9	11	0.95	0.70	0.50	0.35
28 2969 14 1 13 11 0.95 0.85 0.70 0.40 29 2967 22 1 10 14 1.00 0.80 0.60 0.40 30 2985 55 1 8 8 0.95 0.80 0.60 0.35 31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 15 0.90 0.85 0.45 0.25 34 2987 0 1 10 17 1.05 0.85 0.60 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.33 <th>27</th> <th>2976</th> <th>8.5</th> <th>1</th> <th>13</th> <th>17</th> <th>1.00</th> <th>0.85</th> <th>0.55</th> <th>0.40</th>	27	2976	8.5	1	13	17	1.00	0.85	0.55	0.40
29 2967 22 1 10 14 1.00 0.80 0.60 0.40 30 2985 55 1 8 8 0.95 0.80 0.60 0.35 31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 15 0.90 0.85 0.45 0.25 34 2987 0 1 10 17 1.05 0.85 0.70 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.65 0.45 <th>28</th> <th>2969</th> <th>14</th> <th>1</th> <th>13</th> <th>11</th> <th>0.95</th> <th>0.85</th> <th>0.70</th> <th>0.40</th>	28	2969	14	1	13	11	0.95	0.85	0.70	0.40
30 2985 55 1 8 8 0.95 0.80 0.60 0.35 31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 15 0.90 0.85 0.45 0.25 34 2987 0 1 10 17 1.05 0.85 0.70 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.35 40 2995 25 1 10 7 0.90 0.80 0.60 0.35	29	2967	22	1	10	14	1.00	0.80	0.60	0.40
31 2970 61 1 7 23 1.00 0.90 0.70 0.40 32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 15 0.90 0.85 0.45 0.25 34 2987 0 1 10 17 1.05 0.85 0.70 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.40 37 2990 13.5 2 8 20 1.00 0.70 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.30 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 </th <th>30</th> <th>2985</th> <th>55</th> <th>1</th> <th>8</th> <th>8</th> <th>0.95</th> <th>0.80</th> <th>0.60</th> <th>0.35</th>	30	2985	55	1	8	8	0.95	0.80	0.60	0.35
32 2980 14 1 6 13 0.95 0.80 0.60 0.40 33 2981 20 1 10 15 0.90 0.85 0.45 0.25 34 2987 0 1 10 17 1.05 0.85 0.70 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.40 37 2990 13.5 2 8 20 1.00 0.70 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.30 39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2999 18 1 6 10 0.95 0.75 0.70 0.35 <	31	2970	61	1	7	23	1.00	0.90	0.70	0.40
33 2981 20 1 10 15 0.90 0.85 0.45 0.25 34 2987 0 1 10 17 1.05 0.85 0.70 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.40 37 2990 13.5 2 8 20 1.00 0.70 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.30 39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 <	32	2980	14	1	6	13	0.95	0.80	0.60	0.40
34 2987 0 1 10 17 1.05 0.85 0.70 0.40 35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.40 37 2990 13.5 2 8 20 1.00 0.70 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.30 39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.70 0.55 0.40 </th <th>33</th> <th>2981</th> <th>20</th> <th>1</th> <th>10</th> <th>15</th> <th>0.90</th> <th>0.85</th> <th>0.45</th> <th>0.25</th>	33	2981	20	1	10	15	0.90	0.85	0.45	0.25
35 2971 0.5 1 16 18 0.95 0.85 0.65 0.40 36 2989 16 1 8 11 0.90 0.80 0.60 0.40 37 2990 13.5 2 8 20 1.00 0.70 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.30 39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.70 0.55 0.40 43 3008 12 1 12 13 0.95 0.80 0.50 0.30 <	34	2987	0	1	10	17	1.05	0.85	0.70	0.40
36 2989 16 1 8 11 0.90 0.80 0.60 0.40 37 2990 13.5 2 8 20 1.00 0.70 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.30 39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.70 0.55 0.40 43 3008 12 1 12 13 0.95 0.80 0.50 0.30 44 3009 12 1 13 15 0.90 0.70 0.50 0.30 </th <th>35</th> <th>2971</th> <th>0.5</th> <th>1</th> <th>16</th> <th>18</th> <th>0.95</th> <th>0.85</th> <th>0.65</th> <th>0.40</th>	35	2971	0.5	1	16	18	0.95	0.85	0.65	0.40
37 2990 13.5 2 8 20 1.00 0.70 0.60 0.35 38 3002 15 1 9 11 1.00 0.85 0.60 0.30 39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.70 0.55 0.40 43 3008 12 1 12 13 0.95 0.80 0.50 0.40 44 3009 12 1 13 15 0.90 0.70 0.55 0.40 45 2997 10 2 6 8 0.90 0.60 0.50 0.35 <th>36</th> <th>2989</th> <th>16</th> <th>1</th> <th>8</th> <th>11</th> <th>0.90</th> <th>0.80</th> <th>0.60</th> <th>0.40</th>	36	2989	16	1	8	11	0.90	0.80	0.60	0.40
38 3002 15 1 9 11 1.00 0.85 0.60 0.30 39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.75 0.70 0.35 43 3008 12 1 12 13 0.95 0.80 0.50 0.40 44 3009 12 1 13 15 0.90 0.70 0.55 0.40 45 2997 10 2 6 8 0.90 0.60 0.50 0.30 46 3010 15 1 13 16 1.00 0.85 0.80 0.25 <th>37</th> <th>2990</th> <th>13.5</th> <th>2</th> <th>8</th> <th>20</th> <th>1.00</th> <th>0.70</th> <th>0.60</th> <th>0.35</th>	37	2990	13.5	2	8	20	1.00	0.70	0.60	0.35
39 2998 24 1 12 17 1.05 0.95 0.65 0.45 40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.70 0.55 0.40 43 3008 12 1 12 13 0.95 0.80 0.50 0.40 44 3009 12 1 13 15 0.90 0.70 0.55 0.40 45 2997 10 2 6 8 0.90 0.60 0.50 0.35 46 3010 15 1 13 16 1.00 0.85 0.80 0.25	38	3002	15	1	9	11	1.00	0.85	0.60	0.30
40 2995 25 1 10 7 0.90 0.80 0.60 0.35 41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.70 0.55 0.40 43 3008 12 1 12 13 0.95 0.80 0.50 0.40 44 3009 12 1 13 15 0.90 0.70 0.55 0.40 45 2997 10 2 6 8 0.90 0.60 0.50 0.35 46 3010 15 1 13 16 1.00 0.85 0.80 0.25 47 Leoto field 1 1 7 8 110 0.70 0.65 0.40	39	2998	24	1	12	1/	1.05	0.95	0.65	0.45
41 2999 18 1 6 10 0.95 0.75 0.70 0.35 42 3000 14 1 11 8 0.95 0.70 0.55 0.40 43 3008 12 1 12 13 0.95 0.80 0.50 0.40 44 3009 12 1 13 15 0.90 0.70 0.55 0.40 44 3009 12 1 13 15 0.90 0.70 0.50 0.30 45 2997 10 2 6 8 0.90 0.60 0.50 0.35 46 3010 15 1 13 16 1.00 0.85 0.80 0.25 47 Este fablt 1 1 7 8 110 0.70 0.65 0.40	40	2995	25	1	10	10	0.90	0.80	0.60	0.35
42 3000 14 1 11 8 0.55 0.70 0.55 0.40 43 3008 12 1 12 13 0.95 0.80 0.50 0.40 44 3009 12 1 13 15 0.90 0.70 0.50 0.30 45 2997 10 2 6 8 0.90 0.60 0.50 0.35 46 3010 15 1 13 16 1.00 0.85 0.80 0.25 47 Lete fablt 1 1 7 8 1.10 0.70 0.65 0.40	41	2999	10	1	11	101	0.95	0.75	0.70	0.55
43 3008 12 1 12 15 0.55 0.60 0.55 0.40 44 3009 12 1 13 15 0.90 0.70 0.50 0.30 44 3009 12 1 13 15 0.90 0.70 0.50 0.30 45 2997 10 2 6 8 0.90 0.60 0.50 0.35 46 3010 15 1 13 16 1.00 0.85 0.80 0.25 47 Leoto fablt 1 1 7 8 110 0.70 0.65 0.40	42	2000	14	1	11	12	0.95	0.70	0.55	0.40
44 3009 12 1 15 0.50 0.70 0.50 0.50 45 2997 10 2 6 8 0.90 0.60 0.50 0.35 46 3010 15 1 13 16 1.00 0.85 0.80 0.25 47 Leoto fablt 1 1 7 8 1.10 0.70 0.65 0.40	43	2000	12	1	12	15	0.95	0.80	0.50	0.40
45 2997 10 2 6 6 0.50 0.50 0.50 0.55 46 3010 15 1 13 16 1.00 0.85 0.80 0.25 47 Leoto fablt 1 1 7 8 1.10 0.70 0.65 0.40	44	2005	12	1	15	15	0.90	0.70	0.50	0.50
40 3010 13 1 13 10 1.00 0.05 0.00 0.25	46	3010	10	1	13	16	1.00	0.00	0.50	0.35
	40	L Eato fehlt	13	1	7	10	1.00	0.33	0.65	0.23

Übersichtswerte aus M2 – 12.07.2011

Durchschnittliches Blatttrockengewicht	Höhenstufe 1	Höhenstufe 2	Höhenstufe 3	Höhenstufe 4
(ohne Referenzruten)			•	
	0.111702128	2.333617021	6.311702128	6.007446809
Durchschnittliches Holztrockengewicht	Alle Höhenstufen			
(ohne Referenzruten)				
	48.55617021			
Summe des Blatttrockengewichtes	Alle Höhenstufen		[a]	
Referenzrute C	11.85		ra1	
Referenzrute D	12.2			
Durchschnittliches Blatttrockengewicht	Alle Höhenstufen			
Referenzruten C - D				
	12.025			
Durchschnittliches Blatttrockengewicht	Höhenstufe 1	Höhenstufe 2	Höhenstufe 3	Höhenstufe 4
Referenzruten C - D				
	0.035	1.025	4.09	6.875
Durchschnittliches Holztrockengewicht	Alle Höhenstufen			
Referenzruten C - D				
	46.59			
Durchschnitt Holz/Blatt	Alle Höhenstufen			
Referenzruten C - D				
	3.872876461			
Blatttrockengewicht - Messung 2	Aller Ruten			
(ohne Referenzruten)				
	693.93			
Holztrockengewicht - Messung 2	Aller Ruten			
(ohne Referenzruten)	26			
	2282.14			

Rute	H1 [cm ²]	H2 [cm ²]	H3 [cm²]	H4 [cm ²	Gesamtfläche [cm ²]	
1	0	328.4018649	978.243011	662.6058829	1969.250759	
2	25.5294736	99.79703315	366.6960753	1136.061575	1628.084157	
3	0	700.9000933	618.5095194	621.9908112	1941.400424	
4	0	71.94669832	760.0820548	858.7186573	1690.74741	
5	0	184.5084683	1089.64435	734.5525812	2008.7054	
6	0	49.89851657	755.4403323	628.953395	1434.292244	
7	0	204.2357888	852.9165042	628.953395	1686.105688	
8	44.09636348	463.0118166	85.87186573	671.8893278	1264.869374	
9	0	360.8939222	295.9098076	1091.965212	1748.768941	
10	0	185.6688989	818.1035857	217.0005256	1220.77301	
11	0	503.6268882	1017.697652	757.7611936	2279.085734	
12	0	141.5725354	1241.660761	779.8093753	2163.042672	
13	0	355.0917691	698.579232	447.9262185	1501.59722	
14	0	330.7227261	757.7611936	934.1466475	2022.630567	
15	0	92.83444944	757.7611936	772.8467916	1623.442435	
16	0	47.57765534	842.4726287	558.1671273	1448.217411	
17	0	204.2357888	830.8683225	415.4341612	1450.538273	

Summen	609.2260745	12727.60302	34424.17428	32764.7585	80525.76187
47	22.04818174	385.2629652	430.5197593	509.4290413	1347.259947
46	0	73.10712893	277.3429177	1347.259947	1697.709994
45	0	699.7396627	712.5043995	323.7601424	1736.004205
44	0	304.0328219	475.7765534	605.7447826	1385.554158
43	35.97334916	333.0435874	450.2470798	706.7022464	1525.966263
42	0	786.771959	1090.804781	293.5889464	2171.165686
41	0	111.4013393	316.7975587	955.0343986	1383.233297
40	0	69.62583708	393.3859795	874.964686	1337.976503
39	0	489.7017208	1007.253776	546.5628211	2043.518318
38	0	457.2096635	668.408036	797.2158346	1922.833534
37	54.54023905	309.834975	1285.757125	467.6535391	2117.785878
36	0	74.26755955	487.3808596	545.4023905	1107.05081
35	104.4387556	298.2306688	692.7770789	1014.21636	2109.662864
34	0	525.67507	718.3065525	886.5689922	2130.550615
33	0	162.4602865	1267.190235	597.6217683	2027.27229
32	0	232.0861236	662.6058829	778.6489447	1673.340951
31	0	15.08559803	832.0287531	1069.91703	1917.031381
30	0	51.05894719	902.8150208	744.9964568	1698.870425
29	0	179.8667458	791.4136815	548.8836823	1520.16411
28	0	312.1558362	533.7980843	854.0769348	1700.030855
27	34.81291854	221.642248	891.2107146	928.3444944	2076.010376
26	0	52.21937781	395.7068407	570.9318641	1018.858083
25	39.45464101	695.0979402	1018.858083	222.8026787	1976.213342
24	0	78.90928202	760.0820548	961.9969823	1800.988319
23	0	225.1235399	1093.125642	217.0005256	1535.249708
22	66.14454523	93.99488006	678.8519115	1237.019039	2076.010376
21	68.46540646	624.3116725	683.493634	449.0866492	1825.357362
20	0	269.2199034	720.6274138	630.1138256	1619.961143
19	113.7222006	83.5510045	631.2742562	683.493634	1512.041095
18	0	187.9897601	785.6115284	476.936984	1450.538273

Anhang 2: Messprotokolle der Vegetationsaufnahmen

M3 - 27.09.2011

		1. Ast in cm	Verzw. 1		î				
Rute Nr.	Fotonr.	Höhe	(Rute)	Verzw. 2	Verzw. 3	Ø H1 in cm	Ø H2 in cm	Ø H3 in cm	Ø H4 in cm
E	3476	17	1	14	19	1.00	0.80	0.60	0.35
F	3477	42	1	11	13	0.95	0.90	0.60	0.40
1	3474	70	2	13	8	0.90	0.80	0.60	0.30
2	3471	13	2	14	11	0.90	0.80	0.70	0.25
3	3473	6	1	10	9	0.90	0.65	0.50	0.40
4	3475	50	2	8	14	1.00	0.90	0.60	0.30
5	3470	49	1	11	7	0.90	0.70	0.60	0.30
6	3469	43	1	10	12	0.90	0.85	0.70	0.30
7	3463	41	1	9	14	1.00	0.90	0.80	0.25
8	3456	73	1	6	8	0.90	0.70	0.65	0.30
9	3461	9	1	13	11	1.05	0.90	0.60	0.30
10	3458	45	1	9	12	1.00	0.85	0.80	0.30
11	3452	34	1	13	18	0.90	0.70	0.65	0.40
12	3457	28	1	13	20	0.90	0.80	0.70	0.45
13	3444	41	1	15	20	1.00	0.90	0.60	0.45
14	3454	26	1	15	21	1.00	0.80	0.65	0.50
15	4345	41	1	10	11	0.90	0.80	0.60	0.40
10	3443	47	1	10	13	0.90	0.75	0.50	0.30
1/	3448	57	1	8	17	0.95	0.90	0.70	0.40
18	3431	3	1	14	13	0.95	0.75	0.70	0.45
19	2449	21	1	11	15	1.00	0.70	0.60	0.20
20	2429	12	1	10	14	1.00	0.60	0.70	0.40
21	3433	13	1	7	10	0.95	0.93	0.05	0.40
23	3436	15	1	9	17	0.85	0.30	0.60	0.40
24	3435	23	1	8	15	0.95	0.90	0.60	0.30
25	3464	30	1	14	22	1.10	0.90	0.70	0.25
26	3468	24	1	7	7	0.90	0.70	0.60	0.20
27	3472	45	1	8	0	0.85	0.80	0.65	0.40
28	3466	31	1	12	10	1.00	0.80	0.65	0.30
29	3462	56	1	12	16	0.90	0.85	0.70	0.50
30	3465	35	1	14	12	1.00	0.90	0.70	0.30
31	3467	7	1	11	19	1.00	0.80	0.60	0.25
32	13460 Nr.f.	35	1	12	15	1.05	0.90	0.70	0.40
33	3459	42	1	14	9	0.90	0.80	0.60	0.30
34	3446	61	2	21	18	0.15	0.90	0.80	0.50
35	3450	57	1	10	21	1.05	0.90	0.70	0.35
36	3451	64	1	10	10	0.90	0.80	0.70	0.45
37	3455	12	1	9	16	1.00	0.90	0.50	0.30
38	3453	42	1	8	14	1.00	0.80	0.65	0.40
39	3442	21	1	16	12	0.90	0.70	0.65	0.40
40	3447	4	1	9	18	1.00	0.90	0.70	0.35
41	3440	12	1	11	18	1.00	0.80	0.50	0.40
42	2420	30	1	13	19	1.00	0.90	0.60	0.35
43	3439	13	1	12	14	1.00	0.80	0.70	0.50
44	3430	41	1	17	10	1.00	0.75	0.70	0.45
45	3434	30	2	7	19	0.00	0.80	0.50	0.25
47	3438	27	1	6	19	1.00	0.70	0.65	0.35

Übersichtswerte aus M3 – 27.09.2011

Durchschnittliches Blatttrockengewicht	Höhenstufe 1 Höhenstufe 2		Höhenstufe 3	Höhenstufe 4	
(ohne Referenzruten)					
	0.011702128	0.594042553	2.734893617	4.294042553	
Durchschnittliches Holztrockengewicht	Alle Höhenstufen				
(ohne Referenzruten)	-				
	53.6487234				
Commendate Distance in a service trans	Alle Lill and for		[a]		
Summe des Blatttrockengewichtes	Alle Honensturen		131		
	11.27				
Referenzrute F	8.5				
Durchschnittliches Blatttrockengewicht	Alle Höhenstufen				
Referenzruten E - F					
	9.885				
Durchschnittliches Blatttrockongewicht	Höhenstufe 1	Höhanstufa 2	Hähanstufa 2	Höhenstufe 4	
Deferenzruten E - E	Hohenstore 1	nonensture 2	nonenstare 5	nonenscure 4	
Referenzi dien E - T	0	0.65	5.895	3.34	
Durchschnittliches Holztrockengewicht	Alle Höhenstufen				
Referenzruten E - F					
	61.93				
Durchschnitt Holz/Blatt	Alle Honenstuten				
Referenzruten E - F	6.444140091				
Blatttrockengewicht - Messung 3	Aller Ruten				
(ohne Referenzruten)					
	358.83				
Holztrockengewicht - Messung 3	Aller Buten				
(ohne Referenzruten)	Paner Huttern				
	2521.49				
	2321.43				

Rute	H1 [cm ²]	H2 [cm ²]	H2 [cm ²] H3 [cm ²]		Gesamtfläche [cm ²]	
1	0	0	354.4571875	676.5177504	1030.974938	
2	0	31.44378277	133.3978663	261.0786811	425.9203302	
3	0	64.79324934	112.4353444	207.7195346	384.9481284	
4	0	7.622735216	270.6071002	294.4281477	572.6579831	
5	0	23.82104755	80.03871977	293.4753058	397.3350731	
6	0	73.36882645	444.0243263	269.6542583	787.0474111	
7	0	79.08587787	502.1476824	708.9143751	1290.147935	
8	0	0	60.98188173	399.2407569	460.2226387	
9	0	179.1342776	195.3325899	346.8344523	721.3013198	
10	0	65.74609124	273.4656259	729.8768969	1069.088614	
11	0	0	218.2007956	358.2685552	576.4693507	
12	0	43.83072749	192.4740642	333.4946657	569.7 <mark>9945</mark> 74	
13	0	36.20799228	236.3047917	367.7969742	640.3097581	
14	0	157.2189138	422.1089626	379.231077	958.5589534	
15	0	79.08587787	197.2382737	344.9287685	621.2529201	
16	0	129.5864987	202.0024832	302.0508829	633.6398648	
17	0	36.20799228	304.9094086	567.8937736	909.0111745	

Summen	52.40630461	2660.33459	12247.82981	19230.25527	34190.82597
47	0	0	202.0024832	405.9106503	607.9131335
46	0	144.8319691	399.2407569	335.4003495	879.4730755
45	0	17.15115424	97.189874	372.5611837	486.9022119
44	0	63.84040743	497.3834728	520.2516785	1081.475559
43	0	47.6420951	207.7195346	343.0230847	598.3847145
42	0	50.50062081	61.93472363	516.4403109	628.8756553
41	0	68.60461694	464.0340063	350.6458199	883.2844432
40	15.24547043	19.05683804	200.0967994	549.7897775	784.1888853
39	0	106.718293	229.6348984	393.5237055	729.8768969
38	0	23.82104755	372.5611837	462.1283225	858.5105537
37	0	97.189874	340.164559	634.5927067	1071.94714
36	0	0	268.7014164	616.4887106	885.190127
35	0	0	301.098041	1021.446519	1322.54456
34	0	7.622735216	34.30230847	293.4753058	335.4003495
33	0	11.43410282	59.07619792	173.4172262	243.9275269
32	0	79.08587787	165.7944909	219.1536375	464.0340063
31	37.16083418	154.3603881	412.5805436	299.1923572	903.2941231
30	0	50.50062081	247.7388945	566.9409317	865.180447
29	0	94.3313483	471.6567415	318.2491953	884.2372851
28	0	137.2092339	375.4197094	396.3822312	909.0111745
27	0	24.77388945	159.1245976	263.9372069	447.8356939
26	0	33.34946657	132.4450244	380.1839189	545.9784098
25	0	33.34946657	368.7498161	630.7813391	1032.880622
24	0	212.4837441	1053.843144	548.8369356	1815.163823
23	0	0	122.9166054	401.1464407	524.0630461
22	0	0	37.16083418	383.9952865	421.1561207
21	0	15.24547043	262.984365	218.2007956	496.4306309
20	0	0	178.1814357	385.9009703	564.082406
19	0	25.72673135	146.7376529	144.8319691	317.2963534
18	0	134.3507082	177.2285938	242.0218431	553.6011451

11.3 Anhang 3: Blattscanns aller Referenzruten

25.05.2011 Referenzzweig A

Höhe 2

25.05.2011 Referenzzweig B

Höhe 2

Höhe 4

12.07.2011 Referenzzweig C

12.07.2011 Referenzzweig D

Höhe 2

27.09.2011 Referenzzweig E

Höhe 2

27.09.2011 Referenzzweig F

Höhe 3

11.4 Anhang 4: Fotos aller Weidenzweige

Weidenzweige Messung 1 25.05.2011

Referenzzweig A

Referenzzweig B

1

5

2

7

4

22 foto fehlt

ZH SH

47

Weidenzweige Messung 2 12.07.2011

Referenzzweig C

Referenzzweig D

5

9

2

6

阳

3

11 foto fehlt

19%

νH

ZH

朴

۶H

47 foto fehlt

枅

Weidenzweige Messung 3 27.09.2011

Referenzzweig E

6

7

Weidenzweige Messung 3 27.09.2011

Weidenzweige Messung 3 27.09.2011

ZH

Weidenzweige Messung 3 27.09.2011

LH.

Weidenzweige Messung 3 27.09.2011

12 CD - ROM (Anhang)

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbständig angefertigt habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich gemacht.

Ort, Datum

Unterschrift